WorldWideScience

Sample records for graphite basal plane

  1. Neutron Scattering Study of Nitrogen Adsorbed on Basal Plane Oriented Graphite

    DEFF Research Database (Denmark)

    Kjems, Jørgen; Passell, L.; Taub, H.

    1976-01-01

    Thermal-neutron scattering has been used to investigate the structure of nitrogen films adsorbed on Grafoil, a basal-plane-oriented graphite. Diffraction scans were made at coverages between 1/3 of a monolayer and 7/4 monolayers over a temperature range from 10 to 90 K. The observed line shapes...

  2. Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Bruch, Ludwig Walter; Taub, H.

    1995-01-01

    The melting mechanism in submonolayer films of N-2 molecules adsorbed on the basal planes of graphite is studied using molecular-dynamics simulations. The melting is strongly correlated with the formation of vacancies in the films. As the temperature increases, the edges of the submonolayer patch...

  3. Defining the origins of electron transfer at screen-printed graphene-like and graphite electrodes: MoO2 nanowire fabrication on edge plane sites reveals electrochemical insights.

    Science.gov (United States)

    Rowley-Neale, Samuel J; Brownson, Dale A C; Banks, Craig E

    2016-08-18

    Molybdenum (di)oxide (MoO2) nanowires are fabricated onto graphene-like and graphite screen-printed electrodes (SPEs) for the first time, revealing crucial insights into the electrochemical properties of carbon/graphitic based materials. Distinctive patterns observed in the electrochemical process of nanowire decoration show that electron transfer occurs predominantly on edge plane sites when utilising SPEs fabricated/comprised of graphitic materials. Nanowire fabrication along the edge plane sites (and on edge plane like-sites/defects) of graphene/graphite is confirmed with Cyclic Voltammetry, Scanning Electron Microscopy (SEM) and Raman Spectroscopy. Comparison of the heterogeneous electron transfer (HET) rate constants (k°) at unmodified and nanowire coated SPEs show a reduction in the electrochemical reactivity of SPEs when the edge plane sites are effectively blocked/coated with MoO2. Throughout the process, the basal plane sites of the graphene/graphite electrodes remain relatively uncovered; except when the available edge plane sites have been utilised, in which case MoO2 deposition grows from the edge sites covering the entire surface of the electrode. This work clearly illustrates the distinct electron transfer properties of edge and basal plane sites on graphitic materials, indicating favourable electrochemical reactivity at the edge planes in contrast to limited reactivity at the basal plane sites. In addition to providing fundamental insights into the electron transfer properties of graphite and graphene-like SPEs, the reported simple, scalable, and cost effective formation of unique and intriguing MoO2 nanowires realised herein is of significant interest for use in both academic and commercial applications.

  4. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    Science.gov (United States)

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Nanostructured carbon films with oriented graphitic planes

    International Nuclear Information System (INIS)

    Teo, E. H. T.; Kalish, R.; Kulik, J.; Kauffmann, Y.; Lifshitz, Y.

    2011-01-01

    Nanostructured carbon films with oriented graphitic planes can be deposited by applying energetic carbon bombardment. The present work shows the possibility of structuring graphitic planes perpendicular to the substrate in following two distinct ways: (i) applying sufficiently large carbon energies for deposition at room temperature (E>10 keV), (ii) utilizing much lower energies for deposition at elevated substrate temperatures (T>200 deg. C). High resolution transmission electron microscopy is used to probe the graphitic planes. The alignment achieved at elevated temperatures does not depend on the deposition angle. The data provides insight into the mechanisms leading to the growth of oriented graphitic planes under different conditions.

  6. Friction anisotropy in boronated graphite

    International Nuclear Information System (INIS)

    Kumar, N.; Radhika, R.; Kozakov, A.T.; Pandian, R.; Chakravarty, S.; Ravindran, T.R.; Dash, S.; Tyagi, A.K.

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient

  7. Friction anisotropy in boronated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, N., E-mail: niranjan@igcar.gov.in [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Radhika, R. [Crystal Growth Centre, Anna University, Chennai (India); Kozakov, A.T. [Research Institute of Physics, Southern Federal University, Rostov-on-Don (Russian Federation); Pandian, R. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Chakravarty, S. [UGC-DAE CSR, Kalpakkam (India); Ravindran, T.R.; Dash, S.; Tyagi, A.K. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2015-01-01

    Graphical abstract: - Highlights: • Friction anisotropy in boronated graphite is observed in macroscopic sliding condition. • Low friction coefficient is observed in basal plane and becomes high in prismatic direction. • 3D phase of boronated graphite transformed into 2D structure after friction test. • Chemical activity is high in prismatic plane forming strong bonds between the sliding interfaces. - Abstract: Anisotropic friction behavior in macroscopic scale was observed in boronated graphite. Depending upon sliding speed and normal loads, this value was found to be in the range 0.1–0.35 in the direction of basal plane and becomes high 0.2–0.8 in prismatic face. Grazing-incidence X-ray diffraction analysis shows prominent reflection of (0 0 2) plane at basal and prismatic directions of boronated graphite. However, in both the wear tracks (1 1 0) plane become prominent and this transformation is induced by frictional energy. The structural transformation in wear tracks is supported by micro-Raman analysis which revealed that 3D phase of boronated graphite converted into a disordered 2D lattice structure. Thus, the structural aspect of disorder is similar in both the wear tracks and graphite transfer layers. Therefore, the crystallographic aspect is not adequate to explain anisotropic friction behavior. Results of X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy shows weak signature of oxygen complexes and functional groups in wear track of basal plane while these species dominate in prismatic direction. Abundance of these functional groups in prismatic plane indicates availability of chemically active sites tends to forming strong bonds between the sliding interfaces which eventually increases friction coefficient.

  8. Molecular dynamics studies of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Newton, J. C.; Taub, H.

    1993-01-01

    The effect of molecular steric properties on the melting of quasi-two-dimensional solids is investigated by comparing results of molecular dynamics simulations of the melting of butane and hexane monolayers adsorbed on the basal-plane surface of graphite. These molecules differ only in their length......, being members of the n-alkane series [CH3(CH2)n−2CH3] where n=4 for butane and n=6 for hexane. The simulations employ a skeletal model, which does not include the hydrogen atoms explicitly, to represent the intermolecular and molecule–substrate interactions. Nearest-neighbor intramolecular bonds...... are fixed in length, but the molecular flexibility is preserved by allowing the bend and dihedral torsion angles to vary. The simulations show a qualitatively different melting behavior for the butane and hexane monolayers consistent with neutron and x-ray scattering experiments. The melting of the low...

  9. The nucleation and growth of uranium on the basal plane of graphite studied by scanning tunneling microscopy

    International Nuclear Information System (INIS)

    Tench, R.J.

    1992-11-01

    For the first time, nanometer scale uranium clusters were created on the basal plane of highly oriented pyrolytic graphite by laser ablation under ultra-high vacuum conditions. The physical and chemical properties of these clusters were investigated by scanning tunneling microscopy (STM) as well as standard surface science techniques. Auger electron and X-ray photoelectron spectroscopies found the uranium deposit to be free of contamination and showed that no carbide had formed with the underlying graphite. Clusters with sizes ranging from 42 Angstrom 2 to 630 Angstrom 2 were observed upon initial room temperature deposition. Surface diffusion of uranium was observed after annealing the substrate above 800 K, as evidenced by the decreased number density and the increased size of the clusters. Preferential depletion of clusters on terraces near step edges as a result of annealing was observed. The activation energy for diffusion deduced from these measurements was found to be 15 Kcal/mole. Novel formation of ordered uranium thin films was observed for coverages greater than two monolayers after annealing above 900 K. These ordered films displayed islands with hexagonally faceted edges rising in uniform step heights characteristic of the unit cell of the P-phase of uranium. In addition, atomic resolution STM images of these ordered films indicated the formation of the β-phase of uranium. The chemical properties of these surfaces were investigated and it was shown that these uranium films had a reduced oxidation rate in air as compared to bulk metal and that STM imaging in air induced a polarity-dependent enhancement of the oxidation rate

  10. Heteroepitaxial growth of basal plane stacking fault free a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Hempel, Thomas; Noltemeyer, Martin; Witte, Hartmut; Dadgar, Armin; Blaesing, Juergen; Christen, Juergen; Krost, Alois [Otto-von-Guericke Universitaet Magdeburg, FNW/IEP, Magdeburg (Germany)

    2010-07-01

    Growth of light emitting quantum-wells based on a-plane GaN is a possibility to reduce or even to avoid polarization correlated luminescence red shift and reduction of radiative recombination efficiency. But until now heteroepitaxially grown a-plane GaN films are characterized by a poor crystalline quality expressed by a high density of basal plane stacking faults (BSF) and partial dislocations. We present Si doped a-plane GaN films grown on r-plane sapphire substrates by metal organic vapor phase epitaxy using high temperature AlGaN nucleation layers. FE-SEM images revealed three dimensionally grown GaN crystallites sized up to tenth micrometer in the basal plane and a few tenth micrometers along the c-axes. Though, the full width at half maxima of the X-ray diffraction {omega}-scans of the in-plane GaN(1 anti 100) and GaN(0002) Bragg reflections exhibited a very high crystal quality. Furthermore, luminescence spectra were dominated by near band gap emission, while there was no separated peak of the basal plane stacking fault. In summary we present heteroepitaxially grown a-plane GaN without an evidence of basal plane stacking faults in X-ray diffraction measurements and luminescence spectra.

  11. Basal-plane dislocations in bilayer graphene - Peculiarities in a quasi-2D material

    Science.gov (United States)

    Butz, Benjamin

    2015-03-01

    Dislocations represent one of the most fascinating and fundamental concepts in materials science. First and foremost, they are the main carriers of plastic deformation in crystalline materials. Furthermore, they can strongly alter the local electronic or optical properties of semiconductors and ionic crystals. In layered crystals like graphite dislocation movement is restricted to the basal plane. Thus, those basal-plane dislocations cannot escape enabling their confinement in between only two atomic layers of the material. So-called bilayer graphene is the thinnest imaginable quasi-2D crystal to explore the nature and behavior of dislocations under such extreme boundary conditions. Robust graphene membranes derived from epitaxial graphene on SiC provide an ideal platform for their investigation. The presentation will give an insight in the direct observation of basal-plane partial dislocations by transmission electron microscopy and their detailed investigation by diffraction contrast analysis and atomistic simulations. The investigation reveals striking size effects. First, the absence of stacking fault energy, a unique property of bilayer graphene, leads to a characteristic dislocation pattern, which corresponds to an alternating AB BA change of the stacking order. Most importantly, our experiments in combination with atomistic simulations reveal a pronounced buckling of the bilayer graphene membrane, which directly results from accommodation of strain. In fact, the buckling completely changes the strain state of the bilayer graphene and is of key importance for its electronic/spin transport properties. Due to the high degree of disorder in our quasi-2D material it is one of the very few examples for a perfect linear magnetoresistance, i.e. the linear dependency of the in-plane electrical resistance on a magnetic field applied perpendicular to the graphene sheet up to field strengths of more than 60 T. This research is financed by the German Research Foundation

  12. Lattice dynamical appraisal of the anisotropic Debye-Waller factors in graphite lattice

    International Nuclear Information System (INIS)

    Haridasan, T.M.; Sathyamurthy, G.

    1989-12-01

    The Debye-Waller factors in graphite for the atomic motions within the basal plane and also across the basal planes have been calculated using the various lattice dynamical models available to date and a critical comparison is made with the existing experimental data from X ray and neutron scattering studies. The present study reveals the need for further investigation on the nature of atomic motion across the basal planes. (author). 15 refs, 1 tab

  13. A novel perspective on the formation of the solid electrolyte interphase on the graphite electrode for lithium-ion batteries

    International Nuclear Information System (INIS)

    Yan Jian; Zhang Jian; Su Yuchang; Zhang Xigui; Xia Baojia

    2010-01-01

    In this paper, we describe how the mechanism of formation of a protective film [the solid electrolyte interphase (or interface) (SEI)] on a graphite electrode for Li-ion batteries was investigated from the novel perspective of precipitation of the final decomposition products that arise from the reduction of a nonaqueous electrolyte solution in contact with the graphite electrode. Within the framework of this new perspective, we can elegantly account for the compositional and structural differences between the basal-plane and edge-plane SEIs and for the origins of the multi-layer structure and the parabolic growth law of the SEIs on both the edge-plane and basal-plane surfaces of the graphite electrode.

  14. Experimental investigation of linear thermal expansion of pyrolytic graphite at high temperatures

    Science.gov (United States)

    Senchenko, V. N.; Belikov, R. S.

    2017-11-01

    Using the previously described [1] experimental setup for investigation of the thermophysical properties of refractory materials under high pressure and temperature a few experiments with pyrolytic graphite were carried out. The density of the material was equal to 2.18 g/cm3. Experimental data on the linear thermal expansion in the perpendicular and parallel to the basal plane direction were obtained. Thermal expansion in the perpendicular to the basal plane direction during the heating from room temperature up to the melting point was 16.4 ± 1.6%. The results obtained allow calculating the density of pyrolytic graphite in the wide range of high temperatures up to the melting point.

  15. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    Science.gov (United States)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  16. Interaction of divalent cations with basal planes and edge surfaces of phyllosilicate minerals: muscovite and talc.

    Science.gov (United States)

    Yan, Lujie; Masliyah, Jacob H; Xu, Zhenghe

    2013-08-15

    Smooth basal plane and edge surfaces of two platy phyllosilicate minerals (muscovite and talc) were prepared successfully to allow accurate colloidal force measurement using an atomic force microscope (AFM), which allowed us to probe independently interactions of divalent cations with phyllosilicate basal planes and edge surfaces. The Stern potential of basal planes and edge surfaces was obtained by fitting the measured force profiles with the classical DLVO theory. The fitted Stern potential of the muscovite basal plane became less negative with increasing Ca(2+) or Mg(2+) concentration but did not reverse its sign even at Ca(2+) or Mg(2+) concentrations up to 5 mM. In contrast, the Stern potential of the muscovite edge surface reversed at Ca(2+) or Mg(2+) concentrations as low as 0.1 mM. The Stern potential of the talc basal plane became less negative with 0.1 mM Ca(2+) addition and nearly zero with 1 mM Ca(2+) addition. The Stern potential of talc edge surface became reversed with 0.1 mM Ca(2+) or 1 mM Mg(2+) addition, showing not only a different binding mechanism of talc basal planes and edge surfaces with Ca(2+) and Mg(2+), but also different binding mechanism between Ca(2+) and Mg(2+) ions with basal planes and edge surfaces. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Theoretical study of the generation of terahertz radiation by the interaction of two laser beams with graphite nanoparticles

    Science.gov (United States)

    Sepehri Javan, N.; Rouhi Erdi, F.

    2017-12-01

    In this theoretical study, we investigate the generation of terahertz radiation by considering the beating of two similar Gaussian laser beams with different frequencies of ω1 and ω2 in a spatially modulated medium of graphite nanoparticles. The medium is assumed to contain spherical graphite nanoparticles of two different configurations: in the first configuration, the electric fields of the laser beams are parallel to the normal vector of the basal plane of the graphite structure, whereas in the second configuration, the electric fields are perpendicular to the normal vector of the basal plane. The interaction of the electric fields of lasers with the electronic clouds of the nanoparticles generates a ponderomotive force that in turn leads to the creation of a macroscopic electron current in the direction of laser polarizations and at the beat frequency ω1-ω2 , which can generate terahertz radiation. We show that, when the beat frequency lies near the effective plasmon frequency of the nanoparticles and the electric fields are parallel to the basal-plane normal, a resonant interaction of the laser beams causes intense terahertz radiation.

  18. Damaging process of graphite - new model and its impact on degradation of materials performance

    International Nuclear Information System (INIS)

    Tanabe, T.; Muto, S.

    1999-01-01

    The most widely accepted model for development of defect structure in neutron irradiated graphite has been such that following the first production of a pair of an interstitial and vacancy, di-interstitials and vacancies are formed and their subsequent growth would result in the production of an interstitial plane or loop in-between the basal planes and vacancy clusters, respectively, which could cause the loss of thermal conductivity and dimensional change. Recently we have claimed that the formation of vacancy clusters and growth of the interstitial planes are not necessarily a unique interpretation of the damaging process. Instead, the damaging process is described by orientational disordering within the basal planes, i.e. fragmentation into small crystallites and rotation of their crystalline axes, change of stacking order and elongation of the interplanar spacing. The orientational disordering within the basal planes proceeds coordinately over a few layers with their layered correlation maintained. This process accompanies changes in bonding nature producing 5 member- and 7 member-atomic rings as appeared in fullerenes. This is so to speak ''self-restoring or reconstruction'' to maintain resonance bonds as strict as possible without the formation of dangling bonds. This paper reviews irradiation effects in graphite such as increase of hydrogen retention, loss of thermal conductivity and dimensional change on the bases of our new model, taking account of the changes of the bonding nature in irradiated graphite. (orig.)

  19. The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet

    Science.gov (United States)

    Yuan, Wenjing; Zhou, Yu; Li, Yingru; Li, Chun; Peng, Hailin; Zhang, Jin; Liu, Zhongfan; Dai, Liming; Shi, Gaoquan

    2013-01-01

    Graphene has a unique atom-thick two-dimensional structure and excellent properties, making it attractive for a variety of electrochemical applications, including electrosynthesis, electrochemical sensors or electrocatalysis, and energy conversion and storage. However, the electrochemistry of single-layer graphene has not yet been well understood, possibly due to the technical difficulties in handling individual graphene sheet. Here, we report the electrochemical behavior at single-layer graphene-based electrodes, comparing the basal plane of graphene to its edge. The graphene edge showed 4 orders of magnitude higher specific capacitance, much faster electron transfer rate and stronger electrocatalytic activity than those of graphene basal plane. A convergent diffusion effect was observed at the sub-nanometer thick graphene edge-electrode to accelerate the electrochemical reactions. Coupling with the high conductivity of a high-quality graphene basal plane, graphene edge is an ideal electrode for electrocatalysis and for the storage of capacitive charges. PMID:23896697

  20. Pyrolytic graphite gauge for measuring heat flux

    Science.gov (United States)

    Bunker, Robert C. (Inventor); Ewing, Mark E. (Inventor); Shipley, John L. (Inventor)

    2002-01-01

    A gauge for measuring heat flux, especially heat flux encountered in a high temperature environment, is provided. The gauge includes at least one thermocouple and an anisotropic pyrolytic graphite body that covers at least part of, and optionally encases the thermocouple. Heat flux is incident on the anisotropic pyrolytic graphite body by arranging the gauge so that the gauge surface on which convective and radiative fluxes are incident is perpendicular to the basal planes of the pyrolytic graphite. The conductivity of the pyrolytic graphite permits energy, transferred into the pyrolytic graphite body in the form of heat flux on the incident (or facing) surface, to be quickly distributed through the entire pyrolytic graphite body, resulting in small substantially instantaneous temperature gradients. Temperature changes to the body can thereby be measured by the thermocouple, and reduced to quantify the heat flux incident to the body.

  1. Probing surface charge potentials of clay basal planes and edges by direct force measurements.

    Science.gov (United States)

    Zhao, Hongying; Bhattacharjee, Subir; Chow, Ross; Wallace, Dean; Masliyah, Jacob H; Xu, Zhenghe

    2008-11-18

    The dispersion and gelation of clay suspensions have major impact on a number of industries, such as ceramic and composite materials processing, paper making, cement production, and consumer product formulation. To fundamentally understand controlling mechanisms of clay dispersion and gelation, it is necessary to study anisotropic surface charge properties and colloidal interactions of clay particles. In this study, a colloidal probe technique was employed to study the interaction forces between a silica probe and clay basal plane/edge surfaces. A muscovite mica was used as a representative of 2:1 phyllosilicate clay minerals. The muscovite basal plane was prepared by cleavage, while the edge surface was obtained by a microtome cutting technique. Direct force measurements demonstrated the anisotropic surface charge properties of the basal plane and edge surface. For the basal plane, the long-range forces were monotonically repulsive within pH 6-10 and the measured forces were pH-independent, thereby confirming that clay basal planes have permanent surface charge from isomorphic substitution of lattice elements. The measured interaction forces were fitted well with the classical DLVO theory. The surface potentials of muscovite basal plane derived from the measured force profiles were in good agreement with those reported in the literature. In the case of edge surfaces, the measured forces were monotonically repulsive at pH 10, decreasing with pH, and changed to be attractive at pH 5.6, strongly suggesting that the charge on the clay edge surfaces is pH-dependent. The measured force profiles could not be reasonably fitted with the classical DLVO theory, even with very small surface potential values, unless the surface roughness was considered. The surface element integration (SEI) method was used to calculate the DLVO forces to account for the surface roughness. The surface potentials of the muscovite edges were derived by fitting the measured force profiles with the

  2. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin; Lu, Ang-Yu; Tseng, Chien-Chih; Yang, Xiulin; Hedhili, Mohamed N.; Chen, Min-Cheng; Wei, Kung-Hwa; Li, Lain-Jong

    2016-01-01

    that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2

  3. Probing adsorption of polyacrylamide-based polymers on anisotropic Basal planes of kaolinite using quartz crystal microbalance.

    Science.gov (United States)

    Alagha, Lana; Wang, Shengqun; Yan, Lujie; Xu, Zhenghe; Masliyah, Jacob

    2013-03-26

    Quartz crystal microbalance with dissipation (QCM-D) was applied to investigate the adsorption characteristics of polyacrylamide-based polymers (PAMs) on anisotropic basal planes of kaolinite. Kaolinite basal planes were differentiated by depositing kaolinite nanoparticles (KNPs) on silica and alumina sensors in solutions of controlled pH values. Adsorption of an in-house synthesized organic-inorganic Al(OH)3-PAM (Al-PAM) as an example of cationic hybrid PAM and a commercially available partially hydrolyzed polyacrylamide (MF1011) as an example of anionic PAM was studied. Cationic Al-PAM was found to adsorb irreversibly and preferentially on tetrahedral silica basal planes of kaolinite. In contrast, anionic MF1011 adsorbed strongly on aluminum-hydroxy basal planes, while its adsorption on tetrahedral silica basal planes was weak and reversible. Adsorption study revealed that both electrostatic attraction and hydrogen-bonding mechanisms contribute to adsorption of PAMs on kaolinite. The adsorbed Al-PAM layer was able to release trapped water overtime and became more compact, while MF1011 film became more dissipative as backbones stretched out from kaolinite surface with minimal overlapping. Experimental results obtained from this study provide clear insights into the phenomenon that governs flocculation-based solid-liquid separation processes using multicomponent flocculants of anionic and cationic nature.

  4. Platelet graphite nanofibers for electrochemical sensing and biosensing: the influence of graphene sheet orientation.

    Science.gov (United States)

    Ambrosi, Adriano; Sasaki, Toshio; Pumera, Martin

    2010-02-01

    Here, we demonstrate that platelet graphite nanofibers (PGNFs) exhibit fast heterogeneous electron-transfer rates for a wide variety of compounds such as FeCl(3), ferrocyanide, dopamine, uric acid, ascorbic acid, and the reduced form of beta-nicotinamide adenine dinucleotide. The electrochemical properties of PGNFs are superior to those of multiwalled carbon nanotubes (MWCNTs) or graphite microparticles (GMPs). Transmission electron microscopy and Raman spectroscopy reveal that this arises from the unique graphene sheet orientation of such platelet nanofibers, which accounts for their unparalleled high ratio of graphene edge planes versus basal planes.

  5. Thermodynamic Studies of Decane on Boron Nitride and Graphite Substrates Using Synchrotron Radiation and Molecular Dynamics Simulations

    Science.gov (United States)

    Strange, Nicholas; Arnold, Thomas; Forster, Matthew; Parker, Julia; Larese, J. Z.; Diamond Light Source Collaboration; University of Tennessee Team

    2014-03-01

    Hexagonal boron nitride (hBN) has a lattice structure similar to that of graphite with a slightly larger lattice parameter in the basal plane. This, among other properties, makes it an excellent substrate in place of graphite, eliciting some important differences. This work is part of a larger effort to examine the interaction of alkanes with magnesium oxide, graphite, and boron nitride surfaces. In our current presentation, we will discuss the interaction of decane with these surfaces. Decane exhibits a fully commensurate structure on graphite and hBN at monolayer coverages. In this particular experiment, we have examined the monolayer structure of decane adsorbed on the basal plane of hBN using synchrotron x-ray radiation at Diamond Light Source. Additionally, we have examined the system experimentally with volumetric isotherms as well as computationally using molecular dynamics simulations. The volumetric isotherms allow us to calculate properties which provide important information about the adsorbate's interaction with not only neighboring molecules, but also the interaction with the adsorbent boron nitride.

  6. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, R. [Dalton Cumbrian Facility, Dalton Nuclear Institute, The University of Manchester, Westlakes Science & Technology Park, Moor Row, Whitehaven, Cumbria, CA24 3HA (United Kingdom); Jones, A.N., E-mail: Abbie.Jones@manchester.ac.uk [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom); McDermott, L.; Marsden, B.J. [Nuclear Graphite Research Group, School of MACE, The University of Manchester, Manchester, M13 9PL (United Kingdom)

    2015-12-15

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite

  7. Neutron irradiation damage of nuclear graphite studied by high-resolution transmission electron microscopy and Raman spectroscopy

    International Nuclear Information System (INIS)

    Krishna, R.; Jones, A.N.; McDermott, L.; Marsden, B.J.

    2015-01-01

    Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated ‘D’peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of ‘G’ and ‘D’ in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure. - Highlights: • Irradiated graphite exhibits

  8. Availability of the basal planes of graphene oxide determines whether it is antibacterial.

    Science.gov (United States)

    Hui, Liwei; Piao, Ji-Gang; Auletta, Jeffrey; Hu, Kan; Zhu, Yanwu; Meyer, Tara; Liu, Haitao; Yang, Lihua

    2014-08-13

    There are significant controversies on the antibacterial properties of graphene oxide (GO): GO was reported to be bactericidal in saline, whereas its activity in nutrient broth was controversial. To unveil the mechanisms underlying these contradictions, we performed antibacterial assays under comparable conditions. In saline, bare GO sheets were intrinsically bactericidal, yielding a bacterial survival percentage of planes. Using bovine serum albumin and tryptophan as well-defined model adsorbates, we found that noncovalent adsorption on GO basal planes may account for the deactivation of GO's bactericidal activity. Moreover, this deactivation mechanism was shown to be extrapolatable to GO's cytotoxicity against mammalian cells. Taken together, our observations suggest that bare GO intrinsically kills both bacteria and mammalian cells and noncovalent adsorption on its basal planes may be a global deactivation mechanism for GO's cytotoxicity.

  9. Development of a sensor for L-Dopa based on Co(DMG)(2)ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode.

    Science.gov (United States)

    Leite, Fernando Roberto Figueirêdo; Maroneze, Camila Marchetti; de Oliveira, Adriano Bof; dos Santos, Wallans Torres Pio; Damos, Flavio Santos; Silva Luz, Rita de Cássia

    2012-08-01

    L-Dopa is the immediate precursor of the neurotransmitter dopamine, being the most widely prescribed drug in the treatment of Parkinson's disease. A sensitive and selective method is presented for the voltammetric determination of L-Dopa in pharmaceutical formulations using a basal plane pyrolytic graphite (BPPG) electrode modified with chloro(pyridine)bis(dimethylglyoximato)cobalt(III) (Co(DMG)(2)ClPy) absorbed in a multi-walled carbon nanotube (MWCNT). Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy were used to characterize the materials. The electrocatalytical oxidation of L-Dopa using the Co(DMG)(2)ClPy/MWCNT/BPPG electrode was investigated by cyclic voltammetry and square wave voltammetry. The parameters that influence the electrode response (the amount of Co(DMG)(2)ClPy and of MWCNT, buffer solution, buffer concentration, buffer pH, frequency and potential pulse amplitude) were investigated. Voltammetric peak currents showed a linear response for L-Dopa concentration in the range of 3 to 100 μM, with a sensitivity of 4.43 μAcm(-2)/μM and a detection limit of 0.86 μM. The related standard deviation for 10 determinations of 50 μM L-Dopa was 1.6%. The results obtained for L-Dopa determination in pharmaceutical formulations (tablets) were in agreement with the compared official method. The sensor was successfully applied for L-Dopa selective determination in pharmaceutical formulations. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Imaging of tritium implanted into graphite

    International Nuclear Information System (INIS)

    Malinowski, M.E.; Causey, R.A.

    1988-01-01

    The extensive use of graphite in plasma-facing surfaces of tokamaks such as the Tokamak Fusion Test Reactor, which has planned tritium discharges, makes two-dimensional tritium detection techniques important in helping to determine torus tritium inventories. We have performed experiments in which highly oriented pyrolytic graphite (HOPG) samples were first tritium implanted with fluences of ∼10 16 T/cm 2 at energies approx. 0 C resulted in no discernible motion of tritium along the basal plane, but did show that significant desorption of the implanted tritium occurred. The current results indicate that tritium in quantities of 10 12 T/cm 2 in tritiated components could be readily detected by imaging at lower magnifications

  11. Graphite-graphite oxide composite electrode for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Li Wenyue; Liu Jianguo; Yan Chuanwei

    2011-01-01

    Highlights: → A new composite electrode is designed for vanadium redox flow battery (VRB). → The graphite oxide (GO) is used as electrode reactions catalyst. → The excellent electrode activity is attributed to the oxygen-containing groups attached on the GO surface. → A catalytic mechanism of the GO towards the redox reactions is presumed. - Abstract: A graphite/graphite oxide (GO) composite electrode for vanadium redox battery (VRB) was prepared successfully in this paper. The materials were characterized with X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. The specific surface area was measured by the Brunauer-Emmett-Teller method. The redox reactions of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ were studied with cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the electrochemical performances of the electrode were improved greatly when 3 wt% GO was added into graphite electrode. The redox peak currents of [VO 2 ] + /[VO] 2+ and V 3+ /V 2+ couples on the composite electrode were increased nearly twice as large as that on the graphite electrode, and the charge transfer resistances of the redox pairs on the composite electrode are also reduced. The enhanced electrochemical activity could be ascribed to the presence of plentiful oxygen functional groups on the basal planes and sheet edges of the GO and large specific surface areas introduced by the GO.

  12. Neutron scattering study of 36 Ar monolayer films adsorbed on graphite

    DEFF Research Database (Denmark)

    Taub, H.; da Costa Carneiro, Kim; Kjems, Jørgen

    1977-01-01

    Diffraction of neutrons from 36 Ar monolayers adsorbed on graphite basal planes indicates that an ordered, two-dimensional (2D) triangular lattice is formed at low temperature. The lattice constant is found to be slightly larger than that of the bulk 3D solid but significantly smaller than that o...

  13. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  14. Basal-plane stacking faults in non-polar GaN studied by off-axis electron holography

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lewis Z-Y; Rao, D V Sridhara; Kappers, M J; Humphreys, C J [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Geiger, D, E-mail: ZL249@cam.ac.u [Triebenberg Laboratory, Institute for Structure Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)

    2010-02-01

    We have studied basal-plane stacking faults in a non-polar (11-20) GaN epilayer using high-resolution electron microscopy and off-axis electron holography. The microstructure of the basal-plane stacking faults (BSFs) has been determined to be I{sub 1} type from high-resolution TEM images. High-resolution holograms along the [11-20] zone axis were obtained by off-axis electron holography on a Cs-corrected TEM, providing {approx}2 A spatial resolution in the reconstructed amplitude and phase images. Phase fluctuations across the stacking faults were detected, suggesting the presence of a built-in electric field. The uncertainties in the experiments and their interpretation are discussed.

  15. Metallic electrical transport in inter-graphitic planes of an individual tubular carbon nanocone

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Q; Gao, R X; Qu, S L [Department of Optics and Electronics Science, Harbin Institute of Technology at Wei Hai, Weihai 264209 (China); Li, J J; Gu, C Z [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)], E-mail: wq19750505@tom.com

    2009-04-08

    Tubular carbon cones (TCCs) with a herring-bone-like graphitic structure are synthesized on gold wire via the bias-assisted hot filament chemical vapor deposition (HFCVD) method. The electrical transport properties of an individual TCC are studied in the temperature range from 300 to 500 K by using a double probe scanning electron microscopy (DPSEM) in situ electrical measurement system. The high-resistance I-V characteristics of W-TCC-Au back-to-back double junctions show that electrons tunnel through the W-TCC junction, while thermoionic transport through the Au-TCC junction contributes to low-resistance properties. Temperature dependence of the electrical characteristics indicates that inter-graphitic-plane electrical transport in TCC is metallic.

  16. Graphite Microstructural Characterization Using Time-Domain and Correlation-Based Ultrasonics

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, James [Johns Hopkins Univ., Baltimore, MD (United States)

    2017-12-06

    Among techniques that have been used to determine elastic modulus in nuclear graphites, ultrasonic methods have enjoyed wide use and standards using contacting piezoelectric tranducers have been developed to ensure repeatability of these types of measurements. However, the use of couplants and the pressures used to effectively couple transducers to samples can bias measurements and produce results that are not wholly related to the properties of the graphite itself. In this work, we have investigated the use of laser ultrasonic methods for making elastic modulus measurements in nuclear graphites. These methods use laser-based transmitters and receivers to gather data and do not require use of ultrasonic couplants or mechanical contact with the sample. As a result, information directly related to the elastic responses of graphite can be gathered even if the graphite is porous, brittle and compliant. In particular, we have demonstrated the use of laser ultrasonics for the determination of both Young’s modulus and shear modulus in a range of nuclear graphites including those that are being considered for use in future nuclear reactors. These results have been analyzed to assess the contributions of porosity and microcracking to the elastic responses of these graphites. Laser-based methods have also been used to assess the moduli of NBG-18 and IG-110 where samples of each grade were oxidized to produce specific changes in porosity. These data were used to develop new models for the elastic responses of nuclear graphites and these models have been used to infer specific changes in graphite microstructure that occur during oxidation that affect elastic modulus. Specifically, we show how ultrasonic measurements in oxidized graphites are consistent with nano/microscale oxidation processes where basal plane edges react more readily than basal plane surfaces. We have also shown the use of laser-based methods to perform shear-wave birefringence measurements and have shown

  17. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Science.gov (United States)

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  18. Preparation of graphite derivatives by selective reduction of graphite oxide and isocyanate functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Santha Kumar, Arunjunai Raja Shankar [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Piana, Francesco [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany); Mičušík, Matej [Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41, Bratislava (Slovakia); Pionteck, Jürgen, E-mail: pionteck@ipfdd.de [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Banerjee, Susanta [Materials Science Centre, Indian Institute of Technology, Kharagpur, 721302, West Bengal (India); Voit, Brigitte [Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069, Dresden (Germany); Organic Chemistry of Polymers, Technische Universität Dresden, 01062, Dresden (Germany)

    2016-10-01

    Heavily oxidized and ordered graphene nanoplatelets were produced from natural graphite by oxidation using a mixture of phosphoric acid, sulphuric acid, and potassium permanganate (Marcano's method). The atomic percentage of oxygen in the graphite oxide produced was more than 30% confirmed by XPS studies. The graphite oxide produced had intact basal planes and remains in a layered structure with interlayer distance of 0.8 nm, analyzed by WAXS. The graphite oxide was treated with 4,4′-methylenebis(phenyl isocyanate) (MDI) to produce grafted isocyanate functionalization. Introduction of these bulky functional groups widens the interlayer distance to 1.3 nm. In addition, two reduction methods, namely benzyl alcohol mediated reduction and thermal reduction were carried out on isocyanate modified and unmodified graphite oxides and compared to each other. The decrease in the oxygen content and the sp{sup 3} defect-repair were studied with XPS and RAMAN spectroscopy. Compared to the thermal reduction process, which is connected with large material loss, the benzyl alcohol mediated reduction process is highly effective in defect repair. This resulted in an increase of conductivity of at least 9 orders of magnitude compared to the graphite oxide. - Highlights: • Preparation of GO by Marcano's method results in defined interlayer spacing. • Treatment of GO with diisocyanate widens the interlayer spacing to 1.3 nm. • Chemical reduction of GO with benzyl alcohol is effective in defect repair. • Electrical conductivity increases by 9 orders of magnitude during chemical reduction. • The isocyanate functionalization is stable under chemical reducing conditions.

  19. Structure and phase transitions of monolayers of intermediate-length n-alkanes on graphite studied by neutron diffraction and molecular dynamics simulation

    Science.gov (United States)

    Diama, A.; Matthies, B.; Herwig, K. W.; Hansen, F. Y.; Criswell, L.; Mo, H.; Bai, M.; Taub, H.

    2009-08-01

    We present evidence from neutron diffraction measurements and molecular dynamics (MD) simulations of three different monolayer phases of the intermediate-length alkanes tetracosane (n-C24H50 denoted as C24) and dotriacontane (n-C32H66 denoted as C32) adsorbed on a graphite basal-plane surface. Our measurements indicate that the two monolayer films differ principally in the transition temperatures between phases. At the lowest temperatures, both C24 and C32 form a crystalline monolayer phase with a rectangular-centered (RC) structure. The two sublattices of the RC structure each consists of parallel rows of molecules in their all-trans conformation aligned with their long axis parallel to the surface and forming so-called lamellas of width approximately equal to the all-trans length of the molecule. The RC structure is uniaxially commensurate with the graphite surface in its [110] direction such that the distance between molecular rows in a lamella is 4.26 Å=√3 ag, where ag=2.46 Å is the lattice constant of the graphite basal plane. Molecules in adjacent rows of a lamella alternate in orientation between the carbon skeletal plane being parallel and perpendicular to the graphite surface. Upon heating, the crystalline monolayers transform to a "smectic" phase in which the inter-row spacing within a lamella expands by ˜10% and the molecules are predominantly oriented with the carbon skeletal plane parallel to the graphite surface. In the smectic phase, the MD simulations show evidence of broadening of the lamella boundaries as a result of molecules diffusing parallel to their long axis. At still higher temperatures, they indicate that the introduction of gauche defects into the alkane chains drives a melting transition to a monolayer fluid phase as reported previously.

  20. Activating basal-plane catalytic activity of two-dimensional MoS2 monolayer with remote hydrogen plasma

    KAUST Repository

    Cheng, Chia-Chin

    2016-09-10

    Two-dimensional layered transition metal dichalcogenide (TMD) materials such as Molybdenum disufide (MoS2) have been recognized as one of the low-cost and efficient electrocatalysts for hydrogen evolution reaction (HER). The crystal edges that account for a small percentage of the surface area, rather than the basal planes, of MoS2 monolayer have been confirmed as their active catalytic sites. As a result, extensive efforts have been developing in activating the basal planes of MoS2 for enhancing their HER activity. Here, we report a simple and efficient approach-using a remote hydrogen-plasma process-to creating S-vacancies on the basal plane of monolayer crystalline MoS2; this process can generate high density of S-vacancies while mainly maintaining the morphology and structure of MoS2 monolayer. The density of S-vacancies (defects) on MoS2 monolayers resulted from the remote hydrogen-plasma process can be tuned and play a critical role in HER, as evidenced in the results of our spectroscopic and electrical measurements. The H2-plasma treated MoS2 also provides an excellent platform for systematic and fundamental study of defect-property relationships in TMDs, which provides insights for future applications including electrical, optical and magnetic devices. © 2016 Elsevier Ltd.

  1. Electrochemical Ultracapacitors Using Graphitic Nanostacks

    Science.gov (United States)

    Marotta, Christopher

    2012-01-01

    Electrochemical ultracapacitors (ECs) have been developed using graphitic nanostacks as the electrode material. The advantages of this technology will be the reduction of device size due to superior power densities and relative powers compared to traditional activated carbon electrodes. External testing showed that these materials display reduced discharge response times compared to state-of-the-art materials. Such applications are advantageous for pulsed power applications such as burst communications (satellites, cell phones), electromechanical actuators, and battery load leveling in electric vehicles. These carbon nanostructures are highly conductive and offer an ordered mesopore network. These attributes will provide more complete electrolyte wetting, and faster release of stored charge compared to activated carbon. Electrochemical capacitor (EC) electrode materials were developed using commercially available nanomaterials and modifying them to exploit their energy storage properties. These materials would be an improvement over current ECs that employ activated carbon as the electrode material. Commercially available graphite nanofibers (GNFs) are used as precursor materials for the synthesis of graphitic nanostacks (GNSs). These materials offer much greater surface area than graphite flakes. Additionally, these materials offer a superior electrical conductivity and a greater average pore size compared to activated carbon electrodes. The state of the art in EC development uses activated carbon (AC) as the electrode material. AC has a high surface area, but its small average pore size inhibits electrolyte ingress/egress. Additionally, AC has a higher resistivity, which generates parasitic heating in high-power applications. This work focuses on fabricating EC from carbon that has a very different structure by increasing the surface area of the GNF by intercalation or exfoliation of the graphitic basal planes. Additionally, various functionalities to the GNS

  2. Anisotropic electrical conduction in relation to the stacking disorder in graphite

    International Nuclear Information System (INIS)

    Tsuzuku, T.

    1979-01-01

    The in-plane and c-axis conduction behaviours of Kish graphite and of hot-worked pyrolytic graphite are discussed in relation to their structural perfection, special interest being focused onto the stacking fault disorder which appears in the form of extended basal dislocation ribbons. Analysis of the two-dimensional magneto-conductivity indicates that the carrier density of faulted specimens increases slowly with temperature (T) even below the degeneracy point of the carrier system, whereas the unfaulted ones do not. the c-axis resistivity (psub(c)) has been found to decrease with diminishing stacking disorder for a well-defined specimen group not containing such irregularities as microcracks. This verifies the applicability of the band model to the intrinsic psub(c) 's, in connection with the success of Ono's theory accounting for the wide-range scattering of past data. The discrepancy still remaining between the theoretical and experimental psub(c) vs T relationship, as well as the increase of the in-plane conduction carrier density with temperature, seems to be removed by assuming thermal liberation of the localized Tamm-state electrons from the stacking fault planes. (author)

  3. Investigation of benzene and toluene layers on 0001 surface of graphite by means of neutron scattering

    International Nuclear Information System (INIS)

    Monkenbusch, M.

    1981-01-01

    The structures of benzene (C 6 H 6 , C 6 D 6 ) and toluene (C 6 H 5 -CH 3 , C 6 D 5 -CD 3 ) monolayers on the basal planes of graphite have been investigated by neutron diffraction. The dynamics of the benzene layer has been studied by observing the incoherently, inelastically scattered neutrons using the time-of-flight method. The main results are: Above a phase transition temperature Tsub(c)approx.=145 K benzene on the basal planes of graphite forms a quasi 2D-fluid with high compressibility. For toluene a fluid phase exists above 140 K, between 70 K and 140 K it forms an incommensurate layer and below 70 K a 3x3 structure has been observed. The fluid phase of adsorbed benzene shows a broad quasielastic scattering indicating an effective surface diffusion coefficient of 10 -4 cm 2 /s at 200 K. The inelastic spectrum has been compared with an appropriate lattice dynamical model. The comparison with the data reveals, can be considered as a fairly anharmonic 2D-solid with a static external potential due to the substrate. (orig./HK)

  4. Dual-Native Vacancy Activated Basal Plane and Conductivity of MoSe2 with High-Efficiency Hydrogen Evolution Reaction.

    Science.gov (United States)

    Gao, Daqiang; Xia, Baorui; Wang, Yanyan; Xiao, Wen; Xi, Pinxian; Xue, Desheng; Ding, Jun

    2018-04-01

    Although transition metal dichalcogenide MoSe 2 is recognized as one of the low-cost and efficient electrocatalysts for the hydrogen evolution reaction (HER), its thermodynamically stable basal plane and semiconducting property still hamper the electrocatalytic activity. Here, it is demonstrated that the basal plane and edges of 2H-MoSe 2 toward HER can be activated by introducing dual-native vacancy. The first-principle calculations indicate that both the Se and Mo vacancies together activate the electrocatalytic sites in the basal plane and edges of MoSe 2 with the optimal hydrogen adsorption free energy (ΔG H* ) of 0 eV. Experimentally, 2D MoSe 2 nanosheet arrays with a large amount of dual-native vacancies are fabricated as a catalytic working electrode, which possesses an overpotential of 126 mV at a current density of 100 mV cm -2 , a Tafel slope of 38 mV dec -1 , and an excellent long-term durability. The findings pave a rational pathway to trigger the activity of inert MoSe 2 toward HER and also can be extended to other layered dichalcogenide. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Helium generation and diffusion in graphite and some carbides

    International Nuclear Information System (INIS)

    Holt, J.B.; Guinan, M.W.; Hosmer, D.W.; Condit, R.H.; Borg, R.J.

