WorldWideScience

Sample records for graphite fuel blocks

  1. Criteria for the selection of graphites for HTR integral block fuel elements

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1980-01-01

    This paper is concerned with the special requirements for integral block fuel elements of the type first used in the Fort St. Vrain reactor. The main idea of these elements is that the carrier block and separate graphite clad fuel pins are combined into a single monolith. This combination leads to lower fabrication costs and some improvement in the thermal performance (lower temperature difference between fuel and the surface of heat transfer into the coolant). The advent of block fuel for HTRs of the Fort St. Vrain type has placed a fresh emphasis on the selection of graphite for block manufacture in respect of physical properties. This is because the temperature distributions typical of such fuelled blocks lead to shutdown stresses close to the maximum the graphite can sustain without damage. Figures presented in this paper suggest that the physical properties of the graphite can play a relatively large part in reducing such stress levels and that guidance on the key requirements for suitable specifications is therefore particularly needed by the manufacturers of fuel block graphites. While graphites for fuel blocks have this special need for combinations of physical properties which lead to low thermal and shrinkage stresses, the other characteristics must also receive attention. A low graphite cost combined with good homogeneity in the brick, so that waste minimized, are still necessary, while isotropy is also very important

  2. Study on disposal method of graphite blocks and storage of spent fuel for modular gas-cooled reactor. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Sumita, Junya; Sawa, Kazuhiro; Kunitomi, Kazuhiko [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Tsuchie, Yasuo; Urakami, Masao [Japan Atomic Power Co., Tokyo (Japan)

    2003-02-01

    This report describes the result of study on disposal method of graphite blocks in future block-type reactor. Present study was carried out within a framework of joint research, ''Research of Modular High Temperature Gas-cooled Reactors (No. 3)'', between Japan Atomic Energy Research Institute (JAERI) and the Japan Atomic Power Company (JAPCO), in 2000. In this study, activities in fuel and reflector graphite blocks were evaluated and were compared with the disposal limits defined as low-level of radioactive waste. As a result, it was found that the activity for only C-14 was higher than disposal limits for the low-level of radioactive waste and that the amount of air in the graphite is important to evaluate precisely of C-14 activity. In addition, spent fuels can be stored in air-cooled condition at least after two years cooling in the storage pool. (author)

  3. Block fuel element for gas-cooled high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.F.

    1978-01-01

    The invention concerns a block fuel element consisting of only one carbon matrix which is almost isotropic of high crystallinity into which the coated particles are incorporated by a pressing process. This block element is produced under isostatic pressure from graphite matrix powder and coated particles in a rubber die and is subsequently subjected to heat treatment. The main component of the graphite matrix powder consists of natural graphite powder to which artificial graphite powder and a small amount of a phenol resin binding agent are added

  4. Analytical study of stress and deformation of HTR fuel blocks

    International Nuclear Information System (INIS)

    Tanaka, M.

    1982-01-01

    A two-dimensional finite element computer code named HANS-GR has been developed to predict the mechanical behavior of the graphite fuel blocks with realistic material properties and core environment. When graphite material is exposed to high temperature and fast neutron flux of high density, strains arise due to thermal expansion, irradiation-induced shrinkage and creep. Thus stresses and distortions are induced in the fuel block in which there are spatial variation of these strains. The analytical method used in the program to predcit these induced stresses and distortions by finite element method is discussed. In order to illustrate the versatility of the computer code, numerical results of two example analyses of the multi-hole type fuel elements in the VHTR Reactor are given. Two example analyses presented are those concerning the stresses in fuel blocks with control rod holes and distortions of the fuel blocks at the periphery of the reactor core. It is considered these phenomena should be carefully examined when the multi-hole type fuel elements are applied to VHTR. It is assured that the predicted mechanical behavior of the graphite components is strongly dependent on the material properties used and obtaining the reliable material property is important to make the analytical prediction a reliable one

  5. Graphite behaviour in relation to the fuel element design

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Manzel, R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Blackstone, R. [Reactor Centrum, Petten (Netherlands); Delle, W. [Kernforschungsanlage, Juelich (Germany); Lungagnani, V. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands); Krefeld, R. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands)

    1969-09-01

    The first designs of H.T.R. power reactors will probably use a Gilsocarbon based graphite for both the moderator/carrier blocks and for the fuel tubes. The initial physical properties and changes of dimensions, thermal expansion coefficient, Young*s modulus, and thermal conductivity on irradiation of Gilsocarbon graphites to typical reactor dwell-time fast neutron doses of 4 * 1021 cm -2 Ni dose Dido equivalent are given and values for the irradiation creep constant are presented. The influence of these property changes and those of chemical corrosion are considered briefly in relation to the present fuel element designs. The selection of an eventual less costly replacement graphite for Gilsocarbon graphite is discussed in terms of materials properties.

  6. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  7. Application of 3D coupled code ATHLET-QUABOX/CUBBOX for RBMK-1000 transients after graphite block modernization

    Energy Technology Data Exchange (ETDEWEB)

    Samokhin, Aleksei [Scientific and Engineering Centre for Nuclear and Radiation Safety (SEC NRS), Moscow (Russian Federation); Zilly, Matias [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work describes the application and the results of transient calculations for the RBMK-1000 with the coupled code system ATHLET 2.2A-QUABOX/CUBBOX which was developed in GRS. Within these studies the planned modernization of the graphite blocks of the RBMK-1000 reactor is taken into account. During the long-term operation of the uranium-graphite reactors RBMK-1000, a change of physical and mechanical properties of the reactor graphite blocks is observed due to the impact of radiation and temperature effects. These have led to a deformation of the reactor graphite columns and, as a result, a deformation of the control and protection system (CPS) and of fuel channels. Potentially, this deformation can lead to problems affecting the smooth movement of the control rods in the CPS channels and problems during the loading and unloading of fuel assemblies. The present paper analyzes two reactivity insertion transients, each taking into account three graphite removal scenarios. The presented work is directly connected with the modernization program of the RBMK- 1000 reactors and has an important contribution to the assessment of the safety-relevant parameters after the modification of the core graphite blocks.

  8. Calculation of thermal stresses in graphite fuel blocks

    International Nuclear Information System (INIS)

    Lejeail, Y.; Cabrillat, M.T.

    2005-01-01

    This paper presents a parametric study of temperature and thermal stress calculations inside a HTGR core graphite block, taking into account the effect of fluence on the thermal and mechanical properties, up to 4. 10 21 n/cm 2 . The Finite Element model, realized with Cast3M CEA code, includes the effects of irradiation creep, which tends to produce secondary stress relaxation. Then, the Weibull weakest link theory is recalled, evaluating the possible effects of volume, stress field distribution (loading factor), and multiaxiality for graphite-type materials, and giving the methodology to compare the stress to rupture for the structure to the one obtained from characterization, in the general case. The maximum of the Weibull stress in Finite Element calculations is compared to the value for tensile specimens. It is found that the maximum of the stress corresponds to the end of the irradiation cycle, after reactor shutdown, since both thermal conductivity and Young's modulus increase with time. However, this behaviour is partly counterbalanced by the increase of material strength with irradiation. (authors)

  9. Thermal stress analysis of HTGR fuel and control rod fuel blocks in the HTGR in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new approach that utilizes the equivalent solid plate method has been applied to the thermal stress analysis of HTGR fuel and control rod fuel blocks. Cases were considered where these blocks, loaded with reprocessed HTGR fuel pellets, were being cured at temperatures up to 1800 0 C. A two-dimensional segment of a fuel block cross section including fuel, coolant holes, and graphite matrix was analyzed using the ORNL HEATING3 heat transfer code to determine the temperature-dependent effective thermal conductivity for the perforated region of the block. Using this equivalent conductivity to calculate the temperature distributions through different cross sections of the blocks, two-dimensional thermal-stress analyses were performed through application of the equivalent solid plate method. In this approach, the perforated material is replaced by solid homogeneous material of the same external dimensions but whose material properties have been modified to account for the perforations

  10. Treatment and Disposal of the Radioactive Graphite Waste of High-Temperature Gas-Cooled Reactor Spent Fuel

    International Nuclear Information System (INIS)

    Li Junfeng

    2016-01-01

    High-temperature gas-cooled reactors (HTGRs) represent one of the Gen IV reactors in the future market, with efficient generation of energy and the supply of process heat at high temperature utilised in many industrial processes. HTGR development has been carried out within China’s National High Technology Research and Development Program. The first industrial demonstration HTGR of 200 MWe is under construction in Shandong Province China. HTGRs use ceramic-coated fuel particles that are strong and highly resistant to irradiation. Graphite is used as moderator and helium is used as coolant. The fuel particles and the graphite block in which they are imbedded can withstand very high temperature (up to ~1600℃). Graphite waste presents as the fuel element components of HTGR with up to 95% of the whole element beside the graphite blocks in the core. For example, a 200 MWe reactor could discharge about 90,000 fuel elements with 17 tonnes irradiated graphite included each year. The core of the HTGR in China consists of a pebble bed with spherical fuel elements. The UO 2 fuel kernel particles (0.5mm diameter) (triple-coated isotropic fuel particles) are coated by several layers including inner buffer layer with less dense pyrocarbon, dense pyro-carbon, SiC layer and outer layer of dense pyro-carbon, which can prevent the leaking of fission products (Fig. 1). Spherical fuel elements (60mm diameter) consist of a 50mm diameter inner zone and 5mm thick shell of fuel free zone [3]. The inner zone contains about 8300 triple-coated isotropic fuel particles of 0.92mm in diameter dispersed in the graphite matrix

  11. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  12. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  13. Verification of thermal-irradiation stress analytical code VIENUS of graphite block

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Shiozawa, Shusaku; Shirai, Hiroshi; Minato, Kazuo.

    1992-02-01

    The core graphite components of the High Temperature Engineering Test Reactor (HTTR) show both the dimensional change (irradiation shrinkage) and creep behavior due to fast neutron irradiation under the temperature and the fast neutron irradiation conditions of the HTTR. Therefore, thermal/irradiation stress analytical code, VIENUS, which treats these graphite irradiation behavior, is to be employed in order to design the core components such as fuel block etc. of the HTTR. The VIENUS is a two dimensional finite element viscoelastic stress analytical code to take account of changes in mechanical properties, thermal strain, irradiation-induced dimensional change and creep in the fast neutron irradiation environment. Verification analyses were carried out in order to prove the validity of this code based on the irradiation tests of the 8th OGL-1 fuel assembly and the fuel element of the Peach Bottom reactor. This report describes the outline of the VIENUS code and its verification analyses. (author)

  14. Fort St. Vrain graphite site mechanical separation concept selection

    International Nuclear Information System (INIS)

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts

  15. Impact-Contact Analysis of Prismatic Graphite Blocks Using Abaqus

    International Nuclear Information System (INIS)

    Kang, Ji Ho; Kim, Gyeong Ho; Choi, Woo Seok

    2010-12-01

    Graphite blocks are the important core components of the high temperature gas-cooled reactor. As these blocks are simply stacked in array, collisions among neighboring components may occur during earthquakes or accidents. The final objective of the research project is to develop a reliable seismic model of the stacked graphite blocks from which their behavior can be predicted and, thus, they are designed to have sufficient strength to maintain their structural integrity during the anticipated occurrences. The work summarized in this report is a first step toward the big picture and is dedicated to build a realistic impact-contact dynamics model of the graphite block using a commercial FEM package, Abaqus. The developed model will be further used to assist building a reliable lumped dynamics model of these stacked graphite components

  16. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    A new method for performing thermal stress analyses in structures with multiple penetrations was applied to these analyses. This method couples the development of an equivalent thermal conductivity for the blocks, a technique that has been used extensively for modeling the thermal characteristics of reactor cores, with the use of the equivalent solid plate method for stress analysis. Using this equivalent thermal conductivity, which models as one material the heat transfer characteristics of the fuel, coolant, and graphite two-dimensional, steady-state thermal analyses of the fuel and control rod fuel blocks were performed to establish all temperature boundaries required for the stress analyses. In applying the equivalent solid plate method, the region of penetrations being modeled was replaced by a pseudo material having the same dimensions but whose materials properties were adjusted to account for the penetration. The peak stresses and strains were determined by applying stress and strain intensification factors to the calculated distributions. The condition studied was where the blocks were located near the center of the furnace. In this position, the axial surface of the block is heated near one end and cooled near the other. The approximate axial surface temperatures ranged from 1521 0 C at both the heated and the cooled ends to a peak of 1800 0 C near the center. Five specific cases were analyzed: plane (two-dimensional thermal, plane stress strain) analyses of each end of a standard fuel block (2 cases), plane analyses of each end of a control rod fuel block (2 cases), and a two-dimensional analysis of a fuel block treated as an axisymmetric cylind

  17. Method of manufacturing a graphite coated fuel can

    International Nuclear Information System (INIS)

    Saito, Koichi; Uchida, Shunsuke.

    1984-01-01

    Purpose: To improve the close bondability and homogeneity of a graphite coating formed at the inner surface of a fuel can. Method: A coating containing graphite dispersed in a volatile organic solvent is used and a graphite coating is formed to the inner surface of a fuel can by way of a plunger method. After applying graphite coating, an inert gas is caused to flow at a certain flow rate to the inside of the fuel can horizontally rotaged so that gassification and evaporation of the volatile organic solvent contained in the graphite coating may be promoted. Since drying of the graphite coating coated to the inner surface of the fuel can thus be controlled, a graphite coating with satisfactory close bondability and homogeneity can be formed. (Kawakami, Y.)

  18. Pre-conceptual Development and characterization of an extruded graphite composite fuel for the TREAT Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Erik; Rooyen, Isabella van; Leckie, Rafael; Papin, Pallas; Nelson, Andrew; Hunter, James

    2015-03-01

    In an effort to explore fuel systems that are more robust under accident scenarios, the DOE-NE has identified the need to resume transient testing. The Transient Reactor Test (TREAT) facility has been identified as the preferred option for the resumption of transient testing of nuclear fuel in the United States. In parallel, NNSA’s Global Threat Reduction Initiative (GTRI) Convert program is exploring the needs to replace the existing highly enriched uranium (HEU) core with low enriched uranium (LEU) core. In order to construct a new LEU core, materials and fabrication processes similar to those used in the initial core fabrication must be identified, developed and characterized. In this research, graphite matrix fuel blocks were extruded and materials properties of were measured. Initially the extrusion process followed the historic route; however, the project was expanded to explore methods to increase the graphite content of the fuel blocks and explore modern resins. Materials properties relevant to fuel performance including density, heat capacity and thermal diffusivity were measured. The relationship between process defects and materials properties will be discussed.

  19. Ageing Management of Beryllium and Graphite Blocks in Research Reactor MARIA

    Energy Technology Data Exchange (ETDEWEB)

    Golab, A. [National Centre for Nuclear Research, Warsaw (Poland)

    2013-07-01

    In the paper the phenomenon of beryllium moderator poisoning by thermal neutron absorption and the method and results of this phenomenon control is presented. Also the phenomenon of graphite blocks damage due to fast neutrons accumulation and the methods and results of this process supervising is described. These methods refer especially to: visual inspection of their state and radiography of graphite blocks. Special attention is paid to permanent estimate of fast neutron fluency accumulated in blocks and methods of their shuffling in the reactor core. The shuffling makes possible to increase the lifetime of beryllium and graphite blocks and decrease the cost of reactor operation.

  20. Features of spherical uranium-graphite HTGR fuel elements control

    International Nuclear Information System (INIS)

    Kreindlin, I.I.; Oleynikov, P.P.; Shtan, A.S.

    1985-01-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described

  1. Features of spherical uranium-graphite HTGR fuel elements control

    Energy Technology Data Exchange (ETDEWEB)

    Kreindlin, I I; Oleynikov, P P; Shtan, A S

    1985-07-01

    Control features of spherical HTGR uranium-graphite fuel elements with spherical coated fuel particles are mainly determined by their specific construction and fabrication technology. The technology is chiefly based on methods of ceramic fuel (fuel microspheres fabrication) and graphite production practice it is necessary to deal with a lot of problems from determination of raw materials properties to final fuel elements testing. These procedures are described.

  2. Development and engineering plan for graphite spent fuels conditioning program

    International Nuclear Information System (INIS)

    Bendixsen, C.L.; Fillmore, D.L.; Kirkham, R.J.; Lord, D.L.; Phillips, M.B.; Pinto, A.P.; Staiger, M.D.

    1993-09-01

    Irradiated (or spent) graphite fuel stored at the Idaho Chemical Processing Plant (ICPP) includes Fort St. Vrain (FSV) reactor and Peach Bottom reactor spent fuels. Conditioning and disposal of spent graphite fuels presently includes three broad alternatives: (1) direct disposal with minimum fuel packaging or conditioning, (2) mechanical disassembly of spent fuel into high-level waste and low-level waste portions to minimize geologic repository requirements, and (3) waste-volume reduction via burning of bulk graphite and other spent fuel chemical processing of the spent fuel. A multi-year program for the engineering development and demonstration of conditioning processes is described. Program costs, schedules, and facility requirements are estimated

  3. Effect of the Heat Treatment on the Graphite Matrix of Fuel Element for HTGR

    International Nuclear Information System (INIS)

    Lee, Chungyong; Lee, Seungjae; Suh, Jungmin; Jo, Youngho; Lee, Youngwoo; Cho, Moonsung

    2013-01-01

    In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength for the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and Phenol as a binder were chosen and mixed with each other, formed and heated for the compressive strength test. The objective of this research is to optimize the kinds and composition of the mixed graphite and the forming process by evaluating the compressive strength before/after heat treatment (carbonization of binder). In this study, the effect of heat treatment on graphite matrix was studied in terms of the density and the compressive strength. The size (diameter and length) of pellet is increased by heat treatment. Due to additional weight reduction and swelling (length and diameter) of samples the density of graphite pellet is decreased from about 2.0 to about 1.7g/cm 3 . From the mechanical test results, the compressive strength of graphite pellets was related to the various conditions such as the contents of binder, the kinds of graphite and the heat treatment. Both the green pellet and the heat treated pellet, the compressive strength of G+S+P pellets is relatively higher than that of R+S+P pellets. To optimize fuel element matrix, the effect of Phenol and other binders, graphite composition and the heat treatment on the mechanical properties will be deeply investigated for further study

  4. Monte Carlo calculation of standard graphite block

    International Nuclear Information System (INIS)

    Ljubenov, V.

    2000-01-01

    This paper presents results of calculation of neutron flux space and energy distribution in the standard graphite block (SGB) obtained by the MCNP TM code. VMCCS nuclear data library, based on the ENDF / B-VI release 4 evaluation file, is used. MCNP model of the SGB considers detailed material, geometric and spectral properties of the neutron source, source carrier, graphite moderator medium, aluminium foil holders and proximate surrounding of SGB Geometric model is organised to provide the simplest homogeneous volume cells in order to obtain the maximum acceleration of neutron history tracking (author)

  5. TAPIR, Thermal Analysis of HTGR with Graphite Sleeve Fuel Elements

    International Nuclear Information System (INIS)

    Weicht, U.; Mueller, W.

    1983-01-01

    1 - Nature of the physical problem solved: Thermal analysis of a reactor core containing internally and/or externally gas cooled prismatic fuel elements of various geometries, rating, power distribution, and material properties. 2 - Method of solution: A fuel element in this programme is regarded as a sector of a fuelled annulus with graphite sleeves of any shape on either side and optional annular gaps between fuel and graphite and/or within the graphite. It may have any centre angle and the fuelled annulus may become a solid cylindrical rod. Heat generation in the fuel is assumed to be uniform over the cross section and peripheral heat flux into adjacent sectors is ignored. Fuel elements and coolant channels are treated separately, then linked together to fit a specified pattern. 3 - Restrictions on the complexity of the problem: Maxima of: 50 fuel elements; 50 cooled channels; 25 fuel geometries; 25 coolant channel geometries; 10 axial power distributions; 10 graphite conductivities

  6. Improving methodology in open vessel digestion with a graphite heating block (T7)

    International Nuclear Information System (INIS)

    Kainrath, P.; Conrads, B.; Ross, A.

    2002-01-01

    Full text: Open block digestion systems have been very popular in environmental analysis over the past decades, but have consistently suffered from the major drawback of their sensitivity against corrosion and the subsequent risk of contamination. Therefore block digestion systems have not been considered state-of-the-art technology in trace and ultra trace sample preparation. Graphite block digestion systems are well established in North America and are recently becoming more frequently considered in Europe. These systems overcome the deficiencies of the traditional systems, made from stainless steel or aluminum, because the block is manufactured from graphite and typically coated with a fluoro-polymer to present the possibility metallic contamination from the surface of the system during the handling of the samples. Graphite block systems present an alternative to the current mainstream technology of open and closed vessel microwave assisted digestion systems, as they allow large numbers of samples to be digested simultaneously, thus overcoming one of the major weaknesses of closed vessel systems. More recently a number of improvements in the technology has been developed for graphite block digestion systems and studies have been performed to evaluate the effects of such improvements. The paper presented will deal with the technological improvements: monitoring and control of sample temperature vs. monitoring of block temperature, elimination of cross contamination effects during open vessel block digestion, evaporation of samples for pre-concentration or multiple digestion steps, addressing the needs of various labs and applications for block digesters. The effects of those developments will be discussed; application examples and finally an outlook into possible future trends for graphite block digestion systems will be given. (author)

  7. Graphite moderated reactor for thermoelectric generation

    International Nuclear Information System (INIS)

    Akazawa, Issei; Yamada, Akira; Mizogami, Yorikata

    1998-01-01

    Fuel rods filled with cladded fuel particles distributed and filled are buried each at a predetermined distance in graphite blocks situated in a reactor core. Perforation channels for helium gas as coolants are formed to the periphery thereof passing through vertically. An alkali metal thermoelectric power generation module is disposed to the upper lid of a reactor container while being supported by a securing receptacle. Helium gas in the coolant channels in the graphite blocks in the reactor core absorbs nuclear reaction heat, to be heated to a high temperature, rises upwardly by the reduction of the specific gravity, and then flows into an upper space above the laminated graphite block layer. Then the gas collides against a ceiling and turns, and flows down in a circular gap around the circumference of the alkali metal thermoelectric generation module. In this case, it transfers heat to the alkali metal thermoelectric generation module. (I.N.)

  8. Computation of deformations and stresses in graphite blocks for HTR core survey purposes

    International Nuclear Information System (INIS)

    Besdo, Dieter; Theymann, W.

    1975-01-01

    Stresses and deformations in graphite fuel elements for HTRs are caused by the temperature distribution and by irradiation under influence of creep, shrinking, thermal strains, and elastic deformations. The global deformations and the stress distribution in a prismatic fuel-element containing regularly distributed axial holes for the coolant flow and the fuel sticks, can be computed in the following manner: the block with its holes is treated as an effective homogeneous continuum with an equivalent global behaviour. Assuming that the fourth-order-tensor of the elastic constants is proportional to the corresponding tensor in the constitutive equations for creep, only the effective strains are of interest. The values of temperature and dose may be given in n points of the block at certain points of time. Then, the inelastic nonthermal strains are integrated by a Runge-Kutta-procedure in the n points. When interpolated and combined with thermal strains, they are incompatible. Hence, they produce elastic deformations which cause creep and can be computed by use of a Ritz-polynomial-series by help of a specific principle of the minimum of potential energy. Excessive computing time can be avoided easily since the influence of the local variation of the elastic constants within the block is almost negligible and, therefore, of practically no importance for the determination of the elastic strains. By this reason some matrices can be calculated a priori, and the elastic deformations are obtained by multiplications of these matrices rather than inversions. Therefore, this method is particularly suited for the computation of deformations and stresses for reactor core survey purposes where a large number (up to 7000 blocks) have to be treated

  9. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  10. An Experiment on the Carbonization of Fuel Compact Matrix Graphite for HTGR

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Joo Hyoung; Cho, Moon Sung

    2012-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a properly prepared matrix graphite powder, pressed into a spherical shape or a cylindrical compact, and finally heat-treated at about 1800 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, over coating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K, In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is of extreme importance to investigate the relationship among the process parameters of the matrix graphite powder preparation, fabrication parameters of fuel element green compact and the carbonization condition, which has a strong influence on further steps and the material properties of fuel element. In this work, the carbonization behavior of green compact samples prepared from the matrix graphite powder mixtures with different binder materials was investigated in order to elucidate the behavior of binders during the carbonization heat treatment by analyzing the change in weight, density and its

  11. Integral-fuel blocks

    International Nuclear Information System (INIS)

    Cunningham, C.; Simpkin, S.D.

    1975-01-01

    A prismatic moderator block is described which has fuel-containing channels and coolant channels disposed parallel to each other and to edge faces of the block. The coolant channels are arranged in rows on an equilateral triangular lattice pattern and the fuel-containing channels are disposed in a regular lattice pattern with one fuel-containing channel between and equidistant from each of the coolant channels in each group of three mutually adjacent coolant channels. The edge faces of the block are parallel to the rows of coolant channels and the channels nearest to each edge face are disposed in two rows parallel thereto, with one of the rows containing only coolant channels and the other row containing only fuel-containing channels. (Official Gazette)

  12. Gravity Effects on the Free Vibration of a Graphite Column

    International Nuclear Information System (INIS)

    Ki, Dong-Ok; Kim, Jong-Bum; Park, Keun-Bae; Lee, Won-Jae

    2006-01-01

    The gravity effects on the free vibration of a graphite column are studied. Graphite block is a key component of a HTGR (High Temperature Gas Cooled Reactor). The major core elements, such as the fuel blocks and neutron reflector blocks, of HTTR (High Temperature Test Reactor, Japan) and GT-MHR (Gas Turbine- Modular Helium Reactor, USA) consist of stacked hexagonal graphite blocks forming a group of columns. The vibration of the columns induced by earthquakes may lead to solid impacts between graphite blocks and structural integrity problems. The study of free vibration characteristics of the graphite block column is the first step in the core internal structure dynamic analysis. Gravity force bring a negative stiffness term to the transverse vibration analysis of heavy long column structures, and results in natural frequency reductions. Generally it is not considered in the not so tall structure cases, because the gravity term makes the analysis and design complicated. Therefore it is important to check whether the gravity effect is severe or not

  13. High temperature gas-cooled reactor (HTGR) graphite pebble fuel: Review of technologies for reprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Mcwilliams, A. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-08

    This report reviews literature on reprocessing high temperature gas-cooled reactor graphite fuel components. A basic review of the various fuel components used in the pebble bed type reactors is provided along with a survey of synthesis methods for the fabrication of the fuel components. Several disposal options are considered for the graphite pebble fuel elements including the storage of intact pebbles, volume reduction by separating the graphite from fuel kernels, and complete processing of the pebbles for waste storage. Existing methods for graphite removal are presented and generally consist of mechanical separation techniques such as crushing and grinding chemical techniques through the use of acid digestion and oxidation. Potential methods for reprocessing the graphite pebbles include improvements to existing methods and novel technologies that have not previously been investigated for nuclear graphite waste applications. The best overall method will be dependent on the desired final waste form and needs to factor in the technical efficiency, political concerns, cost, and implementation.

  14. Study on efficient methods for removal and treatment of graphite blocks in a gas cooled reactor

    International Nuclear Information System (INIS)

    Fujii, S.; Shirakawa, M.; Murakami, T.

    2001-01-01

    Tokai Power Station (GCR, 166 MWe) started its commercial operation on July 1966 and ceased activities at the end of March 1998 after 32 years of operation. The decommissioning plans are being developed, to prepare for near future dismantling. In the study, the methods for removal of the graphite blocks of about 1,600 ton have been developed to carrying it out safely and in a short period of time, and the methods of treatment of graphite have also been developed. All technological items have been identified for which R and D work will be required for removal from the core and treatment for disposal. (1) In order to reduce the programme required for the dismantling of reactor internals, an efficient method for removal of the graphite blocks is necessary. For this purpose the design of a dismantling machine has been investigated which can extract several blocks at a time. The conceptual design has being developed and the model has been manufactured and tested in a mock-up facility. (2) In order to reduce disposal costs, it will be necessary to segment the graphite blocks, maximising the packing density available in the disposal containers. Some of the graphite blocks will be cut into pieces longitudinally by a remote machine. Relevant technical matters have been identified, such as graphite cutting methods, the nature of fine particles arising from the cutting operation, the treatment of fine particles for disposal, and the method of mortar filling inside the waste container. (author)

  15. Low temperature chemical processing of graphite-clad nuclear fuels

    Science.gov (United States)

    Pierce, Robert A.

    2017-10-17

    A reduced-temperature method for treatment of a fuel element is described. The method includes molten salt treatment of a fuel element with a nitrate salt. The nitrate salt can oxidize the outer graphite matrix of a fuel element. The method can also include reduced temperature degradation of the carbide layer of a fuel element and low temperature solubilization of the fuel in a kernel of a fuel element.

  16. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    International Nuclear Information System (INIS)

    Lee, Jeong-Hun; Cho, Hyoung-Kyu; Park, Goon-Cherl

    2016-01-01

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  17. Development of the loss coefficient correlation for cross flow between graphite fuel blocks in the core of prismatic very high temperature reactor-PMR200

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Hun, E-mail: huny12@snu.ac.kr; Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr; Park, Goon-Cherl, E-mail: parkgc@snu.ac.kr

    2016-10-15

    Highlights: • Cross flow experimental data are produced with wedge-shaped and parallel gaps. • The results of a CFD analysis and experimental data are in good agreement. • Pressure loss coefficient for the cross gap between fuel blocks in PMR200 is found. • A new correlation of the cross flow loss coefficient for PMR200 is proposed. - Abstract: The core of the very high temperature reactor (VHTR) PMR200 (a prismatic modular reactor rated at 200 MW of thermal power) consists of hexagonal prismatic fuel blocks and reflector blocks made of graphite. If the core bypass flow ratio increases, the coolant channel flow is decreased and can then lower the heat removal efficiency, resulting in a locally increased fuel block temperature. The coolant channels in the fuel blocks are connected to bypass gaps by the cross gap, complicating flow distribution in the VHTR core. Therefore, reliable estimation of the bypass flow is highly important for the design and safety analysis of the VHTR core. Because of the complexity of the core geometry and gap configuration, it is challenging to predict the flow distribution in the VHTR core. To analyze this flow distribution accurately, it is necessary to determine the cross flow phenomena, and the loss coefficient across the cross gap has to be evaluated to determine the flow distribution in the VHTR core when a lumped parameter code or a flow network analysis code that uses the correlation of the loss coefficient is employed. The purpose of this paper is to develop a loss coefficient correlation applicable to the cross gap in the PMR200 core. The cross flow was evaluated experimentally using the difference between the measured inlet and outlet mass flow rates. Next, the applicability of a commercial computational fluid dynamics (CFD) code, CFX 15, was confirmed by comparing the experimental data and CFD analysis results. To understand the cross flow phenomena, the loss coefficient was evaluated; in the high Reynolds number region

  18. Irradiation-induced dimensional changes of fuel compacts and graphite sleeves of OGL-1 fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Minato, Kazuo; Kobayashi, Fumiaki; Tobita, Tsutomu; Kikuchi, Teruo; Kurobane, Shiro; Adachi, Mamoru; Fukuda, Kousaku

    1988-06-01

    Experimental data are summarized on irradiation-induced dimensional changes of fuel compacts and graphite sleeves of the first to ninth OGL-1 fuel assemblies. The range of fast-neutron fluence is up to 4 x 10 24 n/m 2 (E > 0.18 MeV); and that of irradiation temperature is 900 - 1400 deg C for fuel compacts and 800 - 1050 deg C for graphite sleeves. The dimensional change of the fuel compacts was shrinkage under these test conditions, and the shrinkage fraction increased almost linearly with fast-neutron fluence. The shrinkage fraction of the fuel compacts was larger by 20 % in the axial direction than in the radial direction. Influence of the irradiation temperature on the dimensional-change behavior of the fuel compacts was not observed clearly; presumably the influence was hidden by scatter of the data because of low level of the fast-neutron fluence and the resultant small dimensional changes. (author)

  19. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  20. Studies on design principles and criteria of fuels and graphites for experimental multi-purpose very high temperature reactor

    International Nuclear Information System (INIS)

    Arai, Taketoshi; Sato, Sadao; Tani, Yutaro

    1977-12-01

    Design principles and criteria of fuels and graphites have been studied to determine the main design parameters of a reference core MARK-III of the Experimental Multi-purpose Very High Temperature Reactor. The present status of research and development for HTGR fuels and graphites is reviewed from a standpoint of their integrity and safety aspects, and is compared to the specific design requirements for the VHTR fuels and graphites. Consequently, reasonable materials specifications, safety criteria and design analysis methods are presented for coated fuel particle, fuel compact, graphite sleeve, core support graphite and neutron absorber material. These design principles and criteria will be refined by further experimental investigations. (auth.)

  1. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  2. Thermal analysis of W VII-AS limiter system and presentation of a graphite-block concept

    International Nuclear Information System (INIS)

    Mukherjee, S.; Grigull, P.

    1989-01-01

    A 2D-finite element thermal analysis of the initial W VII-AS limiter system has been performed and is discussed. Furhter to this analysis a graphite block concept is presented. This concept has been numerically analyzed for applications as a limiter in plasma and nuclear fusion experimental devices. The results are described in this paper. This block concept seems to be also applicable to first wall and divertor designs; the graphite elements could be replaced by ceramic ones. (author). 10 refs.; 13 figs

  3. Improved graphite matrix for coated-particle fuel

    International Nuclear Information System (INIS)

    Schell, D.H.; Davidson, K.V.

    1978-10-01

    An experimental process was developed to incorporate coated fuel particles in an extruded graphite matrix. This structure, containing 41 vol% particles, had a high matrix density, >1.6 g/cm 3 , and a matrix conductivity three to four times that of a pitch-injected fuel rod at 1775 K. Experiments were conducted to determine the uniformity of particle loadings in extrusions. Irradiation specimens were supplied for five tests in the High-Fluence Isotope Reactor at the Oak Ridge National Laboratory

  4. Corrosion of graphite composites in phosphoric acid fuel cells

    Science.gov (United States)

    Christner, L. G.; Dhar, H. P.; Farooque, M.; Kush, A. K.

    1986-01-01

    Polymers, polymer-graphite composites and different carbon materials are being considered for many of the fuel cell stack components. Exposure to concentrated phosphoric acid in the fuel cell environment and to high anodic potential results in corrosion. Relative corrosion rates of these materials, failure modes, plausible mechanisms of corrosion and methods for improvement of these materials are investigated.

  5. Characterization of graphite-matrix pulsed reactor fuels

    International Nuclear Information System (INIS)

    Karnes, C.H.; Marion, R.H.

    1976-01-01

    The performance of the Annular Core Pulsed Reactor (ACPR) is being upgraded in order to accommodate higher fluence experiments for fast reactor fuel element transient and safety studies. The increased fluence requires a two-zone core with the inner zone containing fuel having a high enthalpy and the capability of withstanding very high temperatures during both pulsed and steady state operation. Because the fuel is subjected to a temperature risetime of 2 to 5 ms and to a large temperature difference across the diameter, fracture due to thermal stresses is the primary failure mode. One of the fuels considered for the high enthalpy inner region is a graphite-matrix fuel containing a dispersion of uranium--zirconium carbide solid solution particles. A program was initiated to optimize the development of this class of fuel. This summary presents results on formulations of fuel which have been fabricated by the Materials Technology Group of the Los Alamos Scientific Laboratory

  6. Influence of graphite discs, chamfers, and plenums on temperature distributions in high burnup fuel

    International Nuclear Information System (INIS)

    Ranger, A.; Tayal, M.; Singh, P.

    1990-04-01

    Previous studies have demonstrated the desirability to increase the fuel burnups in CANDU reactors from 7-9 GW.d/t to 21 GW.d/t. At high burnups, one consideration in fuel integrity is fission gas pressure, which is predicted to reach about 13 MPa. The gas pressure can be kept below the coolant pressure (about 10 MPa) via a variety of options such as bigger chamfers, deeper dishes, central hole, and plenums. However, it is important to address the temperature perturbations produced by the bigger chamfers and plenums which in turn, affect the gas pressure. Another consideration in fuel integrity is to reduce the likelihood of fuel failures via environmentally assisted cracking. Insertion of graphite discs between neighbouring pellets will lower the pellet temperatures, hence, lower fission gas release and lower expansion of the pellet. Therefore, it is desired to quantify the effect of graphite discs on pellet temperatures. Thermal analyses of different fuel element geometries: with and without chamfers, graphite discs, and plenums were performed. The results indicate that the two-dimensional distributions of temperatures due to the presence of chamfers, graphite discs, or plenums can have a significant impact on the integrity of high burnup fuel as we have been able to quantify in this paper

  7. Technical and regulatory review of the Rover nuclear fuel process for use on Fort St. Vrain fuel

    International Nuclear Information System (INIS)

    Hertzler, T.

    1993-02-01

    This report describes the results of an analysis for processing and final disposal of Fort St. Vrain (FSV) irradiated fuel in Rover-type equipment or technologies. This analysis includes an evaluation of the current Rover equipment status and the applicability of this technology in processing FSV fuel. The analyses are based on the physical characteristics of the FSV fuel and processing capabilities of the Rover equipment. Alternate FSV fuel disposal options are also considered including fuel-rod removal from the block, disposal of the empty block, or disposal of the entire fuel-containing block. The results of these analyses document that the current Rover hardware is not operable for any purpose, and any effort to restart this hardware will require extensive modifications and re-evaluation. However, various aspects of the Rover technology, such as the successful fluid-bed burner design, can be applied with modification to FSV fuel processing. The current regulatory climate and technical knowledge are not adequately defined to allow a complete analysis and conclusion with respect to the disposal of intact fuel blocks with or without the fuel rods removed. The primary unknowns include the various aspects of fuel-rod removal from the block, concentration of radionuclides remaining in the graphite block after rod removal, and acceptability of carbon in the form of graphite in a high level waste repository

  8. Recent developments in graphite. [Use in HTGR and aerospace

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications.

  9. Surface-reconstructed graphite nanofibers as a support for cathode catalysts of fuel cells.

    Science.gov (United States)

    Gan, Lin; Du, Hongda; Li, Baohua; Kang, Feiyu

    2011-04-07

    Graphite nanofibers (GNFs), on which surface graphite edges were reconstructed into nano-loops, were explored as a cathode catalyst support for fuel cells. The high degree of graphitization, as well as the surface-reconstructed nano-loops that possess topological defects for uniform metal deposition, resulted in an improved performance of the GNF-supported Pt catalyst.

  10. Fuel elements for high temperature reactors having special suitability for reuse of the structural graphite

    International Nuclear Information System (INIS)

    Huschka, H.; Herrmann, F.J.

    1976-01-01

    There are prepared fuel elements for high temperature reactors from which the fuel zone can be removed from the structural graphite after the burnup of the fissile material has taken place so that the fuel element can be filled with new fuel and again placed in the reactor by having the strength of the matrix in the fuel zone sufficient for binding the embedded coated fuel particles but substantially less than the strength of the structural graphite whereby by the action of force it can be easily split up without destroying the particles

  11. FSV experience in support of the GT-MHR reactor physics, fuel performance, and graphite

    International Nuclear Information System (INIS)

    Baxter, A.M.; McEachern, D.; Hanson, D.L.; Vollman, R.E.

    1994-11-01

    The Fort St. Vrain (FSV) power plant was the most recent operating graphite-moderated, helium-cooled nuclear power plant in the United States. Many similarities exist between the FSV design and the current design of the GT-MHR. Both designs use graphite as the basic building blocks of the core, as structural material, in the reflectors, and as a neutron moderator. Both designs use hexagonal fuel elements containing cylindrical fuel rods with coated fuel particles. Helium is the coolant and the power densities vary by less than 5%. Since material and geometric properties of the GT-MHR core am very similar to the FSV core, it is logical to draw upon the FSV experience in support of the GT-MHR design. In the Physics area, testing at FSV during the first three cycles of operation has confirmed that the calculational models used for the core design were very successful in predicting the core nuclear performance from initial cold criticality through power operation and refueling. There was excellent agreement between predicted and measured initial core criticality and control rod positions during startup. Measured axial flux distributions were within 5% of the predicted value at the peak. The isothermal temperature coefficient at zero power was in agreement within 3%, and even the calculated temperature defect over the whole operating range for cycle 3 was within 8% of the measured defect. In the Fuel Performance area, fuel particle coating performance, and fission gas release predictions and an overall plateout analysis were performed for decommissioning purposes. A comparison between predicted and measured fission gas release histories of Kr-85m and Xe-138 and a similar comparison with specific circulator plateout data indicated good agreement between prediction and measured data. Only I-131 plateout data was overpredicted, while Cs-137 data was underpredicted

  12. Structural characteristics of a graphite moderated critical assembly for a Zero Power reactor at IEA (Brazil)

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The structural characteristics of a graphite moderated core of a critical assembly to be installed in the Zero Power Reactor of IEA have been defined. These characteristics are the graphite block dimensions, the number and dimensions of the holes in the graphite, the pitch, the dimensions of the sticks of fuel and graphite to be inserted in the holes, and the mechanical reproducibility of the system. The composition of the fuel and moderator sticks were also defined. The main boundary conditions were the range of the relation C/U and C/TH used in commercial HTGR and the neutronics homogeneity

  13. Thermal-stress analysis of HTGR fuel and control rod fuel blocks in in-block carbonization and annealing furnace

    International Nuclear Information System (INIS)

    Gwaltney, R.C.; McAfee, W.J.

    1977-01-01

    The equivalent solid plate method, in conjunction with two-dimensional plane stress and plane strain analyses, was used in assessing the thermal stress behavior of HTGR fuel and control rod fuel blocks. For the control rod fuel blocks, particular attention was given to ascertaining the effects of the reserve shutdown hole and the control rod channel holes. The assumed safety factor of 2 on the failure criteria was considered adequate to account for neglecting the axial temperature gradient in the plane analyses of the ends of the blocks. The analyses indicated that the maximum calculated tensile stress values were smaller than the criteria values except for the plane strain analysis of the control rod fuel block end surfaces and the axisymmetric analysis of the fuel block as a circular cylinder. However, most of the maximum calculated strain values were greater than the criteria values

  14. Fuel behavior and fission product release under HTGR accident conditions

    International Nuclear Information System (INIS)

    Fukuda, K.; Hayashi, K.; Shiba, K.

    1990-01-01

    In early 1989 a final decision was made over construction of a 30 MWth HTGR called the High Temperature Engineering Test Reactor, HTTR, in Japan in order to utilize it for high temperature gas engineering tests and various nuclear material tests. The HTTR fuel is a pin-in-block type fuel element which is composed of a hexagonal graphite block with dimension of 580 mm in length and 360 mm in face-to-face distance and about 30 of the fuel rods inserted into the coolant channels drilled in the block. The TRISO coated fuel particles for HTTR are incorporated with graphite powder and phenol resin into the fuel compacts, 19 of which are encased into a graphite sleeve as a fuel rod. It is necessary for the HTTR licensing to prove the fuel stability under predicted accidents related to the high temperature events. Therefore, the release of the fission products and the fuel failure have been investigated in the irradiation---and the heating experiments simulating these conditions at JAERI. This report describes the HTTR fuel behavior at extreme temperature, made clear in these experiments

  15. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  16. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    International Nuclear Information System (INIS)

    Freguia, Stefano; Rabaey, Korneel; Yuan Zhiguo; Keller, Juerg

    2007-01-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m -3 (cathode total volume) or 50 W m -3 (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg COD m -3 d -1 , which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials

  17. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Freguia, Stefano; Rabaey, Korneel; Yuan, Zhiguo; Keller, Juerg [The University of Queensland, St. Lucia, Qld (Australia). Advanced Wastewater Management Centre

    2007-12-01

    Oxygen is the most sustainable electron acceptor currently available for microbial fuel cell (MFC) cathodes. However, its high overpotential for reduction to water limits the current that can be produced. Several materials and catalysts have previously been investigated in order to facilitate oxygen reduction at the cathode surface. This study shows that significant stable currents can be delivered by using a non-catalyzed cathode made of granular graphite. Power outputs up to 21 W m{sup -3} (cathode total volume) or 50 W m{sup -3} (cathode liquid volume) were attained in a continuous MFC fed with acetate. These values are higher than those obtained in several other studies using catalyzed graphite in various forms. The presence of nanoscale pores on granular graphite provides a high surface area for oxygen reduction. The current generated with this cathode can sustain an anodic volume specific COD removal rate of 1.46 kg{sub COD} m{sup -3} d{sup -1}, which is higher than that of a conventional aerobic process. This study demonstrates that microbial fuel cells can be operated efficiently using high surface graphite as cathode material. This implies that research on microbial fuel cell cathodes should not only focus on catalysts, but also on high surface area materials. (author)

  18. Effect of eccentric location of the RBMK CPS displacer graphite block in the shielding sheath

    International Nuclear Information System (INIS)

    Dostov, A.I.