    1976-01-01

    The cross section for the generation of helium in neutron irradiated carbon was found to be 654 mb at 14.4 MeV and 744 mb at 14.9 MeV. Extrapolating to 14.1 MeV (the fusion reactor spectrum) gives 615 mb. The diffusion of helium in dense polycrystalline graphite and in pyrographite was measured and found to be D = 7.2 x 10 -7 m 2 s -1 exp (-80 kJ/RT). It is assumed that diffusion is primarily in the basal plane direction in crystals of the graphite. In polycrystalline graphite the path length is a factor of √2 longer than the measured distance due to the random orientation mismatch between successive grains. Isochronal anneals (measured helium release as the specimen is steadily heated) were run and maximum release rates were found at 200 0 C in polycrystalline graphite, 1000 0 C in pyrographite, 1350 0 C in boron carbide, and 1350 0 and 2400 0 C (two peaks) in silicon carbide. It is concluded that in these candidates for curtain materials in fusion reactors the helium releases can probably occur without bubble formation in graphites, may occur in boron carbide, but will probably cause bubble formation in silicon carbide. 7 figures

  6. Hydrogen adsorption on and solubility in graphites

    International Nuclear Information System (INIS)

    Kanashenko, S.L.; Wampler, W.R.

    1996-01-01

    The experimental data on adsorption and solubility of hydrogen isotopes in graphite over a wide range of temperatures and pressures are reviewed. Langmuir adsorption isotherms are proposed for the hydrogen-graphite interaction. The entropy and enthalpy of adsorption are estimated, allowing for effects of relaxation of dangling sp 2 bonds. Three kinds of traps are proposed: edge carbon atoms of interstitial loops with an adsorption enthalpy relative to H 2 gas of -4.4 eV/H 2 (unrelaxed, Trap 1), edge carbon atoms at grain surfaces with an adsorption enthalpy of -2.3 eV/H 2 (relaxed, Trap 2), and basal plane adsorption sites with an enthalpy of +2.43 eV/H 2 (Trap 3). The adsorption capacity of different types of graphite depends on the concentration of traps which depends on the crystalline microstructure of the material. The number of potential sites for the 'true solubility' (Trap 3) is assumed to be about one site per carbon atom in all types of graphite, but the endothermic character of this solubility leads to a negligible H inventory compared to the concentration of hydrogen in type 1 and type 2 traps for temperatures and gas pressures used in the experiments. Irradiation with neutrons or carbon atoms increases the concentration of type 1 and type 2 traps from about 20 and 200 appm respectively for unirradiated (POCO AXF-5Q) graphite to about 1500 and 5000 appm, respectively, at damage levels above 1 dpa. (orig.)

  7. Influence of basal-plane dislocation structures on expansion of single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes

    Science.gov (United States)

    Hayashi, Shohei; Yamashita, Tamotsu; Senzaki, Junji; Miyazato, Masaki; Ryo, Mina; Miyajima, Masaaki; Kato, Tomohisa; Yonezawa, Yoshiyuki; Kojima, Kazutoshi; Okumura, Hajime

    2018-04-01

    The origin of expanded single Shockley-type stacking faults in forward-current degradation of 4H-SiC p-i-n diodes was investigated by the stress-current test. At a stress-current density lower than 25 A cm-2, triangular stacking faults were formed from basal-plane dislocations in the epitaxial layer. At a stress-current density higher than 350 A cm-2, both triangular and long-zone-shaped stacking faults were formed from basal-plane dislocations that converted into threading edge dislocations near the interface between the epitaxial layer and the substrate. In addition, the conversion depth of basal-plane dislocations that expanded into the stacking fault was inside the substrate deeper than the interface. These results indicate that the conversion depth of basal-plane dislocations strongly affects the threshold stress-current density at which the expansion of stacking faults occurs.

  8. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  9. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  10. The Erosion of Diamond and Highly Oriented Pyrolytic Graphite After 1.5 Years of Space Exposure

    Science.gov (United States)

    De Groh, Kim K.; Banks, Bruce A.

    2018-01-01

    Polymers and other oxidizable materials on the exterior of spacecraft in the low Earth orbit (LEO) space environment can be eroded due to reaction with atomic oxygen (AO). Therefore, in order to design durable spacecraft, it is important to know the LEO AO erosion yield (Ey, volume loss per incident oxygen atom) of materials susceptible to AO reaction. The Polymers Experiment was developed to determine the AO Ey of various polymers and other materials flown in ram and wake orientations in LEO. The experiment was flown as part of the Materials International Space Station Experiment 7 (MISSE 7) mission for 1.5 years on the exterior of the International Space Station (ISS). As part of the experiment, a sample containing Class 2A diamond (100 plane) and highly oriented pyrolytic graphite (HOPG, basal and edge planes) was exposed to ram AO and characterized for erosion. The materials were salt-sprayed prior to flight to provide isolated sites of AO protection. The Ey of the samples was determined through post-flight electron microscopy recession depth measurements. The experiment also included a Kapton H witness sample for AO fluence determination. This paper provides an overview of the MISSE 7 mission, a description of the flight experiment, the characterization techniques used, the mission AO fluence, and the LEO Ey results for diamond and HOPG (basal and edge planes). The data is compared to the Ey of pyrolytic graphite exposed to four years of space exposure as part of the MISSE 2 mission. The results indicate that diamond erodes, but with a very low Ey of 1.58 +/- 0.04 x 10(exp -26) cm(exp 3)/atom. The different HOPG planes displayed significantly different amounts of erosion from each other. The HOPG basal plane had an Ey of 1.05 +/- 0.08 x 10(exp -24) cm(exp 3)/atom while the edge plane had a lower Ey of only 5.38 +/- 0.90 x 10(exp -25) -cm(exp 3)/atom. The Ey data from this ISS spaceflight experiment provides valuable information for understanding of chemistry

  11. The tensile deformation behavior of nuclear-grade isotropic graphite posterior to hydrostatic loading

    International Nuclear Information System (INIS)

    Yoda, S.; Eto, M.

    1983-01-01

    The effects of prehydrostatic loading on microstructural changes and tensile deformation behavior of nuclear-grade isotropic graphite have been examined. Scanning electron micrographs show that formation of microcracks associated with delamination between basal planes occurs under hydrostatic loading. Hydrostatic loading on specimens results in the decrease in tensile strength and increase in residual strain generated by the applied tensile stress at various levels, indicating that the graphite material is weakened by hydrostatic loading. A relationship between residual strain and applied tensile stress for graphite hydrostatically-loaded at several pressure levels can be approximately expressed as element of= (AP + B) sigmasup(n) over a wide range hydrostatic pressure, where element of, P and sigma denote residual strain, hydrostatic pressure and applied tensile stress, respectively; A, B and n are constant. The effects of prehydrostatic loading on the tensile stress-strain behavior of the graphite were examined in more detail. The ratio of stress after hydrostatic loading to that before hydrostatic loading on the stress-strain relationship remains almost unchanged irrespective of strain. (orig.)

  12. Formation Dynamics of Potassium-Based Graphite Intercalation Compounds: An Ab Initio Study

    Science.gov (United States)

    Jiang, Xiankai; Song, Bo; Tománek, David

    2018-04-01

    This paper is a contribution to the Physical Review Applied collection in memory of Mildred S. Dresselhaus. We use ab initio molecular dynamics simulations to study the microscopic dynamics of potassium intercalation in graphite. Upon adsorbing on graphite from the vapor phase, K atoms transfer their valence charge to the substrate. K atoms adsorbed on the surface diffuse rapidly along the graphene basal plane and eventually enter the interlayer region following a "U -turn" across the edge, gaining additional energy. This process is promoted at higher coverages associated with higher K pressure, leading to the formation of a stable intercalation compound. We find that the functionalization of graphene edges is an essential prerequisite for intercalation since bare edges reconstruct and reconnect, closing off the entry channels for the atoms.

  13. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  14. EEL Calculations and Measurements of Graphite and Graphitic-CNx Core-Losses

    International Nuclear Information System (INIS)

    Seepujak, A; Bangert, U; Harvey, A J; Blank, V D; Kulnitskiy, B A; Batov, D V

    2006-01-01

    Core EEL spectra of MWCNTs (multi-wall carbon nanotubes) grown in a nitrogen atmosphere were acquired utilising a dedicated STEM equipped with a Gatan Enfina system. Splitting of the carbon K-edge π* resonance into two peaks provided evidence of two nondegenerate carbon bonding states. In order to confirm the presence of a CN x bonding state, a full-potential linearised augmented plane-wave method was utilised to simulate core EEL spectra of graphite and graphitic-CN x compounds. The simulations confirmed splitting of the carbon K-edge π* resonance in graphitic-CN x materials, with the pristine graphite π* resonance remaining unsplit. The simulations also confirmed the increasing degree of amorphicity with higher concentrations (25%) of substitutional nitrogen in graphite

  15. Electron transfer kinetics on natural crystals of MoS2 and graphite.

    Science.gov (United States)

    Velický, Matěj; Bissett, Mark A; Toth, Peter S; Patten, Hollie V; Worrall, Stephen D; Rodgers, Andrew N J; Hill, Ernie W; Kinloch, Ian A; Novoselov, Konstantin S; Georgiou, Thanasis; Britnell, Liam; Dryfe, Robert A W

    2015-07-21

    Here, we evaluate the electrochemical performance of sparsely studied natural crystals of molybdenite and graphite, which have increasingly been used for fabrication of next generation monolayer molybdenum disulphide and graphene energy storage devices. Heterogeneous electron transfer kinetics of several redox mediators, including Fe(CN)6(3-/4-), Ru(NH3)6(3+/2+) and IrCl6(2-/3-) are determined using voltammetry in a micro-droplet cell. The kinetics on both materials are studied as a function of surface defectiveness, surface ageing, applied potential and illumination. We find that the basal planes of both natural MoS2 and graphite show significant electroactivity, but a large decrease in electron transfer kinetics is observed on atmosphere-aged surfaces in comparison to in situ freshly cleaved surfaces of both materials. This is attributed to surface oxidation and adsorption of airborne contaminants at the surface exposed to an ambient environment. In contrast to semimetallic graphite, the electrode kinetics on semiconducting MoS2 are strongly dependent on the surface illumination and applied potential. Furthermore, while visibly present defects/cracks do not significantly affect the response of graphite, the kinetics on MoS2 systematically accelerate with small increase in disorder. These findings have direct implications for use of MoS2 and graphene/graphite as electrode materials in electrochemistry-related applications.

  16. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  17. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    International Nuclear Information System (INIS)

    Kwolek, Emma J.; Lii-Rosales, Ann; Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W.; Wallingford, Mark; Zhou, Yinghui; Thiel, Patricia A.

    2016-01-01

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  18. Adsorption of dysprosium on the graphite (0001) surface: Nucleation and growth at 300 K

    Energy Technology Data Exchange (ETDEWEB)

    Kwolek, Emma J.; Lii-Rosales, Ann [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Lei, Huaping; Wang, Cai-Zhuang; Tringides, Michael C.; Evans, James W. [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Wallingford, Mark; Zhou, Yinghui [The Ames Laboratory, Ames, Iowa 50011 (United States); Thiel, Patricia A., E-mail: pthiel@iastate.edu [The Ames Laboratory, Ames, Iowa 50011 (United States); Department of Chemistry, Iowa State University, Ames, Iowa 50011 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011 (United States)

    2016-12-07

    We have studied nucleation and growth of Dy islands on the basal plane of graphite at 300 K using scanning tunneling microscopy, density functional theory (DFT) in a form that includes van der Waals interactions, and analytic theory. The interaction of atomic Dy with graphite is strong, while the diffusion barrier is small. Experiment shows that at 300 K, the density of nucleated islands is close to the value predicted for homogeneous nucleation, using critical nucleus size of 1 and the DFT-derived diffusion barrier. Homogeneous nucleation is also supported by the monomodal shape of the island size distributions. Comparison with the published island density of Dy on graphene shows that the value is about two orders of magnitude smaller on graphite, which can be attributed to more effective charge screening in graphite. The base of each island is 3 atomic layers high and atomically ordered, forming a coincidence lattice with the graphite. Islands resist coalescence, probably due to multiple rotational orientations associated with the coincidence lattice. Upper levels grow as discernible single-atom layers. Analysis of the level populations reveals significant downward interlayer transport, which facilitates growth of the base. This island shape is metastable, since more compact three-dimensional islands form at elevated growth temperature.

  19. The behavior of interstitials in irradiated graphite

    International Nuclear Information System (INIS)

    Pedraza, D.F.

    1991-01-01

    A computer model is developed to simulate the behavior of self-interstitials with particular attention to clustering. Owing to the layer structure of graphite, atomistic simulations can be performed using a large parallelepipedic supercell containing a few layers. In particular, interstitial clustering is studied here using a supercell that contains two basal planes only. Frenkel pairs are randomly produced. Interstitials are placed at sites between the crystal planes while vacancies are distributed in the two crystal planes. The size of the computational cell is 20000 atoms and periodic boundary conditions are used in two dimensions. Vacancies are assumed immobile whereas interstitials are given a certain mobility. Two point defect sinks are considered, direct recombination of Frenkel pairs and interstitial clusters. The clusters are assumed to be mobile up to a certain size where they are presumed to become loop nuclei. Clusters can shrink by emission of singly bonded interstitials or by recombination of a peripheral interstitial with a neighboring vacancy. The conditions under which interstitial clustering occurs are reported. It is shown that when clustering occurs the cluster size population gradually shifts towards the largest size cluster. The implications of the present results for irradiation growth and irradiation-induced amorphization are discussed

  20. Neutron scattering investigation of layer-bending modes in alkali-metal--graphite intercalation compounds

    International Nuclear Information System (INIS)

    Zabel, H.; Kamitakahara, W.A.; Nicklow, R.M.

    1982-01-01

    Phonon dispersion curves for low-frequency transverse modes propagating in the basal plane have been measured in the alkali-metal--graphite intercalation compounds KC 8 , CsC 8 , KC 24 , and RbC 24 by means of neutron spectroscopy. The acoustic branches show an almost quadratic dispersion relation at small q, characteristic of strongly layered materials. The optical branches of stage-1 compounds can be classified as either graphitelike branches showing dispersion, or as almost dispersionless alkali-metal-like modes. Macroscopic shear constants C 44 and layer-bending moduli have been obtained for the intercalation compounds by analyzing the data in terms of a simple semicontinuum model. In stage-2 compounds, a dramatic softening of the shear constant by about a factor of 8 compared with pure graphite has been observed. Low-temperature results on KC 24 indicate the opening of a frequency gap near the alkali-metal Brillouin-zone boundary, possibly due to the formation of the alkali-metal superstructure

  1. Raman characterization of bulk ferromagnetic nanostructured graphite

    International Nuclear Information System (INIS)

    Pardo, Helena; Divine Khan, Ngwashi; Faccio, Ricardo; Araújo-Moreira, F.M.; Fernández-Werner, Luciana

    2012-01-01

    Raman spectroscopy was used to characterize bulk ferromagnetic graphite samples prepared by controlled oxidation of commercial pristine graphite powder. The G:D band intensity ratio, the shape and position of the 2D band and the presence of a band around 2950 cm -1 showed a high degree of disorder in the modified graphite sample, with a significant presence of exposed edges of graphitic planes as well as a high degree of attached hydrogen atoms.

  2. A 2-D nucleation-growth model of spheroidal graphite

    International Nuclear Information System (INIS)

    Lacaze, Jacques; Bourdie, Jacques; Castro-Román, Manuel Jesus

    2017-01-01

    Analysis of recent experimental investigations, in particular by transmission electron microscopy, suggests spheroidal graphite grows by 2-D nucleation of new graphite layers at the outer surface of the nodules. These layers spread over the surface along the prismatic direction of graphite which is the energetically preferred growth direction of graphite when the apparent growth direction of the nodules is along the basal direction of graphite. 2-D nucleation-growth models first developed for precipitation of pure substances are then adapted to graphite growth from the liquid in spheroidal graphite cast irons. Lateral extension of the new graphite layers is controlled by carbon diffusion in the liquid. This allows describing quantitatively previous experimental results giving strong support to this approach.

  3. Development of Nanoscale Graphitic Devices and The Transport Characterization

    International Nuclear Information System (INIS)

    Gunasekaran, Venugopal

    2011-02-01

    This dissertation describes the development of graphitic based nanoscale devices with its fabrication and transport characterization results. It covers graphite nano-scale stacked-junctions fabricated using focused ion beam (FIB) 3-D etching technique, a single layer graphite layer (graphene) preparation and its electrical transport characterization results and the synthesis and investigation of electrical transport behavior of graphene oxide based thin film devices. The first chapter describes the basic information about the carbon family in detail in which the electronic properties and structure of graphite, graphene and graphene oxide are discussed. In addition, the necessity of developing nanoscale graphitic devices is given. The second chapter explains the experimental techniques used in this research for fabricating nanoscale devices which includes focused ion beam 3-D fabrication procedures, mechanical exfoliation technique and photolithographic methods. In third chapter, we have reported the results on temperature dependence of graphite planar-type structures fabricated along ab-plane. In the fourth and fifth chapters, the fabrication and electrical transport characteristics of large in-plane area graphite planar-type structures (fabricated along ab-plane and c-axis) were discussed and their transport anisotropy properties were investigated briefly. In the sixth chapter, we focused the fabrication of the submicron sized graphite stacked junctions and their electrical transport characterization studies. In which, FIB was used to fabricated the submicron junctions with various in-plane area (with same stack height) are and their transport characteristics were compared. The seventh chapter reports investigation of electrical transport results of nanoscale graphite stacked-junctions in which the temperature dependent transport (R-T) studies, current-voltage measurements for the various in-plane areas and for various stack height samples were analyzed. The

  4. Investigating the effects of stress on the pore structures of nuclear grade graphites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Joshua E.L., E-mail: joshua.taylor@postgrad.manchester.ac.uk; Hall, Graham N., E-mail: graham.n.hall@manchester.ac.uk; Mummery, Paul M., E-mail: paul.m.mummery@manchester.ac.uk

    2016-03-15

    Graphite is used as a moderating material and as a structural component in a number of current generation nuclear reactors. During reactor operation stresses develop in the graphite components, causing them to deform. It is important to understand how the microstructure of graphite affects the material's response to these stresses. A series of experiments were performed to investigate how the pore structures of Pile Grade A and Gilsocarbon graphites respond to loading stresses. A compression rig was used to simulate the build-up of operational stresses in graphite components, and a confocal laser microscope was used to study variation of a number of important pore properties. Values of elastic modulus and Poisson's ratio were calculated and compared to existing literature to confirm the validity of the experimental techniques. Mean pore areas were observed to decrease linearly with increasing applied load, mean pore eccentricity increased linearly, and a small amount of clockwise pore rotation was observed. The response to build-up of stresses was dependent on the orientation of the pores and basal planes and the shapes of the pores with respect to the loading axis. It was proposed that pore closure and pore reorientation were competing processes. Pore separation was quantified using ‘nearest neighbour’ and Voronoi techniques, and non-pore regions were found to shrink linearly with increasing applied load. - Highlights: • Effects of stress on pore structures of Gilsocarbon and PGA graphites were studied. • Application of a compressive load was used to generate stresses in graphite. • Inverse linear relationship between stress and pore area was observed. • Mean pore eccentricity increased, clockwise pore rotation observed. • Separation of pores quantified using Voronoi and ‘nearest-neighbour’ methods.

  5. Sintering behavior and thermal conductivity of nickel-coated graphite flake/copper composites fabricated by spark plasma sintering

    Science.gov (United States)

    Xu, Hui; Chen, Jian-hao; Ren, Shu-bin; He, Xin-bo; Qu, Xuan-hui

    2018-04-01

    Nickel-coated graphite flakes/copper (GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes (GFs) being modified by Ni-P electroless plating. The effects of the phase transition of the amorphous Ni-P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity (TC) of the GN/Cu composites were systematically investigated. The introduction of Ni-P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650°C and slightly increased the TC of the X-Y basal plane of the GF/Cu composites with 20vol%-30vol% graphite flakes. However, when the graphite flake content was greater than 30vol%, the TC of the GF/Cu composites decreased with the introduction of Ni-P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.

  6. Electrochemical maps and movies of the hydrogen evolution reaction on natural crystals of molybdenite (MoS2): basal vs. edge plane activity.

    Science.gov (United States)

    Bentley, Cameron L; Kang, Minkyung; Maddar, Faduma M; Li, Fengwang; Walker, Marc; Zhang, Jie; Unwin, Patrick R

    2017-09-01

    Two dimensional (2D) semiconductor materials, such as molybdenum disulfide (MoS 2 ) have attracted considerable interest in a range of chemical and electrochemical applications, for example, as an abundant and low-cost alternative electrocatalyst to platinum for the hydrogen evolution reaction (HER). While it has been proposed that the edge plane of MoS 2 possesses high catalytic activity for the HER relative to the "catalytically inert" basal plane, this conclusion has been drawn mainly from macroscale electrochemical (voltammetric) measurements, which reflect the "average" electrocatalytic behavior of complex electrode ensembles. In this work, we report the first spatially-resolved measurements of HER activity on natural crystals of molybdenite, achieved using voltammetric scanning electrochemical cell microscopy (SECCM), whereby pixel-resolved linear-sweep voltammogram (LSV) measurements have allowed the HER to be visualized at multiple different potentials to construct electrochemical flux movies with nanoscale resolution. Key features of the SECCM technique are that characteristic surface sites can be targeted and analyzed in detail and, further, that the electrocatalyst area is known with good precision (in contrast to many macroscale measurements on supported catalysts). Through correlation of the local voltammetric response with information from scanning electron microscopy (SEM) and atomic force microscopy (AFM) in a multi-microscopy approach , it is demonstrated unequivocally that while the basal plane of bulk MoS 2 (2H crystal phase) possesses significant activity, the HER is greatly facilitated at the edge plane ( e.g. , surface defects such as steps, edges or crevices). Semi-quantitative treatment of the voltammetric data reveals that the HER at the basal plane of MoS 2 has a Tafel slope and exchange current density ( J 0 ) of ∼120 mV per decade and 2.5 × 10 -6 A cm -2 (comparable to polycrystalline Co, Ni, Cu and Au), respectively, while the edge

  7. Effect of expansion temperature of expandable graphite on microstructure evolution of expanded graphite during high-energy ball-milling

    International Nuclear Information System (INIS)

    Yue Xueqing; Li Liang; Zhang Ruijun; Zhang Fucheng

    2009-01-01

    Two expanded graphites (EG), marked as EG-1 and EG-2, were prepared by rapid heating of expandable graphite to 600 and 1000 deg. C, respectively, and ball milled in a high-energy mill (planetary-type) under air atmosphere. The microstructure evolution of the ball-milled samples was characterized by X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). XRD analysis shows that the evolution degree of the average crystallite thickness along the c-axis (L c ) of EG-2 is lower than that of EG-1 during the milling process. From the HRTEM images of the samples after 100 h ball-milling, slightly curved graphene planes can be frequently observed both in the two EGs, however, EG-1 and EG-2 exhibit sharply curved graphene planes and smoothly curved graphene planes with high bending angles, respectively.

  8. Shearing single crystal magnesium in the close-packed basal plane at different temperatures

    Science.gov (United States)

    Han, Ming; Li, Lili; Zhao, Guangming

    2018-05-01

    Shear behaviors of single crystal magnesium (Mg) in close-packed (0001) basal plane along the [ 1 bar 2 1 bar 0 ], [ 1 2 bar 10 ], [ 10 1 bar 0 ] and [ 1 bar 010 ] directions were studied using molecular dynamics simulations via EAM potential. The results show that both shear stress-strain curves along the four directions and the motion path of free atoms during shearing behave periodic characteristics. It reveals that the periodic shear displacement is inherently related to the crystallographic orientation in single crystal Mg. Moreover, different temperatures in a range from 10 to 750 K were considered, demonstrating that shear modulus decreases with increasing temperatures. The results agree well with the MTS model. It is manifested that the modulus is independent with the shear direction and the size of the atomic model. This work also demonstrates that the classical description of shear modulus is still effective at the nanoscale.

  9. GRAPHITIZATION OF METASEDIMENTARY ROCKS IN THE WESTERN KONYA

    Directory of Open Access Journals (Sweden)

    Hüseyin KURT

    2000-01-01

    Full Text Available The Paleozoic-Mesozoic metasedimentary rocks in the study area are metacarbonate, metachert, metapelite, metasandstone and metaconglomerate. Graphite layers are 1cm to 2m thick, extend laterally for tens of meters and are intercalated with metasedimentary rocks. Generally, the graphite is black in color, with a well developed cleavage which is concordant with the cleavage of the host rocks. In addition, the crystal and flake graphites formed in metasedimentary rocks are mostly aligned parallel to the cleavage planes. These metamorphic rocks are subjected to shearing and granulation providing structural control for the development of graphite. It was probably this phenomenon that first led to emphasize the relationship between graphite and metasedimentary rocks. Graphite mineralization has been controlled by bedding, microfractures and granulations. Briefly, the metamorphism has converted carbonaceous matter into graphite .

  10. A discussion of possible mechanisms affecting fission product transport in irradiated and unirradiated nuclear grade graphite

    International Nuclear Information System (INIS)

    Firth, M.J.

    1977-09-01

    137 Cs, 85 Sr, and sup(110m)Ag adsorption experiments were conducted on three graphite powders with differing amounts of specific basal and edge surface areas. No direct proportionality was found between the specific amounts of the isotopes adsorbed and either of the surface characteristics. There appears to be some correlation with the specific basal surface area despite the fact that each isotope behaves differently. Factors that might influence the adsorption behaviour of Cs and Ag during reactor irradiation and heat treatment of nuclear grade graphites are discussed. These include the form of Cs with the graphite surface. A model based on Cs adsorption at vacancy clusters is used to analyse adsorption experiments. A possible explanation for the behaviour of Ag through the migration of graphite impurities from the bulk of the graphite to the pore surface is also discussed. (author)

  11. Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes

    Science.gov (United States)

    Mehanee, Salah A.

    2015-01-01

    This paper describes a new method for tracing paleo-shear zones of the continental crust by self-potential (SP) data inversion. The method falls within the deterministic inversion framework, and it is exclusively applicable for the interpretation of the SP anomalies measured along a profile over sheet-type structures such as conductive thin films of interconnected graphite precipitations formed on shear planes. The inverse method fits a residual SP anomaly by a single thin sheet and recovers the characteristic parameters (depth to the top h, extension in depth a, amplitude coefficient k, and amount and direction of dip θ) of the sheet. This method minimizes an objective functional in the space of the logarithmed and non-logarithmed model parameters (log( h), log( a), log( k), and θ) successively by the steepest descent (SD) and Gauss-Newton (GN) techniques in order to essentially maintain the stability and convergence of this inverse method. Prior to applying the method to real data, its accuracy, convergence, and stability are successfully verified on numerical examples with and without noise. The method is then applied to SP profiles from the German Continental Deep Drilling Program (Kontinentales Tiefbohrprogramm der Bundesrepublik Deutschla - KTB), Rittsteig, and Grossensees sites in Germany for tracing paleo-shear planes coated with graphitic deposits. The comparisons of geologic sections constructed in this paper (based on the proposed deterministic approach) against the existing published interpretations (obtained based on trial-and-error modeling) for the SP data of the KTB and Rittsteig sites have revealed that the deterministic approach suggests some new details that are of some geological significance. The findings of the proposed inverse scheme are supported by available drilling and other geophysical data. Furthermore, the real SP data of the Grossensees site have been interpreted (apparently for the first time ever) by the deterministic inverse

  12. Evaluation of diagnostic and operative problems in basal meningioma by two-plane CT and angiography

    International Nuclear Information System (INIS)

    Inoue, Hiroshi; Tamura, Masaru; Kawafuchi, Jun-ichi

    1982-01-01

    Basal meningiomas were investigated using two-plane computed tomography (CT) with an ordinary section combined with a reverse section to ascertain the precise site of the origin, size, extension, properties and relation to adjacent tissue. Furthermore, with information obtained from angiography, operative difficulty and operative indications were investigated, to determine a therapeutic policy taking neurofunctional prognosis into consideration. The factors directly affecting the operative difficulty were the large size of the tumor, deformity of the hypothamus and brain stem, supratentorial or infratentorial extension, bone erosion, calcification of the tumor, direct effect on the major vessels and high vascularity. It is considered to be difficult or impossible to perform operations in cases accompanied by more than three of these factors and, in the case of posterior fossa tumors, more than two. Tumor density, extent of enhancement, perifocal low-density, ventricular dilatation, transtentorial herniation, brain or brain stem displacement, bone erosion on CT scans as well as tumor vascularity, feeding arteries, and changes in the major vessels on angiograms were also studied, and therapeutic problems as well as their countermeasures regarding these findings were discussed. It is emphasized that obtaining more accurate information concerning the preoperative state is the first step towards the improvement of therapeutic results in basal meningiomas. (author)

  13. Local structure of the silicon implanted in a graphite single crystal

    International Nuclear Information System (INIS)

    Baba, Yuji; Shimoyama, Iwao; Sekiguchi, Tetsuhiro

    2002-01-01

    Solid carbon forms two kinds of local structures, i.e., diamond-like and two-dimensional graphite structures. In contrast, silicon carbide tends to prefer only diamond structure that is composed of sp 3 bonds. In order to clarify weather or not two-dimensional graphitic Si x C layer exists, we investigate the local structures of Si x C layer produced by Si + -ion implantation into highly oriented pyrolytic graphite (HOPG) by means of near-edge X-ray absorption fine structure (NEXAFS). The energy of the resonance peak in the Si K-edge NEXAFS spectra for Si + -implanted HOPG is lower than those for any other Si-containing materials. The intensity of the resonance peak showed a strong polarization dependence. These results suggests that the final state orbitals around Si atoms have π*-like character and the direction of this orbital is perpendicular to the graphite plane. It is elucidated that the Si-C bonds produced by the Si + -ion implantation are nearly parallel to the graphite plane, and Si x C phase forms a two-dimensionally spread graphite-like layer with sp 2 bonds. (author)

  14. Effect of noncovalent basal plane functionalization on the quantum capacitance in graphene.

    Science.gov (United States)

    Ebrish, Mona A; Olson, Eric J; Koester, Steven J

    2014-07-09

    The concentration-dependent density of states in graphene allows the capacitance in metal-oxide-graphene structures to be tunable with the carrier concentration. This feature allows graphene to act as a variable capacitor (varactor) that can be utilized for wireless sensing applications. Surface functionalization can be used to make graphene sensitive to a particular species. In this manuscript, the effect on the quantum capacitance of noncovalent basal plane functionalization using 1-pyrenebutanoic acid succimidyl ester and glucose oxidase is reported. It is found that functionalized samples tested in air have (1) a Dirac point similar to vacuum conditions, (2) increased maximum capacitance compared to vacuum but similar to air, (3) and quantum capacitance "tuning" that is greater than that in vacuum and ambient atmosphere. These trends are attributed to reduced surface doping and random potential fluctuations as a result of the surface functionalization due to the displacement of H2O on the graphene surface and intercalation of a stable H2O layer beneath graphene that increases the overall device capacitance. The results are important for future application of graphene as a platform for wireless chemical and biological sensors.

  15. Wurtzite/zinc-blende electronic-band alignment in basal-plane stacking faults in semi-polar GaN

    Science.gov (United States)

    Monavarian, Morteza; Hafiz, Shopan; Izyumskaya, Natalia; Das, Saikat; Özgür, Ümit; Morkoç, Hadis; Avrutin, Vitaliy

    2016-02-01

    Heteroepitaxial semipolar and nonpolar GaN layers often suffer from high densities of extended defects including basal plane stacking faults (BSFs). BSFs which are considered as inclusions of cubic zinc-blende phase in wurtzite matrix act as quantum wells strongly affecting device performance. Band alignment in BSFs has been discussed as type of band alignment at the wurtzite/zinc blende interface governs the response in differential transmission; fast decay after the pulse followed by slow recovery due to spatial splitting of electrons and heavy holes for type- II band alignment in contrast to decay with no recovery in case of type I band alignment. Based on the results, band alignment is demonstrated to be of type II in zinc-blende segments in wurtzite matrix as in BSFs.

  16. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  17. High temperature soldering of graphite

    International Nuclear Information System (INIS)

    Anikin, L.T.; Kravetskij, G.A.; Dergunova, V.S.

    1977-01-01

    The effect is studied of the brazing temperature on the strength of the brazed joint of graphite materials. In one case, iron and nickel are used as solder, and in another, molybdenum. The contact heating of the iron and nickel with the graphite has been studied in the temperature range of 1400-2400 ged C, and molybdenum, 2200-2600 deg C. The quality of the joints has been judged by the tensile strength at temperatures of 2500-2800 deg C and by the microstructure. An investigation into the kinetics of carbon dissolution in molten iron has shown that the failure of the graphite in contact with the iron melt is due to the incorporation of iron atoms in the interbase planes. The strength of a joint formed with the participation of the vapour-gas phase is 2.5 times higher than that of a joint obtained by graphite recrystallization through the carbon-containing metal melt. The critical temperatures are determined of graphite brazing with nickel, iron, and molybdenum interlayers, which sharply increase the strength of the brazed joint as a result of the formation of a vapour-gas phase and deposition of fine-crystal carbon

  18. Effect of gamma radiation on graphite - PTFE dry lubrication system

    Science.gov (United States)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-12-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties.

  19. Structure and functionality of bromine doped graphite.

    Science.gov (United States)

    Hamdan, Rashid; Kemper, A F; Cao, Chao; Cheng, H P

    2013-04-28

    First-principles calculations are used to study the enhanced in-plane conductivity observed experimentally in Br-doped graphite, and to study the effect of external stress on the structure and functionality of such systems. The model used in the numerical calculations is that of stage two doped graphite. The band structure near the Fermi surface of the doped systems with different bromine concentrations is compared to that of pure graphite, and the charge transfer between carbon and bromine atoms is analyzed to understand the conductivity change along different high symmetry directions. Our calculations show that, for large interlayer separation between doped graphite layers, bromine is stable in the molecular form (Br2). However, with increased compression (decreased layer-layer separation) Br2 molecules tend to dissociate. While in both forms, bromine is an electron acceptor. The charge exchange between the graphite layers and Br atoms is higher than that with Br2 molecules. Electron transfer to the Br atoms increases the number of hole carriers in the graphite sheets, resulting in an increase of conductivity.

  20. Process for the fabrication of aluminum metallized pyrolytic graphite sputtering targets

    Science.gov (United States)

    Makowiecki, Daniel M.; Ramsey, Philip B.; Juntz, Robert S.

    1995-01-01

    An improved method for fabricating pyrolytic graphite sputtering targets with superior heat transfer ability, longer life, and maximum energy transmission. Anisotropic pyrolytic graphite is contoured and/or segmented to match the erosion profile of the sputter target and then oriented such that the graphite's high thermal conductivity planes are in maximum contact with a thermally conductive metal backing. The graphite contact surface is metallized, using high rate physical vapor deposition (HRPVD), with an aluminum coating and the thermally conductive metal backing is joined to the metallized graphite target by one of four low-temperature bonding methods; liquid-metal casting, powder metallurgy compaction, eutectic brazing, and laser welding.

  1. A high resolution electron microscopy investigation of curvature in multilayer graphite sheets

    International Nuclear Information System (INIS)

    Wang Zhenxia; Hu Jun; Wang Wenmin; Yu Guoqing

    1998-01-01

    Here the authors report a carbon sample generated by ultrasonic wave high oriented pyrolytic graphite (HOPG) in ethanol, water or ethanol-water mixed solution. High resolution transmission electron microscopy (HRTEM) revealed many multilayer graphite sheets with a total curved angle that is multiples of θ 0 (= 30 degree C). Close examination of the micrographs showed that the curvature is accomplished by bending the lattice planes. A possible explanation for the curvature in multilayer graphite sheets is discussed based on the conformation of graphite symmetry axes and the formation of sp 3 -like line defects in the sp 2 graphitic network

  2. Thermal Pyrolytic Graphite Enhanced Components

    Science.gov (United States)

    Hardesty, Robert E. (Inventor)

    2015-01-01

    A thermally conductive composite material, a thermal transfer device made of the material, and a method for making the material are disclosed. Apertures or depressions are formed in aluminum or aluminum alloy. Plugs are formed of thermal pyrolytic graphite. An amount of silicon sufficient for liquid interface diffusion bonding is applied, for example by vapor deposition or use of aluminum silicon alloy foil. The plugs are inserted in the apertures or depressions. Bonding energy is applied, for example by applying pressure and heat using a hot isostatic press. The thermal pyrolytic graphite, aluminum or aluminum alloy and silicon form a eutectic alloy. As a result, the plugs are bonded into the apertures or depressions. The composite material can be machined to produce finished devices such as the thermal transfer device. Thermally conductive planes of the thermal pyrolytic graphite plugs may be aligned in parallel to present a thermal conduction path.

  3. Special graphites; Graphites speciaux

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [French] Ameliorer les proprietes du graphite nucleaire pour empilements et ouvrir de nouveaux domaines d'application au graphite constituent une part importante de l'effort entrepris en commun par le Commissariat a l'Energie Atomique (CEA) et la compagnie PECHINEY. Des procedes nouveaux de fabrication de carbones et graphites speciaux ont ete mis au point: graphite forge, pyrocarbone, graphite de haute densite, agglomeration de poudres de graphite par craquage de gaz naturel, graphites impermeables. Les proprietes physiques de ces produits ainsi que leur reaction avec differents gaz oxydants sont decrites. Les premiers resultats d'irradiation sont aussi donnes. (auteurs)

  4. Analysis of electrochemical disintegration process of graphite matrix

    International Nuclear Information System (INIS)

    Tian Lifang; Wen Mingfen; Chen Jing

    2010-01-01

    The electrochemical method with ammonium nitrate as electrolyte was studied to disintegrate the graphite matrix from the simulative fuel elements for high temperature gas-cooled reactor. The influences of process parameters, including salt concentration, system temperature and current density, on the disintegration rate of graphite fragments were investigated in the present work. The experimental results showed that the disintegration rate depended slightly on the temperature and salt concentration. The current density strongly affected the disintegration rate of graphite fragments. Furthermore, the content of introduced oxygen in final graphite fragments was independent of the current density and the concentration of electrolyte. Moreover, the structural evolution of graphite was analyzed based on the microstructural parameters determined by X-ray diffraction profile fitting analysis using MAUD (material analysis using diffraction) before and after the disintegration process. It may safely be concluded that the graphite disintegration can be ascribed to the influences of the intercalation of foreign molecules in between crystal planes and the partial oxidation involved. The disintegration process was described deeply composed of intercalate part and further oxidation part of carbon which effected together to lead to the collapse of graphite crystals.

  5. New insights into canted spiro carbon interstitial in graphite

    Science.gov (United States)

    EL-Barbary, A. A.

    2017-12-01

    The self-interstitial carbon is the key to radiation damage in graphite moderator nuclear reactor, so an understanding of its behavior is essential for plant safety and maximized reactor lifetime. The density functional theory is applied on four different graphite unit cells, starting from of 64 carbon atoms up to 256 carbon atoms, using AIMPRO code to obtain the energetic, athermal and mechanical properties of carbon interstitial in graphite. This study presents first principles calculations of the energy of formation that prove its high barrier to athermal diffusion (1.1 eV) and the consequent large critical shear stress (39 eV-50 eV) necessary to shear graphite planes in its presence. Also, for the first time, the gamma surface of graphite in two dimensions is calculated and found to yield the critical shear stress for perfect graphite. Finally, in contrast to the extensive literature describing the interstitial of carbon in graphite as spiro interstitial, in this work the ground state of interstitial carbon is found to be canted spiro interstitial.

  6. Experience with graphite in JET

    International Nuclear Information System (INIS)

    Pick, M.A.; Celentano, G.; Deksnis, E.; Dietz, K.J.; Shaw, R.; Sonnenberg, K.; Walravens, M.

    1987-01-01

    During the current operational period of JET more than 50% of the internal area of the machine is covered in graphite tiles. This includes the 15 m 2 of carbon tiles installed in the new toroidal limiter, the 40 poloidal belts of graphite tiles covering the U-joints and bellows as well as a two metre high ring (-- 20 m 2 ) or carbon tiles on the inner wall of the Torus. A ring of tiles in the equatorial plane (3 tiles high) consists of carbon-carbon fibre tiles. Test bed results indicated that the fine grained graphite tiles cracked at ∼ 1 kW/cm 2 for 2s of irradiation whereas the carbon-carbon fibre tiles were able to sustain a flux, limited by the irradiation facility, of 3.5 kW for 3s without any damage. The authors report on the generally positive experience they have had had with the installed graphite during the present and previous in-vessel configurations. This includes the physical integrity of the tiles under severe conditions such as high energy run-away electron beams, plasma disruptions and high heat fluxes. They report on the importance of the precise positioning of the inner wall and x-point tiles at the very high power fluxes of JET and the effect of deviations on both graphite and carbon-fibre tiles

  7. The elasticity anisotropy in the basal atomic planes of Mg(OH)2 and Ca(OH)2 associated with auxetic elastic properties of the hydrogen sub-lattice

    International Nuclear Information System (INIS)

    Harutyunyan, Valeri S.; Abrahamyan, Aren A.; Aivazyan, Ashot P.

    2013-01-01

    Graphical abstract: To the out-of-plane strain ε x induced in the (0 0 0 1) atomic planes of Mg(OH) 2 , the contributions of constituent octahedral layers ε x (1) and interlayers ε x (2) are of opposite sign. Highlights: ► Elasticity anisotropy of rare earth metal hydroxides is theoretically analyzed. ► Elastic anisotropy within (0 0 0 1) atomic planes is studied from energy consideration. ► The out-of-plane Poisson’s ratios of octahedral layers and interlayers are of opposite sign. ► Auxeticity of the hydrogen sublattice (interlayers) results from weak interlayer bonding. ► The obtained expression for the in-plane Young’s modulus results in useful conclusions. - Abstract: Within the framework of the Hook’s generalized law and using the experimental data for characteristic crystallographic parameters and stiffness constants available from literature, the individual elastic properties of constituent octahedral layers and interlayers of the (0 0 0 1) atomic planes in the Mg(OH) 2 and Ca(OH) 2 crystal lattices are theoretically quantified from intermolecular interaction energy. It is shown that, under uniaxial type of deformation applied along the (0 0 0 1) basal planes, in the “load-deformation response” the octahedral layers and interlayers exhibit the positive and negative Poisson’s ratio, respectively. Manifestation of such a type strong elastic anisotropy in the basal atomic planes and auxetic elastic behavior of the hydrogen sub-lattice (interlayers) upon applied uniaxial load result from a large difference in the strength of bonding within octahedral layers and interlayers. The intermolecular binding energy is contributed both by “hydroxyl–hydroxyl” and “metal atom–hydroxyl” dispersion interactions, whereas the Young’s modulus in the direction parallel to a (0 0 0 1) plane is practically contributed only by the former interaction. For this Young’s modulus, an approximate analytical expression is derived, which is

  8. Brazing graphite to graphite

    International Nuclear Information System (INIS)

    Peterson, G.R.

    1976-01-01

    Graphite is joined to graphite by employing both fine molybdenum powder as the brazing material and an annealing step that together produce a virtually metal-free joint exhibiting properties similar to those found in the parent graphite. Molybdenum powder is placed between the faying surfaces of two graphite parts and melted to form molybdenum carbide. The joint area is thereafter subjected to an annealing operation which diffuses the carbide away from the joint and into the graphite parts. Graphite dissolved by the dispersed molybdenum carbide precipitates into the joint area, replacing the molybdenum carbide to provide a joint of graphite

  9. The Role of Embryologic Fusion Planes in the Invasiveness and Recurrence of Basal Cell Carcinoma: A Classic Mix-Up of Causation and Correlation.

    Science.gov (United States)

    Armstrong, Linus T D; Magnusson, Mark R; Guppy, Michelle P B

    2015-12-01

    The facial embryologic fusion planes as regions of mesenchymal and ectodermal fusion of the primordial facial processes during embryological development have been suggested to influence the spread, invasiveness, pathogenesis, and recurrence of cutaneous carcinoma. This study sought to establish whether basal cell carcinoma (BCC) originating in embryologic fusion planes has a greater propensity for earlier depth of invasion, leading to an increased rate of lesion recurrence. Facial BCCs excised in a single surgeon practice over 2 years were allocated into 2 anatomic domains according to their correlation with embryologic fusion planes. Lesion depth of invasion, surface area, and margins of excision were analyzed in conjunction with recurrence data over the following 70-80 months. Of the 331 lesions examined, 70 were located in embryologic fusion planes. No difference was found in the mean surface area and depth of invasion for lesions located in the 2 domains (P > 0.05). Ten lesion recurrences were identified, none of which were located in embryologic fusion planes. Recurrent lesions were excised with a significantly greater percentage of close and incomplete excision margins (P planes are not more invasive or at greater risk of recurrence. Excision margins seem to have the greatest influence on lesion recurrence. Because of the paucity of superfluous tissue and the cosmetic and functionally sensitive nature of these areas of embryologic fusion, specialist treatment of these lesions is recommended to ensure that adequacy of excision is not neglected at the cost of ease of closure and cosmesis.

  10. AGC-2 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; W. David Swank; David Rohrbaugh; Joseph Lord

    2013-08-01

    This report described the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the second Advanced Graphite Capsule (AGC-2) irradiation capsule. The AGC-2 capsule is the second in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. Similar to the AGC-1 specimen pre-irradiation examination report, material property tests were conducted on specimens from 18 nuclear graphite types but on an increased number of specimens (512) prior to loading into the AGC-2 irradiation assembly. All AGC-2 specimen testing was conducted at Idaho National Laboratory (INL) from October 2009 to August 2010. This report also details the specimen loading methodology for the graphite specimens inside the AGC-2 irradiation capsule. The AGC-2 capsule design requires “matched pair” creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-2 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce “matched pairs” of graphite samples above and below the AGC-2 capsule elevation mid-point to provide specimens with similar neutron dose levels.

  11. Effect of gamma radiation on graphite – PTFE dry lubrication system

    International Nuclear Information System (INIS)

    Singh, Sachin; Tyagi, Mukti; Seshadri, Geetha; Tyagi, Ajay Kumar; Varshney, Lalit

    2017-01-01

    An effect of gamma radiation on lubrication behavior of graphite -PTFE dry lubrication system has been studied using (TR-TW-30L) tribometer with thrust washer attachment in plane contact. Different compositions of graphite and PTFE were prepared and irradiated by gamma rays. Gamma radiation exposure significantly improves the tribological properties indicated by decrease in coefficient of friction and wear properties of graphite -PTFE dry lubrication system. SEM and XRD analysis confirm the physico-chemical modification of graphite-PTFE on gamma radiation exposure leading to a novel dry lubrication system with good slip and anti friction properties. - Highlights: • Novel dry lubrication system of graphite -PTFE using gamma radiation. • Gamma radiation processing. • Reduction in coefficient of friction, frictional torque and wear loss of developed dry lubrication system.

  12. AGC-3 Graphite Preirradiation Data Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes; David Swank; David Rohrbaugh; Joseph Lord

    2013-09-01

    This report describes the specimen loading order and documents all pre-irradiation examination material property measurement data for the graphite specimens contained within the third Advanced Graphite Capsule (AGC-3) irradiation capsule. The AGC-3 capsule is third in six planned irradiation capsules comprising the Advanced Graphite Creep (AGC) test series. The AGC test series is used to irradiate graphite specimens allowing quantitative data necessary for predicting the irradiation behavior and operating performance of new nuclear graphite grades to be generated which will ascertain the in-service behavior of the graphite for pebble bed and prismatic Very High Temperature Reactor (VHTR) designs. The general design of AGC-3 test capsule is similar to the AGC-2 test capsule, material property tests were conducted on graphite specimens prior to loading into the AGC-3 irradiation assembly. However the 6 major nuclear graphite grades in AGC-2 were modified; two previous graphite grades (IG-430 and H-451) were eliminated and one was added (Mersen’s 2114 was added). Specimen testing from three graphite grades (PCEA, 2114, and NBG-17) was conducted at Idaho National Laboratory (INL) and specimen testing for two grades (IG-110 and NBG-18) were conducted at Oak Ridge National Laboratory (ORNL) from May 2011 to July 2013. This report also details the specimen loading methodology for the graphite specimens inside the AGC-3 irradiation capsule. The AGC-3 capsule design requires "matched pair" creep specimens that have similar dose levels above and below the neutron flux profile mid-plane to provide similar specimens with and without an applied load. This document utilized the neutron flux profile calculated for the AGC-3 capsule design, the capsule dimensions, and the size (length) of the selected graphite and silicon carbide samples to create a stacking order that can produce "matched pairs" of graphite samples above and below the AGC-3 capsule elevation mid-point to

  13. Influence of Si-doping on heteroepitaxially grown a-plane GaN

    Energy Technology Data Exchange (ETDEWEB)

    Wieneke, Matthias; Bastek, Barbara; Noltemeyer, Martin; Hempel, Thomas; Rohrbeck, Antje; Witte, Hartmut; Veit, Peter; Blaesing, Juergen; Dadgar, Armin; Christen, Juergen; Krost, Alois [Otto-von-Guericke-Universitaet Magdeburg, FNW/IEP, Universitaetsplatz 2, 39106 Magdeburg (Germany)

    2011-07-01

    Si-doped a-plane GaN samples with nominal doping levels up to 10{sup 20} cm{sup -3} were grown on r-plane sapphire by metal organic vapor phase epitaxy. Silane flow rates higher than 59 nmol/min lead to three dimensional grown crystallites as revealed by scanning electron microscopy. High resolution X-ray diffraction, photoluminescence and cathodoluminescence suggest considerably reduced defect densities in the large micrometer-sized GaN crystallites. Especially, transmission electron microscopy images verify a very low density of basal plane stacking faults less than 10{sup 4} cm{sup -1} in these crystallites consisting of heteroepitaxially grown a-plane GaN. In our presentation the influence of the Si doping on the basal plane stacking faults will be discussed.

  14. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides.

    Science.gov (United States)

    Dong, Liang; Lou, Jun; Shenoy, Vivek B

    2017-08-22

    Piezoelectricity in 2D van der Waals materials has received considerable interest because of potential applications in nanoscale energy harvesting, sensors, and actuators. However, in all the systems studied to date, strain and electric polarization are confined to the basal plane, limiting the operation of piezoelectric devices. In this paper, based on ab initio calculations, we report a 2D materials system, namely, the recently synthesized Janus MXY (M = Mo or W, X/Y = S, Se, or Te) monolayer and multilayer structures, with large out-of-plane piezoelectric polarization. For MXY monolayers, both strong in-plane and much weaker out-of-plane piezoelectric polarizations can be induced by a uniaxial strain in the basal plane. For multilayer MXY, we obtain a very strong out-of-plane piezoelectric polarization when strained transverse to the basal plane, regardless of the stacking sequence. The out-of-plane piezoelectric coefficient d 33 is found to be strongest in multilayer MoSTe (5.7-13.5 pm/V depending on the stacking sequence), which is larger than that of the commonly used 3D piezoelectric material AlN (d 33 = 5.6 pm/V); d 33 in other multilayer MXY structures are a bit smaller, but still comparable. Our study reveals the potential for utilizing piezoelectric 2D materials and their van der Waals multilayers in device applications.

  15. Measurement of the diffusion length of thermal neutrons inside graphite; Mesure de la longueur de diffusion des neutrons thermiques dans le graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ertaud, A; Beauge, R; Fauquez, H; De Laboulay, H; Mercier, C; Vautrey, L

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra {alpha} {yields} Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm {+-} 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  16. The mechanism of domain-wall structure formation in Ar-Kr submonolayer films on graphite

    Directory of Open Access Journals (Sweden)

    A. Patrykiejew

    2014-12-01

    Full Text Available Using Monte Carlo simulation method in the canonical ensemble, we have studied the commensurate-incommensurate transition in two-dimensional finite mixed clusters of Ar and Kr adsorbed on graphite basal plane at low temperatures. It has been demonstrated that the transition occurs when the argon concentration exceeds the value needed to cover the peripheries of the cluster. The incommensurate phase exhibits a similar domain-wall structure as observed in pure krypton films at the densities exceeding the density of a perfect (√3x√3R30º commensurate phase, but the size of commensurate domains does not change much with the cluster size. When the argon concentration increases, the composition of domain walls changes while the commensurate domains are made of pure krypton. We have constructed a simple one-dimensional Frenkel-Kontorova-like model that yields the results being in a good qualitative agreement with the Monte Carlo results obtained for two-dimensional systems.

  17. Electronic properties of graphite

    International Nuclear Information System (INIS)

    Schneider, J.

    2010-10-01

    In this thesis, low-temperature magneto-transport (T ∼ 10 mK) and the de Haas-van Alphen effect of both natural graphite and highly oriented pyrolytic graphite (HOPG) are examined. In the first part, low field magneto-transport up to B = 11 T is discussed. A Fourier analysis of the background removed signal shows that the electric transport in graphite is governed by two types of charge carriers, electrons and holes. Their phase and frequency values are in agreement with the predictions of the SWM-model. The SWM-model is confirmed by detailed band structure calculations using the magnetic field Hamiltonian of graphite. The movement of the Fermi at B > 2 T is calculated self-consistently assuming that the sum of the electron and hole concentrations is constant. The second part of the thesis deals with high field magneto-transport of natural graphite in the magnetic field range 0 ≤ B ≤ 28 T. Both spin splitting of magneto-transport features in tilted field configuration and the onset of the charge density wave (CDW) phase for different temperatures with the magnetic field applied normal to the sample plane are discussed. Concerning the Zeeman effect, the SWM calculations including the Fermi energy movement require a g-factor of g* equal to 2.5 ± 0.1 to reproduce the spin spilt features. The measurements of the charge density wave state confirm that its onset magnetic field can be described by a Bardeen-Cooper-Schrieffer (BCS)-type formula. The measurements of the de Haas-van Alphen effect are in agreement with the results of the magneto-transport measurements at low field. (author)

  18. Electric and magnetic properties of the stage-2 FeBr2 graphite intercalation compound

    International Nuclear Information System (INIS)

    Dube, P A; Barati, M; Ummat, P K; Luke, G; Datars, W R

    2003-01-01

    The stage-2 FeBr 2 graphite intercalation compound (GIC) was prepared by reacting FeBr 2 powder and highly oriented pyrolytic graphite in a bromine atmosphere at 500 deg. C for 40 weeks. The dc magnetization, ac susceptibility, specific heat, resistivity and Hall effect were measured. The GIC is paramagnetic at temperatures above 14.5 K. There is short-range ordering at 14.5 K and longer-range magnetic ordering at 8.5 K. There is a spin glass phase below 3.2 K in which the ac susceptibility is frequency dependent. The in-plane and c-axis resistivities result from in-plane and out-of-plane electron-phonon scattering. The Hall coefficient is independent of temperature between 4.2 and 300 K and is explained by the single-carrier model

  19. Surface modification of highly oriented pyrolytic graphite by reaction with atomic nitrogen at high temperatures

    International Nuclear Information System (INIS)

    Zhang Luning; Pejakovic, Dusan A.; Geng Baisong; Marschall, Jochen

    2011-01-01

    Dry etching of {0 0 0 1} basal planes of highly oriented pyrolytic graphite (HOPG) using active nitridation by nitrogen atoms was investigated at low pressures and high temperatures. The etching process produces channels at grain boundaries and pits whose shapes depend on the reaction temperature. For temperatures below 600 deg. C, the majority of pits are nearly circular, with a small fraction of hexagonal pits with rounded edges. For temperatures above 600 deg. C, the pits are almost exclusively hexagonal with straight edges. The Raman spectra of samples etched at 1000 deg. C show the D mode near 1360 cm -1 , which is absent in pristine HOPG. For deep hexagonal pits that penetrate many graphene layers, neither the surface number density of pits nor the width of pit size distribution changes substantially with the nitridation time, suggesting that these pits are initiated at a fixed number of extended defects intersecting {0 0 0 1} planes. Shallow pits that penetrate 1-2 graphene layers have a wide size distribution, which suggests that these pits are initiated on pristine graphene surfaces from lattice vacancies continually formed by N atoms. A similar wide size distribution of shallow hexagonal pits is observed in an n-layer graphene sample after N-atom etching.

  20. Electric and magnetic properties of the stage-2 FeBr{sub 2} graphite intercalation compound

    Energy Technology Data Exchange (ETDEWEB)

    Dube, P A; Barati, M; Ummat, P K; Luke, G; Datars, W R [Department of Physics and Astronomy, McMaster University, Hamilton, ON (Canada)

    2003-01-22

    The stage-2 FeBr{sub 2} graphite intercalation compound (GIC) was prepared by reacting FeBr{sub 2} powder and highly oriented pyrolytic graphite in a bromine atmosphere at 500 deg. C for 40 weeks. The dc magnetization, ac susceptibility, specific heat, resistivity and Hall effect were measured. The GIC is paramagnetic at temperatures above 14.5 K. There is short-range ordering at 14.5 K and longer-range magnetic ordering at 8.5 K. There is a spin glass phase below 3.2 K in which the ac susceptibility is frequency dependent. The in-plane and c-axis resistivities result from in-plane and out-of-plane electron-phonon scattering. The Hall coefficient is independent of temperature between 4.2 and 300 K and is explained by the single-carrier model.

  1. Measurement of the diffusion length of thermal neutrons inside graphite

    International Nuclear Information System (INIS)

    Ertaud, A.; Beauge, R.; Fauquez, H.; De Laboulay, H.; Mercier, C.; Vautrey, L.

    1948-11-01

    The diffusion length of thermal neutrons inside a given industrial graphite is determined by measuring the neutron density inside a parallelepipedal piling up of graphite bricks (2.10 x 2.10 x 2.442 m). A 3.8 curies (Ra α → Be) source is placed inside the parallelepipedal block of graphite and thin manganese detectors are used. Corrections are added to the unweighted measurements to take into account the effects of the damping of supra-thermal neutrons in the measurement area. These corrections are experimentally deduced from the differential measurements made with a cadmium screen interposed between the source and the first plane of measurement. An error analysis completes the report. The diffusion length obtained is: L = 45.7 cm ± 0.3. The average density of the graphite used is 1.76 and the average apparent density of the piling up is 1.71. (J.S.)

  2. A graphite foam reinforced by graphite particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.J.; Wang, X.Y.; Guo, L.F.; Wang, Y.M.; Wang, Y.P.; Yu, M.F.; Lau, K.T.T. [DongHua University, Shanghai (China). College of Material Science and Engineering

    2007-11-15

    Graphite foam was obtained after carbonization and graphitization of a pitch foam formed by the pyrolysis of coal tar based mesophase pitch mixed with graphite particles in a high pressure and temperature chamber. The graphite foam possessed high mechanical strength and exceptional thermal conductivity after adding the graphite particles. Experimental results showed that the thermal conductivity of modified graphite foam reached 110W/m K, and its compressive strength increased from 3.7 MPa to 12.5 MPa with the addition of 5 wt% graphite particles. Through the microscopic observation, it was also found that fewer micro-cracks were formed in the cell wall of the modified foam as compared with pure graphite foam. The graphitization degree of modified foam reached 84.9% and the ligament of graphite foam exhibited high alignment after carbonization at 1200{sup o}C for 3 h and graphitization at 3000{sup o}C for 10 min.

  3. Graphite

    Science.gov (United States)

    Robinson, Gilpin R.; Hammarstrom, Jane M.; Olson, Donald W.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Graphite is a form of pure carbon that normally occurs as black crystal flakes and masses. It has important properties, such as chemical inertness, thermal stability, high electrical conductivity, and lubricity (slipperiness) that make it suitable for many industrial applications, including electronics, lubricants, metallurgy, and steelmaking. For some of these uses, no suitable substitutes are available. Steelmaking and refractory applications in metallurgy use the largest amount of produced graphite; however, emerging technology uses in large-scale fuel cell, battery, and lightweight high-strength composite applications could substantially increase world demand for graphite.Graphite ores are classified as “amorphous” (microcrystalline), and “crystalline” (“flake” or “lump or chip”) based on the ore’s crystallinity, grain-size, and morphology. All graphite deposits mined today formed from metamorphism of carbonaceous sedimentary rocks, and the ore type is determined by the geologic setting. Thermally metamorphosed coal is the usual source of amorphous graphite. Disseminated crystalline flake graphite is mined from carbonaceous metamorphic rocks, and lump or chip graphite is mined from veins in high-grade metamorphic regions. Because graphite is chemically inert and nontoxic, the main environmental concerns associated with graphite mining are inhalation of fine-grained dusts, including silicate and sulfide mineral particles, and hydrocarbon vapors produced during the mining and processing of ore. Synthetic graphite is manufactured from hydrocarbon sources using high-temperature heat treatment, and it is more expensive to produce than natural graphite.Production of natural graphite is dominated by China, India, and Brazil, which export graphite worldwide. China provides approximately 67 percent of worldwide output of natural graphite, and, as the dominant exporter, has the ability to set world prices. China has significant graphite reserves, and

  4. MWCNTs/metal (Ni, Co, Fe) oxide nanocomposite as potential material for supercapacitors application in acidic and neutral media

    CSIR Research Space (South Africa)

    Adekunle, AS

    2013-05-01

    Full Text Available Supercapacitive properties of synthesised metal oxides nanoparticles (MO where M = Ni, Co, Fe) integrated with multi-wall carbon nanotubes (MWCNT) on basal plane pyrolytic graphite electrode (BPPGE) were investigated. Successful modification...

  5. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  6. An ab initio model of electron transport in hematite (a-Fe2O3) basal planes

    International Nuclear Information System (INIS)

    Rosso, Kevin M.; Smith, Dayle MA; Dupuis, Michel

    2003-01-01

    Transport of conduction electrons through basal planes of the hematite lattice was modeled as a valence alternation of iron cations using ab initio molecular orbital calculations and electron transfer theory. A cluster approach was successfully implemented to compute electron transfer rate-controlling quantities such as the reorganization energy and electronic coupling matrix element. Localization of a conduction electron at an iron lattice site is accompanied by large iron/oxygen bond length increases that give rise to a large inner-sphere component of the reorganization energy. The interaction between the reactant and product electronic states in the crossing?point configuration is substantial and leads to an adiabatic electron transfer system. Electron transfer is predicted to possess a small positive activation energy that turns out to be in excellent agreement with values deduced from conductivity measurements. Measured electron mobility can be explained in terms of nearest neighbor electron hops without significant contribution from iron atoms further away. Comparison of the predicted maximum polaron binding energy with the predicted half bandwidth indicates compliance with the small polaron condition. Therefore the localized electron treatment is appropriate to describe electron transport in this system

  7. Temperature dependence of phonons in pyrolitic graphite

    International Nuclear Information System (INIS)

    Brockhouse, B.N.; Shirane, G.

    1977-01-01

    Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4 0 K and 1500 0 C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes

  8. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films

    Science.gov (United States)

    Gao, Wei; Singh, Neelam; Song, Li; Liu, Zheng; Reddy, Arava Leela Mohana; Ci, Lijie; Vajtai, Robert; Zhang, Qing; Wei, Bingqing; Ajayan, Pulickel M.

    2011-08-01

    Microscale supercapacitors provide an important complement to batteries in a variety of applications, including portable electronics. Although they can be manufactured using a number of printing and lithography techniques, continued improvements in cost, scalability and form factor are required to realize their full potential. Here, we demonstrate the scalable fabrication of a new type of all-carbon, monolithic supercapacitor by laser reduction and patterning of graphite oxide films. We pattern both in-plane and conventional electrodes consisting of reduced graphite oxide with micrometre resolution, between which graphite oxide serves as a solid electrolyte. The substantial amounts of trapped water in the graphite oxide makes it simultaneously a good ionic conductor and an electrical insulator, allowing it to serve as both an electrolyte and an electrode separator with ion transport characteristics similar to that observed for Nafion membranes. The resulting micro-supercapacitor devices show good cyclic stability, and energy storage capacities comparable to existing thin-film supercapacitors.

  9. Magnetic susceptibilities and thermal expansion of artificial graphites

    International Nuclear Information System (INIS)

    Cornuault, P.; Herpin, A.; Hering, H.; Seguin, M.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [fr

  10. Some aspects of nuclear graphite production in France; Etude generale sur les graphites nucleaires produits en France

    Energy Technology Data Exchange (ETDEWEB)

    Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Legendre, A [Pechiney, 75 - Paris (France)

    1958-07-01

    1) Manufacturing: A summary and results on the CEA-Pechiney purification process are given. Variations in the preparation of green pastes and their effects on graphitized material are described. 2) Physical and mechanical properties: Results are given on: - Statistics of dimensional variatior products having square cross-section. - Statistical variation of thermal expansion coefficients and of electrical conductivity. - Density of normals to carbon layer planes and their connexion with thermal expansion. - Stress-strain cycles and conclusions drawn therefrom. - Mechanical resistance and gas permeability of items for supporting fuel elements. 3) Behaviour under radiation: Alteration under radiation of French graphites irradiated either in G1 pile or in experimental piles, and thermal annealing of those alterations, are given. (author)Fren. [French] 1) Fabrication: On resume le procede d'epuration CEA-PECHINEY, ainsi que diverses modalites de preparation des pates et on expose les resultats obtenus. 2) Proprietes physiques et mecaniques: On indique le resultat d'etudes sur: - la statistique des dimensions de produits a section carree. - celle des variations des coefficients de dilatation thermique et de la conductibilite electrique. - la densite des normales aux plans graphitiques et leur connexion avec la dilatation thermique. - la compression mecanique du graphite. - la solidite mecanique et la permeabilite aux gaz de pieces destinees a supporter des cartouches de combustible. 3) Tenue sous rayonnement: Modification sous rayonnement des graphites fran is irradies soit dans la pile G1, soit dans des piles experimentales, et guerison thermique de ces modifications. (auteur)

  11. Melting mechanism in monolayers of flexible rod-shaped molecules

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Taub, H.

    1992-01-01

    The melting of butane and hexane monolayers adsorbed on a graphite basal-plane surface has been studied by molecular-dynamics simulations and experimentally by neutron diffraction. The simulation results are qualitatively consistent with the observed diffraction patterns and suggest a general...

  12. From Graphite to Graphene via Scanning Tunneling Microscopy

    Science.gov (United States)

    Qi, Dejun

    The primary objective of this dissertation is to study both graphene on graphite and pristine freestanding grapheme using scanning tunneling microscopy (STM) and density functional theory (DFT) simulation technique. In the experiment part, good quality tungsten metalic tips for experiment were fabricated using our newly developed tip making setup. Then a series of measurements using a technique called electrostatic-manipulation scanning tunneling microscopy (EM-STM) of our own development were performed on a highly oriented pyrolytic graphite (HOPG) surface. The electrostatic interaction between the STM tip and the sample can be tuned to produce both reversible and irreversible large-scale movement of the graphite surface. Under this influence, atomic-resolution STM images reveal that a continuous electronic transition between two distinct patterns can be systematically controlled. DFT calculations reveal that this transition can be related to vertical displacements of the top layer of graphite relative to the bulk. Evidence for horizontal shifts in the top layer of graphite is also presented. Excellent agreement is found between experimental STM images and those simulated using DFT. In addition, the EM-STM technique was also used to controllably and reversibly pull freestanding graphene membranes up to 35 nm from their equilibrium height. Atomic-scale corrugation amplitudes 20 times larger than the STM electronic corrugation for graphene on a substrate were observed. The freestanding graphene membrane responds to a local attractive force created at the STM tip as a highly conductive yet flexible grounding plane with an elastic restoring force.

  13. Direct conversion of graphite into diamond through electronic excited states

    CERN Document Server

    Nakayama, H

    2003-01-01

    An ab initio total energy calculation has been performed for electronic excited states in diamond and rhombohedral graphite by the full-potential linearized augmented plane wave method within the framework of the local density approximation (LDA). First, calculations for the core-excited state in diamond have been performed to show that the ab initio calculations based on the LDA describe the wavefunctions in the electronic excited states as well as in the ground state quite well. Fairly good coincidence with both experimental data and theoretical prediction has been obtained for the lattice relaxation of the core exciton state. The results of the core exciton state are compared with nitrogen-doped diamond. Next, the structural stability of rhombohedral graphite has been investigated to examine the possibility of the transition into the diamond structure through electronic excited states. While maintaining the rhombohedral symmetry, rhombohedral graphite can be spontaneously transformed to cubic diamond. Tota...

  14. Special graphites

    International Nuclear Information System (INIS)

    Leveque, P.

    1964-01-01

    A large fraction of the work undertaken jointly by the Commissariat a l'Energie Atomique (CEA) and the Pechiney Company has been the improvement of the properties of nuclear pile graphite and the opening up of new fields of graphite application. New processes for the manufacture of carbons and special graphites have been developed: forged graphite, pyro-carbons, high density graphite agglomeration of graphite powders by cracking of natural gas, impervious graphites. The physical properties of these products and their reaction with various oxidising gases are described. The first irradiation results are also given. (authors) [fr

  15. Mechanisms for neutron damage in graphite from low to high temperatures from first principles - 15308

    International Nuclear Information System (INIS)

    Heggie, M.I.; Latham, C.D.; McKenna, A.J.; Trevethan, T.P.; Vuong, A.B.; Young, P.J.L.

    2015-01-01

    Mechanism is key to understanding the reliability and applicability of materials test reactor data to in-service behaviour. Here we review the historic understanding of dimensional change, drawing out the prima facie inadequacies of the standard model, and describing additional mechanisms (buckle, ruck and tuck) based on basal shear during radiation. Finally, we summarise new findings that vacancy aggregation into lines which heal and contract the basal layers is more credible now than appeared to be the case 10 years ago and that it can also give rise to ramps connecting graphite layers. (authors)

  16. Reflectivity and filtering characteristics of pyrolytic graphite

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Ashry, A.; Abbas, Y.; Wahba, W.

    1988-01-01

    The neutron transmission measurements through oriented pyrolytic graphite (P.G. crystal) were carried out in the wavelength band from 0.15 nm to 6.5 nm at different orientations of the (002) plane of the crystal w.r.t. the neutron beam direction. It was found that the P.G. crystal may be tuned for optimum scattering of second-order neutrons in the wavelength ranging between 0.112 nm and 0.425 nm, by adjusting the filter in an appropriate orientation. The reflectivity of (002), (004) and (006) planes of P.G. were measured and the following results are obtained: the reflectivity of (002) plane was found to be 99% by (transmission method). The ratio of the integrated intensity of the reflected neutrons from (004) and (006) is 3.14+-0.25 and is found to be in agreement with the calculated ratio. The measurements were performed using the fixed scattering angle spectrometer installed in front of the ET-RR-1 reactor horizontal channel

  17. Elastic representation surfaces of unidirectional graphite/epoxy composites

    International Nuclear Information System (INIS)

    Kriz, R.D.; Ledbetter, H.M.

    1985-01-01

    Unidirectional graphite/epoxy composites exhibit high elastic anisotropy and unusual geometrical features in their elastic-property polar diagrams. From the five-component transverse-isotropic elastic-stiffness tensor we compute and display representation surfaces for Young's modulus, torsional modulus, linear compressibility, and Poisson's ratios. Based on Christoffel-equation solutions, we describe some unusual elastic-wave-surface topological features. Musgrave considered in detail the differences between phase-velocity and group-velocity surfaces arising from high elastic anisotropy. For these composites, we find effects similar to, but more dramatic than, Musgrave's. Some new, unexpected results for graphite/epoxy include: a shear-wave velocity that exceeds a longitudinal velocity in the plane transverse to the fiber; a wave that changes polarization character from longitudinal to transverse as the propagation direction sweeps from the fiber axis to the perpendicular axis

  18. Graphitized biogas-derived carbon nanofibers as anodes for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cuesta, Nuria; Cameán, Ignacio; Ramos, Alberto; García, Ana B.

    2016-01-01

    The electrochemical performance as potential anodes for lithium-ion batteries of graphitized biogas-derived carbon nanofibers (BCNFs) is investigated by galvanostatic cycling versus Li/Li + at different electrical current densities. These graphitic nanomaterials have been prepared by high temperature treatment of carbon nanofibers produced in the catalytic decomposition of biogas. At low current density, they deliver specific capacities comparable to that of oil-derived micrometric graphite, the capacity retention values being mostly in the range 70-80% and cycling efficiency ∼ 100%. A clear tendency of the anode capacity to increase alongside the BCNFs crystal thickness was observed. Besides the degree of graphitic tri-dimensional structural order, the presence of loops between the adjacent edges planes on the graphene layers, the mesopore volume and the active surface area of the graphitized BCNFs were found to influence on battery reversible capacity, capacity retention along cycling and irreversible capacity. Furthermore, provided that the development of the crystalline structure is comparable, the graphitized BCNFs studied show better electrochemical rate performance than micrometric graphite. Therefore, this result can be associated with the nanometric particle size as well as the larger surface area of the BCNFs which, respectively, reduces the diffusion time of the lithium ions for the intercalation/de-intercalation processes, i.e. faster charge-discharge rate, and increases the contact area at the anode active material/electrolyte interface which may improve the Li + ions access, i.e. charge transfer reaction.

  19. Electron transfer kinetics on mono- and multilayer graphene.

    Science.gov (United States)

    Velický, Matěj; Bradley, Dan F; Cooper, Adam J; Hill, Ernie W; Kinloch, Ian A; Mishchenko, Artem; Novoselov, Konstantin S; Patten, Hollie V; Toth, Peter S; Valota, Anna T; Worrall, Stephen D; Dryfe, Robert A W

    2014-10-28

    Understanding of the electrochemical properties of graphene, especially the electron transfer kinetics of a redox reaction between the graphene surface and a molecule, in comparison to graphite or other carbon-based materials, is essential for its potential in energy conversion and storage to be realized. Here we use voltammetric determination of the electron transfer rate for three redox mediators, ferricyanide, hexaammineruthenium, and hexachloroiridate (Fe(CN)(6)(3-), Ru(NH3)(6)(3+), and IrCl(6)(2-), respectively), to measure the reactivity of graphene samples prepared by mechanical exfoliation of natural graphite. Electron transfer rates are measured for varied number of graphene layers (1 to ca. 1000 layers) using microscopic droplets. The basal planes of mono- and multilayer graphene, supported on an insulating Si/SiO(2) substrate, exhibit significant electron transfer activity and changes in kinetics are observed for all three mediators. No significant trend in kinetics with flake thickness is discernible for each mediator; however, a large variation in kinetics is observed across the basal plane of the same flakes, indicating that local surface conditions affect the electrochemical performance. This is confirmed by in situ graphite exfoliation, which reveals significant deterioration of initially, near-reversible kinetics for Ru(NH3)(6)(3+) when comparing the atmosphere-aged and freshly exfoliated graphite surfaces.

  20. Temperature dependence of the thermal expansion of neutron-irradiated pyrolytic carbon and graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1988-01-01

    The effects of neutron irradiation and annealing on the temperature dependence of the linear thermal expansion of pyrolytic carbon and graphite were investigated after irradiation at 930-1280 0 C to a maximum neutron fluence of 2.84 x 10 25 m -2 (E > 29 fJ). After irradiation, little change in the thermal expansion of pyrolytic graphite was observed. However, as-deposited pyrolytic carbon showed an increase in thermal expansion in the perpendicular direction, a decrease in the direction parallel to the deposition plane, and also an increase in the anisotropy of the thermal expansion. Annealing at 2000 0 C did not cause any effective changes for irradiated specimens of either as-deposited pyrolytic carbon or pyrolytic graphite. (author)

  1. Method for producing dustless graphite spheres from waste graphite fines

    Science.gov (United States)

    Pappano, Peter J [Oak Ridge, TN; Rogers, Michael R [Clinton, TN

    2012-05-08

    A method for producing graphite spheres from graphite fines by charging a quantity of spherical media into a rotatable cylindrical overcoater, charging a quantity of graphite fines into the overcoater thereby forming a first mixture of spherical media and graphite fines, rotating the overcoater at a speed such that the first mixture climbs the wall of the overcoater before rolling back down to the bottom thereby forming a second mixture of spherical media, graphite fines, and graphite spheres, removing the second mixture from the overcoater, sieving the second mixture to separate graphite spheres, charging the first mixture back into the overcoater, charging an additional quantity of graphite fines into the overcoater, adjusting processing parameters like overcoater dimensions, graphite fines charge, overcoater rotation speed, overcoater angle of rotation, and overcoater time of rotation, before repeating the steps until graphite fines are converted to graphite spheres.

  2. Structural disorder of graphite and implications for graphite thermometry

    Science.gov (United States)

    Kirilova, Martina; Toy, Virginia; Rooney, Jeremy S.; Giorgetti, Carolina; Gordon, Keith C.; Collettini, Cristiano; Takeshita, Toru

    2018-02-01

    Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25 megapascal (MPa) and aseismic velocities of 1, 10 and 100 µm s-1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  3. Asymptomatic Intracorneal Graphite Deposits following Graphite Pencil Injury

    OpenAIRE

    Philip, Swetha Sara; John, Deepa; John, Sheeja Susan

    2012-01-01

    Reports of graphite pencil lead injuries to the eye are rare. Although graphite is considered to remain inert in the eye, it has been known to cause severe inflammation and damage to ocular structures. We report a case of a 12-year-old girl with intracorneal graphite foreign bodies following a graphite pencil injury.

  4. Neutron transmission measurements of poly and pyrolytic graphite crystals

    Science.gov (United States)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  5. Neutron transmission measurements of poly and pyrolytic graphite crystals

    International Nuclear Information System (INIS)

    Adib, M.; Abdel-Kawy, A.; Kilany, M.

    1989-01-01

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be b coh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while orientated at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hk1) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K. (author)

  6. Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Herwig, K.W.; Matthies, B.

    1999-01-01

    Molecular dynamics (MD) simulations and neutron diffraction experiments have been performed on n-dotriacontane (n-C32D66) monolayers adsorbed on a graphite basal-plane surface. The diffraction experiments show little change in the crystalline monolayer structure up to a temperature of similar to ...

  7. Structural disorder of graphite and implications for graphite thermometry

    Directory of Open Access Journals (Sweden)

    M. Kirilova

    2018-02-01

    Full Text Available Graphitization, or the progressive maturation of carbonaceous material, is considered an irreversible process. Thus, the degree of graphite crystallinity, or its structural order, has been calibrated as an indicator of the peak metamorphic temperatures experienced by the host rocks. However, discrepancies between temperatures indicated by graphite crystallinity versus other thermometers have been documented in deformed rocks. To examine the possibility of mechanical modifications of graphite structure and the potential impacts on graphite thermometry, we performed laboratory deformation experiments. We sheared highly crystalline graphite powder at normal stresses of 5 and 25  megapascal (MPa and aseismic velocities of 1, 10 and 100 µm s−1. The degree of structural order both in the starting and resulting materials was analyzed by Raman microspectroscopy. Our results demonstrate structural disorder of graphite, manifested as changes in the Raman spectra. Microstructural observations show that brittle processes caused the documented mechanical modifications of the aggregate graphite crystallinity. We conclude that the calibrated graphite thermometer is ambiguous in active tectonic settings.

  8. Nitrite electrochemical sensor based on prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode

    CSIR Research Space (South Africa)

    Adekunle, AS

    2011-09-01

    Full Text Available Nitrite, NO2- (in neutral), and NO (in acidic media) were used as analytical probe to investigate the electrocatalytic properties of Prussian blue nanoparticles (PB) modified edge plane pyrolytic graphite (EPPG) electrode. Results indicate...

  9. Through-thickness thermal conductivity enhancement of graphite film/epoxy composite via short duration acidizing modification

    Science.gov (United States)

    Wang, Han; Wang, Shaokai; Lu, Weibang; Li, Min; Gu, Yizhou; Zhang, Yongyi; Zhang, Zuoguang

    2018-06-01

    Graphite films have excellent in-plane thermal conductivity but extremely low through-thickness thermal conductivity because of their intrinsic inter-layer spaces. To improve the inter-layer heat transfer of graphite films, we developed a simple interfacial modification with a short duration mixed-acid treatment. The effects of the mixture ratio of sulfuric and nitric acids and treatment time on the through-thickness thermal properties of graphite films were studied. The modification increased the through-thickness thermal conductivity by 27% and 42% for the graphite film and its composite, respectively. X-ray photoelectron spectroscopy, X-ray powder diffraction, and scanning electron microscopy results indicated that the acidification process had two competing effects: the positive contribution made by the enhanced interaction between the graphite layers induced by the functional groups and the negative effect from the destruction of the graphite layers. As a result, an optimal acidification method was found to be sulfuric/nitric acid treatment with a mixture ratio of 3:1 for 15 min. The resultant through-thickness thermal conductivity of the graphite film could be improved to 0.674 W/mK, and the corresponding graphite/epoxy composite shows a through-thickness thermal conductivity of 0.587 W/mK. This method can be directly used for graphite films and their composite fabrication to improve through-thickness thermal conductivity.

  10. Staging properties of potassium-ammonia ternary graphite intercalation compounds at high ammonia pressure

    Science.gov (United States)

    Qian, X. W.; Solin, S. A.

    1989-04-01

    The pressure dependence of the (00l) x-ray diffraction patterns of the ternary graphite intercalation compound K(NH3)xC24 has been studied in the range 0.5-11 kbar (for which x~4.5) using a diamond anvil cell. A special apparatus for loading the cell with liquid ammonia at room temperature has been constructed and is briefly described. In these experiments, the pressure-transmitting fluid was also an intercalant, namely ammonia. Therefore, the chemical potential of this species was linearly coupled to the applied pressure in contrast to the usual case where the pressure-transmitting fluid is chemically passive. The pressure dependences of the basal spacings and of the relative intensities of key reflections have been measured, as have the compressibilities of the stage-1 and stage-2 components of the two-phase system. Basal-spacing anomalies and anomalies in the relative intensities occur at pressures of ~3.5 and 8.0 kbar and are tentatively attributed to in-plane coordination changes in the potassium-ammonia ratio. Using thermodynamic arguments and Le Chatelier's principle we show quantitatively that a staging phase transition from pure stage-1 phase to an admixture of stage-1 and stage-2 is expected with increased pressure above 10 bar in agreement with experiment. The saturation ammonia compositions (x values) of the admixed stages are found to be 4.5 and 5.4 for the stage-1 and -2 components, respectively. This result is interpreted as evidence that the composition is not sterically limited but is determined by the binding energy of ammonia for potassium and by the perturbation to this energy from the guest-host interaction.

  11. Impact of keV-energy argon clusters on diamond and graphite

    DEFF Research Database (Denmark)

    Popok, Vladimir; Samela, Juha; Nordlund, Kai

    2012-01-01

    Impact of keV-energy size-selected Arn (n = 16, 27, 41) cluster ions on diamond and graphite is studied both experimentally and by molecular dynamics simulations. For the case of diamond, relatively high cluster kinetic energies (above certain threshold) are required to produce severe radiation...... the graphene planes, significant radiation damage is already introduced by impact of clusters with low kinetic energies (a few tens of eV/atom). However, collisions of the argon clusters cause very elastic response of the graphene planes that leads to efficient closure of the craters which could be formed...

  12. Local electronic and geometric structures of silicon atoms implanted in graphite

    International Nuclear Information System (INIS)

    Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao

    2002-01-01

    Low-energy Si + ions were implanted in highly oriented pyrolitic graphite (HOPG) up to 1% of surface atomic concentration, and the local electronic and geometric structures around the silicon atoms were in situ investigated by means of the Si K-edge X-ray absorption near-edge structure (XANES) and X-ray photoelectron spectroscopy using linearly polarized synchrotron radiation. The resonance peak appeared at 1839.5 eV in the Si K-edge XANES spectra for Si + -implanted HOPG. This energy is lower than those of the Si 1s→σ * resonance peaks in any other Si-containing materials. The intensity of the resonance peak showed strong polarization dependence, which suggests that the final state orbitals around the implanted Si atoms have π * -like character. It is concluded that the σ-type Si-C bonds produced by the Si + -ion implantation are nearly parallel to the graphite plane, and Si x C phase forms two-dimensionally spread graphite-like layer with sp 2 bonds

  13. Enhancement of the coercivity in Co-Ni layered double hydroxides by increasing basal spacing.

    Science.gov (United States)

    Zhang, Cuijuan; Tsuboi, Tomoya; Namba, Hiroaki; Einaga, Yasuaki; Yamamoto, Takashi

    2016-09-14

    The magnetic properties of layered double hydroxides (LDH) containing transition metal ions can still develop, compared with layered metal hydroxide salts which exhibit structure-dependent magnetism. In this article, we report the preparation of a hybrid magnet composed of Co-Ni LDH and n-alkylsulfonate anions (Co-Ni-CnSO3 LDH). As Co-Ni LDH is anion-exchangeable, we can systematically control the interlayer spacing by intercalating n-alkylsulfonates with different carbon numbers. The magnetic properties were examined with temperature- and field-dependent magnetization measurements. As a result, we have revealed that the coercive field depends on the basal spacing. It is suggested that increasing the basal spacing varies the competition between the in-plane superexchange interactions and long-range out-of-plane dipolar interactions. Moreover, a jump in the coercive field at around 20 Å of the basal spacing is assumed to be the modification of the magnetic ordering in Co-Ni-CnSO3 LDH.

  14. Spectroscopic characterization of ion-irradiated multi-layer graphenes

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Akira [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Honda, Shin-ichi, E-mail: s-honda@eng.u-hyogo.ac.jp [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Osugi, Ryo [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Okada, Hiraku [Graduate School of Engineering, University of Hyogo, Himeji, Hyogo 671-2280 (Japan); Niibe, Masahito [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205 (Japan); Terasawa, Mititaka [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, Kamigori, Hyogo 678-1205 (Japan); RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan); Hirase, Ryuji; Izumi, Hirokazu; Yoshioka, Hideki [Hyogo Prefectural Institute of Technology, Kobe 654-0037 (Japan); Niwase, Keisuke [Hyogo University of Teacher Education, Kato, Hyogo 673-1494 (Japan); Taguchi, Eiji [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Lee, Kuei-Yi [Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Oura, Masaki [RIKEN SPring-8 Center, Sayo, Hyogo 679-5148 (Japan)

    2013-11-15

    Low-energy Ar ions (0.5–2 keV) were irradiated to multi-layer graphenes and the damage process, the local electronic states, and the degree of alignment of the basal plane, and the oxidation process upon ion irradiation were investigated by Raman spectroscopy, soft X-ray absorption spectroscopy (XAS) and in situ X-ray photoelectron spectroscopy (XPS). By Raman spectroscopy, we observed two stages similar to the case of irradiated graphite, which should relate to the accumulations of vacancies and turbulence of the basal plane, respectively. XAS analysis indicated that the number of sp{sup 2}-hybridized carbon (sp{sup 2}-C) atoms decreased after ion irradiation. Angle-resolved XAS revealed that the orientation parameter (OP) decreased with increasing ion energy and fluence, reflecting the turbulence of the basal plane under irradiation. In situ XPS shows the oxidation of the irradiated multi-layer graphenes after air exposure.

  15. Basal-plane thermal conductivity of few-layer molybdenum disulfide

    International Nuclear Information System (INIS)

    Jo, Insun; Ou, Eric; Shi, Li; Pettes, Michael Thompson; Wu, Wei

    2014-01-01

    We report the in-plane thermal conductivity of suspended exfoliated few-layer molybdenum disulfide (MoS 2 ) samples that were measured by suspended micro-devices with integrated resistance thermometers. The obtained room-temperature thermal conductivity values are (44–50) and (48–52) W m −1 K −1 for two samples that are 4 and 7 layers thick, respectively. For both samples, the peak thermal conductivity occurs at a temperature close to 120 K, above which the thermal conductivity is dominated by intrinsic phonon-phonon scattering although phonon scattering by surface disorders can still play an important role in these samples especially at low temperatures

  16. Polarized-x-ray-absorption studies of graphite intercalated-bromine compounds

    International Nuclear Information System (INIS)

    Feldman, J.L.; Elam, W.T.; Ehrlich, A.C.; Skelton, E.F.; Dominguez, D.D.; Chung, D.D.L.; Lytle, F.W.