    2001-01-01

    Temperature conditions and accumulation of Wigner energy in the graphite block of the RBMK reactor CPS (control power system) displacer is examined. It is shown, that at eccentric location of the block in the shielding sheath average temperature of the block drops sharply. Due to the design demerit quantity of the stored energy in the block may be so great, that its release will result in melting of the displacer tube. (author)

  19. Process for the production of fuel combined articles for addition in block shaped high temperature fuel elements

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1976-01-01

    There is provided a process for the production of fuel compacts consisting of an isotropic, radiation-resistant graphite matrix of good heat conductivity having embedded therein coated fuel and/or fertile particles for insertion into high temperature fuel elements by providing the coated fuel and/or fertile particles with an overcoat of molding mixture consisting of graphite powder and a thermoplastic resin binder. The particles after the overcoating are provided with hardener and lubricant only on the surface and subsequently are compressed in a die heated to a constant temperature of about 150 0 C, hardened and discharged therefrom as finished compacts

  20. Effect of Crossflow on Hot Spot Fuel Temperature in Prismatic VHTR

    International Nuclear Information System (INIS)

    Lee, Sung Nam; Tak, Nam-il; Kim, Min Hwan; Noh, Jae Man; Park, Goon-Cherl

    2014-01-01

    Various studies have been conducted to predict the thermal-hydraulics of a prismatic gas-cooled reactor. However, most previous studies have concentrated on the nominal-designed core. The fuel assembly of a high temperature gas-cooled reactor consists of a fuel compact and graphite block used as a moderator. This graphite faces a dimensional change due to irradiation or heating during normal operation. This size change might affect the coolant flow distribution in the active core. Therefore, the hot spot fuel temperature position or value could vary. There are two types of flows by the size change of graphite. One is the bypass flow and the other is the crossflow. The crossflow occurs at the crossflow gap between the vertical stacks of fuel blocks. In this study, the effect of the crossflow on the hot spot fuel temperature has been intensively investigated. (author)

  1. Distribution of 60Co and 54Mn in graphite material of irradiated HTGR fuel assemblies

    International Nuclear Information System (INIS)

    Hayashi, Kimio; Kikuchi, Teruo; Kobayashi, Fumiaki; Minato, Kazuo; Fukuda, Kousaku; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-05-01

    Distribution of 60 Co and 54 Mn was measured in the graphite sleeves and blocks of the third and fourth HTGR fuel assemblies irradiated in the Oarai Gas Loop-1 (OGL-1), which is a high temperature inpile gas loop installed in the Japan Materials Testing Reactor (JMTR) of Japan Atomic Energy Research Institute (JAERI). Axial and circumferential profiles were obtained by gamma spectrometry, and radial profiles by lathe sectioning with gamma spectrometry. Distribution of 60 Co is in good agreement with that of thermal neutron flux, and the Co content in the graphite is estimated to be -- 1 x 10 -9 in weight fraction. Concentration of 54 Mn decreases toward the axial center in its axial profile, and radially is almost uniform inside and appreciably higher at free surfaces. An estimated Fe content of --10 -8 in wight fraction is smaller by two orders of magnitude than that from chemical analysis. Higher concentraion of 60 Co and 54 Mn at the free surfaces suggests the importance of transportation process of these nuclides in the coolant loop. (author)

  2. A Sub-channel Analysis of a VHTR Fuel Block with Tin Gap-Filler

    International Nuclear Information System (INIS)

    Cho, Chung Ho; Kim, Yong Hee; Yi, Yong Sun; Kim, Hong Pyo

    2005-01-01

    In the Nuclear Hydrogen Development and Demonstration (NHDD) project, two types of VHTRs (Very High Temperature Reactors), prismatic or pebble bed, are under investigation as the nuclear heat source for hydrogen production. In general, the targeted coolant outlet temperature of VHTR is 950∼1000 .deg. C and the maximum allowable fuel temperature is 1250 .deg. C during the normal operation. In the case of the prismatic reactor (PMR), conventional fuel designs result in a small margin in the maximum fuel temperature. This is one of the biggest demerits of the prismatic type In this paper, a technique of lowering the maximum fuel temperature is suggested. The PMR fuel assembly is comprised of many coolant holes and fuel channels. Cylindrical fuel compacts are stacked inside the fuel channel. Consequently, there should be a physical gap between the fuel compact and graphite block, which is filled with the He gas in the conventional design. The heat transfer coefficient of the He gap is very poor, and this increases the fuel temperature substantially. In the proposed design measure, the gap is filled with a liquid metal, tin (Sn) that has a very high thermal conductivity. The effects of tin in the gap with gap distance variation in the viewpoint of thermal hydraulics are quantitatively discussed. Also, the effects of the variations of the axial power distribution are discussed

  3. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  4. Comparison of Material Behavior of Matrix Graphite for HTGR Fuel Elements upon Irradiation: A literature Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    The fuel elements for the HTGRs (i.e., spherical fuel element in pebble-bed type core design and fuel compact in prismatic core design) consists of coated fuel particles dispersed and bonded in a closely packed array within a carbonaceous matrix. This matrix is generally made by mixing fully graphitized natural and needle- or pitchcoke originated powders admixed with a binder material (pitch or phenolic resin), The resulting resinated graphite powder mixture, when compacted, may influence a number of material properties as well as its behavior under neutron irradiation during reactor operation. In the fabrication routes of these two different fuel element forms, different consolidation methods are employed; a quasi-isostatic pressing method is generally adopted to make pebbles while fuel compacts are fabricated by uni-axial pressing mode. The result showed that the hardness values obtained from the two directions showed an anisotropic behavior: The values obtained from the perpendicular section showed much higher micro hardness (176.6±10.5MPa in average) than from the parallel section ((125.6±MPa in average). This anisotropic behavior was concluded to be related to the microstructure of the matrix graphite. This may imply that the uni-axial pressing method to make compacts influence the microstructure of the matrix and hence the material properties of the matrix graphite.

  5. Graphite fuels combustion off-gas treatment options

    International Nuclear Information System (INIS)

    Kirkham, R.J.; Lords, R.E.

    1993-03-01

    Scenarios for burning bulk graphite and for burning crushed fuel particles from graphite spent nuclear fuels have been considered. Particulates can be removed with sintered metal filters. Subsequent cooling would then condense semi-volatile fission products into or onto a particulate. These particulates would be trapped by a second sintered metal filter or downstream packed bed. A packed bed scrub column can be used to eliminate most of the iodine-129 and tritium. A molecular sieve bed is proposed to collect the residual 129 I and other tramp radionuclides downstream (Ruthenium, etc.). Krypton-85 can be recovered, if need be, either by cryogenics or by the KALC process (Krypton Adsorption in Liquid Carbon dioxide). Likewise carbon-14 in the form of carbon dioxide could be collected with a caustic or lime scrub solution and incorporated into a grout. Sulfur dioxide present will be well below regulatory concern level of 4.0 tons per year and most of it would be removed by the scrubber. Carbon monoxide emissions will depend on the choice of burner and start-up conditions. Should the system exceed the regulatory concern level, a catalytic converter in the final packed bed will be provided. Radon and its daughters have sufficiently short half-lives (less than two minutes). If necessary, an additional holdup bed can be added before the final HEPA filters or additional volume can be added to the molecular sieve bed to limit radon emissions. The calculated total effective dose equivalent at the Idaho National Engineering Laboratory boundary from a single release of all the 3 , 14 C, 85 Kr, and 129 I in the total fuel mass if 0.43 mrem/year

  6. Disintegration of graphite matrix from the simulative high temperature gas-cooled reactor fuel element by electrochemical method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Li Linyan; Chen Jing

    2009-01-01

    Electrochemical method with salt as electrolyte has been studied to disintegrate the graphite matrix from the simulative high temperature gas-cooled reactor fuel elements. Ammonium nitrate was experimentally chosen as the appropriate electrolyte. The volume average diameter of disintegrated graphite fragments is about 100 μm and the maximal value is less than 900 μm. After disintegration, the weight of graphite is found to increase by about 20% without the release of a large amount of CO 2 probably owing to the partial oxidation to graphite in electrochemical process. The present work indicates that the improved electrochemical method has the potential to reduce the secondary nuclear waste and is a promising option to disintegrate graphite matrix from high temperature gas-cooled reactor spent fuel elements in the head-end of reprocessing.

  7. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  8. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  9. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  10. Anisotropic Material Behavior of Uni-axially Compacted Graphite Matrix for HTGR Fuel Compact Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Yoon, Ji-Hae; Cho, Moon Sung

    2016-01-01

    In developing the fuel compact fabrication technology, and fuel graphite material to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions and the material properties of fuel element. It was observed, during this development, that the pressing technique employed for the compaction fabrication prior to the two successive heat treatments (carbonization and final high temperature heat treatment) was of extreme importance in determining the material properties of the final compact product. In this work, the material behavior of the uni-axially pressed graphite matrix during the carbonization and final heat treatment are evaluated and summarized along the different directions, viz., perpendicular and parallel directions to pressing direction. In this work, the dimensional variations and variations in thermal expansion, thermal conductivity and Vickers hardness of the graphite matrix compact samples in the axial and radial directions prepared by uni-axial pressing are evaluated, and compared with those of samples prepared by cold isostatic pressing with the available data. From this work, the followings are observed. 1) Dimensional changes of matrix graphite green compacts during carbonization show that the difference in radial and axial variations shows a large anisotropic behavior in shrinkage. The radial variation is very small while the axial variation is large. During carbonization, the stresses caused by the force would be released in to the axial direction together with the phenolic resin vapor. 2) Dimensional variation of compact samples in perpendicular and parallel directions during carbonization shows a large difference in behavior when compact sample is prepared by uni-axial pressing. However, when compact sample is prepared by cold isostatic pressing, there is

  11. Process for the production of prismatic graphite molded articles for high temperature fuel elements

    International Nuclear Information System (INIS)

    Huschka, H.; Rachor, L.; Hrovat, M.; Wolff, W.

    1976-01-01

    Prismatic graphite molded objects for high temperature fuel elements are prepared by producing the outer geometry and the holes for cooling channels and for receiving fuel and fertile materials in the formation of the carbon object

  12. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  13. Study on thermal conductivity of HTR spherical fuel element matrix graphite

    International Nuclear Information System (INIS)

    Zhang Kaihong; Liu Xiaoxue; Zhao Hongsheng; Li Ziqiang; Tang Chunhe

    2014-01-01

    Taking the spherical fuel element matrix graphite ball samples as an example, this paper introduced the principle and method of laser thermal conductivity meter, as well as the specific heat capacity, and analyzed the effects of different test methods and sampling methods on the thermal conductivities at 1000 ℃ of graphite material. The experimental results show that the thermal conductivities of graphite materials tested by synchronous thermal analyzer combining with laser thermal conductivity meter were different from that directly by laser thermal conductivity meter, the former was more reliable and accurate than the later; When sampling from different positions, central samples had higher thermal conductivities than edging samples, which was related to the material density and porosity at the different locations; the thermal conductivities had obvious distinction between samples from different directions, which was because the layer structure of polycrystalline graphite preferred orientation under pressure, generally speaking, the thermal conductivities perpendicular to the molding direction were higher than that parallel to the molding direction. Besides this, the test results show that the thermal conductivities of all the graphite material samples were greater than 30 W/(m (K), achieving the thermal performance index of high temperature gas cooled reactor. (authors)

  14. Milling Behavior of Matrix Graphite Powders with Different Binder Materials in HTGR Fuel Element Fabrication: I. Variation in Particle Size Distribution

    International Nuclear Information System (INIS)

    Lee, Young Woo; Cho, Moon Sung

    2011-01-01

    The fuel element for HTGR is manufactured by mixing coated fuel particles with matrix graphite powder and forming into either pebble type or cylindrical type compacts depending on their use in different HTGR cores. The coated fuel particle, the so-called TRISO particle, consists of 500-μm spherical UO 2 particles coated with the low density buffer Pyrolytic Carbon (PyC) layer, the inner and outer high density PyC layer and SiC layer sandwiched between the two inner and outer PyC layers. The coated TRISO particles are mixed with a matrix graphite powder properly prepared and pressed into a spherical shape or a cylindrical compact finally heat-treated at about 1900 .deg. C. These fuel elements can have different sizes and forms of compact. The basic steps for manufacturing a fuel element include preparation of graphite matrix powder, overcoating the fuel particles, mixing the fuel particles with a matrix powder, carbonizing green compact, and the final high-temperature heat treatment of the carbonized fuel compact. In order to develop a fuel compact fabrication technology, it is important to develop a technology to prepare the matrix graphite powder (MGP) with proper characteristics, which has a strong influence on further steps and the material properties of fuel element. In this work, the milling behavior of matrix graphite powder mixture with different binder materials and their contents was investigated by analyzing the change in particle size distribution with different milling time

  15. Solid fuel block as an alternate fuel for cooking and barbecuing: Preliminary results

    International Nuclear Information System (INIS)

    Sharma, Monikankana; Mukunda, H.S.; Sridhar, G.

    2009-01-01

    A large part of the rural people of developing countries use traditional biomass stoves to meet their cooking and heating energy demands. These stoves possess very low thermal efficiency; besides, most of them cannot handle agricultural wastes. Thus, there is a need to develop an alternate cooking contrivance which is simple, efficient and can handle a range of biomass including agricultural wastes. In this reported work, a highly densified solid fuel block using a range of low cost agro residues has been developed to meet the cooking and heating needs. A strategy was adopted to determine the best suitable raw materials, which was optimized in terms of cost and performance. Several experiments were conducted using solid fuel block which was manufactured using various raw materials in different proportions; it was found that fuel block composed of 40% biomass, 40% charcoal powder, 15% binder and 5% oxidizer fulfilled the requirement. Based on this finding, fuel blocks of two different configurations viz. cylindrical shape with single and multi-holes (3, 6, 9 and 13) were constructed and its performance was evaluated. For instance, the 13 hole solid fuel block met the requirement of domestic cooking; the mean thermal power was 1.6 kW th with a burn time of 1.5 h. Furthermore, the maximum thermal efficiency recorded for this particular design was 58%. Whereas, the power level of single hole solid fuel block was found to be lower but adequate for barbecue cooking application

  16. An explication of the Graphite Structural Design Code of core components for the High Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Toyota, Junji; Shiozawa, Shusaku

    1991-05-01

    The integrity evaluation of the core graphite components for the High Temperature Engineering Test Reactor (HTTR) will be carried out based upon the Graphite Structural Design Code for core components. In the application of this design code, it is necessary to make clear the basic concept to evaluate the integrity of core components of HTTR. Therefore, considering the detailed design of core graphite structures such as fuel graphite blocks, etc. of HTTR, this report explicates the design code in detail about the concepts of stress and fatigue limits, integrity evaluation method of oxidized graphite components and thermal irradiation stress analysis method etc. (author)

  17. Numerical simulations of helium flow through prismatic fuel elements of very high temperature reactors

    International Nuclear Information System (INIS)

    Ribeiro, Felipe Lopes; Pinto, Joao Pedro C.T.A.

    2013-01-01

    The 4 th generation Very High Temperature Reactor (VHTR) most popular concept uses a graphite-moderated and helium cooled core with an outlet gas temperature of approximately 1000 deg C. The high output temperature allows the use of the process heat and the production of hydrogen through the thermochemical iodine-sulfur process as well as highly efficient electricity generation. There are two concepts of VHTR core: the prismatic block and the pebble bed core. The prismatic block core has two popular concepts for the fuel element: multihole and annular. In the multi-hole fuel element, prismatic graphite blocks contain cylindrical flow channels where the helium coolant flows removing heat from cylindrical fuel rods positioned in the graphite. In the other hand, the annular type fuel element has annular channels around the fuel. This paper shows the numerical evaluations of prismatic multi-hole and annular VHTR fuel elements and does a comparison between the results of these assembly reactors. In this study the analysis were performed using the CFD code ANSYS CFX 14.0. The simulations were made in 1/12 fuel element models. A numerical validation was performed through the energy balance, where the theoretical and the numerical generated heat were compared for each model. (author)

  18. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    International Nuclear Information System (INIS)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M.; Foster, Christopher W.; Banks, Craig E.; Munoz, Rodrigo A.A.

    2016-01-01

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L −1 HClO 4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  19. (Fuel, fission product, and graphite technology)

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  20. Thermodynamic Simulation of Equilibrium Composition of Reaction Products at Dehydration of a Technological Channel in a Uranium-Graphite Reactor

    Science.gov (United States)

    Pavliuk, A. O.; Zagumennov, V. S.; Kotlyarevskiy, S. G.; Bespala, E. V.

    2018-01-01

    The problems of accumulation of nuclear fuel spills in the graphite stack in the course of operation of uranium-graphite nuclear reactors are considered. The results of thermodynamic analysis of the processes in the graphite stack at dehydration of a technological channel, fuel element shell unsealing and migration of fission products, and activation of stable nuclides in structural elements of the reactor and actinides inside the graphite moderator are given. The main chemical reactions and compounds that are produced in these modes in the reactor channel during its operation and that may be hazardous after its shutdown and decommissioning are presented. Thermodynamic simulation of the equilibrium composition is performed using the specialized code TERRA. The results of thermodynamic simulation of the equilibrium composition in different cases of technological channel dehydration in the course of the reactor operation show that, if the temperature inside the active core of the nuclear reactor increases to the melting temperature of the fuel element, oxides and carbides of nuclear fuel are produced. The mathematical model of the nonstationary heat transfer in a graphite stack of a uranium-graphite reactor in the case of the technological channel dehydration is presented. The results of calculated temperature evolution at the center of the fuel element, the replaceable graphite element, the air gap, and in the surface layer of the block graphite are given. The numerical results show that, in the case of dehydration of the technological channel in the uranium-graphite reactor with metallic uranium, the main reaction product is uranium dioxide UO2 in the condensed phase. Low probability of production of pyrophoric uranium compounds (UH3) in the graphite stack is proven, which allows one to disassemble the graphite stack without the risk of spontaneous graphite ignition in the course of decommissioning of the uranium-graphite nuclear reactor.

  1. A Comparison of Materials Issues for Cermet and Graphite-Based NTP Fuels

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2013-01-01

    This paper compares material issues for cermet and graphite fuel elements. In particular, two issues in NTP fuel element performance are considered here: ductile to brittle transition in relation to crack propagation, and orificing individual coolant channels in fuel elements. Their relevance to fuel element performance is supported by considering material properties, experimental data, and results from multidisciplinary fluid/thermal/structural simulations. Ductile to brittle transition results in a fuel element region prone to brittle fracture under stress, while outside this region, stresses lead to deformation and resilience under stress. Poor coolant distribution between fuel element channels can increase stresses in certain channels. NERVA fuel element experimental results are consistent with this interpretation. An understanding of these mechanisms will help interpret fuel element testing results.

  2. Dimensional Behavior of Matrix Graphite Compacts during Heat Treatments for HTGR Fuel Element Fabrication

    International Nuclear Information System (INIS)

    Lee, Young-Woo; Yeo, Seunghwan; Cho, Moon Sung

    2015-01-01

    The carbonization is a process step where the binder that is incorporated during the matrix graphite powder preparation step is evaporated and the residue of the binder is carbonized during the heat treatment at about 1073 K. This carbonization step is followed by the final high temperature heat treatment where the carbonized compacts are heat treated at 2073-2173 K in vacuum for a relatively short time (about 2 hrs). In order to develop a fuel compact fabrication technology, and for fuel matrix graphite to meet the required material properties, it is essential to investigate the relationship among the process parameters of the matrix graphite powder preparation, the fabrication parameters of fuel element green compact and the heat treatments conditions, which has a strong influence on the further steps and the material properties of fuel element. In this work, the dimensional changes of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed, keeping other process parameters constant, such as the binder content, carbonization time, temperature and atmosphere (two hours ant 1073K and N2 atmosphere). In this work, the dimensional variations of green compacts during the carbonization and final heat treatment are evaluated when compacts have different densities from different pressing conditions and different final heat treatment temperatures are employed

  3. Experiments on graphite block gaps connected with leak flow in bottom-core structure of experimental very high-temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo

    1984-01-01

    In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)

  4. CFD Analysis of the Fuel Temperature in High Temperature Gas-Cooled Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Chun, T. H.; Lee, W. J.; Chang, J. H.

    2005-01-01

    High temperature gas-cooled reactors (HTGR) have received a renewed interest as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor (PBR) and a prismatic modular reactor (PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both PBR and PMR. The objective of this study is to predict the fuel temperature distributions in PBR and PMR using a computational fluid dynamics(CFD) code, CFX-5. The reference reactor designs used in this analysis are PBMR400 and GT-MHR600

  5. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Eduardo S.; Silva, Luiz A.J.; Sousa, Raquel M.F.; Richter, Eduardo M. [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil); Foster, Christopher W.; Banks, Craig E. [Manchester Metropolitan University, Faculty of Science and the Environment, School of Science and the Environment, Division of Chemistry and Environmental Science, Manchester, M1 5GD, England (United Kingdom); Munoz, Rodrigo A.A., E-mail: raamunoz@iqufu.ufu.br [Universidade Federal de Uberlândia, Universidade Federal de Uberlândia, Av. João Naves de Ávila, 2121, Uberlândia, MG, 38408100 (Brazil)

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L{sup −1} HClO{sub 4} (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. - Highlights: • Organic-resistant screen-printed graphitic electrodes (SPGE) for (bio)fuels. • Screen-printing of conductive and insulator inks on thin polyester substrate. • Continuous detection of antioxidants in electrolyte with 99% v/v ethanol. • SPGE coupled with batch-injection analysis allows over 200 injections (100 μL). • Similar results to GC and HPLC analyses of biodiesel and aviation jet fuels.

  6. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    International Nuclear Information System (INIS)

    Lacaze, J; Theuwissen, K; Laffont, L; Véron, M

    2016-01-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions. (paper)

  7. Method of producing exfoliated graphite composite compositions for fuel cell flow field plates

    Energy Technology Data Exchange (ETDEWEB)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-04-08

    A method of producing an electrically conductive composite composition, which is particularly useful for fuel cell bipolar plate applications. The method comprises: (a) providing a supply of expandable graphite powder; (b) providing a supply of a non-expandable powder component comprising a binder or matrix material; (c) blending the expandable graphite with the non-expandable powder component to form a powder mixture wherein the non-expandable powder component is in the amount of between 3% and 60% by weight based on the total weight of the powder mixture; (d) exposing the powder mixture to a temperature sufficient for exfoliating the expandable graphite to obtain a compressible mixture comprising expanded graphite worms and the non-expandable component; (e) compressing the compressible mixture at a pressure within the range of from about 5 psi to about 50,000 psi in predetermined directions into predetermined forms of cohered graphite composite compact; and (f) treating the so-formed cohered graphite composite to activate the binder or matrix material thereby promoting adhesion within the compact to produce the desired composite composition. Preferably, the non-expandable powder component further comprises an isotropy-promoting agent such as non-expandable graphite particles. Further preferably, step (e) comprises compressing the mixture in at least two directions. The method leads to composite plates with exceptionally high thickness-direction electrical conductivity.

  8. French programme for HTR fuel

    International Nuclear Information System (INIS)

    Gillet, R.M.

    1991-01-01

    It is reported that in the frameworks of the French HTR research program, stopped in 1979 the HTR coated particle fuel, fuel rod and prismatic fuel element design have been successfully developed and irradiation tested in France and specific examination methods for irradiated fuel particles, rods and graphite blocks have been developed. Currently CEA is involved in fission product transport experiments sponsored by the US Department of Energy and performed in the COMEDIE loop. Finally the CEA follows progress and developments in HTR fuel research and development throughout the world. 1 tab

  9. Study on the properties of the fuel compact for High Temperature Gas-cooled Reactor

    International Nuclear Information System (INIS)

    Lee, Chung-yong; Lee, Sung-yong; Choi, Min-young; Lee, Seung-jae; Jo, Young-ho; Lee, Young-woo; Cho, Moon-sung

    2015-01-01

    High Temperature Gas-cooled Reactors (HTGR), one of the Gen-IV reactors, have been using the fuel element which is manufactured by the graphite matrix, surrounding Tristructural-isotropic (TRISO)-coated Uranium particles. Factors with these characteristics effecting on the matrix of fuel compact are chosen and their impacts on the properties are studied. The fuel elements are considered with two types of concepts for HTGR, which are the block type reactor and the pebble bed reactor. In this paper, the cylinder-formed fuel element for the block type reactor is focused on, which consists of the large part of graphite matrix. One of the most important properties of the graphite matrix is the mechanical strength with the high reliability because the graphite matrix should be enabled to protect the TRISO particles from the irradiation environment and the impact from the outside. In this study, the three kinds of candidate graphites and the two kinds of candidate binder (Phenol and Polyvinyl butyral) were chosen and mixed with each other, formed and heated to measure mechanical properties. The objective of this research is to optimize the materials and composition of the mixture and the forming process by evaluating the mechanical properties before/after carbonization and heat treatment. From the mechanical test results, the mechanical properties of graphite pellets was related to the various conditions such as the contents and kinds of binder, the kinds of graphite and the heat treatments. In the result of the compressive strength and Vicker's hardness, the 10 wt% phenol binder added R+S graphite pellet was relatively higher mechanical properties than other pellets. The contents of Phenol binder, the kinds of graphite powder and the temperature of carbonization and heat treatment are considered important factors for the properties. To optimize the mechanical properties of fuel elements, the role of binders and the properties of graphites will be investigated as

  10. Thorium utilization in a small long-life HTR. Part II: Seed-and-blanket fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming, E-mail: dingming@hrbeu.edu.cn [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-02-15

    Highlights: • Seed-and-blanket (S and B) fuel blocks are proposed for a small block-type HTR. • S and B fuel blocks consist of a seed region (UO{sub 2}) and a blanket region (ThO{sub 2}). • The neutronic performance of S and B fuel blocks are analyzed using SCALE 6. • Three S and B fuel blocks with a reactivity swing of 0.1 Δk are recommended. • S and B fuel blocks are compared with thorium MOX fuel blocks. - Abstract: In order to utilize thorium in high temperature gas-cooled reactors (HTRs), the concept of seed-and-blanket (S and B) fuel block is introduced into the U-Battery, which is a long-life block-type HTR with a thermal power of 20 MWth. A S and B fuel block consists of a seed region with uranium in the center, and a blanket region with thorium. The neutronic performance, such as the multiplication factor, conversion ratio and reactivity swing, of a typical S and B fuel block was investigated by SCALE 6.0 by parametric analysis of the composition parameters and geometric parameters of the fuel block for the U-Battery application. Since the purpose of U-235 in the S and B fuel block is to ignite the fission reactions in the fuel block, 20% enriched uranium is recommended for the S and B fuel block. When the ratio of the number of carbon to heavy metal atoms changes with the geometric parameters of the fuel block in the range of 200–250, the reactivity swing reaches very small values. Furthermore, for a reactivity swing of 0.1 Δk during 10 effective full power years, three configurations with 36, 54 and 78 UO{sub 2} fuel rods are recommended for the application of the U-Battery. The comparison analysis of the S and B fuel block with the Th/U MOX fuel block shows that the former has a longer lifetime and a lower reactivity swing.

  11. Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers

    International Nuclear Information System (INIS)

    Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David; Shearing, Paul R.; Howard, Christopher A.; Corà, Furio; Shaffer, Milo; Brett, Daniel J.L.

    2016-01-01

    Highlights: • Graphitic carbon nitride (gCN) describes many materials with different structures. • gCNs can exhibit excellent mechanical, chemical and thermal resistance. • A major obstacle for pure gCN catalyst supports is limited electronic conductivity. • Composite/Hybrid gCN structures show excellent performance as catalyst supports. • gCNs have great potential for use in fuel calls and water electrolyzers. - Abstract: Electrochemical power sources, such as polymer electrolyte membrane fuel cells (PEMFCs), require the use of precious metal catalysts which are deposited as nanoparticles onto supports in order to minimize their mass loading and therefore cost. State-of-the-art/commercial supports are based on forms of carbon black. However, carbon supports present disadvantages including corrosion in the operating fuel cell environment and loss of catalyst activity. Here we review recent work examining the potential of different varieties of graphitic carbon nitride (gCN) as catalyst supports, highlighting their likely benefits, as well as the challenges associated with their implementation. The performance of gCN and hybrid gCN-carbon materials as PEMFC electrodes is discussed, as well as their potential for use in alkaline systems and water electrolyzers. We illustrate the discussion with examples taken from our own recent studies.

  12. Thorium utilization in a small long-life HTR. Part I: Th/U MOX fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2014-02-15

    Highlights: • We propose thorium MOX (TMOX) fuel blocks for a small block-type HTR. • The TMOX fuel blocks with low-enriched uranium are recommended. • More thorium decreases the reactivity swing of the TMOX fuel blocks. • Thorium reduces the negative temperature coefficient of the TMOX fuel blocks. • Thorium increases the conversion ratio of the TMOX fuel blocks. - Abstract: The U-Battery is a small, long-life and transportable high temperature gas-cooled reactor (HTR). The neutronic features of a typical fuel block with uranium and thorium have been investigated for a application of the U-Battery, by parametrically analyzing the composition and geometric parameters. The type of fuel block is defined as Th/U MOX fuel block because uranium and thorium are assumed to be mixed in each fuel kernel as a form of (Th,U)O{sub 2}. If the initially loaded mass of U-235 is mostly consumed in the early period of the lifetime of Th/U MOX fuel block, low-enriched uranium (LEU) as ignited fuel will not largely reduce the neutronic performance of the Th/U MOX fuel block, compared with high-enriched uranium. The radii of fuel kernels and fuel compacts and packing fraction of TRISO particles determine the atomic ratio of the carbon to heavy metal. When the ratio is smaller than 400, the difference among them due to double heterogeneous effects can be neglected for the Th/U MOX fuel block. In the range between 200 and 400, the reactivity swing of the Th/U MOX fuel block during 10 years is sufficiently small. The magnitude of the negative reactivity temperature coefficients of the Th/U MOX fuel block decreases by 20–45%, which is positive to reduce temperature defect of the Th/U MOX fuel block. The conversion ratio (CR) of the fuel increases from 0.48 (typical CR of the LEU-fueled U-Battery) to 0.78. The larger conversion ratio of the Th/U MOX fuel block reduces the reactivity swing during 10 years for the U-Battery.

  13. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  14. Graphite waste incineration in a fluidized bed

    International Nuclear Information System (INIS)

    Guiroy, J.J.

    1996-01-01

    French gas-cooled reactors belonging to the Atomic Energy Commission (CEA), Electricite de France (EDF), Hifrensa (Spain), etc., commissioned between the 1950s and 1970s, have generated large quantities of graphite wastes, mainly in the form of spent fuel sleeves. Furthermore, some of these reactors scheduled for dismantling in the near future (such as the G2 and G3 reactors at Marcoule) have cores consisting of graphite blocks. Consequently, a fraction of the contaminated graphite, amounting to 6000 t in France for example, must be processed in the coming years. For this processing, incineration using a circulating fluidized bed combustor has been selected as a possible solution and validated. However, the first operation to be performed involves recovering this graphite waste, and particularly, first of all, the spent fuel sleeves that were stored in silos during the years of reactor operation. Subsequent to the final shutdown of the Spanish gas-cooled reactor unit, Vandellos 1, the operating utility Hifrensa awarded contracts to a Framatome Iberica SA/ENSA consortium for removing, sorting, and prepackaging of the waste stored in three silos on the Vandellos site, essentially graphite sleeves. On the other hand, a program to validate the Framatome fluidized bed incineration process was carried out using a prototype incinerator installed at Le Creusot, France. The validation program included 22 twelve-hour tests and one 120-hour test. Particular attention was paid to the safety aspects of this project. During the performance of the validation program, a preliminary safety assessment was carried out. An impact assessment was performed with the help of the French Institute for Protection and Nuclear Safety, taking into account the preliminary spectra supplied by the CEA and EDF, and the activities of the radionuclides susceptible of being released into the atmosphere during the incineration. (author). 4 refs, 11 figs, 1 tab

  15. Artificial fuel

    Energy Technology Data Exchange (ETDEWEB)

    Hamon, L L.W.

    1918-08-20

    Lignite, peat, sud, leaf-mold, or shale, or two or more of these raw carbonaceous materials are mixed with cellulose material, such as sawdust, silica, alkali, and tar or pitch, or residues from tar or pitch, or residues from the distillation of oils, and the mixture is molded into blocks. Other carbonaceous materials, such as graphite, anthracite, or coal-dust, coke, breeze, or culm, and mineral substances, such as iron and manganese ores, may be added. A smokeless fuel can be obtained by coking the blocks in the usual way in retorts.

  16. The problem of gas gap between graphite - fuel channel reduction impact at Ignalina NPP

    International Nuclear Information System (INIS)

    1999-01-01

    Safety analysis of Ignalina NPP operation in the case when gap closure between graphite - fuel channel occur was performed. The main results of this analysis as well as data of gap measurements during the year 1996 - 1998 are provided

  17. Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2014-05-20

    An electrically conductive laminate composition for fuel cell flow field plate or bipolar plate applications. The laminate composition comprises at least a thin metal sheet having two opposed exterior surfaces and a first exfoliated graphite composite sheet bonded to the first of the two exterior surfaces of the metal sheet wherein the exfoliated graphite composite sheet comprises: (a) expanded or exfoliated graphite and (b) a binder or matrix material to bond the expanded graphite for forming a cohered sheet, wherein the binder or matrix material is between 3% and 60% by weight based on the total weight of the first exfoliated graphite composite sheet. Preferably, the first exfoliated graphite composite sheet further comprises particles of non-expandable graphite or carbon in the amount of between 3% and 60% by weight based on the total weight of the non-expandable particles and the expanded graphite. Further preferably, the laminate comprises a second exfoliated graphite composite sheet bonded to the second surface of the metal sheet to form a three-layer laminate. Surface flow channels and other desired geometric features can be built onto the exterior surfaces of the laminate to form a flow field plate or bipolar plate. The resulting laminate has an exceptionally high thickness-direction conductivity and excellent resistance to gas permeation.

  18. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    International Nuclear Information System (INIS)

    Karahan, Aydın; Kazimi, Mujid S.

    2013-01-01

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors

  19. Using graphitic foam as the bonding material in metal fuel pins for sodium fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Karahan, Aydın, E-mail: karahan@alum.mit.edu; Kazimi, Mujid S.

    2013-10-15

    The study evaluates the possible use of graphite foam as the bonding material between U–Pu–Zr metallic fuel and steel clad for sodium fast reactor applications using FEAST-METAL fuel performance code. Furthermore, the applicability of FEAST-METAL to the advanced fuel designs is demonstrated. Replacing the sodium bond with a chemically stable foam material would eliminate fuel clad metallurgical interactions, and allow for fuel swelling under low external stress. Hence, a significant improvement is expected for the steady state and transient performance. FEAST-METAL was used to assess the thermo-mechanical behavior of the new fuel form and a reference metallic fuel pin. Nearly unity conversion ratio, 75% smear density U–15Pu–6Zr metallic fuel pin with sodium bond, and T91 cladding was selected as a reference case. It was found that operating the reference case at high clad temperatures (600–660 °C) results in (1) excessive clad wastage formation/clad thinning due to lanthanide migration and formation of brittle phases at clad inner surface, and (2) excessive clad hoop strain at the upper axial section due mainly to the occurrence of thermal creep. The combination of these two factors may lead to cladding breach. The work concludes that replacing the sodium bond with 80% porous graphite foam and reducing the fuel smear density to 70%, it is likely that the fuel clad metallurgical interaction would be eliminated while the fuel swelling is allowed without excessive fuel clad mechanical interaction. The suggested design appears as an alternative for a high performance metallic fuel design for sodium fast reactors.

  20. PEM fuel cells with injection moulded bipolar plates of highly filled graphite compounds; PEM-Brennstoffzellen mit spritzgegossenen Bipolarplatten aus hochgefuelltem Graphit-Compound

    Energy Technology Data Exchange (ETDEWEB)

    Kreuz, Can

    2008-04-11

    This work concerns with the injection moulding of highly filled graphite compounds to bipolar plates for PEM fuel cells in a power output range between 100 - 500 Watts. A particular focus is laid on the combination of the three multidisciplinary scopes like material development, production technology and component development / design. The results of the work are specified by the process-oriented characterisation of the developed and manufactured bipolar plates as well as their application in a functioning fuel cell. (orig.)

  1. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  2. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  3. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  4. Organic-resistant screen-printed graphitic electrodes: Application to on-site monitoring of liquid fuels.

    Science.gov (United States)

    Almeida, Eduardo S; Silva, Luiz A J; Sousa, Raquel M F; Richter, Eduardo M; Foster, Christopher W; Banks, Craig E; Munoz, Rodrigo A A

    2016-08-31

    This work presents the potential application of organic-resistant screen-printed graphitic electrodes (SPGEs) for fuel analysis. The required analysis of the antioxidant 2,6-di-tert-butylphenol (2,6-DTBP) in biodiesel and jet fuel is demonstrated as a proof-of-concept. The screen-printing of graphite, Ag/AgCl and insulator inks on a polyester substrate (250 μm thickness) resulted in SPGEs highly compatible with liquid fuels. SPGEs were placed on a batch-injection analysis (BIA) cell, which was filled with a hydroethanolic solution containing 99% v/v ethanol and 0.1 mol L(-1) HClO4 (electrolyte). An electronic micropipette was connected to the cell to perform injections (100 μL) of sample or standard solutions. Over 200 injections can be injected continuously without replacing electrolyte and SPGE strip. Amperometric detection (+1.1 V vs. Ag/AgCl) of 2,6-DTBP provided fast (around 8 s) and precise (RSD = 0.7%, n = 12) determinations using an external calibration curve. The method was applied for the analysis of biodiesel and aviation jet fuel samples and comparable results with liquid and gas chromatographic analyses, typically required for biodiesel and jet fuel samples, were obtained. Hence, these SPGE strips are completely compatible with organic samples and their combination with the BIA cell shows great promise for routine and portable analysis of fuels and other organic liquid samples without requiring sophisticated sample treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Three-Dimensional Analysis of the Hot-Spot Fuel Temperature in Pebble Bed and Prismatic Modular Reactors

    International Nuclear Information System (INIS)

    In, W. K.; Lee, S. W.; Lim, H. S.; Lee, W. J.

    2006-01-01

    High temperature gas-cooled reactors(HTGR) have been reviewed as potential sources for future energy needs, particularly for a hydrogen production. Among the HTGRs, the pebble bed reactor(PBR) and a prismatic modular reactor(PMR) are considered as the nuclear heat source in Korea's nuclear hydrogen development and demonstration project. PBR uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. PMR uses graphite fuel blocks which contain cylindrical fuel compacts consisting of the fuel particles. The fuel blocks also contain coolant passages and locations for absorber and control material. The maximum fuel temperature in the core hot spot is one of the important design parameters for both a PBR and a PMR. The objective of this study is to predict the hot-spot fuel temperature distributions in a PBR and a PMR at a steady state. The computational fluid dynamics(CFD) code, CFX-10 is used to perform the three-dimensional analysis. The latest design data was used here based on the reference reactor designs, PBMR400 and GTMHR60

  6. Kinetics of Chronic Oxidation of NBG-17 Nuclear Graphite by Water Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Burchell, Timothy D [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert [Univ. of Tennessee, Knoxville, TN (United States)

    2015-05-01

    This report presents the results of kinetic measurements during accelerated oxidation tests of NBG-17 nuclear graphite by low concentration of water vapor and hydrogen in ultra-high purity helium. The objective is to determine the parameters in the Langmuir-Hinshelwood (L-H) equation describing the oxidation kinetics of nuclear graphite in the helium coolant of high temperature gas-cooled reactors (HTGR). Although the helium coolant chemistry is strictly controlled during normal operating conditions, trace amounts of moisture (predictably < 0.2 ppm) cannot be avoided. Prolonged exposure of graphite components to water vapor at high temperature will cause very slow (chronic) oxidation over the lifetime of graphite components. This behavior must be understood and predicted for the design and safe operation of gas-cooled nuclear reactors. The results reported here show that, in general, oxidation by water of graphite NBG-17 obeys the L-H mechanism, previously documented for other graphite grades. However, the characteristic kinetic parameters that best describe oxidation rates measured for graphite NBG-17 are different than those reported previously for grades H-451 (General Atomics, 1978) and PCEA (ORNL, 2013). In some specific conditions, certain deviations from the generally accepted L-H model were observed for graphite NBG-17. This graphite is manufactured in Germany by SGL Carbon Group and is a possible candidate for the fuel elements and reflector blocks of HTGR.

  7. Multidisciplinary Simulation of Graphite-Composite and Cermet Fuel Elements for NTP Point of Departure Designs

    Science.gov (United States)

    Stewart, Mark E.; Schnitzler, Bruce G.

    2015-01-01

    This paper compares the expected performance of two Nuclear Thermal Propulsion fuel types. High fidelity, fluid/thermal/structural + neutronic simulations help predict the performance of graphite-composite and cermet fuel types from point of departure engine designs from the Nuclear Thermal Propulsion project. Materials and nuclear reactivity issues are reviewed for each fuel type. Thermal/structural simulations predict thermal stresses in the fuel and thermal expansion mis-match stresses in the coatings. Fluid/thermal/structural/neutronic simulations provide predictions for full fuel elements. Although NTP engines will utilize many existing chemical engine components and technologies, nuclear fuel elements are a less developed engine component and introduce design uncertainty. Consequently, these fuel element simulations provide important insights into NTP engine performance.

  8. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  9. Thorium utilisation in a small long-life HTR. Part III: Composite-rod fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Verrue, Jacques, E-mail: jacques.verrue@polytechnique.org [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); École Polytechnique (Member of ParisTech), 91128 Palaiseau Cedex (France); Ding, Ming, E-mail: dingm2005@gmail.com [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Harbin Engineering University, Nantong Street 145, 150001 Harbin (China); Kloosterman, Jan Leen, E-mail: j.l.kloosterman@tudelft.nl [Delft University of Technology, Reactor Institute Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-02-15

    Highlights: • Composite-rod fuel blocks are proposed for a small block-type HTR. • An axial separation of fuel compacts is the most important feature. • Three patterns are presented to analyse the effects of the spatial distribution. • The spatial distribution has a large influence on the neutron spectrum. • Composite-rod fuel blocks reach a reactivity swing less than 4%. - Abstract: The U-Battery is a small long-life high temperature gas-cooled reactor (HTR) with power of 20 MWth. In order to increase its lifetime and diminish its reactivity swing, the concept of composite-rod fuel blocks with uranium and thorium was investigated. Composite-rod fuel blocks feature a specific axial separation between UO{sub 2} and ThO{sub 2} compacts in fuel rods. The design parameters, investigated by SCALE 6, include the number and spatial distribution of fuel compacts within the rods, the enrichment of uranium, the radii of fuel kernels and fuel compacts, and the packing fractions of uranium and thorium TRISO particles. The analysis shows that a lower moderation ratio and a larger inventory of heavy metals results in a lower reactivity swing. The optimal atomic carbon-to-heavy metal ratio depends on the mass fraction of U-235 and is commonly in the 160–200 range. The spatial distribution of the fuel compacts within the fuel rods has a large influence on the energy spectrum in each fuel compact and thus on the beginning-of-life reactivity and the reactivity swing. At end-of-life, the differences caused by the spatial distribution of the fuel compacts are smaller due to the fissions of U-233 in the ThO{sub 2} fuel compacts. This phenomenon enables to design fuel blocks with a very low reactivity swing, down to less than 4% in a 10-year lifetime. Among three types of thorium fuelled U-Battery blocks, the composite-rod fuel block achieves the highest end-of-life reactivity and the lowest reactivity swing.

  10. Fuel System: Automotive Mechanics Instructional Program. Block 4.

    Science.gov (United States)

    O'Brien, Ralph D.