    1986-01-01

    Details of both results and data analysis are given in the case of our polarized-x-ray-absorption experiments, using synchrotron radiation, on highly oriented pyrolytic graphite (HOPG)--based and graphite-fiber-based residual-bromine intercalation compounds. The effective angle which nearest-neighbor Br pairs make with crystallite graphite planes in some of these compounds, which was stated to be approx.20 0 in an earlier article, is shown to be 16X(de +- 4X(de: both Br-Br extended x-ray-absorption fine structure (EXAFS) and white-line features of the data are the basis of this result. We have also found that, whereas spherical averages of the areas under white-line spectra are independent of the choice of the material among all samples studied (including Br 2 vapor), differences in similarly spherically averaged Br-Br EXAFS amplitudes are evident, especially between Br 2 vapor and Br-graphite samples. We show that the latter differences which correspond to a coordination number less than one in Br-graphite are not due to either Gaussian or non-Gaussian (up to k 4 terms) Debye-Waller effects. In addition, we discuss the extraction of Br-C EXAFS and present results of model calculations of Br-C EXAFS, where several different structural models for the Br sites are considered. We also discuss thermal effects and their relation to known Br sublattice phase-transition behavior, based on our measurements at room temperature, 360 K, and 400 K

  17. Nanoscale Electrochemistry of sp(2) Carbon Materials: From Graphite and Graphene to Carbon Nanotubes.

    Science.gov (United States)

    Unwin, Patrick R; Güell, Aleix G; Zhang, Guohui

    2016-09-20

    -sphere redox processes. (ii) Demonstration of the high activity of basal plane HOPG toward other reactions, with no requirement for catalysis by step edges or defects, as exemplified by studies of proton-coupled electron transfer, redox transformations of adsorbed molecules, surface functionalization via diazonium electrochemistry, and metal electrodeposition. (iii) Rationalization of the complex interplay of different factors that determine electrochemistry at graphene, including the source (mechanical exfoliation from graphite vs chemical vapor deposition), number of graphene layers, edges, electronic structure, redox couple, and electrode history effects. (iv) New methodologies that allow nanoscale electrochemistry of 1D materials (SWNTs) to be related to their electronic characteristics (metallic vs semiconductor SWNTs), size, and quality, with high resolution imaging revealing the high activity of SWNT sidewalls and the importance of defects for some electrocatalytic reactions (e.g., the oxygen reduction reaction). The experimental approaches highlighted for carbon electrodes are generally applicable to other electrode materials and set a new framework and course for the study of electrochemical and interfacial processes.

  18. Voronoi-Tessellated Graphite Produced by Low-Temperature Catalytic Graphitization from Renewable Resources.

    Science.gov (United States)

    Zhao, Leyi; Zhao, Xiuyun; Burke, Luke T; Bennett, J Craig; Dunlap, Richard A; Obrovac, Mark N

    2017-09-11

    A highly crystalline graphite powder was prepared from the low temperature (800-1000 °C) graphitization of renewable hard carbon precursors using a magnesium catalyst. The resulting graphite particles are composed of Voronoi-tessellated regions comprising irregular sheets; each Voronoi-tessellated region having a small "seed" particle located near their centroid on the surface. This suggests nucleated outward growth of graphitic carbon, which has not been previously observed. Each seed particle consists of a spheroidal graphite shell on the inside of which hexagonal graphite platelets are perpendicularly affixed. This results in a unique high surface area graphite with a high degree of graphitization that is made with renewable feedstocks at temperatures far below that conventionally used for artificial graphites. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Auger measurements on the two-dimensional adsorption of krypton on graphite

    International Nuclear Information System (INIS)

    Kramer, H.M.; Suzanne, J.

    1975-01-01

    The adsorption of krypton on a (0001) plane of graphite was studied by means of Auger Electron Spectroscopy. The spectrum of krypton in the energy range from 5eV to 11eV and from 30eV to 70eV is reported. By means of LEED a √3x√3 superstructure is found for the adsorbed monolayer of Kr [fr

  20. The Basal study on medical treatment by 'Yayoi', 3

    International Nuclear Information System (INIS)

    Furuhashi, Akira.

    1977-09-01

    Continuing to the last report, the results of the basal study of therapeutic irradiation by ''Yayoi'' were reported as follows: The dose was measured in July, November, December, 1975 and April, June, 1976, and the calculation on one dimensional transportation was made in June, July, October, 1976. To obtain the most effective irradiation system for the patients under the circumstances of ''Yayoi'', the places to insert graphite and iron layers and polyethylene layer were improved, and the system to get better neutron flux was advocated. Using a human body type phantom, improvements of the human body permeability and of exposure to other than the affected part, etc, were discussed. (Kobatake, H.)

  1. Magnetic susceptibilities and thermal expansion of artificial graphites; Susceptibilites magnetiques et dilatation thermique des graphites artificiels

    Energy Technology Data Exchange (ETDEWEB)

    Cornuault, P; Herpin, A; Hering, H; Seguin, M [Commissariat a l' Energie Atomique, Paris (France); Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    Starting from measurements of the magnetic susceptibility made in the two principal directions of a graphite bar, the distribution function of the normals to the carbon planes in the crystallites has been evaluated. The effect of different variation in the manufacturing process on this crystalline anisotropy has been studied. From this crystalline anisotropy we have calculated the thermal expansion coefficient possessed by a compact mass of crystallites having exactly the same orientational anisotropy as the porous body consideration. The difference between this and the observed expansion coefficient leads to the determination of the expansion of the non-graphitic part of the mass which turns out to have a negative value and is also anisotropic. We have attempted to draw some conclusions from this result. (author) [French] En partant des mesures de la susceptibilite magnetique faites dans les directions des axes principaux d'un barreau de graphite, on a calcule la fonction de distribution des perpendiculaires aux plans graphitiques dans les cristallites. On a etudie les effets que pouvaient provoquer des modifications dans le procede de fabrication sur l'anisotropie cristalline. En considerant cette anisotropie cristalline, nous avons calcule le coefficient de dilatation thermique pour un bloc compact de cristallites ayant exactement la meme anisotropie d'orientation que le corps poreux en question. La difference entre cette valeur et celle mesuree du coefficient de dilatation, nous permet de calculer la dilatation pour la partie non-graphitique du bloc, en l'occurence, on trouve une valeur negative du coefficient pour cette partie, qui est egalement anisotropique. On a essaye d'en tirer quelques conclusions. (auteur)

  2. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    Science.gov (United States)

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point).

  3. Process for purifying graphite

    International Nuclear Information System (INIS)

    Clausius, R.A.

    1985-01-01

    A process for purifying graphite comprising: comminuting graphite containing mineral matter to liberate at least a portion of the graphite particles from the mineral matter; mixing the comminuted graphite particles containing mineral matter with water and hydrocarbon oil to form a fluid slurry; separating a water phase containing mineral matter and a hydrocarbon oil phase containing grahite particles; and separating the graphite particles from the hydrocarbon oil to obtain graphite particles reduced in mineral matter. Depending upon the purity of the graphite desired, steps of the process can be repeated one or more times to provide a progressively purer graphite

  4. Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions

    International Nuclear Information System (INIS)

    Yasi, J A; Nogaret, T; Curtin, W A; Trinkle, D R; Qi, Y; Hector, L G Jr

    2009-01-01

    The core structures of screw and edge dislocations on the basal and prism planes in Mg, and the associated gamma surfaces, were studied using an ab initio method and the embedded-atom-method interatomic potentials developed by Sun et al and Liu et al. The ab initio calculations predict that the basal plane dislocations dissociate into partials split by 16.7 Å (edge) and 6.3 Å (screw), as compared with 14.3 Å and 12.7 Å (Sun and Liu edge), and 6.3 Å and 1.4 Å (Sun and Liu screw), with the Liu screw dislocation being metastable. In the prism plane, the screw and edge cores are compact and the edge core structures are all similar, while ab initio does not predict a stable prismatic screw in stress-free conditions. These results are qualitatively understood through an examination of the gamma surfaces for interplanar sliding on the basal and prism planes. The Peierls stresses at T = 0 K for basal slip are a few megapascals for the Sun potential, in agreement with experiments, but are ten times larger for the Liu potential. The Peierls stresses for prism slip are 10–40 MPa for both potentials. Overall, the dislocation core structures from ab initio are well represented by the Sun potential in all cases while the Liu potential shows some notable differences. These results suggest that the Sun potential is preferable for studying other dislocations in Mg, particularly the (c + a) dislocations, for which the core structures are much larger and not accessible by ab initio methods

  5. Genetic significance of the 867 cm- 1 out-of-plane Raman mode in graphite associated with V-bearing green grossular

    Science.gov (United States)

    Thomas, Rainer; Rericha, Adolf; Pohl, Walter L.; Davidson, Paul

    2018-03-01

    SE Kenya is the world's largest producer of green vanadium grossular gemstones (tsavorite). Samples from one of the mines near Mwatate, and of occurrences in Tanzania yielded remarkable new insights into the genesis of tsavorite. Graphite is intimately associated with V-grossular and is one of the keys to understanding its origin. In the course of this study we found five different types of graphite. Surprisingly, in one graphite type the "Raman-forbidden" and IR-active 867 cm- 1 band was observed. In this communication, we attempt to find an explanation for this unusual phenomenon. Additionally, our observations also address some of the issues pertaining to the origin of the green grossular-dominated rocks (grossularites), as well as the gem quality tsavorite crystals, since we propose that the anomalous spectroscopic behavior of the graphite is related to the unusual conditions during crystallization of both the grossular and graphite from a near-supercritical volatile- and sulfur-rich silicate melt. The massive green vanadium grossular contains abundant unequivocal crystallized melt inclusions, while the transparent gem quality grossular (tsavorite) displays only fluid inclusions. On the basis of inclusion studies we suggest that anatectic melts originated in the peculiar evaporitic host lithology of the tsavorite deposits. Near peak metamorphic temperatures ( 700 °C) these liquids occurred as a supercritical volatile-rich "fluid/melt phase" characterized by complete miscibility between H2O and silicate liquid. Relatively dry liquid batches precipitated non-transparent green grossular, whereas wet batches segregated fluids that formed transparent tsavorite.

  6. Purification and preparation of graphite oxide from natural graphite

    Energy Technology Data Exchange (ETDEWEB)

    Panatarani, C., E-mail: c.panatarani@phys.unpad.ac.id; Muthahhari, N.; Joni, I. Made [Instrumentation Systems and Functional Material Processing Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Padjadjaran University, Jl. Raya Bandung-Sumedang KM 21, Jatinangor, 45363, Jawa Barat (Indonesia); Rianto, Anton [Grafindo Nusantara Ltd., Belagio Mall Lantai 2, Unit 0 L3-19, Kawasan Mega Kuningan, Kav. B4 No.3, Jakarta Selatan (Indonesia)

    2016-03-11

    Graphite oxide has attracted much interest as a possible route for preparation of natural graphite in the large-scale production and manipulation of graphene as a material with extraordinary electronic properties. Graphite oxide was prepared by modified Hummers method from purified natural graphite sample from West Kalimantan. We demonstrated that natural graphite is well-purified by acid leaching method. The purified graphite was proceed for intercalating process by modifying Hummers method. The modification is on the reaction time and temperature of the intercalation process. The materials used in the intercalating process are H{sub 2}SO{sub 4} and KMNO{sub 4}. The purified natural graphite is analyzed by carbon content based on Loss on Ignition test. The thermo gravimetricanalysis and the Fouriertransform infrared spectroscopy are performed to investigate the oxidation results of the obtained GO which is indicated by the existence of functional groups. In addition, the X-ray diffraction and energy dispersive X-ray spectroscopy are also applied to characterize respectively for the crystal structure and elemental analysis. The results confirmed that natural graphite samples with 68% carbon content was purified into 97.68 % carbon content. While the intercalation process formed a formation of functional groups in the obtained GO. The results show that the temperature and reaction times have improved the efficiency of the oxidation process. It is concluded that these method could be considered as an important route for large-scale production of graphene.

  7. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  8. Case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    Energy Technology Data Exchange (ETDEWEB)

    Oohara, K.; Ootsuka, F. (Tokyo Univ. (Japan). Faculty of Medicine); Mizoguchi, M.

    1980-12-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered.

  9. Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    Directory of Open Access Journals (Sweden)

    Insun Jo

    2015-05-01

    Full Text Available Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD, and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary.

  10. Superhydrophilic graphite surfaces and water-dispersible graphite colloids by electrochemical exfoliation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli, 320 Taiwan (China); Chen, Shih-Ming; Lai, Wei-Hao [Materials and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, 31040 Taiwan (China); Sheng, Yu-Jane [Department of Chemical Engineering, National Taiwan University, Taipei, 106 Taiwan (China); Tsao, Heng-Kwong [Department of Chemical and Materials Engineering, Department of Physics, National Central University, Jhongli, 320 Taiwan (China)

    2013-08-14

    Superhydrophilic graphite surfaces and water-dispersible graphite colloids are obtained by electrochemical exfoliation with hydrophobic graphite electrodes. Such counterintuitive characteristics are caused by partial oxidation and investigated by examining both graphite electrodes and exfoliated particles after electrolysis. The extent of surface oxidation can be explored through contact angle measurement, scanning electron microscope, electrical sheet resistance, x-ray photoelectron spectroscopy, zeta-potential analyzer, thermogravimetric analysis, UV-visible, and Raman spectroscopy. The degree of wettability of the graphite anode can be altered by the electrolytic current and time. The water contact angle declines generally with increasing the electrolytic current or time. After a sufficient time, the graphite anode becomes superhydrophilic and its hydrophobicity can be recovered by peeling with adhesive tape. This consequence reveals that the anodic graphite is oxidized by oxygen bubbles but the oxidation just occurs at the outer layers of the graphite sheet. Moreover, the characteristics of oxidation revealed by UV peak shift, peak ratio between D and G bands, and negative zeta-potential indicate the presence of graphite oxide on the outer shell of the exfoliated colloids. However, thermogravimetric analysis for the extent of decomposition of oxygen functional groups verifies that the amount of oxygen groups is significantly less than that of graphite oxide prepared via Hummer method. The structure of this partially oxidized graphite may consist of a graphite core covered with an oxidized shell. The properties of the exfoliated colloids are also influenced by pH of the electrolytic solution. As pH is increased, the extent of oxidation descends and the thickness of oxidized shell decreases. Those results reveal that the degree of oxidation of exfoliated nanoparticles can be manipulated simply by controlling pH.

  11. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  12. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  13. Theoretical x-ray absorption investigation of high pressure ice and compressed graphite

    International Nuclear Information System (INIS)

    Shaw, Dawn M; Tse, John S

    2007-01-01

    The x-ray absorption spectra (XAS) of high pressure ices II, VIII, and IX have been computed with the Car-Parrinello plane wave pseudopotential method. XAS for the intermediate structures obtained from uniaxial compression of hexagonal graphite along the c-axis are also studied. Whenever possible, comparisons to available experimental results are made. The reliability of the computational methods for the XAS for these structures is discussed

  14. Molecular Dynamics Study of the Separation Behavior at the Interface between PVDF Binder and Copper Current Collector

    Directory of Open Access Journals (Sweden)

    Seungjun Lee

    2016-01-01

    Full Text Available In Li-ion batteries, the mechanical strengths at the interfaces of binder/particle and binder/current collector play an important role in maintaining the mechanical integrity of the composite electrode. In this work, the separation behaviors between polyvinylidene fluoride (PVDF binders and copper current collectors are studied in the opening and sliding modes using molecular dynamics (MD simulations. The simulation shows that the separation occurs inside the PVDF rather than at the interface due to the strong adhesion between PVDF and copper. This fracture behavior is different from the behavior of the PVDF/graphite basal plane that shows a clear separation at the interface. The results suggest that the adhesion strength of the PVDF/copper is stronger than that of the PVDF/graphite basal plane. The methodology used in MD simulation can directly evaluate the adhesion strength at the interfaces of various materials between binders, substrates, and particles at the atomic scales. The proposed method can therefore provide a guideline for the design of the electrode in order to enhance the mechanical integrity for better battery performance.

  15. Environmentally benign graphite intercalation compound composition for exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2014-06-17

    A carboxylic-intercalated graphite compound composition for the production of exfoliated graphite, flexible graphite, or nano-scaled graphene platelets. The composition comprises a layered graphite with interlayer spaces or interstices and a carboxylic acid residing in at least one of the interstices, wherein the composition is prepared by a chemical oxidation reaction which uses a combination of a carboxylic acid and hydrogen peroxide as an intercalate source. Alternatively, the composition may be prepared by an electrochemical reaction, which uses a carboxylic acid as both an electrolyte and an intercalate source. Exfoliation of the invented composition does not release undesirable chemical contaminants into air or drainage.

  16. Production of nuclear graphite in France; Production de graphite nucleaire en France

    Energy Technology Data Exchange (ETDEWEB)

    Legendre, P; Mondet, L [Societe Pechiney, 74 - Chedde (France); Arragon, Ph; Cornuault, P; Gueron, J; Hering, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [French] Le graphite destine a la construction des reacteurs est obtenu par le procede usuel: confection d'une pate a partir de coke de petrole et de brai, cuisson de cette pate (au four electrique) puis graphitation du produit cuit, egalement par chauffage electrique. L'usage du transport pneumatique et le controle des conditions cuisson et de graphitation ont permit d'augmenter la production de graphite nucleaire ainsi que de mieux controler ses proprietes physiques et mecaniques et de reduire au minimum les souillures accidentelles. (M.B.)

  17. Elementær Teori for Plane Bjælker

    DEFF Research Database (Denmark)

    Byskov, Esben

    Denne bog er skrevet med henblik på introduktion og benyttelse af de mest basale teorier for strenger og bjælker, hvor hovedvægten er lagt på retliniede, plane bjælker. Bogens indhold dækker mere end et enkelt semesters pensum ved bygningsingeniøruddannelsen ved Aalborg Universitet. Ideen er, at de...

  18. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  19. A case of radiation cancer associated with spinocellular carcinoma and basal cell epithelial tumor

    International Nuclear Information System (INIS)

    Oohara, Kuniaki; Ootsuka, Fujio; Mizoguchi, Masako.

    1980-01-01

    The patient was a 66 year-old male who had received radiotherapy for psoriasis vulgaris in frontal plane for 10 years since the age of 19. This radiotherapy was carried out once a week for 5 to 6 weeks and stopped for following 5 to 6 weeks. The source and the dose were unknown. Multiple superficial basal cell epithelial tumor occurred 32 to 33 years after that in the region over which radiation had been given. Moreover, 37 years after that, spinocellular carcinoma occurred in the same region. Spinocellular carcinoma in this case increased rapidly and reached the depth of frontal plane. Atypic of cancer cells was marked, and various findings were observed. Characteristics of these tumor cells were mixture of spindle cells and cells with vacuoles. Partially, findings common to basal cell epithelial tumor were coexisted, and senile keratosis was also discovered. (Tsunoda, M.)

  20. Nuclear graphite ageing and turnaround

    International Nuclear Information System (INIS)

    Marsden, B.J.; Hall, G.N.; Smart, J.

    2001-01-01

    Graphite moderated reactors are being operated in many countries including, the UK, Russia, Lithuania, Ukraine and Japan. Many of these reactors will operate well into the next century. New designs of High Temperature Graphite Moderated Reactors (HTRS) are being built in China and Japan. The design life of these graphite-moderated reactors is governed by the ageing of the graphite core due to fast neutron damage, and also, in the case of carbon dioxide cooled reactors by the rate of oxidation of the graphite. Nuclear graphites are polycrystalline in nature and it is the irradiation-induced damage to the individual graphite crystals that determines the material property changes with age. The life of a graphite component in a nuclear reactor can be related to the graphite irradiation induced dimensional changes. Graphites typically shrink with age, until a point is reached where the shrinkage stops and the graphite starts to swell. This change from shrinkage to swelling is known as ''turnaround''. It is well known that pre-oxidising graphite specimens caused ''turnaround'' to be delayed, thus extending the life of the graphite, and hence the life of the reactor. However, there was no satisfactory explanation of this behaviour. This paper presents a numerical crystal based model of dimensional change in graphite, which explains the delay in ''turnaround'' in the pre-oxidised specimens irradiated in a fast neutron flux, in terms of crystal accommodation and orientation and change in compliance due to radiolytic oxidation. (author)

  1. Graphite analyser upgrade for the IRIS spectrometer at ISIS

    International Nuclear Information System (INIS)

    Campbell, S.I.; Telling, M.T.F.; Carlile, C.J.

    1999-01-01

    Complete text of publication follows. The pyrolytic graphite (PG) analyser bank on the IRIS high resolution inelastic spectrometer [1] at ISIS is to be upgraded. At present the analyser consists of 1350 graphite pieces (6 rows by 225 columns) cooled to 25K [2]. The new analyser array, however, will provide a three-fold increase in area and employ 4212 crystal pieces (18 rows by 234 columns). In addition, the graphite crystals will be cooled close to liquid helium temperature to further reduce thermal diffuse scattering (TDS) and improve the sensitivity of the spectrometer [2]. For an instrument such as IRIS, with its analyser in near back-scattering geometry, optical aberration and variation in the time-of-flight of the analysed neutrons is introduced as one moves out from the horizontal scattering plane. To minimise such effects, the profile of the analyser array has been redesigned. The concept behind the design of the new analyser bank and factors that effect the overall resolution of the instrument are discussed. Results of Monte Carlo simulations of the expected resolution and intensity of the complete instrument are presented and compared to the current instrument performance. (author) [1] C.J. Carlile et al, Physica B 182 (1992) 431-440.; [2] C.J. Carlile et al, Nuclear Instruments and Methods In Physics Research A 338 (1994) 78-82

  2. Self-consistent electronic structure of a model stage-1 graphite acceptor intercalate

    International Nuclear Information System (INIS)

    Campagnoli, G.; Tosatti, E.

    1981-04-01

    A simple but self-consistent LCAO scheme is used to study the π-electronic structure of an idealized stage-1 ordered graphite acceptor intercalate, modeled approximately on C 8 AsF 5 . The resulting non-uniform charge population within the carbon plane, band structure, optical and energy loss properties are discussed and compared with available spectroscopic evidence. The calculated total energy is used to estimate migration energy barriers, and the intercalate vibration mode frequency. (author)

  3. THE EFFECT OF APPLIED STRESS ON THE GRAPHITIZATION OF PYROLYTIC GRAPHITE

    Energy Technology Data Exchange (ETDEWEB)

    Bragg, R H; Crooks, D D; Fenn, Jr, R W; Hammond, M L

    1963-06-15

    Metallographic and x-ray diffraction studies were made of the effect of applied stress at high temperature on the structure of pyrolytic graphite (PG). The dominant factor was whether the PG was above or below its graphitization temperature, which, in turn, was not strongly dependent on applied stress. Below the graphitization temperature, the PG showed a high proportion of disordered layers (0.9), a fairly large mean tilt angle (20 deg ) and a small crystailite size (La --150 A). Fracture occurred at low stress and strain and the materiai exhibited a high apparent Young's modulus ( approximates 4 x 10/sup 6/ psi). Above the graphitization temperature, graphitization was considerably enhanced by strain up to about 8%. The disorder parameter was decreased from a zero strain value of 0.3 to 0.l5 with strain, the mean tilt angle was decreased to 4 deg , and a fivefold increase in crystallite size occurred. When the strainenhanced graphitization was complete, the material exhibited a low apparent modulus ( approximates 0.5 x 10/sup 6/ psi) and large plastic strains (>100%) for a constant stress ( approximates 55 ksi). Graphitization was shown to be a spontaneous process that is promoted by breaking cross-links thermally, and the process is furthered by chemical attack and plastic strain. (auth)

  4. Artificial graphites

    International Nuclear Information System (INIS)

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  5. Absorption spectra of AA-stacked graphite

    International Nuclear Information System (INIS)

    Chiu, C W; Lee, S H; Chen, S C; Lin, M F; Shyu, F L

    2010-01-01

    AA-stacked graphite shows strong anisotropy in geometric structures and velocity matrix elements. However, the absorption spectra are isotropic for the polarization vector on the graphene plane. The spectra exhibit one prominent plateau at middle energy and one shoulder structure at lower energy. These structures directly reflect the unique geometric and band structures and provide sufficient information for experimental fitting of the intralayer and interlayer atomic interactions. On the other hand, monolayer graphene shows a sharp absorption peak but no shoulder structure; AA-stacked bilayer graphene has two absorption peaks at middle energy and abruptly vanishes at lower energy. Furthermore, the isotropic features are expected to exist in other graphene-related systems. The calculated results and the predicted atomic interactions could be verified by optical measurements.

  6. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  7. Hydrogen storage in carbon nanofibres for defence applications : the influence of growth parameters on graphitic quality and storage capacity

    Energy Technology Data Exchange (ETDEWEB)

    Turpin, M.; Mellor, I. [Morgan Materials Technology Ltd., Worcestershire (United Kingdom); Shatwell, R.A.; Prentice, C. [QinetiQ Farnborough, Hampshire (United Kingdom); Browning, D.J. [QinetiQ Haslar, Gosport, Hampshire (United Kingdom); Lakeman, J.B. [Dstl Portsdown, Cosham, Hampshire (United Kingdom); Gerrard, M.L.; Mortimer, R.J. [Loughborough Univ. of Technology, Loughborough, Leicestershire (United Kingdom). Dept. of Chemistry

    2002-07-01

    The results of a study on hydrogen storage in carbon or graphite nanofibres (GNFs) were presented. Graphite nanofibres used in hydrogen storage treatment were synthesized at 600 degrees C by passing ethylene over a series of Fe:Ni:Cu catalysts. It was shown that while hydrogen storage can occur for up to 6.5 wt per cent, this number can vary depending on the method of preparation and heat treatment. Hydrogen storage requires an effective method, such as Raman spectroscopy, for characterising the product. Transmission Electron Microscopy also helped in the optimisation of the process to produce highly graphitic nanofibres. The main role of heat treatment is to remove carbon from the surface of the GNFs, allowing access to the graphene planes. Hydrogen storage experiments were conducted at 120 bar, using a bespoke apparatus with differential pressure. A detailed error analysis was performed on the uptake measurement system. The rate of penetration by hydrogen into a layer of carbon capping graphene planes is found to be negligible. It is concluded that hydrogen adsorption will not be observed unless the layer is removed. A maximum uptake of 4.2 wt per cent was achieved, increasing to more than 6.5 wt per cent following heat treatment at 1000 degrees C. 32 refs., 3 tabs., 7 figs.

  8. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    using material properties reported at 25, 300, 400 and 450 .deg. C. For the temperature range 25-400 .deg. C., the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. However, at 450 .deg. C., total strain energy minima suggested planes making an angle of about 30 .deg. with basal pole as the habit plane

  9. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  10. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    Science.gov (United States)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  11. Graphite selection for the PBMR reflector

    International Nuclear Information System (INIS)

    Marsden, B.J.; Preston, S.D.

    2000-01-01

    A high temperature, direct cycle gas turbine, graphite moderated, helium cooled, pebble-bed reactor (PBMR) is being designed and constructed in South Africa. One of the major components in the PBMR is the graphite reflector, which must be designed to last thirty-five full power years. Fast neutron irradiation changes the dimensions and material properties of reactor graphite, thus for design purposes a suitable graphite database is required. Data on the effect of irradiation on nuclear graphites has been gathered for many years, at considerable financial cost, but unfortunately these graphites are no longer available due to rationalization of the graphite industry and loss of key graphite coke supplies. However, it is possible, using un-irradiated graphite materials properties and knowledge of the particular graphite microstructure, to determine the probable irradiation behaviour. Three types of nuclear graphites are currently being considered for the PBMR reflector: an isostatically moulded, fine grained, high strength graphite and two extruded medium grained graphites of moderately high strength. Although there is some irradiation data available for these graphites, the data does not cover the temperature and dose range required for the PBMR. The available graphites have been examined to determine their microstructure and some of the key material properties are presented. (authors)

  12. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  13. Effect of graphite target power density on tribological properties of graphite-like carbon films

    Science.gov (United States)

    Dong, Dan; Jiang, Bailing; Li, Hongtao; Du, Yuzhou; Yang, Chao

    2018-05-01

    In order to improve the tribological performance, a series of graphite-like carbon (GLC) films with different graphite target power densities were prepared by magnetron sputtering. The valence bond and microstructure of films were characterized by AFM, TEM, XPS and Raman spectra. The variation of mechanical and tribological properties with graphite target power density was analyzed. The results showed that with the increase of graphite target power density, the deposition rate and the ratio of sp2 bond increased obviously. The hardness firstly increased and then decreased with the increase of graphite target power density, whilst the friction coefficient and the specific wear rate increased slightly after a decrease with the increasing graphite target power density. The friction coefficient and the specific wear rate were the lowest when the graphite target power density was 23.3 W/cm2.

  14. Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Ostatná, Veronika; Černocká, Hana; Kurzatkowska, K.; Paleček, Emil

    2012-01-01

    Roč. 735, JUL (2012), s. 31-36 ISSN 0003-2670 R&D Projects: GA AV ČR(CZ) KJB100040901; GA ČR(CZ) GAP301/11/2055; GA MŠk(CZ) ME09038 Institutional research plan: CEZ:AV0Z50040702 Keywords : protein denaturation * carbon electrodes * edge plane pyrolytic graphite Subject RIV: BO - Biophysics Impact factor: 4.387, year: 2012

  15. Graphite for high-temperature reactors

    International Nuclear Information System (INIS)

    Hammer, W.; Leushacke, D.F.; Nickel, H.; Theymann, W.

    1976-01-01

    The different graphites necessary for HTRs are being developed, produced and tested within the Federal German ''Development Programme Nuclear Graphite''. Up to now, batches of the following graphite grades have been manufactured and fully characterized by the SIGRI Company to demonstrate reproducibility: pitch coke graphite AS2-500 for the hexagonal fuel elements and exchangeable reflector blocks; special pitch coke graphite ASI2-500 for reflector blocks of the pebble-bed reactor and as back-up material for the hexagonal fuel elements; graphite for core support columns. The material data obtained fulfill most of the requirements under present specifications. Production of large-size blocks for the permanent side reflector and the core support blocks is under way. The test programme covers all areas important for characterizing and judging HTR-graphites. In-pile testing comprises evaluation of the material for irradiation-induced changes of dimensions, mechanical and thermal properties - including behaviour under temperature cycling and creep behaviour - as well as irradiating fuel element segments and blocks. Testing out-of-pile includes: evaluation of corrosion rates and influence of corrosion on strength; strength measurements; including failure criteria. The test programme has been carried out extensively on the AS2-graphite, and the results obtained show that this graphite is suitable as HTGR fuel element graphite. (author)

  16. A graphite nanoeraser

    DEFF Research Database (Denmark)

    Liu, Ze; Bøggild, Peter; Yang, Jia-rui

    2011-01-01

    We present here a method for cleaning intermediate-size (up to 50 nm) contamination from highly oriented pyrolytic graphite and graphene. Electron-beam-induced deposition of carbonaceous material on graphene and graphite surfaces inside a scanning electron microscope, which is difficult to remove...... by conventional techniques, can be removed by direct mechanical wiping using a graphite nanoeraser, thus drastically reducing the amount of contamination. We discuss potential applications of this cleaning procedure....

  17. Spontaneous and artificial structures of thin, Keggin-like polyoxometallate arrays on graphite

    International Nuclear Information System (INIS)

    Kovacs, I

    2007-01-01

    Scanning tunnelling microscopic studies have been performed to study the 2D structuring of the inorganic salt, the Keggin-type [AlO 4 Al 12 (OH) 24 (H 2 O) 12 ] 7+ in its sulfate form. This compound forms patches of well ordered monolayer separated by defects seen on large scan images on the top of highly oriented pyrolitic graphite surface. A negative differential resistance peak has been found by scanning tunnelling spectroscopy. Surfactant molecules self-assemble horizontally in the first layer on the graphite plane. Higher uptake resulted in the formation of hemicylinders. In this study sodium dodecyl sulfate has been used to modify the 2D Keggin arrangements. By this combination of organic and inorganic materials the large counter ions were expected to re-arrange on the surface. In this surfactant assisted artificial ordering the distance between the Keggin-type units has been increased

  18. STIGMA STIG STEGT STAGT STABA, Stress Analysis of Dragon HTR Graphite Structure

    International Nuclear Information System (INIS)

    Kinkead, A.N.

    2002-01-01

    1 - Nature of the physical problem solved: Stress analysis of graphite structures for the DRAGON high temperature reactor is performed by this family of computer codes. Two-dimensional plane strain irradiation dose dependent core problems have been solved. 2 - Method of solution: STAGT, which is the oldest in this series of programmes, can handle multiply connected regions but is confined to plane strain in x-y geometry. Variations in temperature loading during irradiation is accounted for (Wigner strain component.) STIG, is a version of STAGT where an anisotropic elasticity matrix has been introduced to handle transversely isotropic materials. An additional feature of 'STIG' is the introduction of a boundary restraint condition of practical importance to prismatic gas cooled reactor core construction. This is defined as rotational plane strain in which free distortion of the prism arising from overall gradient of temperature and/or fast neutron damage flux coincident with any single direction may be assumed to occur if variation of thermal expansion coefficient with irradiation is included. 'STIGMA' is intended for evaluation of stress and displacement in composite axisymmetrical bodies subject to variable loadings in the axial and radial directions. The code has been prepared to take account of transverse isotropy in material characteristics for up to four separate bonded interface zones within a single composite material problem. Although specifically designed for the analysis of graphite structural components in the fast neutron irradiation environment of a reactor core, it is equally applicable to initial state design of prestressed concrete pressure vessels and other problems involving rotational symmetry. 'STABA'-stress,temperature and bowing analysis. The aim of this quasi 3-D computer code is to apply the principle of rotational plane strain over the full length of a prismatic core component, taking into account spatial variations in fast neutron and

  19. Optimising carbon electrode materials for adsorptive stripping voltammetry

    OpenAIRE

    Chaisiwamongkhol, K; Batchelor-McAuley, C; Sokolov, S; Holter, J; Young, N; Compton, R

    2017-01-01

    Different types of carbon electrode materials for adsorptive stripping voltammetry are studied through the use of cyclic voltammetry. Capsaicin is utilised as a model compound for adsorptive stripping voltammetry using unmodified and modified basal plane pyrolytic graphite (BPPG) electrodes modified with multi-walled carbon nanotubes, carbon black or graphene nanoplatelets, screen printed carbon electrodes (SPE), carbon nanotube modified screen printed electrodes, and carbon paste electrodes....

  20. Phase transitions in two-dimensional systems

    International Nuclear Information System (INIS)

    Salinas, S.R.A.

    1983-01-01

    Some experiences are related using synchrotron radiation beams, to characterize solid-liquid (fusion) and commensurate solid-uncommensurate solid transitions in two-dimensional systems. Some ideas involved in the modern theories of two-dimensional fusion are shortly exposed. The systems treated consist of noble gases (Kr,Ar,Xe) adsorbed in the basal plane of graphite and thin films formed by some liquid crystal shells. (L.C.) [pt

  1. Performance of AC/graphite capacitors at high weight ratios of AC/graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan); Yoshio, Masaki [Advanced Research Center, Department of Applied Chemistry, Saga University, 1341 Yoga-machi, Saga 840-0047 (Japan)

    2008-03-01

    The effect of negative to positive electrode materials' weight ratio on the electrochemical performance of both activated carbon (AC)/AC and AC/graphite capacitors has been investigated, especially in the terms of capacity and cycle-ability. The limited capacity charge mode has been proposed to improve the cycle performance of AC/graphite capacitors at high weight ratios of AC/graphite. (author)

  2. Progress in radioactive graphite waste management

    International Nuclear Information System (INIS)

    2010-07-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  3. Graphite for fusion energy applications

    International Nuclear Information System (INIS)

    Eatherly, W.P.; Clausing, R.E.; Strehlow, R.A.; Kennedy, C.R.; Mioduszewski, P.K.

    1987-03-01

    Graphite is in widespread and beneficial use in present fusion energy devices. This report reflects the view of graphite materials scientists on using graphite in fusion devices. Graphite properties are discussed with emphasis on application to fusion reactors. This report is intended to be introductory and descriptive and is not intended to serve as a definitive information source

  4. Graphite-based photovoltaic cells

    Science.gov (United States)

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  5. Graphite in Science and Nuclear Technique

    OpenAIRE

    Zhmurikov, E. I.; Bubnenkov, I. A.; Dremov, V. V.; Samarin, S. I.; Pokrovsky, A. S.; Harkov, D. V.

    2013-01-01

    The monograph is devoted to the application of graphite and graphite composites in science and technology. The structure and electrical properties, the technological aspects of production of high-strength synthetic graphites, the dynamics of the graphite destruction, traditionally used in the nuclear industry are discussed. It is focuses on the characteristics of graphitization and properties of graphite composites based on carbon isotope 13C. The book is based, generally, on the original res...

  6. Management of UKAEA graphite liabilities

    International Nuclear Information System (INIS)

    Wise, M.

    2001-01-01

    The UK Atomic Energy Authority (UKAEA) is responsible for managing its liabilities for redundant research reactors and other active facilities concerned with the development of the UK nuclear technology programme since 1947. These liabilities include irradiated graphite from a variety of different sources including low irradiation temperature reactor graphite (the Windscale Piles 1 and 2, British Energy Pile O and Graphite Low Energy Experimental Pile at Harwell and the Material Testing Reactors at Harwell and Dounreay), advanced gas-cooled reactor graphite (from the Windscale Advanced Gas-cooled Reactor) and graphite from fast reactor systems (neutron shield graphite from the Dounreay Prototype Fast Reactor and Dounreay Fast Reactor). The decommissioning and dismantling of these facilities will give rise to over 6,000 tonnes of graphite requiring disposal. The first graphite will be retrieved from the dismantling of Windscale Pile 1 and the Windscale Advanced Gas-cooled Reactor during the next five years. UKAEA has undertaken extensive studies to consider the best practicable options for disposing of these graphite liabilities in a manner that is safe whilst minimising the associated costs and technical risks. These options include (but are not limited to), disposal as Low Level Waste, incineration, or encapsulation and disposal as Intermediate Level Waste. There are a number of technical issues associated with each of these proposed disposal options; these include Wigner energy, radionuclide inventory determination, encapsulation of graphite dust, galvanic coupling interactions enhancing the corrosion of mild steel and public acceptability. UKAEA is currently developing packaging concepts and designing packaging plants for processing these graphite wastes in consultation with other holders of graphite wastes throughout Europe. 'Letters of Comfort' have been sought from both the Low Level Waste and the Intermediate Level Waste disposal organisations to support the

  7. Electrochemical treatment of graphite

    International Nuclear Information System (INIS)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electroche-- mical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment ECT graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones this is treatment rate and purity (ronghness) of the surface. A sMall quantity of sludge (6-8%) under ECT is in highly alkali electrolytes

  8. Glass-Graphite Composite Materials

    International Nuclear Information System (INIS)

    Mayzan, M.Z.H.; Lloyd, J.W.; Heath, P.G.; Stennett, M.C.; Hyatt, N.C.; Hand, R.J.

    2016-01-01

    A summary is presented of investigations into the potential of producing glass-composite materials for the immobilisation of graphite or other carbonaceous materials arising from nuclear power generation. The methods are primarily based on the production of base glasses which are subsequently sintered with powdered graphite or simulant TRISO particles. Consideration is also given to the direct preparation of glass-graphite composite materials using microwave technology. Production of dense composite wasteforms with TRISO particles was more successful than with powdered graphite, as wasteforms containing larger amounts of graphite were resistant to densification and the glasses tried did not penetrate the pores under the pressureless conditions used. Based on the results obtained it is concluded that the production of dense glassgraphite composite wasteforms will require the application of pressure. (author)

  9. Graphite oxidation and structural strength of graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheno; Kim, Eung Soo; Oh, Chang H.

    2009-01-01

    The air-ingress event by a large pipe break is an important accident considered in design of very high-temperature gas-cooled reactors (VHTR). Core-collapse prediction is a main safety issue. Structural failure model are technically required. The objective of this study is to develop structural failure model for the supporting graphite material in the lower plenum of the GT-MHR (gas-turbine-modular high temperature reactor). Graphite support column is important for VHTR structural integrity. Graphite support columns are under the axial load. Critical strength of graphite column is related to slenderness ratio and bulk density. Through compression tests for fresh and oxidized graphite columns we show that compressive strength of IG-110 was 79.46 MPa. And, the buckling strength of IG-110 column was expressed by the empirical formula: σ 0 =σ straight-line - C L/r, σ straight-line =91.31 MPa, C=1.01. The results of uniform and non-uniform oxidation tests show that the strength degradation of oxidized graphite column is expressed in the following non-dimensional form: σ/σ 0 =exp(-kd), k=0.111. Also, from the results of the uniform oxidation test with a complicated-shape column, we found out that the above non-dimensional equation obtained from the uniform oxidation test is applicable to a uniform oxidation case with a complicated-shape column. (author)

  10. Ion irradiation to simulate neutron irradiation in model graphites: Consequences for nuclear graphite

    Science.gov (United States)

    Galy, N.; Toulhoat, N.; Moncoffre, N.; Pipon, Y.; Bérerd, N.; Ammar, M. R.; Simon, P.; Deldicque, D.; Sainsot, P.

    2017-10-01

    Due to its excellent moderator and reflector qualities, graphite was used in CO2-cooled nuclear reactors such as UNGG (Uranium Naturel-Graphite-Gaz). Neutron irradiation of graphite resulted in the production of 14C which is a key issue radionuclide for the management of the irradiated graphite waste. In order to elucidate the impact of neutron irradiation on 14C behavior, we carried out a systematic investigation of irradiation and its synergistic effects with temperature in Highly Oriented Pyrolitic Graphite (HOPG) model graphite used to simulate the coke grains of nuclear graphite. We used 13C implantation in order to simulate 14C displaced from its original structural site through recoil. The collision of the impinging neutrons with the graphite matrix carbon atoms induces mainly ballistic damage. However, a part of the recoil carbon atom energy is also transferred to the graphite lattice through electronic excitation. The effects of the different irradiation regimes in synergy with temperature were simulated using ion irradiation by varying Sn(nuclear)/Se(electronic) stopping power. Thus, the samples were irradiated with different ions of different energies. The structure modifications were followed by High Resolution Transmission Electron Microscopy (HRTEM) and Raman microspectrometry. The results show that temperature generally counteracts the disordering effects of irradiation but the achieved reordering level strongly depends on the initial structural state of the graphite matrix. Thus, extrapolating to reactor conditions, for an initially highly disordered structure, irradiation at reactor temperatures (200 - 500 °C) should induce almost no change of the initial structure. On the contrary, when the structure is initially less disordered, there should be a "zoning" of the reordering: In "cold" high flux irradiated zones where the ballistic damage is important, the structure should be poorly reordered; In "hot" low flux irradiated zones where the ballistic

  11. Phonon scattering in graphite

    International Nuclear Information System (INIS)

    Wagner, P.

    1976-04-01

    Effects on graphite thermal conductivities due to controlled alterations of the graphite structure by impurity addition, porosity, and neutron irradiation are shown to be consistent with the phonon-scattering formulation 1/l = Σ/sub i equals 1/sup/n/ 1/l/sub i/. Observed temperature effects on these doped and irradiated graphites are also explained by this mechanism

  12. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  13. Nucleation and growth characteristics of graphite spheroids in bainite during graphitization annealing of a medium carbon steel

    International Nuclear Information System (INIS)

    Gao, J.X.; Wei, B.Q.; Li, D.D.; He, K.

    2016-01-01

    The evolution of microstructure in bainite during graphitization annealing at 680 °C of Jominy-quenched bars of an Al-Si bearing medium carbon (0.4C wt%) steel has been studied and compared with that in martensite by using light, scanning and transmission electron microscopy. The results show that the graphitization process in bainite is different from that in martensite in many aspects such as the initial carbon state, the behavior of cementite, the nucleation-growth feature and kinetics of formation of graphite spheroids during graphitization annealing, and the shape, size and distribution of these graphite spheroids. The fact that the graphitization in bainite can produce more homogeneous graphite spheroids with more spherical shape and finer size in a shorter annealing time without the help of preexisting coring particles implies that bainite should be a better starting structure than martensite for making graphitic steel. - Highlights: • This article presents a microstructural characterization of formation of graphite spheroids in bainite. • Nucleation and growth characteristics of graphite spheroids formed in bainite and martensite are compared. • Bainite should be a better starting structure for making graphitic steel as results show.

  14. Nuclear quadrupole interaction measurements of 19F* and 22Na* on Graphite

    International Nuclear Information System (INIS)

    Djoko-Surono, Th; Martin, Peter W

    1996-01-01

    Time differential perturbed angular distribution (TDPAD) technique has been used to investigate nuclear quadrupole interactions of 19 F * and 22 Na * in graphite. We concentrated the measurements on pseudo single crystal graphite called Highly Oriented Pyrolytic Graphite for it has an ordered structure in which the c-axes of the microcrystals aligned in a certain direction with the mosaic spread less than 1 o , while the a- and b-axes randomly oriented on a plane perpendicular to the c-axes. Interactions between quadrupole moment of 19 F * and 22 Na * with its surroundings electric field gradient were studied by detecting the γ-rays distribution, W(Θ,t). For 1 9F * we found one static interaction. The corresponding electric field gradient was V zz =3.24(19)x10 22 V/m 2 . In the case of 22 Na * we found no evidence of nuclear quadrupole interaction, however, we were able to conclude that |QV 22 | 19 bV/m 2 . Using theoretical calculation Q=0.06 barn, we find that |V zz | 20 V/m 2 . These results indicate that the value efg depend on two factors, the host crystal and the core electrons. The core electrons contribution to the total efg is considerably large

  15. Electrolysis of acidic sodium chloride solution with a graphite anode. I. Graphite electrode

    NARCIS (Netherlands)

    Janssen, L.J.J.; Hoogland, J.G.

    1969-01-01

    A graphite anode evolving Cl from a chloride soln. is slowly oxidized to CO and CO2. This oxidn. causes a change in the characteristics of the electrode in aging, comprising a change of the nature of the graphite surface and an increase of the surface area. It appears that a new graphite electrode

  16. Electrochemical treatment of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Podlovilin, V.I.; Egorov, I.M.; Zhernovoj, A.I.

    1983-01-01

    In the course of investigating various modes of electrochemical treatment (ECT) it has been found that graphite anode treatment begins under the ''glow mode''. A behaviour of some marks of graphite with the purpose of ECT technique development in different electrolytes has been tested. Electrolytes have been chosen of three types: highly alkaline (pH 13-14), neutral (pH-Z) and highly acidic (pH 1-2). For the first time parallel to mechanical electroerosion treatment, ECT of graphite and carbon graphite materials previously considered chemically neutral is proposed. ECT of carbon graphite materials has a number of advantages as compared with electroerrosion and mechanical ones with respect to the treatment rate and purity (ronghness) of the surface. A small quantity of sludge (6-8%) under ECT is in highly alkali electrolytes.

  17. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  18. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  19. Crystal-plane effects of MFI zeolite in catalytic conversion of methanol to hydrocarbons

    KAUST Repository

    Wang, Ning

    2018-02-15

    We report the direct characterization of coke information in the clearly resolved (0 1 0) and (1 0 0) planes of various anisotropic MFI zeolites using EELS techniques, in a model reaction of methanol to hydrocarbons. For the first time, we found that the main coke species varied between different planes and depended on the crystal structure. The coke species was graphite carbon and polyaromatic hydrocarbon over MFI nanosheets and MFI with b-axis length 60 nm, respectively. The diffusion of aromatics out of conventional MFI zeolites was found only through the straight channels, while small molecules randomly diffused through both channels, resulting in different coke deposition on the (0 1 0) plane and the (1 0 0) plane from different precursors. As all product molecules diffused only through the straight channels, the MFI nanosheet showed a distinct crystal-plane selective effect of coke deposition, in contrast to nearly uniform coke distribution throughout the entire external surface for conventional zeolites. This anisotropic diffusion behavior influenced the gaseous and liquid products significantly, providing deep insight into the MFI catalyst for the selective control of products via crystal structure.

  20. 2D Layered Graphitic Carbon Nitride Sandwiched with Reduced Graphene Oxide as Nanoarchitectured Anode for Highly Stable Lithium-ion Battery

    International Nuclear Information System (INIS)

    M Subramaniyam, Chandrasekar; Deshmukh, Kavita A.; Tai, Zhixin; Mahmood, Nasir; Deshmukh, Abhay D.; Goodenough, John B.; Dou, Shi Xue; Liu, Hua Kun

    2017-01-01

    Two dimensional (2D) nanomaterials with high gravimetric capacity and rate capability are a key strategy for the anode of a Li-ion battery, but they still pose a challenge for Li-ion storage due to limited conductivity and an inability to alleviate the volume change upon lithiation and delithiation. In this paper, we report the construction of a 3D architecture anode consisting of exfoliated 2D layered graphitic carbon nitride (g-C_3N_4) and reduced graphene oxide (rGO) nanosheets (CN-rGO) by hydrothermal synthesis. First, bulk g-C_3N_4 is converted to nanosheets to increase the edge density of the inert basal planes since the edges act as active Li-storage sites. This unique 3D architecture, which consists of ultrathin g-C_3N_4 nanosheets sandwiched between conductive rGO networks, exhibits a capacity of 970 mA h g"−"1 after 300 cycles, which is 15 fold higher than the bulk g-C_3N_4. The tuning of the intrinsic structural properties of bulk g-C_3N_4 by this simple bottom-up synthesis has rendered a 3D architectured material (CN-rGO) as an effective negative electrode for high energy storage applications.

  1. Reactions of modulated molecular beams with pyrolytic graphite IV. Water vapor

    International Nuclear Information System (INIS)

    Olander, D.R.; Acharya, T.R.; Ullman, A.Z.

    1977-01-01

    The reaction of water vapor with the prism plane face of anneal pyrolytic graphite was investigated by modulated molecular beam--mass spectrometry methods. The equivalent water vapor pressure of the beam was approx.2 x 10 -5 Torr and the graphite temperature was varied from 300 to 2500 0 K. The mechanism was deduced from three types of experiments: isotope exchange utilizing modulated H 2 O and steady D 2 O beams; measurements of the phase difference between H 2 O and neon reflected from the surface from a mixed primary beam of these species; and reaction of a modulated H 2 O beam to produce CO and H 2 . Based upon the isotope exchange experiments chemisorption of water on graphite was found to be dissociative and reversible. Incident water molecules chemisorbed with a sticking probability of 0.15 +- 0.02 to form the complexes C--OH and C--H. Recombination of the surface complexes reverses the adsorption step and is responsible for the isotope exchange properties of the graphite surface. This process is unactivated. Reaction to produce CO and H 2 also results from collisions of the primary surface complexes, but this step has an activation energy of 170 kJ/mole. This reaction yields bound complexes tentatively identified as C--O and H--C--H, which then decompose to produce the stable reaction products. All of the above steps exhibit characteristic times on the order of milliseconds, and are therefore detectable by the modulated beam method. All surface intermediates are strongly affected by solution and diffusion in the bulk of the solid

  2. Removal of 14C from Irradiated Graphite for Graphite Recycle and Waste Volume Reduction

    International Nuclear Information System (INIS)

    Dunzik-Gougar, Mary Lou; Windes, Will; Marsden, Barry

    2014-01-01

    The aim of the research presented here was to identify the chemical form of 14 C in irradiated graphite. A greater understanding of the chemical form of this longest-lived isotope in irradiated graphite will inform not only management of legacy waste, but also development of next generation gas-cooled reactors. Approximately 250,000 metric tons of irradiated graphite waste exists worldwide, with the largest single quantity originating in the Magnox and AGR reactors of UK. The waste quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation I gas-cooled, graphite moderated reactors. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 14 C, with a half-life of 5730 years.

  3. Semipolar GaN grown on m-plane sapphire using MOVPE

    Energy Technology Data Exchange (ETDEWEB)

    Wernicke, Tim; Netzel, Carsten; Weyers, Markus [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, Michael [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Institute of Solid State Physics, Technical University of Berlin (Germany)

    2008-07-01

    We have investigated the MOVPE growth of semipolar gallium nitride (GaN) films on (10 anti 1 0) m-plane sapphire substrates. Specular GaN films with a RMS roughness (10 x 10 {mu}m{sup 2}) of 15.2 nm were obtained and an arrowhead like structure aligned along[ anti 2 113] is prevailing. The orientation relationship was determined by XRD and yielded (212){sub GaN} parallel (10 anti 10){sub sapphire} and [anti 2113]{sub GaN} parallel [0001]{sub sapphire} as well as [anti 2113]{sub GaN} parallel [000 anti 1]{sub sapphire}. PL spectra exhibited near band edge emission accompanied by a strong basal plane stacking fault emission. In addition lower energy peaks attributed to prismatic plane stacking faults and donor acceptor pair emission appeared in the spectrum. With similar growth conditions also (1013) GaN films on m-plane sapphire were obtained. In the later case we found that the layer was twinned, crystallites with different c-axis orientation were present. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Nuclear graphite wear properties and estimation of graphite dust production in HTR-10

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Xiaowei, E-mail: xwluo@tsinghua.edu.cn; Wang, Xiaoxin; Shi, Li; Yu, Xiaoyu; Yu, Suyuan

    2017-04-15

    Highlights: • Graphite dust. • The wear properties of graphite. • Pebble bed. • High Temperature Gas-cooled Reactor. • Fuel element. - Abstract: The issue of the graphite dust has been a research focus for the safety of High Temperature Gas-cooled Reactors (HTGRs), especially for the pebble bed reactors. Most of the graphite dust is produced from the wear of fuel elements during cycling of fuel elements. However, due to the complexity of the motion of the fuel elements in the pebble bed, there is no systematic method developed to predict the amount the graphite dust in a pebble bed reactor. In this paper, the study of the flow of the fuel elements in the pebble bed was carried out. Both theoretical calculation and numerical analysis by Discrete Element Method (DEM) software PFC3D were conducted to obtain the normal forces and sliding distances of the fuel elements in pebble bed. The wearing theory was then integrated with PFC3D to estimate the amount of the graphite dust in a pebble bed reactor, 10 MW High Temperature gas-cooled test Reactor (HTR-10).

  5. Neutron scattering in chemistry (scattering from layer lattices and their intercalation compounds - an illustration)

    International Nuclear Information System (INIS)

    White, J.W.

    1983-01-01

    Three cases of molecules on a free surface or inside layer lattice intercalation compounds are discussed to illustrate the use of neutron scattering techniques. The first is the second stage alkali metal-graphite intercalation compounds such as C 24 Cs which adsorb hydrogen, methane and other gases. The second case is methane physisorbed on the basal plane of graphite where the methane-methane interactions are relatively strong. Rotational tunnelling spectroscopy is sensitive to the parameters of the potential. The third case is that of water physisorbed on clay materials such as vermiculite or montmorillonite where the layer thickness can be changed from one to fifty layers. (UK)

  6. Graphite in Science and Nuclear Technology

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in the science and technology. Structure and electrical properties, technological aspects of producing of high-strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry, so author concentrates on actual problems of application and testing of graphite materials in modern science and technology. Translated from chapters 1 of monog...

  7. Effect of thermal annealing on property changes of neutron-irradiated non-graphitized carbon materials and nuclear graphite

    International Nuclear Information System (INIS)

    Matsuo, Hideto

    1991-06-01

    Changes in dimension of non-graphitized carbon materials and nuclear graphite, and the bulk density, electrical resistivity, Young's modulus and thermal expansivity of nuclear graphite were studied after neutron irradiation at 1128-1483 K and the successive thermal annealing up to 2573 K. Carbon materials showed larger and anisotropic dimensional shrinkage than that of nuclear graphite after the irradiation. The irradiation-induced dimensional shrinkage of carbon materials decreased during annealing at temperatures from 1773 to 2023 K, followed by a slight increase at higher temperatures. On the other hand, the irradiated nuclear graphite hardly showed the changes in length, density and thermal expansivity under the thermal annealing, but the electrical resistivity and Young's modulus showed a gradual decrease with annealing temperature. It has been clarified that there exists significant difference in the effect of thermal annealing on irradiation-induced dimensional shrinkage between graphitized nuclear graphite and non-graphitized carbon materials. (author)

  8. Chemical stabilization of graphite surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bistrika, Alexander A.; Lerner, Michael M.

    2018-04-03

    Embodiments of a device, or a component of a device, including a stabilized graphite surface, methods of stabilizing graphite surfaces, and uses for the devices or components are disclosed. The device or component includes a surface comprising graphite, and a plurality of haloaryl ions and/or haloalkyl ions bound to at least a portion of the graphite. The ions may be perhaloaryl ions and/or perhaloalkyl ions. In certain embodiments, the ions are perfluorobenzenesulfonate anions. Embodiments of the device or component including stabilized graphite surfaces may maintain a steady-state oxidation or reduction surface current density after being exposed to continuous oxidation conditions for a period of at least 1-100 hours. The device or component is prepared by exposing a graphite-containing surface to an acidic aqueous solution of the ions under oxidizing conditions. The device or component can be exposed in situ to the solution.

  9. Analysis of Wigner energy release process in graphite stack of shut-down uranium-graphite reactor

    OpenAIRE

    Bespala, E. V.; Pavliuk, A. O.; Kotlyarevskiy, S. G.

    2015-01-01

    Data, which finding during thermal differential analysis of sampled irradiated graphite are presented. Results of computational modeling of Winger energy release process from irradiated graphite staking are demonstrated. It's shown, that spontaneous combustion of graphite possible only in adiabatic case.

  10. X-ray study of texture in zirconium alloy tubes and in graphite

    International Nuclear Information System (INIS)

    Skvortsov, V.V.; Alekseev, S.I.

    1987-01-01

    X-ray study of texture in zirconium alloy tubes and in graphite has been developed. The method is based on constructing coordinate grid of stereographic projection determining quantity and coordinates of points where measurements should be performed depending on a specimen slope pitch. Complete stereographic projection obtained so is a base both for constructing pole figures showing distribution normales of plane system being studied and for calculating texture coefficients determining property anisotropy in materials under investigation. This method can be applied to study texture in items of any materials independent of the item shape

  11. The roles of geometry and topology structures of graphite fillers on thermal conductivity of the graphite/aluminum composites

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.; Chen, D.; Zhang, X.B. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Chen, Z., E-mail: zhe.chen@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong, S.Y.; Wu, Y. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Ji, G. [Unité Matériaux et Transformations, CNRS UMR 8207, Université Lille 1, Villeneuve d' Ascq 59655 (France); Wang, H.W. [State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-02-20

    Various graphite fillers, such as graphite particles, graphite fibers, graphite flakes and porous graphite blocks, have been successfully incorporated into an Al alloy by squeeze casting in order to fabricate graphite/Al composites with enhanced thermal conductivity (TC). Microstructural characterization by X-ray diffraction and scanning electron microscopy has revealed a tightly-adhered, clean and Al{sub 4}C{sub 3}-free interface between the graphite fillers and the Al matrix in all the as-fabricated composites. Taking the microstructural features into account, we generalized the corresponding predictive models for the TCs of these composites with the effective medium approximation and the Maxwell mean-field scheme, which both show good agreement with the experimental data. The roles of geometry and topology structures of graphite fillers on the TCs of the composites were further discussed. - Highlights: • The thermal enhancement of various graphite fillers with different topology structures. • Predictive models for the thermal conductivity of different topology structures. • Oriented flakes alignment has the high potentials for thermal enhancement.

  12. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2001-01-01

    In this paper an radioactive waste processing of graphite from graphite moderated nuclear reactors at its decommissioning is discussed. Methods of processing of irradiated graphite are presented. It can be concluded that advanced methods for graphite radioactive waste handling are available nowadays. Implementation of these methods will allow to enhance environmental safety of nuclear power that will benefit its progress in the future

  13. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram

    2017-07-20

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a mechanical pressing operation to generate a bromine-graphite/metal composite material.

  14. Rate-dependent mode I interlaminar crack growth mechanisms in graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Smiley, A. J.

    1987-01-01

    In this paper the mode I fracture behavior of graphite/epoxy and graphite/PEEK composites is examined over four decades of crosshead rates (0.25-250 mm/min). Straight-sided double-cantilever-beam specimens consisting of unidirectional laminates were tested at room temperature. For graphite/epoxy the load-deflection response was linear to fracture, and stable slow crack growth initiating at the highest load level was observed for all rates tested. In contrast, mode I crack growth in the graphite/PEEK material was often unstable and showed stick-slip behavior. Subcritical crack growth occurring prior to the onset of fracture was observed at intermediate displacement rates. A mechanism for the fracture behavior of the graphite/PEEK material (based on viscoelastic, plastic, and microcrack coalescence in the process zone) is proposed and related to the observed rate-dependent phenomena.

  15. Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes

    Science.gov (United States)

    Pietsch, Patrick; Westhoff, Daniel; Feinauer, Julian; Eller, Jens; Marone, Federica; Stampanoni, Marco; Schmidt, Volker; Wood, Vanessa

    2016-09-01

    Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.

  16. Erosion of pyrolytic graphite and Ti-doped graphite due to high flux irradiation

    International Nuclear Information System (INIS)

    Ohtsuka, Yusuke; Ohashi, Junpei; Ueda, Yoshio; Isobe, Michiro; Nishikawa, Masahiro

    1997-01-01

    The erosion of pyrolytic graphite and titanium doped graphite RG-Ti above 1,780 K was investigated by 5 keV Ar beam irradiation with the flux from 4x10 19 to 1x10 21 m -2 ·s -1 . The total erosion yields were significantly reduced with the flux. This reduction would be attributed to the reduction of RES (radiation enhanced sublimation) yield, which was observed in the case of isotropic graphite with the flux dependence of RES yield of φ -0.26 (φ: flux) obtained in our previous work. The yield of pyrolytic graphite was roughly 30% higher than that of isotropic graphite below the flux of 10 20 m -2 ·s -1 whereas each yield approached to very close value at the highest flux of 1x10 21 m -2 ·s -1 . This result indicated that the effect of graphite structure on the RES yield, which was apparent in the low flux region, would disappear in the high flux region probably due to the disordering of crystal structure. In the case of irradiation to RG-Ti at 1,780 K, the surface undulations evolved with a mean height of about 3 μm at 1.2x10 20 m -2 ·s -1 , while at higher flux of 8.0x10 20 m -2 ·s -1 they were unrecognizable. These phenomena can be explained by the reduction of RES of graphite parts excluding TiC grains. (author)

  17. Recompressed exfoliated graphite articles

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z

    2013-08-06

    This invention provides an electrically conductive, less anisotropic, recompressed exfoliated graphite article comprising a mixture of (a) expanded or exfoliated graphite flakes; and (b) particles of non-expandable graphite or carbon, wherein the non-expandable graphite or carbon particles are in the amount of between about 3% and about 70% by weight based on the total weight of the particles and the expanded graphite flakes combined; wherein the mixture is compressed to form the article having an apparent bulk density of from about 0.1 g/cm.sup.3 to about 2.0 g/cm.sup.3. The article exhibits a thickness-direction conductivity typically greater than 50 S/cm, more typically greater than 100 S/cm, and most typically greater than 200 S/cm. The article, when used in a thin foil or sheet form, can be a useful component in a sheet molding compound plate used as a fuel cell separator or flow field plate. The article may also be used as a current collector for a battery, supercapacitor, or any other electrochemical cell.

  18. Metal/graphite-composite materials for fusion device

    International Nuclear Information System (INIS)

    Kneringer, G.; Kny, E.; Fischer, W.; Reheis, N.; Staffler, R.; Samm, U.; Winter, J.

    1995-01-01

    The utilization of graphite as a structural material depends to an important extent on the availability of a joining technique suitable for the production of reliable large scale metal/graphite-composites. This study has been conducted to evaluate vacuum brazes and procedures for graphite and metals which can be used in fusion applications up to about 1500 degree C. The braze materials included: AgCuTi, CuTi, NiTi, Ti, ZrTi, Zr. Brazing temperatures ranged from 850 degree C to 1900 degree C. The influence of graphite quality on wettability and pore-penetration of the braze has been investigated. Screening tests of metal/graphite-assemblies with joint areas exceeding some square-centimeters have shown that they can only successfully be produced when graphite is brazed to a metal, such as tungsten or molybdenum with a coefficient of thermal expansion closely matching that of graphite. Therefore all experimental work on evaluation of joints has been concentrated on molybdenum/graphite brazings. The tensile strength of molybdenum/graphite-composites compares favorably with the tensile strength of bulk graphite from room temperature close to the melting temperature of the braze. In electron beam testing the threshold damage line for molybdenum/graphite-composites has been evaluated. Results show that even composites with the low melting AgCuTi-braze are expected to withstand 10 MW/m 2 power density for at least 10 3 cycles. Limiter testing in TEXTOR shows that molybdenum/graphite-segments with 3 mm graphite brazed on molybdenum-substrate withstand severe repeated TEXTOR plasma discharge conditions without serious damage. Results prove that actively cooled components on the basis of a molybdenum/graphite-composite can sustain a higher heat flux than bulk graphite alone. (author)

  19. Melting temperature of graphite

    International Nuclear Information System (INIS)

    Korobenko, V.N.; Savvatimskiy, A.I.

    2001-01-01

    Full Text: Pulse of electrical current is used for fast heating (∼ 1 μs) of metal and graphite specimens placed in dielectric solid media. Specimen consists of two strips (90 μm in thick) placed together with small gap so they form a black body model. Quasy-monocrystal graphite specimens were used for uniform heating of graphite. Temperature measurements were fulfilled with fast pyrometer and with composite 2-strip black body model up to melting temperature. There were fulfilled experiments with zirconium and tungsten of the same black body construction. Additional temperature measurements of liquid zirconium and liquid tungsten are made. Specific heat capacity (c P ) of liquid zirconium and of liquid tungsten has a common feature in c P diminishing just after melting. It reveals c P diminishing after melting in both cases over the narrow temperature range up to usual values known from steady state measurements. Over the next wide temperature range heat capacity for W (up to 5000 K) and Zr (up to 4100 K) show different dependencies of heat capacity on temperature in liquid state. The experiments confirmed a high quality of 2-strip black body model used for graphite temperature measurements. Melting temperature plateau of tungsten (3690 K) was used for pyrometer calibration area for graphite temperature measurement. As a result, a preliminary value of graphite melting temperature of 4800 K was obtained. (author)

  20. Evaluation of w values for carbon beams in air, using a graphite calorimeter.

    Science.gov (United States)

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi; Abe, Kyoko

    2009-03-07

    Despite recent progress in carbon therapy, accurate values for physical data such as the w value in air or stopping power ratios for ionization chamber dosimetry have not been obtained. The absorbed dose to graphite obtained with the graphite calorimeter was compared with that obtained using the ionization chambers following the IAEA protocol in order to evaluate the w values in air for mono-energetic carbon beams of 135, 290, 400 and 430 MeV/n. Two cylindrical chambers (PTW type 30001 and PTW type 30011, Farmer) and two plane-parallel chambers (PTW type 23343, Markus and PTW type 34001, Roos) calibrated by the absorbed dose to graphite and exposure to the (60)Co photon beam were used. The comparisons to our calorimeter measurements revealed that, using the ionization chambers, the absorbed dose to graphite comes out low by 2-6% in this experimental energy range and with these chamber types and calibration methods. In the therapeutic energy range, the w values in air for carbon beams indicated a slight energy dependence; we, however, assumed these values to be constant for practical use because of the large uncertainty and unknown perturbation factors of the ionization chambers. The w values in air of the carbon beams were evaluated to be 35.72 J C(-1) +/- 1.5% in the energy range used in this study. This value is 3.5% larger than that recommended by the IAEA TRS 398 for heavy-ion beams. Using this evaluated result, the absorbed dose to water in the carbon beams would be increased by the same amount.

  1. Characterization of Ignalina NPP RBMK Reactors Graphite

    International Nuclear Information System (INIS)

    Hacker, P.J.; Neighbour, G.B.; Levinskas, R.; Milcius, D.

    2001-01-01

    The paper concentrates on the investigations of the initial physical properties of graphite used in production of graphite bricks of Ignalina NPP. These graphite bricks are used as nuclear moderator and major core structural components. Graphite bulk density is calculated by mensuration, pore volumes are measured by investigation of helium gas penetration in graphite pore network, the Young's modulus is determined using an ultrasonic time of flight method, the coefficient of thermal expansion is determined using a Netzsch dilatometer 402C, the fractured and machined graphite surfaces are studied using SEM, impurities are investigated qualitatively by EDAX, the degree of graphitization of the material is tested using X-ray diffraction. (author)

  2. AGC-2 Graphite Preirradiation Data Package

    Energy Technology Data Exchange (ETDEWEB)

    David Swank; Joseph Lord; David Rohrbaugh; William Windes

    2012-10-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterized prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.

  3. Bromine intercalated graphite for lightweight composite conductors

    KAUST Repository

    Amassian, Aram; Patole, Archana

    2017-01-01

    A method of fabricating a bromine-graphite/metal composite includes intercalating bromine within layers of graphite via liquid-phase bromination to create brominated-graphite and consolidating the brominated-graphite with a metal nanopowder via a

  4. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1995-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particulary in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metalic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite and in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapour pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. (author)

  5. Nuclear graphite for high temperature reactors

    International Nuclear Information System (INIS)

    Marsden, B.J.

    2001-01-01

    The cores and reflectors in modern High Temperature Gas Cooled Reactors (HTRs) are constructed from graphite components. There are two main designs; the Pebble Bed design and the Prism design. In both of these designs the graphite not only acts as a moderator, but is also a major structural component that may provide channels for the fuel and coolant gas, channels for control and safety shut off devices and provide thermal and neutron shielding. In addition, graphite components may act as a heat sink or conduction path during reactor trips and transients. During reactor operation, many of the graphite component physical properties are significantly changed by irradiation. These changes lead to the generation of significant internal shrinkage stresses and thermal shut down stresses that could lead to component failure. In addition, if the graphite is irradiated to a very high irradiation dose, irradiation swelling can lead to a rapid reduction in modulus and strength, making the component friable.The irradiation behaviour of graphite is strongly dependent on its virgin microstructure, which is determined by the manufacturing route. Nevertheless, there are available, irradiation data on many obsolete graphites of known microstructures. There is also a well-developed physical understanding of the process of irradiation damage in graphite. This paper proposes a specification for graphite suitable for modern HTRs. (author)

  6. Radiation Damage and Dimensional Changes

    International Nuclear Information System (INIS)

    El-Barbary, A.A.; Lebda, H.I.; Kamel, M.A.

    2009-01-01

    The dimensional changes have been modeled in order to be accommodated in the reactor design. This study has major implications for the interpretation of damage in carbon based nuclear fission and fusion plant materials. Radiation damage of graphite leads to self-interstitials and vacancies defects. The aggregation of these defects causes dimensional changes. Vacancies aggregate into lines and disks which heal and contract the basal planes. Interstitials aggregate into interlayer disks which expand the dimension

  7. Heat exchanger using graphite foam

    Science.gov (United States)

    Campagna, Michael Joseph; Callas, James John

    2012-09-25

    A heat exchanger is disclosed. The heat exchanger may have an inlet configured to receive a first fluid and an outlet configured to discharge the first fluid. The heat exchanger may further have at least one passageway configured to conduct the first fluid from the inlet to the outlet. The at least one passageway may be composed of a graphite foam and a layer of graphite material on the exterior of the graphite foam. The layer of graphite material may form at least a partial barrier between the first fluid and a second fluid external to the at least one passageway.

  8. Acoustic emission from polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, I.; Yoda, S.; Oku, T.; Miyamoto, Y.

    1987-01-01

    Acoustic emission was monitored from polycrystalline graphites with different microstructure (pore size and pore volume) subjected to compressive loading. The graphites used in this study comprised five brands, that is, PGX, ISEM-1, IG-11, IG-15, and ISO-88. A root mean square (RMS) voltage and event counts of acoustic emission for graphites were measured during compressive loading. The acoustic emission was measured using a computed-based data acquisition and analysis system. The graphites were first deformed up to 80 % of the average fracture stress, then unloaded and reloaded again until the fracture occured. During the first loading, the change in RMS voltage for acoustic emission was detected from the initial stage. During the unloading, the RMS voltage became zero level as soon as the applied stress was released and then gradually rose to a peak and declined. The behavior indicated that the reversed plastic deformation occured in graphites. During the second loading, the RMS voltage gently increased until the applied stress exceeded the maximum stress of the first loading; there is no Kaiser effect in the graphites. A bicrystal model could give a reasonable explanation of this results. The empirical equation between the ratio of σ AE to σ f and σ f was obtained. It is considered that the detection of microfracture by the acoustic emission technique is effective in macrofracture prediction of polycrystalline graphites. (author)

  9. Porous (Swiss-Cheese Graphite

    Directory of Open Access Journals (Sweden)

    Joseph P. Abrahamson

    2018-05-01

    Full Text Available Porous graphite was prepared without the use of template by rapidly heating the carbonization products from mixtures of anthracene, fluorene, and pyrene with a CO2 laser. Rapid CO2 laser heating at a rate of 1.8 × 106 °C/s vaporizes out the fluorene-pyrene derived pitch while annealing the anthracene coke. The resulting structure is that of graphite with 100 nm spherical pores. The graphitizablity of the porous material is the same as pure anthracene coke. Transmission electron microscopy revealed that the interfaces between graphitic layers and the pore walls are unimpeded. Traditional furnace annealing does not result in the porous structure as the heating rates are too slow to vaporize out the pitch, thereby illustrating the advantage of fast thermal processing. The resultant porous graphite was prelithiated and used as an anode in lithium ion capacitors. The porous graphite when lithiated had a specific capacity of 200 mAh/g at 100 mA/g. The assembled lithium ion capacitor demonstrated an energy density as high as 75 Wh/kg when cycled between 2.2 V and 4.2 V.

  10. A Graphite Isotope Ratio Method: A Primer on Estimating Plutonium Production in Graphite Moderated Reactors

    International Nuclear Information System (INIS)

    Gesh, Christopher J.

    2004-01-01

    The Graphite Isotope Ratio Method (GIRM) is a technique used to estimate the total plutonium production in a graphite-moderated reactor. The cumulative plutonium production in that reactor can be accurately determined by measuring neutron irradiation induced isotopic ratio changes in certain impurity elements within the graphite moderator. The method does not require detailed knowledge of a reactor's operating history, although that knowledge can decrease the uncertainty of the production estimate. The basic premise of the Graphite Isotope Ratio Method is that the fluence in non-fuel core components is directly related to the cumulative plutonium production in the nuclear fuel

  11. Recent developments in graphite

    International Nuclear Information System (INIS)

    Cunningham, J.E.

    1983-01-01

    Overall, the HTGR graphite situation is in excellent shape. In both of the critical requirements, fuel blocks and support structures, adequate graphites are at hand and improved grades are sufficiently far along in truncation. In the aerospace field, GraphNOL N3M permits vehicle performance with confidence in trajectories unobtainable with any other existing material. For fusion energy applications, no other graphite can simultaneously withstand both extreme thermal shock and neutron damage. Hence, the material promises to create new markets as well as to offer a better candidate material for existing applications

  12. Proposal of coherent Cherenkov radiation matched to circular plane wave for intense terahertz light source

    International Nuclear Information System (INIS)

    Sei, Norihiro; Sakai, Takeshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Nogami, Kyoko; Inagaki, Manabu

    2015-01-01

    Highlights: • We proposed a new intense terahertz-wave source based on coherent Cherenkov radiation (CCR). • A hollow conical dielectric is used to generate the CCR beam. • The wave front of the CCR beam can be matched to the basal plane. • The peak-power of the CCR beam is above 1 MW per micropulse with a short interval of 350 ps. - Abstract: We propose a high-peak-power terahertz-wave source based on an electron accelerator. By passing an electron beam through a hollow conical dielectric with apex facing the incident electron beam, the wave front of coherent Cherenkov radiation generated on the inner surface of the hollow conical dielectric matches the basal plane. Using the electron beam generated at the Laboratory for Electron Beam Research and Application at Nihon University, the calculated power of coherent Cherenkov radiation that matched the circular plane (CCR-MCP) was above 1 MW per micropulse with a short interval of 350 ps, for wavelengths ranging from 0.5 to 5 mm. The electron beam is not lost for generating the CCR-MCP beam by using the hollow conical dielectric. It is possible to combine the CCR-MCP beams with other light sources based on an accelerator

  13. Metal/graphite - composites in fusion engineering

    International Nuclear Information System (INIS)

    Staffler, R.; Kneringer, G.; Kny, E.; Reheis, N.

    1989-01-01

    Metal/graphite composites have been well known in medical industry for many years. X-ray tubes used in modern radiography, particularly in computerized tomography are equipped with rotating targets able to absorb a maximum of heat in a given time. Modern rotating targets consist of a refractory metal/graphite composite. Today the use of graphite as a plasma facing material is one predominant concept in fusion engineering. Depending on the thermal load, the graphite components have to be directly cooled (i.e. divertor plates) or inertially cooled (i.e. firstwall tiles). In case of direct cooling a metallurgical joining such as high temperature brazing between graphite and a metallic cooling structure shows the most promising results /1/. Inertially cooled graphite tiles have to be joined to a metallic backing plate in order to get a stable attachment to the supporting structure. The main requirements on the metallic partner of a metal/graphite composite used in the first wall area are: high melting point, high thermal strength, high thermal conductivity, low vapor pressure and a thermal expansion matching that of graphite. These properties are typical for the refractory metals such as molybdenum, tungsten and their alloys. 4 refs., 13 figs., 1 tab

  14. Method of Joining Graphite Fibers to a Substrate

    Science.gov (United States)

    Beringer, Durwood M. (Inventor); Caron, Mark E. (Inventor); Taddey, Edmund P. (Inventor); Gleason, Brian P. (Inventor)

    2014-01-01

    A method of assembling a metallic-graphite structure includes forming a wetted graphite subassembly by arranging one or more layers of graphite fiber material including a plurality of graphite fibers and applying a layer of metallization material to ends of the plurality of graphite fibers. At least one metallic substrate is secured to the wetted graphite subassembly via the layer of metallization material.

  15. Artificial in-plane ordering of textured YBa2Cu3O(7-x) films deposited on polycrystalline yttria-stabilized zirconia substrates

    Science.gov (United States)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T. D.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.; Johnson, L.

    1992-12-01

    Anisotropic surface texturing of the polycrystalline yttria-stabilized zirconia substrates, prior to YBa2Cu3O(7-x) film deposition, is shown to promote in-plane (basal plane) ordering of the film growth in addition to the c-axis texturing. The Jc's of the films in the weak-link-dominated low-field regime are enhanced considerably, and this result is attributed to the reduction of weak links resulting from a reduction in the number of in-plane large-angle grain boundaries.

  16. Mesostructure of graphite composite and its lifetime

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This review is devoted to the application of graphite and graphite composites in science and technology. Structure and electrical properties, as so technological aspects of producing of high strength artificial graphite and dynamics of its destruction are considered. These type of graphite are traditionally used in the nuclear industry. Generally, the review relies, on the original results and concentrates on actual problems of application and testing of graphite materials in modern nuclear p...

  17. Nucleation of diamond by pure carbon ion bombardment--a transmission electron microscopy study

    International Nuclear Information System (INIS)

    Yao, Y.; Liao, M.Y.; Wang, Z.G.; Lifshitz, Y.; Lee, S.

    2005-01-01

    A cross-sectional high-resolution transmission electron microscopy (HRTEM) study of a film deposited by a 1 keV mass-selected carbon ion beam onto silicon held at 800 deg. C is presented. Initially, a graphitic film with its basal planes perpendicular to the substrate is evolving. The precipitation of nanodiamond crystallites in upper layers is confirmed by HRTEM, selected area electron diffraction, and electron energy loss spectroscopy. The nucleation of diamond on graphitic edges as predicted by Lambrecht et al. [W. R. L. Lambrecht, C. H. Lee, B. Segall, J. C. Angus, Z. Li, and M. Sunkara, Nature, 364 607 (1993)] is experimentally confirmed. The results are discussed in terms of our recent subplantation-based diamond nucleation model

  18. Management of radioactive waste in nuclear power: handling of irradiated graphite from water-cooled graphite reactors

    International Nuclear Information System (INIS)

    Anfimov, S.S.

    2000-01-01

    As a result of decommissioning of water-cooled graphite-moderated reactors, a large amount of rad-waste in the form of graphite stack fragments is generated (on average 1500-2000 tons per reactor). That is why it is essentially important, although complex from the technical point of view, to develop advanced technologies based on up-to-date remotely-controlled systems for unmanned dismantling of the graphite stack containing highly-active long-lived radionuclides and for conditioning of irradiated graphite (IG) for the purposes of transportation and subsequent long term and ecologically safe storage either on NPP sites or in special-purpose geological repositories. The main characteristics critical for radiation and nuclear hazards of the graphite stack are as follows: the graphite stack is contaminated with nuclear fuel that has gotten there as a result of the accidents; the graphite mass is 992 tons, total activity -6?104 Ci (at the time of unit shutdown); the fuel mass in the reactor stack amounts to 100-140 kg, as estimated by IPPE and RDIPE, respectively; γ-radiation dose rate in the stack cells varies from 4 to 4300 R/h, with the prevailing values being in the range from 50 to 100 R/h. In this paper the traditional methods of rad-waste handling as bituminization technology, cementing technology are discussed. In terms of IG handling technology two lines were identified: long-term storage of conditioned IG and IG disposal by means of incineration. The specific cost of graphite immobilization in a radiation-resistant polymeric matrix amounts to -2600 USD per 1 t of graphite, whereas the specific cost of immobilization in slag-stone containers with an inorganic binder (cement) is -1400 USD per 1 t of graphite. On the other hand, volume of conditioned IG rad-waste subject for disposal, if obtained by means of the first technology, is 2-2.5 times less than the volume of rad-waste generated by means of the second technology. It can be concluded from the above that

  19. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  20. Progress in radioactive graphite waste management. Additional information

    International Nuclear Information System (INIS)

    2010-06-01

    Radioactive graphite constitutes a major waste stream which arises during the decommissioning of certain types of nuclear installations. Worldwide, a total of around 250 000 tonnes of radioactive graphite, comprising graphite moderators and reflectors, will require management solutions in the coming years. 14 C is the radionuclide of greatest concern in nuclear graphite; it arises principally through the interaction of reactor neutrons with nitrogen, which is present in graphite as an impurity or in the reactor coolant or cover gas. 3 H is created by the reactions of neutrons with 6 Li impurities in graphite as well as in fission of the fuel. 36 Cl is generated in the neutron activation of chlorine impurities in graphite. Problems in the radioactive waste management of graphite arise mainly because of the large volumes requiring disposal, the long half-lives of the main radionuclides involved and the specific properties of graphite - such as stored Wigner energy, graphite dust explosibility and the potential for radioactive gases to be released. Various options for the management of radioactive graphite have been studied but a generally accepted approach for its conditioning and disposal does not yet exist. Different solutions may be appropriate in different cases. In most of the countries with radioactive graphite to manage, little progress has been made to date in respect of the disposal of this material. Only in France has there been specific thinking about a dedicated graphite waste-disposal facility (within ANDRA): other major producers of graphite waste (UK and the countries of the former Soviet Union) are either thinking in terms of repository disposal or have no developed plans. A conference entitled 'Solutions for Graphite Waste: a Contribution to the Accelerated Decommissioning of Graphite Moderated Nuclear Reactors' was held at the University of Manchester 21-23 March 2007 in order to stimulate progress in radioactive graphite waste management

  1. Inhibition of oxidation in nuclear graphite

    International Nuclear Information System (INIS)

    Winston, Philip L.; Sterbentz, James W.; Windes, William E.

    2015-01-01

    Graphite is a fundamental material of high-temperature gas-cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off-normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high-temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off-normal design basis event where an oxidising atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high-temperature reactor designs attempt to mitigate any damage caused by a postulated air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B 4 C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900 deg. C. The proposed addition of B 4 C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimise B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed. (authors)

  2. Graphite oxidation in HTGR atmosphere

    International Nuclear Information System (INIS)

    Growcock, F.B.; Barry, J.J.; Finfrock, C.C.; Rivera, E.; Heiser, J.H. III

    1982-01-01

    On-going and recently completed studies of the effect of thermal oxidation on the structural integrity of HTGR candidate graphites are described, and some results are presented and discussed. This work includes the study of graphite properties which may play decisive roles in the graphites' resistance to oxidation and fracture: pore size distribution, specific surface area and impurity distribution. Studies of strength loss mechanisms in addition to normal oxidation are described. Emphasis is placed on investigations of the gas permeability of HTGR graphites and the surface burnoff phenomenon observed during recent density profile measurements. The recently completed studies of catalytic pitting and the effects of prestress and stress on reactivity and ultimate strength are also discussed

  3. Nucleation of ripplocations through atomistic modeling of surface nanoindentation in graphite

    Science.gov (United States)

    Freiberg, D.; Barsoum, M. W.; Tucker, G. J.

    2018-05-01

    In this work, we study the nucleation and subsequent evolution behavior of ripplocations - a newly proposed strain accommodating defect in layered materials where one, or more, layers buckle orthogonally to the layers - using atomistic modeling of graphite. To that effect, we model the response to cylindrical indenters with radii R of 50, 100, and 250 nm, loaded edge-on into graphite layers and the strain gradient effects beneath the indenter are quantified. We show that the response is initially elastic followed by ripplocation nucleation, and growth of multiple fully reversible ripplocation boundaries below the indenter. In the elastic region, the stress is found to be a function of indentation volume; beyond the elastic regime, the interlayer strain gradient emerges as paramount in the onset of ripplocation nucleation and subsequent in-plane stress relaxation. Furthermore, ripplocation boundaries that nucleate from the alignment of ripplocations on adjacent layers are exceedingly nonlocal and propagate, wavelike, away from the indented surface. This work not only provides a critical understanding of the mechanistic underpinnings of the deformation of layered solids and formation of kink boundaries, but also provides a more complete description of the nucleation mechanics of ripplocations and their strain field dependence.

  4. Attenuation of thermal neutron through graphite

    International Nuclear Information System (INIS)

    Adib, M.; Ismaail, H.; Fathaallah, M.; Abbas, Y.; Habib, N.; Wahba, M.

    2004-01-01

    Calculation of the nuclear capture, thermal diffuse and Bragg scattering cross-sections as a function of graphite temperature and crystalline from for neutron energies from 1 me V< E<10 eV were carried out. Computer programs have been developed which allow calculation for the graphite hexagonal closed-pack structure in its polycrystalline form and pyrolytic one. I The calculated total cross-section for polycrystalline graphite were compared with the experimental values. An overall agreement is indicated between the calculated values and experimental ones. Agreement was also obtained for neutron cross-section measured for oriented pyrolytic graphite at room and liquid nitrogen temperatures. A feasibility study for use of graphite in powdered form as a cold neutron filter is details. The calculated attenuation of thermal neutrons through large mosaic pyrolytic graphite show that such crystals can be used effectively as second order filter of thermal neutron beams and that cooling improve their effectiveness

  5. Production of nuclear graphite in France

    International Nuclear Information System (INIS)

    Legendre, P.; Mondet, L.; Arragon, Ph.; Cornuault, P.; Gueron, J.; Hering, H.

    1955-01-01

    The graphite intended for the construction of the reactors is obtained by the usual process: confection of a cake from coke of oil and tar, cooked (in a electric oven) then the product of cook is graphitized, also by electric heating. The use of the air transportation and the control of conditions cooking and graphitization have permitted to increase the nuclear graphite production as well as to better control their physical and mechanical properties and to reduce to the minimum the unwanted stains. (M.B.) [fr

  6. Photoemission study of K on graphite

    NARCIS (Netherlands)

    Bennich, P.; Puglia, C.; Brühwiler, P.A.; Nilsson, A.; Sandell, A.; Mårtensson, N.; Rudolf, P.

    1999-01-01

    The physical and electronic structure of the dispersed and (2×2) phases of K/graphite have been characterized by valence and core-level photoemission. Charge transfer from K to graphite is found to occur at all coverages, and includes transfer of charge to the second graphite layer. A rigid band

  7. Structural analysis of polycrystalline (graphitized) materials

    International Nuclear Information System (INIS)

    Efremenko, M.M.; Kravchik, A.E.; Osmakov, A.S.

    1993-01-01

    Specific features of the structure of polycrystal carbon materials (CM), characterized by high enough degree of structural perfection and different genesis are analyzed. From the viewpoint of fine and supercrystallite structure analysis of the most characteristic groups of graphitized CM: artificial graphites, and natural graphites, as well, has been carried out. It is ascertained that in paracrystal CM a monolayer of hexagonally-bound carbon atoms is the basic element of the structure, and in graphitized CM - a microlayer. The importance of the evaluation of the degree of three-dimensional ordering of the microlayer is shown

  8. Graphite content and isotopic fractionation between calcite-graphite pairs in metasediments from the Mgama Hills, Southern Kenya

    International Nuclear Information System (INIS)

    Arneth, J.D.; Schidlowski, M.; Sarbas, B.; Goerg, U.; Amstutz, G.C.