    The fourth of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in automotive fuel systems at the secondary and post secondary level. The material, as organized, is a suggested sequence of instruction within each block. Each…

  11. Method to produce fuel element blocks for HTR reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The patent claim relates to one partial step of the multi-stage pressing process in the production of fuel elements. A binder resin with a softening point at least 15 0 C but preferably 25-40 0 C above the melting point of the lubricant is proposed. The pressed block is expelled from the forging die in the temperature interval between the melting point of the lubricant and the softening point of the binder resin. The purpose of the invention is that the pressed fuel element blocks are expelled from the machine tool without damage at a pressure low enough to protect the mechanical integrity of the coated fuel particles or fertile particles. (UA) [de

  12. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  13. Observation of Compressive Deformation Behavior of Nuclear Graphite by Digital Image Correlation

    International Nuclear Information System (INIS)

    Kim, Hyunju; Kim, Eungseon; Kim, Minhwan; Kim, Yongwan

    2014-01-01

    Polycrystalline nuclear graphite has been proposed as a fuel element, moderator and reflector blocks, and core support structures in a very high temperature gas-cooled reactor. During reactor operation, graphite core components and core support structures are subjected to various stresses. It is therefore important to understand the mechanism of deformation and fracture of nuclear graphites, and their significance to structural integrity assessment methods. Digital image correlation (DIC) is a powerful tool to measure the full field displacement distribution on the surface of the specimens. In this study, to gain an understanding of compressive deformation characteristic, the formation of strain field during a compression test was examined using a commercial DIC system. An examination was made to characterize the compressive deformation behavior of nuclear graphite by a digital image correlation. The non-linear load-displacement characteristic prior to the peak load was shown to be mainly dominated by the presence of localized strains, which resulted in a permanent displacement. Young's modulus was properly calculated from the measured strain

  14. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors

    International Nuclear Information System (INIS)

    Boudouresque, B.; Courcon, P.; Lestiboubois, G.

    1964-01-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm 2 gas pressure, should remain in contact with the fuel. (authors) [fr

  15. Electroanalysis of cardioselective beta-adrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism

    OpenAIRE

    Atmanand M. Bagoji; Shreekant M. Patil; Sharanappa T. Nandibewoor

    2016-01-01

    A simple economic graphite pencil electrode (GPE) was used for analysis of cardioselective, hydrophilic-adrenoreceptor blocking agent, acebutolol (ACBT) using the cyclic voltammetric, linear sweep voltammetric, differential pulse voltammetric (DPV), and square-wave voltammetric (SWV) techniques. The dependence of the current on pH, concentration, and scan rate was investigated to optimize the experimental condition for determination of ACBT. The electrochemical behavior of the ACBT at GPE was...

  16. Neutronic evaluation of a fuel block of a GT-MHR using WIMSD5

    International Nuclear Information System (INIS)

    Silva, Clarysson Alberto Mello da; Pereira, Claubia; Costa, Antonella Lombardi; Veloso, Maria Auxiliadora Fortini

    2009-01-01

    The goal is to simulate a representative fuel block of a GT-MHR core to analyze the neutronic parameters behavior due the insertion of Pu isotopes and Minor Actinides (MAs) using shuffling scheme. Initially the fuel block was filled with Driver Fuel (DF), and after burned, these fuels are reprocessed and build the Transmutation Fuel (TF). After some cycles, the fuel block was filled with DF and TF fuels. The DF is a mixture of Pu and Np and the TF is a mix of Pu and MAs. The shuffled scheme was evaluated after each cycle. It was verified that neutronic parameters and isotopic composition reach equilibrium and remain within safety limits when this scheme is used. In addition, there were burnup of MAs. The WIMS code was used in the simulations and the following neutronic parameters were evaluated: infinitive multiplication factor, spectrum hardening and reactivity temperature coefficients. (author)

  17. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  18. Study on "1"4C content in post-irradiation graphite spheres of HTR-10

    International Nuclear Information System (INIS)

    Wang Shouang; Pi Yue; Xie Feng; Li Hong; Cao Jianzhu

    2014-01-01

    Since the production mechanism of the "1"4C in spherical fuel elements was similar to that of fuel-free graphite spheres, in order to obtain the amount of "1"4C in fuel elements and graphite spheres of HTR-10, the production mechanism of the "1"4C in graphite spheres was studied. The production sources of the "1"4C in graphite spheres and fuel elements were summarized, the amount of "1"4C in the post-irradiation graphite spheres was calculated, the decomposition techniques of graphite spheres were compared, and experimental methods for decomposing the graphite spheres and preparing the "1"4C sample were proposed. The results can lay the foundation for further experimental research and provide theoretical calculations for comparison. (authors)

  19. Graphite-moderated and heavy water-moderated spectral shift controlled reactors

    International Nuclear Information System (INIS)

    Alcala Ruiz, F.

    1984-01-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs

  20. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Yajuan, E-mail: yajuan.zhong@gmail.com [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Zhang, Junpeng [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Lin, Jun, E-mail: linjun@sinap.ac.cn [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Xu, Liujun [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong [Center for Thorium Molten Salt Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Guo, Quangui [CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2017-07-15

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10{sup −6} K{sup −1} (α{sub ∥}) and 6.15 × 10{sup −6} K{sup −1} (α{sub ⊥}) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  1. Mesocarbon microbead based graphite for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor

    International Nuclear Information System (INIS)

    Zhong, Yajuan; Zhang, Junpeng; Lin, Jun; Xu, Liujun; Zhang, Feng; Xu, Hongxia; Chen, Yu; Jiang, Haitao; Li, Ziwei; Zhu, Zhiyong; Guo, Quangui

    2017-01-01

    Mesocarbon microbeads (MCMB) and quasi-isostatic pressing method were used to prepare MCMB based graphite (MG) for spherical fuel element to inhibit the infiltration of liquid fluoride salt in molten salt reactor (MSR). Characteristics of mercury infiltration and molten salt infiltration in MG were investigated and compared with A3-3 (graphite for spherical fuel element in high temperature gas cooled reactor) to identify the infiltration behaviors. The results indicated that MG had a low porosity about 14%, and an average pore diameter of 96 nm. Fluoride salt occupation of A3-3 (average pore diameter was 760 nm) was 10 wt% under 6.5 atm, whereas salt gain did not infiltrate in MG even up to 6.5 atm. It demonstrated that MG could inhibit the infiltration of liquid fluoride salt effectively. Coefficient of thermal expansion (CTE) of MG lies in 6.01 × 10 −6 K −1 (α ∥ ) and 6.15 × 10 −6 K −1 (α ⊥ ) at the temperature range of 25–700 °C. The anisotropy factor of MG calculated by CTE maintained below 1.02, which could meet the requirement of the spherical fuel element (below 1.30). The constant isotropic property of MG is beneficial for the integrity and safety of the graphite used in the spherical fuel element for a MSR.

  2. Factors affecting defective fraction of biso-coated HTGR fuel particles during in-block carbonization

    International Nuclear Information System (INIS)

    Caputo, A.J.; Johnson, D.R.; Bayne, C.K.

    1977-01-01

    The performance of Biso-coated thoria fuel particles during the in-block processing step of HTGR fuel element refabrication was evaluated. The effect of various process variables (heating rate, particle crushing strength, horizontal and/or vertical position in the fuel element blocks, and fuel hole permeability) on pitch coke yield, defective fraction of fuel particles, matrix structure, and matrix porosity was evaluated. Of the variables tested, only heating rate had a significant effect on pitch coke yield while both heating rate and particle crushing strength had a significant effect on defective fraction of fuel particles

  3. Polyarylenethioethersulfone Membranes for Fuel Cells (Postprint)

    Science.gov (United States)

    2010-01-01

    The Electrochemical SocietyProton exchange membrane fuel cells PEMFCs are an attrac- tive power source due to their energy efficiency and...standard in PEMFC technology.3,4 Nafion membranes have a polytetrafluoro- ethylene PTFE backbone, which provides thermal and chemical stability, and...diffusion layers to fabricate MEAs. Single-cell test (H- PEMFC ).— MEAs were positioned in a single-cell fixture with graphite blocks as current

  4. Evaluation of the oxidation behavior and strength of the graphite components in the VHTR, (1)

    International Nuclear Information System (INIS)

    Eto, Motokuni; Kurosawa, Takeshi; Nomura, Shinzo; Imai, Hisashi

    1987-04-01

    Oxidation experiments have been carried out mainly on a fine-grained isotropic graphite, IG-110, at temperatures between 1173 and 1473 K in a water vapor/helium mixture. In most cases water vapor concentration was 0.65 vol% and helium pressure, 1 atm. Reaction rate and burn-off profile were measured using cylindrical specimens. On the basis of the experimental data the oxidation behavior of fuel block and core support post under the condition of the VHTR operation was estimated using the first-order or Langmuir-Hinshelwood equation with regard to water vapor concentration. Strength and stress-strain relationship of the graphite components with burn-off profiles estimated above were analyzed on the basis of the model for stress-strain relationship and strength of graphite specimens with density gradients. The estimation indicated that the integrity of the components would be maintained during normal reactor operation. (author)

  5. The use of graphite for the reduction of void reactivity in CANDU reactors

    International Nuclear Information System (INIS)

    Min, B.J.; Kim, B.G.; Sim, K-S.

    1995-01-01

    Coolant void reactivity can be reduced by using burnable poison in CANDU reactors. The use of graphite in the fuel bundle is introduced to reduce coolant void reactivity by adding an appropriate amount of burnable poison in the central rod. This study shows that sufficiently low void reactivity which in controllable by Reactor Regulating System (RRS) can be achieved by using graphite used fuel with slightly enriched uranium. Zero void reactivity can be also obtained by using graphite used fuel with a large central rod. A new fuel bundle with graphite rods can substantially reduce the void reactivity with less burnup penalty compared to previously proposed low void reactivity fuel with depleted uranium. (author)

  6. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    Science.gov (United States)

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-05

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Gamma scanning of full scale HTR fuel elements

    International Nuclear Information System (INIS)

    Harrison, T.A.; Simpson, J.A.H.; Nabielek, H.

    1983-04-01

    Gamma scanning for the determination of burn-up and fission product inventory has been developed at the Dragon Project, suitable for measurements on fuel elements and segments from full-sized integral block elements. This involved the design and construction of a new lead flask with sophisticated collimator design. State-of-the art gamma spectrometric equipment was set up to cope with strong variations of count-rate and high data throughput. Software efforts concentrated on the calculation of the self absorption and absorption corrections in the complicated geometry of multi-hole graphite block segments with a corrugated circumference. The techniques described here are applicable to the non-destructive examination of a wide range of fuel element designs. (author)

  8. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells.

    Science.gov (United States)

    Renslow, Ryan; Donovan, Conrad; Shim, Matthew; Babauta, Jerome; Nannapaneni, Srilekha; Schenk, James; Beyenal, Haluk

    2011-12-28

    Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.

  9. Investigation on structural integrity of graphite component during high temperature 950degC continuous operation of HTTR

    International Nuclear Information System (INIS)

    Sumita, Junya; Shimazaki, Yosuke; Shibata, Taiju

    2014-01-01

    Graphite material is used for internal structures in high temperature gas-cooled reactor. The core components and graphite core support structures are so designed as to maintain the structural integrity to keep core cooling capability. To confirm that the core components and graphite core support structures satisfy the design requirements, the temperatures of the reactor internals are measured during the reactor operation. Surveillance test of graphite specimens and in-service inspection using TV camera are planned in conjunction with the refueling. This paper describes the evaluation results of the integrity of the core components and graphite core support structures during the high temperature 950degC continuous operation, a high temperature continuous operation with reactor outlet temperature of 950degC for 50 days, in high temperature engineering test reactor. The design requirements of the core components and graphite core support structures were satisfied during the high temperature 950degC continuous operation. The dimensional change of graphite which directly influences the temperature of coolant was estimated considering the temperature profiles of fuel block. The magnitude of irradiation-induced dimensional change considering temperature profiles was about 1.2 times larger than that under constant irradiation temperature of 1000degC. In addition, the programs of surveillance test and ISI using TV camera were introduced. (author)

  10. Bypass Flow and Hot Spot Analysis for PMR200 Block-Core Design with Core Restraint Mechanism

    International Nuclear Information System (INIS)

    Lim, Hong Sik; Kim, Min Hwan

    2009-01-01

    The accurate prediction of local hot spot during normal operation is important to ensure core thermal margin in a very high temperature gas-cooled reactor because of production of its high temperature output. The active cooling of the reactor core determining local hot spot is strongly affected by core bypass flows through the inter-column gaps between graphite blocks and the cross gaps between two stacked fuel blocks. The bypass gap sizes vary during core life cycle by the thermal expansion at the elevated temperature and the shrinkage/swelling by fast neutron irradiation. This study is to investigate the impacts of the variation of bypass gaps during core life cycle as well as core restraint mechanism on the amount of bypass flow and thus maximum fuel temperature. The core thermo fluid analysis is performed using the GAMMA+ code for the PMR200 block-core design. For the analysis not only are some modeling features, developed for solid conduction and bypass flow, are implemented into the GAMMA+ code but also non-uniform bypass gap distribution taken from a tool calculating the thermal expansion and the shrinkage/swell of graphite during core life cycle under the design options with and without core restraint mechanism is used

  11. Sodium-cooled fast reactor (SFR) fuel assembly design with graphite-moderating rods to reduce the sodium void reactivity coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Won, Jong Hyuck; Cho, Nam Zin, E-mail: nzcho@kaist.ac.kr; Park, Hae Min; Jeong, Yong Hoon, E-mail: jeongyh@kaist.ac.kr

    2014-12-15

    Highlights: • The graphite rod-inserted SFR fuel assembly is proposed to achieve low sodium void reactivity. • The neutronics/thermal-hydraulics analyses are performed for the proposed SFR cores. • The sodium void reactivity is improved about 960–1030 pcm compared to reference design. - Abstract: The concept of a graphite-moderating rod-inserted sodium-cooled fast reactor (SFR) fuel assembly is proposed in this study to achieve a low sodium void reactivity coefficient. Using this concept, two types of SFR cores are analyzed; the proposed SFR type 1 core has new SFR fuel assemblies at the inner/mid core regions while the proposed SFR type 2 core has a B{sub 4}C absorber sandwich in the middle of the active core region as well as new SFR fuel assemblies at the inner/mid core regions. For the proposed SFR core designs, neutronics and thermal-hydraulic analyses are performed using the DIF3D, REBUS3, and the MATRA-LMR codes. In the neutronics analysis, the sodium void reactivity coefficient is obtained in various void situations. The two types of proposed core designs reduce the sodium void reactivity coefficient by about 960–1030 pcm compared to the reference design. However, the TRU enrichment for the proposed SFR core designs is increased. In the thermal hydraulic analysis, the temperature distributions are calculated for the two types of proposed core designs and the mass flow rate is optimized to satisfy the design constraints for the highest power generating assembly. The results of this study indicate that the proposed SFR assembly design concept, which adopts graphite-moderating rods which are inserted into the fuel assembly, can feasibly minimize the sodium void reactivity coefficient. Single TRU enrichment and an identical fuel slug diameter throughout the SFR core are also achieved because the radial power peak can be flattened by varying the number of moderating rods in each core region.

  12. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  13. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1977-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (RW) [de

  14. Method to fabricate block fuel elements for high temperature reactors

    International Nuclear Information System (INIS)

    Hrovat, M.; Rachor, L.

    1978-01-01

    The fabrication of block fuel elements for gas-cooled high temperature reactors can be improved upon by adding 0.2 to 2 wt.% of a hydrocarbon compound to the lubricating mixture prior to pressing. Hexanol or octanol are named as substances. The dimensional accuracy of the block is thus improved. 2 examples illustrate the method. (orig./PW)

  15. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.; Chen, D.; Zhang, X.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong, S.Y.; Wu, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-20

    Various graphite fillers, such as graphite particles, graphite fibers, graphite flakes and porous graphite blocks, have been successfully incorporated into an Al alloy by squeeze casting in order to fabricate graphite/Al composites with enhanced thermal conductivity (TC). Microstructural characterization by X-ray diffraction and scanning electron microscopy has revealed a tightly-adhered, clean and Al{sub 4}C{sub 3}-free interface between the graphite fillers and the Al matrix in all the as-fabricated composites. Taking the microstructural features into account, we generalized the corresponding predictive models for the TCs of these composites with the effective medium approximation and the Maxwell mean-field scheme, which both show good agreement with the experimental data. The roles of geometry and topology structures of graphite fillers on the TCs of the composites were further discussed. - Highlights: • The thermal enhancement of various graphite fillers with different topology structures. • Predictive models for the thermal conductivity of different topology structures. • Oriented flakes alignment has the high potentials for thermal enhancement.

  16. Investigation of an Alternative Fuel Form for the Liquid Salt Cooled Very High Temperature Reactor (LS-VHTR)

    International Nuclear Information System (INIS)

    Casino, William A. Jr.

    2006-01-01

    Much of the recent studies investigating the use of liquid salts as reactor coolants have utilized a core configuration of graphite prismatic fuel block assemblies with TRISO particles embedded into cylindrical fuel compacts arranged in a triangular pitch lattice. Although many calculations have been performed for this fuel form in gas cooled reactors, it would be instructive to investigate whether an alternative fuel form may yield improved performance for the liquid salt-cooled Very High Temperature Reactor (LS-VHTR). This study investigates how variations in the fuel form will impact the performance of the LS-VHTR during normal and accident conditions and compares the results with a similar analysis that was recently completed for a LS-VHTR core made up of prismatic block fuel. (author)

  17. Properties of unirradiated fuel element graphites H-451 and SO818. [Bulk density, tensile properties, thermal expansion, thermal conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Engle, G.B.; Johnson, W.R.

    1976-10-08

    Nuclear graphites H-451, lot 440 (Great Lakes Carbon Corporation (GLCC)), and SO818 (Airco Speer Division, Air Reduction Corporation (AS)) are described, and physical, mechanical, and chemical property data are presented for the graphites in the unirradiated state. A summary of the mean values of the property data and of data on TS-1240 and H-451, lot 426, is tabulated. A direct comparison of H-451, lot 426, chosen for Fort St. Vrain (FSV) fuel reload production, TS-1240, and SO818 may be made from the table. (auth)

  18. Effect of a Central Graphite Column on a Pebble Flow in a Pebble Bed Core

    International Nuclear Information System (INIS)

    In, W. K.; Lee, W. J.; Chang, J. H.

    2006-01-01

    A pebble bed reactor(PBR) uses coated fuel particles embedded in spherical graphite fuel pebbles. The fuel pebbles flow down through the core during an operation. The pebble bed core is configured as cylindrical or annular depending on the reactor power. It is well known that an annular core can increase a cores' thermal power. The annular inner core zone is typically filled with movable graphite balls or a fixed graphite column. The first problem with this conventional annular core is that it is difficult to maintain a boundary between the central graphite ball zone and the outer fuel zone. The second problem is that it is expensive to replace the central fixed graphite column after several tens of years of reactor operation. In order to resolve these problems, a PBR with a central graphite column in a low core is invented. This paper presents the effect of the central graphite column on a pebble flow by using the computational fluid dynamics(CFD) code, CFX-10

  19. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  20. A Graphite Oxide Paper Polymer Electrolyte for Direct Methanol Fuel Cells

    Directory of Open Access Journals (Sweden)

    Ravi Kumar

    2011-01-01

    Full Text Available A flow directed assembly of graphite oxide solution was used in the formation of free-standing graphene oxide paper of approximate thickness of 100 μm. The GO papers were characterised by XRD and SEM. Electrochemical characterization of the GO paper membrane electrode assembly revealed proton conductivities of 4.1 × 10−2 S cm−1 to 8.2 × 10−2 S cm−1 at temperatures of 25–90°C. A direct methanol fuel cell, at 60°C, gave a peak power density of 8 mW cm−2 at a current density of 35 mA cm−2.

  1. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Alex; Gyenge, Elod L.; Oloman, Colin W. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-05-15

    Pressed graphite felt (thickness {proportional_to}350 {mu}m) with electrodeposited PtRu (43 g m{sup -2}, 1.4:1 atomic ratio) or PtRuMo (52 g m{sup -2}, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m{sup -2} with PtRuMo at 5500 A m{sup -2} and 353 K while under the same conditions PtRu yielded 1925 W m{sup -2}. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation. (author)

  2. Direct methanol fuel cell with extended reaction zone anode: PtRu and PtRuMo supported on graphite felt

    Science.gov (United States)

    Bauer, Alex; Gyenge, Előd L.; Oloman, Colin W.

    Pressed graphite felt (thickness ∼350 μm) with electrodeposited PtRu (43 g m -2, 1.4:1 atomic ratio) or PtRuMo (52 g m -2, 1:1:0.3 atomic ratio) nanoparticle catalysts was investigated as an anode for direct methanol fuel cells. At temperatures above 333 K the fuel cell performance of the PtRuMo catalyst was superior compared to PtRu. The power density was 2200 W m -2 with PtRuMo at 5500 A m -2 and 353 K while under the same conditions PtRu yielded 1925 W m -2. However, the degradation rate of the Mo containing catalyst formulation was higher. Compared to conventional gas diffusion electrodes with comparable PtRu catalyst composition and load, the graphite felt anodes gave higher power densities mainly due to the extended reaction zone for methanol oxidation.

  3. Leaching of 14C and 36Cl from irradiated French graphite

    International Nuclear Information System (INIS)

    Gray, W.J.; Morgan, W.C.

    1989-08-01

    The leach rates of 14 C and 36 Cl were measured on solid cylindrical samples prepared from irradiated graphite blocks supplied by the French Commissariat a l'Energie Atomique (CEA). Static leach tests were conducted in deionized water at 20 degree C for 13 weeks. The graphite samples were completely submerged in the water, and the entire volume of water was changed and analyzed at weekly intervals for the first three weeks and biweekly thereafter. Large differences in the leach rates of both 14 C and 36 Cl were observed between samples machined from the different blocks. In general, the leach rates were much higher than those measured in an earlier study with graphite obtained from a block removed from one of the Hanford reactors. The data from this study are compared with those from the previous study using the Hanford-reactor graphite. Implications of the data from both studies regarding possible rate-limiting mechanisms are discussed. 4 refs., 8 figs., 3 tabs

  4. A study on amphiphilic fluorinated block copolymer in graphite exfoliation using supercritical CO2 for stable graphene dispersion.

    Science.gov (United States)

    Kim, Young Hyun; Lee, Hyang Moo; Choi, Sung Wook; Cheong, In Woo

    2018-01-15

    In this study, poly(2,2,2-trifluoroethyl methacrylate)-block-poly(4-vinylpyridine) (PTFEMA-b-PVP) was synthesized by stepwise reversible addition-fragmentation chain transfer (RAFT) polymerization for the preparation of graphene by the exfoliation of graphite nanoplatelets (GPs) in supercritical CO 2 (SCCO 2 ). Two different block copolymers (low and high molecular weights) were prepared with the same block ratio and used at different concentrations in the SCCO 2 process. The amount of PTFEMA-b-PVP adsorbed on the GPs and the electrical conductivity of the SCCO 2 -treated GP samples were evaluated using thermogravimetric analysis (TGA) and four-point probe method, respectively. All GP samples treated with SCCO 2 were then dispersed in methanol and the dispersion stability was investigated using online turbidity measurements. The concentration and morphology of few-layer graphene stabilized with PTFEMA-b-PVP in the supernatant solution were investigated by gravimetry, scanning electron microscopy, and Raman spectroscopy. Destabilization study of the graphene dispersions revealed that the longer block copolymer exhibited better affinity for graphene, resulting in a higher yield of stable graphene with minimal defects. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The Performance of a Direct Borohydride/Peroxide Fuel Cell Using Graphite Felts as Electrodes

    Directory of Open Access Journals (Sweden)

    Heng-Yi Lee

    2017-08-01

    Full Text Available A direct borohydride/peroxide fuel cell (DBPFC generates electrical power by recirculating liquid anolyte and catholyte between the stack and reservoirs, which is similar to the operation of flow batteries. To enhance the accessibility of the catalyst layer to the liquid anolyte/catholyte, graphite felts are employed as the porous diffusion layer of a single-cell DBPFC instead of carbon paper/cloth. The effects of the type of anode alkaline solution and operating conditions, including flow rate and temperature of the anolyte/catholyte, on DBPFC performance are investigated and discussed. The durability of the DBPFC is also evaluated by galvanostatic discharge at 0.1 A∙cm−2 for over 50 h. The results of this preliminary study show that a DBPFC with porous graphite electrodes can provide a maximum power density of 0.24 W∙cm−2 at 0.8 V. The performance of the DBPFC drops slightly after 50 h of operation; however, the discharge capacity shows no significant decrease.

  6. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor With Results from FY-2011 Activities

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope

    2011-10-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  7. Design development of graphite primary structures enables SSTO success

    Science.gov (United States)

    Biagiotti, V. A.; Yahiro, J. S.; Suh, Daniel E.; Hodges, Eric R.; Prior, Donald J.

    1997-01-01

    This paper describes the development of a graphite composite wing and a graphite composite intertank primary structure for application toward Single-Stage to Orbit space vehicles such as those under development in NASA's X-33/Reusable Launch Vehicle (RLV) Program. The trade study and designs are based on a Rockwell vertical take-off and horizontal landing (VTHL) wing-body RLV vehicle. Northrop Grumman's approach using a building block development technique is described. Composite Graphite/Bismaleimide (Gr/BMI) material characterization test results are presented. Unique intertank and wing composite subcomponent test article designs are described and test results to date are presented. Wing and intertank Full Scale Section Test Article (FSTA) objectives and designs are outlined. Trade studies, supporting building block testing, and FSTA demonstrations combine to develop graphite primary structure composite technology that enables developing X-33/RLV design programs to meet critical SSTO structural weight and operations performance criteria.

  8. On estimating the fracture probability of nuclear graphite components

    International Nuclear Information System (INIS)

    Srinivasan, Makuteswara

    2008-01-01

    The properties of nuclear grade graphites exhibit anisotropy and could vary considerably within a manufactured block. Graphite strength is affected by the direction of alignment of the constituent coke particles, which is dictated by the forming method, coke particle size, and the size, shape, and orientation distribution of pores in the structure. In this paper, a Weibull failure probability analysis for components is presented using the American Society of Testing Materials strength specification for nuclear grade graphites for core components in advanced high-temperature gas-cooled reactors. The risk of rupture (probability of fracture) and survival probability (reliability) of large graphite blocks are calculated for varying and discrete values of service tensile stresses. The limitations in these calculations are discussed from considerations of actual reactor environmental conditions that could potentially degrade the specification properties because of damage due to complex interactions between irradiation, temperature, stress, and variability in reactor operation

  9. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block.

    KAUST Repository

    Lee, Seok Woo; Lee, Seung S; Yang, Eui-Hyeok

    2009-01-01

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V.

  10. A Study on Field Emission Characteristics of Planar Graphene Layers Obtained from a Highly Oriented Pyrolyzed Graphite Block.

    KAUST Repository

    Lee, Seok Woo

    2009-07-12

    This paper describes an experimental study on field emission characteristics of individual graphene layers for vacuum nanoelectronics. Graphene layers were prepared by mechanical exfoliation from a highly oriented pyrolyzed graphite block and placed on an insulating substrate, with the resulting field emission behavior investigated using a nanomanipulator operating inside a scanning electron microscope. A pair of tungsten tips controlled by the nanomanipulator enabled electric connection with the graphene layers without postfabrication. The maximum emitted current from the graphene layers was 170 nA and the turn-on voltage was 12.1 V.

  11. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  12. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  13. Reactor core with rod-shaped fuel cells

    International Nuclear Information System (INIS)

    Dworak, A.

    1977-01-01

    The aim is an optimization of load distribution in the core so that the load decreases in the direction of coolant flow (with gas cooling from above downwards) but so that it remains constant in horizontal layers to the edge of the core. The former produces optimum cooling, because the coolant has to take up decreasing heat output in the direction of flow. The latter simplifies refueling, because replacement of a whole layer having the same burn-up takes place. The upper two layers with the highest output and the shortest dwell time are replaced every 300 days, for example, the third layer is replaced after double this time and 5 more layers after four times this dwell time. After the simultaneous replacement of all layers, the reactor is in the same state as at commissioning. The fuel cells consist of hexagonal graphite blocks about 1.65 metres in height and 0.75 wide, for example. Each block contains about 100 through cooling channels and about 200 fuel channels closed on both sides. A large number of columns each consisting of 8 blocks is arranged in a tight honeycomb pattern and forms the core. Within each of the 8 horizontal layers of blocks, each fuel cell contains the same fuel mixture with predetermined dwell time. The fuel mixture is suited to the dwell time planned for each layer. The various fuel cells are kept at the same output by burnable neutron poisons in special channels provided for this purpose in the fuel cell and/or by absorber rods, or a planned load distribution is maintained. (HP) [de

  14. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.

    Science.gov (United States)

    Picot, Matthieu; Lapinsonnière, Laure; Rothballer, Michael; Barrière, Frédéric

    2011-10-15

    Graphite electrodes were modified with reduction of aryl diazonium salts and implemented as anodes in microbial fuel cells. First, reduction of 4-aminophenyl diazonium is considered using increased coulombic charge density from 16.5 to 200 mC/cm(2). This procedure introduced aryl amine functionalities at the surface which are neutral at neutral pH. These electrodes were implemented as anodes in "H" type microbial fuel cells inoculated with waste water, acetate as the substrate and using ferricyanide reduction at the cathode and a 1000 Ω external resistance. When the microbial anode had developed, the performances of the microbial fuel cells were measured under acetate saturation conditions and compared with those of control microbial fuel cells having an unmodified graphite anode. We found that the maximum power density of microbial fuel cell first increased as a function of the extent of modification, reaching an optimum after which it decreased for higher degree of surface modification, becoming even less performing than the control microbial fuel cell. Then, the effect of the introduction of charged groups at the surface was investigated at a low degree of surface modification. It was found that negatively charged groups at the surface (carboxylate) decreased microbial fuel cell power output while the introduction of positively charged groups doubled the power output. Scanning electron microscopy revealed that the microbial anode modified with positively charged groups was covered by a dense and homogeneous biofilm. Fluorescence in situ hybridization analyses showed that this biofilm consisted to a large extent of bacteria from the known electroactive Geobacter genus. In summary, the extent of modification of the anode was found to be critical for the microbial fuel cell performance. The nature of the chemical group introduced at the electrode surface was also found to significantly affect the performance of the microbial fuel cells. The method used for

  15. Treat upgrade fuel fabrication

    International Nuclear Information System (INIS)

    Davidson, K.V.; Schell, D.H.

    1979-01-01

    An extrusion and thermal treatment process was developed to produce graphite fuel rods containing a dispersion of enriched UO 2 . These rods will be used in an upgraded version of the Transient Reactor Test Facility (TREAT). The improved fuel provides a higher graphite matrix density, better fuel dispersion and higher thermal capabilities than the existing fuel

  16. Effects of graphite surface roughness on bypass flow computations for an HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Yu-Hsin, E-mail: touushin@gmail.com [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Johnson, Richard W., E-mail: Rich.Johnson@inl.gov [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States); Sato, Hiroyuki, E-mail: sato.hiroyuki09@jaea.go.jp [Idaho National Laboratory, P.O. Box 1625, M.S. 3855, Idaho Falls, ID (United States)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer CFD calculations are made of bypass flow between graphite blocks in HTGR. Black-Right-Pointing-Pointer Several turbulence models are employed to compare to friction and heat transfer correlations. Black-Right-Pointing-Pointer Parameters varied include bypass gap width and surface roughness. Black-Right-Pointing-Pointer Surface roughness causes increases in max fuel and coolant temperatures. Black-Right-Pointing-Pointer Surface roughness does not cause increase in outlet coolant temperature variation. - Abstract: Bypass flow in a prismatic high temperature gas reactor (HTGR) occurs between graphite blocks as they sit side by side in the core. Bypass flow is not intentionally designed to occur in the reactor, but is present because of tolerances in manufacture, imperfect installation and expansion and shrinkage of the blocks from heating and irradiation. It is desired to increase the knowledge of the effects of such flow; it has been suggested that it may be as much as 20% of the total helium coolant flow [INL Report 2007, INL/EXT-07-13289]. Computational fluid dynamic (CFD) simulations can provide estimates of the scale and impacts of bypass flow. Previous CFD calculations have examined the effects of bypass gap width, level and distribution of heat generation and effects of shrinkage. The present contribution examines the effects of graphite surface roughness on the bypass flow for different relative roughness factors for three gap widths. Such calculations should be validated using specific bypass flow measurements. While such experiments are currently underway for the specific reference prismatic HTGR design for the next generation nuclear plant (NGNP) program of the U.S. Dept. of Energy, the data are not yet available. To enhance confidence in the present calculations, wall shear stress and heat transfer results for several turbulence models and their associated wall treatments are first compared for steady flow in a

  17. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  18. Graphite surveillance in N Reactor

    International Nuclear Information System (INIS)

    Woodruff, E.M.

    1991-09-01

    Graphite dimensional changes in N Reactor during its 24 yr operating history are reviewed. Test irradiation results, block measurements, stack profiles, top of reflector motion monitors, and visual observations of distortion are described. 18 refs., 14 figs., 1 tab

  19. Study of the strength of the internal can for internally and externally cooled fuel elements intended for gas graphite reactors; Etude de la tenue de la gaine interne pour-element combustible a refroidissement interne et externe d'un reacteur graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Boudouresque, B; Courcon, P; Lestiboubois, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cartridge of an internally and externally cooled annular fuel element used in gas-graphite reactors is made up of an uranium fuel tube, an external can and an internal can made of magnesium alloy. For the thermal exchange between the internal can and the fuel to be satisfactory, it is necessary for the can to stay in contact with the uranium under all temperature conditions. This report, based on a theoretical study, shows how the internal can fuel gap varies during the processes of canning, charging into the reactor and thermal cycling. The following parameters are considered: tube diameter, pressure of the heat carrying gas, gas entry temperature, plasticity of the can alloy. It is shown that for all operating conditions the internal can of a 77 x 95 element, planned for a gas-graphite reactor with a 40 kg/cm{sup 2} gas pressure, should remain in contact with the fuel. (authors) [French] La cartouche d'un element combustible annulaire, a refroidissement interne et externe pour reacteur graphite-gaz, est composee d'un tube combustible en uranium, d'une gaine externe et d'une gaine interne en alliage de magnesium. Pour que l'echange thermique entre la gaine interne et le combustible soit bon, il faut que la gaine reste appliquee sur l'uranium quel que soit le regime de temperature. Cette note a pour but de montrer comment, d'apres une etude theorique, le jeu combustible-gaine interne varie au cours des operations de gainage, de chargement dans le reacteur, et des cyclages thermiques. Les parametres suivants sont etudies: diametres de tube, pression du gaz caloporteur, temperature d'entree du gaz, plasticite de l'alliage de gaine. Il est montre que, quel que soit le regime de fonctionnement, la gaine interne d'un element 77 x 95, en projet pour un reacteur graphite-gaz sous pression de 40 kg/cm{sup 2}, doit rester appliquee sur le combustible. (auteurs)

  20. US/FRG umbrella agreement for cooperation in GCR Development. Fuel, fission products, and graphite subprogram. Quarterly status report, July 1, 1982-September 30, 1982

    International Nuclear Information System (INIS)

    Turner, R.F.

    1982-10-01

    This report describes the status of the cooperative work being performed in the Fuel, Fission Product, and Graphite Subprogram under the HTR-Implementing Agreement of the United States/Federal Republic of Germany Umbrella Agreement for Cooperation in GCR Development. The status is described relative to the commitments in the Subprogram Plan for Fuel, Fission Products, and Graphite, Revision 5, April 1982. The work described was performed during the period July 1, 1982 through September 30, 1982 in the HTGR Base Technology Program at Oak Ridge National Laboratory, the HTGR Fuel and Plant Technology Programs at General Atomic Company (GA), and the Project HTR-Brennstoffkreislauf of the Entwicklungsgemeinschaft HTR at KFA Julich, HRB Mannheim, HOBEG Hanau, and SIGRI Meitingen. The requirement for and format of this quarterly status report are specified in the HTR Implementing Agreement procedures for cooperation. Responsibility for preparation of the quarterly report alternates between GA and KFA

  1. A comparison of integral block and tubular interacting fuel element concepts for low enrichment HTR

    Energy Technology Data Exchange (ETDEWEB)

    Desoisa, J A

    1972-04-15

    The tubular interacting fuel element has to date been the favoured U.K. high temperature reactor design. Recent attempts to lower fuel costs and the progress of the Fort St. Vrain reactor has focussed attention on alternative designs, and in particular on the attractive design simplicity of the integral block concept. The aim of this investigation is to compare the merits of both concepts from fuel cycle cost and thermal performance viewpoints and to determine whether optimization of the integral block concept leads to changes in the current design values of (a) fuel density, (b) Nc/Nu, and/or (c) mean discharge irradiation within the framework of present design limits.

  2. Evaluation of Effective thermal conductivity models on the prismatic fuel block of a Very High Temperature Reactor by CFD analysis

    International Nuclear Information System (INIS)

    Shin, Dong-Ho; Cho, Hyoung-Kyu; Tak, Nam-Il; Park, Goon-Cherl

    2014-01-01

    Effective thermal conductivity models which can be used to analyze the heat transfer phenomena of a prismatic fuel block were evaluated by CFD analysis. In the accident condition of VHTR when forced convection is lost, the heat flows in radial direction through the hexagonal fuel blocks that contain the large number of coolant holes and fuel compacts. Due to the complex geometry of fuel block and radiation heat transfer; the detail heat transfer computation on the fuel block needs excessive computation resources. Therefore, the detail computation isn’t appropriate for the lumped parameter code. The system code such as GAMMA+ adopts effective thermal conductivity model. Despite the complexity in heat transfer modes, the accurate analysis on the heat transfer in fuel block is necessary since it is directly relevant to the integrity of nuclear fuel embedded in fuel block. To satisfy the accurate analysis of complex heat transfer modes with limited computing sources, the credible effective thermal conductivity (ETC) models in which the effects of all of heat transfer modes are lumped is necessary. In this study, various ETC models were introduced and they are evaluated with CFD calculations. It is estimated that Maxwell-based model was the most pertinent one among the introduced ETC models. (author)

  3. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  4. The investigation of HTGR fuel regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Lazarev, L N; Bertina, L E; Popik, V P; Isakov, V P; Alkhimov, N B; Pokhitonov, Yu A

    1985-07-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning.

  5. The investigation of HTGR fuel regeneration process

    International Nuclear Information System (INIS)

    Lazarev, L.N.; Bertina, L.E.; Popik, V.P.; Isakov, V.P.; Alkhimov, N.B.; Pokhitonov, Yu.A.

    1985-01-01

    The aim of this report is the investigation of HTGR fuel regeneration. The operation in the technologic scheme of uranium extraction from fuel depleted elements is separation of fuel from graphite. Available methods of graphite matrix destruction are: mechanical destruction, chemical destruction, and burning. Mechanical destruction is done in combination with leaching or chlorination. Methods of chemical destruction of graphite matrix are not sufficiently studied. Most of the investigations nowadays sre devoted to removal of graphite by burning

  6. An enhanced model for minimizing fuel consumption under block-queuing in a drive-through service system

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C.H.; Berglin, J. [University of Central Florida, Orlando, FL (United States). Dept. of Industrial Engineering and Management Systems

    2004-05-01

    We present a new model for determining the optimal block-size under block-queuing in a simple, single-channel queue at a drive-through service facility. With block-queuing, a queue is partitioned into an active section and a passive section, where drivers are asked to turn off their engines until the active section clears. Our model prescribes a block-size, i.e., a maximum number of vehicles in the active section, which minimizes the expected amount of fuel consumed in the queue. It can assess the effects of the traffic intensity, the service-time variance, and the proportion of compliant drivers in the passive section on the optimal block- size and on fuel consumption in the queue. (author)

  7. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors

    International Nuclear Information System (INIS)

    1968-01-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [fr

  8. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  9. Effects of fuel relocation on reflood in a partially-blocked rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byoung Jae [School of Mechanical Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Kim, Jongrok; Kim, Kihwan; Bae, Sung Won [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Moon, Sang-Ki, E-mail: skmoon@kaeri.re.kr [Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Division, 111 Daedeok-daero, Yuseong-gu, Daejeon 34057 (Korea, Republic of)

    2017-02-15

    Ballooning of the fuel rods has been an important issue, since it can influence the coolability of the rod bundle in a large-break loss-of-coolant accident (LBLOCA). Numerous past studies have investigated the effect of blockage geometry on the heat transfer in a partially blocked rod bundle. However, they did not consider the occurrence of fuel relocation and the corresponding effect on two-phase heat transfer. Some fragmented fuel particles located above the ballooned region may drop into the enlarged volume of the balloon. Accordingly, the fuel relocation brings in a local power increase in the ballooned region. The present study’s objective is to investigate the effect of the fuel relocation on the reflood under a LBLOCA condition. Toward this end, experiments were performed in a 5 × 5 partially-blocked rod bundle. Two power profiles were tested: one is a typical cosine shape and the other is the modified shape considering the effect of the fuel relocation. For a typical power shape, the peak temperature in the ballooned rods was lower than that in the intact rods. On the other hand, for the modified power shape, the peak temperature in the ballooned rods was higher than that in the intact rods. Numerical simulations were also performed using the MARS code. The tendencies of the peak clad temperatures were well predicted.

  10. The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments

    International Nuclear Information System (INIS)

    Pham, Bihn T.; Einerson, Jeffrey J.

    2010-01-01

    This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory's Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automated processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.

  11. Status and aspects of fuel element development for advanced high-temperature reactors in the FRG

    International Nuclear Information System (INIS)

    Nickel, H.; Balthesen, E.

    1975-01-01

    In the FRG three basic fuel element designs for application in high temperature gas cooled reactors are being persued: the spherical element, the graphite block element, and the moulded block element (monolith). This report gives the state of development reached with the three types of elements but also views their specific merits and performance margin and presents aspects of their future development potential for operation in advanced HTGR plants. The development of coated feed and breed particles for application in all HTGR fuel elements is treated in more detail. Summarizing it can be said that all the fuel elements as well as their components have proved their aptitude for the dual cycle systems in numerous fuel element and particle performance tests. To adapt these fuel elements and coated particles for advanced reactor concepts and to develop them up to full technical maturity further testing is still necessary, however. Ways of overcoming problems arising from the more stringent requirements are shown. (orig.) [de

  12. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  13. Studies on the behavior of graphite structures irradiated in the Dragon Reactor. Dragon Project report

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R.; Graham, L. W.; Ridealgh, F.

    1971-11-15

    Design data for the physical and mechanical property changes which occur in graphite structural and fuel body components irradiated in an HTR are largely obtained from small specimens tested in the laboratory and in materials test reactors. A brief data summary is given. This graphite physics data can be used to predict dimensional changes, internal stress generation and strength changes in the graphite materials of HTR fuel elements irradiated in the Dragon Reactor. In this paper, the results which have been obtained from post-irradiation examination of a number of fuel pins, are compared with prediction.

  14. In situ formation of graphene layers on graphite surfaces for efficient anodes of microbial fuel cells.

    Science.gov (United States)

    Tang, Jiahuan; Chen, Shanshan; Yuan, Yong; Cai, Xixi; Zhou, Shungui

    2015-09-15

    Graphene can be used to improve the performance of the anode in a microbial fuel cell (MFC) due to its good biocompatibility, high electrical conductivity and large surface area. However, the chemical production and modification of the graphene on the anode are environmentally hazardous because of the use of various harmful chemicals. This study reports a novel method based on the electrochemical exfoliation of a graphite plate (GP) for the in situ formation of graphene layers on the surface of a graphite electrode. When the resultant graphene-layer-based graphite plate electrode (GL/GP) was used as an anode in an MFC, a maximum power density of 0.67 ± 0.034 W/m(2) was achieved. This value corresponds to 1.72-, 1.56- and 1.26-times the maximum power densities of the original GP, exfoliated-graphene-modified GP (EG/GP) and chemically-reduced-graphene-modified GP (rGO/GP) anodes, respectively. Electrochemical measurements revealed that the high performance of the GL/GP anode was attributable to its macroporous structure, improved electron transfer and high electrochemical capacitance. The results demonstrated that the proposed method is a facile and environmentally friendly synthesis technique for the fabrication of high-performance graphene-based electrodes for use in microbial energy harvesting. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Detection block

    International Nuclear Information System (INIS)

    Bezak, A.

    1987-01-01

    A diagram is given of a detection block used for monitoring burnup of nuclear reactor fuel. A shielding block is an important part of the detection block. It stabilizes the fuel assembly in the fixing hole in front of a collimator where a suitable gamma beam is defined for gamma spectrometry determination of fuel burnup. The detector case and a neutron source case are placed on opposite sides of the fixing hole. For neutron measurement for which the water in the tank is used as a moderator, the neutron detector-fuel assembly configuration is selected such that neutrons from spontaneous fission and neutrons induced with the neutron source can both be measured. The patented design of the detection block permits longitudinal travel and rotation of the fuel assembly to any position, and thus more reliable determination of nuclear fuel burnup. (E.S.). 1 fig

  16. Investigation on wear behavior of graphite baII under different pneumatic conveying environments

    International Nuclear Information System (INIS)

    Chen Zhipeng; Zheng Yanhua; Shi Lei; Yu Suyuan

    2014-01-01

    An experimental platform was built in the Institute of Nuclear and New Energy Technology (INET) to investigate the wear behavior of the graphite ball under the operational condition of the high temperature gas-cooled reactor (HTGR) fuel handling system. In this experimental platform, a series of experiments were carried out under different pneumatic conveying environments with the graphite balls, which were made of the material same as the fuel element matrix graphite (A3) of the 10 MW high temperature gas cooled reactor (HTR-10). The effect of the pneumatic conveying condition on the wear rate of graphite ball has been investigated, and the results include: (1) There is an obvious linear relationship between the wear rate and the feeding velocity of graphite ball elevated in the stainless steel elevating tube, and the wear rate will increase with the increase of the feeding velocity. (2) The wear rate of graphite ball under helium environment is significantly greater than that under air and nitrogen environments, which is caused by the different effects of various gas environments on mechanical properties of graphite. (author)

  17. Physics experiments in graphite lattices (1962); Experiences sur les reseaux a graphite (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    A review is made of the various experimental methods used to determine the physics of graphite, natural uranium lattices: integral lattice experiments; both absolute and differential, effective cross section measurements, both by activation methods and by analysis of irradiated fuels, fine structure measurements. A number of experimental results are also given. (authors) [French] On decrit les differentes methodes experimentales utilisees pour determiner les parametres physiques de reseaux a uranium-graphite. Il s'agit d'experiences globales: mesures absolues et relatives de laplaciens, mesures de sections efficaces effectives par activation et par analyses de combustibles irradies, mesures de structures fines. Un certain nombre de resultats experimentaux sont communiques. (auteurs)

  18. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  19. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  20. Identification of the key parameters defining the life of graphite core components

    International Nuclear Information System (INIS)

    Mitchell, M.N.

    2005-01-01

    The Core Structures of a Pebble Bed rector core comprise graphite reflectors constructed from blocks. These blocks are subject to high flux and temperatures as well as significant gradients in flux and temperature. This loading combined with the behaviour of graphite under irradiation gives rise to complex stress states within the reflector blocks. At some point, the stress state will reach a critical level and cracks will initiate within the blocks. The point of crack initiation is a useful point to define as the end of the part's life. The life of these graphite reflector parts in a pebble bed reactor (PBR) core determines the service life of the Core Structures. The replacement of the Core Structures' components will be a costly and time consuming. It is important that the components of the Core Structures be designed for the best life possible. As part of the conceptual design of the Pebble Bed Modular Reactor (PBMR), the assessment of the life of these components was examined. To facilitate the understanding of the parameters that influence the design life of the PBMR, a study has been completed into the effect of various design parameters on the design life of a typical side reflector block. Parameters investigated include: block geometry, material property variations, and load variations. The results of this study are to be presented. (author)

  1. Process behavior and environmental assessment of 14C releases from an HTGR fuel reprocessing facility

    International Nuclear Information System (INIS)

    Snider, J.W.; Kaye, S.V.

    1976-01-01

    Large quantities of 14 CO 2 will be evolved when graphite fuel blocks are burned during reprocessing of spent fuel from HTGR reactors. The possible release of some or all of this 14 C to the environment is a matter of concern which is investigated in this paper. Various alternatives are considered in this study for decontaminating and releasing the process off-gas to the environment. Concomitant radiological analyses have been done for the waste process scenarios to supply the necessary feedbacks for process design

  2. Vapour pressure of caesium over nuclear graphite

    International Nuclear Information System (INIS)

    Faircloth, R.L.; Pummery, F.C.W.

    1976-01-01

    The vapour pressure of caesium over a fine-grained isotropic moulded gilsocarbon nuclear graphite intended for use in the manufacture of fuel tubes for the high temperature reactor has been determined as a function of temperature and concentration by means of the Knudsen effusion technique. The concentration range 0 to 10 μg caesium/g graphite was investigated and it was concluded that a Langmuir adsorption situation exists under these conditions. (author)

  3. The role of graphite foam pore structure on saturated pool boiling enhancement

    International Nuclear Information System (INIS)

    Pranoto, I.; Leong, K.C.; Jin, L.W.

    2012-01-01

    This paper presents an experimental study of the pool boiling phenomena and performance of porous graphite foam evaporators of different structures and thermophysical properties. Two dielectric liquids viz. FC-72 and HFE-7000 were used as working fluids. Block and fin evaporators of different fin-to-block-surface-area ratios (AR) were designed to study the role of the internal pore structure of graphite foams in a compact air-cooled thermosyphon under saturated pool boiling condition for high heat flux electronics cooling applications. The wall temperatures were measured and the boiling heat transfer coefficients were calculated to analyze the boiling performance. It was found that both fin structures with AR = 3.70 and 2.73 result in reduced boiling heat transfer performances and higher wall temperatures. The experimental results show that the boiling heat transfer coefficients of the block structures are about 1.2–1.6 times higher than those of the fin structures. The total internal surface area to volume ratio (β) and the total exposed areas (A T ) of the graphite foams were calculated in this study. The results show that the values of β and A T of the block structures are much higher than the fin structures for both tested “Pocofoam” 61% porosity and “Kfoam” 78% porosity evaporators which resulted in higher boiling heat transfer coefficient and lower wall temperature of the block structures. A visualization study shows that more bubbles were generated from the block structures compared to the fin structures due to the larger number of nucleation sites from the block structures. It was also found that use of FC-72 resulted in better boiling heat transfer performance compared to HFE-7000. - Highlights: ► We studied the pool boiling performance of a thermosyphon with graphite foam evaporators of block and fin structures. ► FC-72 and HFE-7000 were used as the working fluids. ► The boiling heat transfer coefficients of the block structures are 1.2

  4. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  5. Nanostructuration of self-assembled poly(styrene-b-isoprene-b-styrene) block copolymer thin films in a highly oriented pyrolytic graphite substrate

    Energy Technology Data Exchange (ETDEWEB)

    Zalakain, Inaki; Ramos, Jose Angel; Fernandez, Raquel; Etxeberria, Haritz; Mondragon, Inaki, E-mail: inaki.mondragon@ehu.e

    2011-01-03

    Highly oriented pyrolitic graphite (HOPG) is a useful substrate to visualize epitaxial formation due to its crystallographic structure. The morphology of a poly(styrene-b-isoprene-b-styrene) block copolymer thin film on a HOPG substrate was investigated by atomic force microscopy. Block copolymer domains generated a morphology with triangular regularity. This arrangement was induced by the HOPG substrate structure due to van der Waals attraction between the HOPG {pi}-conjugated system and aromatic ring of polystyrene domains. However, increasing the film thickness, the substrate effect on the surface morphology decreased. As a consequence, film surfaces showed the coexistence of different structures such as highly aligned cylinders and perforated lamellae. When film thickness exceeded a threshold value, the substrate did not have effect in the surface arrangements and the surface showed a similar morphology to that existing in bulk.

  6. Nondestructive testing on graphite structures for high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Kambe, Mamoru; Tsuji, Nobumasa.

    1994-01-01

    The application of ultrasonic (for internal defects) and eddy current testing (for surface defects) were investigated on the structures of nuclear-grade IG-110 and PGX graphite for the HTTR. The equipment were developed in order to detect the specific configuration of graphite blocks and the testing conditions were defined as the practical testing methods. The established testing methods are being used for the acceptance tests of graphite structures in the HTTR. (author)

  7. The preliminary feasibility of intercalated graphite railgun armatures

    International Nuclear Information System (INIS)

    Gaier, J.R.; Yashan, D.; Naud, S.

    1991-01-01

    This paper reports on graphite intercalation compounds which may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite

  8. Corrosion-induced microstructural changes in a US core graphite

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Lee, D.A.

    1981-01-01

    The results reported here apply to Great Lakes grade H-451 graphite, the core graphite specified for the US HTGR. This graphite is structurally similar to the German reflector grades we have investigated at ORNL, and hence should be applicable to them if similar impurity levels are obtained. Moreover, these results extend and confirm the behavior pattern exhibited by the fuel matrix material A3-3 reported in the previous paper, although the effects are more pronounced in A3-3 presumably due to its resin-type binder and low heat-treatment temperatures

  9. Non-destructive evaluation on mechanical properties of nuclear graphite with porous structure

    International Nuclear Information System (INIS)

    Shibata, Taiju; Hanawa, Satoshi; Sumita, Junya; Tada, Tatsuya; Sawa, Kazuhiro; Iyoku, Tatsuo

    2005-01-01

    As a research subjects of 'Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' we started the study of development of non-destructive evaluation methods for mechanical properties of graphite components. The micro-indentation and ultrasonic wave methods are focused to evaluate the degradation of graphite components in VHTR core. For the micro-indentation method, the test apparatus was designed for the indentation test on graphite specimens with some stress levels. It is expected the stress condition is evaluated by the indentation load-depth characteristics and hardness. For the ultrasonic wave method, ultrasonic wave testing machine and probes were prepared for experiments. It is expected that the stress and inner porous conditions are evaluated by the wave propagation characteristics with wave-pore interaction model. R and D plan to develop the non-destructive evaluation method for graphite is presented in this paper. (This study is the result of contract research in the fiscal year of 2004, Research and development for advanced high temperature gas cooled reactor fuels and graphite components,' which is entrusted to the Japan Atomic Energy Research Institute from the Ministry of Education, Culture, Sports, Science and Technology of Japan.) (author)

  10. Critical experiments on enriched uranium graphite moderated cores

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko; Akino, Fujiyoshi; Kitadate, Kenji; Kurokawa, Ryosuke

    1978-07-01

    A variety of 20 % enriched uranium loaded and graphite-moderated cores consisting of the different lattice cells in a wide range of the carbon to uranium atomic ratio have been built at Semi-Homogeneous Critical Experimental Assembly (SHE) to perform the critical experiments systematically. In the present report, the experimental results for homogeneously or heterogeneously fuel loaded cores and for simulation core of the experimental reactor for a multi-purpose high temperature reactor are filed so as to be utilized for evaluating the accuracy of core design calculation for the experimental reactor. The filed experimental data are composed of critical masses of uranium, kinetic parameters, reactivity worths of the experimental control rods and power distributions in the cores with those rods. Theoretical analyses are made for the experimental data by adopting a simple ''homogenized cylindrical core model'' using the nuclear data of ENDF/B-III, which treats the neutron behaviour after smearing the lattice cell structure. It is made clear from a comparison between the measurement and the calculation that the group constants and fundamental methods of calculations, based on this theoretical model, are valid for the homogeneously fuel loaded cores, but not for both of the heterogeneously fuel loaded cores and the core for simulation of the experimental reactor. Then, it is pointed out that consideration to semi-homogeneous property of the lattice cells for reactor neutrons is essential for high temperature graphite-moderated reactors using dispersion fuel elements of graphite and uranium. (author)

  11. Study on erbium loading method to improve reactivity coefficients for low radiotoxic spent fuel HTGR

    Energy Technology Data Exchange (ETDEWEB)

    Fukaya, Y., E-mail: fukaya.yuji@jaea.go.jp; Goto, M.; Nishihara, T.

    2015-11-15

    Highlights: • We attempted and optimized erbium loading methods to improve reactivity coefficients for LRSF-HTGR. • We elucidated the mechanism of the improvements for each erbium loading method by using the Bondarenko approach. • We concluded the erbium loading method by embedding into graphite shaft is preferable. - Abstract: Erbium loading methods are investigated to improve reactivity coefficients of Low Radiotoxic Spent Fuel High Temperature Gas-cooled Reactor (LRSF-HTGR). Highly enriched uranium is used for fuel to reduce the generation of toxicity from uranium-238. The power coefficients are positive without the use of any additive. Then, the erbium is loaded into the core to obtain negative reactivity coefficients owing to the large resonance the peak of neutron capture reaction of erbium-167. The loading methods are attempted to find the suitable method for LRSF-HTGR. The erbium is mixed in a CPF fuel kernel, loaded by binary packing with fuel particles and erbium particles, and embedded into the graphite shaft deployed in the center of the fuel compact. It is found that erbium loading causes negative reactivity as moderator temperature reactivity, and from the viewpoint of heat transfer, it should be loaded into fuel pin elements for pin-in-block type fuel. Moreover, the erbium should be incinerated slowly to obtain negative reactivity coefficients even at the End Of Cycle (EOC). A loading method that effectively causes self-shielding should be selected to avoid incineration with burn-up. The incineration mechanism is elucidated using the Bondarenko approach. As a result, it is concluded that erbium embedded into graphite shaft is preferable for LRSF-HTGR to ensure that the reactivity coefficients remain negative at EOC.

  12. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  13. Analysis of electrochemical disintegration process of graphite matrix

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    The electrochemical method with ammonium nitrate as electrolyte was studied to disintegrate the graphite matrix from the simulative fuel elements for high temperature gas-cooled reactor. The influences of process parameters, including salt concentration, system temperature and current density, on the disintegration rate of graphite fragments were investigated in the present work. The experimental results showed that the disintegration rate depended slightly on the temperature and salt concentration. The current density strongly affected the disintegration rate of graphite fragments. Furthermore, the content of introduced oxygen in final graphite fragments was independent of the current density and the concentration of electrolyte. Moreover, the structural evolution of graphite was analyzed based on the microstructural parameters determined by X-ray diffraction profile fitting analysis using MAUD (material analysis using diffraction) before and after the disintegration process. It may safely be concluded that the graphite disintegration can be ascribed to the influences of the intercalation of foreign molecules in between crystal planes and the partial oxidation involved. The disintegration process was described deeply composed of intercalate part and further oxidation part of carbon which effected together to lead to the collapse of graphite crystals.

  14. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  15. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  16. Method of making nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1977-01-01

    A method of making nuclear fuel bodies is described comprising: providing particulate graphite having a particle size not greater than about 1500 microns; impregnating the graphite with a polymerizable organic resin in liquid form; treating the impregnated particles with a hot aqueous acid solution to pre-cure the impregnated resin and to remove excess resin from the surfaces of said graphite particles; heating the treated particles to polymerize the impregnant; blending the impregnated particles with particulate nuclear fuel; and forming a nuclear fuel body by joining the blend of particles into a cohesive mass using a carbonaceous binder

  17. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Min; Jo, C. K.; Cho, M. S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW{sub th} block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW{sub th} block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared.

  18. A Statistical Analysis on the Coating Layer Thicknesses of a TRISO of 350 MWth Block-type HTR

    International Nuclear Information System (INIS)

    Kim, Young Min; Jo, C. K.; Cho, M. S.

    2016-01-01

    A tri-isotropic coated fuel particle (TRISO) is a basic fuel element of a high temperature reactor (HTR). The block-type HTR fuel is a cylindrical graphite compact in which a large number of TRISOs are embedded. There are more than 11 billion TRISOs in a 350 MW_t_h block-type HTR core. Among the RSM quadratic models, the BBD model produces the smallest errors at both interior and exterior points. The errors in the quadratic model of the small-type CCD is the biggest, particularly at exterior points. The CCD has a disadvantage of generating a number of decimal places in its factor levels because of its axial points. It is recommended to use the BBD or the full-type CCD with an adjusted axial point which does not produce the decimal places in its factor levels. More general statistical model for a TRISO design will be secured when the number of factors and responses increases. This study treats a statistical analysis on the optimal layer thicknesses of a UCO TRISO of 350 MW_t_h block-type HTR which cause a minimum tangential stress to act on the SiC layer. Three response surface methods (RSMs) are used as statistical methods and their resulting quadratic models are compared

  19. CFD analysis of blockage length on a partially blocked fuel rod

    International Nuclear Information System (INIS)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de; Angelo, Gabriel; Angelo, Edvaldo

    2017-01-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  20. CFD analysis of blockage length on a partially blocked fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Scuro, Nikolas Lymberis; Andrade, Delvonei Alves de [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Engenharia Nuclear; Angelo, Gabriel [Centro Universitário FEI (UNIFEI), São Paulo, SP (Brazil). Dept. de Engenharia Mecânica; Angelo, Edvaldo, E-mail: nikolas.scuro@gmail.com, E-mail: delvonei@ipen.br, E-mail: gangelo@fei.edu.br, E-mail: eangelo@mackenzie.br [Universidade Presbiteriana Mackenzie, São Paulo, SP (Brazil). Escola da Engenharia. Grupo de Simulação Numérica

    2017-07-01

    In LOCA accidents, fuel rods may balloon by the increasing of pressure difference between fuel rod and core vessel. With the balloon effect, the swelling can partially block the flow channel, affecting the coolability during reflood phase. In order to analyze the influence of blockage length after LOCA events, many numerical simulations using Ansys-CFX code have been done in steady state condition, characterizing the final phase of reflood. Peaks of temperature are observed in the middle of the fuel rod, followed by a temperature drop. This effect is justified by the increasing of heat transfer coefficient, originated from the high turbulence effects. Therefore, this paper considers a radial blockage of 90%, varying just the blockage length. This study observed that, for the same boundary conditions, the longer the blockage length originated after LOCA events, the higher are the central temperatures in the fuel rod. (author)

  1. On disruption of reactor core of the Chernobylsk-4 reactor (retrospective analysis of experiments and facts)

    International Nuclear Information System (INIS)

    Platonov, P.A.

    2007-01-01

    Fragments of graphite blocks from the damaged Chernobyl NPP, unit 4 are studied, the results are analyzed. The temperature of the graphite blocks at the moment of accident release from the reactor is evaluated. Results of studying the fragments of fuel channel and fuel dispersion are considered. The fuel heat content at the moment of the explosion is evaluated and some conclusions are made about the character of the reactor core destruction [ru

  2. Graphite Oxidation Thermodynamics/Reactions

    International Nuclear Information System (INIS)

    Propp, W.A.

    1998-01-01

    The vulnerability of graphite-matrix spent nuclear fuel to oxidation by the ambient atmosphere if the fuel canister is breached was evaluated. Thermochemical and kinetic data over the anticipated range of storage temperatures (200 to 400 C) were used to calculate the times required for a total carbon mass loss of 1 mgcm-2 from a fuel specimen. At 200 C, the time required to produce even this small loss is large, 900,000 yr. However, at 400 C the time required is only 1.9 yr. The rate of oxidation at 200 C is negligible, and the rate even at 400 C is so small as to be of no practical consequence. Therefore, oxidation of the spent nuclear fuel upon a loss of canister integrity is not anticipated to be a concern based upon the results of this study

  3. Destruction of nuclear graphite using closed chamber incineration

    International Nuclear Information System (INIS)

    Senor, D.J.; Hollenberg, G.W.; Morgan, W.C.; Marianowski, L.G.

    1994-01-01

    Closed chamber incineration (CCI) is a novel technique by which irradiated nuclear graphite may be destroyed without the risk of radioactive cation release into the environment. The process utilizes an enclosed combustion chamber coupled with molten carbonate fuel cells (MCFCs). The transport of cations is intrinsically suppressed by the MCFCs, such that only the combustion gases are conducted through for release to the environment. An example CCI design was developed which had as its goal the destruction of graphite fuel elements from the Fort St. Vrain reactor (FSVR). By employing CCI, the volume of high level waste from the FSVR will be reduced by approximately 87 percent. Additionally, the incineration process will convert the SiC coating on the FSVR fuel particles to SiO 2 , thus creating a form potentially suitable for direct incorporation in a vitrification process stream. The design is compact, efficient, and makes use of currently available technology

  4. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  5. Graphite reactor physics; Physique des piles a graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Noc, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The study of graphite-natural uranium power reactor physics, undertaken ten years ago when the Marcoule piles were built, has continued to keep in step with the development of this type of pile. From 1960 onwards the critical facility Marius has been available for a systematic study of the properties of lattices as a function of their pitch, of fuel geometry and of the diameter of cooling channels. This study has covered a very wide field: lattice pitch varying from 19 to 38 cm. uranium rods and tubes of cross-sections from 6 to 35 cm{sup 2}, channels with diameters between 70 and 140 mm. The lattice calculation methods could thus be checked and where necessary adapted. The running of the Marcoule piles and the experiments carried out on them during the last few years have supplied valuable information on the overall evolution of the neutronic properties of the fuel as a function of irradiation. More detailed experiments have also been performed in Marius with plutonium-containing fuels (irradiated or synthetic fuels), and will be undertaken at the beginning of 1965 at high temperature in the critical facility Cesar, which is just being completed at Cadarache. Spent fuel analyses complement these results and help in their interpretation. The thermalization and spectra theories developed in France can thus be verified over the whole valid temperature range. The efficiency of control rods as a function of their dimensions, the materials of which they are made and the lattices surrounding them has been measured in Marius, and the results compared with calculation on the one hand and with the measurements carried out in EDF 1 on the other. Studies on the control proper of graphite piles were concerned essentially with the risks of spatial instability and the means of detecting and controlling them, and with flux distortions caused by the control rods. (authors) [French] Entreprise il y a dix ans a l'occasion de la construction des piles de Marcoule, l'etude de la

  6. Studies on the graphite rupture under irradiation induced strains

    International Nuclear Information System (INIS)

    Jouquet, G.; Berthion, Y.; L'Homme, A.

    1980-01-01

    Following the RMG experiments (failure of graphite by mechanical effect, i.e. under very high temperature gradient) an experimental program called RWG (Failure of Graphite by WIGNER effect) was initiated in 75 at C.E.A. 3 experiments have been already performed in the OSIRIS reactor at Saclay: RWG 01, 02 and 03. A 4th one, RWG04, is scheduled for the end of 79, may be in collaboration with GERMANY. The aim of the RWG experiments is to induce internal stresses in graphite blocks by irradiation at high temperature which would lead or not to their failure so one could bracket, as tightly as possible, the critical value for failure onset in given experimental conditions

  7. Measurement of the diffusion length of thermal neutrons inside graphite; Mesure de la longueur de diffusion des neutrons thermiques dans le graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Beauge, R; Fauquez, H; De Laboulay, H; Mercier, C; Vautrey, L

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra {alpha} {yields} Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm {+-} 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  8. Nuclear reactor fuel element with a cluster of parallel fuel pins

    International Nuclear Information System (INIS)

    Macfall, D.; Butterfield, C.E.; Butterfield, R.S.

    1977-01-01

    An improvement of the design of nuclear reactor fuel elements is described and illustrated by the example of a gas-cooled, graphite-moderated nuclear reactor. The fuel element has a cluster of parallel fuel pins with an outer can of structure material and an inner sleeve, as well as tie bars and spacing devices for all of these parts. The fuel element designed according to the invention allows lasy assembling and disassembling before and after use. During use, no relative axial motions are possible; nevertheless, the graphite sleeve is at no time subject to tensile stress: the individual parts are held in position from below by a single holding device. (UWI) [de

  9. Nuclear fuel element

    International Nuclear Information System (INIS)

    Knowles, A.N.

    1979-01-01

    A nuclear fuel-containing body for a high temperature gas cooled nuclear reactor is described which comprises a flat plate in which the nuclear fuel is contained as a dispersion of fission product-retaining coated fuel particles in a flat sheet of graphitic or carbonaceous matrix material. The flat sheet is clad with a relatively thin layer of unfuelled graphite bonded to the sheet by being formed initially from a number of separate preformed graphitic artefacts and then platen-pressed on to the exterior surfaces of the flat sheet, both the matrix material and the artefacts being in a green state, to enclose the sheet. A number of such flat plates are supported edge-on to the coolant flow in the bore of a tube made of neutron moderating material. Where a number of tiers of plates are superimposed on one another, the abutting edges are chamfered to reduce vibration. (author)

  10. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  11. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  12. Optimization of the fuel cell of a spectral shift controlled reactor

    International Nuclear Information System (INIS)

    Alcala, F.

    1984-01-01

    Some low enriched uranium-graphite watercooled cells are analyzed from the point of view of both neutronic and thermal behavior. Such cells are of greater interest if their reactivity control is carried out by means of spectral shifting. This may be achieved by changing the relative concentration of a mixture of heavy and light water used as a coolant that flows through a system of tubes arranged in the graphite blocks. The increase of the relative fraction of light water during the burnup cycle extends the length of the cycle and makes it less proliferative. Performance of a cell of this kind is compared with that of a typical pressurized water reactor cell having the same type of fuel, degree of enrichment, specific power, and total power output

  13. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Martin-Ramos, Pablo; Correa-Guimaraes, Adriana; Martin-Gil, Jesus

    2011-01-01

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  14. Development of a dry-mechanical graphite separation process and elimination of the separated carbon for the reprocessing of spherical HTR fuel elements

    International Nuclear Information System (INIS)

    Kronschnabel, H.

    1982-01-01

    Due to the C-14 distribution the separation of the particle-free outer region of the spherical HTR fuel element with subsequent solidification of the separated carbon makes it possible to reduce by half the remaining C-14 inventory in the inner particle region to be further treated. Separation of the particle-free outer region by a newly developed sphere-peeling milling machine, conditioning the graphite into compacts and in-situ cementation into a salt-mine are the basic elements of this head-end process variation. An annual cavern volume of approx. 2000 m 3 will be needed to ultimately store the graphite of the particle-free outer region, which corresponds to a reprocessing capacity of 50 GWsub(e) installed HTR power. The brush-disintegration of the remaining inner particle region and the resulting peel-brush-preparation are capable of separating 95% of the graphite without any heavy metal losses. With the mentioned reprocessing capacity an annual cavern volume of approx. 16.500 m 3 is required. (orig.) [de

  15. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  16. Oxidation of graphites for core support post in air at high temperatures

    International Nuclear Information System (INIS)

    Imai, Hisashi; Fujii, Kimio; Kurosawa, Takeshi

    1982-07-01

    Oxidation reactions of candidate graphites for core support post with atmospheric air were studied in a temperature range between 550 0 C and 1000 0 C. The reaction rates, temperature dependence of the rates and distribution of bulk density in the oxidized graphites were measured and the characters obtained were compared between the brand of graphites. On the basis of the experimental results, dimension and strength of the post after corrosion with air, which might be introduced in rupture accident of primary coolant tube, were discussed. In the case of IG-11 graphite, it was proved that the strength of post is still sufficient even 100 hours after the beginning of the accident and that, however, it is necessary to insert more deeply the post against graphite blocks. (author)

  17. Evaluation of Codisposal Viability for TH/U Carbide (Fort Saint Vrain HTGR) DOE-Owned Fuel

    International Nuclear Information System (INIS)

    Radulescu, H.

    2001-01-01

    There are more than 250 forms of US Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The Fort Saint Vrain reactor (FSVR) SNF has been designated as the representative fuel for the Th/U carbide fuel group. The FSVR SNF consists of small particles (spheres of the order of 0.5-mm diameter) of thorium carbide or thorium and high-enriched uranium carbide mixture, coated with multiple, thin layers of pyrolytic carbon and silicon carbide, which serve as miniature pressure vessels to contain fission products and the U/Th carbide matrix. The coated particles are bound in a carbonized matrix, which forms fuel rods or ''compacts'' that are loaded into large hexagonal graphite prisms. The graphite prisms (or blocks) are the physical forms that are handled in reactor loading and unloading operations, and which will be loaded into the DOE standardized SNF canisters. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance to fuel from the Th/U carbide fuel group for disposal, the important items for the fuel types that are being considered for disposal under the Th/U carbide fuel group must be demonstrated to satisfy the conditions determined in this report

  18. Evaluation of Codisposal Viability for TH/U Carbide (Fort Saint Vrain HTGR) DOE-Owned Fuel

    Energy Technology Data Exchange (ETDEWEB)

    H. radulescu

    2001-09-28

    There are more than 250 forms of US Department of Energy (DOE)-owned spent nuclear fuel (SNF). Due to the variety of the spent nuclear fuel, the National Spent Nuclear Fuel Program has designated nine representative fuel groups for disposal criticality analyses based on fuel matrix, primary fissile isotope, and enrichment. The Fort Saint Vrain reactor (FSVR) SNF has been designated as the representative fuel for the Th/U carbide fuel group. The FSVR SNF consists of small particles (spheres of the order of 0.5-mm diameter) of thorium carbide or thorium and high-enriched uranium carbide mixture, coated with multiple, thin layers of pyrolytic carbon and silicon carbide, which serve as miniature pressure vessels to contain fission products and the U/Th carbide matrix. The coated particles are bound in a carbonized matrix, which forms fuel rods or ''compacts'' that are loaded into large hexagonal graphite prisms. The graphite prisms (or blocks) are the physical forms that are handled in reactor loading and unloading operations, and which will be loaded into the DOE standardized SNF canisters. The results of the analyses performed will be used to develop waste acceptance criteria. The items that are important to criticality control are identified based on the analysis needs and result sensitivities. Prior to acceptance to fuel from the Th/U carbide fuel group for disposal, the important items for the fuel types that are being considered for disposal under the Th/U carbide fuel group must be demonstrated to satisfy the conditions determined in this report.

  19. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  20. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part II: Prismatic Reactor Cross Section Generation

    Energy Technology Data Exchange (ETDEWEB)

    Vincent Descotes

    2011-03-01

    The deep-burn prismatic high temperature reactor is made up of an annular core loaded with transuranic isotopes and surrounded in the center and in the periphery by reflector blocks in graphite. This disposition creates challenges for the neutronics compared to usual light water reactor calculation schemes. The longer mean free path of neutrons in graphite affects the neutron spectrum deep inside the blocks located next to the reflector. The neutron thermalisation in the graphite leads to two characteristic fission peaks at the inner and outer interfaces as a result of the increased thermal flux seen in those assemblies. Spectral changes are seen at least on half of the fuel blocks adjacent to the reflector. This spectral effect of the reflector may prevent us from successfully using the two step scheme -lattice then core calculation- typically used for light water reactors. We have been studying the core without control mechanisms to provide input for the development of a complete calculation scheme. To correct the spectrum at the lattice level, we have tried to generate cross-sections from supercell calculations at the lattice level, thus taking into account part of the graphite surrounding the blocks of interest for generating the homogenised cross-sections for the full-core calculation. This one has been done with 2 to 295 groups to assess if increasing the number of groups leads to more accurate results. A comparison with a classical single block model has been done. Both paths were compared to a reference calculation done with MCNP. It is concluded that the agreement with MCNP is better with supercells, but that the single block model remains quite close if enough groups are kept for the core calculation. 26 groups seems to be a good compromise between time and accu- racy. However, some trials with depletion have shown huge variations of the isotopic composition across a block next to the reflector. It may imply that at least an in- core depletion for the

  1. CANDU fuel performance and development

    International Nuclear Information System (INIS)

    Hardy, D.G.; Wood, J.C.; Bain, A.S.

    1978-12-01

    The fuel defect rate in CANDU (Canada Deuterium Uranium) reactors continues to be very low, 0.06% since 1972. The power ramp defects, which constituted the majority of the early defects, have been virtually eliminated by changed fuelling schemes and through the introduction of graphite CANLUB coatings on the inside of the sheath. Laboratory and loop irradiations have demonstrated that the graphite CANLUB layers increase the tolerance to power ramps, but to obtain the maximum benefit, coating parameters such as thickness, adhesion and wear resistance must be optimized. Siloxane CANLUB coated fuel offers greater tolerance to power ramps than most graphite coatings; quality control appears simpler and no instance of localized sheath hydriding has been seen with cured and irradiated coatings. Limited testing has shown that fuel with graphite discs between fuel pellets also has high tolerance to power ramps, but it is more costly and has lower burnup. The number of defects due to faulty components has been extremely small (0.00014%), but improved quality control and welding procedures can lower this number even further. Defects from causes external to the bundle have also been very few. (author)

  2. Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination

    International Nuclear Information System (INIS)

    Brown, F.J.; Palmer, J.D.; Wood, P.

    2001-01-01

    The irradiation of materials in nuclear reactors results in neutron activation of component elements. Irradiated graphite wastes arise from their use in UK gas-cooled research and commercial reactor cores, and in fuel element components, where the graphite has acted as the neutron moderator. During irradiation the residual chlorine, which was used to purify the graphite during manufacture, is activated to chlorine-36. This isotope is long-lived and poorly retarded by geological barriers, and may therefore be a key radionuclide with respect to post-closure disposal facilities performance. United Kingdom Nirex Limited, currently responsible for the development of a disposal route for intermediate-level radioactive wastes in the UK, carried out a major research programme to support an overall assessment of the chlorine-36 activity of all wastes including graphite reactor components. The various UK gas cooled reactors reactors have used a range of graphite components made from diverse graphite types; this has necessitated a systematic programme to cover the wide range of graphite and production processes. The programme consisted of: precursor measurements - on the surface and/or bulk of representative samples of relevant materials, using specially developed methods; transfer studies - to quantify the potential for transfer of Cl-36 into and between waste streams during irradiation of graphite; theoretical assessments - to support the calculational methodology; actual measurements - to confirm the modelling. For graphite, a total of 458 measurements on samples from 57 batches were performed, to provide a detailed understanding of the composition of nuclear graphite. The work has resulted in the generation of probability density functions (PDF) for the mean chlorine concentration of three classes of graphite: fuel element graphite; Magnox moderator and reflector graphite and AGR reflector graphite; AGR moderator graphite. Transfer studies have shown that a significant

  3. Fuel element for high-temperature nuclear power reactors

    International Nuclear Information System (INIS)

    Schloesser, J.

    1974-01-01

    The fuel element of the HTGR consists of a spherical graphite body with a spherical cavity. A deposit of fissile material, e.g. coated particles of uranium carbide, is fixed to the inner wall using binders. In addition to the fissile material, there are concentric deposits of fertile material, e.g. coated thorium carbide particles. The remaining cavity is filled with a graphite mass, preferably graphite powder, and the filling opening with a graphite stopper. At the beginning of the reactor operation, the fissile material layer provides the whole power. With progressing burn-up, the energy production is taken over by the fertile layer, which provides the heat production until the end of burn-up. Due to the relatively small temperature difference between the outer wall of the outer graphite body and the maximum fuel temperature, the power of the fuel element can be increased. (DG) [de

  4. Graphite moderated 252Cf source

    International Nuclear Information System (INIS)

    Sajo B, L.; Barros, H.; Greaves, E. D.; Vega C, H. R.

    2014-08-01

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a 252 Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the 252 Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  5. Irradiation test plan of oxidation-resistant graphite in WWR-K Research Reactor

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Sakaba, Nariaki; Osaki, Hirotaka; Kato, Hideki; Fujitsuka, Kunihiro; Muto, Takenori; Gizatulin, Shamil; Shaimerdenov, Asset; Dyussambayev, Daulet; Chakrov, Petr

    2014-01-01

    Graphite materials are used for the in-core components of High Temperature Gas-cooled Reactor (HTGR) which is a graphite-moderated and helium gas-cooled reactor. In the case of air ingress accident in HTGR, SiO_2 protective layer is formed on the surface of SiC layer in TRISO CFP and oxidation of SiC does not proceed and fission products are retained inside the fuel particle. A new safety concept for the HTGR, called Naturally Safe HTGR, has been recently proposed. To enhance the safety of Naturally Safe HTGR ultimately, it is expected that oxidation-resistant graphite is used for graphite components to prevent the TRISO CFPs and fuel compacts from failure. SiC coating is one of candidate methods for oxidation-resistant graphite. JAEA and four graphite companies launched R&Ds to develop the oxidation-resistant graphite and the International Science and Technology Center (ISTC) partner project with JAEA and INP was launched to investigate the irradiation effects on the oxidation-resistant graphite. To determine grades of the oxidation-resistant graphite which will be adopted as irradiation test, a preliminary oxidation test was carried out. This paper described the results of the preliminary oxidation test, the plan of out-of-pile test, irradiation test and post-irradiation test (PIE) of the oxidation-resistant graphite. The results of the preliminary oxidation test showed that the integrity of the oxidation resistant graphite was confirmed and that all of grades used in the preliminary test can be adopted as the irradiation test. Target irradiation temperature was determined to be 1473 (K) and neutron fluence was determined to be from 0.54 × 10"2"5through 1.4 × 10"2"5 (/m"2, E>0.18MeV). Weight change, oxidation rate, activation energy, surface condition, etc. will be evaluated in out-of-pile test and weight change, irradiation effect on oxidation rate and activation energy, surface condition, etc. will be evaluated in PIE. (author)

  6. Strategy Study on Treatment and Disposal of the Radioactive Graphite Waste of HTR

    International Nuclear Information System (INIS)

    Li Junfeng; Ma Tao; Wang Jianlong

    2014-01-01

    The possible options to change HTGR spent fuel into an acceptable form for repository disposal were discussed. The progresses of physical, chemical, and electrochemical separation of graphite from the HTGR fuel elements were reviewed. The advantages and disadvantages of each method were listed out. The total waste volume of each method was compared. The preferred option depends on the waste acceptance criteria for the repository, availability of low level waste disposal for graphite, overall economics, and overall risks. The minimum processing that yields an acceptable waste form also gives the lowest costs as well as the simplest process and the least risk. The options that could be used for treating HTGR spent fuels were listed out. The strategy for treating HTGR spent fuels and the packages needed for repository were discussed. (author)

  7. Analysis of Off Gas From Disintegration Process of Graphite Matrix by Electrochemical Method

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    Using electrochemical method with salt solutions as electrolyte, some gaseous substances (off gas) would be generated during the disintegration of graphite from high-temperature gas-cooled reactor fuel elements. The off gas is determined to be composed of H 2 , O 2 , N 2 , CO 2 and NO x by gas chromatography. Only about 1.5% graphite matrix is oxidized to CO 2 . Compared to the direct burning-graphite method, less off gas,especially CO 2 , is generated in the disintegration process of graphite by electrochemical method and the treatment of off gas becomes much easier. (authors)

  8. Application of quantitative image analysis to the investigation of macroporosity of graphitic materials

    International Nuclear Information System (INIS)

    Delle, W.; Koizlik, K.; Hoven, H.; Wallura, E.

    1978-01-01

    The essence of quantitative image analysis is that the classification of graphitic materials to be inspected is possible on the basis of the grey value contrast between pores (dark) and carbon (bright). Macroporosity is defined as total of all pores with diameters larger than 0.2 μm. The pore size distributions and pore shapes of graphites based on petroleum, pitch, gilsonite and fluid coke as well as graphitic fuel matrices and pyrolytic carbons were investigated. The relationships between maximum grain size, macroporosity and total porosity as well as the anisotropies of macroporosity and electrical resistivity of graphite were established. (orig./GSC) [de

  9. High-performance supercapacitors based on hierarchically porous graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zheng; Wen, Jing; Yan, Chunzhu; Rice, Lynn; Sohn, Hiesang; Lu, Yunfeng [Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095 (United States); Shen, Meiqing [School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Cai, Mei [General Motor R and D Center, Warren, MI 48090 (United States); Dunn, Bruce [Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095 (United States)

    2011-07-15

    Hierarchically porous graphite particles are synthesized using a continuous, scalable aerosol approach. The unique porous graphite architecture provides the particles with high surface area, fast ion transportation, and good electronic conductivity, which endows the resulting supercapacitors with high energy and power densities. This work provides a new material platform for high-performance supercapacitors with high packing density, and is adaptable to battery electrodes, fuel-cell catalyst supports, and other applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  11. Feasibility of monitoring the strength of HTGR core support graphite: Part III

    International Nuclear Information System (INIS)

    Morgan, W.C.; Davis, T.J.; Thomas, M.T.

    1983-02-01

    Methods are being developed to monitor, in-situ, the strength changes of graphite core-support components in a High-Temperature Gas-Cooled Reactor (HTGR). The results reported herein pertain to the development of techniques for monitoring the core-support blocks; the PGX graphite used in these studies is the grade used for the core-support blocks of the Fort St. Vrain HTGR, and is coarser-grained than the grades used in our previous investigations. The through-transmission ultrasonic velocity technique, developed for monitoring strength of the core-support posts, is not suitable for use on the core-support blocks. Eddy-current and ultrasonic backscattering techniques have been shown to be capable of measuring the density-depth profile in oxidized PGX and, combined with a correlation of strength versus density, could yield an estimate of the strength-depth profile of in-service HTGR core support blocks. Correlations of strength versus density and other properties, and progress on the development of the eddy-current and ultrasonic backscattering techniques are reported

  12. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  13. Seismic response of high temperature gas-cooled reactor core with block-type fuel, (2)

    International Nuclear Information System (INIS)

    Ikushima, Takeshi; Honma, Toshiaki.

    1980-01-01

    For the aseismic design of a high temperature gas-cooled reactor (HTGR) with block-type fuel, it is necessary to predict the motion and force of core columns and blocks. To reveal column vibration characteristics in three-dimensional space and impact response, column vibration tests were carried out with a scale model of a one-region section (seven columns) of the HTGR core. The results are as follows: (1) the column has a soft spring characteristic based on stacked blocks connected with loose pins, (2) the column has whirling phenomena, (3) the compression spring force simulating the gas pressure has the effect of raising the column resonance frequency, and (4) the vibration behavior of the stacked block column and impact response of the surrounding columns show agreement between experiment and analysis. (author)

  14. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters

    Energy Technology Data Exchange (ETDEWEB)

    Solís, C.; Chávez, E.; Ortiz, M.E.; Andrade, E. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Ortíz, E. [Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F. (Mexico); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern (Switzerland); Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Wacker, L. [Laboratory of Ion Physics, ETH, Honggerberg, Zurich (Switzerland)

    2015-10-15

    AMS-{sup 14}C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible {sup 14}C values for masses ranging from 50 to 300 μg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM{sub 10} samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained {sup 14}C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.

  15. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  16. Radionuclide characterization of graphite stacks from plutonium production reactors of the Siberian group of chemical enterprises

    International Nuclear Information System (INIS)

    Bushuev, A.V.; Verzilov, Yu.M.; Zubarev, V.N.

    2001-01-01

    The residual radionuclide concentrations and distributions in graphite from moderator stack of plutonium production reactors at Tomsk-7 have been investigated. It was found that the dominant activity of graphite is 14 C. To gain information on surface and volume contamination of graphite blocks from the moderator stack, the special sets of samples were collected and assayed. The schemes are proposed for evaluation of individual radionuclide inventories together with results of the evaluations performed. (author)

  17. Fuel management of HTR-10

    International Nuclear Information System (INIS)

    Wu Zongxin; Jing Xingqing

    2001-01-01

    The 10 MW high temperature cooled reactor (HTR-10) built in Tsinghua University is a pebble bed type of HTGR. The continuous recharge and multiple-pass of spherical fuel elements are used for fuel management. The initiative stage of core is composed of the mix of spherical fuel elements and graphite elements. The equilibrium stage of core is composed of identical spherical fuel elements. The fuel management during the transition from the initiative stage to the equilibrium stage is a key issue for HTR-10 physical design. A fuel management strategy is proposed based on self-adjustment of core reactivity. The neutron physical code is used to simulate the process of fuel management. The results show that the graphite elements, the recharging fuel elements below the burn-up allowance, and the discharging fuel elements over the burn-up allowance could be identified by burn-up measurement. The maximum of burn-up fuel elements could be controlled below the burn-up limit

  18. Effect of reactor radiation on the thermal conductivity of TREAT fuel

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Kun, E-mail: kunmo@anl.gov; Miao, Yinbin; Kontogeorgakos, Dimitrios C.; Connaway, Heather M.; Wright, Arthur E.; Yacout, Abdellatif M.