    1985-01-01

    Amphibolite-grade metasediments from the Mgama Hills region, Kenya, contain conspicuous quantities of graphite, most probably derived from organic progenitor materials,. The highest graphite contents are found in schists whereas calcite marbles intercalated in the sequence contain relatively low amounts. The graphitic constituents are consistently enriched in 13 C relative to common sedimentary organic material, with the highest isotopic ratios in graphite from the marbles. Carbon isotope fractionations between calcite and graphite mostly vary between 3.3 and 7.1 per mille, which comes close to both empirically recorded and thermodynamically calculated fractionations in the temperature range of the upper amphibolite facies. However, larger values occasionally encountered in the marbles suggest that complete isotopic equilibrium is not always attained in amphibolite-facies metamorphism. (author)

  9. Oxidation behavior of IG and NBG nuclear graphites

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Woong-Ki; Kim, Byung-Joo [Jeonju Institute of Machinery and Carbon Composites Palbokdong-2ga, 817, Jeonju, Jeollabuk-do 561-844 (Korea, Republic of); Kim, Eung-Seon; Chi, Se-Hwan [Dept. of Nuclear Hydrogen Project, Korea Atomic Energy Research Institute, Daejeon 305-353 (Korea, Republic of); Park, Soo-Jin, E-mail: sjpark@inha.ac.k [Dept. of Chemistry, Inha Univ., 253, Nam-gu, Incheon 402-751 (Korea, Republic of)

    2011-01-15

    Graphical abstract: Water contact angles on nuclear graphite before and after oxidation treatments: the pictures show the contact angles obtained under deionized water on oxidation-treated and untreated nuclear graphite. The water contact angles are decreased after oxidation due to the increase in the hydrophilic. Display Omitted Research highlights: The average pore size of graphites shows an increase after the oxidation treatments. They also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. - Abstract: This work studies the oxidation-induced characteristics of four nuclear graphites (NBG-17, NBG-25, IG-110, and IG-430). The oxidation characteristics of the nuclear graphites were measured at 600 {sup o}C. The surface properties of the oxidation graphites were characterized by means of scanning electron microscopy, X-ray photoelectron spectroscopy, and contact angle methods. The N{sub 2}/77 K adsorption isotherm characteristics, including the specific surface area and micropore volume, were investigated by means of BET and t-plot methods. The experimental results show an increase in the average pore size of graphites; they also show that oxidation produces the surface functional groups on the graphite surfaces. The surface area of each graphite behaves in a unique manner. For example the surface area of NBG-17 increases slightly whereas the surface area of IG-110 increases significantly. This result confirms that the original surface state of each graphite is unique.

  10. Theoretical analysis of the graphitization of a nanodiamond

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S Joon; Park, Jae-Gwan [Nano Science and Technology Division, Korea Institute of Science and Technology (KIST), PO Box 131, Cheongryang, Seoul, 130-650 (Korea, Republic of)

    2007-09-26

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F{sub 2g} vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond.

  11. Theoretical analysis of the graphitization of a nanodiamond

    International Nuclear Information System (INIS)

    Kwon, S Joon; Park, Jae-Gwan

    2007-01-01

    We report on a theoretical analysis of the graphitization of a nanosize diamond (nanodiamond) in the metastable state. A nanodiamond annealed at a relatively lower temperature suffers morphological transition into a nanodiamond-graphite core-shell structure. Thermodynamic stability analysis of the nanodiamond showed that the phase diagram (relationship between the annealing temperature and radius) of the nanodiamond-graphite has three regimes: smaller nanodiamond, nanodiamond-graphite, and larger nanodiamond. These regimes of nanodiamond-graphite are due to an additional phase boundary from finding the maximum size of the nanodiamond which can be graphitized. In the theoretical analysis, the most probable and the maximum volume fractions of graphite in the nanodiamond were 0.76 and 0.84 respectively, which were independent of the annealing temperature and the initial radius of the nanodiamond. Therefore, the nanodiamond is not completely transformed into graphite by simple annealing at relatively lower process temperature and pressure. The highest graphitization probability decreased with increasing annealing temperature. Raman spectra for the F 2g vibration mode of nanodiamond were also calculated, and we found that the variation in properties of the spectral line was strongly dependent on the graphitization temperature and the initial size of the nanodiamond

  12. Efficient simulations of the aqueous bio-interface of graphitic nanostructures with a polarisable model

    Science.gov (United States)

    Hughes, Zak E.; Tomásio, Susana M.; Walsh, Tiffany R.

    2014-04-01

    To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter-operability with known biological FFs, is a pivotal requirement. Here, we present and apply such a force-field, GRAPPA, designed to work with the CHARMM FF. GRAPPA is an efficiently implemented polarisable force-field, informed by extensive plane-wave DFT calculations using the revPBE-vdW-DF functional. GRAPPA adequately recovers the spatial and orientational structuring of the aqueous interface of graphene and carbon nanotubes, compared with more sophisticated approaches. We apply GRAPPA to determine the free energy of adsorption for a range of amino acids, identifying Trp, Tyr and Arg to have the strongest binding affinity and Asp to be a weak binder. The GRAPPA FF can be readily incorporated into mainstream simulation packages, and will enable large-scale polarisable biointerfacial simulations at graphitic interfaces, that will aid the development of biomolecule-mediated, solution-based graphene processing and self-assembly strategies.To fully harness the enormous potential offered by interfaces between graphitic nanostructures and biomolecules, detailed connections between adsorbed conformations and adsorption behaviour are needed. To elucidate these links, a key approach, in partnership with experimental techniques, is molecular simulation. For this, a force-field (FF) that can appropriately capture the relevant physics and chemistry of these complex bio-interfaces, while allowing extensive conformational sampling, and also supporting inter

  13. Graphite targets at LAMPF

    International Nuclear Information System (INIS)

    Brown, R.D.; Grisham, D.L.

    1983-01-01

    Rotating polycrystalline and stationary pyrolytic graphite target designs for the LAMPF experimental area are described. Examples of finite element calculations of temperatures and stresses are presented. Some results of a metallographic investigation of irradiated pyrolytic graphite target plates are included, together with a brief description of high temperature bearings for the rotating targets

  14. The utilization of a pressurized-graphite/water/oxygen mixture for irradiated graphite incineration

    International Nuclear Information System (INIS)

    Antonini, G.; Perotin, J.P.; Charlot, P.

    1992-01-01

    The authors demonstrate the interest of the utilization of a pressurized-graphite/water/oxygen mixture in the incineration of irradiated graphite. The aqueous phase comes in the form of a three-dimensional system that traps pressurized oxygen, the pulverulent solid being dispersed at the liquid/gas interfaces. These three-phasic formulations give the following advantages: reduction of the apparent viscosity of the mixture in comparison with a solid/liquid mixture at the same solid concentration; reduction of the solid/liquid interactions; self-pulverizability. thus promoting reduction of the flame length utilization of conventional burners; reduction of the flue gas flow rate; complete thermal destruction of graphite. (author)

  15. Uranium Oxide Aerosol Transport in Porous Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, Jeremy; Gerlach, David C.; Scheele, Randall D.; Stewart, Mark L.; Reid, Bruce D.; Gauglitz, Phillip A.; Bagaasen, Larry M.; Brown, Charles C.; Iovin, Cristian; Delegard, Calvin H.; Zelenyuk, Alla; Buck, Edgar C.; Riley, Brian J.; Burns, Carolyn A.

    2012-01-23

    The objective of this paper is to investigate the transport of uranium oxide particles that may be present in carbon dioxide (CO2) gas coolant, into the graphite blocks of gas-cooled, graphite moderated reactors. The transport of uranium oxide in the coolant system, and subsequent deposition of this material in the graphite, of such reactors is of interest because it has the potential to influence the application of the Graphite Isotope Ratio Method (GIRM). The GIRM is a technology that has been developed to validate the declared operation of graphite moderated reactors. GIRM exploits isotopic ratio changes that occur in the impurity elements present in the graphite to infer cumulative exposure and hence the reactor’s lifetime cumulative plutonium production. Reference Gesh, et. al., for a more complete discussion on the GIRM technology.

  16. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  17. Chapter 9: Experimental measurements of the diffusion area of neutrons in graphite

    International Nuclear Information System (INIS)

    Brown, G.; McCulloch, D.B.

    1963-01-01

    This report describes measurements of the diffusion area of neutrons in a solid graphite exponential stack, and in a stack containing cylindrical air channels of 4.5 in. diameter, arranged on a square lattice of 8 in. pitch. The resulting diffusion area ratios are compared with the theoretical predictions of a number of authors. The diffusion area ratios deduced from a pair of experiments in which the orientation of the air channels with respect to the source-plane is changed are found to be in agreement with those deduced from experiments in which the stack size is changed but a constant air channel orientation maintained. (author)

  18. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  19. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  20. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    Energy Technology Data Exchange (ETDEWEB)

    Motozuka, S.; Hayashi, K. [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu, Gifu 501-0495 (Japan); Tagaya, M. [Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Morinaga, M. [Toyota Physical and Chemical Research Institute, 41-1, Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-09-15

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method.

  1. Texture formation in iron particles using mechanical milling with graphite as a milling aid

    International Nuclear Information System (INIS)

    Motozuka, S.; Hayashi, K.; Tagaya, M.; Morinaga, M.

    2015-01-01

    Crystallographically anisotropic platelet iron particles were successfully prepared using a conventional ball mill with addition of graphite (Gp) particles. The morphological and structural changes resulting from the milling were investigated using scanning electron microscopy and X-ray diffraction. The spherical iron particles were plastically deformed into platelet shapes during the milling. Simultaneously, it is suggested that the size of the Gp particles decreased and adhered as nanoparticles on the surface of the iron particles. The adhered Gp particles affected the plastic deformation behavior of the iron particles: the (001) planes of α-iron were oriented parallel to the particle face, and no preferred in-plane orientation was observed. This study not only details the preparation of soft magnetic metal particles that crystallographically oriented to enhance their magnetic properties but also provides new insight into the activities of the well-established and extensively studied mechanical milling method

  2. Characterization of graphite dust produced by pneumatic lift

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Kang, Feiyu [Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong (China); Yang, Xiaoyong; Li, Weihua [Institute of Nuclear and New Energy Technology of Tsinghua University, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 100084 (China); Yu, Suyuan, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Highlights: • Generation of graphite dust by pneumatic lift. • Determination of morphology and particle size distribution of graphite dust. • The size of graphite dust in this study is compared to AVR and THTR-300 results. • Graphite dust originates from both filler and binder of the matrix graphite. - Abstract: Graphite dust is an important safety concern of high-temperature gas-cooled reactor (HTR). The graphite dust could adsorb fission products, and the radioactive dust is transported by the coolant gas and deposited on the surface of the primary loop. The simulation of coagulation, aggregation, deposition, and resuspension behavior of graphite dust requires parameters such as particle size distribution and particle shape, but currently very limited data on graphite dust is available. The only data we have are from AVR and THTR-300, however, the AVR result is likely to be prejudiced by the oil ingress. In pebble-bed HTR, graphite dust is generally produced by mechanical abrasion, in particular, by the abrasion of graphite pebbles in the lifting pipe of the fuel handling system. Here we demonstrate the generation and characterization of graphite dust that were produced by pneumatic lift. This graphite dust could substitute the real dust in HTR for characterization. The dust, exhibiting a lamellar morphology, showed a number-weighted average particle size of 2.38 μm and a volume-weighted average size of 14.62 μm. These two sizes were larger than the AVR and THTR results. The discrepancy is possibly due to the irradiation effect and prejudice caused by the oil ingress accident. It is also confirmed by the Raman spectrum that both the filler particle and binder contribute to the dust generation.

  3. NMR studies on graphite-methanol system

    International Nuclear Information System (INIS)

    El-Akkad, T.M.

    1977-01-01

    The nuclear magnetic relaxation times for protons of methanol on graphite have been studied. The perpendicular and the transversal magnetization as a function of temperature were measured. The results show that the presence of graphite slowed down the methanol movement compared with that in the pure alcohol, and that the methanol molecules are attached to the graphite surface via methyl groups. (author)

  4. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  5. High-resolution transmission electron microscopy studies of graphite materials prepared by high-temperature treatment of unburned carbon concentrates from combustion fly ashes

    Energy Technology Data Exchange (ETDEWEB)

    Miguel Cabielles; Jean-Nol Rouzaud; Ana B. Garcia [Instituto Nacional del Carbn (INCAR), Oviedo (Spain)

    2009-01-15

    High-resolution transmission electron microscopy (HRTEM) has been used in this work to study the microstructural (structure and microtexture) changes occurring during the high-temperature treatment of the unburned carbon concentrates from coal combustion fly ashes. Emphasis was placed on two aspects: (i) the development of graphitic carbon structures and (ii) the disordered carbon forms remaining in the graphitized samples. In addition, by coupling HRTEM with energy-dispersive spectroscopy, the transformations with the temperature of the inorganic matter (mainly iron- and silicon-based phases) of the unburned carbon concentrates were evidenced. The HRTEM results were compared to the averaged structural order of the materials as evaluated by X-ray diffraction (XRD) and Raman spectroscopy. As indicated by XRD and Raman parameters, more-ordered materials were obtained from the unburned carbon concentrates with higher mineral/inorganic matter, thus inferring the catalytic effect of some of their components. However, the average character of the information provided by these instrumental techniques seems to be inconclusive in discriminating between carbon structures with different degrees of order (stricto sensu graphite, graphitic, turbostratic, etc.) in a given graphitized unburned carbon. Unlike XRD and Raman, HRTEM is a useful tool for imaging directly the profile of the polyaromatic layers (graphene planes), thus allowing the sample heterogeneity to be looked at, specifically the presence of disordered carbon phases. 49 refs., 9 figs., 3 tabs.

  6. Graphite crystals grown within electromagnetically levitated metallic droplets

    International Nuclear Information System (INIS)

    Amini, Shaahin; Kalaantari, Haamun; Mojgani, Sasan; Abbaschian, Reza

    2012-01-01

    Various graphite morphologies were observed to grow within the electromagnetically levitated nickel–carbon melts, including primary flakes and spheres, curved surface graphite and eutectic flakes, as well as engulfed and entrapped particles. As the supersaturated metallic solutions were cooled within the electromagnetic (EM) levitation coil, the primary graphite flakes and spheres formed and accumulated near the periphery of the droplet due to EM circulation. The primary graphite islands, moreover, nucleated and grew on the droplet surface which eventually formed a macroscopic curved graphite crystal covering the entire liquid. Upon further cooling, the liquid surrounding the primary graphite went under a coupled eutectic reaction while the liquid in the center formed a divorced eutectic due to EM mixing. This brought about the formation of graphite fine flakes and agglomerated particles close to the surface and in the center of the droplet, respectively. The graphite morphologies, growth mechanisms, defects, irregularities and growth instabilities were interpreted with detailed optical and scanning electron microscopies.

  7. Fabrication of Graphene by Cleaving Graphite Chemically

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shu-hua; ZHAO Xiao-ting; FAN Hou-gang; YANG Li-li; ZHANG Yong-jun; YANG Jing-hai

    2011-01-01

    Graphite was chemically cleaved to graphene by Billups Reaction,and the morphologies and microstructures of graphene were characterized by SEM,Raman and AFM.The results show that the graphite was first functionalized by l-iodododecane,which led to the cleavage of the graphene layer in the graphite.The second decoration cleaved the graphite further and graphene was obtained.The heights of the graphene layer were larger than 1 nm due to the organic decoration.

  8. Method of manufacturing a graphite coated fuel can

    International Nuclear Information System (INIS)

    Saito, Koichi; Uchida, Shunsuke.

    1984-01-01

    Purpose: To improve the close bondability and homogeneity of a graphite coating formed at the inner surface of a fuel can. Method: A coating containing graphite dispersed in a volatile organic solvent is used and a graphite coating is formed to the inner surface of a fuel can by way of a plunger method. After applying graphite coating, an inert gas is caused to flow at a certain flow rate to the inside of the fuel can horizontally rotaged so that gassification and evaporation of the volatile organic solvent contained in the graphite coating may be promoted. Since drying of the graphite coating coated to the inner surface of the fuel can thus be controlled, a graphite coating with satisfactory close bondability and homogeneity can be formed. (Kawakami, Y.)

  9. Methane generated from graphite--tritium interaction

    International Nuclear Information System (INIS)

    Coffin, D.O.; Walthers, C.R.

    1979-01-01

    When hydrogen isotopes are separated by cryogenic distillation, as little as 1 ppM of methane will eventually plug the still as frost accumulates on the column packings. Elemental carbon exposed to tritium generates methane spontaneously, and yet some dry transfer pumps, otherwise compatible with tritium, convey the gas with graphite rotors. This study was to determine the methane production rate for graphite in tritium. A pump manufacturer supplied graphite samples that we exposed to tritium gas at 0.8 atm. After 137 days we measured a methane synthesis rate of 6 ng/h per cm 2 of graphite exposed. At this rate methane might grow to a concentration of 0.01 ppM when pure tritium is transferred once through a typical graphite--rotor transfer pump. Such a low methane level will not cause column blockage, even if the cryogenic still is operated continuously for many years

  10. Channel uranium-graphite reactor mounting

    International Nuclear Information System (INIS)

    Polushkin, K.K.; Kuznetsov, A.G.; Zheleznyakov, B.N.

    1981-01-01

    According to theoretical principles of general engineering technology the engineering experience of construction-mounting works at the NPP with channel uranium-graphite reactors is systematized. Main parameters and structural features of the 1000 MW channel uranium-graphite reactors are considered. The succession of mounting operations, premounting equipment and pipelines preparation and mounting works technique are described. The most efficient methods of fitting, welding and machining of reactor elements are recommended. Main problems of technical control service are discussed. A typical netted diagram of main equipment of channel uranium-graphite reactors mounting is given

  11. Polarized photoluminescence excitation spectroscopy of a-plane InGaN/GaN multiple quantum wells grown on r-plane sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Kundys, D., E-mail: dmytro.kundys@manchester.ac.uk; Sutherland, D.; Badcock, T. J.; Dawson, P. [School of Physics and Astronomy, Photon Science Institute, University of Manchester, Manchester M13 9PL (United Kingdom); Schulz, S. [Photonics Theory group, Tyndall National Institute, Lee Maltings, Cork (Ireland); Oehler, F.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J. [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS (United Kingdom)

    2014-03-21

    We have performed a detailed study of the impact of basal plane stacking faults (BSFs) on the optical properties of both a-plane InGaN/GaN quantum wells (QWs) and GaN template samples grown on r-sapphire. In particular, we have used polarised photoluminescence excitation spectroscopy (P-PLE) to investigate the nature of the low temperature recombination as well as extracting information on the valence band (VB) polarisation anisotropy. Our low temperature P-PLE results revealed not only excitons associated with intersubband quantum well transitions and the GaN barrier material but also a transition associated with creation of excitons in BSFs. The strength of this BSF transition varied with detection energy across the quantum well emission suggesting that there is a significant contribution to the emission line width from changes in the local electronic environment of the QWs due to interactions with BSFs. Furthermore, we observed a corresponding progressive increase in the VB splitting of the QWs as the detection energy was varied across the quantum well emission spectrum.

  12. Graphite nanoreinforcements in polymer nanocomposites

    Science.gov (United States)

    Fukushima, Hiroyuki

    Nanocomposites composed of polymer matrices with clay reinforcements of less than 100 nm in size, are being considered for applications such as interior and exterior accessories for automobiles, structural components for portable electronic devices, and films for food packaging. While most nanocomposite research has focused on exfoliated clay platelets, the same nanoreinforcement concept can be applied to another layered material, graphite, to produce nanoplatelets and nanocomposites. Graphite is the stiffest material found in nature (Young's Modulus = 1060 GPa), having a modulus several times that of clay, but also with excellent electrical and thermal conductivity. The key to utilizing graphite as a platelet nanoreinforcement is in the ability to exfoliate this material. Also, if the appropriate surface treatment can be found for graphite, its exfoliation and dispersion in a polymer matrix will result in a composite with not only excellent mechanical properties but electrical properties as well, opening up many new structural applications as well as non-structural ones where electromagnetic shielding and high thermal conductivity are requirements. In this research, a new process to fabricate exfoliated nano-scale graphite platelets was established (Patent pending). The size of the resulted graphite platelets was less than 1 um in diameter and 10 nm in thickness, and the surface area of the material was around 100 m2/g. The reduction of size showed positive effect on mechanical properties of composites because of the increased edge area and more functional groups attached with it. Also various surface treatment techniques were applied to the graphite nanoplatelets to improve the surface condition. As a result, acrylamide grafting treatment was found to enhance the dispersion and adhesion of graphite flakes in epoxy matrices. The resulted composites showed better mechanical properties than those with commercially available carbon fibers, vapor grown carbon fibers

  13. Nevoid basal cell carcinoma syndrome

    Science.gov (United States)

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic ... syndrome is known as PTCH ("patched"). The gene is passed down ...

  14. Characterisation of Chlorine Behavior in French Graphite

    International Nuclear Information System (INIS)

    Blondel, A.; Moncoffre, N.; Toulhoat, N.; Bererd, N.; Petit, L.; Laurent, G.; Lamouroux, C.

    2016-01-01

    Chlorine 36 is one of the main radionuclides of concern for French graphite waste disposal. In order to help the understanding of its leaching behaviour under disposal conditions, the respective impact of temperature, irradiation and gas radiolysis on chlorine release in reactor has been studied. Chlorine 36 has been simulated through chlorine 37 ion implantation in virgin nuclear graphite samples. Results show that part of chlorine is highly mobile in graphite in the range of French reactors operating temperatures in relation with graphite structural recovering. Ballistic damage generated by irradiation also promotes chlorine release whereas no clear impact of the coolant gas radiolysis was observed in the absence of graphite radiolytic corrosion. (author)

  15. Chemical sputtering of graphite by H+ ions

    International Nuclear Information System (INIS)

    Busharov, N.P.; Gorbatov, E.A.; Gusev, V.M.; Guseva, M.I.; Martynenko, Y.V.

    1976-01-01

    In a study of the sputtering coefficient S for the sputtering of graphite by 10-keV H + ions as a function of the graphite temperature during the bombardment, it is found that at T> or =750degreeC the coefficient S is independent of the target temperature and has an anomalously high value, S=0.085 atom/ion. The high rate of sputtering of graphite by atomic hydrogen ions is shown to be due to chemical sputtering of the graphite, resulting primarily in the formation of CH 4 molecules. At T=1100degreeC, S falls off by a factor of about 3. A model for the chemical sputtering of graphite is proposed

  16. AC induction field heating of graphite foam

    Science.gov (United States)

    Klett, James W.; Rios, Orlando; Kisner, Roger

    2017-08-22

    A magneto-energy apparatus includes an electromagnetic field source for generating a time-varying electromagnetic field. A graphite foam conductor is disposed within the electromagnetic field. The graphite foam when exposed to the time-varying electromagnetic field conducts an induced electric current, the electric current heating the graphite foam. An energy conversion device utilizes heat energy from the heated graphite foam to perform a heat energy consuming function. A device for heating a fluid and a method of converting energy are also disclosed.

  17. Irradiation-induced amorphization process in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Hiroaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-04-01

    Effects of the element process of irradiation damage on irradiation-induced amorphization processes of graphite was studied. High orientation thermal decomposed graphite was cut about 100 nm width and used as samples. The irradiation experiments are carried out under the conditions of electronic energy of 100-400 KeV, ion energy of 200-600 KeV, ionic species Xe, Ar, Ne, C and He and the irradiation temperature at from room temperature to 900 K. The critical dose ({phi}a) increases exponentially with increasing irradiation temperature. The displacement threshold energy of graphite on c-axis direction was 27 eV and {phi}a{sup e} = 0.5 dpa. dpa is the average number of displacement to atom. The critical dose of ion irradiation ({phi}a{sup i}) was 0.2 dpa at room temperature, and amorphous graphite was produced by less than half of dose of electronic irradiation. Amorphization of graphite depending upon temperature is discussed. (S.Y.)

  18. Actinides in irradiated graphite of RBMK-1500 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Plukienė, R., E-mail: rita@ar.fi.lt; Plukis, A.; Barkauskas, V.; Gudelis, A.; Gvozdaitė, R.; Duškesas, G.; Remeikis, V.

    2014-10-01

    Highlights: • Activation of actinides in the graphite of the RBMK-1500 reactor was analyzed. • Numerical modeling using SCALE 6.1 and MCNPX was used for actinide calculation. • Measurements of the irradiated graphite sample were used for model validation. • Results are important for further decommissioning process of the RBMK type reactors. - Abstract: The activation of graphite in the nuclear power plants is the problem of high importance related with later graphite reprocessing or disposal. The activation of actinide impurities in graphite due to their toxicity determines a particular long term risk to waste management. In this work the activation of actinides in the graphite constructions of the RBMK-1500 reactor is determined by nuclear spectrometry measurements of the irradiated graphite sample from the Ignalina NPP Unit I and by means of numerical modeling using two independent codes SCALE 6.1 (using TRITON-VI sequence) and MCNPX (v2.7 with CINDER). Both models take into account the 3D RBMK-1500 reactor core fragment with explicit graphite construction including a stack and a sleeve but with a different simplification level concerning surrounding graphite and construction of control roads. The verification of the model has been performed by comparing calculated and measured isotope ratios of actinides. Also good prediction capabilities of the actinide activation in the irradiated graphite have been found for both calculation approaches. The initial U impurity concentration in the graphite model has been adjusted taking into account the experimental results. The specific activities of actinides in the irradiated RBMK-1500 graphite constructions have been obtained and differences between numerical simulation results, different structural parts (sleeve and stack) as well as comparison with previous results (Ancius et al., 2005) have been discussed. The obtained results are important for further decommissioning process of the Ignalina NPP and other RBMK

  19. Structural features of the adsorption layer of pentacene on the graphite surface and the PMMA/graphite hybrid surface

    Science.gov (United States)

    Fadeeva, A. I.; Gorbunov, V. A.; Litunenko, T. A.

    2017-08-01

    Using the molecular dynamics and the Monte Carlo methods, we have studied the structural features and growth mechanism of the pentacene film on graphite and polymethylmethacrylate /graphite surfaces. Monolayer capacity and molecular area, optimal angles between the pentacene molecules and graphite and PMMA/graphite surfaces as well as the characteristic angles between the neighboring pentacene molecules in the adsorption layer were estimated. It is shown that the orientation of the pentacene molecules in the film is determined by a number of factors, including the surface concentration of the molecules, relief of the surface, presence or absence of the polymer layer and its thickness. The pentacene molecules adsorbed on the graphite surface keep a horizontal position relative to the long axis at any surface coverage/thickness of the film. In the presence of the PMMA layer on the graphite, the increase of the number of pentacene molecules as well as the thickness of the PMMA layer induce the change of molecular orientation from predominantly horizontal to vertical one. The reason for such behavior is supposed to be the roughness of the PMMA surface.

  20. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  1. Sealing nuclear graphite with pyrolytic carbon

    International Nuclear Information System (INIS)

    Feng, Shanglei; Xu, Li; Li, Li; Bai, Shuo; Yang, Xinmei; Zhou, Xingtai

    2013-01-01

    Pyrolytic carbon (PyC) coatings were deposited on IG-110 nuclear graphite by thermal decomposition of methane at ∼1830 °C. The PyC coatings are anisotropic and airtight enough to protect IG-110 nuclear graphite against the permeation of molten fluoride salts and the diffusion of gases. The investigations indicate that the sealing nuclear graphite with PyC coating is a promising method for its application in Molten Salt Reactor (MSR)

  2. Status of Chronic Oxidation Studies of Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mee, Robert W. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    Graphite will undergo extremely slow, but continuous oxidation by traces of moisture that will be present, albeit at very low levels, in the helium coolant of HTGR. This chronic oxidation may cause degradation of mechanical strength and thermal properties of graphite components if a porous oxidation layer penetrates deep enough in the bulk of graphite components during the lifetime of the reactor. The current research on graphite chronic oxidation is motivated by the acute need to understand the behavior of each graphite grade during prolonged exposure to high temperature chemical attack by moisture. The goal is to provide the elements needed to develop predictive models for long-time oxidation behavior of graphite components in the cooling helium of HTGR. The tasks derived from this goal are: (1) Oxidation rate measurements in order to determine and validate a comprehensive kinetic model suitable for prediction of intrinsic oxidation rates as a function of temperature and oxidant gas composition; (2) Characterization of effective diffusivity of water vapor in the graphite pore system in order to account for the in-pore transport of moisture; and (3) Development and validation of a predictive model for the penetration depth of the oxidized layer, in order to assess the risk of oxidation caused damage of particular graphite grades after prolonged exposure to the environment of helium coolant in HTGR. The most important and most time consuming of these tasks is the measurement of oxidation rates in accelerated oxidation tests (but still under kinetic control) and the development of a reliable kinetic model. This report summarizes the status of chronic oxidation studies on graphite, and then focuses on model development activities, progress of kinetic measurements, validation of results, and improvement of the kinetic models. Analysis of current and past results obtained with three grades of showed that the classical Langmuir-Hinshelwood model cannot reproduce all

  3. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  4. Graphite oral tattoo: case report.

    Science.gov (United States)

    Moraes, Renata Mendonça; Gouvêa Lima, Gabriela de Morais; Guilhermino, Marinaldo; Vieira, Mayana Soares; Carvalho, Yasmin Rodarte; Anbinder, Ana Lia

    2015-10-16

    Pigmented oral lesions compose a large number of pathological entities, including exogenous pigmentat oral tattoos, such as amalgam and graphite tattoos. We report a rare case of a graphite tattoo on the palate of a 62-year-old patient with a history of pencil injury, compare it with amalgam tattoos, and determine the prevalence of oral tattoos in our Oral Pathology Service. We also compare the clinical and histological findings of grafite and amalgam tattoos. Oral tattoos affect women more frequently in the region of the alveolar ridge. Graphite tattoos occur in younger patients when compared with the amalgam type. Histologically, amalgam lesions represent impregnation of the reticular fibers of vessels and nerves with silver, whereas in cases of graphite tattoos, this impregnation is not observed, but it is common to observe a granulomatous inflammatory response, less evident in cases of amalgam tattoos. Both types of lesions require no treatment, but in some cases a biopsy may be done to rule out melanocytic lesions.

  5. Graphite materials for nuclear reactors

    International Nuclear Information System (INIS)

    Oku, Tatsuo

    1991-01-01

    Graphite materials have been used in the nuclear fission reactors from the beginning of the reactor development for the speed reduction and reflection of neutron. Graphite materials are used both as a moderator and as a reflector in the core of high temperature gas-cooled reactors, and both as a radiation shielding material and as a reflector in the surrounding of the core for the fast breeder reactor. On the other hand, graphite materials are being positively used as a first wall of plasma as it is known that low Z materials are useful for holding high temperature plasma in the nuclear fusion devices. In this paper the present status of the application of graphite materials to the nuclear fission reactors and fusion devices (reactors) is presented. In addition, a part of results on the related properties to the structural design and safety evaluation and results examined on the subjects that should be done in the future are also described. (author)

  6. Fracture behavior of nuclear graphites under tensile impact loading

    International Nuclear Information System (INIS)

    Ugachi, Hirokazu; Ishiyama, Shintaro; Eto, Motokuni

    1994-01-01

    Impact tensile strength test was performed with two kinds of HTTR graphites, fine grained isotropic graphite, IG-11 and coarse grained near isotropic graphite, PGX and deformation and fracture behavior under the strain rate of over 100s -1 was measured and the following results were derived: (1) Tensile strength for IG-11 graphite does not depend on the strain rate less than 1 s -1 , but over 1 s -1 , tensile strength for IG-11 graphite increase larger than that measured under 1 s -1 . At the strain rate more than 100 s -1 , remarkable decrease of tensile strength for IG-11 graphite was found. Tensile strength of PGX graphite does not depend on the strain rate less than 1 s -1 , but beyond this value, the sharp tensile strength decrease occurs. (2) Under 100 s -1 , fracture strain for both graphites increase with increase of strain rate and over 100 s -1 , drastic increase of fracture strain for IG-11 graphite was found. (3) At the part of gage length, volume of specimen increase with increase of tensile loading level and strain rate. (4) Poisson's ratio for both graphites decrease with increase of tensile loading level and strain rate. (5) Remarkable change of stress-strain curve for both graphites under 100 s -1 was not found, but over 100 s -1 , the slope of these curve for IG-11 graphite decrease drastically. (author)

  7. The Fracture Toughness of Nuclear Graphites Grades

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Erdman, III, Donald L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Rick R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunter, James A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hannel, Cara C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    New measurements of graphite mode I critical stress intensity factor, KIc (commonly referred to as the fracture toughness) and the mode II critical shear stress intensity, KIIc, are reported and compared with prior data for KIc and KIIc. The new data are for graphite grades PCEA, IG-110 and 2114. Variations of KIc and acoustic emission (AE) data with graphite texture are reported and discussed. The Codes and Standards applications of fracture toughness, KIc, data are also discussed. A specified minimum value for nuclear graphite KIc is recommended.

  8. Misorientations in spheroidal graphite: some new insights about spheroidal graphite growth in cast irons

    International Nuclear Information System (INIS)

    Lacaze, J; Theuwissen, K; Laffont, L; Véron, M

    2016-01-01

    Local diffraction patterning, orientation mapping and high resolution transmission electron microscopy imaging have been used to characterize misorientations in graphite spheroids of cast irons. Emphasis is put here on bulk graphite, away from the nucleus as well as from the outer surface of the spheroids in order to get information on their growth during solidification. The results show that spheroidal graphite consists in conical sectors made of elementary blocks piled up on each other. These blocks are elongated along the prismatic a direction of graphite with the c axes roughly parallel to the radius of the spheroids. This implies that the orientation of the blocks rotates around the spheroid centre giving low angle tilting misorientations along tangential direction within each sector. Misorientations between neighbouring sectors are of higher values and their interfaces show rippled layers which are characteristic of defects in graphene. Along a radius of the spheroid, clockwise and anticlockwise twisting between blocks is observed. These observations help challenging some of the models proposed to explain spheroidal growth in cast ions. (paper)

  9. Design of the Graphite Reflectors in Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Haeng; Cho, Yeong Garp; Kim, Tae Kyu; Kim, Jong In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Graphite is often used as one of reflector materials for research reactors because of its low neutron absorption cross-section, good moderating properties, and relatively low and stable price. In addition, graphite has excellent properties at high temperatures, so it is widely used as a core material in high temperature reactors. However, its material characteristics such as strength, elastic modulus, thermal expansion coefficient, dimensional change, and thermal conductivity sensitively depend on neutron fluence, temperature, and its manufacturing process. In addition, the Wigner energy and the treatment of the graphite waste such as C-14 should also be considered. For the design of the graphite reflectors, it is therefore essential to understand the material characteristics of chosen graphite materials at given conditions. Especially, the dimensional changes and the thermal conductivity are very important factors to design the nuclear components using graphite as a nonstructural material. Hence, in this study, the material characteristics of graphite are investigated via some experiments in literature. Improving design methods for graphite reflectors in research reactors are then suggested to minimize the problems, and the advantages and disadvantages of each method are also discussed

  10. Modeling Fission Product Sorption in Graphite Structures

    International Nuclear Information System (INIS)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-01-01

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high-temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products

  11. Optical motion control of maglev graphite.

    Science.gov (United States)

    Kobayashi, Masayuki; Abe, Jiro

    2012-12-26

    Graphite has been known as a typical diamagnetic material and can be levitated in the strong magnetic field. Here we show that the magnetically levitating pyrolytic graphite can be moved in the arbitrary place by simple photoirradiation. It is notable that the optical motion control system described in this paper requires only NdFeB permanent magnets and light source. The optical movement is driven by photothermally induced changes in the magnetic susceptibility of the graphite. Moreover, we demonstrate that light energy can be converted into rotational kinetic energy by means of the photothermal property. We find that the levitating graphite disk rotates at over 200 rpm under the sunlight, making it possible to develop a new class of light energy conversion system.

  12. Graphene-graphite oxide field-effect transistors.

    Science.gov (United States)

    Standley, Brian; Mendez, Anthony; Schmidgall, Emma; Bockrath, Marc

    2012-03-14

    Graphene's high mobility and two-dimensional nature make it an attractive material for field-effect transistors. Previous efforts in this area have used bulk gate dielectric materials such as SiO(2) or HfO(2). In contrast, we have studied the use of an ultrathin layered material, graphene's insulating analogue, graphite oxide. We have fabricated transistors comprising single or bilayer graphene channels, graphite oxide gate insulators, and metal top-gates. The graphite oxide layers show relatively minimal leakage at room temperature. The breakdown electric field of graphite oxide was found to be comparable to SiO(2), typically ~1-3 × 10(8) V/m, while its dielectric constant is slightly higher, κ ≈ 4.3. © 2012 American Chemical Society

  13. Modification of structural graphite machining

    International Nuclear Information System (INIS)

    Lavrenev, M.M.

    1979-01-01

    Studied are machining procedures for structural graphites (GMZ, MG, MG-1, PPG) most widely used in industry, of the article mass being about 50 kg. Presented are dependences necessary for the calculation of cross sections of chip suction tappers and duster pipelines in machine shops for structural graphite machining

  14. Free vibration of fully functionally graded carbon nanotube reinforced graphite/epoxy laminates

    Science.gov (United States)

    Kuo, Shih-Yao

    2018-03-01

    This study provides the first-known vibration analysis of fully functionally graded carbon nanotube reinforced hybrid composite (FFG-CNTRHC) laminates. CNTs are non-uniformly distributed to reinforce the graphite/epoxy laminates. Some CNT distribution functions in the plane and thickness directions are proposed to more efficiently increase the stiffening effect. The rule of mixtures is modified by considering the non-homogeneous material properties of FFG-CNTRHC laminates. The formulation of the location dependent stiffness matrix and mass matrix is derived. The effects of CNT volume fraction and distribution on the natural frequencies of FFG-CNTRHC laminates are discussed. The results reveal that the FFG layout may significantly increase the natural frequencies of FFG-CNTRHC laminate.

  15. Effects of Oxidation on Oxidation-Resistant Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Windes, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Rebecca [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The Advanced Reactor Technology (ART) Graphite Research and Development Program is investigating doped nuclear graphite grades that exhibit oxidation resistance through the formation of protective oxides on the surface of the graphite material. In the unlikely event of an oxygen ingress accident, graphite components within the VHTR core region are anticipated to oxidize so long as the oxygen continues to enter the hot core region and the core temperatures remain above 400°C. For the most serious air-ingress accident which persists over several hours or days the continued oxidation can result in significant structural damage to the core. Reducing the oxidation rate of the graphite core material during any air-ingress accident would mitigate the structural effects and keep the core intact. Previous air oxidation testing of nuclear-grade graphite doped with varying levels of boron-carbide (B4C) at a nominal 739°C was conducted for a limited number of doped specimens demonstrating a dramatic reduction in oxidation rate for the boronated graphite grade. This report summarizes the conclusions from this small scoping study by determining the effects of oxidation on the mechanical strength resulting from oxidation of boronated and unboronated graphite to a 10% mass loss level. While the B4C additive did reduce mechanical strength loss during oxidation, adding B4C dopants to a level of 3.5% or more reduced the as-fabricated compressive strength nearly 50%. This effectively minimized any benefits realized from the protective film formed on the boronated grades. Future work to infuse different graphite grades with silicon- and boron-doped material as a post-machining conditioning step for nuclear components is discussed as a potential solution for these challenges in this report.

  16. Preparation of in-house graphite reference material for boron

    International Nuclear Information System (INIS)

    Kumar, Sanjukta A.; Venkatesh, K.; Swain, Kallola K.; Manisha, V.; Kamble, Granthali S.; Pandey, Shailaja P.; Remya Devi, P.S.; Ghosh, M.; Verma, R.

    2016-05-01

    Graphite is extensively used in nuclear technology. Boron concentration in graphite is one of the important parameters that decide its acceptability for nuclear applications. Reliable analytical methods are essential for the determination of boron in graphite at concentration about 5 mg kg -1 . Reference materials are used for validation of existing analytical methods and developing new methodologies. In view of the importance of determination of boron in graphite and unavailability of graphite reference material, an In-house graphite reference material was prepared in Analytical Chemistry Division. Graphite source material was procured, processed to obtain powder of ≤ 75 μm (200 mesh) and bottled. Procedures were developed for the determination of boron in graphite using inductively coupled plasma optical emission spectrometry (ICPOES) and inductively coupled plasma mass spectrometry (ICPMS) techniques. Homogeneity testing was carried out on the bottled units and boron content along with the combined and expanded uncertainties were established. The assigned boron concentration in the In-house graphite reference material is (7.3±0.46) mg kg -1 . (author)

  17. Mode II interlaminar fracture of graphite/epoxy and graphite/PEEK

    Science.gov (United States)

    Carlsson, L. A.; Gillespie, J. W.; Trethewey, B. R.

    1986-01-01

    The end notched flexure (ENF) specimen is employed in an investigation of the interlaminar fracture toughness in Mode II (skew symmetric shear) loading of unidirectional graphite/epoxy and graphite/PEEK composites. Important experimental parameters such as the influence of precracking and the data reduction scheme for the Mode II toughness are discussed. Nonlinear load-deflection response is significant for the tough thermoplastic resin composite but is also present for the brittle thermoset composite. The observed nonlinearities, which are highly rate dependent, are attributed to a combination of slow stable crack growth preceding unstable crack growth and material inelastic behavior in the process zone around the crack tip.

  18. Synthesis of graphene nanoplatelets from peroxosulfate graphite intercalation compounds

    OpenAIRE

    MELEZHYK A.V.; TKACHEV A.G.

    2014-01-01

    Ultrasonic exfoliation of expanded graphite compound obtained by cold expansion of graphite intercalated with peroxodisulfuric acid was shown to allow the creation of graphene nanoplatelets with thickness of about 5-10 nm. The resulting graphene material contained surface oxide groups. The expanded graphite intercalation compound was exfoliated by ultrasound much easier than thermally expanded graphite. A mechanism for the cleavage of graphite to graphene nanoplatelets is proposed. It include...

  19. Chemisputtering of interstellar graphite grains

    International Nuclear Information System (INIS)

    Draine, B.T.

    1979-01-01

    The rate of erosion of interstellar graphite grains as a result of chemical reaction with H, N, and O is estimated using the available experiment evidence. It is argued that ''chemical sputtering'' yields for interstellar graphite grains will be much less than unity, contrary to earlier estimates by Barlow and Silk. Chemical sputtering of graphite grains in evolving H II regions is found to be unimportant, except in extremely compact (n/sub H/> or approx. =10 5 cm -3 ) H II regions. Alternative explanations are considered for the apparent weakness of the lambda=2175 A extinction ''bump'' in the direction of several early type stars

  20. Obtention of nuclear grade graphite

    International Nuclear Information System (INIS)

    Ferreira, M.L.

    1984-01-01

    The impurity level of natural graphite found in some of the most important mines of the State of Minas Gerais - Brasil is determined. It is also concerned with the development and use of natural graphite in nuclear reactors. Standard methods for chemical and instrumentsal analysis such as Spectrografic Determination by Emission, Spectrografic Determination by X-Rays, Spectrografic Determination by Atomic Asorption, Photometric Determination, and also chemical and physical methods for separation of impurities as well standard method for Estimating the Thermal Neutron Absorption Cross Section of graphite were employed. Some aditionals methods of purification to the ordinary treatment such as the use of metanol and halogens are also described. (Author) [pt

  1. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation

    International Nuclear Information System (INIS)

    David, G.

    1969-01-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10 -5 torr. (author) [fr

  2. Separation medium containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Herrera-Alonso, Margarita (Inventor)

    2012-01-01

    A separation medium, such as a chromatography filling or packing, containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g, wherein the thermally exfoliated graphite oxide has a surface that has been at least partially functionalized.

  3. Influence of irradiation on high-strength graphites

    International Nuclear Information System (INIS)

    Virgil'ev, Yu.S.; Grebennik, V.N.; Kalyagina, I.P.

    1989-01-01

    To ensure efficiency of the graphite elements of the construction of the masonry of reactors, the graphite must possess high radiation stability, strength, and heat resistance. In this connection, the physical properties of graphites based on uncalcined petroleum coke with a binder - high-temperature hard coal pitch - the amount of which reaches 40% are considered in this paper

  4. Surface area-burnoff correlation for the steam--graphite reaction

    International Nuclear Information System (INIS)

    Stark, W.A. Jr.; Malinauskas, A.P.