    2017-04-15

    The Transient Reactor Test Facility (TREAT) at the Idaho National Laboratory is resuming operations after more than 20 years in latency in order to produce high-neutron-flux transients for investigating transient-induced behavior of reactor fuels and their interactions with other materials and structures. A parallel program is ongoing to develop a replacement core in which the fuel, historically containing highly-enriched uranium (HEU), is replaced by low-enriched uranium (LEU). Both the HEU and prospective LEU fuels are in the form of UO{sub 2} particles dispersed in a graphite matrix, but the LEU fuel will contain a much higher volume of UO{sub 2} particles, which may create a larger area of interphase boundaries between the particles and the graphite. This may lead to a higher volume fraction of graphite exposed to the fission fragments escaping from the UO{sub 2} particles, and thus may induce a higher volume of fission-fragment damage on the fuel graphite. In this work, we analyzed the reactor-radiation induced thermal conductivity degradation of graphite-based dispersion fuel. A semi-empirical method to model the relative thermal conductivity with reactor radiation was proposed and validated based on the available experimental data. Prediction of thermal conductivity degradation of LEU TREAT fuel during a long-term operation was performed, with a focus on the effect of UO{sub 2} particle size on fission-fragment damage. The proposed method can be further adjusted to evaluate the degradation of other properties of graphite-based dispersion fuel.

  19. Optimization of temperature coefficient and breeding ratio for a graphite-moderated molten salt reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zou, C.Y.; Cai, X.Z.; Jiang, D.Z.; Yu, C.G.; Li, X.X.; Ma, Y.W.; Han, J.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China); Chen, J.G., E-mail: chenjg@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); CAS Center for Excellence in TMSR Energy System, Chinese Academy of Sciences, Shanghai 201800 (China); Key Laboratory of Nuclear Radiation and Nuclear Energy Technology, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-01-15

    Highlights: • The temperature feedback coefficient with different moderation ratios for TMSR in thermal neutron region is optimized. • The breeding ratio and doubling time of a thermal TMSR with three different reprocessing schemes are analyzed. • The smaller hexagon size and larger salt fraction with more negative feedback coefficient can better satisfy the safety demands. • A shorter reprocessing time can achieve a better breeding ratio in a thermal TMSR. • The graphite moderator lifespan is compared with other MSRs and discussed. - Abstract: Molten salt reactor (MSR) has fascinating features: inherent safety, no fuel fabrication, online fuel reprocessing, etc. However, the graphite moderated MSR may present positive feedback coefficient which has severe implications for the transient behavior during operation. In this paper, the feedback coefficient and the breeding ratio are optimized based on the fuel-to-graphite ratio variation for a thorium based MSR (TMSR). A certain thermal core with negative feedback coefficient and relative high initial breeding ratio is chosen for the reprocessing scheme analysis. The breeding performances for the TMSR under different online fuel reprocessing efficiencies and frequencies are evaluated and compared with other MSR concepts. The results indicate that the thermal TMSR can get a breeding ratio greater than 1.0 with appropriate reprocessing scheme. The low fissile inventory in thermal TMSR leads to a short doubling time and low transuranic (TRU) inventory. The lifetime of graphite used for the TMSR is also discussed.

  20. Neutronic reactor

    International Nuclear Information System (INIS)

    Lewis, W.R.

    1978-01-01

    Disclosed is a graphite-moderated, water-cooled nuclear reactor including a plurality of rectangular graphite blocks stacked in abutting relationship in layers, alternate layers having axes which are normal to one another, alternate rows of blocks in alternate layers being provided with a channel extending through the blocks, said channeled blocks being provided with concave sides and having smaller vertical dimensions than adjacent blocks in the same layer, there being nuclear fuel in the channels

  1. Nuclear analysis of the Chornobyl fuel containing masses with heterogeneous fuel distribution

    International Nuclear Information System (INIS)

    Turski, R. B.

    1998-01-01

    Although significant data has been obtained on the condition and composition of the fuel containing masses (FCM) located in the concrete chambers under the Chernobyl Unit 4 reactor cavity, there is still uncertainty regarding the possible recriticality of this material. The high radiation levels make access extremely difficult, and most of the samples are from the FCM surface regions. There is little information on the interior regions of the FCM, and one cannot assume with confidence that the surface measurements are representative of the interior regions. Therefore, reasonable assumptions on the key parameters such as fuel concentration, the concentrations of impurities and neutron poisons (especially boron), the void fraction of the FCM due to its known porosity, and the degrees of fuel heterogeneity, are necessary to evaluate the possibility of recriticality. The void fraction is important since it introduces the possibility of water moderator being distributed throughout the FCM. Calculations indicate that the addition of 10 to 30 volume percent (v/o) water to the FCM has a significant impact on the calculated reactivity of the FCM. Therefore, water addition must be considered carefully. The other possible moderators are graphite and silicone dioxide. As discussed later in this paper, silicone dioxide moderation does not represent a criticality threat. For graphite, both heterogeneous fuel arrangements and very large volume fractions of graphite are necessary for a graphite moderated system to go critical. Based on the observations and measurements of the FCM compositions, these conditions do not appear creditable for the Chernobyl FCM. Therefore, the focus of the analysis reported in this paper will be on reasonable heterogeneous fuel arrangements and water moderation. The analysis will evaluate a range of fuel and diluent compositions

  2. Measurement of the enthalpy and specific heat of a Be2C-graphite-UC2 reactor fuel material to 19800K

    International Nuclear Information System (INIS)

    Roth, E.P.

    1980-01-01

    The enthalpy and specific heat of a Be 2 C-graphite-UC 2 composite nuclear fuel material were measured over the temperature range 300 to 1980 0 K using differential scanning calorimetry and liquid argon vaporization calorimetry. The fuel material measured was developed at Sandia National Laboratories for use in pulsed test reactors. The material is a hot-pressed composite consisting of 40 vol % Be 2 C, 49.5 vol % graphite, 3.5 vol % UC 2 and 7.0 vol % void. The specific heat was measured with the differential scanning calorimeter over the temperature range 300 to 950 0 K while the enthalpy was measured over the range 1185 to 1980 0 K with the liquid argon vaporization calorimeter. The normal spectral emittance at a wavelength of 6.5 x 10 -5 cm was measured over the experimental temperature range. The combined experimental enthalpy data were fit using a spline routine and differentiated to give the specific heat. Comparison of the measured specific heat of the composite to the specific heat calculated by summing the contributions of the individual components indicates that the specific heat of the Be 2 C component differs significantly from literature values and is approximately 0.6 cal/g-K (2.5 x 10 3 J/Kg-K) for temperatures above 1000 0 K

  3. The statistical analysis techniques to support the NGNP fuel performance experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Binh T., E-mail: Binh.Pham@inl.gov; Einerson, Jeffrey J.

    2013-10-15

    This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He–Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range.

  4. Spontaneous modification of graphite anode by anthraquinone-2-sulfonic acid for microbial fuel cells.

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-07-01

    In this study, anthraquinone-2-sulfonic acid (AQS), an electron transfer mediator, was immobilized onto graphite felt surface via spontaneous reduction of the in situ generated AQS diazonium cations. Cyclic voltammetry (CV) and energy dispersive spectrometry (EDS) characterizations of AQS modified graphite demonstrated that AQS was covalently grafted onto the graphite surface. The modified graphite, with a surface AQS concentration of 5.37 ± 1.15 × 10(-9)mol/cm(2), exhibited good electrochemical activity and high stability. The midpoint potential of the modified graphite was about -0.248 V (vs. normal hydrogen electrode, NHE), indicating that electrons could be easily transferred from NADH in bacteria to the electrode. AQS modified anode in MFCs increased the maximum power density from 967 ± 33 mW/m(2) to 1872 ± 42 mW/m(2). These results demonstrated that covalently modified AQS functioned as an electron transfer mediator to facilitate extracellular electron transfer from bacteria to electrode and significantly enhanced the power production in MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Natural uranium metallic fuel elements: fabrication and operating experience

    International Nuclear Information System (INIS)

    Hammad, F.H.; Abou-Zahra, A.A.; Sharkawy, S.W.

    1980-01-01

    The main reactor types based on natural uranium metallic fuel element, particularly the early types, are reviewed in this report. The reactor types are: graphite moderated air cooled, graphite moderated gas cooled and heavy water moderated reactors. The design features, fabrication technology of these reactor fuel elements and the operating experience gained during reactor operation are described and discussed. The interrelation between operating experience, fuel design and fabrication was also discussed with emphasis on improving fuel performance. (author)

  6. QUARTERLY PROGRESS REPORT JANUARY, FEBRUARY, MARCH, 1968 REACTOR FUELS AND MATERIALS DEVELOPMENT PROGRAMS FOR FUELS AND MATERIALS BRANCH OF USAEC DIVISION OF REACTOR DEVELOPMENT AND TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Cadwell, J. J.; de Halas, D. R.; Nightingale, R. E.; Worlton, D. C.

    1968-06-01

    Progress is reported in these areas: nuclear graphite; fuel development for gas-cooled reactors; HTGR graphite studies; nuclear ceramics; fast-reactor nitrides research; non-destructive testing; metallic fuels; basic swelling studies; ATR gas and water loop operation and maintenance; reactor fuels and materials; fast reactor dosimetry and damage analysis; and irradiation damage to reactor metals.

  7. Effect of anode polarization on biofilm formation and electron transfer in Shewanella oneidensis/graphite felt microbial fuel cells.

    Science.gov (United States)

    Pinto, David; Coradin, Thibaud; Laberty-Robert, Christel

    2018-04-01

    In microbial fuel cells, electricity generation is assumed by bacterial degradation of low-grade organics generating electrons that are transferred to an electrode. The nature and efficiency of the electron transfer from the bacteria to the electrodes are determined by several chemical, physical and biological parameters. Specifically, the application of a specific potential at the bioanode has been shown to stimulate the formation of an electro-active biofilm, but the underlying mechanisms remain poorly understood. In this study, we have investigated the effect of an applied potential on the formation and electroactivity of biofilms established by Shewanella oneidensis bacteria on graphite felt electrodes in single- and double-chamber reactor configurations in oxic conditions. Using amperometry, cyclic voltammetry, and OCP/Power/Polarization curves techniques, we showed that a potential ranging between -0.3V and +0.5V (vs. Ag/AgCl/KCl sat.) and its converse application to a couple of electrodes leads to different electrochemical behaviors, anodic currents and biofilm architectures. For example, when the bacteria were confined in the anodic compartment of a double-chamber cell, a negative applied potential (-0.3V) at the bioanode favors a mediated electron transfer correlated with the progressive formation of a biofilm that fills the felt porosity and bridges the graphite fibers. In contrast, a positive applied potential (+0.3V) at the bioanode stimulates a direct electron transfer resulting in the fast-bacterial colonization of the fibers only. These results provide significant insight for the understanding of the complex bacteria-electrode interactions in microbial fuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Tables of formulae for calculating the mechanics of stacks in gas-graphite reactors; Formulaire pour le calcul de la mecanique des empilements des reacteurs graphite-gaz

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-07-01

    This collection of formulae only gives, for nuclear graphite stacks. The mechanical effects due to the strains, thermal or not, of steel structures supporting or surrounding graphite blocks. Equations have been established by mean of experiments made at Chinon with large pile models. Thus, it is possible to calculate displacement, strain and stress in the EDF type stacks of horizontal triangular block lattice. (authors) [French] Le domaine de ce formulaire est strictement limite aux effets mecaniques, pour les empilements, des deformations, thermiques ou autres, des structures metalliques de soutien (aire - support et corset). On propose un ensemble de relations qui ont ete etablies a la suite des essais de CHINON sur des maquettes de grande taille. Ces relations permettent le calcul des mouvements, des deformations et des contraintes dans les empilements du type EDF, a reseau horizontal triangulaire regulier. (auteurs)

  9. Graphite moderated {sup 252}Cf source

    Energy Technology Data Exchange (ETDEWEB)

    Sajo B, L.; Barros, H.; Greaves, E. D. [Universidad Simon Bolivar, Nuclear Physics Laboratory, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of); Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    The thorium molten salt reactor is an attractive and affordable nuclear power option for developing countries with insufficient infrastructure and limited technological capability. In the aim of personnel training and experience gathering at the Universidad Simon Bolivar there is in progress a project of developing a subcritical thorium liquid fuel reactor. The neutron source to run this subcritical reactor is a {sup 252}Cf source and the reactor will use high-purity graphite as moderator. Using the MCNP5 code the neutron spectra of the {sup 252}Cf in the center of the graphite moderator has been estimated along the channel where the liquid thorium salt will be inserted; also the ambient dose equivalent due to the source has been determined around the moderator. (Author)

  10. Compacted graphite iron: Cast iron makes a comeback

    Science.gov (United States)

    Dawson, S.

    1994-08-01

    Although compacted graphite iron has been known for more than four decades, the absence of a reliable mass-production technique has resulted in relatively little effort to exploit its operational benefits. However, a proven on-line process control technology developed by SinterCast allows for series production of complex components in high-quality CGI. The improved mechanical properties of compacted graphite iron relative to conventional gray iron allow for substantial weight reduction in gasoline and diesel engines or substantial increases in horsepower, or an optimal combination of both. Concurrent with these primary benefits, CGI also provides significant emissions and fuel efficiency benefits allowing automakers to meet legislated performance standards. The operational and environmental benefits of compacted graphite iron together with its low cost and recyclability reinforce cast iron as a prime engineering material for the future.

  11. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    Science.gov (United States)

    García-Rosales, C.; López-Galilea, I.; Ordás, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-04-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ˜200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  12. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Rosales, C. [CEIT and Tecnun (University of Navarra), Paseo de Manuel Lardizabal, 15, E-20018 San Sebastian (Spain)], E-mail: cgrosales@ceit.es; Lopez-Galilea, I.; Ordas, N. [CEIT and Tecnun (University of Navarra), Paseo de Manuel Lardizabal, 15, E-20018 San Sebastian (Spain); Adelhelm, C.; Balden, M. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, D-85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Juelich GmbH, EURATOM Association, D-52425 Juelich (Germany); Grattarola, M.; Gualco, C. [Ansaldo Ricerche S.p.A., I-16152 Genoa (Italy)

    2009-04-30

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of {approx}200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  13. Ti-doped isotropic graphite: A promising armour material for plasma-facing components

    International Nuclear Information System (INIS)

    Garcia-Rosales, C.; Lopez-Galilea, I.; Ordas, N.; Adelhelm, C.; Balden, M.; Pintsuk, G.; Grattarola, M.; Gualco, C.

    2009-01-01

    Finely dispersed Ti-doped isotropic graphites with 4 at.% Ti have been manufactured using synthetic mesophase pitch 'AR' as raw material. These new materials show a thermal conductivity at room temperature of ∼200 W/mK and flexural strength close to 100 MPa. Measurement of the total erosion yield by deuterium bombardment at ion energies and sample temperatures for which pure carbon shows maximum values, resulted in a reduction of at least a factor of 4, mainly due to dopant enrichment at the surface caused by preferential erosion of carbon. In addition, ITER relevant thermal shock loads were applied with an energetic electron beam at the JUDITH facility. The results demonstrated a significantly improved performance of Ti-doped graphite compared to pure graphite. Finally, Ti-doped graphite was successfully brazed to a CuCrZr block using a Mo interlayer. These results let assume that Ti-doped graphite can be a promising armour material for divertor plasma-facing components.

  14. On-Line Fuel Failure Monitor for Fuel Testing and Monitoring of Gas Cooled Very High Temperature Reactors

    International Nuclear Information System (INIS)

    Hawari, Ayman I.; Bourham, Mohamed A.

    2010-01-01

    Very High Temperature Reactors (VHTR) utilize the TRISO microsphere as the fundamental fuel unit in the core. The TRISO microsphere (∼ 1-mm diameter) is composed of a UO2 kernel surrounded by a porous pyrolytic graphite buffer, an inner pyrolytic graphite layer, a silicon carbide (SiC) coating, and an outer pyrolytic graphite layer. The U-235 enrichment of the fuel is expected to range from 4%-10% (higher enrichments are also being considered). The layer/coating system that surrounds the UO2 kernel acts as the containment and main barrier against the environmental release of radioactivity. To understand better the behavior of this fuel under in-core conditions (e.g., high temperature, intense fast neutron flux, etc.), the US Department of Energy (DOE) is launching a fuel testing program that will take place at the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL). During this project North Carolina State University (NCSU) researchers will collaborate with INL staff for establishing an optimized system for fuel monitoring for the ATR tests. In addition, it is expected that the developed system and methods will be of general use for fuel failure monitoring in gas cooled VHTRs.

  15. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  16. Chapter 8: Exponential experiments on graphite moderated lattices fuelled by natural uranium tubes containing cylindrical graphite cores

    International Nuclear Information System (INIS)

    McCulloch, D.B.; Hoskins, T.A.

    1963-01-01

    Experiments have been carried out using a fuel element comprising a 2.75 in. o.d./2.40 in. i.d. natural uranium tube containing a graphite core of diameter 2.0 in. Values of material buckling and migration area asymmetry for lattices at 7 in., 8 in. and 8/2 in. pitch have been obtained, and correlated with the theory of Syrett (1961) to derive an effective resonance integral for the cored element. By comparison with the resonance integral for the same fuel tube without a core, a value for the constant 'γ' of the theory of Stace (1959) is obtained. (author)

  17. CFD investigating the air ingress accident for a HTGR simulation of graphite corrosion oxidation

    International Nuclear Information System (INIS)

    Ferng, Y.M.; Chi, C.W.

    2012-01-01

    Highlights: ► A CFD model is proposed to investigate graphite oxidation corrosion in the HTR-10. ► A postulated air ingress accident is assumed in this paper. ► Air ingress flowrate is the predicted result, instead of the preset one. ► O 2 would react with graphite on pebble surface, causing the graphite corrosion. ► No fuel exposure is predicted to be occurred under the air ingress accident. - Abstract: Through a compressible multi-component CFD model, this paper investigates the characteristics of graphite oxidation corrosion in the HTR-10 core under the postulated accident of gas duct rupture. In this accident, air in the steam generator cavity would enter into the core after pressure equilibrium is achieved between the core and the cavity, which is also called as the air ingress accident. Oxygen in the air would react with graphite on pebble surface, subsequently resulting in oxidation corrosion and challenging fuel integrity. In this paper, characteristics of graphite oxidation corrosion during the air ingress accident can be reasonably captured, including distributions of graphite corrosion amount on the different cross-sections, time histories of local corrosion amount at the monitoring points and overall corrosion amount in the core, respectively. Based on the transient simulation results, the corrosion pattern and its corrosion rate would approach to the steady-state conditions as the accident continuously progresses. The total amount of graphite corrosion during a 3-day accident time is predicted to be about 31 kg with the predicted asymptotic corrosion rate. This predicted value is less than that from the previous work of Gao and Shi.

  18. From Core to Capture: Graphite Management by Gasification and Carbon Capture & Storage (CCS)

    International Nuclear Information System (INIS)

    Goodwin, J.; Bradbury, D.; Black, S.; Tomlinson, T.; Livesey, B.; Robinson, J.; Lindberg, M.; Newton, C.; Jones, A.; Wickham, A.

    2016-01-01

    Radioactive graphite waste arises principally from the moderators of graphite/gas-cooled reactors at the end of life of the reactors. Commercial power producing reactors (for example, Magnox, AGR and RBMK) have graphite moderators, each containing several thousand tonnes of graphite, with the UK having the largest inventory of over 90,000 tonnes. Additionally, there are smaller quantities of graphite arising from other sources such as fuel element components. The current long term strategy for management of reactor graphite in the UK is for these wastes to be conditioned for disposal followed by transfer to a geological disposal facility (GDF). With this baseline position, these wastes will account for about 30% of the ILW inventory in a GDF. As the volume of the graphite waste is so large, it is not currently economic to retrieve and process the graphite in advance of the availability of a geological disposal facility. Recent work by the NDA has ascribed a much smaller “incremental” volume of 2% due to graphite, calculated on the basis that the GDF has to be a certain size anyway in order to dissipate the decay heat from high level waste

  19. Bottom reflector for power reactors

    International Nuclear Information System (INIS)

    Elter, C.; Kissel, K.F.; Schoening, J.; Schwiers, H.G.

    1982-01-01

    In pebble bed reactors erosion and damage due fuel elements movement on the surface of the bottom reflector should be minimized. This can be achieved by chamfering and/or rounding the cover edges of the graphite blocks and the edges between the drilled holes and the surface of the graphite block. (orig.) [de

  20. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  1. Method of making a graphite fuel element having carbonaceous fuel bodies

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1977-01-01

    Particulate nuclear fuel material, particulate carbon and pitch are combined with an additive which is effective to reduce the coke yield upon carbonization to mold a green fuel body. The additive may be polystyrene, a styrene-butadiene copolymer, an aromatic hydrocarbon having a molecular weight between about 75 and 300 or a saturated hydrocarbon polymer. The green fuel body is inserted in a complementary cavity within a porous nuclear fuel element body and heated in situ to decompose the pitch and additive, leaving a relatively close-fitting fuel body in the cavity

  2. Gas-Cooled Thorium Reactor with Fuel Block of the Unified Design

    Directory of Open Access Journals (Sweden)

    Igor Shamanin

    2015-01-01

    Full Text Available Scientific researches of new technological platform realization carried out in Russia are based on ideas of nuclear fuel breeding in closed fuel cycle and physical principles of fast neutron reactors. Innovative projects of low-power reactor systems correspond to the new technological platform. High-temperature gas-cooled thorium reactors with good transportability properties, small installation time, and operation without overloading for a long time are considered perspective. Such small modular reactor systems at good commercial, competitive level are capable of creating the basis of the regional power industry of the Russian Federation. The analysis of information about application of thorium as fuel in reactor systems and its perspective use is presented in the work. The results of the first stage of neutron-physical researches of a 3D model of the high-temperature gas-cooled thorium reactor based on the fuel block of the unified design are given. The calculation 3D model for the program code of MCU-5 series was developed. According to the comparison results of neutron-physical characteristics, several optimum reactor core compositions were chosen. The results of calculations of the reactivity margins, neutron flux distribution, and power density in the reactor core for the chosen core compositions are presented in the work.

  3. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  4. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  5. Experimental Study on the Force-Bearing Performance of Masonry Structures with a Marble-Graphite Slide Seismic Isolator at the Foundation

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-11-01

    Full Text Available As part of the search for a seismic isolator for low-rise buildings, this paper proposes a marble-graphite slide seismic isolation system composed of marble-graphite slides, an upper foundation beam, the lower counterpart of the upper beam, and the corresponding stop blocks, with the stop blocks consisting of restrictive screws, positioning plates, nut connectors and stop holes linking the two foundation beams. To provide the desired isolation performance, plain mortar bars can be included at the beam interface to better control the initiating loads for foundation slippage. Tests of low-reversed cyclic loading were performed on four different masonry specimens: a recycled brick wall, a clay brick wall, an integrated recycled brick wall with flay ash blocks sandwiched between, and its clay brick counterpart. The four specimens were provided with marble-graphite slide isolators placed at the foundations. The isolator thickness was 20 mm, and the graphite and the marble served as a lubricant and a bearing, respectively. This paper then analyses all of the specimens in terms of the damage that occurred, the initiating load for slippage, the hysteretic performance, the bearing capacity and the performance of the stop blocks. The results indicate that mortar bars embedded in the marble-graphite slide isolator offer effective control of the initiating load, and the isolation system delivers good hysteretic performance. The stop blocks are capable of withstanding a large-magnitude earthquake and are a good choice for constraining the slippage displacement. Damage or failure of the specimens occurs only when the low-reversed cyclic loading continues after slippage takes place. The design is shown to be an outstanding and flexible seismic scheme for use in low-rise buildings.

  6. A microstructural study of dynamic crack propagation in nuclear graphites

    International Nuclear Information System (INIS)

    Burchell, T.D.; McEnaney, B.; Tucker, M.O.; Rose, A.P.G.

    1986-01-01

    This paper reports a new microstructural study of dynamic crack propagation in three nuclear graphites: (i) PGA, the moderator material in UK Magnox reactors; (ii) IMl-24, the moderator material in UK Advanced gas cooled reactors (AGR); and (iii) a pitch coke graphite, which is used in the fabrication of AGR fuel sleeves. The fracture mechanisms in nuclear graphites are initiated by microcrack formation at low stresses. Typically, microcracks form in regions of well-aligned binder or at favourably-oriented pores, where stress is concentrated. With increasing applied loads, microcracks propagate taking advantage of easy cleavage paths or linking with pores. Eventually, coalescence of such cracks and inherent porosity produces a crack of critical length for fast fracture. (orig./MM)

  7. The development of CVR coatings for PBR fuels

    Science.gov (United States)

    Barletta, R. E.; Vanier, P. E.; Dowell, M. B.; Lennartz, J. A.

    Particle bed reactors (PBR's) are being developed for both space power and propulsion applications. These reactors operate with exhaust gas temperatures of 2500 to 3000 K and fuel temperatures hundreds of degrees higher. One fuel design for these reactors consists of uranium carbide encapsulated in either carbon or graphite. This fuel kernel must be protected from the coolant gas, usually H2, both to prevent attack of the kernel and to limit fission product release. Refractory carbide coatings have been proposed for this purpose. The typical coating process used for this is a chemical vapor deposition. Testing of other components have indicated the superiority of refractory carbide coatings applied using a chemical vapor reaction (CVR) process, however technology to apply these coatings to large numbers of fuel particles with diameters on the order of 500 pm were not readily available. A process to deposit these CVR coatings on surrogate fuel consisting of graphite particles is described. Several types of coatings have been applied to the graphite substrate: NbC in various thicknesses and a bilayer coating consisting of NbC and TaC with a intermediate layer of pyrolytic graphite. These coated particles have been characterized prior to test; results are presented.

  8. Advances in HTGR spent fuel treatment technology

    International Nuclear Information System (INIS)

    Holder, N.D.; Lessig, W.S.

    1984-08-01

    GA Technologies, Inc. has been investigating the burning of spent reactor graphite under Department of Energy sponsorship since 1969. Several deep fluidized bed burners have been used at the GA pilot plant to develop graphite burning techniques for both spent fuel recovery and volume reduction for waste disposal. Since 1982 this technology has been extended to include more efficient circulating bed burners. This paper includes updates on high-temperature gas-cooled reactor fuel cycle options and current results of spent fuel treatment testing for fluidized and advanced circulating bed burners

  9. RBMK fuel channel integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants

    International Nuclear Information System (INIS)

    1999-01-01

    The fuel channel integrity in the RBMK NPPs is an issue of high safety concern. To date, three single fuel channel ruptures have occurred. Fuel channel rupture results in release of radioactivity to the reactor cavity and may lead to a release of radioactivity to the environment if the confinement safety system does not function properly. A multiple fuel channel rupture exceeding the venting capacity of the reactor cavity overpressure protection system poses a major impact on the plant safety. Further, due to incorrect prediction at the design stage the gas gap between the fuel channel pressure tube and the graphite blocks closes after approximately 17 years of plant operation. There is no safety justification available for the continued plant operation in this condition and the reactors are being retubed to avoid operation in this out of design condition, which may have negative impact on the fuel channel integrity. The loss of the mechanical integrity of fuel channel pressure tubes is a major safety concern for RBMK reactors since it may lead to overpressurization of the reactor cavity and consequently develop into a severe accident. In this report, information on the main design features of the RBMK reactor related to the fuel channel integrity is given. Further, detailed information on the fuel channel pressure tube and the graphite blocks with respect to their design, manufacture, in-service inspection, operating experience, ageing behaviour including degradation mechanisms is discussed in detail. The behaviour of the system fuel channel-graphite core including the corrective actions developed and implemented is discussed. Both normal operating conditions and accident conditions are addressed, considering also the gas gap closure process and its impact. The report also covers the fuel channel ducts. It is concluded in the report that for RBMK-1000 reactors and the adopted retubing strategy, limited local gas gap closure occurs at the time of pressure tube

  10. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  11. Equilibrium core layout for the 1000 MW direct cycle HTR (HHT) with hexagonal monolith moulded fuel blocks

    Energy Technology Data Exchange (ETDEWEB)

    Dworak, A

    1973-03-15

    The aim of this survey is to calculate an equilibrium Thorium fuel cycle for a 1000 MW HHT-core in off-load refuelling with hexagonal monolith moulded fuel blocks. It was tried to achieve an axial power distribution similar to the advanced pebble-bed reactors (OTTO) by introducing three axial core zones with different heavy metal content and initial enrichment.

  12. Verification of two-temperature method for heat transfer process within a pebble fuel

    International Nuclear Information System (INIS)

    Yu Dali; Peng Minjun

    2014-01-01

    A typical pebble fuel that used in high temperature reactor (HTR), mainly consists of a graphite matrix with numerous dispersed tristructural-isotropic (TRISO) fuel particles and a surrounding thin non-fueled graphite shell. These high heterogeneities lead to difficulty in explicit thermal calculation of a pebble fuel. We proposed a two-temperature method (TTM) to calculate the temperature distribution within a pebble fuel. The method is not only convenient to perform but also gives more realistic results since particles and graphite matrix are considered separately while the traditional ways are considering the fuel zone as average heat generation source. The method is validated both by Computational Fluid Dynamics (CFD) method and Wiener bounds. Results show that TTM has a stable performance and high accuracy. (author)

  13. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  14. Fabrication technology of spherical fuel element for HTR-10

    International Nuclear Information System (INIS)

    He Jun; Zou Yanwen; Liang Tongxiang; Qiu Xueliang

    2002-01-01

    R and D on the fabrication technology of the spherical fuel elements for the 10 MW HTR Test Module (HTR-10) began from 1986. Cold quasi-isostatic molding with a silicon rubber die is used for manufacturing the spherical fuel elements.The fabrication technology and the graphite matrix materials were investigated and optimized. Twenty five batches of fuel elements, about 11000 of the fuel elements, have been produced. The cold properties of the graphite matrix materials satisfied the design specifications. The mean free uranium fraction of 25 batches was 5 x 10 -5

  15. Prediction calculation of HTR-10 fuel loading for the first criticality

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Gu Yuxiang; Shan Wenzhi

    2001-01-01

    The 10 MW high temperature gas cooled reactor (HTR-10) was built at Institute of Nuclear Energy Technology, Tsinghua University, and the first criticality was attained in Dec. 2000. The high temperature gas cooled reactor physics simulation code VSOP was used for the prediction of the fuel loading for HTR-10 first criticality. The number of fuel element and graphite element was predicted to provide reference for the first criticality experiment. The prediction calculations toke into account the factors including the double heterogeneity of the fuel element, buckling feedback for the spectrum calculation, the effect of the mixture of the graphite and the fuel element, and the correction of the diffusion coefficients near the upper cavity based on the transport theory. The effects of impurities in the fuel and the graphite element in the core and those in the reflector graphite on the reactivity of the reactor were considered in detail. The first criticality experiment showed that the predicted values and the experiment results were in good agreement with little relative error less than 1%, which means the prediction was successful

  16. Study on the Efficient Disintegration of HTGR Fuel Elements by Electrochemical Method

    International Nuclear Information System (INIS)

    Piao Nan; Chen Ji; Xiao Cuiping; We Mingfen; Che Jing

    2014-01-01

    The spent fuel elements in High- temperature gas-cooled reactor (HTGR) have a special structure, so the head-end process of the spent fuel reprocessing is different from the process of water reactor spent fuel. The first step of head-end process of the HTGR spent fuel reprocessing process is disintegration of the graphite matrix and separation of the coated fuel particles. Electrochemical method with nitrate solution as an electrolyte for fuel element disintegration has been conducted by the Institute of Nuclear and New Energy Technology in Tsinghua University. This method allows a total disintegration of graphite matrix, while still preserving the integrity of TRISO particles. The influences of the pretreatment methods such as heating oxidation of graphite, hydrothermal and oxidants oxidation were investigated in the present work. The experimental results showed that there were no significant effects on increasing the disintegration rate when pretreatment methods were used ahead of electrochemical disintegration. This phenomenon indicated that the fuel elements which were calcined at 1073 K and pressed under 300 MPa are too compact to be broken by these pretreatment methods. And the electrochemical disintegration is an effective but slow method in breaking the graphite matrix. (author)

  17. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    Science.gov (United States)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  18. Transport of fission products in matrix and graphite

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1983-06-01

    In the past years new experimental methods were applied to or developed for the investigation of fission product transport in graphitic materials and to characterization of the materials. Models for fission product transport and computer codes for the calculation of core release rates were improved. Many data became available from analysis of concentration profiles in HTR-fuel elements. New work on the effect on diffusion of graphite corrosion, fast neutron flux and fluence, heat treatment, chemical interactions and helium pressure was reported on recently or was in progress in several laboratories. It seemed to be the right time to discuss the status of transport of metallic fission products in general, and in particular the relationship between structural and transport properties. Following a suggestion a Colloquium was organized at the HMI Berlin. Interdisciplinary discussions were stimulated by only inviting a limited number of participants who work in different fields of graphite and fission product transport research. (orig./RW)

  19. Experience of on-site disposal of production uranium-graphite nuclear reactor.

    Science.gov (United States)

    Pavliuk, Alexander O; Kotlyarevskiy, Sergey G; Bespala, Evgeny V; Zakharova, Elena V; Ermolaev, Vyacheslav M; Volkova, Anna G

    2018-04-01

    The paper reported the experience gained in the course of decommissioning EI-2 Production Uranium-Graphite Nuclear Reactor. EI-2 was a production Uranium-Graphite Nuclear Reactor located on the Production and Demonstration Center for Uranium-Graphite Reactors JSC (PDC UGR JSC) site of Seversk City, Tomsk Region, Russia. EI-2 commenced its operation in 1958, and was shut down on December 28, 1990, having operated for the period of 33 years all together. The extra pure grade graphite for the moderator, water for the coolant, and uranium metal for the fuel were used in the reactor. During the operation nitrogen gas was passed through the graphite stack of the reactor. In the process of decommissioning the PDC UGR JSC site the cavities in the reactor space were filled with clay-based materials. A specific composite barrier material based on clays and minerals of Siberian Region was developed for the purpose. Numerical modeling demonstrated the developed clay composite would make efficient geological barriers preventing release of radionuclides into the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Fluidized combustion of beds of large, dense particles in reprocessing HTGR fuel

    International Nuclear Information System (INIS)

    Young, D.T.

    1977-03-01

    Fluidized bed combustion of graphite fuel elements and carbon external to fuel particles is required in reprocessing high-temperature gas-cooled reactor (HTGR) cores for recovery of uranium. This burning process requires combustion of beds containing both large particles and very dense particles as well as combustion of fine graphite particles which elutriate from the bed. Equipment must be designed for optimum simplicity and reliability as ultimate operation will occur in a limited access ''hot cell'' environment. Results reported in this paper indicate that successful long-term operation of fuel element burning with complete combustion of all graphite fines leading to a fuel particle product containing <1% external carbon can be performed on equipment developed in this program

  1. Models development for the fuel design of a reactor GT-MHR

    International Nuclear Information System (INIS)

    Telesforo R, D.; Francois L, J. L.

    2009-10-01

    The very high temperature reactor (VHTR) it as arisen as an option for the following reactors generation, due to their characteristics as they are inherent security, modularity and relative low cost. One of the VHTR variants, for its fuel based on prismatic blocks, is the modular reactor cooled by gas GT-MHR that uses a fuel particle of multiple layers called TRISO. These particles are small containers with fuel in their interior and they function as small pressure vessels that retain the fission products. They are absorbed inconstant ing in a cylindrical graphite matrix to form the fuel named Compact; the quantity of fuel inventory is proportional to the packaging fraction on the total volume of the Compact. The reactor consists of a matrix of 12 X 12 graphite hexagonal assemblies contained in a cylinder of 3.5 radio meters and 10.0 meters high. The nucleus has ten axial regions with 36 X 3 fuel assemblies distributed in three rings. For the neutronic modeling of the fuel and the nucleus it was employee the Monte Carlo method, using the code MCNPX (Monte Carlo N-Particle version X) that is a transport code of general purposes that uses this method with a great versatility in the representation of arbitrary three-dimensional configurations and materials configuration. The heterogeneous model of the reactor GT-MHR core was obtained, adjusting the relative parameters at core prototype GT-MHR presented by General Atomics. To prove the model it was employee the fuel formed by TRISO particles, with a nucleus of 150 μm and packaging fraction of 37.55%, with a Uranium-235 mixture, as fissile nuclide, and Thorium-232. To create a simplified model of the nucleus, or homogeneous model, without modeling any particle, it was employee the reactivity-equivalent physical transformation method that captures the effects of the heterogeneity double of the fuel region in two homogeneous equivalent cells, being obtained very good results. (Author)

  2. Hydrogen storage in graphitic nanofibres

    OpenAIRE

    McCaldin, Simon Roger

    2007-01-01

    There is huge need to develop an alternative to hydrocarbons fuel, which does not produce CO2 or contribute to global warming - 'the hydrogen economy' is such an alternative, however the storage of hydrogen is the key technical barrier that must be overcome. The potential of graphitic nanofibres (GNFs) to be used as materials to allow the solid-state storage of hydrogen has thus been investigated. This has been conducted with a view to further developing the understanding of the mechanism(s) ...

  3. Advanced High-Temperature Reactor for Production of Electricity and Hydrogen: Molten-Salt-Coolant, Graphite-Coated-Particle-Fuel

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    2002-01-01

    The objective of the Advanced High-Temperature Reactor (AHTR) is to provide the very high temperatures necessary to enable low-cost (1) efficient thermochemical production of hydrogen and (2) efficient production of electricity. The proposed AHTR uses coated-particle graphite fuel similar to the fuel used in modular high-temperature gas-cooled reactors (MHTGRs), such as the General Atomics gas turbine-modular helium reactor (GT-MHR). However, unlike the MHTGRs, the AHTR uses a molten salt coolant with a pool configuration, similar to that of the PRISM liquid metal reactor. A multi-reheat helium Brayton (gas-turbine) cycle, with efficiencies >50%, is used to produce electricity. This approach (1) minimizes requirements for new technology development and (2) results in an advanced reactor concept that operates at essentially ambient pressures and at very high temperatures. The low-pressure molten-salt coolant, with its high heat capacity and natural circulation heat transfer capability, creates the potential for (1) exceptionally robust safety (including passive decay-heat removal) and (2) allows scaling to large reactor sizes [∼1000 Mw(e)] with passive safety systems to provide the potential for improved economics

  4. A German research project about applicable graphite cutting techniques

    International Nuclear Information System (INIS)

    Holland, D.; Quade, U.; Bach, F.W.; Wilk, P.

    2001-01-01

    In Germany, too, quite large quantities of irradiated nuclear graphite, used in research and prototype reactors, are waiting for an environmental way of disposal. While incineration of nuclear graphite does not seem to be a publicly acceptable way, cutting and packaging into ductile cast iron containers could be a suitable way of disposal in Germany. Nevertheless, the cutting of graphite is also a very difficult technique by which a large amount of secondary waste or dust might occur. An applicable graphite cutting technique is needed. Therefore, a group of 13 German partners, consisting of one university, six research reactor operators, one technical inspection authority, three engineering companies, one industrial cutting specialist and one commercial dismantling company, decided in 1999 to start a research project to develop an applicable technique for cutting irradiated nuclear graphite. Aim of the project is to find the most suitable cutting techniques for the existing shapes of graphite blocks with a minimum of waste production rate. At the same time it will be learned how to sample the dust and collect it in a filter system. The following techniques will be tested and evaluated: thermal cutting, water jet cutting, mechanical cutting with a saw, plasma arc cutting, drilling. The subsequent evaluation will concentrate on dust production, possible irradiation of staff, time and practicability under different constraints. This research project is funded by the German Minister of Education and Research under the number 02 S 7849 for a period of two years. A brief overview about the work to be carried out in the project will be given. (author)

  5. Role of nuclear grade graphite in controlling oxidation in modular HTGRs

    Energy Technology Data Exchange (ETDEWEB)

    Windes, Willaim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Strydom, G. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kane, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The passively safe High Temperature Gas-cooled Reactor (HTGR) design is one of the primary concepts considered for Generation IV and Small Modular Reactor (SMR) programs. The helium cooled, nuclear grade graphite moderated core achieves extremely high operating temperatures allowing either industrial process heat or electricity generation at high efficiencies. In addition to their neutron moderating properties, nuclear grade graphite core components provide excellent high temperature stability, thermal conductivity, and chemical compatibility with the high temperature nuclear fuel form. Graphite has been continuously used in nuclear reactors since the 1940’s and has performed remarkably well over a wide range of core environments and operating conditions. Graphite moderated, gas-cooled reactor designs have been safely used for research and power production purposes in multiple countries since the inception of nuclear energy development. However, graphite is a carbonaceous material, and this has generated a persistent concern that the graphite components could actually burn during either normal or accident conditions [ , ]. The common assumption is that graphite, since it is ostensibly similar to charcoal and coal, will burn in a similar manner. While charcoal and coal may have the appearance of graphite, the internal microstructure and impurities within these carbonaceous materials are very different. Volatile species and trapped moisture provide a source of oxygen within coal and charcoal allowing them to burn. The fabrication process used to produce nuclear grade graphite eliminates these oxidation enhancing impurities, creating a dense, highly ordered form of carbon possessing high thermal diffusivity and strongly (covalently) bonded atoms.

  6. Clean energy from a carbon fuel cell

    Science.gov (United States)

    Kacprzak, Andrzej; Kobyłecki, Rafał; Bis, Zbigniew

    2011-12-01

    The direct carbon fuel cell technology provides excellent conditions for conversion of chemical energy of carbon-containing solid fuels directly into electricity. The technology is very promising since it is relatively simple compared to other fuel cell technologies and accepts all carbon-reach substances as possible fuels. Furthermore, it makes possible to use atmospheric oxygen as the oxidizer. In this paper the results of authors' recent investigations focused on analysis of the performance of a direct carbon fuel cell supplied with graphite, granulated carbonized biomass (biocarbon), and granulated hard coal are presented. The comparison of the voltage-current characteristics indicated that the results obtained for the case when the cell was operated with carbonized biomass and hard coal were much more promising than those obtained for graphite. The effects of fuel type and the surface area of the cathode on operation performance of the fuel cell were also discussed.

  7. Some aspects of nuclear graphite production in France; Etude generale sur les graphites nucleaires produits en France

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legendre, A [Pechiney, 75 - Paris (France)

    1958-07-01

    1) Manufacturing: A summary and results on the CEA-Pechiney purification process are given. Variations in the preparation of green pastes and their effects on graphitized material are described. 2) Physical and mechanical properties: Results are given on: - Statistics of dimensional variatior products having square cross-section. - Statistical variation of thermal expansion coefficients and of electrical conductivity. - Density of normals to carbon layer planes and their connexion with thermal expansion. - Stress-strain cycles and conclusions drawn therefrom. - Mechanical resistance and gas permeability of items for supporting fuel elements. 3) Behaviour under radiation: Alteration under radiation of French graphites irradiated either in G1 pile or in experimental piles, and thermal annealing of those alterations, are given. (author)Fren. [French] 1) Fabrication: On resume le procede d'epuration CEA-PECHINEY, ainsi que diverses modalites de preparation des pates et on expose les resultats obtenus. 2) Proprietes physiques et mecaniques: On indique le resultat d'etudes sur: - la statistique des dimensions de produits a section carree. - celle des variations des coefficients de dilatation thermique et de la conductibilite electrique. - la densite des normales aux plans graphitiques et leur connexion avec la dilatation thermique. - la compression mecanique du graphite. - la solidite mecanique et la permeabilite aux gaz de pieces destinees a supporter des cartouches de combustible. 3) Tenue sous rayonnement: Modification sous rayonnement des graphites fran is irradies soit dans la pile G1, soit dans des piles experimentales, et guerison thermique de ces modifications. (auteur)

  8. Experimental study of some mounting brackets to support fuel elements

    International Nuclear Information System (INIS)

    Aubert, M.; Poglia, S.; Roche, R.

    1958-09-01

    In an atomic pile with vertical channels, fuel elements are stacked on one another. According to a possible assembly, fuel element can be contained by a graphite sleeve and be supported by a mounting bracket in this sleeve. Sleeves are then stacked on one another. The authors report the investigation of different designs for these mounting brackets. They describe their mechanical role and their mechanical, aerodynamic, neutronic and test conditions. They report tests performed on brackets made in graphite and on brackets made in stainless steel and graphite, and discuss the obtained results

  9. Electroanalysis of cardioselective beta-adrenoreceptor blocking agent acebutolol by disposable graphite pencil electrodes with detailed redox mechanism

    Directory of Open Access Journals (Sweden)

    Atmanand M. Bagoji

    2016-12-01

    Full Text Available A simple economic graphite pencil electrode (GPE was used for analysis of cardioselective, hydrophilic-adrenoreceptor blocking agent, acebutolol (ACBT using the cyclic voltammetric, linear sweep voltammetric, differential pulse voltammetric (DPV, and square-wave voltammetric (SWV techniques. The dependence of the current on pH, concentration, and scan rate was investigated to optimize the experimental condition for determination of ACBT. The electrochemical behavior of the ACBT at GPE was a diffusion-controlled process. A probable electro-redox mechanism was proposed. Under the optimal conditions, the anodic peak current was linearly proportional to the concentration of ACBT in the range from 1.00 to 15.0 μM with a limit of detection 1.26 × 10−8 M for DPV and 1.28 × 10−8 M for the SWV. This method was applied for quantitative determination of the ACBT levels in urine as real samples. The obtained recovery ranges for ACBT in urine were from 95.4 to101% as found by the standard addition technique. Further interference study was also carried with some common interfering substances.

  10. Graphite materials testing in the ATR for lifetime management of Magnox reactors

    International Nuclear Information System (INIS)

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on their graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment. (author)

  11. Graphite Materials Testing in the ATR for Lifetime Management of Magnox Reactors

    International Nuclear Information System (INIS)

    Grover, S.B.; Metcalfe, M.P.

    2002-01-01

    A major feature of the Magnox gas cooled reactor design is the graphite core, which acts as the moderator but also provides the physical structure for fuel, control rods, instrumentation and coolant gas channels. The lifetime of a graphite core is dependent upon two principal aging processes: irradiation damage and radiolytic oxidation. Irradiation damage from fast neutrons creates lattice defects leading to changes in physical and mechanical properties and the accumulation of stresses. Radiolytic oxidation is caused by the reaction of oxidizing species from the carbon dioxide coolant gas with the graphite, these species being produced by gamma radiation. Radiolytic oxidation reduces the density and hence the moderating capability of the graphite, but also reduces strength affecting the integrity of core components. In order to manage continued operation over the planned lifetimes of their power stations, BNFL needed to extend their database of the effects of these two phenomena on the ir graphite cores through an irradiation experiment. This paper will discuss the background, purpose, and the processes taken and planned (i.e. post irradiation examination) to ensure meaningful data on the graphite core material is obtained from the irradiation experiment

  12. Pebble bed modular reactor fuel enrichment discrimination using delayed neutrons - HTR2008-58133

    International Nuclear Information System (INIS)

    Skoda, R.; Rataj, J.; Uhera, J.

    2008-01-01

    The Pebble Bed Modular Reactor (PBMR) is a helium-cooled, graphite-moderated high temperature nuclear power reactor which utilise fuel in form of spheres that are randomly loaded and continuously circulated through the core until they reach their prescribed end-of-life burn-up limit. When the reactor is started up for the first time, the lower-enriched start-up fuel is used, mixed with graphite spheres, to bring the core to criticality. As the core criticality is established and the start-up fuel is burned-in, the graphite spheres are progressively removed and replaced with more start-up fuel. Once it becomes necessary for maintaining power output, the higher enriched equilibrium fuel is introduced to the reactor and the start-up fuel is removed. During the initial run of the reactor it is important to discriminate between the irradiated startup fuel and the irradiated equilibrium fuel to ensure that only the equilibrium fuel is returned to the reactor. There is therefore a need for an on-line enrichment discrimination device that can discriminate between irradiated start-up fuel spheres and irradiated equilibrium fuel spheres. The device must also not be confused by the presence of any remaining graphite spheres. Due to it's on-line nature the device must accomplish the discrimination within tight time limits. Theoretical calculations and experiments show that Fuel Enrichment Discrimination based on delayed neutrons detection is possible. The paper presents calculations and experiments showing viability of the method. (authors)

  13. Temperature Analysis and Failure Probability of the Fuel Element in HTR-PM

    International Nuclear Information System (INIS)

    Yang Lin; Liu Bing; Tang Chunhe

    2014-01-01

    Spherical fuel element is applied in the 200-MW High Temperature Reactor-Pebble-bed Modular (HTR-PM). Each spherical fuel element contains approximately 12,000 coated fuel particles in the inner graphite matrix with a diameter of 50mm to form the fuel zone, while the outer shell with a thickness of 5mm is a fuel-free zone made up of the same graphite material. Under high burnup irradiation, the temperature of fuel element rises and the stress will result in the damage of fuel element. The purpose of this study is to analyze the temperature of fuel element and to discuss the stress and failure probability. (author)

  14. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    International Nuclear Information System (INIS)

    Fachinger, Johannes; Muller, Walter; Marsat, Eric; Grosse, Karl-Heinz; Seemann, Richard; Scales, Charlie; Easton, Michael Mark; Anthony Banford

    2013-01-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. The most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or

  15. Production of an impermeable composite of irradiated graphite and glass by hot isostatic pressing as a long term leach resistant waste form

    Energy Technology Data Exchange (ETDEWEB)

    Fachinger, Johannes; Muller, Walter [FNAG ZU Hanau, Hanau (Germany); Marsat, Eric [FNAG SAS Le Pont de Claix (France); Grosse, Karl-Heinz; Seemann, Richard [ALD Hanau (Germany); Scales, Charlie; Easton, Michael Mark [NNL, Workington (United Kingdom); Anthony Banford [NNL, Warrington (United Kingdom); University of Manchester, Manchester (United Kingdom)

    2013-07-01

    Around 250,000 tons of irradiated graphite (i-graphite) exists worldwide and can be considered as a current waste or future waste stream. The largest national i-graphite inventory is located in UK (∼ 100,000 tons) with significant quantities also in Russia and France [5]. Most of the i-graphite remains in the cores of shutdown nuclear reactors including the MAGNOX type in UK and the UNGG in France. Whilst there are still operational power reactors with graphite cores, such as the Russian RBMKs and the AGRs in UK, all of them will reach their end of life during the next two decades. The most common reference waste management option of i-graphite is a wet or dry retrieval of the graphite blocks from the reactor core and the grouting of these blocks in a container without further conditioning. This produces large waste package volumes because the encapsulation capacity of the grout is limited and large cavities in the graphite blocks could reduce the packing densities. Packing densities from 0.5 to 1 tons per cubic meter have been assumed for grouting solutions. Furthermore the grout is permeable. This could over time allow the penetration of aqueous phases into the waste block and a potential dissolution and release of radionuclides. As a result particularly highly soluble radionuclides may not be retained by the grout. Vitrification could present an alternative, however a similar waste package volume increase may be expected since the encapsulation capacity of glass is potentially similar to or worse than that of grout. FNAG has developed a process for the production of a graphite-glass composite material called Impermeable Graphite Matrix (IGM) [3]. This process is also applicable to irradiated graphite which allows the manufacturing of an impermeable material without volume increase. Crushed i-graphite is mixed with 20 vol.% of glass and then pressed under vacuum at an elevated temperature in an axial hot vacuum press (HVP). The obtained product has zero or

  16. Device for reprocessing nuclear fuels

    International Nuclear Information System (INIS)

    Hatano, Mamoru.

    1981-01-01

    Purpose: To readily discharge a nuclear fuel by burning the nuclear fuel as it is without a pulverizing step and removing the graphite and other coated fuel particles. Constitution: An oxygen supply pipe is connected to the lower portion of a discharge chamber having an inlet for the fuel, and an exhaust pipe is connected to the upper portion of the chamber. The fuel mounted on a metallic gripping member made of metallic material is inserted from the inlet, the gripping member is connected through a conductor to a voltage supply unit, oxygen is then supplied through the oxygen supply tube to the discharge chamber, the voltage supply unit is subsequently operated, and discharge takes place among the fuels. Thus, high heat is generated by the discharge, the graphite carbon of the fuel is burnt, silicon carbide is destroyed and decomposed, the isolated nuclear fuel particles are discharged from the exhaust port, and the combustion gas and small embers are exhausted from the exhaust tube. Accordingly, radioactive dusts are not so much generated as when using a mechanical pulverizing means, and prescribed objective can be achieved. (Yoshino, Y.)

  17. FREVAP-6, Metal Fission Products Release from HTGR Fuel Elements

    International Nuclear Information System (INIS)

    Pierce, V.H.

    2005-01-01

    1 - Description of problem or function: The FREVAP type of code for estimating the release of longer-lived metallic fission products from HTGR fuel elements has been developed to take into account the combined effects of the retention of metallic fission products by fuel particles and the rather strong absorption of these fission products by the graphite of the fuel elements. Release calculations are made on the basis that the loss of fission product nuclides such as strontium, cesium, and barium is determined by their evaporation from the graphite surfaces and their transpiration induced by the flowing helium coolant. The code is devised so that changes of fission rate (fuel element power), fuel temperature, and graphite temperature may be incorporated into the calculation. Temperature is quite important in determining release because, in general, both release from fuel particles and loss by evaporation (transpiration) vary exponentially with the reciprocal of the absolute temperature. NESC0301/02: This version differs from the previous one in the following points: The source and output files were converted from BCD to ASCII coding. 2 - Method of solution: A problem is defined as having a one-dimensional segment made up of three parts - (1) the fission product source (fuel particles) in series with, (2) a non-source and absorption part (element graphite) and (3) a surface for evaporation to the coolant (graphite-helium interface). More than one segment may be connected (possibly segments stacked axially) by way of the coolant. At any given segment, a continuity equation is solved assuming equilibrium between the source term, absorption term, evaporation at coolant interface and the partial pressure of the fission product isotope in the coolant. 3 - Restrictions on the complexity of the problem - Maxima of: 5 isotopes; 10 time intervals for time-dependent variable; 49 segments (times number of isotopes); 5 different output print time-steps

  18. Interim Report on Fluid-Fuel Thermal Breeder Reactors (Revised)

    International Nuclear Information System (INIS)

    MacPherson, H. G.; Alexander, L. G.; Carter, W. L.; Chapman, R. H.; Kinyon, B. W.; Miller, J. W.

    1960-01-01

    The merits of aqueous-homogeneous ), graphite-moderated molten salt (MSBR) , and graphite-moderated liquid-bismuth (LBBR) breeder reactors operated at nearly comparable fuel-cycle costs (~1.5 mills/kwhr) were evaluated. The net electrical plant capability was assumed to be 1000 MwE, and the fuel and fertile streams were processed continuously on-site. The specific powers based on fuel were 1.2, 1.2, and 0.5 MwE/kg respectively, and 5.9, 3.7, and 5.3 MwE/tonne based on thorium. Net breeding ratios were 1.10, 1.07, and 1.07, giving doubling times of 5-1/2, 11, and 25 full power years . The fuel-cycle costs at the design points selected were 1.4, 1.3, and 1.6 mills/kwhr . The AHBR has an advantage in breeding ratio and doubling time because D 2 O is superior to graphite as a moderator in breeder reactors. MSBR has an advantage in fuel-cycle costs and in inventory of uranium in the fertile stream as a result of using a solution blanket.

  19. HTGR fuel cycle

    International Nuclear Information System (INIS)

    1987-08-01

    In the spring of 1987, the HTGR fuel cycle project has been existing for ten years, and for this reason a status seminar has been held on May 12, 1987 in the Juelich Nuclear Research Center, that gathered the participants in this project for a discussion on the state of the art in HTGR fuel element development, graphite development, and waste management. The papers present an overview of work performed so far and an outlook on future tasks and goals, and on taking stock one can say that the project has been very successful so far: The HTGR fuel element now available meets highest requirements and forms the basis of today's HTGR safety philosophy; research work on graphite behaviour in a high-temperature reactor has led to complete knowledge of the temperature or neutron-induced effects, and with the concept of direct ultimate waste disposal, the waste management problem has found a feasible solution. (orig./GL) [de

  20. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Preparation of anode-electrolyte structures using graphite, sodium bicarbonate or citric acid as pore forming agents for application in solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Paz Fiuza, Raigenis da; Silva, Marcos Aurelio da; Guedes, Bruna C.; Pontes, Luiz A.; Boaventura, Jaime Soares [UFBA, Salvador, Bahia (Brazil). Energy and Materials Science Group

    2010-07-01

    Cermets based on Ni supported on YSZ or GDC were prepared for use as anode in direct reform SOFCs. NaHCO3 (Na-Ni-YSZ and Na-Ni-GDC) or citric acid (Ac-Ni-YSZ and Ac-Ni-GDC) were used as pore forming agents (PFAs). The SOFC anode was also prepared using graphite (G-Ni-YSZ and G-Ni-GDC) as PFA for the purposes of comparison. The testing unitary SOFC, planar type, was made by pressing the anode-electrolyte assembly, followed by sintering at 1500 C. After this, LSM (lanthanum and strontium manganite) paint was used for the cathode deposition. The powdered cermets were evaluated in ethanol steam reforming at 650 C. The ethanol conversion was 84% and 32% for cermets Na-Ni-YSZ and G-Ni-YSZ, respectively and the selectivity to H{sub 2} was 32 and 20% for the two cermets, respectively. The Na-Ni-YSZ cermet was ten times more resistant to carbon deposition than the G-Ni-YSZ cermet. SEM micrographs of the anode-electrolyte assembly showed that the use of NaHCO{sub 3} as PFA created a well formed interface between layers with homogeneously distributed pores. In contrast, graphite as PFA formed a loose interface between anode and electrolyte. The performance of the unitary SOFC was evaluated using ethanol, hydrogen or methane as fuel. The cell operated well using any of these fuels; however, they exhibited different electrochemical behavior. (orig.)

  2. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

    Science.gov (United States)

    Stefanescu, D. M.; Huff, R.; Alonso, G.; Larrañaga, P.; De la Fuente, E.; Suarez, R.

    2016-08-01

    Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

  3. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  4. Analysis of triso packing fraction and fissile material to DB-MHR using LWR reprocessed fuel

    International Nuclear Information System (INIS)

    Silva, Clarysson A.M. da; Pereira, Claubia; Costa, Antonella L.; Veloso, Maria Auxiliadora F.; Gual, Maritza R.

    2013-01-01

    Gas-cooled and graphite-moderated reactor is being considered the next generation of nuclear power plants because of its characteristic to operate with reprocessed fuel. The typical fuel element consists of a hexagonal block with coolant and fuel channels. The fuel pin is manufactured into compacted ceramic-coated particles (TRISO) which are used to achieve both a high burnup and a high degree of passive safety. This work uses the MCNPX 2.6.0 to simulate the active core of Deep Burn Modular Helium Reactor (DB-MHR) employing PWR (Pressurized Water Reactor) reprocessed fuel. However, before a complete study of DB-MHR fuel cycle and recharge, it is necessary to evaluate the neutronic parameters to some values of TRISO Packing Fractions (PF) and Fissile Material (FM). Each PF and FM combination would generate the best behaviour of neutronic parameters. Therefore, this study configures several PF and FM combinations considering the heterogeneity of TRISO layers and lattice. The results present the best combination of PF and FM values according with the more appropriated behaviour of the neutronic parameters during the burnup. In this way, the optimized combination can be used to future works of MHR fuel cycle and recharge. (author)

  5. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  6. Braze Development of Graphite Fiber for Use in Phase Change Material Heat Sinks

    Science.gov (United States)

    Quinn, Gregory; Beringer, Woody; Gleason, Brian; Stephan, Ryan

    2011-01-01

    Hamilton Sundstrand (HS), together with NASA Johnson Space Center, developed methods to metallurgically join graphite fiber to aluminum. The goal of the effort was to demonstrate improved thermal conductance, tensile strength and manufacturability compared to existing epoxy bonded techniques. These improvements have the potential to increase the performance and robustness of phase change material heat sinks that use graphite fibers as an interstitial material. Initial work focused on evaluating joining techniques from four suppliers, each consisting of a metallization step followed by brazing or soldering of one inch square blocks of Fibercore graphite fiber material to aluminum end sheets. Results matched the strength and thermal conductance of the epoxy bonded control samples, so two suppliers were down-selected for a second round of braze development. The second round of braze samples had up to a 300% increase in strength and up to a 132% increase in thermal conductance over the bonded samples. However, scalability and repeatability proved to be significant hurdles with the metallization approach. An alternative approach was pursued which used a nickel braze allow to prepare the carbon fibers for joining with aluminum. Initial results on sample blocks indicate that this approach should be repeatable and scalable with good strength and thermal conductance when compared with epoxy bonding.

  7. Assessment of fuel concepts

    International Nuclear Information System (INIS)

    Bailey, W.J.; Barner, J.O.

    1978-01-01

    The relative merits of various LWR UO 2 fuel concepts with the potential for improved power-ramping capability were qualitatively assessed. In the evaluation, it was determined that of the various concepts being considered, those that presently possess an adequately developed experience base include annular pellets, cladding coated with graphite on the inner surface, and packed-particle fuel. Therefore, these were selected for initial evaluation as part of the Fuel Performance Improvement Program. For this program, graphite-coated cladding is being used in conjunction with annular pellet fuel as one of the concepts with the anticipation of gaining the advantage of the combined improvements. The report discusses the following: the criteria used to evaluate the candidate fuel concepts; a comparison of the concepts selected for irradiation with the criteria, including a general description of their experience bases; and a general discussion of other candidate concepts, including identifying those which may be considered for out-of-reactor evaluation as part of this program, those for which the results of other programs will be monitored, and those which have been deleted from further consideration at this time

  8. Distribution of fission products in Peach Bottom HTGR fuel element E01-01

    International Nuclear Information System (INIS)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Fairchild, L.L.

    1978-10-01

    The fifth in a projected series of six postirradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements is described. The element analyzed received an equivalent of 897 full-power days of irradiation prior to the scheduled termination of Core 2 operation. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a 137 Cs inventory of 20.3 Ci in the graphite sleeve and 8.1 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides 134 Cs, /sup 110 m/Ag, 60 Co, and 154 Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the beta-emitters 3 H, 14 C, and 90 Sr were obtained at four axial locations of the fueled region of the element sleeve and two axial locations of the element spine. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. In addition to fission product distributions, the appearance of the component parts of the element was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed

  9. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  10. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Science.gov (United States)

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  11. Biaxial testing for nuclear grade graphite by ball on three balls assessment

    International Nuclear Information System (INIS)

    Mohd Reusmaazran Yusof; Yusof Abdullah

    2012-01-01

    Nuclear grade (high-purity) graphite for fuel element and moderator material in Advanced Gas Cooling Reactors (AGR) displays large scatter in strength and a non-linear stress-strain response from the damage accumulation. These responses can be characterized as quasi-brittle behaviour. Current assessments of fracture in core graphite components are based on the linear elastic approximation and thus represent a major assumption. The quasi-brittle behaviour gives challenge to assess the real nuclear graphite component. The selected test method would help to bridge the gap between microscale to macro-scale in real reactor component. The small scale tests presented here can contribute some statistical data to manifests the failure in real component. The evaluation and choice of different solution design of biaxial test will be discussed in this paper. The ball on-three ball test method was used for assessment test follows by numerous of analytical method. The results shown that biaxial strength of the EY9 grade graphite depends on the method used for evaluation. Some of the analytical methods use to calculate biaxial strength were found not to be valid and therefore should not be used to assess the mechanical properties of nuclear graphite. (author)

  12. Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    2006-09-01

    Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium-production reactors. It is used primarily as a neutron reflector or neutron moderator, although graphite is also used for other features of reactor cores, such as fuel sleeves. Many of the graphite-moderated reactors are now quite old, with some already shutdown. Therefore radioactive graphite dismantling and the management of radioactive graphite waste are becoming an increasingly important issue for a number of IAEA Member States. Worldwide, there are more than 230 000 tonnes of radioactive graphite which will eventually need to be managed as radioactive waste. Proper management of radioactive graphite waste requires complex planning and the implementation of several interrelated operations. There are two basic options for graphite waste management: (1) packaging of non-conditioned graphite waste with subsequent direct disposal of the waste packages, and (2) conditioning of graphite waste (principally either by incineration or calcination) with separate disposal of any waste products produced, such as incinerator ash. In both cases, the specific properties of graphite - such as Wigner energy, graphite dust explosibility, and radioactive gases released from waste graphite - have a potential impact on the safety of radioactive graphite waste management and need to be carefully considered. Radioactive graphite waste management is not specifically addressed in IAEA publications. Only general and limited information is available in publications dealing with decommissioning of nuclear reactors. This report provides a comprehensive discussion of radioactive graphite waste characterization, handling, conditioning and disposal throughout the operating and decommissioning life cycle. The first draft report was prepared at a meeting on 23-27 February 1998. A technical meeting (TM) was held in October 1999 in coincidence with the Seminar on

  13. Gas-cooled nuclear reactor with a filling of spherical fuel elements

    International Nuclear Information System (INIS)

    Hantke, H.J.

    1978-01-01

    In order to protect the reflector blanket of a pebble bed reactor against radiation damage a filling of graphite spheres is arranged between blanket and fuel elements, having got a smaller diameter than fuel spheres. Before reaching unduely high irradiation values caused by fast neutrons these graphite spheres are removed from the core, together with the usual discharge of spheres, and replaced by new spheres. (TK) [de

  14. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  15. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  16. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  17. Fuel performance of DOE fuels in water storage

    International Nuclear Information System (INIS)

    Hoskins, A.P.; Scott, J.G.; Shelton-Davis, C.V.; McDannel, G.E.

    1993-01-01

    Westinghouse Idaho Nuclear Company operates the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory. In April of 1992, the U.S. Department of Energy (DOE) decided to end the fuel reprocessing mission at ICPP. Fuel performance in storage received increased emphasis as the fuel now needs to be stored until final dispositioning is defined and implemented. Fuels are stored in four main areas: an original underwater storage facility, a modern underwater storage facility, and two dry fuel storage facilities. As a result of the reactor research mission of the DOE and predecessor agencies, the Energy Research and Development Administration and the Atomic Energy Commission, many types of nuclear fuel have been developed, used, and assigned to storage at the ICPP. Fuel clad with stainless steel, zirconium, aluminum, and graphite are represented. Fuel matrices include uranium oxide, hydride, carbide, metal, and alloy fuels, resulting in 55 different fuel types in storage. Also included in the fuel storage inventory is canned scrap material

  18. Study of graphite reactivity worth on well-defined cores assembled on LR-0 reactor

    International Nuclear Information System (INIS)

    Košťál, Michal; Rypar, Vojtěch; Milčák, Ján; Juříček, Vlastimil; Losa, Evžen; Forget, Benoit; Harper, Sterling

    2016-01-01

    Highlights: • A light water critical facility for graphite reactivity worth measurements. • Comparison of calculated and measured k eff . • Effect of graphite description on k eff . - Abstract: Graphite is an often-used moderating material on the basis of its good moderating power and very low absorption cross section. This small absorption cross section permits the use of natural or low-enriched uranium in graphite moderated reactors. Graphite is now being considered as the moderator for Fluoride-salt-cooled High Temperature Reactors (FHR). The critical moderator level was measured for various graphite block configurations in an experimental dry assembly of the LR-0 reactor. Comparisons with experiments were performed between Monte Carlo simulation tools for which satisfactory agreement was obtained with the exception of some systematic discrepancies. The larger discrepancies were observed when using the ENDF/B-VII.0 library. To decrease the uncertainties, based on conservative assumptions, relative comparisons were done. The results provided by the different nuclear data libraries are within 3 sigma interval of experimental uncertainties. It has been determined that differences between the results of calculations are caused by variations in the (n,n), (n,n′), (n,g) reactions and also by various angular distributions, while the (n,g) cross section variations play only a minor role for these configurations.

  19. The modular high-temperature gas-cooled reactor - a new production reactor

    International Nuclear Information System (INIS)

    Nulton, J.D.

    1990-01-01

    One of the reactor concepts being considered for application as a new production reactor (NPR) is a 350-MW(thermal) modular high-temperature gas-cooled reactor (MHTGR). The proposed MHTGR-NPR is based on the design of the commercial MHTGR and is being developed by a team that includes General Atomics and Combustion Engineering. The proposed design includes four modules combined into a production block that includes a shared containment, a spent-fuel storage facility, and other support facilities. The MHTGR has a helium-cooled, graphite-moderated, graphite-reflected annular core formed from prismatic graphite fuel blocks. The MHTGR fuel consists of highly enriched uranium oxycarbide (UCO) microsphere fuel particles that are coated with successive layers of pyrolytic carbon (PyC) and silicon carbide (SiC). Tritium-producing targets consist of enriched 6 Li aluminate microsphere target particles that are coated with successive layers of PyC and SiC similar to the fuel microspheres. Normal reactivity control is implemented by articulated control rods that can be inserted into channels in the inner and outer reflector blocks. Shutdown heat removal is accomplished by a single shutdown heat exchanger and electric motor-driven circulator located in the bottom of the reactor vessel. Current plans are to stack spent fuel elements in dry, helium-filled, water-cooled wells and store them for ∼1 yr before reprocessing. All phases of MHTGR fuel reprocessing have been demonstrated

  20. Differences in the irradiation effects of IG-110 and IG-430 nuclear graphites : effects of coke difference

    International Nuclear Information System (INIS)

    Chi, Se Hwan; Kim, Gen Chan; Kim, Eung Seon; Hong, Jin Ki; Chang, Jong Hwa

    2005-01-01

    In the high temperature gas cooled reactors (HTGRs), graphite acts as a moderator and reflector as well as a major structural component that may provide channels for the fuel and coolant gas, channels for control and shut down, and thermal and neutron shielding. During a reactor operation, many of the physical, chemical and mechanical properties of these graphite components are significantly modified as a function of the temperature, environment, and an irradiation. On the other hand, currently, all the nuclear graphites are being manufactured from two types of cokes, i.e., petroleum and coal-tar pitch coke, and it has been understood that the type of coke plays the most critical role determining the properties of a specific graphite grade. To investigate the effects of coke types on the irradiation response of a graphite, two graphites of different cokes were irradiated by 3 MeV C+ ions and the differences in the response of ion-irradiation were investigated

  1. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  2. Thulium-170 heat source

    Science.gov (United States)

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  3. Hardened over-coating fuel particle and manufacture of nuclear fuel using its fuel particle

    International Nuclear Information System (INIS)

    Yoshimuda, Hideharu.

    1990-01-01

    Coated-fuel particles comprise a coating layer formed by coating ceramics such as silicon carbide or zirconium carbide and carbons, etc. to a fuel core made of nuclear fuel materials. The fuel core generally includes oxide particles such as uranium, thorium and plutonium, having 400 to 600 μm of average grain size. The average grain size of the coated-fuel particle is usually from 800 to 900 μm. The thickness of the coating layer is usually from 150 to 250 μm. Matrix material comprising a powdery graphite and a thermosetting resin such as phenol resin, etc. is overcoated to the surface of the coated-fuel particle and hardened under heating to form a hardened overcoating layer to the coated-fuel particle. If such coated-fuel particles are used, cracks, etc. are less caused to the coating layer of the coated-fuel particles upon production, thereby enabling to prevent the damages to the coating layer. (T.M.)

  4. FCI: remedy development for the fuel performance improvement program

    International Nuclear Information System (INIS)

    Buckman, F.W.; Crouthamel, C.E.; Freshley, M.D.

    1979-01-01

    Out-of-reactor experiments and irradiations are being utilized to develop and demonstrate the efficacy of specific advanced fuel designs to improve FCI behavior. The advanced light water reactor fuel designs being evaluated combine annular pellets, graphite coating on the inner surface of the cladding, and helium pressurization. A sphere-pac fuel design is also being developed. Characterization of the graphite coatings includes studies of composition, application methods, thickness control, moisture control, thermal conductivity, compatibility with the zircaloy cladding, strain-to-failure, and friction and wear characteristics. Rods of the different fuel designs, as well as reference rods, are being irradiated in the Halden Boiling Water Reactor and the Big Rock Point Reactor to accumulate burnup prior to ramping tests

  5. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) with Silicon-Carbide-Matrix Coated-Particle Fuel

    International Nuclear Information System (INIS)

    Forsberg, C. W.; Snead, Lance Lewis; Katoh, Yutai

    2012-01-01

    The FHR is a new reactor concept that uses coated-particle fuel and a low-pressure liquid-salt coolant. Its neutronics are similar to a high-temperature gas-cooled reactor (HTGR). The power density is 5 to 10 times higher because of the superior cooling properties of liquids versus gases. The leading candidate coolant salt is a mixture of 7 LiF and BeF 2 (FLiBe) possessing a boiling point above 1300 C and the figure of merit ρC p (volumetric heat capacity) for the salt slightly superior to water. Studies are underway to define a near-term base-line concept while understanding longer-term options. Near-term options use graphite-matrix coated-particle fuel where the graphite is both a structural component and the primary neutron moderator. It is the same basic fuel used in HTGRs. The fuel can take several geometric forms with a pebble bed being the leading contender. Recent work on silicon-carbide-matrix (SiCm) coated-particle fuel may create a second longer-term fuel option. SiCm coated-particle fuels are currently being investigated for use in light-water reactors. The replacement of the graphite matrix with a SiCm creates a new family of fuels. The first motivation behind the effort is to take advantage of the superior radiation resistance of SiC compared to graphite in order to provide a stable matrix for hosting coated fuel particles. The second motivation is a much more rugged fuel under accident, repository, and other conditions.

  6. Cooling device for thermonuclear reactor and modular packing block for the wall realization of a such device

    International Nuclear Information System (INIS)

    Archer, J.; Stalport, G.; Besson, D.; Faron, R.; Coulon, M.

    1988-01-01

    The cooling device for a thermonuclear reactor wall is made by modular thermally conductive heat-resistant blocks (graphite by example), a prismatic head on one face of each block, the opposite face bearing against cooling tubes, a base to each block with an aperture and rods passing through the apertures reversibly fixing each row of blocks to a support [fr

  7. Porous Carbon Materials for Elements in Low-Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Wlodarczyk R.

    2015-04-01

    Full Text Available The porosity, distribution of pores, shape of pores and specific surface area of carbon materials were investigated. The study of sintered graphite and commercial carbon materials used in low-temperature fuel cells (Graphite Grade FU, Toray Teflon Treated was compared. The study covered measurements of density, microstructural examinations and wettability (contact angle of carbon materials. The main criterion adopted for choosing a particular material for components of fuel cells is their corrosion resistance under operating conditions of hydrogen fuel cells. In order to determine resistance to corrosion in the environment of operation of fuel cells, potentiokinetic curves were registered for synthetic solution 0.1M H2SO4+ 2 ppmF-at 80°C.

  8. The irradiation creep characteristics of graphite to high fluences

    International Nuclear Information System (INIS)

    Kennedy, C.R.; Cundy, M.; Kleist, G.

    1988-01-01

    High-temperature gas-cooled reactors (HTGR) have massive blocks of graphite with thermal and neutron-flux gradients causing high internal stresses. Thermal stresses are transient; however, stresses generated by differential growth due to neutron damage continue to increase with time. Fortunately, graphite also experiences creep under irradiation allowing relaxation of stresses to nominally safe levels. Because of complexity of irradiation creep experiments, data demonstrating this phenomenon are generally limited to fairly low fluences compared to the overall fluences expected in most reactors. Notable exceptions have been experiments at 300/degree/C and 500/degree/C run at Petten under tension and compression creep stresses to fluences greater than 4 /times/ 10 26 (E > 50 keV) neutrons/m 2 . This study complements the previous results by extending the irradiation temperature to 900/degree/C. 2 refs., 3 figs

  9. Overview of chemical characterization of FBTR fuel

    International Nuclear Information System (INIS)

    Venkatesan, V.; Nandi, C.; Patil, A.B.; Prakash, Amrit; Khan, K.B.; Arun Kumar

    2015-01-01

    Uranium Plutonium mixed carbide fuel is the driver fuel for Fast Breeder Test Reactor (FBTR) at IGCAR. The fuel is being fabricated at Radiometallurgy Division, BARC by conventional powder metallurgy route. During the fabrication of fuel, chemical quality control of process intermediates is very important to reach stringent specification of the final fuel product. Different steps are involved in the fabrication of uranium-plutonium carbide (MC) for FBTR. The main steps in the fabrication of MC fuel pellets are carbothermic reduction (CR) of mixture of uranium oxide, plutonium oxide and graphite powder to prepare MC clinkers, crushing and milling of MC clinkers and consolidation of MC powders into fuel pellets and sintering. As a part of process control, analysis of uranium (U), plutonium (Pu), carbon in oxide graphite mixture and U, Pu, carbon, oxygen, nitrogen, MC, M 2 C 3 contents in mixed carbide powder (MC clinkers) are carried out at our laboratory. Analysis of U, Pu, carbon, oxygen, nitrogen, MC and M 2 C 3 contents in mixed carbide sintered pellets are carried out as a part of quality control. This paper describes an overview of analytical instruments used during chemical quality control of mixed carbide fuel

  10. Production of nuclear graphite in France; Production de graphite nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, P; Mondet, L [Societe Pechiney, 74 - Chedde (France); Arragon, Ph; Cornuault, P; Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [French] Le graphite destine a la construction des reacteurs est obtenu par le procede usuel: confection d'une pate a partir de coke de petrole et de brai, cuisson de cette pate (au four electrique) puis graphitation du produit cuit, egalement par chauffage electrique. L'usage du transport pneumatique et le controle des conditions cuisson et de graphitation ont permit d'augmenter la production de graphite nucleaire ainsi que de mieux controler ses proprietes physiques et mecaniques et de reduire au minimum les souillures accidentelles. (M.B.)

  11. Effect of graphite addition into mill scale waste as a potential bipolar plates material of proton exchange membrane fuel cells

    Science.gov (United States)

    Khaerudini, D. S.; Prakoso, G. B.; Insiyanda, D. R.; Widodo, H.; Destyorini, F.; Indayaningsih, N.

    2018-03-01

    Bipolar plates (BPP) is a vital component of proton exchange membrane fuel cells (PEMFC), which supplies fuel and oxidant to reactive sites, remove reaction products, collects produced current and provide mechanical support for the cells in the stack. This work concerns the utilization of mill scale, a by-product of iron and steel formed during the hot rolling of steel, as a potential material for use as BPP in PEMFC. On the other hand, mill scale is considered a very rich in iron source having characteristic required such as for current collector in BPP and would significantly contribute to lower the overall cost of PEMFC based fuel cell systems. In this study, the iron reach source of mill scale powder, after sieving of 150 mesh, was mechanically alloyed with the carbon source containing 5, 10, and 15 wt.% graphite using a shaker mill for 3 h. The mixed powders were then pressed at 300 MPa and sintered at 900 °C for 1 h under inert gas atmosphere. The structural changes of powder particles during mechanical alloying and after sintering were studied by X-ray diffractometry, optical microscopy, scanning electron microscopy, and microhardness measurement. The details of the presence of iron, carbon, and iron carbide (Fe-C) as the products of reactions as well as sufficient mechanical strength of the sintered materials were presented in this report.

  12. A 3-D inelastic analysis of HTR graphite structures and a comparison with A 2-D approach

    International Nuclear Information System (INIS)

    Willaschek, J.

    1979-01-01

    In High Temperature Reactor Cores (HTR) a large number of elements are constructed of nuclear graphite. The dimensions of the graphite components are limited by stresses and strains resulting from thermal loads, irradiation induced dimensional changes and stress-dependent irradiation creep. Therefore it is necessary to examine the feasibility of design concepts with regard to the structural integrity of the material. This paper presents an analysis of a radial reflector concept for use in a 3000 MWth HTR for process heat production. This concept of a pebble bed reactor (OTTO cycle) requires reflector dimensions and shapes which have previously not been used and which may exceed acceptable stress limits. Graphite reflector elements in a HTR are subject to a high fluence of fast neutrons. The fluence varies spatially within an element. Irradiation-induced strains occur which in turn vary non-linearly with the fluence. At low fluences the graphite shrinks. With increasing fluence shrinkage is saturated and after a 'turn-around' point the graphite begins to swell. The net effect of fluence gradient and irradiation-induced strain is a 'necking' of the element which moves radially outwards with time. In this paper a three-dimensional inelastic analysis of a graphite block with the above deformation history is described. The influence of irradiation on dimensional stability and other material properties was taken into account. Numerical results were obtained with the finite-element computer code ADINA, modified at INTERATOM for the task in hand. The radial reflector block was modelled using 21-node three-dimensional continuum elements of elastic-creep material. The element stiffness matrices were calculated using the standard 2x2x2 Gauss integration; material nonlinearities with quadratic displacement functions and linearised initial strains were employed. (orig.)

  13. Study on flow-induced vibration of the fuel rod in HTTR

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1988-03-01

    This study was performed in order to investigate flow-induced vibration characteristics of a fuel rod in HTTR (High Temperature engineering Test Reactor) from both an experiment and a numerical simulation. Two kinds of fuel rods were used in this experiment: one was a graphite rod which simulated a specification of the HTTR's fuel rod and the other was an aluminum rod whose weight was a half of the graphite one. The experiment was carried out up to Re = 31000 using air at room temperature and pressure. Air flowed downstream in an annular passage which consisted of the fuel rod and the graphite channel. Numerical simulations by fluid and frequency equations were also carried out. Numerical and experimental results were then compared. The following conclusions were drived: (1) The fuel rod amplitudes increase with the flow rate and with a decrease of the fuel rod weight. (2) The fuel rod amplitudes are obtained by δ/De = 2.22 x 10 -10 Re 1.43 , 9000 ≤ Re ≤ 31000, where δ is a vibration amplitude, De is a hydraulic diameter and Reis Reynolds number. (3) The fuel rod frequencies shift from lower natural frequency to higher as the flow rate increases. (4) The flow-induced vibration behavior of the fuel rod can simulate well by simultaneous equations which used the turbulence model for fluid and the mass model for vibration of the fuel rod. (author)

  14. Assessment for the Applicability of Effective Thermal Conductivity Models on the Prismatic Fuel Assembly of Very High Temperature Reactor

    International Nuclear Information System (INIS)

    Shin, Dong-ho; Cho, Hyoung-kyu; Tak, Nam-il; Park, Goon-cherl

    2014-01-01

    A prismatic gas-cooled reactor is promising reactor type in the Nuclear Hydrogen Development and Demonstration (NHDD) project which was launched at KAERI (Korea Atomic Energy Research Institute). One of the most favorable characteristics of a prismatic gas-cooled reactor is its inherent and passive safety. As one of its inherent safety features, the heat flows through the prismatic core radially during the High Pressure Conduction Cooling (HPCC) or Low Pressure Conduction Cooling (LPCC) event and the radial heat transfer cools down the reactor core passively under such conditions. To verify the inherent safety of its design, the GAMMA+ code that is used to analyze VHTR thermo-fluid transients has been developed by KAERI. The code adopts effective thermal conductivity (ETC) model to analyze radial heat transfer in the core as a lumped parameter model. It is because the fuel block has complex geometry with large number of coolant holes and fuel compacts and the detail heat transfer calculations on that geometry needs excessive computation resources. GAMMA+ is adopting the Maxwell-based ETC model, however, there are several ETC models that could be applied to the GAMMA+ code. In this study, several ETC models will be introduced. They will be compared to CFD calculations which have similar condition with the fuel block. And then the most appropriate ETC model will be suggested for calculating the ETC of the fuel block. For the CFD calculation, unit cell tests with simple geometries were conducted. With unit cell test, the applicability of the ETC models were investigated. And proper ETC models were used to calculate the ETC of the fuel block and the results were compared to that of CFD calculation on the fuel block. In this study, the ETC models are introduced and the applicability of the ETC models to VHTR fuel block was investigated. The results of the ETC models were compared to those of CFD calculation. The CFD calculations were conducted for square graphite block

  15. Improved techniques for the ultrasonic characterization of graphite

    International Nuclear Information System (INIS)

    Cook, K.V.; Simpson, W.A.

    1981-01-01

    Near-conventional pulse-echo flaw detection techniques can be successfully applied to graphite material. If the specimen configuration (i.e., length-to-diameter ratio) is conducive to the choice of ultrasonic test parameters dictated by the material screening tests, then only the test sensitivity needs to be established. Conventional test block approaches to calibration work well; however, uniform homogeneity of the specimens to be tested must be assumed (depending on the graphite, this may be an invalid assumption). Sensitivities that we have demonstrated typically detect 0.5- to 0.75-mm (0.020 to 0.030-in.) reflectors at depths up to 102 mm (4 in.) for GRAPHNOL (drilled holes, not flat bottom). Other materials may dictate inspection for much larger discontinuities. The least sensitive tests performed to date (using the storage oscilloscope approach) required flat-bottom holes of 6.35 mm (0.250 in.) in diameter for calibration. This relatively insensitive test was necessary because of the billet length and material characteristics

  16. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  17. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell

    Science.gov (United States)

    Jiang, Hongmei; Yang, Lu; Deng, Wenfang; Tan, Yueming; Xie, Qingji

    2017-09-01

    Herein, a macroporous graphitic carbon foam (MGCF) electrode decorated with polydopamine (PDA) is used as a high-performance anode for microbial fuel cell (MFC) applications. The MGCF is facilely prepared by pyrolysis of a powder mixture comprising maltose, nickel nitrate, and ammonia chloride, without using solid porous template. The MGCF is coated with PDA by self-polymerization of dopamine in a basic solution. The MGCF can provide a large surface area for bacterial attachment, and PDA coated on the MGCF electrode can further promote bacterial adhesion resulting from the improved hydrophility, so the MGCF-PDA electrode as an anode in a MFC can show ultrahigh bacterial loading capacity. Moreover, the electrochemical oxidation of flavins at the MGCF-PDA electrode is greatly accelerated, so the extracellular electron transfer mediated by flavins is improved. As a result, the MFC equipped with a MGCF-PDA anode can show a maximum power density of 1735 mW cm-2, which is 6.7 times that of a MFC equipped with a commercial carbon felt anode, indicating a promising anode for MFC applications.

  18. In depth fusion flame spreading with a deuterium—tritium plane fuel density profile for plasma block ignition

    International Nuclear Information System (INIS)

    Malekynia, B.; Razavipour, S. S.

    2012-01-01

    Solid-state fuel ignition was given by Chu and Bobin according to the hydrodynamic theory at x = 0 qualitatively. A high threshold energy flux density, i.e., E* = 4.3 × 10 12 J/m 2 , has been reached. Recently, fast ignition by employing clean petawatt—picosecond laser pulses was performed. The anomalous phenomena were observed to be based on suppression of prepulses. The accelerated plasma block was used to ignite deuterium—tritium fuel at solid-state density. The detailed analysis of the thermonuclear wave propagation was investigated. Also the fusion conditions at x ≠ 0 layers were clarified by exactly solving hydrodynamic equations for plasma block ignition. In this paper, the applied physical mechanisms are determined for nonlinear force laser driven plasma blocks, thermonuclear reaction, heat transfer, electron—ion equilibration, stopping power of alpha particles, bremsstrahlung, expansion, density dependence, and fluid dynamics. New ignition conditions may be obtained by using temperature equations, including the density profile that is obtained by the continuity equation and expansion velocity. The density is only a function of x and independent of time. The ignition energy flux density, E* t , for the x ≠ 0 layers is 1.95 × 10 12 J/m 2 . Thus threshold ignition energy in comparison with that at x = 0 layers would be reduced to less than 50 percent. (physics of gases, plasmas, and electric discharges)

  19. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  20. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells

    Science.gov (United States)

    Soliman, Ahmed B.; Abdel-Samad, Hesham S.; Abdel Rehim, Sayed S.; Ahmed, Mohamed A.; Hassan, Hamdy H.

    2016-09-01

    Ni/Graphite electrocatalysts (Ni/G) are successfully prepared through electrodeposition of Ni from acidic (pH = 0.8) and feebly acidic (pH = 5.5) aqueous Ni (II) baths. The efficiencies of such electrodes are investigated as anodes for direct alkaline ethanol fuel cells through their ethanol electrooxidation cyclic voltammetric (CV) response in alkaline medium. A direct proportionality between the amount of the electrodeposited Ni and its CV response is found. The amounts of the deposited Ni from the two baths are recorded using the Electrochemical Quartz Crystal Microbalance (eQCM). The Ni/G electrodes prepared from the feebly acidic bath show a higher electrocatalytic response than those prepared from the acidic bath. Surface morphology of the Ni particles electrodeposited from feebly acidic bath appears in a nano-scale dimension. Various electrochemical experiments are conducted to confirm that the Ni/G ethanol electrooxidation CV response greatly depends on the pH rather than nickel ion concentration of the deposition bath. The eQCM technique is used to detect the crystalline phases of nickel as α-Ni(OH)2/γ-NiOOH and β-Ni(OH)2/β-NiOOH and their in-situ inter-transformations during the potentiodynamic polarization.