    1977-01-01

    The oxidation of core graphite by steam of air represents a problem area of significant concern in safety analyses for the high temperature gas cooled reactor (HTGR). Core and core-support graphite integrity and strength deteriorate with oxidation of the graphite, and oxidation furthermore could affect the rate of fission product release under upset conditions. Consequently, modeling of core response during steam or air ingress conditions requires an expression for the rate of graphite interaction with those impurities. The steam--graphite reaction in particular is a complex interaction of mass transport within the graphite with chemi-sorption and reaction on accessible surfaces; experimental results from graphite to graphite are highly variable, and the description of the reaction is not yet completely consistent. A simple etch pit model relating surface area to burnoff has been proposed and shown to provide reasonable correlation with experimental data obtained from steam oxidation studies of nuclear grade H-327 graphite. Unaccounted differences between theory and experiment arise at burnoffs exceeding 3 to 5 percent. The model, while not complete nor comprehensive, is consistent with experimental observations of graphite oxidation by O 2 (air), CO 2 , or H 2 O, and could have some utility in safety analysis

  5. Gravitational Couplings for Gop-Planes and y-Op-Planes

    OpenAIRE

    Giraldo, Juan Fernando Ospina

    2000-01-01

    The Wess-Zumino actions for generalized orientifold planes (GOp-planes) and y-deformed orientifold planes (yOp-planes) are presented and two series power expantions are realized from whiches processes that involves GOp-planes,yOp-planes, RR-forms, gravitons and gaugeons, are obtained. Finally non-standard GOp-planes and y-Op-planes are showed.

  6. Axillary basal cell carcinoma in patients with Goltz-Gorlin syndrome: report of basal cell carcinoma in both axilla of a woman with basal cell nevus syndrome and literature review.

    Science.gov (United States)

    Cohen, Philip R

    2014-08-17

    Basal cell carcinoma of the axilla, an area that is not usually exposed to the sun, is rare. Individuals with basal cell nevus syndrome, a disorder associated with a mutation in the patch 1 (PTCH1) gene, develop numerous basal cell carcinomas. To describe a woman with basal cell nevus syndrome who developed a pigmented basal cell carcinoma in each of her axilla and to review the features of axillary basal cell carcinoma patients with Goltz-Gorlin syndrome. Pubmed was used to search the following terms: axillary basal cell carcinoma and basal cell nevus syndrome. The papers and their citations were evaluated. Basal cell nevus syndrome patients with basal cell carcinoma of the axilla were observed in two women; this represents 2.5% (2 of 79) of the patients with axillary basal cell carcinoma. Both women had pigmented tumors that were histologically nonaggressive. The cancers did not recur after curettage or excision. Basal cell carcinoma of the axilla has only been described in 79 individuals; two of the patients were women with pigmented tumors who had basal cell nevus syndrome. Similar to other patients with axillary basal cell carcinoma, the tumors were histologically nonaggressive and did not recur following treatment. Whether PTCH1 gene mutation predisposes basal cell nevus patients to develop axillary basal cell carcinomas remains to be determined.

  7. Intramolecular diffusive motion in alkane monolayers studied by high-resolution quasielastic neutron scattering and molecular dynamics simulations

    DEFF Research Database (Denmark)

    Hansen, Flemming Yssing; Criswell, L.; Fuhrmann, D

    2004-01-01

    Molecular dynamics simulations of a tetracosane (n-C24H50) monolayer adsorbed on a graphite basal-plane surface show that there are diffusive motions associated with the creation and annihilation of gauche defects occurring on a time scale of similar to0.1-4 ns. We present evidence...... that these relatively slow motions are observable by high-energy-resolution quasielastic neutron scattering (QNS) thus demonstrating QNS as a technique, complementary to nuclear magnetic resonance, for studying conformational dynamics on a nanosecond time scale in molecular monolayers....

  8. Collective modes in superconducting rhombohedral graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kauppila, Ville [O.V. Lounasmaa Laboratory, Aalto University (Finland); Hyart, Timo; Heikkilae, Tero [University of Jyvaeskylae (Finland)

    2015-07-01

    Recently it was realized that coupling particles with a Dirac dispersion (such as electrons in graphene) can lead to a topologically protected state with flat band dispersion. Such a state could support superconductivity with unusually high critical temperatures. Perhaps the most promising way to realize such coupling in real materials is in the surface of rhombohedrally stacked graphite. We consider collective excitations (i.e. the Higgs modes) in surface superconducting rhombohedral graphite. We find two amplitude and two phase modes corresponding to the two surfaces of the graphite where the superconductivity lives. We calculate the dispersion of these modes. We also derive the Ginzburg-Landau theory for this material. We show that in superconducting rhombohedral graphite, the collective modes, unlike in conventional BCS superconductors, give a large contribution to thermodynamic properties of the material.

  9. Computer Package for Graphite Total Cross-Section Calculations

    International Nuclear Information System (INIS)

    Adib, M.; Fathalla, M.

    2008-01-01

    An additive formula is given which allows calculating the contribution of the total neut.>neutron transmission through crystalline graphite. The formula takes into account the graphite form of poly or pyrolytic crystals and its parameters. Computer package Graphite has been designed in order to provide the required calculations in the neutron energy range from 0.1 MeV to 10 eV. The package includes three codes: PCG (Polycrystalline Graphite), PG (Pyrolytic Graphite) and HOPG (Highly Oriented Pyrolytic Graphite) for calculating neutron transmission through fine graphite powder (polycrystalline), neutron transmission and removal coefficient of PG crystal in terms of its mosaic spread for neutrons incident along its c-axis and the transmission of neutrons incident on HOPG crystal at different angles, respectively. For comparison of the experimental neutron transmission data with the calculated values, the program takes into consideration the effect of both wavelength and neutron beam divergence in either 2 constant wavelength spread mode (δλ=constant) or constant wavelength resolution mode (δλ/λ=constant). In order to check the validity for application of computer package Graphite in cross-section calculations, a comparison between calculated values with the available experimental data were carried out. An overall agreement is indicated with an accuracy sufficient for determine the neutron transmission characteristics

  10. STS Observations of Landau Levels at Graphite Surfaces

    OpenAIRE

    Matsui, T.; Kambara, H.; Niimi, Y.; Tagami, K.; Tsukada, M.; Fukuyama, Hiroshi

    2004-01-01

    Scanning tunneling spectroscopy measurements were made on surfaces of two different kinds of graphite samples, Kish graphite and highly oriented pyrolytic graphite (HOPG), at very low temperatures and in high magnetic fields. We observed a series of peaks in the tunnel spectra, which grow with increasing field, both at positive and negative bias voltages. These are associated with Landau quantization of the quasi two-dimensional electrons and holes in graphite in magnetic fields perpendicular...

  11. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media

    Czech Academy of Sciences Publication Activity Database

    Janda, Pavel; Frank, Otakar; Bastl, Zdeněk; Klementová, Mariana; Tarábková, Hana; Kavan, Ladislav

    2010-01-01

    Roč. 21, č. 9 (2010), 095707 ISSN 0957-4484 R&D Projects: GA MŠk LC510; GA AV ČR IAA400400804; GA AV ČR KAN200100801 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502 Keywords : scanning tunneling microscopy * hydrophobic surfaces * Raman spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.644, year: 2010

  12. Effect of indium accumulation on the characteristics of a-plane InN epi-films under different growth conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Yun-Yo [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Huang, Man-Fang, E-mail: mfhuang@cc.ncue.edu.tw [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Chiang, Yu-Chia [Institute of Photonics, National Changhua University of Education, Changhua, Taiwan, ROC (China); Fan, Jenn-Chyuan [Department of Electronic Engineering, Nan Kai University of Technology, Nantou, Taiwan, ROC (China)

    2015-08-31

    This study investigated the influence of indium accumulation happened on the surface of a-plane InN grown under different growth conditions. Three different growth rates with N/In ratio from stoichiometric to N-rich were used to grow a-plane InN epifilms on GaN-buffered r-plane sapphires by plasma-assisted molecular beam epitaxy. When a-plane InN was grown above 500 °C with a high growth rate, abnormally high in-situ reflectivity was found during a-plane InN growth, which was resulted from indium accumulation on surface owing to In-N bonding difficulty on certain crystal faces of a-plane InN surface. Even using excess N-flux, indium accumulation could still be found in initial growth and formed 3-dimension-like patterns on a-plane InN surface which resulted in rough surface morphology. By reducing growth rate, surface roughness was improved because indium atoms could have more time to migrate to suitable position. Nonetheless, basal stacking fault density and crystal anisotropic property were not affected by growth rate. - Highlights: • High growth temperature could cause indium accumulation on a-plane InN surface. • Indium accumulation on a-plane InN surface causes rough surface. • Low growth rate improves surface morphology but not crystal quality.

  13. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  14. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  15. Determination of Cl-36 in Irradiated Reactor Graphite

    International Nuclear Information System (INIS)

    Beer, H.-F.; Schumann, D.; Stowasser, T.; Hartmann, E.; Kramer, A.

    2016-01-01

    Two of the three research reactors at the Paul Scherrer Institute (PSI), the reactors DIORIT and PROTEUS, contained reactor graphite. Whereas the former research reactor DIORIT has been dismantled completely the PROTEUS is subject to a future decommissioning. In case of the DIORIT the reactor graphite was conditioned applying a procedure developed at PSI. In this case the 36 Cl content had to be determined after the conditioning. The result is reported in this paper. The radionuclide inventory including 36 Cl of the graphite used in PROTEUS was measured and the results are reported in here. It has been proven that the graphite from PROTEUS has a radionuclide inventory near the detection limits. All determined radionuclide activities are far below the Swiss exemptions limits. The graphite from PROTEUS therefore poses no radioactive waste. In contrast, the 36 Cl content of graphite from DIORIT is well above the exemption limits. (author)

  16. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    Oliveira Avila, C.R. de.

    1989-01-01

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  17. Acceptance test for graphite components and construction status of HTTR

    International Nuclear Information System (INIS)

    Iyoku, T.; Ishihara, M.; Maruyama, S.; Shiozawa, S.; Tsuji, N.; Miki, T.

    1996-01-01

    In March, 1991, the Japan Atomic Energy Research Institute (JAERI) started to constructed the High Temperature engineering Test Reactor(HTTR) which is a 30-MW(thermal) helium gas-cooled reactor with a core composed of prismatic graphite blocks piled on the core support graphite structures. Two types of graphite materials are used in the HTTR. One is the garde IG-110, isotropic fine grain graphite, another is the grade PGX, medium-to-fine grained molded graphite. These materials were selected on the basis of the appropriate properties required by the HTTR reactor design. Industry-wide standards for an acceptance test of graphite materials used as main components of a nuclear reactor had not been established. The acceptance standard for graphite components of the HTTR, therefore, was drafted by JAERI and reviewed by specialists outside JAERI. The acceptance standard consists of the material testing, non-destructive examination such as the ultrasonic and eddy current testings, dimensional and visual inspections and assembly test. Ultrasonic and eddy current testings are applied to graphite logs to detect an internal flaw and to graphite components to detect a surface flaw, respectively. The assembly test is performed at the works, prior to their installation in the reactor pressure vessel, to examine fabricating precision of each component and alignment of piled-up structures. The graphite components of the HTTR had been tested on the basis of the acceptance standard. It was confirmed that the graphite manufacturing process was well controlled and high quality graphite components were provided to the HTTR. All graphite components except for the fuel graphite blocks are to be installed in the reactor pressure vessel of the HTTR in September 1995. The paper describes the construction status of the HTTR focusing on the graphite components. The acceptance test results are also presented in this paper. (author). Figs

  18. Principle design and data of graphite components

    International Nuclear Information System (INIS)

    Ishihara, Masahiro; Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Oku, Tatsuo

    2004-01-01

    The High Temperature Engineering Test Reactor (HTTR) constructed by Japan Atomic Energy Research Institute (JAERI) is a graphite-moderated and helium-gas-cooled reactor with prismatic fuel elements of hexagonal blocks. The reactor internal structures of the HTTR are mainly made up of graphite components. As well known, the graphite is a brittle material and there were no available design criteria for brittle materials. Therefore, JAERI had to develop the design criteria taking account of the brittle fracture behavior. In this paper, concept and key specification of the developed graphite design criteria is described, and also an outline of the quality control specified in the design criteria is mentioned

  19. Technique for production of graphite-carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Antonov, A.N.; Bentsianovskaya, I.A.; Filatova, V.A.; Nabokov, V.S.; Nestor, V.P.; Zil' bergleyt, I.M.

    1982-01-01

    The technique for producing carbon-graphite products that includes filtration under a pressure of 0.1-015 MPa (through graphite stock) of an aqueous carbon material with the addition of surfactant, drying, and subsequent thermal treatment, is simplified and made less lengthy. Oxidized graphite is utilized with a prior addition of 1-10% water-soluble organic substance into the suspension -molasses, hemicellulose, sugar or polyacrylamide. A 0.03-1.5% suspension of oxidized graphite is utilized, with a particle size of 0.02-0.1 mkm. Thermal processing is done in a carbon fill, at a rate of 10-20 degrees/hour to 700-800/sup 0/, maintained 2-3 hours.

  20. Modeling of damage in ductile cast iron – The effect of including plasticity in the graphite noduless

    DEFF Research Database (Denmark)

    Andriollo, Tito; Thorborg, Jesper; Tiedje, Niels Skat

    2015-01-01

    In the present paper a micro-mechanical model for investigating the stress-strain relation of ductile cast iron subjected to simple loading conditions is presented. The model is based on a unit cell containing a single spherical graphite nodule embedded in a uniform ferritic matrix, under...... the assumption of infinitesimal strains and plane-stress conditions. Despite the latter being a limitation with respect to full 3D models, it allows a direct comparison with experimental investigations of damage evolution on the surface of ductile cast iron components, where the stress state is biaxial in nature...

  1. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  2. Dynamics of graphite flake on a liquid

    Science.gov (United States)

    Miura, K.; Tsuda, D.; Kaneta, Y.; Harada, R.; Ishikawa, M.; Sasaki, N.

    2006-11-01

    One-directional motion, where graphite flakes are driven by a nanotip on an octamethylcyclotetrasiloxane (OMCTS) liquid surface, is presented. A transition from quasiperiodic to chaotic motions occurs in the dynamics of a graphite flake when its velocity is increased. The dynamics of graphite flakes pulled by the nanotip on an OMCTS liquid surface can be treated as that of a nanobody on a liquid.

  3. A systematic study of acoustic emission from nuclear graphites

    International Nuclear Information System (INIS)

    Neighbour, G.B.; McEnaney, B.

    1996-01-01

    Acoustic emission (AE) monitoring has been identified as a possible method to determine internal stresses in nuclear graphites using the Kaiser effect, i.e., on stressing a graphite that has been subject to a prior stress, the onset of AE occurs at the previous peak stress. For three nuclear graphites (PGA, IM1-24 and VNEC), AE was monitored during both monotonic and cyclic loading to failure in tensile, compressive and flexural test modes. For unirradiated graphites, the Kaiser effect was not found in cyclic loading, but a Felicity effect was observed, i.e., the onset of AE occurred below the previously applied peak stress. The Felicity effect was attributed to time-dependent relaxation and recovery processes and was characterized using a new parameter, the Recovery ratio. It was shown that AE can be used to monitor creep strain and creep recovery in graphites at zero load. The AE-time responses from these experiments were fitted to equations similar to those used for creep strain-time at elevated temperatures. The number of AE counts from irradiated graphites were greater than those from unirradiated graphites, subject to similar stresses, due to increases in porosity caused by radiolytic oxidation. A Felicity effect was also observed on cyclic loading of irradiated graphites, but no evidence for a Kaiser effect was found for irradiated graphites loaded monotonically to failure. Thus internal stresses in irradiated graphites could not be measured using AE. This was attributed to relaxation and recovery processes that occur between removing the irradiated graphite from the reactor and AE testing. This work indicated that AE monitoring is not a suitable technique for measuring internal stresses in irradiated graphite. (author). 19 refs, 6 figs, 6 tabs

  4. Measurements of anomalous neutron transport in bulk graphite

    International Nuclear Information System (INIS)

    Bowman, C.D.; Smith, G.A.; Vogelaar, B.; Howell, C.R.; Bilpuch, E.G.; Tornow, W.

    2003-01-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  5. Technical development of graphite waste treatment in NUPEC

    International Nuclear Information System (INIS)

    Saishu, S.; Inoue, T.

    2001-01-01

    In Japan, Tokai Power Station, which is a Gas Cooled Reactor and uses graphite as moderator, ceased operation at the end of March in 1998 and it is planned to transfer to decommissioning stage. In this decommissioning stage it is very important to be able to treat and dispose the graphite waste in order to carry out the decommissioning safely and economically. NUPEC has been developing the graphite treatment and disposal technology since 1997 and we introduce the outline of the technical development. For the technology on high density packing into disposal container, the high density packing method and the assessment method on nuclide leaching characteristics were developed, and the cementing test for graphite powder by using Tokai spare graphite was performed and the hydrophobic characteristics between graphite and cement was grasped and the accelerator candidature for affinity was selected. From the view point of economical treatment, the incinerating technology was selected as candidature, and the methods for incinerating graphite and treating off gas are developed. The method of collecting C-14 in off gas was selected for reducing the off gas radiation level. The applicability of actual graphite treatment technology was considered from the view point of safety, economics and preparation of technical standard; the technical theme appeared, the developing planning items were established, and the detailed and actual scale tests will be carried out according to the planning. (author)

  6. Measurements of anomalous neutron transport in bulk graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, C.D.; Smith, G.A. [ADNA Corp., Los Alamos, NM (United States); Vogelaar, B. [Virginia Tech., Blacksburg, VA (United States); Howell, C.R.; Bilpuch, E.G.; Tornow, W. [Triangle Univ. Nuclear Lab., Duke Univ., Durham, NC (United States)

    2003-07-01

    The neutron absorption of bulk granular graphite has been measured in a classical exponential diffusion experiment. Our first measurements of April 2002 implementing both exponential decay and pulsed die-away experiments and using the TUNL pulsed accelerator at Duke University as a neutron source indicated a capture cross section for graphite a striking factor of three lower than the measured value for carbon of 3.4 millibarns. Therefore a new exponential experiment with an improved geometry enabling greater accuracy has been performed giving an apparent cross section for carbon in the form of bulk granular graphite of less than 0.5 millibarns. This result confirms our first result and is also consistent with less than one part per million of boron in our graphite. The bulk density of the graphite is 1.02 compared with the actual particle density of 1.60 indicating a packing fraction of 0.64 or a void fraction of 0.36. We suspect that the apparent suppression of absorption in bulk graphite may be associated with the strong coherent diffraction of neutrons that dominates neutron transport in graphite. Coherent diffraction has never been taken into account in graphite reactor design and no neutron transport code including general use codes such as MCNP incorporate diffraction effects even though diffraction dominates many practical thermal neutron transport problems. (orig.)

  7. Nuclear graphite waste management. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2001-05-01

    The purpose of the seminar was to bring together the specialists dealing with various aspects of radioactive graphite waste management to exchange and review information on the decommissioning, characterisation, processing and disposal of irradiated graphite from reactor cores and other graphite waste associated with reactor operation. The seminar covered radioactive graphite characterisation, the effect of irradiation on graphite components, Wigner energy, radioactive graphite waste treatment, conditioning, interim storage and long term disposal options. Individual papers presented at the seminar were indexed separately

  8. Reduction of basal plane defects in (11-22) semipolar InGaN/GaN MQWs fabricated on patterned (113) Si substrates by introducing AlGaN barrier layers

    Energy Technology Data Exchange (ETDEWEB)

    Uesugi, Kenjiro; Hikosaka, Toshiki; Ono, Hiroshi; Sakano, Tatsunori; Nunoue, Shinya [Corporate Research and Development Center, Toshiba Corporation, Kawasaki (Japan)

    2017-08-15

    GaN grown on nonpolar or semipolar faces have been widely developed as a promising material for the next generation optical and electronic devices. In this work, (11-22) semipolar InGaN/GaN MQWs were grown on patterned (113) Si substrates and fabricated into thin-film-type flip-chip LEDs. From CL and TEM measurement, generation of basal plane defects (BPDs) around MQWs and Strain-relaxation layers (SRLs) has been observed. The relationship between MQW structures and formation of BPDs has been investigated. By optimizing MQW structures, light output power and external quantum efficiency have been improved with thick InGaN well layers and GaN barrier layers. Introducing AlGaN barrier layers has enabled further reduction of BPDs in MQWs and, as a result, an enhancement of EQE has been achieved. The maximum EQE value of the sample with AlGaN barrier layers was 12.9%.This result indicates that the reduction of BPDs is an effective approach for obtaining the high-efficiency semipolar LEDs on Si substrates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Low cost sic coated erosion resistant graphite

    International Nuclear Information System (INIS)

    Zafar, M.F.; Nicholls, J.R.

    2007-01-01

    The development of materials with unique and improved properties using low cost processes is essential to increase performance and reduce cost of the solid rocket motors. Specifically advancements are needed for boost phase nozzle. As these motors operate at very high pressure and temperatures, the nozzle must survive high thermal stresses with minimal erosion to maintain performance. Currently three material choices are being exploited; which are refractory metals, graphite and carbon-carbon composites. Of these three materials graphite is the most attractive choice because of its low cost, light weight, and easy forming. However graphite is prone to erosion, both chemical and mechanical, which may affect the ballistic conditions and mechanical properties of the nozzle. To minimize this erosion high density graphite is usually preferred; which is again very expensive. Another technique used to minimize the erosion is Pyrolytic Graphite (PG) coating inside the nozzle. However PG coating is prone to cracking and spallation along with very cumbersome deposition process. Another possible methodology to avoid this erosion is to convert the inside surface of the rocket nozzle to Silicon Carbide (SiC), which is very erosion resistant and have much better thermal stability compared to graphite and even PG. Due to its functionally gradient nature such a layer will be very adherent and resistant to spallation. The current research is focused on synthesizing, characterizing and oxidation testing of such a converted SiC layer on commercial grade graphite. (author)

  10. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs.

  11. Surface coating of graphite pebbles for Korean HCCR TBM

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Young-Hoon, E-mail: yunh2@dsu.ac.kr [Dongshin University, Naju (Korea, Republic of); Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source.

  12. Graphite moderator lifecycle behaviour. Proceedings of a specialists meeting

    International Nuclear Information System (INIS)

    1996-08-01

    The meeting provided the forum for graphite specialists representing operating and research organizations worldwide to exchange information in the following areas: the status of graphite development; operation and safety procedures for existing and future graphite moderated reactors; graphite testing techniques; review of the experiences gained and data acquired on the influence of neutron irradiation and oxidizing conditions on key graphite properties; and to exchange information useful for decommissioning activities. The participants provided twenty-seven papers on behalf of their countries and respective technical organizations. An open discussion followed each of the presentations. A consistently reoccurring theme throughout the specialists meeting was the noticeable reduction in the number of graphite experts remaining the nuclear power industry. Graphite moderated power reactors have provided a significant contribution to the generation of electricity throughout the past forty years and will continue to be a prominent energy source for the future. Yet, many of the renowned experts in the field of nuclear graphites are nearing the end of their careers without apparent replacement. This, coupled with changes in the focus on nuclear power by some industrialized countries, has prompted the IAEA to initiate an evaluation on the feasibility and interest by Member States of establishing a central archive facility for the storage of data on irradiated graphites. Refs, figs, tabs

  13. Surface coating of graphite pebbles for Korean HCCR TBM

    International Nuclear Information System (INIS)

    Lee, Youngmin; Yun, Young-Hoon; Park, Yi-Hyun; Ahn, Mu-Young; Cho, Seungyon

    2014-01-01

    Highlights: • A CVR-SiC coating was successfully formed on graphite pebbles for neutron reflector. • Dense and fine-grained surface morphologies of the SiC coatings were observed. • Oxidation resistance of the CVR-SiC-coated graphite pebbles was improved. - Abstract: The new concept of the recently modified Helium-Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) is to adopt a graphite reflector in the form of a pebble bed. A protective SiC coating is applied to the graphite pebbles to prohibit their reaction with steam or air as well as dust generation during TBM operation. In this research, the chemical vapor reaction (CVR) method was applied to fabricate SiC-coated graphite pebbles in a silica source. Relatively dense CVR-SiC coating was successfully formed on the graphite pebbles through the reduction of the graphite phase with SiO gas that was simply created from the silica source at 1850 °C (2 h). The microstructural features, XRD patterns, pore-size distribution and oxidation behavior of the SiC-coated graphite pebbles were investigated. To develop the practical process, which will be applied for mass production hereafter, a novel alternative method was applied to form the layer of SiC coating on the graphite pebbles over the silica source

  14. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  15. A experimental system for the checking of the absorption of E.C.A.G. graphite; Empilement pour le controle du graphite E.C.A.G

    Energy Technology Data Exchange (ETDEWEB)

    Raievski, V; Vidal, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1958-07-01

    A system is described for measuring the mean absorption cross section in thermal neutrons of graphite. This system consists of a graphite stack containing a Ra-Be source and a BF3 counter. A cavity in the stack receives the graphite to be studied or the graphite standard. By comparing the counting rates their absorption ratio can be deduced. The measurement is performed on graphite rods which have been machined before being placed in the pile. It provides the possibility of detecting over a batch of 1 ton of graphite, in a single measurement, a difference in absorption of 0.1 milli barn. (author) [French] On decrit un dispositif permettant de mesurer la section efficace moyenne d'absorption en neutrons thermiques du graphite. Ce dispositif est constitue par un empilement de graphite contenant une source de Ra-Be et un compteur a BF3. Une cavite menagee dans l'empilement peut recevoir le graphite a etudier ou le graphite etalon. Par comparaison des taux de comptage, on en deduit leur rapport d'absorption. La mesure est effectuee sur des barres de graphite usinees avant leur mise en place dans la pile. Elle permet de deceler sur un lot de graphite de 1 tonne, en une seule mesure, une difference d'absorption de 0,1 millibarn. (auteur)

  16. Ion irradiated graphite exposed to fusion-relevant deuterium plasma

    International Nuclear Information System (INIS)

    Deslandes, Alec; Guenette, Mathew C.; Corr, Cormac S.; Karatchevtseva, Inna; Thomsen, Lars; Ionescu, Mihail; Lumpkin, Gregory R.; Riley, Daniel P.

    2014-01-01

    Graphite samples were irradiated with 5 MeV carbon ions to simulate the damage caused by collision cascades from neutron irradiation in a fusion environment. The ion irradiated graphite samples were then exposed to a deuterium plasma in the linear plasma device, MAGPIE, for a total ion fluence of ∼1 × 10 24 ions m −2 . Raman and near edge X-ray absorption fine structure (NEXAFS) spectroscopy were used to characterize modifications to the graphitic structure. Ion irradiation was observed to decrease the graphitic content and induce disorder in the graphite. Subsequent plasma exposure decreased the graphitic content further. Structural and surface chemistry changes were observed to be greatest for the sample irradiated with the greatest fluence of MeV ions. D retention was measured using elastic recoil detection analysis and showed that ion irradiation increased the amount of retained deuterium in graphite by a factor of four

  17. Numerical Investigation of the Thermal Conductivity of Graphite Nanofibers

    Science.gov (United States)

    Hakak Khadem, Masoud

    The thermal conductivity of graphite nano-fibers (GNFs) with different styles is predicted computationally. GNFs are formed as basal planes of graphene stacked based on the catalytic configuration. The large GNF thermal conductivity relative to a base phase change material (PCM) may lead to improved PCM performance when embedded with GNFs. Three different types of GNFs are modeled: platelet, ribbon, and herringbone. Molecular dynamics (MD) simulations are used in this study as a means to predict the thermal conductivity tensor based on atomic behavior. The in-house MD code, Molecular Dynamics in Arbitrary Geometries (MDAG), was updated with the features required to create the predictions. To model both interlayer van-der Waals and intralayer covalent bonding of carbon atoms in GNFs, a combination of the optimized Tersoff potential function for atoms within the layers and a pairwise Lennard-Jones (LJ) potential function to model the interactions between the layers was used. Tests of energy conservation in the NVE ensemble have been performed to validate the employed potential model. Nose-Hoover, Andersen, and Berendsen thermostats were also incorporated into MDAG to enable MD simulations in NVT ensembles, where the volume, number of atoms, and temperature of the system are conserved. Equilibrium MD with Green-Kubo (GK) relations was then employed to extract the thermal conductivity tensor for symmetric GNFs (platelet and ribbon). The thermal conductivity of solid argon at different temperatures was calculated and compared to other studies to validate the GK implementation. Different heat current formulations, as a result of using the three-body Tersoff potential, were considered and the discrepancy in the calculated thermal conductivity values of graphene using each formula was resolved by employing a novel comparative technique that identifies the most accurate formulation. The effect of stacking configuration on the thermal conductivity of platelet and ribbon GNFs

  18. Large-scale preparation of hollow graphitic carbon nanospheres

    International Nuclear Information System (INIS)

    Feng, Jun; Li, Fu; Bai, Yu-Jun; Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning; Lu, Xi-Feng

    2013-01-01

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 °C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g −1 after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 °C, which exhibit superior electrochemical performance to graphite. Highlights: ► Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 °C ► The preparation is simple, effective and eco-friendly. ► The in situ yielded MgO nanocrystals promote the graphitization. ► The HGCNSs exhibit superior electrochemical performance to graphite.

  19. Calculated bond properties of K adsorbed on graphite

    International Nuclear Information System (INIS)

    Hjortstam, O.; Wills, J.M.; Johansson, B.; Eriksson, O.

    1998-01-01

    The properties of the chemical bond of K adsorbed on a graphite(0001) surface have been studied for different coverages, by means of a full-potential slab method. Specific modifications of the Hamiltonian are performed in order to make it possible to study K on graphite in the disperse phase (dilute limit). It is found that K forms a metallic state when covering a graphite surface with a (2x2) coverage. For a (3x3) coverage as well as in the disperse phase K is found to form an ionic bond with graphite. It is shown that in the disperse phase, the hybridization between the K 4s level and graphite is weak. Our findings are consistent with recent experiments. Furthermore the cohesive energies of K adsorption on graphite are found to be larger in the (2x2) coverage compared to the (3x3) coverage. copyright 1998 The American Physical Society

  20. Thermal desorption spectroscopy of pyrolytic graphite cleavage faces after keV deuterium irradiation at 330-1000 K

    International Nuclear Information System (INIS)

    Gotoh, Y.; Yamaki, T.; Tokiguchi, K.

    1992-01-01

    Thermal desorption spectroscopy (TDS) measurements were made on D 2 and CD 4 from surface layers of pyrolytic graphite cleavage faces after 3 keV D + 3 irradiation to 1.5 x 10 18 D/cm 2 at irradiation temperatures from 330 to 1000 K. Thermal desorption of both D 2 and CD 4 was observed to rise simultaneously at around 700 K. The D 2 peak was found at T m = 900-1000 K, while the CD 4 peak appeared at a lower temperature, 800-840 K. The T m for the D 2 TDS increased, while that for the CD 4 decreased with increasing irradiation temperature. These results obviously indicate that the D 2 desorption is detrapping/recombination limited, while the CD 4 desorption is most likely to be diffusion limited. The amount of thermally desorbed D 2 after the D + irradiation was observed to monotonously decrease as the irradiation temperature was increased from 330 to 1000 K. These tendencies agreed with previous results for the irradiation temperature dependencies of both C1s chemical shift (XPS) and the interlayer spacing, d 002 (HRTEM), on the graphite basal face. (orig.)

  1. Low-energy electron observation of graphite and molybdenite crystals. Application to the study of graphite oxidation; Observation au moyen d'electrons de faible energie de cristaux de graphite et de molybdenite. Application a l'etude de l'oxydation du graphite

    Energy Technology Data Exchange (ETDEWEB)

    David, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    The LEED study of cleaved (0001) faces of crystals having a layered structure allowed to investigate flakes free of steps on graphite and molybdenite, to show twinning on natural graphite. By intensity measurements and computation in the case of a kinematical approximation it has been possible to determine an inner potential of 19 eV for graphite and to identify the direction of the Mo-S bond of the surface layer of molybdenite. The oxidation of graphite has been studied by observing changes, in symmetry of the diffraction patterns and by mass spectrometry of the gases evolved during the oxidation. No surface compounds have been detected and the carbon layers appeared to be peeled off one after the other. The oxidation took place at temperatures higher than 520 C under an oxygen pressure of 10{sup -5} torr. (author) [French] L'etude par diffraction des electrons lents des faces (0001) de cristaux ayant une structure en feuillet a permis de mettre en evidence des plages sans gradins sur des clivages de graphite et de molybdenite caracterisees par la symetrie ternaire des diagrammes, de montrer l'existence de macles sur des cristaux de graphite naturel. Un calcul utilisant une approximation cinematique a ete applique aux intensites mesurees des taches de diffraction; il a ete ainsi possible de determiner un potentiel interne de 19 eV pour le graphite et de preciser la direction de la liaison Mo-S du feuillet superficiel de la molybdenite. L'oxydation du graphite a ete etudiee en mettant en relation des changements de symetrie des diagrammes de diffraction avec l'analyse des gaz provenant de la reaction carbone-oxygene. Il a ete montre qu'il n'y avait pas formation de composes de surface et que les couches de carbone etaient enlevees les unes apres les autres. L'oxydation a ete observee sous une pression d'oxygene de 10{sup -5} torr au-dessus de 520 C. (auteur)

  2. Graphite selection for the FMIT test cell

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1982-06-01

    This document provides the basis for procuring a grade of graphite, at minimum cost, having minimum dimensional changes at low irradiation temperatures (nominal range 90 to 140 0 C). In light of those constraints, the author concludes that the most feasible approach is to attempt to reproduce a grade of graphite (TSGBF) which has exhibited a high degree of dimensional stability during low-temperature irradiations and on which irradiation-induced changes in other physical properties have been measured. The effects of differences in raw materials, especially coke morphology, and processing conditions, primarily graphitization temperture are briefly reviewed in terms of the practicality of producing a new grade of graphite with physical properties and irradiation-induced changes which would be very similar to those of TSGBF graphite. The production history and physical properties of TSGBF are also reviewed; no attempt is made, to project changes in dimensions or physical properties under the projected irradiation conditions

  3. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  4. Study on graphite samples for nuclear usage

    International Nuclear Information System (INIS)

    Suarez, J.C.M.; Silva Roseira, M. da

    1994-01-01

    Available as short communication only. The graphite, due to its properties (mechanical strength, thermal conductivity, high-temperature stability, machinability etc.) have many industrial applications, and consequently, an important strategic value. In the nuclear area, it has been used as moderator and reflector of neutrons in the fission process of uranium. The graphite can be produced from many types of carbonaceous materials by a variety of process dominated by the manufactures. This is the reason why there are in the world market a lot of graphite types with different physical and mechanical properties. The present investigation studies some physical characteristics of the graphite samples destined to use in a nuclear reactor. (author). 8 refs, 1 fig, 1 tab

  5. Hydrophilization of graphite using plasma above/in a solution

    Science.gov (United States)

    Hoshino, Shuhei; Kawahara, Kazuma; Takeuchi, Nozomi

    2018-01-01

    A hydrophilization method for graphite is required for applications such as conductive ink. In typical chemical oxidation methods for graphite have the problems of producing many defects in graphite and a large environmental impact. In recent years, the plasma treatment has attracted attention because of the high quality of the treated samples and the low environmental impact. In this study, we proposed an above-solution plasma treatment with a high contact probability of graphite and plasma since graphite accumulates on the solution surface due to its hydrophobicity, which we compared with a so-called solution plasma treatment. Graphite was hydrophilized via reactions with OH radicals generated by the plasma. It was confirmed that hydroxyl and carboxyl groups were modified to the graphite and the dispersibility was improved. The above-solution plasma achieved more energy-efficient hydrophilization than the solution plasma and it was possible to enhance the dispersibility by increasing the plasma-solution contact area.

  6. Intercomparison of graphite irradiations

    Energy Technology Data Exchange (ETDEWEB)

    Hering, H; Perio, P; Seguin, M [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    While fast neutrons only are effective in damaging graphite, results of irradiations are more or less universally expressed in terms of thermal neutron fluxes. This paper attempts to correlate irradiations made in different reactors, i.e., in fluxes of different spectral compositions. Those attempts are based on comparison of 1) bulk length change and volume expansion, and 2) crystalline properties (e.g., lattice parameter C, magnetic susceptibility, stored energy, etc.). The methods used by various authors for determining the lattice constants of irradiated graphite are discussed. (author)

  7. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  8. Final report on graphite irradiation test OG-2

    International Nuclear Information System (INIS)

    Price, R.J.; Beavan, L.A.

    1975-01-01

    Results are presented of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on specimens of nuclear graphites irradiated in capsule OG-2. About half the irradiation space was allocated to H-451 near-isotropic petroleum-coke-based graphite or its subsized prototype grade H-429. Most of these specimens had been previously irradiated. Virgin specimens of another near-isotropic graphite, grade TS-1240, were irradiated. Some previously irradiated specimens of needle-coke-based H-327 graphite and pitch-coke-based P 3 JHAN were also included

  9. Characteristics of first loaded IG-110 graphite in HTTR core

    International Nuclear Information System (INIS)

    Sumita, Junya; Shibata, Taiju; Iyoku, Tatsuo; Sawa, Kazuhiro; Hanawa, Satoshi; Ishihara, Masahiro

    2006-10-01

    IG-110 graphite is a fine-grained isotropic and nuclear-grade graphite with excellent resistivity on both irradiation and corrosion and with high strength. The IG-110 graphite is used for the graphite components of High Temperature Engineering Test Reactor (HTTR) such as fuel and control rod guide blocks and support posts. In order to design and fabricate the graphite components in the HTTR, the Japan Atomic Energy Research Institute (the Japan Atomic Energy Agency at present) had established the graphite structural design code and design data on the basis of former research results. After the design code establishment, the IG-110 graphite components were fabricated and loaded in the HTTR core. This report summarized the characteristics of the first loaded IG-110 graphite as basic data for surveillance test, measuring material characteristics changed by neutron irradiation and oxidation. By comparing the design data, it was shown that the first loaded IG-110 graphite had excellent strength properties and enough safety margins to the stress limits in the design code. (author)

  10. Graphite matrix materials for nuclear waste isolation

    International Nuclear Information System (INIS)

    Morgan, W.C.

    1981-06-01

    At low temperatures, graphites are chemically inert to all but the strongest oxidizing agents. The raw materials from which artificial graphites are produced are plentiful and inexpensive. Morover, the physical properties of artificial graphites can be varied over a very wide range by the choice of raw materials and manufacturing processes. Manufacturing processes are reviewed herein, with primary emphasis on those processes which might be used to produce a graphite matrix for the waste forms. The approach, recommended herein, involves the low-temperature compaction of a finely ground powder produced from graphitized petroleum coke. The resultant compacts should have fairly good strength, low permeability to both liquids and gases, and anisotropic physical properties. In particular, the anisotropy of the thermal expansion coefficients and the thermal conductivity should be advantageous for this application. With two possible exceptions, the graphite matrix appears to be superior to the metal alloy matrices which have been recommended in prior studies. The two possible exceptions are the requirements on strength and permeability; both requirements will be strongly influenced by the containment design, including the choice of materials and the waste form, of the multibarrier package. Various methods for increasing the strength, and for decreasing the permeability of the matrix, are reviewed and discussed in the sections in Incorporation of Other Materials and Elimination of Porosity. However, it would be premature to recommend a particular process until the overall multi-barrier design is better defined. It is recommended that increased emphasis be placed on further development of the low-temperature compacted graphite matrix concept

  11. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Monnier, A. [Timcal SA (France)

    1996-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  12. Graphite as negative electrode in Li-ion batteries; Le graphite comme electrode negative dans les accumulateurs Li-ion

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F; Monnier, A [Timcal SA (France)

    1997-12-31

    The last developments in lithium batteries design have demonstrated the advantages of graphite: competitive cost, flat output curve, high capacity thanks to the obtention of a final compound close to LiC{sub 6}, good behaviour during cycling and a high mass energy. However, these advantages are slightly tarnished by parasite secondary reactions during the evolution of the element. Two different cases are encountered: the formation of a passivation layer (loss of Li ions and formation of irreversible bounds) and the formation of a passivation layer with a reaction between graphite and the solvent (partial destruction of the graphite crystal lattice). In the first case, the theoretical graphite insertion capacity remains at 372 mAh/g while in the second case the insertion capacity is greatly reduced. Abstract only. (J.S.)

  13. Graphite suspension in carbon dioxide

    International Nuclear Information System (INIS)

    Roche, R.

    1965-01-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m 3 and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m 2 /g (graphite particles about 1 μ), the powder surface area reaches an asymptotic value of 300 m 2 /g (all the particles less than 0.3 μ). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [fr

  14. Seismic research on graphite reactor core

    International Nuclear Information System (INIS)

    Lai Shigang; Sun Libin; Zhang Zhengming

    2013-01-01

    Background: Reactors with graphite core structure include production reactor, water-cooled graphite reactor, gas-cooled reactor, high-temperature gas-cooled reactor and so on. Multi-body graphite core structure has nonlinear response under seismic excitation, which is different from the response of general civil structure, metal connection structure or bolted structure. Purpose: In order to provide references for the designing and construction of HTR-PM. This paper reviews the history of reactor seismic research evaluation from certain countries, and summarizes the research methods and research results. Methods: By comparing the methods adopted in different gas-cooled reactor cores, inspiration for our own HTR seismic research was achieved. Results and Conclusions: In this paper, the research ideas of graphite core seismic during the process of designing, constructing and operating HTR-10 are expounded. Also the project progress of HTR-PM and the research on side reflection with the theory of similarity is introduced. (authors)

  15. Functional neuroanatomy of the basal ganglia.

    Science.gov (United States)

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  16. Large-scale preparation of hollow graphitic carbon nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jun; Li, Fu [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bai, Yu-Jun, E-mail: byj97@126.com [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); State Key laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Han, Fu-Dong; Qi, Yong-Xin; Lun, Ning [Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Lu, Xi-Feng [Lunan Institute of Coal Chemical Engineering, Jining 272000 (China)

    2013-01-15

    Hollow graphitic carbon nanospheres (HGCNSs) were synthesized on large scale by a simple reaction between glucose and Mg at 550 Degree-Sign C in an autoclave. Characterization by X-ray diffraction, Raman spectroscopy and transmission electron microscopy demonstrates the formation of HGCNSs with an average diameter of 10 nm or so and a wall thickness of a few graphenes. The HGCNSs exhibit a reversible capacity of 391 mAh g{sup -1} after 60 cycles when used as anode materials for Li-ion batteries. -- Graphical abstract: Hollow graphitic carbon nanospheres could be prepared on large scale by the simple reaction between glucose and Mg at 550 Degree-Sign C, which exhibit superior electrochemical performance to graphite. Highlights: Black-Right-Pointing-Pointer Hollow graphitic carbon nanospheres (HGCNSs) were prepared on large scale at 550 Degree-Sign C Black-Right-Pointing-Pointer The preparation is simple, effective and eco-friendly. Black-Right-Pointing-Pointer The in situ yielded MgO nanocrystals promote the graphitization. Black-Right-Pointing-Pointer The HGCNSs exhibit superior electrochemical performance to graphite.

  17. Porous graphite electrodes for rechargeable ion-transfer batteries

    Energy Technology Data Exchange (ETDEWEB)

    Novak, P; Scheifele, W; Haas, O [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The influence of preparation pressure and pore-forming additives on the properties of graphite-based, Li{sup +}-intercalating electrodes for ion-transfer batteries have been investigated. The electrochemical performance of graphite electrodes could be improved by adjusting the porosity. Specific charge of >300 Ah/kg (with respect to the graphite mass) could be achieved. (author) 4 figs., 2 refs.

  18. Crystallization degree change of expanded graphite by milling and annealing

    International Nuclear Information System (INIS)

    Tang Qunwei; Wu Jihuai; Sun Hui; Fang Shijun

    2009-01-01

    Expanded graphite was ball milled with a planetary mill in air atmosphere, and subsequently thermal annealed. The samples were characterized by using X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). It was found that in the milling initial stage (less than 12 h), the crystallization degree of the expanded graphite declined gradually, but after milling more than 16 h, a recrystallization of the expanded graphite toke place, and ordered nanoscale expanded graphite was formed gradually. In the annealing initial stage, the non-crystallization of the graphite occurred, but, beyond an annealing time, recrystallizations of the graphite arise. Higher annealing temperature supported the recrystallization. The milled and annealed expanded graphite still preserved the crystalline structure as raw material and hold high thermal stability.

  19. Cementation of Nuclear Graphite Using Geopolymers

    International Nuclear Information System (INIS)

    Girke, N.A.; Steinmetz, H-J.; Bukaemsky, A.; Bosbach, D.; Hermann, E.; Griebel, I.