  1. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  2. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  3. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  4. Electrochemically assisted organosol method for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt support: Extended reaction zone anodes for direct ethanol fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Lycke, Derek R.; Gyenge, Elod L. [Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, BC (Canada)

    2007-03-20

    Two electrochemically assisted variants of the Boenneman organosol method were developed for Pt-Sn nanoparticle synthesis and in situ deposition on graphite felt electrodes (e.g. thickness up to 2 mm). Tetraoctylammonium triethylhydroborate N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} was employed as colloid stabilizer and reductant dissolved in tetrahydrofuran (THF). The role of the electric field at a low deposition current density of 1.25 mA cm{sup -2} was mainly electrophoretic causing the migration and adsorption of N(C{sub 8}H{sub 17}){sub 4}BH(C{sub 2}H{sub 5}){sub 3} on the graphite felt surface where it reduced the PtCl{sub 2}-SnCl{sub 2} mixture. Faradaic electrodeposition was detected mostly for Sn. Typical Pt-Sn loadings were between 0.4 and 0.9 mg cm{sup -2} depending on the type of pre-deposition exposure of the graphite felt: surfactant-adsorption and metal-adsorption variant, respectively. The catalyst surface area and Pt:Sn surface area ratio was determined by anodic striping of an underpotential deposited Cu monolayer. The two deposition variants gave different catalyst surfaces: total area 233 and 76 cm{sup 2} mg{sup -1}, with Pt:Sn surface area ratio of 3.5:1 and 7.7:1 for surfactant and metal adsorption, respectively. Regarding electrocatalysis of ethanol oxidation, voltammetry and chronopotentiometry studies corroborated by direct ethanol fuel cell experiments using 0.5 M H{sub 2}SO{sub 4} as electrolyte, showed that due to a combination of higher catalyst load and Pt:Sn surface ratio, the graphite felt anodes prepared by the metal-adsorption variant gave better performance. The catalyzed graphite felt provided an extended reaction zone for ethanol electrooxidation and it gave higher catalyst mass specific peak power outputs compared to literature data obtained using gas diffusion anodes with carbon black supported Pt-Sn nanoparticles. (author)

  5. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  6. Integral measurements of lattice properties in the natural uranium-graphite critical facility Marius; Mesures globales de reseaux a graphite dans l'empilement critique marius

    Energy Technology Data Exchange (ETDEWEB)

    Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A systematic study of natural uranium-graphite lattices has been undertaken in the critical facility MARIUS, which was built in 1959 in Marcoule. Integral measurement of lattice properties are carried out by the progressive replacement method. This report describes the experimental methods, the analysis of the experiments and the results obtained for lattices with pitches ranging from 192 to 317 mm and fuel elements with cross sections ranging from 6 to 20 cm{sup 2}. The principles of correlation of the results are also outlined. Additional experimental results are also given, pertaining to the determination of the anisotropy, of both the axial and the radial migration areas, and of the age in graphite. (author) [French] L'empilement critique MARIUS, construit en 1959 a Marcoule, a ete utilise pour l'etude systematique des reseaux a graphite-uranium naturel. Les mesures globales de reseaux sont faites par la methode de remplacement progressif. On decrit ici les methodes experimentales utilisees pour ces mesures globales, les principes du depouillement et les resultats obtenus pour des pas de 192 a 317 mm et des combustibles de 6 a 20 cm{sup 2} d'uranium naturel. On donne d'autre part le principe de correlation des mesures. Un certain nombre de resultats experimentaux complementaires sont donnes, en permettant de determiner l'anisotropie, les aires de migration axiale et radiale, l'age dans le graphite. (auteur)

  7. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  8. Improving fuel utilization in SmAHTR with spectral shift control design: Proof of concept

    International Nuclear Information System (INIS)

    Kotlyar, D.; Lindley, B.A.; Mohamed, H.

    2017-01-01

    Highlights: • Improving the fuel utilization in a graphite moderated reactor by adopting the ‘spectral shift’ concept. • The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor. • At BOL, the reactor is under-moderated, with excess neutrons being primarily breeding 239 Pu. • Graphite is continuously inserted thermalizing the neutron spectrum and increasing reactivity. • The extra 239 Pu bred during the cycle is then burned, allowing the cycle to be extended. - Abstract: This paper presents a spectral shift design based approach to improve the fuel utilization factor or alternatively to increase the cycle length in a graphite moderated reactor. The feasibility of this concept was tested in the Small Advanced High-Temperature Reactor (SmAHTR). This is a small sized Fluoride-salt-cooled high-temperature reactor (FHR) that uses tri-isotropic (TRISO)-coated particle fuels and graphite moderator materials. A major benefit of the TRISO particles is the ability to mitigate fission product release in the case of an accident. However, the fabrication costs associated with TRISO particles are expected to be significantly higher than the traditional UO 2 fuel. The preliminary studies presented in the paper are focused on extending the achievable irradiation period without increasing the value of the enrichment. In order to increase the discharge burnup, the design includes graphite structures that are initially removed from the core. This imposes a harder spectrum, which enhances the breeding of 239 Pu. Then, the graphite structures are gradually and continuously inserted into the core to sustain criticality. This procedure shifts the hard spectrum into a more thermal one and enables a more efficient utilization of 239 Pu. The preliminary results indicate that this design achieves considerably longer irradiation periods and hence lower fuel cycle costs than the reference design.

  9. Nuclear reactor core and fuel element therefor

    International Nuclear Information System (INIS)

    Fortescue, P.

    1986-01-01

    This patent describes a nuclear reactor core. This core consists of vertical columns of disengageable fuel elements stacked one atop another. These columns are arranged in side-by-side relationship to form a substantially continuous horizontal array. Each of the fuel elements include a block of refractory material having relatively good thermal conductivity and neutron moderating characteristics. The block has a pair of parallel flat top and bottom end faces and sides which are substantially prependicular to the end faces. The sides of each block is aligned vertically within a vertical column, with the sides of vertically adjacent blocks. Each of the blocks contains fuel chambers, including outer rows containing only fuel chambers along the sides of the block have nuclear fuel material disposed in them. The blocks also contain vertical coolant holes which are located inside the fuel chambers in the outer rows and the fuel chambers which are not located in the outer rows with the fuel chambers and which extend axially completely through from end face to end face and form continuous vertical intracolumn coolant passageways in the reactor core. The blocks have vertical grooves extending along the sides of the blocks form interblock channels which align in groups to form continuous vertical intercolumn coolant passsageways in the reactor core. The blocks are in the form of a regular hexagonal prism with each side of the block having vertical gooves defining one half of one of the coolant interblock channels, six corner edges on the blocks have vertical groves defining one-third of an interblock channel, the vertical sides of the blocks defining planar vertical surfaces

  10. Assessment of the crossflow loss coefficient in Very High Temperature Reactor core - 15338

    International Nuclear Information System (INIS)

    Lee, S.N.; Tak, N.I.; Kim, M.H.; Noh, J.M.

    2015-01-01

    The Very High Temperature Reactor (VHTR) is a helium gas cooled and graphite moderated reactor. It was chosen as one of the Gen-4 reactors owing to its inherent safety. Various researches for prismatic gas-cooled reactors have been conducted for efficient and safe use. The prismatic VHTR consists of vertically stacked fuel blocks. Between the vertical fuel blocks, there is cross gap because of manufacturing tolerance or graphite change during the operation. This cross gap changes the coolant flow path, called a crossflow, which may affect the fuel temperature. Various tests and numerical studies have been conducted to predict the crossflow and loss coefficient. In the present study, the CFD calculation is conducted to draw the loss coefficient, and compared with Groehn, Kaburaki and General Atomics (GA) correlations. The results of the Groehn and Kaburaki correlations tend to decrease as the gap size increases, whereas the data of GA show the opposite. The loss coefficient given by the CFD calculation tends to maintain the regular value without regard to the gap size for the standard fuel block, like the Groehn correlation. However, the loss coefficient of the control fuel block increases as the gap size widens, like the GA results

  11. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France

    International Nuclear Information System (INIS)

    Gaussens, J.; Tanguy, P.

    1964-01-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  12. Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Yuyan; Zhang, Sheng; Kou, Rong; Wang, Chongmin; Viswanathan, Vilayanur; Liu, Jun; Wang, Yong; Lin, Yuehe [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Wang, Xiqing; Dai, Sheng [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-04-02

    We report a durable electrocatalyst support, highly graphitized mesoporous carbon (GMPC), for oxygen reduction in polymer electrolyte membrane (PEM) fuel cells. GMPC is prepared through graphitizing the self-assembled soft-template mesoporous carbon (MPC) under high temperature. Heat-treatment at 2800 C greatly improves the degree of graphitization while most of the mesoporous structures and the specific surface area of MPC are retained. GMPC is then noncovalently functionalized with poly(diallyldimethylammonium chloride) (PDDA) and loaded with Pt nanoparticles by reducing Pt precursor (H{sub 2}PtCl{sub 6}) in ethylene glycol. Pt nanoparticles of {proportional_to}3.0 nm in diameter are uniformly dispersed on GMPC. Compared to Pt supported on Vulcan XC-72 carbon black (Pt/XC-72), Pt/GMPC exhibits a higher mass activity towards oxygen reduction reaction (ORR) and the mass activity retention (in percentage) is improved by a factor of {proportional_to}2 after 44 h accelerated degradation test under the potential step (1.4-0.85 V) electrochemical stressing condition which focuses on support corrosion. The enhanced activity and durability of Pt/GMPC are attributed to the graphitic structure of GMPC which is more resistant to corrosion. These findings demonstrate that GMPC is a promising oxygen reduction electrocatalyst support for PEM fuel cells. The approach reported in this work provides a facile, eco-friendly promising strategy for synthesizing stable metal nanoparticles on hydrophobic support materials. (author)

  13. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  14. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  15. Postirradiation examination and evaluation of Peach Bottom fuel test element FTE-6

    International Nuclear Information System (INIS)

    Wallroth, C.F.; Holzgraf, J.F.; Jensen, D.D.

    1977-09-01

    Fuel test element FTE-6 was irradiated in the Peach Bottom high-temperature gas-cooled reactor (HTGR) for 645 equivalent full power days. Four fuel varieties, contained in H-327 graphite bodies, were tested. A primary result of this test has been to demonstrate acceptable performance even with calculated high stresses in the graphite bodies. Heterogeneous fuel loadings in the element caused local power peaking and azimuthal power variations, deforming the graphite fuel bodies and thereby causing bowing nearly five times as large as the diametral clearance within the sleeve. The axial stresses resulting from interference between the fuel bodies and sleeve were estimated to have reached 45% of the ultimate material strength at the end of the irradiation. Residual stresses from differential contraction within the fuel body resulted in probable in-plane stress levels of 130% of the material strength at the end-of-life shutdown and of up to 150% of the strength at shutdown during the irradiation cycle. The high in-plane stresses are local peaks at the corners of a sharp notch in the element, which may account for the stresses failing to cause damage. The lack of observable damage, however, indicates that the methods and data used for stress analysis give results that are either fairly accurate or conservative

  16. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  17. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  18. Nitrogen-doped graphene by ball-milling graphite with melamine for energy conversion and storage

    International Nuclear Information System (INIS)

    Xue, Yuhua; Chen, Hao; Qu, Jia; Dai, Liming

    2015-01-01

    N-doped graphene was prepared by ball milling of graphite with melamine. It was found that ball-milling reduced the size of graphite particles from 30 to 1 μm and facilitated the exfoliation of the resultant small particles into few-layer N-doped graphene nanosheets under ultrasonication. The as-prepared N-doped graphene nanoplatelets (NGnPs) exhibited a nitrogen content as high as 11.4 at.%, making them attractive as efficient electrode materials in supercapacitors for energy storage and as highly-active metal-free catalysts for oxygen reduction in fuel cells for energy conversion. (paper)

  19. Behavior of LASL-made graphite, ZrC, and ZrC-containing coated particles in irradiation tests HT-28 and HT-29

    International Nuclear Information System (INIS)

    Reiswig, R.D.; Wagner, P.; Hollabaugh, C.M.; White, R.W.; O'Rourke, J.A.; Davidson, K.V.; Schell, D.H.

    1976-01-01

    Three types of materials, extruded graphite, hot-pressed ZrC, and particles with ZrC coatings, were irradiated in ORNL High Fluence Isotope Reactor Irradiation tests HT-28 and HT-29. The ZrC seemed unaffected. The graphite changed in dimensions, x-ray diffraction parameters, and thermal conductivity. The four types of coated particles tested all resisted the irradiation well, except one set of particles with double-graded C-ZrC-C coats. Overall, the results were considered encouraging for use of ZrC and extruded graphite fuel matrices. 16 fig

  20. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  1. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    International Nuclear Information System (INIS)

    Folsom, Charles

    2015-01-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC of the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50-30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.

  2. Long-term testing of HTR fuel elements in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Nickel, H.

    1986-12-01

    The extensive results from irradiation experiments carried out on coated particles, on graphitic matrices of different composition and on integral fuel elements have shown that the spherical fuel elements with high-enriched uranium/thorium mixed-oxide particles and optimized graphitic matrix are available for use in the planned HTR facilities. A concentrated qualification programme is on the way in order to bring the fuel elements with particles from low-enriched uranium dioxide (LEU) and TRISO coating to a comparable level of experience and knowledge, i.e. to make them licensable for the planned HTR facilities. (orig.) [de

  3. ICP-MS determination of boron: method optimization during preparation of graphite reference material for boron

    International Nuclear Information System (INIS)

    Granthali, S.K.; Shailaja, P.P.; Mainsha, V.; Venkatesh, K.; Kallola, K.S.; Sanjukta, A.K.

    2017-01-01

    Graphite finds widespread use in nuclear reactors as moderator, reflector, and fuel fabricating components because of its thermal stability and integrity. The manufacturing process consists of various mixing, moulding and baking operations followed by heat-treatment between 2500 °C and 3000 °C. The high temperature treatment is required to drive the amorphous carbon-to-graphite phase transformation. Since synthetic graphite is processed at high temperature, impurity concentrations in the precursor carbon get significantly reduced due to volatilization. However boron may might partly gets converted into boron carbide at high temperatures in the carbon environment of graphite and remains stable (B_4C: boiling point 3500 °C) in the matrix. Literature survey reveals the use of various methods for determination of boron. Previously we have developed a method for determination of boron in graphite electrodes using inductively coupled plasma mass spectrometry (ICP-MS). The method involves removal of graphite matrix by ignition of the sample at 800°C in presence of saturated barium hydroxide solution to prevent the loss of boron. Here we are reporting a modification in the method by using calcium carbonate in place of barium hydroxide and using beryllium (Be) as an internal standard, which resulted in a better precession. The method was validated by spike recovery experiments as well as using another technique viz. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). The modified method was applied in evaluation of boron concentration in the graphite reference material prepared

  4. Research on in-pile release of fission products from coated particle fuels

    International Nuclear Information System (INIS)

    Fukuda, K.; Iwamoto, K.

    1985-01-01

    Coated particle fuels fabricated in accordance with VHTR (Very High Temperature gas-cooled Reactor) fuel design have been irradiated by both capsules and an in-pile gas loop (OGL-1), and data on the fission products release under irradiation were obtained for loose coated particles, fuel compacts and fuel rods in the temperature range between 800 deg. C and 1600 deg. C. For the fission gases, temperature- and time dependences of the fractional release(R/B) were measured. Relation between release and failure fraction of the coated particles was elucidated on the VHTR reference fuels. Also measured was tritium concentration in the helium coolant of OGL-1. In-pile release behavior of the metallic fission products was studied by measuring the activities of the fission products adsorbed in the graphite sleeves of the OGL-1 fuel rods and the graphite fuel container of the sweep gas capsules in the PIE. Investigation on palladium interaction with SiC coating layer was included. (author)

  5. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  6. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Weissfloch, R.

    The fuel elements of High-Temperature Reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are present. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can serve as an interim state on the way to a complete theory. (U.S.)

  7. Determination of a geometry-dependent parameter and development of a calculation model for describing the fission products transport from spherical fuel elements of graphite moderated gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Weissfloch, R

    1973-07-15

    The fuel elements of high-temperature reactors, coated with pyrolitic carbon and covered with graphite, release fission products like all other fuel elements. Because of safety reasons, the rate of this release has to be kept low and has also to be predictable. Measured values from irradiation tests and from post-irradiation tests about the actual release of different fission products are presented. The physical and chemical mechanism, which determines the release, is extraordinarily complex and in particular not clearly defined. Because of the mentioned reasons, a simplified calculation model was developed, which only considers the release-mechanisms phenomenologically. This calculation model coincides very well in its results with values received in experiments until now. It can be held as an interim state on the way to a complete theory.

  8. Five years of successful CANDU-6 fuel manufacturing in Romania

    International Nuclear Information System (INIS)

    Galeriu, A.C.; Pascu, A.; Andrei, G.; Bailescu, A.

    1999-01-01

    This paper describes the evolution of CANDU-6 nuclear fuel manufacturing in Romania at FCN Pitesti, after the completion of the qualification in 1994. Commercial production was resumed early 1995 and fuel bundles produced were entirely delivered to Cernavoda Plant and charged in the reactor. More than 12,000 fuel bundles have been produced in the last five years and the fuel behaved very well. Defective bundles represents less than 0.06% from the total irradiated fuel, and the most defects are associated to the highest power positions. After qualification, FCN focused the effort to improve braze quality and also to maintain a low residual hydrogen content in graphite coated sheaths. The production capacity was increased especially for component manufacturing, appendages tack welding and brazing. A new graphite baking furnace with increased capacity, is under design. In the pelleting area, a rotating press will replace the older hydraulic presses used for pelleting. Plant development taken inter consideration the future demands for Cernavoda Unit 2. (author)

  9. Effects of Boron and Graphite Uncertainty in Fuel for TREAT Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, Kyle; Mausolff, Zander; Gonzalez, Esteban; DeHart, Mark; Goluoglu, Sedat

    2017-03-01

    Advanced modeling techniques and current computational capacity make full core TREAT simulations possible, with the goal of such simulations to understand the pre-test core and minimize the number of required calibrations. But, in order to simulate TREAT with a high degree of precision the reactor materials and geometry must also be modeled with a high degree of precision. This paper examines how uncertainty in the reported values of boron and graphite have an effect on simulations of TREAT.

  10. Pt nanoparticles embedded on reduced graphite oxide with excellent electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, Gengan, E-mail: saravanan3che@gmail.com [Central University of Tamil Nadu, Department of Chemistry, Thiruvarur, 610101 (India); Mohan, Subramanian, E-mail: sanjnamohan@yahoo.com [EMFT Division, CSIR-Central Electrochemical Research Institute, Tamilnadu, Karaikudi 630 006 (India)

    2016-11-15

    Graphical abstract: RGO/Nano Pt: This study explore the electrocatalytic oxidation performance of reduced graphite oxide (RGO) anchored with nano Pt. This graphene composite reveal superior electrooxidation performance that is associated with the flexible RGO matrix and the uniform distribution of Pt particles, which enhances surface area, fast electron transfer, uniform particle size distribution; consequently, the RGO matrix provides more stability to Pt particles during electrooxidation process. Display Omitted - Highlights: • Greener electrochemical method applied to prepare well-dispersed Pt-rGO. • Pt-rGO large surface area excellent charge transfer better catalytic activity. • Low-cost highly efficient carbon-based electrodes for direct formic acid fuel cell. • rGO an excellent support to anchor Pt nanoparticles on its surface. • Pt-rGO distinctly enhanced current density towards formic acid electrooxidation. - Abstract: Economically viable electrochemical approach has been developed for the synthesis of Pt nanoparticles through electrodeposition technique on the surface of Reduced Graphite Oxide (RGO). Pt nanoparticles embedded Reduced Graphite Oxide on Glassy Carbon Electrode are employed (Pt-rGO/GCE) for electrooxidation of formic acid. Scanning Electron Microscopy (SEM) image and Transmission Electron Microscopy (TEM) image shows that reduced graphite oxide act as an excellent support to anchor the Pt nanoparticles. Cyclic voltammetry results confirmed that Pt-rGO/GCE enhanced current density as many folds than that of bare platinum electrode for electrooxidation of formic acid. X-ray diffraction (XRD) patterns for Pt-graphene composites illustrate that peaks at 69.15 and 23° for Pt (220) and graphene carbon (002) respectively. {sup 13}C NMR spectrum of the electrochemically reduced graphite oxide resonance contains only one peak at 133 ppm which retains graphitic sp{sup 2} carbon and does not contain any oxygenated carbon and the carbonyl

  11. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  12. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  13. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  14. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  15. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  16. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  17. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  18. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  19. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  20. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel

    International Nuclear Information System (INIS)

    Gao, J.X.; Wei, B.Q.; Li, D.D.; He, K.

    2016-01-01

    The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite can produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.

  1. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  2. Investigation of Hydrogen and Nitrogen Content in Compacted Graphite Iron Production

    OpenAIRE

    Siafakas, Dimitrios

    2013-01-01

    The aim of this research, part of a wider program called SPOFIC, is to investigate how the casting procedure affects the concentration of hydrogen and nitrogen gases in Compacted Graphite Iron used for the production of truck cylinder blocks. Hydris equipment was used for the Hydrogen measurements and the Optical Emission Spectroscopy and combustion analysis methods were used for the nitrogen measurements. The experiment was performed in one of the cooperating foundries. It was found that Hyd...

  3. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  4. Experimental determination of thermal conductivity and gap conductance of fuel rod for HTGR

    International Nuclear Information System (INIS)

    Kikuchi, Teruo; Iwamoto, Kazumi; Ikawa, Katsuichi; Ishimoto, Kiyoshi

    1985-01-01

    The thermal conductivity of fuel compacts and the gap conductance between the fuel compact and the graphite sleeve in fuel rods for a high-temperature gas-cooled reactor (HTGR) were measured by the center heating method. These measurements were made as functions of volume percent particle loading and temperature for thermal conductivity and as functions of gap distance and gas composition for gap conductance. The thermal conductivity of fuel compacts decreases with increasing temperature and with increasing particle loading. The gap conductance increases with increasing temperature and decrease with increasing gap distance. A good gap conductance was observed with helium fill gas. It was seen that the gap conductance was dependent on the thermal conductivity of fill gas and conductance by radiation and could be neglected the conductance through solid-solid contact points of fuel compact and graphite sleeve. (author)

  5. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    KAUST Repository

    Orilall, M. Christopher; Wiesner, Ulrich

    2011-01-01

    to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various

  6. The fuel of nuclear reactors

    International Nuclear Information System (INIS)

    1995-03-01

    This booklet is a presentation of the different steps of the preparation of nuclear fuels performed by Cogema. The documents starts with a presentation of the different French reactor types: graphite moderated reactors, PWRs using MOX fuel, fast breeder reactors and research reactors. The second part describes the fuel manufacturing process: conditioning of nuclear materials and fabrication of fuel assemblies. The third part lists the different companies involved in the French nuclear fuel industry while part 4 gives a short presentation of the two Cogema's fuel fabrication plants at Cadarache and Marcoule. Part 5 and 6 concern the quality assurance, the safety and reliability aspects of fuel elements and the R and D programs. The last part presents some aspects of the environmental and personnel protection performed by Cogema. (J.S.)

  7. Hierarchically Macroporous Graphitic Nanowebs Exhibiting Ultra-fast and Stable Charge Storage Performance

    Science.gov (United States)

    Yun, Young Soo

    2018-02-01

    The macro/microstructures of carbon-based electrode materials for supercapacitor applications play a key role in their electrochemical performance. In this study, hierarchically macroporous graphitic nanowebs (HM-GNWs) were prepared from bacterial cellulose by high-temperature heating at 2400 °C. The HM-GNWs were composed of well-developed graphitic nanobuilding blocks with a high aspect ratio, which was entangled as a nanoweb structure. The morphological and microstructural characteristics of the HM-GNWs resulted in remarkable charge storage performance. In particular, the HM-GNWs exhibited very fast charge storage behaviors at scan rates ranging from 5 to 100 V s-1, in which area capacitances ranging from 8.9 to 3.8 mF cm-2 were achieved. In addition, 97% capacitance retention was observed after long-term cycling for more than 1,000,000 cycles.

  8. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  9. Effects of homogeneous geometry models in simulating the fuel balls in HTR-10

    International Nuclear Information System (INIS)

    Wang Mengjen; Liang Jenqhorng; Peir Jinnjer; Chao Dersheng

    2012-01-01

    In this study, the core geometry of HTR-10 was simulated using four different models including: (1) model 1 - an explicit double heterogeneous geometry, (2) model 2 - a mixing of UO 2 kernel and four layers in each TRISO particle into one, (3) model 3 - a mixing of 8,335 TRISO particles and the inner graphite matrix in each fuel ball into one, and (4) model 4 - a mixing of the outer graphite shell, 8,335 TRISO particles, and the inner graphite matrix in each fuel ball into one. The associated initial core computations were performed using the MCNP version 1.51 computer code. The experimental fuel loading height of 123 cm was employed for each model. The results revealed that the multiplication factors ranged from largest to smallest with model 1, model 2, model 3, and model 4. The neutron spectrum in the fuel region of each models varied from the hardest to the softest are model 1, model 2, model 3, and model 4 while the averaged neutron spectrum in fuel ball from hardest to softest are model 4, model 3, model 2, and model 1. In addition, the CPU execution times extended from longest to shortest with model 1, model 2, model 3, and model 4. (author)

  10. Development and testing of nuclear graphite for the German pebble-bed high temperature reactor

    International Nuclear Information System (INIS)

    Haag, G.; Delle, W.; Nickel, H.; Theymann, W.; Wilhelmi, G.

    1987-01-01

    Several types of high temperature reactors have been developed in the Federal Republic of Germany. They are all based on spherical fuel elements being surrounded by graphite as reflector material. As an example, HTR-500 developed by the Hochtemperatur Reaktorbau GmbH is shown. The core consists of the top reflector, the side reflector with inner and outer parts, the bottom reflector and the core support columns. The most serious problem with respect to fast neutron radiation damage had to be solved for the materials of those parts near the pebble bed. Regarding the temperature profile in the core, the top reflector is at 300 deg C, and as cooling gas flows from the top downward, the temperature of the inner side reflector rises to about 700 deg C at the bottom. Fortunately, the highest fast neutron load accumulated during the life time of a reactor corresponds to the lowest temperature. This makes graphite components easier to survive neutron exposure without being mechanically damaged, although the maximum fast neutron fluence is as high as 4 x 10 22 /cm 2 at about 400 deg C. HTR graphite components are divided into four classes according to loading. The raw materials for nuclear graphite, the development of pitch coke nuclear graphite, the irradiation behavior of ATR-2E and ASR-IRS and others are reported. (Kako, I.)

  11. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  12. On the Deposition Equilibrium of Carbon Nanotubes or Graphite in the Reforming Processes of Lower Hydrocarbon Fuels

    Directory of Open Access Journals (Sweden)

    Zdzisław Jaworski

    2017-11-01

    Full Text Available The modeling of carbon deposition from C-H-O reformates has usually employed thermodynamic data for graphite, but has rarely employed such data for impure filamentous carbon. Therefore, electrochemical data for the literature on the chemical potential of two types of purified carbon nanotubes (CNTs are included in the study. Parameter values determining the thermodynamic equilibrium of the deposition of either graphite or CNTs are computed for dry and wet reformates from natural gas and liquefied petroleum gas. The calculation results are presented as the atomic oxygen-to-carbon ratio (O/C against temperature (200 to 100 °C for various pressures (1 to 30 bar. Areas of O/C for either carbon deposition or deposition-free are computed, and indicate the critical O/C values below which the deposition can occur. Only three types of deposited carbon were found in the studied equilibrium conditions: Graphite, multi-walled CNTs, and single-walled CNTs in bundles. The temperature regions of the appearance of the thermodynamically stable forms of solid carbon are numerically determined as being independent of pressure and the analyzed reactants. The modeling indicates a significant increase in the critical O/C for the deposition of CNTs against that for graphite. The highest rise in the critical O/C, of up to 290% at 30 bar, was found for the wet reforming process.

  13. Block Copolymers for Alkaline Fuel Cell Membrane Materials

    Science.gov (United States)

    2014-07-30

    temperature fuel cells including proton exchange membrane fuel cell ( PEMFC ) and alkaline fuel cell (AFC) with operation temperature usually lower than 120...advantages over proton exchange membrane fuel cells ( PEMFCs ) resulting in the popularity of AFCs in the US space program.[8-11] The primary benefit AFC...offered over PEMFC is better electrochemical kinetics on the anode and cathode under the alkaline environment, which results in the ability to use

  14. Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yubin, E-mail: ffyybb@ouc.edu.cn; Yu, Jian; Zhang, Yelong; Meng, Yao

    2014-10-30

    Highlights: • MnO{sub 2}/MWCNTs composites anode exhibits faster reaction kinetics. • The surfaces of MnO{sub 2}/MWCNTs composites anode exhibits better wettability. • A BMFC using the modified anode have excellent power output. - Abstract: Improving anode performance is of great significance to scale up benthic microbial fuel cells (BMFCs) for its marine application to drive oceanography instruments. In this study, manganese oxide (MnO{sub 2})/multiwall carbon nanotubes (MWCNTs) composites are prepared to be as novel anodes in the BMFCs via a direct redox reaction between permanganate ions (MnO{sub 4}{sup −}) and MWCNTs. The results indicate that the MnO{sub 2}/MWCNTs anode has a better wettability, greater kinetic activity and higher power density than that of the plain graphite (PG) anode. It is noted that the MnO{sub 2} (50% weight percent)/MWCNTs anode shows the highest electrochemical performance among them and will be a promising material for improving bioelectricity production of the BMFCs. Finally, a synergistic mechanism of electron transfer shuttle of Mn ions and their redox reactions in the interface between modified anode and bacteria biofilm are proposed to explain its excellent electrochemical performance.

  15. Change in the electric potential of solid fuels on their combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    Fialkov, B.S.; Zakharov, A.G.; Plitsyn, V.T.

    1979-01-01

    Solid fuels of various degrees of graphitization (graphite, coke, hard coal, lignite) were used to study the changes in electric potential of samples during gasification and combustion in air. The potential shows three peaks during combustion, the third corresponding to ignition. Two peaks occur during the gasification process.

  16. TRISO fuel thermal simulations in the LS-VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Mario C.; Scari, Maria E.; Costa, Antonella L.; Pereira, Claubia; Veloso, Maria A.F., E-mail: marc5663@gmail.com, E-mail: melizabethscari@yahoo.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br, E-mail: dora@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    The liquid-salt-cooled very high-temperature reactor (LS-VHTR) is a reactor that presents very good characteristics in terms of energy production and safety aspects. It uses as fuel the TRISO particles immersed in a graphite matrix with a cylindrical shape called fuel compact, as moderator graphite and as coolant liquid salt Li{sub 2}BeF{sub 4} called Flibe. This work evaluates the thermal hydraulic performance of the heat removal system and the reactor core by performing different simplifications to represent the reactor core and the fuel compact under steady-state conditions, starting the modeling from a single fuel element, until complete the studies with the entire core model developed in the RELAP5-3D code. Two models were considered for representation of the fuel compact, homogeneous and non-homogeneous models, as well as different geometries of the heat structures was considered. The aim to develop several models was to compare the thermal hydraulic characteristics resulting from the construction of a more economical and less discretized model with much more refined models that can lead to more complexes analyzes to representing TRISO effect particles in the fuel compact. The different results found, mainly, for the core temperature distributions are presented and discussed. (author)

  17. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  18. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  19. Contribution to the study of the reactivity of pre-graphitic carbons

    International Nuclear Information System (INIS)

    Barrillon, Eric

    1963-01-01

    This research thesis relates to studies of the gasification of solid fuels. After having reported the study of raw materials used for the production of graphite, the author reports the study of a mixing of petroleum coke and coal tar pitch. The author focuses of the intermediary stage of graphite elaboration which is used as an anode in the production of aluminium by electrolytic process. Pitch cokes and petroleum cokes are used as raw materials to study the order of reaction of carbon with carbon dioxide. After having shown that the shape of curves giving the gasification rate related to carbon anhydride with respect to wear was a characteristic of a given type of coke, the author reports some measurements of oxi-reactivity in order to check whether the shape of these curves remains the same when changing the reaction gas

  20. Multi-block sulfonated poly(phenylene) copolymer proton exchange membranes

    Science.gov (United States)

    Fujimoto, Cy H [Albuquerque, NM; Hibbs, Michael [Albuquerque, NM; Ambrosini, Andrea [Albuquerque, NM

    2012-02-07

    Improved multi-block sulfonated poly(phenylene) copolymer compositions, methods of making the same, and their use as proton exchange membranes (PEM) in hydrogen fuel cells, direct methanol fuel cells, in electrode casting solutions and electrodes. The multi-block architecture has defined, controllable hydrophobic and hydrophilic segments. These improved membranes have better ion transport (proton conductivity) and water swelling properties.

  1. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  2. Method to produce carbon-cladded nuclear fuel particles

    International Nuclear Information System (INIS)

    Sturge, D.W.; Meaden, G.W.

    1978-01-01

    In the method charges of micro-spherules of fuel element are designed to have two carbon layers, whereby a one aims to achieve a uniform granulation (standard measurement). Two drums are used for this purpose connected behind one another. The micro-spherules coated with the first layer (phenolformaldehyde resin coated graphite particles) leave the first drum and enter the second one. Following the coating with a second layer, the micro-spherules are introduced into a grain size separator. The spherules that are too small are directly recycled into the second drum and those ones that are too large are recycled into the first drum after removing the graphite layers. The method may also be applied to metal cladded particles to manufacture cermet fuels. (RW) [de

  3. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  4. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  5. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  6. Determination of molybdenum, ruthenium, rhodium, and palladium in radioinactive simulated waste of the nuclear fuel cycle by solid sampling graphite furnace atomic absorption spectrometry (GFAAS)

    International Nuclear Information System (INIS)

    Schmiedel, G.; Mainka, E.; Ache, H.J.

    1989-01-01

    In relation with insoluble particles in the nuclear fuel cycle waste, the solid sampling GFAAS was used to determine molybdenum, ruthenium, rhodium, and palladium in such waste. Two methods for the direct determination of these elements are described. The samples must be handled in glove boxes or moreover in hot cells with a robot. The determination of the elements by the cup-in-tube technique needs a very sensitive balance (microbalance) for weighing in μg-range and the handling of this method is not practical in glove boxes and hot cells. An alternative technique of solid sampling GFAAS, which can be used without great problems in glove boxes and hot cells is the slurry technique. In this case two methods have been used. One method uses graphite powder as a diluter, the other is the direct suspension of the sample in a matrix modifier solution. In the case of slurry technique with predilution of the sample with graphite powder, recoveries between 91 and 102% and RSD between 4 and 8% were obtained, whereas in the case of slurry technique with direct suspension of the waste sample recoveries between 91 and 103% and RSD between 14 and 20% for the above mentioned elements were obtained. (orig.)

  7. Irradiation experiments of 3rd, 4th and 5th fuel assemblies by an in-pile gas loop, OGL-1

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Hayashi, Kimio; Minato, Kazuo; Kikuchi, Teruo; Adachi, Mamoru; Iwamoto, Kazumi; Ikawa, Katsuichi; Itami, Hiroharu.

    1986-07-01

    Three irradiation experiments for 3rd, 4th and 5th fuel assemblies which had been composed of VHTR reference coated particle fuels and graphite components were carried out by an in-pile gas loop, OGL-1 during 1979 and 1982. The main purposes of these experiments were to study on bowing of the fuel rod by irradiation for the 3rd fuel assembly, to study on fuel behavior under relatively low burnup irradiation for the 4th fuel assembly, and to study on fuel behavior up to full burnup of VHTR design for the 5th fuel assembly. For understanding in-pile fuel behavior, fractional releases of fission gases from each fuel assembly were estimated by measuring the fission gas concentrations in the primary loop of OGL-1. The post-irradiation examination (PIE) was carried out extensively on the fuel block, the fuel rods and the fuel compacts in Tokai Hot Laboratory. Also, made were the measurements of metallic fission product distributions in the fuel assemblies and the fuel rods. The results in these experiments were given as follows ; bowing of the fuel rod in the 3rd fuel assembly was 0.7 mm, but integrity of the rod was kept under irradiation. Fractional release of the fission gas from the 4th fuel assembly remained in the order of 10 -7 during irradiation, suggesting that the fuel performance was excellent. The fractional release from the 5th fuel assembly, on the other hand, was in the order of 10 -5 which was the same level in the VHTR design. (author)

  8. Scaling laws for HTGR core block seismic response

    International Nuclear Information System (INIS)

    Dove, R.C.

    1977-01-01

    This paper discusses the development of scaling laws, physical modeling, and seismic testing of a model designed to represent a High Temperature Gas-Cooled Reactor (HTGR) core consisting of graphite blocks. The establishment of the proper scale relationships for length, time, force, and other parameters is emphasized. Tests to select model materials and the appropriate scales are described. Preliminary results obtained from both model and prototype systems tested under simulated seismic vibration are presented

  9. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  10. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    Science.gov (United States)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  11. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  12. Optimization of axial enrichment distribution for BWR fuels using scoping libraries and block coordinate descent method

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2017-03-15

    Highlights: • An optimization method for axial enrichment distribution in a BWR fuel was developed. • Block coordinate descent method is employed to search for optimal solution. • Scoping libraries are used to reduce computational effort. • Optimization search space consists of enrichment difference parameters. • Capability of the method to find optimal solution is demonstrated. - Abstract: An optimization method has been developed to search for the optimal axial enrichment distribution in a fuel assembly for a boiling water reactor core. The optimization method features: (1) employing the block coordinate descent method to find the optimal solution in the space of enrichment difference parameters, (2) using scoping libraries to reduce the amount of CASMO-4 calculation, and (3) integrating a core critical constraint into the objective function that is used to quantify the quality of an axial enrichment design. The objective function consists of the weighted sum of core parameters such as shutdown margin and critical power ratio. The core parameters are evaluated by using SIMULATE-3, and the cross section data required for the SIMULATE-3 calculation are generated by using CASMO-4 and scoping libraries. The application of the method to a 4-segment fuel design (with the highest allowable segment enrichment relaxed to 5%) demonstrated that the method can obtain an axial enrichment design with improved thermal limit ratios and objective function value while satisfying the core design constraints and core critical requirement through the use of an objective function. The use of scoping libraries effectively reduced the number of CASMO-4 calculation, from 85 to 24, in the 4-segment optimization case. An exhausted search was performed to examine the capability of the method in finding the optimal solution for a 4-segment fuel design. The results show that the method found a solution very close to the optimum obtained by the exhausted search. The number of

  13. Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron

    Directory of Open Access Journals (Sweden)

    Azlan Suhaimi Mohd

    2017-01-01

    Full Text Available Compacted Graphite Iron, (CGI is known to have outstanding mechanical strength and weight-to-strength ratio as compared to conventional grey cast iron, (CI. The outstanding characteristics of CGI is due to its graphite particle shape, which is presented as compacted vermicular particle. The graphite is interconnected with random orientation and round edges, which results in higher mechanical strength. Whereas, graphite in the CI consists of a smooth-surfaced flakes that easily propagates cracks which results in weaker and brittle properties as compared to CGI. Owing to its improved properties, CGI is considered as the best candidate material in substituting grey cast iron that has been used in engine block applications for years. However, the smooth implementation of replacing CI with CGI has been hindered due to the poor machinability of CGI especially at high cutting speed. The tool life is decreased by 20 times when comparing CGI with CI under the same cutting condition. This study investigates the effect of using cryogenic cooling and minimum quantity lubrication (MQL during high-speed milling of CGI (grade 450. Results showed that, the combination of internal cryogenic cooling and enhanced MQL improved the tool life, cutting force and surface quality as compared to the conventional flood coolant strategy during high-speed milling of CGI.

  14. Graphite and carbonaceous materials in a molten salt nuclear reactor

    International Nuclear Information System (INIS)

    Rousseau, Ginette; Lecocq, Alfred; Hery, Michel.

    1982-09-01

    A project for a molten salt 1000 MWe reactor is studied by EDF-CEA teams. The design provides for a chromesco 3 vessel housing graphite structures in which the salt circulates. The salt (Th, U, Be and Li fluorides) is cooled by direct contact with lead. The graphites and carbonated materials, inert with respect to lead and the fuel salt, are being considered not only as moderators, but as reflectors and in the construction of the sections where the heat exchange takes place. On the basis of the problems raised in the operation of the reactor, a study programme on French experimental materials (Le Carbone Lorraine, SERS, SEP) has been defined. Hence, depending on the function or functions that the material is to ensure in the structure, the criteria of choice which follow will have to be examined: behaviour under irradiation, insertion of a fluid in the material, thermal properties required, mechanical properties required, utilization [fr

  15. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  16. Computational fluid dynamic analysis of core bypass flow phenomena in a prismatic VHTR

    International Nuclear Information System (INIS)

    Sato, Hiroyuki; Johnson, Richard; Schultz, Richard

    2010-01-01

    The core bypass flow in a prismatic very high temperature reactor (VHTR) is an important design consideration and can have considerable impact on the condition of reactor core internals including fuels. The interstitial gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The occurrence of hot spots in the core and lower plenum and hot streaking in the lower plenum (regions of very hot gas flow) are affected by bypass flow. In the present study, three-dimensional computational fluid dynamic (CFD) calculations of a typical prismatic VHTR are conducted to better understand bypass flow phenomena and establish an evaluation method for the reactor core using the commercial CFD code FLUENT. Parametric calculations changing several factors in a one-twelfth sector of a fuel column are performed. The simulations show the impact of each factor on bypass flow and the resulting flow and temperature distributions in the prismatic core. Factors include inter-column gap-width, turbulence model, axial heat generation profile and geometry change from irradiation-induced shrinkage in the graphite block region. It is shown that bypass flow provides a significant cooling effect on the prismatic block and that the maximum fuel and coolant channel outlet temperatures increase with an increase in gap-width, especially when a peak radial factor is applied to the total heat generation rate. Also, the presence of bypass flow causes a large lateral temperature gradient in the block and also dramatically increases the variation in coolant channel outlet temperatures for a given block that may have repercussions on the structural integrity of the graphite, the neutronics and the potential for hot streaking and hot spots occurring in the lower plenum.

  17. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  18. Method for the fabrication of nuclear fuel bodies

    International Nuclear Information System (INIS)

    Davis, D.E.; Leary, D.F.

    1976-01-01

    According to the method, graphite particles are treated with a liquid impregnating agent containing heat-hardenable resin components; the resulting particles are mixed with nuclear fuel particles, and a nuclear fuel body is formed by binding the mixture of particles into a cohesive mass by means of a carbon-contained binder. The claim concerns the details of the process. (UA) [de

  19. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  20. Developments in natural uranium - graphite reactors

    International Nuclear Information System (INIS)

    Bourgeois, J.

    1964-01-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  1. Application of Ceramic Bond Coating for Reusable Melting Crucible of Metallic Fuel Slugs

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hwan; Song, Hoon; Ko, Young-Mo; Park, Jeong-Yong; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Hong, Ki-Won [Chungnam National University, Daejeon (Korea, Republic of)

    2016-10-15

    Metal fuel slugs of the driver fuel assembly have been fabricated by injection casting of the fuel alloys under a vacuum state or an inert atmosphere. Traditionally, metal fuel such as a U-Zr alloy system for SFR has been melted in slurry-coated graphite crucibles and cast in slurry-coated quartz tube molds to prevent melt/material interactions. Reactive coatings and porous coatings can be a source of melt contaminations, and fuel losses, respectively. Ceramic Y{sub 2}O{sub 3}, TiC, and TaC coating materials showed no penetration in the protective layer after a melt dipping test. However, the ceramic coating materials showed separations in the coating interface between the substrate and coating layer, or between the coating layer and fuel melt after the dipping test. All plasma-spray coated methods maintained a sound coating state after a dipping test with U-10wt.%Zr melt. A single coating Y{sub 2}O{sub 3}(150) layer and double coating layer of TaC(50)-Y{sub 2}O{sub 3}(100), showed a sound state or little penetration in the protective layer after a dipping test with U-10wt.%Zr-5wt.%RE melt. Injection casting experiments of U-10wt.%Zr and U-10wt.%Zr-5wt.%RE fuel slugs have been performed to investigate the feasibility of a reusable crucible of the metal fuel slugs. U–10wt.%Zr and U–10wt.%Zr–5wt.%RE fuel slugs have been soundly fabricated without significant interactions of the graphite crucibles. Thus, the ceramic plasma-spray coatings are thought to be promising candidate coating methods for a reusable graphite crucible to fabricate metal fuel slugs.

  2. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  3. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  4. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  5. Chemical analysis of high purity graphite

    International Nuclear Information System (INIS)

    1993-03-01

    The Sub-Committee on Chemical Analysis of Graphite was organized in April 1989, under the Committee on Chemical Analysis of Nuclear Fuels and Reactor Materials, JAERI. The Sub-Committee carried out collaborative analyses among eleven participating laboratories for the certification of the Certified Reference Materials (CRMs), JAERI-G5 and G6, after developing and evaluating analytical methods during the period of September 1989 to March 1992. The certified values were given for ash, boron and silicon in the CRM based on the collaborative analysis. The values for ten elements (Al, Ca, Cr, Fe, Mg, Mo, Ni, Sr, Ti, V) were not certified, but given for information. Preparation, homogeneity testing and chemical analyses for certification of reference materials were described in this paper. (author) 52 refs

  6. Amphiphilic Fluorinated Block Copolymer Synthesized by RAFT Polymerization for Graphene Dispersions

    Directory of Open Access Journals (Sweden)

    Hyang Moo Lee

    2016-03-01

    Full Text Available Despite the superior properties of graphene, the strong π–π interactions among pristine graphenes yielding massive aggregation impede industrial applications. For non-covalent functionalization of highly-ordered pyrolytic graphite (HOPG, poly(2,2,2-trifluoroethyl methacrylate-block-poly(4-vinyl pyridine (PTFEMA-b-PVP block copolymers were prepared by reversible addition-fragmentation chain transfer (RAFT polymerization and used as polymeric dispersants in liquid phase exfoliation assisted by ultrasonication. The HOPG graphene concentrations were found to be 0.260–0.385 mg/mL in methanolic graphene dispersions stabilized with 10 wt % (relative to HOPG PTFEMA-b-PVP block copolymers after one week. Raman and atomic force microscopy (AFM analyses revealed that HOPG could not be completely exfoliated during the sonication. However, on-line turbidity results confirmed that the dispersion stability of HOPG in the presence of the block copolymer lasted for one week and that longer PTFEMA and PVP blocks led to better graphene dispersibility. Force–distance (F–d analyses of AFM showed that PVP block is a good graphene-philic block while PTFEMA is methanol-philic.

  7. Study of new structures adapted to gas-graphite and gas-heavy water reactors

    International Nuclear Information System (INIS)

    Martin, R.; Roche, R.

    1964-01-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [fr

  8. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  9. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  10. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  11. Fabrication of carbon-polymer composite bipolar plates for polymer electrolyte membrane fuel cells by compression moulding

    International Nuclear Information System (INIS)

    Raza, M.A.; Ahmed, R.; Saleem, A.; Din, R.U.

    2009-01-01

    Fuel cells are considered as one of the most important technologies to address the future energy and environmental pollution problems. These are the most promising power sources for road transportation and portable devices. A fuel cell is an electrochemical device that converts chemical energy into electrical energy. A fuel cell stack consists of bipolar plates and membrane electrode assemblies (MEA). The bipolar plate is by weight, volume and cost one of the most significant components of a fuel cell stack. Major functions of bipolar plates are to separate oxidant and fuel gas, provide flow channels, conduct electricity and provide heat transfer. Bipolar plates can be made from various materials including graphite, metals, carbon / carbon and carbon/ polymer composites. Materials for carbon-polymer composites are relatively inexpensive, less corrosive, strong and channels can be formed by means of a moulding process. Carbon-polymer composites are of two type i.e; thermosetting and thermoplastic. For thermosetting composite a bulk molding compound (BMC) was prepared by adding graphite, vinyl ester resin, methyl ethyl ketone peroxide and cobalt naphthalate. The BMC was thoroughly mixed, poured into a die mould of a bipolar plate with channels and hot pressed at a specific temperature and pressure. A bipolar plate was formed according to the die mould. Design of the mould is also discussed. Conducting polymers were also added to BMC to increase the conductivity of bipolar plates. Particle size of the graphite has also a significant effect on the conductivity of the bipolar plates. Thermoplastic composites were also prepared using polypropylene and graphite.

  12. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  13. Neutronic feasibility design of a small long-life HTR

    International Nuclear Information System (INIS)

    Ding Ming; Kloosterman, Jan Leen

    2011-01-01

    -Battery. Increasing neutron moderation by replacing fuel blocks with graphite blocks and dispersing the graphite blocks in the reactor core are two effective ways to increase the fuel burnup and lifetime of the U-Battery. Water or steam ingress may induce positive reactivity ranging from 0 to 0.16 Δk/k, which further demonstrates that the U-Battery is under-moderated.

  14. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  15. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Science.gov (United States)

    Grodzki, Marcin; Darnowski, Piotr; Niewiński, Grzegorz

    2017-12-01

    The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an `early design' variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit). A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  16. Monte Carlo Analysis of the Battery-Type High Temperature Gas Cooled Reactor

    Directory of Open Access Journals (Sweden)

    Grodzki Marcin

    2017-12-01

    Full Text Available The paper presents a neutronic analysis of the battery-type 20 MWth high-temperature gas cooled reactor. The developed reactor model is based on the publicly available data being an ‘early design’ variant of the U-battery. The investigated core is a battery type small modular reactor, graphite moderated, uranium fueled, prismatic, helium cooled high-temperature gas cooled reactor with graphite reflector. The two core alternative designs were investigated. The first has a central reflector and 30×4 prismatic fuel blocks and the second has no central reflector and 37×4 blocks. The SERPENT Monte Carlo reactor physics computer code, with ENDF and JEFF nuclear data libraries, was applied. Several nuclear design static criticality calculations were performed and compared with available reference results. The analysis covered the single assembly models and full core simulations for two geometry models: homogenous and heterogenous (explicit. A sensitivity analysis of the reflector graphite density was performed. An acceptable agreement between calculations and reference design was obtained. All calculations were performed for the fresh core state.

  17. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  18. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  19. Imidazolium-based Block Copolymers as Solid-State Separators for Alkaline Fuel Cells and Lithium Ion Batteries

    Science.gov (United States)

    Nykaza, Jacob Richard

    In this study, polymerized ionic liquid (PIL) diblock copolymers were explored as solid-state polymer separators as an anion exchange membrane (AEM) for alkaline fuel cells AFCs and as a solid polymer electrolyte (SPE) for lithium-ion batteries. Polymerized ionic liquid (PIL) block copolymers are a distinct set of block copolymers that combine the properties of both ionic liquids (e.g., high conductivity, high electrochemical stability) and block copolymers (e.g., self-assembly into various nanostructures), which provides the opportunity to design highly conductive robust solid-state electrolytes that can be tuned for various applications including AFCs and lithium-ion batteries via simple anion exchange. A series of bromide conducting PIL diblock copolymers with an undecyl alkyl side chain between the polymer backbone and the imidazolium moiety were first synthesized at various compositions comprising of a PIL component and a non-ionic component. Synthesis was achieved by post-functionalization from its non-ionic precursor PIL diblock copolymer, which was synthesized via the reverse addition fragmentation chain transfer (RAFT) technique. This PIL diblock copolymer with long alkyl side chains resulted in flexible, transparent films with high mechanical strength and high bromide ion conductivity. The conductivity of the PIL diblock copolymer was three times higher than its analogous PIL homopolymer and an order of magnitude higher than a similar PIL diblock copolymer with shorter alkyl side chain length, which was due to the microphase separated morphology, more specifically, water/ion clusters within the PIL microdomains in the hydrated state. Due to the high conductivity and mechanical robustness of this novel PIL block copolymer, its application as both the ionomer and AEM in an AFC was investigated via anion exchange to hydroxide (OH-), where a maximum power density of 29.3 mW cm-1 (60 °C with H2/O2 at 25 psig (172 kPa) backpressure) was achieved. Rotating disk

  20. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  1. Characterization of Thermal and Mechanical Properties of Polypropylene-Based Composites for Fuel Cell Bipolar Plates and Development of Educational Tools in Hydrogen and Fuel Cell Technologies

    Science.gov (United States)

    Lopez Gaxiola, Daniel

    2011-01-01

    In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack,…

  2. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  3. ICP-MS measurement of silver diffusion coefficient in graphite IG-110 between 1048K and 1284K

    Science.gov (United States)

    Carter, L. M.; Seelig, J. D.; Brockman, J. D.; Robertson, J. D.; Loyalka, S. K.

    2018-01-01

    Silver-110m has been shown to permeate intact silicon carbide and pyrolytic carbon coating layers of the TRISO fuel particles during normal High Temperature Gas-Cooled Reactor (HTGR) operational conditions. The diffusion coefficients for silver in graphite IG-110 measured using a release method designed to simulate HTGR conditions of high temperature and flowing helium in the temperature range 1048-1253 K are reported. The measurements were made using spheres milled from IG-110 graphite that were infused with silver using a pressure vessel technique. The Ag diffusion was measured using a time release technique with an ICP-MS instrument for detection. The results of this work are:

  4. Monte Carlo calculations of fast effects in uranium graphite lattices

    International Nuclear Information System (INIS)

    Beardwood, J.E.; Tyror, J.G.

    1962-12-01

    Details are given of the results of a series of computations of fast neutron effects in natural uranium metal/graphite cells. The computations were performed using the Monte Carlo code SPEC. It is shown that neutron capture in U238 is conveniently discussed in terms of a capture escape probability ζ as well as the conventional probability p. The latter is associated with the slowing down flux and has the classical exponential dependence on fuel-to-moderator volume ratio whilst the former is identified with the component of neutron flux above 1/E. (author)

  5. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  6. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  7. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  8. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  9. HTGR fuel and fuel cycle technology

    International Nuclear Information System (INIS)

    Lotts, A.L.; Homan, F.J.; Balthesen, E.; Turner, R.F.

    1977-01-01

    Significant advances have occurred in the development of HTGR fuel and fuel cycle. These accomplishments permit a wide choice of fuel designs, reactor concepts, and fuel cycles. Fuels capable of providing helium outlet temperatures of 750 0 C are available, and fuels capable of 1000 0 C outlet temperatures may be expected from extension of present technology. Fuels have been developed for two basic HTGR designs, one using a spherical (pebble bed) element and the other a prismatic element. Within each concept a number of variations of geometry, fuel composition, and structural materials are permitted. Potential fuel cycles include both low-enriched and high-enriched Th- 235 U, recycle Th- 233 U, and Th-Pu or U-Pu cycles. This flexibility offered by the HTGR is of great practical benefit considering the rapidly changing economics of power production. The inflation of ore prices has increased optimum conversion ratios, and increased the necessity of fuel recycle at an early date. Fuel element makeup is very similar for prismatic and spherical designs. Both use spherical fissile and fertile particles coated with combinations of pyrolytic carbon and silicon carbide. Both use carbonaceous binder materials, and graphite as the structural material. Weak-acid resin (WAR) UO 2 -UC 2 fissile fuels and sol-gel-derived ThO 2 fertile fuels have been selected for the Th- 233 U cycle in the prismatic design. Sol-gel-derived UO 2 UC 2 is the reference fissile fuel for the low-enriched pebble bed design. Both the United States and Federal Republic of Germany are developing technology for fuel cycle operations including fabrication, reprocessing, refabrication, and waste handling. Feasibility of basic processes has been established and designs developed for full-scale equipment. Fuel and fuel cycle technology provide the basis for a broad range of applications of the HTGR. Extension of the fuels to higher operating temperatures and development and commercial demonstration of fuel

  10. Domestic nuclear fuels supply: possibility of an independent technology

    International Nuclear Information System (INIS)

    Cirimello, R.O.

    1982-01-01

    After considering the different energy sources, their consumption and their respective periods of exploitation, technological considerations in the nuclear fuel field are made. The main subject is the Domestic Supply Project of Embalse Fuel (CANDU type). The different aspects which had to be developed during the realization of this project still under progress, and which are fundamental for the command of the technology, are described: 1) Qualification of the produced fuel elements: fuel elements' characteristics; the reactors' operating parameters, and the prototype fuel elements' characteristics; 2) Development of materials and/or suppliers: the obtainment of UO 2 and its physical properties are considered, as well as those of Zircaloy-4, the development of suppliers and the respective developments for the obtainment of materials such as beryllium, helium and colloidal graphite; 3) Processes development; the following processes are studied and defined: UO 2 pellets fabrication with UO 2 granulated powder; beryllium coating under vaccum; and induction brazing of bearing pads and spacers, end cap and end plate resistance welding and stamping of Zircaloy components, graphite-coating of cladding's internal face; 4) Development of special production equipments; automatic equipment for end cap-to-cladding resistance welding among others. The need for a specific program of quality assurance for nuclear fuels supply is emphasized and the basic criteria are established. The IAEA's quality asssurance requirements are also analyzed. (M.E.L.) [es

  11. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  12. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  13. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  14. Study of new structures adapted to gas-graphite and gas-heavy water reactors; Etude de structures nouvelles adaptees aux reacteurs graphite-gaz et eau lourde-gaz

    Energy Technology Data Exchange (ETDEWEB)

    Martin, R; Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The experience acquired as a result of the operation of the Marcoule reactors and of the construction and start-up of the E.D.F. reactors on the one hand, and the conclusions of research and tests carried out out-of-pile on the other hand, lead to a considerable change in the general design of reactors of the gas-graphite type. The main modifications envisaged are analysed in the paper. The adoption of an annular fuel element and of a down-current cooling will make it possible to increase considerably the specific power and the power output of each channel; as a result there will be a considerable reduction in the number of the channels and a corresponding increase in the size of the unit cell. The graphite stack will have to be adapted to there new conditions. For security reasons, the use of prestressed concrete for the construction of the reactor vessel is becoming more widespread; they could lead to the exchangers and the fuel-handling apparatus becoming integrated inside the vessel (the so-called 'attic' device). A full-size mode) of this attic has been built at Saclay with the participation of EURATOM; the operational results obtained are presented as well as a new original design for the control rods. As for as the gas-heavy-water system is concerned, the research is carried out on two points of design; the first, which retains the use of horizontal pressure tubes, takes into account the experience acquired during the construction of the EL 4 reactor of which it will constitute an extrapolation; the second, arising from the research carried out on the gas-graphite system, will use a pre-stressed concrete vessel for holding the pressure, the moderator being almost at the same pressure as the cooling fluid and the fuel being placed in vertical channels. The relative merits of these two variants are analysed in the present paper. (authors) [French] L'experience acquise par l'exploitation des reacteurs de MARCOULE, la construction et le demarrage des reacteurs d

  15. Spent-fuel-stabilizer screening studies

    International Nuclear Information System (INIS)

    Wynhoff, N.; Girault, S.E.; Fish, R.L.

    1980-11-01

    A broad range of potential stabilizer materials was identified and screened for packaging spent fuel assemblies for underground storage. The screening took into consideration the thermal gradient, stress, differential thermal expansion, nuclear criticality, radiation shielding, cost, and availability. Recommended stabilizer materials for further testing include silica, quartz, mullite, zircon, bentonite, graphite, gases, lead, Zn alloys, Cu alloys, etc

  16. Improving the AGR fuel testing power density profile versus irradiation-time in the advanced test reactor

    International Nuclear Information System (INIS)

    Chang, Gray S.; Lillo, Misti A.; Maki, John T.; Petti, David A.

    2009-01-01

    The Very High Temperature gas-cooled Reactor (VHTR), which is currently being developed, achieves simplification of safety through reliance on ceramic-coated fuel particles. Each TRISO-coated fuel particle has its own containment which serves as the principal barrier against radionuclide release under normal operating and accident conditions. These fuel particles, in the form of graphite fuel compacts, are currently undergoing a series of irradiation tests in the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) to support the Advanced Gas-Cooled Reactor (AGR) fuel qualification program. A representive coated fuel particle with an 235 U enrichment of 19.8 wt% was used in this analysis. The fuel burnup analysis tool used to perform the neutronics study reported herein, couples the Monte Carlo transport code MCNP, with the radioactive decay and burnup code ORIGEN2. The fuel burnup methodology known as Monte-Carlo with ORIGEN2 (MCWO) was used to evaluate the AGR experiment assembly and demonstrate compliance with ATR safety requirements. For the AGR graphite fuel compacts, the MCWO-calculated fission power density (FPD) due to neutron fission in 235 U is an important design parameter. One of the more important AGR fuel testing requirements is to maintain the peak fuel compact temperature close to 1250degC throughout the proposed irradiation campaign of 550 effective full power days (EFPDs). Based on the MCWO-calculated FPD, a fixed gas gap size was designed to allow regulation of the fuel compact temperatures throughout the entire fuel irradiation campaign by filling the gap with a mixture of helium and neon gases. The chosen fixed gas gap can only regulate the peak fuel compact temperature in the desired range during the irradiation test if the ratio of the peak power density to the time-dependent low power density (P/T) at 550 EFPDs is less than 2.5. However, given the near constant neutron flux within the ATR driver core and the depletion of 235 U

  17. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  18. Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya

    International Nuclear Information System (INIS)

    Arneth, J.D.; Schidlowski, M.; Sarbas, B.; Goerg, U.; Amstutz, G.C.

    1985-01-01

    Amphibolite-grade metasediments from the Mgama Hills region, Kenya, contain conspicuous quantities of graphite, most probably derived from organic progenitor materials,. The highest graphite contents are found in schists whereas calcite marbles intercalated in the sequence contain relatively low amounts. The graphitic constituents are consistently enriched in 13 C relative to common sedimentary organic material, with the highest isotopic ratios in graphite from the marbles. Carbon isotope fractionations between calcite and graphite mostly vary between 3.3 and 7.1 per mille, which comes close to both empirically recorded and thermodynamically calculated fractionations in the temperature range of the upper amphibolite facies. However, larger values occasionally encountered in the marbles suggest that complete isotopic equilibrium is not always attained in amphibolite-facies metamorphism. (author)

  19. A New Method to Measure Crack Extension in Nuclear Graphite Based on Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Shigang Lai

    2017-01-01

    Full Text Available Graphite components, used as moderators, reflectors, and core-support structures in a High-Temperature Gas-Cooled Reactor, play an important role in the safety of the reactor. Specifically, they provide channels for the fuel elements, control rods, and coolant flow. Fracture is the main failure mode for graphite, and breaching of the above channels by crack extension will seriously threaten the safety of a reactor. In this paper, a new method based on digital image correlation (DIC is introduced for measuring crack extension in brittle materials. Cross-correlation of the displacements measured by DIC with a step function was employed to identify the advancing crack tip in a graphite beam specimen under three-point bending. The load-crack extension curve, which is required for analyzing the R-curve and tension softening behaviors, was obtained for this material. Furthermore, a sensitivity analysis of the threshold value employed for the cross-correlation parameter in the crack identification process was conducted. Finally, the results were verified using the finite element method.

  20. High-Temperature Graphite/Phenolic Composite

    Science.gov (United States)

    Seal, Ellis C.; Bodepudi, Venu P.; Biggs, Robert W., Jr.; Cranston, John A.

    1995-01-01

    Graphite-fiber/phenolic-resin composite material retains relatively high strength and modulus of elasticity at temperatures as high as 1,000 degrees F. Costs only 5 to 20 percent as much as refractory materials. Fabrication composite includes curing process in which application of full autoclave pressure delayed until after phenolic resin gels. Curing process allows moisture to escape, so when composite subsequently heated in service, much less expansion of absorbed moisture and much less tendency toward delamination. Developed for nose cone of external fuel tank of Space Shuttle. Other potential aerospace applications for material include leading edges, parts of nozzles, parts of aircraft engines, and heat shields. Terrestrial and aerospace applications include structural firewalls and secondary structures in aircraft, spacecraft, and ships. Modified curing process adapted to composites of phenolic with other fiber reinforcements like glass or quartz. Useful as high-temperature circuit boards and electrical insulators.

  1. Interfaces in ceramic nuclear fuels

    International Nuclear Information System (INIS)

    Reeve, K.D.

    Internal interfaces in all-ceramic dispersion fuels (such as these for HTGRs) are discussed for two classes: BeO-based dispersions, and coated particles for graphite-based fuels. The following points are made: (1) The strength of a two-phase dispersion is controlled by the weaker dispersed phase bonded to the matrix. (2) Differential expansion between two phases can be controlled by an intermediate buffer zone of low density. (3) A thin ceramic coating should be in compression. (4) Chemical reaction between coating and substrate and mass transfer in service should be minimized. The problems of the nuclear fuel designer are to develop coatings for fission product retention, and to produce radiation-resistant interfaces. 44 references, 18 figures

  2. Lurgi MegaMethanol technology. Delivering the building blocks for the future fuel and monomer demand

    Energy Technology Data Exchange (ETDEWEB)

    Wurzel, T. [Lurgi AG, Frankfurt/Main (Germany)

    2006-07-01

    The paper describes the central role of methanol within a changing environment with respect to feedstock availability as well as steadily growing demand in fuel and monomer demand. The current large-scale production facilities are described with respect to the technological challenges in order to ensure the availability of sufficient methanol for down-stream applications. Different down-stream applications are described which clearly confirm that methanol is the dominant C1-building block due to its chemical flexibility. It is concluded that by means of the implementation of two MTP (Methanol to Propylene) projects in China initiated the era of ''down-stream methanol'' has begun in the industry. (orig.)

  3. Electrochemical characteristics of Shewanella loihica on carbon nanotubes-modified graphite surfaces

    International Nuclear Information System (INIS)

    Zhang, Xiaoming; Epifanio, Monica; Marsili, Enrico

    2013-01-01

    Highlights: • We deposited CNT coatings on graphite electrode by electrophoretic deposition. • CNT coating increased extracellular electron transfer in Shewanella loihica biofilms. • Thick electroactive biofilms hinder the electroactivity of CNT coatings. -- Abstract: High specific surface and electrocatalytic activity of the electrode surface favour extracellular electron transfer from electrochemically active biofilms to polarized electrodes. We coated layer-by-layer carbon nanotubes (CNTs) on graphite electrodes through electrophoretic deposition, thus increasing the electrocatalytic activity. After determining the optimal number of CNT layers through electrochemical methods, we grew Shewanella loihica PV-4 biofilms on the CNT-coated electrodes to quantify the increase in extracellular electron transfer rate compared with unmodified electrodes. Current density on CNT-modified electrodes was 1.7 times higher than that observed on unmodified electrodes after 48 h from inoculation. Rapid microbial cells attachment on CNT-coated electrodes, as determined from scanning electronic microscopy, explained the rapid increase of the current. Also, the CNT reduced the charge transfer resistance of the graphite electrodes, as measured by Electrochemical Impedance Spectroscopy. However, the electrocatalytic activity of the CNT-coated electrode decreased as the biofilm grew thicker and covered the CNT-coating. These result confirmed that surface-modified electrodes improve the electron transfer rate in thin biofilms (<5 μm), but are not feasible for power production in microbial fuel cells, where the biofilm thickness is much higher

  4. Oxidation behavior of IG and NBG nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  5. Theoretical analysis of the graphitization of a nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S Joon; Park, Jae-Gwan [Nano Science and Technology Division, Korea Institute of Science and Technology (KIST), PO Box 131, Cheongryang, Seoul, 130-650 (Korea, Republic of)

    2007-09-26

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F{sub 2g} vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond.

  6. Theoretical analysis of the graphitization of a nanodiamond

    International Nuclear Information System (INIS)

    Kwon, S Joon; Park, Jae-Gwan

    2007-01-01

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F 2g vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond

  7. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurindranath; Srinivasan, Makuteswara

    2013-01-01

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite

  8. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  9. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  10. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition

    International Nuclear Information System (INIS)

    Sharma, Uttam; Chauhan, Sachin S; Sharma, Jayshree; Sanyasi, A K; Ghosh, J; Choudhary, K K; Ghosh, S K

    2016-01-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m 2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS. (paper)

  11. Paper summary inventory assessment of DOE spent nuclear fuels

    International Nuclear Information System (INIS)

    Abbott, D.G.; Bringhurst, A.R.; Fillmore, D.L.

    1994-01-01

    The U.S. Department of Energy (DOE) has determined that it will not longer reprocess its spent nuclear fuel. This decision made it necessary to manage this fuel for long-term interim storage and ultimate disposal. DOE is developing a computerized database of its spent nuclear fuel inventory. This database contains information about the fuels and the fuel storage locations. There is approximately 2,618 metric tons initial heavy metal of fuel, stored at 12 locations. For analysis in an environmental impact statement, the fuel has been divided into six categories: naval, aluminum-based, Hanford defense, graphite, commercial-type, and test and experimental. This paper provides a discussion of the development of the database, and includes summary inventory information and a brief description of the fuels

  12. Improved Direct Methanol Fuel Cell Stack

    Science.gov (United States)

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  13. Contribution to the study of can deformations in the fuel elements of gas-graphite reactors during thermal cycling; Contribution a l'etude des deformations des gaines des elements combustibles de reacteur graphite-gaz au cours du cyclage thermique

    Energy Technology Data Exchange (ETDEWEB)

    Gauthron, M; Boudouresques, B; Delpeyroux, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    The cans of fuel cartridges used in reactors of the gas-graphite type have either longitudinal fins of variable thickness, short herring-bone fins, or else a mixture of the two. An important test of the strength of these cartridges is their behaviour during thermal cycling carried out in cells reproducing in-pile conditions. It has been observed during with rapid cooling that there occurs a shortening at the base of the fins which can be accompanied in particular by a compression effect at the fin type, which has a tendency to curl, and by a tractive force acting on the body of the can at the ends of the longitudinal fins; this last phenomenon can result in a fracturing of the welds at the extremities or of the ends of the cartridge. This report presents first of all the way in which the stress diagram can be drawn for a can touching the fuel, and then the effect of the ratchet along a fin fixed to a bar with or without grooves. Finally the importance is shown of the test cycling variables (temperature, heating and cooling rates). (authors) [French] Les gaines des cartouches combustibles des reacteurs de la filiere graphite-gaz comportent soit des ailettes longitudinales plus ou moins epaisses, soit de courtes ailettes a chevrons, soit un ensemble des deux. Un test important de la tenue des cartouches, est la tenue au cyclage thermique en cellule pour reproduire le comportement en pile. On a observe au cours des cyclages a refroidissement rapide, un raccourcissement a la base des ailettes qui peut s'accompagner notamment d'une mise en compression du sommet de l'ailette qui a tendance a friser, et d'une traction exercee sur le corps des gaines au bout des ailettes longitudinales; ce dernier phenomene peut se traduire par des ruptures de soudures d'extremites ou des parties terminales de la cartouche. Ce rapport presente d'abord la maniere dont peut etre trace le diagramme des contraintes dans une gaine liee au combustible, puis l'effet du rochet le long d

  14. The utilization of a pressurized-graphite/water/oxygen mixture for irradiated graphite incineration

    International Nuclear Information System (INIS)

    Antonini, G.; Perotin, J.P.; Charlot, P.

    1992-01-01

    The authors demonstrate the interest of the utilization of a pressurized-graphite/water/oxygen mixture in the incineration of irradiated graphite. The aqueous phase comes in the form of a three-dimensional system that traps pressurized oxygen, the pulverulent solid being dispersed at the liquid/gas interfaces. These three-phasic formulations give the following advantages: reduction of the apparent viscosity of the mixture in comparison with a solid/liquid mixture at the same solid concentration; reduction of the solid/liquid interactions; self-pulverizability. thus promoting reduction of the flame length utilization of conventional burners; reduction of the flue gas flow rate; complete thermal destruction of graphite. (author)

  15. Characterization of fresh and irradiated domestic nuclear graphite; Karakterizacija neozracenog i ozracenog domaceg nuklearnog grafita

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, S; Suznjevic, C; Bogdanovic, R; Gasic, M [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1965-11-15

    This report shows results of testing the quality of domestic impregnated graphite IGSP-05, and irradiated domestic graphite IGSP-01 as well as the new methos of characterization based on graphite oxidation by liquid agent. Systematic measurement of domestic impregnated graphite enabled conclusions related to its quality and further improvement. Domestic graphite is relatively well graphitized and its properties are approaching standard nuclear graphite, although it still shows some deficiencies. Important deficiencies are significant inhomogeneity and low density. The applied impregnation procedure did not improve significantly the quality of graphite, probably because the material which was impregnated had fine pores. To avoid this porosity it would be necessary to use material with higher granulation. Soot which was present in some blocks probably worsened the quality of graphite and caused dispersion of the obtained results. First tests of irradiated domestic graphite IGSP-01 showed that its behaviour does not differ from standard nuclear graphite in case of low doses. It is necessary to test its properties in case of higher neutron doses before drawing final conclusions. The new method of graphite oxidation by the N{sub 2}SO{sub 4} - Ag{sub 2}Cr{sub 2}O{sub 7} mixture which is highly sensitive on the existence of structural defects is based on detecting the oxidation rate of graphite by measuring the pressure of released CO{sub 2}. Application of the method for testing the domestic and American graphite showed that irradiation caused drastic changes of oxidation rates and similar behaviour of both graphite types. U ovom izvestaju su prikazani rezultati ispitivanja kvaliteta domaceg impregnisanog grafita IGSP-05, rezultati ispitivanja ozracenog domaceg grafita IGSP-01 i opisana je nova uvedena metoda karakterizacije zasnovana na oksidaciji grafita tecnim agensom. Sistematsko merenje osobina domaceg impregnisanog grafita je omogucilo donosenje zakljucaka o

  16. Evaluation of the influence of bypass flow gap distribution on the core hot spot in a prismatic VHTR core

    International Nuclear Information System (INIS)

    Kim, Min-Hwan; Lim, Hong-Sik

    2011-01-01

    Highlights: → A procedure to evaluate the local gap size variation between graphite blocks was developed and applied to a prismatic core VHTR. → The analysis for the core bypass flow and hot spot was carried out based on the calculated gap distributions. → The predicted gap size is large enough to affect the flow distribution in the core. → The bypass gap and flow distributions are closely related to the local hot spot temperature and its location. → The core restraint mechanism preventing outward movement of graphite block reduces the bypass gap size and hot spot temperature. - Abstract: Core bypass flow in VHTR is one of the key issues for core thermal margins and efficiency. The bypass flow in the prismatic core varies during core cycles due to the irradiation shrinkage/swelling and thermal expansion of the graphite blocks. A procedure to evaluate the local gap size variation between graphite blocks was developed and applied to a prismatic core VHTR. The influence of the core restraint mechanism on the bypass flow gap was evaluated. The predicted gap size is as much as 8 mm when the graphite block is exposed to its allowable limit of fast neutron fluence. The analysis for the core bypass flow and hot spot was carried out based on the calculated gap distributions. The results indicate that the bypass gap and flow distributions are closely related to the local hot spot and its location and the core restraint mechanism preventing outward movement of the graphite block by a fastening device reduces the bypass gap size, which results in the decrease of maximum fuel temperature not less than 100 deg. C, when compared to the case without it.

  17. Effect of fuel particles' size variations on multiplication factor in pebble-bed nuclear reactor

    International Nuclear Information System (INIS)

    Snoj, L.; Ravnik, M.

    2005-01-01

    The pebble-bed reactor (Pbr) spherical fuel element consists of two radial zones: the inner zone, in which the fissile material in form of the so-called TRISO particles is uniformly dispersed in graphite matrix and the outer zone, a shell of pure graphite. A TRISO particle is composed of a fissile kernel (UO 2 ) and several layers of carbon composites. The effect of TRISO particles' size variations and distance between them on PBR multiplication factor is studied using MCNP code. Fuel element is modelled in approximation of a cubical unit cell with periodic boundary condition. The multiplication factor of the fuel element depends on the size of the TRISO particles due to resonance self-shielding effect and on the inter-particle distance due to inter-kernel shadowing. (author)

  18. Analysis of fission ratio distribution in spherical lithium metal assembly with a graphite reflector

    International Nuclear Information System (INIS)

    Seki, Yasushi; Maekawa, Hiroshi; Hiraoka, Toru; Hirota, Jitsuya; Moriyama, Masatoshi.

    1975-08-01

    For the investigation of neutronics in the fusion reactor blanket, a spherical lithium assembly with a graphite reflector was prepared by piling up lithium and graphite blocks. The ratio of U-238 to U-235 fission rates was measured by micro fission chambers, and the result of the measurement was compared with that of the preliminary calculation. It has been shown that there is a large discrepancy between experiment and calculation, which is too large to be explained only by the experimental error. In this paper, the calculational procedure is reviewed and probable causes of the calculational error are listed. Further calculation of the fission ratio is carried out employing refined methods and with varied calculational models. As the result, it is concluded that the cause of the discrepancy is most likely the uncertainties of the nuclear data of the constituent elements of the assembly. (auth.)

  19. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  20. Some economic aspects of natural uranium graphite gas reactor types. Present status and trends of costs in France; Quelques aspects economiques de la filiere uranium naturel - Graphite - gaz. Etat actuel et tendance des couts en France

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J; Tanguy, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Leo, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The first part of this report defines the economic advantages of natural uranium fuels, which are as follows: the restricted number and relatively simple fabrication processes of the fuel elements, the low cost per kWh of the finished product and the reasonable capital investments involved in this type of fuel cycle as compared to that of enriched uranium. All these factors combine to reduce the arbitrary nature of cost estimates, which is particularly marked in the case of enriched uranium due to the complexity of its cycle and the uncertainties of plutonium prices). Finally, the wide availability of yellowcake, as opposed to the present day virtual monopoly of isotope separation, and the low cost of natural uranium stockpiling, offer appreciable guarantees in the way of security of supply and economic and political independence as compared with the use of enriched uranium. As far as overall capital investments are concerned, it is shown that, although graphite-gas reactor costs are higher than those of light water reactors in certain capacity ranges, the situation becomes far less clear when we start taking into account, in the interest of national independence, the cost of nuclear fuel production equipment in the case of each of these types of reactor. Finally, the marginal cost of the power capacity of a graphite-gas reactor is low and its technological limitations have receded (owing particularly to the use of prestressed concrete). It is a well known fact that the trend is now towards larger power station units, which means that the rentability of natural uranium graphite reactors as compared to other types of reactors will become more and more pronounced. The second section aims at presenting a realistic short and medium term view of the fuel, running, and investment costs of French natural uranium graphite gas, reactors. Finally, the economic goals which this type of reactor can reach in the very near future are given. It is thus shown that considerable

  1. Modelling of fission product release behavior from HTR spherical fuel elements under accident conditions

    International Nuclear Information System (INIS)

    Verfondern, K.; Mueller, D.

    1991-01-01

    Computer codes for modelling the fission product release behavior of spherical fuel elements for High Temperature Reactors (HTR) have been developed for the purpose of being used in risk analyses for HTRs. An important part of the validation and verification procedure for these calculation models is the theoretical investigation of accident simulation experiments which have been conducted in the KueFA test facility in the Hot Cells at KFA. The paper gives a presentation of the basic modeling and the calculational results of fission product release from modern German HTR fuel elements in the temperature range 1600-1800 deg. C using the TRISO coated particle failure model PANAMA and the diffusion model FRESCO. Measurements of the transient release behavior for cesium and strontium and of their concentration profiles after heating have provided informations about diffusion data in the important retention barriers of the fuel: silicon carbide and matrix graphite. It could be shown that the diffusion coefficients of both cesium and strontium in silicon carbide can significantly be reduced using a factor in the range of 0.02 - 0.15 compared to older HTR fuel. Also in the development of fuel element graphite, a tendency towards lower diffusion coefficients for both nuclides can be derived. Special heating tests focussing on the fission gases and iodine release from the matrix contamination have been evaluated to derive corresponding effective diffusion data for iodine in fuel element graphite which are more realistic than the iodine transport data used so far. Finally, a prediction of krypton and cesium release from spherical fuel elements under heating conditions will be given for fuel elements which at present are irradiated in the FRJ2, Juelich, and which are intended to be heated at 1600/1800 deg. C in the KueFA furnace in near future. (author). 7 refs, 11 figs

  2. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  3. The calculation - experimental investigations of the HTGR fuel element construction

    International Nuclear Information System (INIS)

    Eremeev, V.S.; Kolesov, V.S.; Chernikov, A.S.

    1985-01-01

    One of the most important problems in the HTGR development is the creation of the fuel element gas-tight for the fission products. This problem is being solved by using fuel elements of dispersion type representing an ensemble of coated fuel particles dispersed in the graphite matrix. Gas-tightness of such fuel elements is reached at the expense of deposing a protective coating on the fuel particles. It is composed of some layers serving as diffusion barriers for fission products. It is apparent that the rate of fission products diffusion from coated fuel particles is determined by the strength and temperature of the protective coating

  4. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  5. Developments in natural uranium - graphite reactors; Developpement des reacteurs a graphite et uranium naturel

    Energy Technology Data Exchange (ETDEWEB)

    Bourgeois, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Saitcevsky, B [Electricite de France (EDF), 75 - Paris (France)

    1964-07-01

    The French natural uranium-graphite power-reactor programme has been developing - from EDF 1 to EDF 4 - in the direction of an increase of the unit power of the installations, of the specific and volume powers, and of an improvement in the operational security conditions. The high power of EDF 4 (500 MWe) and the integration of the primary circuit into the reactor vessel, which is itself made of pre-stressed concrete, make it possible to make the most of the annular fuel elements already in use in EDF 1, and to arrive thus at a very satisfactory solution. The use of an internally cooled fuel element (an annular element) has led to a further step forward: it now becomes possible to increase the pressure of the cooling gas without danger of causing creep in the uranium tube. The use of a pre-stressed concrete vessel makes this pressure increase possible, and the integration of the primary circuit avoids the risk of a rapid depressurization which would be in this case a major danger. This report deals with the main problems presented by this new type of nuclear power station, and gives the main lines of research and studies now being carried out in France. - Neutronic and thermal research has made it possible to consider using large size fuel elements (internal diameter = 77 mm, external diameter 95 mm) while still using natural uranium. - The problems connected with the production of these elements and with their in pile behaviour are the subject of a large programme, both out of pile and in power reactors (EDF 2) and test reactors (Pegase). - The increase in the size of the element leads to a large lattice pitch (35 to 40 cm). This makes it possible to consider having one charging aperture per channel or for a small number of channels, whether the charge machine be inside or outside the pressure vessel. In conclusion are given the main characteristics of a project for a 500 MWe power station using such a fuel element. In particular this project is compared to EDF 4

  6. Investigation on Conversion of I-Graphite from Decommissioning of Chernobyl NPP into a Stable Waste Form Acceptable for Long Term Storage and Disposal

    International Nuclear Information System (INIS)

    Zlobenko, Borys; Fedorenko, Yriy; Yatzenko, Victor; Shabalin, Borys; Skripkin, Vadim

    2016-01-01

    For Ukraine, the main radiocarbon ( 14 C) source is irradiated graphite from Chernobyl Nuclear Power Plant. The ChNPP is a decommissioned nuclear power station about 14 km northwest of the city of Chernobyl, and 110 km north of Kyiv. The ChNPP had four RBMK reactor units. The commissioning of the first reactor in 1977 was followed by reactor No. 2 (1978), No. 3 (1981), and No.4 (1983). Reactors No.3 and 4 were second generation units, whereas Nos.1 and 2 were first-generation units. RBMK is an acronym for ''High Power Channel-type Reactor'' of a class of graphite-moderated nuclear power reactor with individual fuel channels that uses ordinary water as its coolant and graphite as its moderator. The combination of graphite moderator and water coolant is found in no other type of nuclear reactor

  7. Improvements in the preparation of nuclear fuel elements with addition of a molding mixture to fuel particles

    International Nuclear Information System (INIS)

    Miertschin, G.N.; Leary, D.F.

    1975-01-01

    An improved molting mixture to be added to nuclear fuel particles for the preparation of nuclear fuel elements is presented. It consists of carbon and pitch particles and contains an additive reducing the final coke yield of the fuel mass formed. This additive is chosen from: polystyrene and copolymers of styrene and butadiene of molecular weight between 500 and 1000000; aromatic compounds of molecular weight between 75 and 300; saturated hydrocarbon polymers of molecular weight between 500 and 1000000. The additive may be camphor, naphthalene, anthracene, phenanthrene, dimethyl terephthalate or their mixtures and is present at a concentration of 5 to 50% by weight. The carbon particles used consist of powdered graphite. These fuel elements are intended for gas-cooled high-temperature reactors [fr

  8. Preparation of nitrogen-doped graphitic carboncages as electrocatalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Yan, Jing; Meng, Hui; Yu, Wendan; Yuan, Xiaoli; Lin, Worong; Ouyang, Wenpeng; Yuan, Dingsheng

    2014-01-01

    Nitrogen-doped carbon nanomaterials have been attracted increasing research interests in lithium-O 2 and Zinc-O 2 batteries, ultracapacitors and fuel cells. Herein, nitrogen-doped graphitic carboncages (N-GCs) have been prepared by mesoporous Fe 2 O 3 as a catalyst and lysine as a nitrogen doped carbon source. Due to the catalysis of Fe 2 O 3 , the N-GCs have a high graphitization degree at a low temperature, which is detected by X-ray diffraction and Raman spectrometer. Simultaneously, the heteroatom nitrogen is in-situ doped into carbon network. Therefore, the excellent electrocatalysis performance for oxygen reduction reaction is expected. The electrochemical measurement indicates that The N-GCs for oxygen reduction reaction in O 2 -saturated 0.1 mol L −1 KOH show a four-electron transfer process and exhibit excellent electrocatalytic activity (E ORR = -0.05 V vs. Ag/AgCl) and good stability (i/i 0 = 90% at -0.35 V after 4000 s with a rotation rate of 1600 rpm)

  9. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  10. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  11. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  12. Analysis of irradiation temperature in fuel rods of OGL-1 fuel assembly

    International Nuclear Information System (INIS)

    Fukuda, Kousaku; Kobayashi, Fumiaki; Minato, Kazuo; Ikawa, Katsuichi; Iwamoto, Kazumi

    1984-10-01

    Irradiation temperature in the fuel rods of 5th OGL-1 fuel assembly was analysed by the system composed by STPDSP2 and TRUMP codes. As the measured input-data, following parameters were allowed for; circumferential heating distribution around the fuel rod, which was measured in the JMTR critical assembly, axial heating distribution through the fuel rod, ratio of peak heatings of three fuel rods, and pre- and post-irradiation outer radii of the fuel compacts and inner radii of the graphite sleeves, which had been measured in PIE of the 5th OGL-1 fuel assembly. In computation the axial distributions of helium coolant temperature through the fuel rod and the heating value of each fuel rod were, firstly, calculated as input data for TRUMP. The TRUMP calculation yielded the temperatures which were fitted in those measured by all of the thermo-couples installed in the fuel rods, by adjusting only the value of the surface heat transfer coefficient, and consequently, the temperatures in all portions of the fuel rod were obtained. The apparent heat transfer coefficient changed to 60% of the initial values in the middle period of irradiation. For this reduction it was deduced that shoot had covered the surface of the fuel rod during irradiation, which was confirmed in PIE. Beside it, several things were found in this analysis. (author)

  13. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  14. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  15. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  16. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  17. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  18. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  19. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  20. Preparation of spherical fuel elements for HTR-PM in INET

    International Nuclear Information System (INIS)

    Xiangwen, Zhou; Zhenming, Lu; Jie, Zhang; Bing, Liu; Yanwen, Zou; Chunhe, Tang; Yaping, Tang

    2013-01-01

    Highlights: • Modifications and optimizations in the manufacture of spherical fuel elements (SFE) for HTR-PM are presented. • A newly developed overcoater exhibits good stability and high efficiency in the preparation of overcoated particles. • The optimized carbonization process reduces the process time from 70 h in the period of HTR-10 to 20 h. • Properties of the prepared SFE and matrix graphite balls meet the design specifications for HTR-PM. • In particular the mean free uranium fraction of 5 consecutive batches is only 8.7 × 10 −6 . -- Abstract: The spherical fuel elements were successfully manufactured in the period of HTR-10. In order to satisfy the mass production of fuel elements for HTR-PM, several measures have been taken in modifying and optimizing the manufacture process of fuel elements. The newly developed overcoater system and its corresponding parameters exhibited good stability and high efficiency in the preparation of overcoated particles. The optimized carbonization process could reduce the carbonization time from more than 70 h to 20 h and improve the manufacturing efficiency. Properties of the manufactured spherical fuel elements and matrix graphite balls met the design specifications for HTR-PM. The mean free uranium fraction of 5 consecutive batches was 8.7 × 10 −6 . The optimized fuel elements manufacturing process could meet the requirements of design specifications of spherical fuel elements for HTR-PM