    2016-01-01

    Geopolymers are solid aluminosilicate materials usually formed by alkali hydroxide or alkali silicate activation of solid precursors such as coal fly ash, calcined clay and/or metallurgical slag. Today the primary application of geopolymer technology is in the development of alternatives to Portland-based cements. Variations in the ratio of aluminium to silicon, and alkali to silicon or addition of structure support, produce geopolymers with different physical and mechanical properties. These materials have an amorphous three-dimensional structure that gives geopolymers certain properties, such as fire and acid resistance, low leach rate, which make them an ideal substitute for ordinary Portland cement (OPC) in a wide range of applications especially in conditioning and storage of radioactive waste. Therefore investigations have been initiated on how and to which amount graphite as a hydrophobic material can be mixed with cement or concrete to form stable waste products and which concretes fulfil the necessary specifications best. As a result, geopolymers have been identified as a promising matrix for graphite containing nuclear wastes. With geopolymers, both favourable properties in the cementation process and a high long time structural stability of the products can be achieved. Investigations include: • direct mixing of graphite with geopolymers with or without sand as a mechanically stabilizing medium; • production of cement-graphite granulates as intermediate products and embedding of these granulates in geopolymer; • coating of formed graphite pieces with geopolymer.The report shows that carbon in the form of graphite can both be integrated with different grain size spectra as well as shaped in the hydraulic binder geopolymer and meets the requirements for a stable long-term immobilisation. (author)

  20. Adsorption behavior of bisphenol A on CTAB-modified graphite

    Science.gov (United States)

    Wang, Li-Cong; Ni, Xin-jiong; Cao, Yu-Hua; Cao, Guang-qun

    2018-01-01

    In this work, the adsorption behavior of BPA on CTAB-modified graphite was investigated thoroughly to develop a novel absorbent material. Atomic force microscopy revealed that conical admicelles formed on the surface of graphite. The surface area of graphite decreased significantly from 1.46 to 0.95 m2 g-1, which confirmed the formation of the larger size admicelle instead of the original smaller particle on the surface. CTAB concentration and incubation time affected the progress of admicelle formation on the surface of graphite. Adsolubilization is key in BPA adsorption by CTAB-modified graphite. An extraordinary cation-π electron interaction between CTAB and BPA, revealed by a red-shift in the ultraviolet spectrum, as well as a hydrophobic interaction contribute substantially to BPA adsolubilization. The equilibrium adsorption capacity of the modified graphite for BPA was 125.01 mg g-1. The adsorption kinetic curves of BPA on modified graphite were shown to follow a pseudosecond-order rate. The adsorption process was observed to be both spontaneous and exothermic complied with the Freundlich model.

  1. Effect of various dopant elements on primary graphite growth

    International Nuclear Information System (INIS)

    Valle, N; Theuwissen, K; Lacaze, J; Sertucha, J

    2012-01-01

    Five spheroidal graphite cast irons were investigated, a usual ferritic grade and four pearlitic alloys containing Cu and doped with Sb, Sn and Ti. These alloys were remelted in a graphite crucible, leading to volatilization of the magnesium added for spheroidization and to carbon saturation of the liquid. The alloys were then cooled down and maintained at a temperature above the eutectic temperature. During this step, primary graphite could develop showing various features depending on the doping elements added. The largest effects were that of Ti which greatly reduces graphite nucleation and growth, and that of Sb which leads to rounded agglomerates instead of lamellar graphite. The samples have been investigated with secondary ion mass spectrometry to enlighten distribution of elements in primary graphite. SIMS analysis showed almost even distribution of elements, including Mg and Al (from the inoculant) in the ferritic grade, while uneven distribution was evident in all doped alloys. Investigations are going on to clarify if the uneven distribution is associated with structural defects in the graphite precipitates.

  2. Effect of Graphite on the Properties of Natural Rubber

    Directory of Open Access Journals (Sweden)

    Auda jabber Braihi

    2016-09-01

    Full Text Available Natural rubber-graphite composites (0, 1, 2, 3, 4 pphr graphite were prepared on a laboratory two-roll mill. Swelling measurements were used to evaluate the impacts of graphite on the properties of natural rubber. Swelling results showed that the volume fraction of natural rubber in the swollen gel, the interaction parameter, and the cross-link density decreased by increasing graphite loadings, while the average molecular weight of natural rubber between cross-links increased. Vulcanization results showed that only scorch time parameter increased with increasing graphite loadings, while other parameters (Max. torque, Min. torque, cure rate and cure rate index decreased. Both thermal and AC conductivities increased.

  3. From spent graphite to amorphous sp2+sp3 carbon-coated sp2 graphite for high-performance lithium ion batteries

    Science.gov (United States)

    Ma, Zhen; Zhuang, Yuchan; Deng, Yaoming; Song, Xiaona; Zuo, Xiaoxi; Xiao, Xin; Nan, Junmin

    2018-02-01

    Today, with the massive application of lithium ion batteries (LIBs) in the portable devices and electric vehicles, to supply the active materials with high-performances and then to recycle their wastes are two core issues for the development of LIBs. In this paper, the spent graphite (SG) in LIBs is used as raw materials to fabricate two comparative high-capacity graphite anode materials. Based on a microsurgery-like physical reconstruction, the reconstructed graphite (RG) with a sp2+sp3 carbon surface is prepared through a microwave exfoliation and subsequent spray drying process. In contrast, the neural-network-like amorphous sp2+sp3 carbon-coated graphite (AC@G) is synthesized using a self-reconfigurable chemical reaction strategy. Compared with SG and commercial graphite (CG), both RG and AC@G have enhanced specific capacities, from 311.2 mAh g-1 and 360.7 mAh g-1 to 409.7 mAh g-1 and 420.0 mAh g-1, at 0.1C after 100 cycles. In addition, they exhibit comparable cycling stability, rate capability, and voltage plateau with CG. Because the synthesis of RG and AC@G represents two typical physical and chemical methods for the recycling of SG, these results on the sp2+sp3 carbon layer coating bulk graphite also reveal an approach for the preparation of high-performance graphite anode materials derived from SG.

  4. Adsorption of lead over graphite oxide.

    Science.gov (United States)

    Olanipekun, Opeyemi; Oyefusi, Adebola; Neelgund, Gururaj M; Oki, Aderemi

    2014-01-24

    The adsorption efficiency and kinetics of removal of lead in presence of graphite oxide (GO) was determined using the Atomic Absorption Spectrophotometer (AAS). The GO was prepared by the chemical oxidation of graphite and characterized using FTIR, SEM, TGA and XRD. The adsorption efficiency of GO for the solution containing 50, 100 and 150 ppm of Pb(2+) was found to be 98%, 91% and 71% respectively. The adsorption ability of GO was found to be higher than graphite. Therefore, the oxidation of activated carbon in removal of heavy metals may be a viable option to reduce pollution in portable water. Published by Elsevier B.V.

  5. Interface structure between tetraglyme and graphite

    Science.gov (United States)

    Minato, Taketoshi; Araki, Yuki; Umeda, Kenichi; Yamanaka, Toshiro; Okazaki, Ken-ichi; Onishi, Hiroshi; Abe, Takeshi; Ogumi, Zempachi

    2017-09-01

    Clarification of the details of the interface structure between liquids and solids is crucial for understanding the fundamental processes of physical functions. Herein, we investigate the structure of the interface between tetraglyme and graphite and propose a model for the interface structure based on the observation of frequency-modulation atomic force microscopy in liquids. The ordering and distorted adsorption of tetraglyme on graphite were observed. It is found that tetraglyme stably adsorbs on graphite. Density functional theory calculations supported the adsorption structure. In the liquid phase, there is a layered structure of the molecular distribution with an average distance of 0.60 nm between layers.

  6. Effect of reacting surface density on the overall graphite oxidation rate

    International Nuclear Information System (INIS)

    Oh, Chang; Kim, Eung; Lim, Jong; Schultz, Richard; Petti, David

    2009-01-01

    Graphite oxidation in an air-ingress accident is presently a very important issue for the reactor safety of the very high temperature gas cooled-reactor (VHTR), the concept of the next generation nuclear plant (NGNP) because of its potential problems such as mechanical degradation of the supporting graphite in the lower plenum of the VHTR might lead to core collapse if the countermeasure is taken carefully. The oxidation process of graphite has known to be affected by various factors, including temperature, pressure, oxygen concentration, types of graphite, graphite shape and size, flow distribution, etc. However, our recent study reveals that the internal pore characteristics play very important roles in the overall graphite oxidation rate. One of the main issues regarding graphite oxidation is the potential core collapse problem that may occur following the degradation of graphite mechanical strength. In analyzing this phenomenon, it is very important to understand the relationship between the degree of oxidization and strength degradation. In addition, the change of oxidation rate by graphite oxidation degree characterization by burn-off (ratio of the oxidized graphite density to the original density) should be quantified because graphite strength degradation is followed by graphite density decrease, which highly affects oxidation rates and patterns. Because the density change is proportional to the internal pore surface area, they should be quantified in advance. In order to understand the above issues, the following experiments were performed: (1) Experiment on the fracture of the oxidized graphite and validation of the previous correlations, (2) Experiment on the change of oxidation rate using graphite density and data collection, (3) Measure the BET surface area of the graphite. The experiments were performed using H451 (Great Lakes Carbon Corporation) and IG-110 (Toyo Tanso Co., Ltd) graphite. The reason for the use of those graphite materials is because

  7. Effect of graphite reflector on activation of fusion breeding blanket

    International Nuclear Information System (INIS)

    Lee, Cheol Woo; Lee, Young-Ouk; Lee, Dong Won; Cho, Seungyon; Ahn, Mu-Young

    2016-01-01

    Highlights: • The graphite reflector concept has been applied in the design of the Korea HCCR TBM for ITER and this concept is also a candidate design option for Korea Demo. • In the graphite reflector, C-14, B-11 and Be-10 are produced after an irradiation. Impurities in both case of beryllium and graphite is dominant in the shutdown dose after an irradiation. • Based on the evaluation, the graphite reflector is a good alternative of the beryllium multiplier in the view of induced activity and shutdown dose. But C-14 produced in the graphite reflector should be considered carefully in the view of radwaste management. - Abstract: Korea has proposed a Helium-Cooled Ceramic Reflector (HCCR) breeding blanket concept relevant to fusion power plants. Here, graphite is used as a reflector material by reducing the amount of beryllium multiplier. In this paper, activity analysis was performed and the effect of graphite reflector in the view of activation was compared to the beryllium multiplier. As a result, it is expected that using the graphite reflector instead of the beryllium multiplier decreases total activity very effectively. But the graphite reflector produces C-14 about 17.2 times than the beryllium multiplier. Therefore, C-14 produced in the graphite reflector is expected as a significant nuclide in the view of radwaste management.

  8. Analysis of picosecond pulsed laser melted graphite

    International Nuclear Information System (INIS)

    Steinbeck, J.; Braunstein, G.; Speck, J.; Dresselhaus, M.S.; Huang, C.Y.; Malvezzi, A.M.; Bloembergen, N.

    1986-01-01

    A Raman microprobe and high resolution TEM have been used to analyze the resolidified region of liquid carbon generated by picosecond pulse laser radiation. From the relative intensities of the zone center Raman-allowed mode for graphite at 1582 cm -1 and the disorder-induced mode at 1360 cm -1 , the average graphite crystallite size in the resolidified region is determined as a function of position. By comparison with Rutherford backscattering spectra and Raman spectra from nonosecond pulsed laser melting experiments, the disorder depth for picosecond pulsed laser melted graphite is determined as a function of irradiating energy density. Comparisons of TEM micrographs for nanosecond and picosecond pulsed laser melting experiments show that the structure of the laser disordered regions in graphite are similar and exhibit similar behavior with increasing laser pulse fluence

  9. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  10. A standard graphite block

    Energy Technology Data Exchange (ETDEWEB)

    Ivkovic, M; Zdravkovic, Z; Sotic, O [Department of Reactor Physics and Dynamics, Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1966-04-15

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 {+-}3.1 cm for the following graphite characteristics: density = 1.7 g/cm{sup 3}; boron content = 0.1 ppm; absorption cross section = 3.7 mb.

  11. A standard graphite block

    International Nuclear Information System (INIS)

    Ivkovic, M.; Zdravkovic, Z.; Sotic, O.

    1966-04-01

    A graphite block was calibrated for the thermal neutron flux of the Ra-Be source using indium foils as detectors. Experimental values of the thermal neutron flux along the central vertical axis of the system were corrected for the self-shielding effect and depression of flux in the detector. The experimental values obtained were compared with the values calculated on the basis of solving the conservation neutron equation by the continuous slowing-down theory. In this theoretical calculation of the flux the Ra-Be source was divided into three resonance energy regions. The measurement of the thermal neutron diffusion length in the standard graphite block is described. The measurements were performed in the thermal neutron region of the system. The experimental results were interpreted by the diffusion theory for point thermal neutron source in the finite system. The thermal neutron diffusion length was calculated to be L= 50.9 ±3.1 cm for the following graphite characteristics: density = 1.7 g/cm 3 ; boron content = 0.1 ppm; absorption cross section = 3.7 mb

  12. Graphite suspension in carbon dioxide; Suspension de graphite dans le gaz carbonique

    Energy Technology Data Exchange (ETDEWEB)

    Roche, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires; Moussez, C; Rouvillois, X; Brevet, R [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation (SNECMA), 75 - Paris (France)

    1965-07-01

    Since 1963 the Atomic Division of SNECMA has been conducting, under a contract with the CEA, an experimental work with a two-component fluid comprised of carbon dioxide and small graphite particles. The primary purpose was the determination of basic engineering information pertaining to the stability and the flowability of the suspension. The final form of the experimental loop consists mainly of the following items: a light-phase compressor, a heavy-phase pump, an electrical-resistance type heater section, a cooling heat exchanger, a hairpin loop, a transparent test section and a separator. During the course of the testing, it was observed that the fluid could be circulated quite easily in a broad range of variation of the suspension density and velocity - density from 30 to 170 kg/m{sup 3} and velocity from 2 to 24 m/s. The system could be restarted and circulation maintained without any difficulty, even with the heavy-phase pump alone. The graphite did not have a tendency to pack or agglomerate during operation. No graphite deposition was observed on the wall of the tubing. A long period run (250 hours) has shown the evolution of the particle dimensions. Starting with graphite of surface area around 20 m{sup 2}/g (graphite particles about 1 {mu}), the powder surface area reaches an asymptotic value of 300 m{sup 2}/g (all the particles less than 0.3 {mu}). Moisture effect on flow stability, flow distribution between two parallel channels, pressure drop in straight tubes, recompression ratio in diffusers were also investigated. (author) [French] Depuis 1963 la Division Atomique de la SNECMA conduit, dans le cadre d'un contrat avec le Commissariat A l'Energie Atomique, l'etude experimentale d'une suspension de fines particules de graphite dans le gaz carbonique. L'objectif principal est d'obtenir des informations d'ordre mecanique et technologique sur la mise en oeuvre de l'ecoulement de ce fluide diphase. Le circuit experimental comprend principalement: un

  13. Pyrolysis and its potential use in nuclear graphite disposal

    International Nuclear Information System (INIS)

    Mason, J.B.; Bradbury, D.

    2001-01-01

    Graphite is used as a moderator material in a number of nuclear reactor designs, such as MAGNOX and AGR gas cooled reactors in the United Kingdom and the RBMK design in Russia. During construction the moderator of the reactor is usually installed as an interlocking structure of graphite bricks. At the end of reactor life the graphite moderator, weighing typically 2,000 tonnes, is a radioactive waste which requires eventual management. Radioactive graphite disposal options conventionally include: In-situ SAFESTORE for extended periods to permit manual disassembly of the graphite moderator through decay of short-lived radionuclides. Robotic or manual disassembly of the reactor core followed by disposal of the graphite blocks. Robotic or manual disassembly of the reactor core followed by incineration of the graphite and release of the resulting carbon dioxide Studsvik, Inc. is a nuclear waste management and waste processing company organised to serve the US nuclear utility and government facilities. Studsvik's management and technical staff have a wealth of experience in processing liquid, slurry and solid low level radioactive waste using (amongst others) pyrolysis and steam reforming techniques. Bradtec is a UK company specialising in decontamination and waste management. This paper describes the use of pyrolysis and steam reforming techniques to gasify graphite leading to a low volume off-gas product. This allows the following options/advantages. Safe release of any stored Wigner energy in the graphite. The process can accept small pieces or a water-slurry of graphite, which enables the graphite to be removed from the reactor core by mechanical machining or water cutting techniques, applied remotely in the reactor fuel channels. In certain situations the process could be used to gasify the reactor moderator in-situ. The low volume of the off-gas product enables non-carbon radioactive impurities to be efficiently separated from the off-gas. The off-gas product can

  14. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  15. Continuous Transversus Abdominis Plane Nerve Blocks: Does Varying Local Anesthetic Delivery Method-Automatic Repeated Bolus Versus Continuous Basal Infusion-Influence the Extent of Sensation to Cold?: A Randomized, Triple-Masked, Crossover Study in Volunteers.

    Science.gov (United States)

    Khatibi, Bahareh; Said, Engy T; Sztain, Jacklynn F; Monahan, Amanda M; Gabriel, Rodney A; Furnish, Timothy J; Tran, Johnathan T; Donohue, Michael C; Ilfeld, Brian M

    2017-04-01

    It remains unknown whether continuous or scheduled intermittent bolus local anesthetic administration is preferable for transversus abdominis plane (TAP) catheters. We therefore tested the hypothesis that when using TAP catheters, providing local anesthetic in repeated bolus doses increases the cephalad-caudad cutaneous effects compared with a basal-only infusion. Bilateral TAP catheters (posterior approach) were inserted in 24 healthy volunteers followed by ropivacaine 2 mg/mL administration for a total of 6 hours. The right side was randomly assigned to either a basal infusion (8 mL/h) or bolus doses (24 mL administered every 3 hours for a total of 2 bolus doses) in a double-masked manner. The left side received the alternate treatment. The primary end point was the extent of sensory deficit as measured by cool roller along the axillary line at hour 6 (6 hours after the local anesthetic administration was initiated). Secondary end points included the extent of sensory deficit as measured by cool roller and Von Frey filaments along the axillary line and along a transverse line at the level of the anterior superior iliac spine at hours 0 to 6. Although there were statistically significant differences between treatments within the earlier part of the administration period, by hour 6 the difference in extent of sensory deficit to cold failed to reach statistical significance along the axillary line (mean = 0.9 cm; SD = 6.8; 95% confidence interval -2.0 to 3.8; P = .515) and transverse line (mean = 2.5 cm; SD = 10.1; 95% confidence interval -1.8 to 6.8; P = .244). Although the difference between treatments was statistically significant at various early time points for the horizontal, vertical, and estimated area measurements of both cold and mechanical pressure sensory deficits, no comparison remained statistically significant by hour 6. No evidence was found in this study involving healthy volunteers to support the hypothesis that changing the local anesthetic

  16. Tire containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A tire, tire lining or inner tube, containing a polymer composite, made of at least one rubber and/or at least one elastomer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g.

  17. Elaboration of aluminum oxide-based graphite containing castables

    Science.gov (United States)

    Zhou, Ningsheng

    The aim of this work was set to develop effective and practicable new methods to incorporate natural flake graphite (FG) into the Al2O 3 based castables for iron and steel making applications. Three approaches, viz. micro-pelletized graphite (PG), crushed briquette of Al2O3-graphite (BAG) and TiO2 coated graphite (CFG), have been developed to insert flake graphite into Al2O 3 rich Al2O3-SiC based and Al2O 3-MgO based castables. These approaches were put into effect as countermeasures against the problems caused by FG in order: (1) to agglomerate the FG powders so as to decrease the specific surface area; (2) to diminish the density difference by using crushed carbon bonded compact of oxide-FG mixture; (3) to modify the surface of the flake graphite by forming hydrophilic coating; (4) to control the dispersion state of the graphite in the castable to maintain enough bonding strength; and (5) to use appropriate antioxidants to inhibit the oxidation of FG. The whole work was divided into two stages. In stage one, Al2O 3-SiC-C castables were dealt with to compare 4 modes of inserting graphite, i.e., by PG, BAG, CFG and FG. Overall properties were measured, all in correlation with graphite amount and incorporating mode. In stage two, efforts were made to reduce water demand in the Al2O3-MgO castables system. For this purpose, the matrix portion of the castable mixes was extracted and a coaxial double cylinder viscometer was adopted to investigate rheological characteristics of the matrix slurries vs. 4 kinds of deflocculants, through which the best deflocculant and its appropriate amount were found. Efforts were then made to add up to 30% MgO into the castables, using a limited amount of powders (antioxidants, Si, SiC, B4C and ZrB2, were added respectively or in combination. Overall properties of the castables, were investigated in correlation with MgO amount and graphite and antioxidant packages. Optimization work on oxidation and slag resistance was pursued. Finally

  18. Late-time particle emission from laser-produced graphite plasma

    Energy Technology Data Exchange (ETDEWEB)

    Harilal, S. S.; Hassanein, A.; Polek, M. [School of Nuclear Engineering, Center for Materials Under Extreme Environment, Purdue University, West Lafayette, Indiana 47907 (United States)

    2011-09-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  19. Late-time particle emission from laser-produced graphite plasma

    International Nuclear Information System (INIS)

    Harilal, S. S.; Hassanein, A.; Polek, M.

    2011-01-01

    We report a late-time ''fireworks-like'' particle emission from laser-produced graphite plasma during its evolution. Plasmas were produced using graphite targets excited with 1064 nm Nd: yttrium aluminum garnet (YAG) laser in vacuum. The time evolution of graphite plasma was investigated using fast gated imaging and visible emission spectroscopy. The emission dynamics of plasma is rapidly changing with time and the delayed firework-like emission from the graphite target followed a black-body curve. Our studies indicated that such firework-like emission is strongly depended on target material properties and explained due to material spallation caused by overheating the trapped gases through thermal diffusion along the layer structures of graphite.

  20. Dependence of strength on particle size in graphite

    International Nuclear Information System (INIS)

    Kennedy, E.P.; Kennedy, C.R.

    The strength to particle size relationship for specially fabricated graphites has been demonstrated and rationalized using fracture mechanics. In the past, similar studies have yielded empirical data using only commercially available material. Thus, experimental verification of these relationships has been difficult. However, the graphites of this study were fabricated by controlling the particle size ranges for a series of isotropic graphites. All graphites that were evaluated had a constant 1.85 g/cm 3 density. Thus, particle size was the only variable. This study also considered the particle size effect on other physical properties; coefficient of thermal expansion (CTE), electrical resistivity, fracture strain, and Young's modulus

  1. Preparation and Characterization of Graphite Waste/CeO2 Composites

    Science.gov (United States)

    Kusrini, E.; Utami, C. S.; Nasruddin; Prasetyanto, E. A.; Bawono, Aji A.

    2018-03-01

    In this research, the chemical modification of graphite waste with CeO2 was developed and characterized. Graphite waste was pretreated with mechanical to obtain the size 200 mesh (75 μm), and thermal methods at 110°C oven for 6 hours. Here, we demonstrate final properties of graphite before modification (GBM), activated graphite (GA) and graphite/CeO2 composite with variation of 0.5, 1 and 2 g of CeO2 (G0.5; G1; G2). The effect of CeO2 concentration was observed. The presence of cerium in modified graphite samples (G0.5; G1; G2) were analyzed using SEM-EDX. The results show that the best surface area was found in G2 is 26.82 m2/g. The presence of CeO2 onto graphite surface does not significantly increase the surface area of composites.

  2. Radiation damage and life-time evaluation of RBMK graphite stack

    Energy Technology Data Exchange (ETDEWEB)

    Platonov, P A; Chugunov, O K; Manevsky, V N; Karpukhin, V I [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation). Reactor Material Div.

    1996-08-01

    At the present time there are 11 NPP units with RBMK reactors in operation in Russia, with the oldest now in operation 22 years. Design life-time of the RBMK-1000 reactor is 30 years. This paper addresses the evaluation of RBMK graphite stack life-time. It is the practice in Russia to evaluate the reliability of the channel reactor graphite stack using at least three criteria: degradation of physical-mechanical properties of graphite, preservation of the graphite brick integrity, and degradation of the graphite stack as a structure. Stack life-time evaluation by different criteria indicates that the most realistic approach may be realized on the basis of the criteria of brick cracking and degradation of the graphite stack as a structure. The RBMK reactor graphite stack life-time depends on its temperature and for different units it may be different. (author). 2 refs, 10 figs.

  3. Assessment of management modes for graphite from reactor decommissioning

    International Nuclear Information System (INIS)

    White, I.F.; Smith, G.M.; Saunders, L.J.; Kaye, C.J.; Martin, T.J.; Clarke, G.H.; Wakerley, M.W.

    1984-01-01

    A technological and radiological assessment has been made of the management options for irradiated graphite wastes from the decommissioning of Magnox and advanced gas-cooled reactors. Detailed radionuclide inventories have been estimated, the main contribution being from activation of the graphite and its stable impurities. Three different packaging methods for graphite have been described; each could be used for either sea or land disposal, is logistically feasible and could be achieved at reasonable cost. Leaching tests have been carried out on small samples of irradiated graphite under a variety of conditions including those of the deep ocean bed; the different conditions had little effect on the observed leach rates of radiologically significant radionuclides. Radiological assessments were made of four generic options for disposal of packaged graphite: on the deep ocean bed, in deep geologic repositories at two different types of site, and by shallow land burial. Incineration of graphite was also considered, though this option presents logistical problems. With appropriate precautions during the lifetime of the Cobalt-60 content of the graphite, any of the options considered could give acceptably low doses to individuals, and all would merit further investigation in site-specific contexts

  4. Design Procedure of Graphite Components by ASME HTR Codes

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho; Jo, Chang Keun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet.

  5. Design Procedure of Graphite Components by ASME HTR Codes

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Jo, Chang Keun

    2016-01-01

    In this study, the ASME B and PV Code, Subsection HH, Subpart A, design procedure for graphite components of HTRs was reviewed and the differences from metal materials were remarked. The Korean VHTR has a prismatic core which is made of multiple graphite blocks, reflectors, and core supports. One of the design issues is the assessment of the structural integrity of the graphite components because the graphite is brittle and shows quite different behaviors from metals in high temperature environment. The American Society of Mechanical Engineers (ASME) issued the latest edition of the code for the high temperature reactors (HTR) in 2015. In this study, the ASME B and PV Code, Subsection HH, Subpart A, Graphite Materials was reviewed and the special features were remarked. Due the brittleness of graphites, the damage-tolerant design procedures different from the conventional metals were adopted based on semi-probabilistic approaches. The unique additional classification, SRC, is allotted to the graphite components and the full 3-D FEM or equivalent stress analysis method is required. In specific conditions, the oxidation and viscoelasticity analysis of material are required. The fatigue damage rule has not been established yet

  6. Final report on graphite irradiation test OG-3

    International Nuclear Information System (INIS)

    Price, R.J.; Beavan, L.A.

    1977-01-01

    The results of dimensional, thermal expansivity, thermal conductivity, Young's modulus, and tensile strength measurements on graphite specimens irradiated in capsule OG-3 are presented. The graphite grades investigated included near-isotropic H-451 (three different preproduction lots), TS-1240, and SO818; needle coke H-327; and European coal tar pitch coke grades P 3 JHA 2 N, P 3 JHAN, and ASI2-500. Data were obtained in the temperature range 823 0 K to 1673 0 K. The peak fast neutron fluence in the experiment was 3 x 10 25 n/m 3 (E greater than 29 fJ)/sub HTGR/; the total accumulated fluence exceeded 9 x 10 25 n/m 2 on some H-451 specimens and 6 x 10 25 n/m 2 on some TS-1240 specimens. Irradiation-induced dimensional changes on H-451 graphite differed slightly from earlier predictions. For an irradiation temperature of about 1225 0 K, axial shrinkage rates at high fluences were somewhat higher than predicted, and the fluence at which radial expansion started (about 9 x 10 25 n/m 2 at 1275 0 K) was lower. TS-1240 graphite underwent smaller dimensional changes than H-451 graphite, while limited data on SO818 and ASI2-500 graphites showed similar behavior to H-451. P 3 JHAN and P 3 JHA 2 N graphites displayed anisotropic behavior with rapid axial shrinkage. Comparison of dimensional changes between specimens from three logs of H-451 and of TS-1240 graphites showed no significant log-to-log variations for H-451, and small but significant log-to-log variations for TS-1240. The thermal expansivity of the near-isotropic graphites irradiated at 865-1045 0 K first increased by 5 percent to 10 percent and then decreased. At higher irradiation temperatures the thermal expansivity decreased by up to 50 percent. Changes in thermal conductivity were consistent with previously established curves. Specimens which were successively irradiated at two different temperatures took on the saturation conductivity for the new temperature

  7. Highly conductive bridges between graphite spheres to improve the cycle performance of a graphite anode in lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongyu [IM and T Ltd., Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan); Umeno, Tatsuo; Mizuma, Koutarou [Research Center, Mitsui Mining Co. Ltd., Hibiki-machi 1-3, Wakamatsu-ku, Kitakyushu 808-0021 (Japan); Yoshio, Masaki [Advanced Research Center, Saga University, Yoga-machi 1341, Saga 840-0047 (Japan)

    2008-01-10

    Spherical carbon-coated natural graphite (SCCNG) is a promising anode material for lithium-ion batteries, but the smooth surface of graphite spheres is difficult to wet with an aqueous binder solution, and lacks electrical contacts. As a result, the cycle performance of such a graphite anode material is not satisfactory. An effective method has been introduced to tightly connect adjacent SCCNG particles by a highly conductive binder, viz. acetylene black bridges. The effect of the conductive bridges on the cyclability of SCCNG electrode has been investigated. (author)

  8. Nondestructive evaluation of nuclear-grade graphite

    Science.gov (United States)

    Kunerth, D. C.; McJunkin, T. R.

    2012-05-01

    The material of choice for the core of the high-temperature gas-cooled reactors being developed by the U.S. Department of Energy's Next Generation Nuclear Plant Program is graphite. Graphite is a composite material whose properties are highly dependent on the base material and manufacturing methods. In addition to the material variations intrinsic to the manufacturing process, graphite will also undergo changes in material properties resulting from radiation damage and possible oxidation within the reactor. Idaho National Laboratory is presently evaluating the viability of conventional nondestructive evaluation techniques to characterize the material variations inherent to manufacturing and in-service degradation. Approaches of interest include x-ray radiography, eddy currents, and ultrasonics.

  9. Review: BNL Tokamak graphite blanket design concepts

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    The BNL minimum activity graphite blanket designs are reviewed, and three are discussed in the context of an experimental power reactor (EPR) and commercial power reactor. Basically, the three designs employ a 30 cm or thicker graphite screen. Bremsstrahlung energy is deposited on the graphite surface and re-radiated away as thermal radiation. Fast neutrons are slowed down in the graphite, depositing most of their energy, which is then radiated to a secondary blanket with coolant tubes, as in types A and B, or removed by intermittent direct gas cooling (type C). In types A and B, radiation damage to the coolant tubes in the secondary blanket is reduced by one or two orders of magnitude, while in type C, the blanket is only cooled when the reactor is shut down, so that coolant cannot quench the plasma. (Auth.)

  10. Methodology of characterization of radioactive graphite

    International Nuclear Information System (INIS)

    Pina, G.; Rodriguez, M.; Lara, E.; Magro, E.; Gascon, J. L.; Leganes, J. L.

    2014-01-01

    Since the dismantling of Vandellos I, ENRESA has promoted the precise knowledge of the inventory of irradiated graphite (graphite-i) through establishing methodologies for radiological characterization of the vector of radionuclides of interest and their correlations as the primary means of characterization strategy to establish the safer management of this material in its life cycle. (Author)

  11. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  12. In situ synthesized Li2S@porous carbon cathode for graphite/Li2S full cells using ether-based electrolyte

    International Nuclear Information System (INIS)

    Wang, Ning; Zhao, Naiqin; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; He, Fang; Ma, Liying

    2017-01-01

    Graphical abstract: A facile method is proposed to prepare lithium sulfide@porous carbon composites (Li 2 S@PC) by in-situ reaction of lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. We assembled graphite-Li 2 S@PC full-cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and DOL/DME with LiNO 3 additive as the electrolyte. Display Omitted -- Highlights: •A simple synthesis method was proposed to form Li 2 S@porous carbon composites. •Graphite-Li 2 S full-cells were constructed in DME-based electrolyte. •A novel method was proposed to activate the full cells. -- Abstract: Lithium-sulfur (Li-S) batteries have been recognized as one of the promising next-generation energy storage devices owing to their high energy density, low cost and eco-friendliness. As for cathode’s performance, the main challenges for developing highly-efficient and long-life Li-S batteries are to retard the polysulfides diffusion into electrolyte and the reaction with metallic lithium (Li). Especially, the safety issues, derived from metallic Li in anode, must be overcome. Herein, we fabricated lithium sulfide@porous carbon composites (Li 2 S@PC) by an in-situ reaction between the lithium sulfate (Li 2 SO 4 ) and the pyrolytic carbon from glucose. The nanosized Li 2 S particles were uniformly distributed in the carbon matrix, which not only significantly improve electronic conductivity of the electrode but also effectively trap the dissolved polysulfides. Furthermore, on the basis of the graphite’s electrochemical features in ether-based electrolyte, we assembled graphite-Li 2 S@PC full cells using the obtained Li 2 S@PC composites as the cathode, graphite as the anode and the DOL/DME with LiNO 3 additive as the electrolyte. A unique strategy was proposed to activate the full-cells in descending order using constant voltage and current to charge the cut-off voltage. This Li-S full cell exhibits stable cycling performance at 0.5 C over

  13. Potassium-Based Dual Ion Battery with Dual-Graphite Electrode.

    Science.gov (United States)

    Fan, Ling; Liu, Qian; Chen, Suhua; Lin, Kairui; Xu, Zhi; Lu, Bingan

    2017-08-01

    A potassium ion battery has potential applications for large scale electric energy storage systems due to the abundance and low cost of potassium resources. Dual graphite batteries, with graphite as both anode and cathode, eliminate the use of transition metal compounds and greatly lower the overall cost. Herein, combining the merits of the potassium ion battery and dual graphite battery, a potassium-based dual ion battery with dual-graphite electrode is developed. It delivers a reversible capacity of 62 mA h g -1 and medium discharge voltage of ≈3.96 V. The intercalation/deintercalation mechanism of K + and PF 6 - into/from graphite is proposed and discussed in detail, with various characterizations to support. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Co3O4 nanocrystals with exposed low-surface-energy planes anchored on chemically integrated graphitic carbon nitride-modified nitrogen-doped graphene: A high-performance anode material for lithium-ion batteries

    Science.gov (United States)

    Zhang, Wenyao; Fu, Yongsheng; Wang, Xin

    2018-05-01

    A facile strategy to synthesize a composite composed of cubic Co3O4 nanocrystals anchored on chemically integrated g-C3N4-modified N-graphene (CN-NG) as an advanced anode material for high-performance lithium-ion batteries is reported. It is found that the morphology of the Co3O4 nanocrystals contains blunt-edge nanocubes with well-demarcated boundaries and numerous exposed low-index (1 1 1) crystallographic facets. These planes can be directly involved in the electrochemical reactions, providing rapid Li-ion transport channels for charging and discharging and thus enhancing the round-trip diffusion efficiency. On the other hand, the CN-NG support displays unusual textural features, such as superior structural stability, accessible active sites, and good electrical conductivity. The experimental results reveal that the chemical and electronic coupling of graphitic carbon nitride and nitrogen-doped graphene synergistically facilitate the anchoring of Co3O4 nanocrystals and prevents their migration. The resulting Co3O4/CN-NG composite exhibits a high specific reversible capacity of up to 1096 mAh g-1 with excellent cycling stability and rate capability. We believe that such a hybrid carbon support could open a new path for applications in electrocatalysis, sensors, supercapacitors, etc., in the near future.

  15. Graphite limiter and armour damage in Doublet III

    International Nuclear Information System (INIS)

    McKelvey, T.; Taylor, T.; Trester, P.

    1983-01-01

    Graphite coated with TiC has been used extensively in Doublet III for limiters and neutral beam armour. Performance of these components has been superior to that of the metal components previously used. Damage to the coated graphite has occurred and can be classified into three categories: (1) gross failure of the graphite due to thermal stresses induced by the combination of high applied energy fluxes and mechanical restraint, (2) surface failure of the graphite due to runaway electron impingement, and (3) loss of TiC coating due to arcing, sputtering, vaporization and spalling, primarily during plasma disruptions and other abnormal plasma conditions. Design improvements are being continually implemented to minimize this damage and its consequences. (author)

  16. Spin-density wave state in simple hexagonal graphite

    Science.gov (United States)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  17. Natural graphite demand and supply - Implications for electric vehicle battery requirements

    Science.gov (United States)

    Olson, Donald W.; Virta, Robert L.; Mahdavi, Mahbood; Sangine, Elizabeth S.; Fortier, Steven M.

    2016-01-01

    Electric vehicles have been promoted to reduce greenhouse gas emissions and lessen U.S. dependence on petroleum for transportation. Growth in U.S. sales of electric vehicles has been hindered by technical difficulties and the high cost of the lithium-ion batteries used to power many electric vehicles (more than 50% of the vehicle cost). Groundbreaking has begun for a lithium-ion battery factory in Nevada that, at capacity, could manufacture enough batteries to power 500,000 electric vehicles of various types and provide economies of scale to reduce the cost of batteries. Currently, primary synthetic graphite derived from petroleum coke is used in the anode of most lithium-ion batteries. An alternate may be the use of natural flake graphite, which would result in estimated graphite cost reductions of more than US$400 per vehicle at 2013 prices. Most natural flake graphite is sourced from China, the world's leading graphite producer. Sourcing natural flake graphite from deposits in North America could reduce raw material transportation costs and, given China's growing internal demand for flake graphite for its industries and ongoing environmental, labor, and mining issues, may ensure a more reliable and environmentally conscious supply of graphite. North America has flake graphite resources, and Canada is currently a producer, but most new mining projects in the United States require more than 10 yr to reach production, and demand could exceed supplies of flake graphite. Natural flake graphite may serve only to supplement synthetic graphite, at least for the short-term outlook.

  18. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  19. AMS-C14 analysis of graphite obtained with an Automated Graphitization Equipment (AGE III) from aerosol collected on quartz filters

    Energy Technology Data Exchange (ETDEWEB)

    Solís, C.; Chávez, E.; Ortiz, M.E.; Andrade, E. [Instituto de Física, Universidad Nacional Autónoma de México, 04510 México D.F. (Mexico); Ortíz, E. [Universidad Autónoma Metropolitana, Unidad Azcapotzalco, México D.F. (Mexico); Szidat, S. [Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern (Switzerland); Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Wacker, L. [Laboratory of Ion Physics, ETH, Honggerberg, Zurich (Switzerland)

    2015-10-15

    AMS-{sup 14}C applications often require the analysis of small samples. Such is the case of atmospheric aerosols where frequently only a small amount of sample is available. The ion beam physics group at the ETH, Zurich, has designed an Automated Graphitization Equipment (AGE III) for routine graphite production for AMS analysis from organic samples of approximately 1 mg. In this study, we explore the potential use of the AGE III for graphitization of particulate carbon collected in quartz filters. In order to test the methodology, samples of reference materials and blanks with different sizes were prepared in the AGE III and the graphite was analyzed in a MICADAS AMS (ETH) system. The graphite samples prepared in the AGE III showed recovery yields higher than 80% and reproducible {sup 14}C values for masses ranging from 50 to 300 μg. Also, reproducible radiocarbon values were obtained for aerosol filters of small sizes that had been graphitized in the AGE III. As a study case, the tested methodology was applied to PM{sub 10} samples collected in two urban cities in Mexico in order to compare the source apportionment of biomass and fossil fuel combustion. The obtained {sup 14}C data showed that carbonaceous aerosols from Mexico City have much lower biogenic signature than the smaller city of Cuernavaca.

  20. Development of fracture toughness test method for nuclear grade graphite

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C. H.; Lee, J. S.; Cho, H. C.; Kim, D. J.; Lee, D. J. [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2006-02-15

    Because of its high strength and stability at very high temperature, as well as very low thermal neutron absorption cross-section, graphite has been widely used as a structural material in Gas Cooled Reactors (GCR). Recently, many countries are developing the Very High Temperature gas cooled Reactor (VHTR) because of the potentials of hydrogen production, as well as its safety and viable economics. In VHTR, helium gas serves as the primary coolant. Graphite will be used as a reflector, moderator and core structural materials. The life time of graphite is determined from dimensional changes due to neutron irradiation, which closely relates to the changes of crystal structure. The changes of both lattice parameter and crystallite size can be easily measured by X-ray diffraction method. However, due to high cost and long time of neutron irradiation test, ion irradiation test is being performed instead in KAERI. Therefore, it is essential to develop the technique for measurement of ion irradiation damage of nuclear graphite. Fracture toughness of nuclear grade graphite is one of the key properties in the design and development of VHTR. It is important not only to evaluate the various properties of candidate graphite but also to assess the integrity of nuclear grade graphite during operation. Although fracture toughness tests on graphite have been performed in many laboratories, there have been wide variations in values of the calculated fracture toughness, due to the differences in the geometry of specimens and test conditions. Hence, standard test method for nuclear graphite is required to obtain the reliable fracture toughness values. Crack growth behavior of nuclear grade graphite shows rising R-curve which means the increase in crack growth resistance as the crack length increases. Crack bridging and microcracking have been proposed to be the dominant mechanisms of rising R-curve behavior. In this paper, the technique to measure the changes of crystallite size and

  1. 77 FR 51581 - Request for a License To Export Nuclear Grade Graphite

    Science.gov (United States)

    2012-08-24

    ... NUCLEAR REGULATORY COMMISSION Request for a License To Export Nuclear Grade Graphite Pursuant to... 27, 2012, graphite for of nuclear grade graphite to the XMAT424, 11006032. nuclear end use. graphite. Shanghai Institute of Applied Physics in China to test various types of nuclear grade graphite material in...

  2. Adenoid basal hyperplasia of the uterine cervix: a lesion of reserve cell type, distinct from adenoid basal carcinoma.

    Science.gov (United States)

    Kerdraon, Olivier; Cornélius, Aurélie; Farine, Marie-Odile; Boulanger, Loïc; Wacrenier, Agnès

    2012-12-01

    Adenoid basal hyperplasia is an underrecognized cervical lesion, resembling adenoid basal carcinoma, except the absence of deep invasion into the stroma. We report a series of 10 cases, all extending less than 1 mm from the basement membrane. Our results support the hypothesis that adenoid basal hyperplasia arises from reserve cells of the cervix. Lesions were found close to the squamocolumnar junction, in continuity with the nearby subcolumnar reserve cells. They shared the same morphology and immunoprofile using a panel of 4 antibodies (keratin 5/6, keratin 14, keratin 7 and p63) designed to differentiate reserve cells from mature squamous cells and endocervical columnar cells. We detected no human papillomavirus infection by in situ hybridization targeting high-risk human papillomavirus, which was concordant with the absence of immunohistochemical p16 expression. We demonstrated human papillomavirus infection in 4 (80%) of 5 adenoid basal carcinoma, which is in the same range as previous studies (88%). Thus, adenoid basal hyperplasia should be distinguished from adenoid basal carcinoma because they imply different risk of human papillomavirus infection and of subsequent association with high-grade invasive carcinoma. In our series, the most reliable morphological parameters to differentiate adenoid basal hyperplasia from adenoid basal carcinoma were the depth of the lesion and the size of the lesion nests. Furthermore, squamous differentiation was rare in adenoid basal hyperplasia and constant in adenoid basal carcinoma. Finally, any mitotic activity and/or an increase of Ki67 labeling index should raise the hypothesis of adenoid basal carcinoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Studies on the development of special graphite for use in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, G.; Aggarwal, R.K.; Saha, M.; Sengupta, P.R.; Mishra, A. [National Physical Lab., New Delhi (India). Carbon Technology Unit

    2002-07-01

    Special graphite is considered as a critical component of the present-day tokamaks wherein it acts as the armour material for plasma-facing components. This graphite is required to possess, besides other characteristics, high values of bulk density, bending strength and electrical and thermal conductivities and a low value of ash content. Since such graphite was not commercially available in the country, efforts to develop it were initiated at the National Physical Laboratory, New Delhi. The basic approach to develop this graphite was based on green coke method of making the high density graphite, wherein the green coke was modified by incorporating in it small amounts of conducting carbon materials, i.e. needle coke, synthetic graphite and natural graphite. The resulting graphites were characterized with respect to various physical characteristics, namely, green density, weight loss, volume shrinkage, linear shrinkage, bulk density, bending strength, Young's modulus and electrical resistivity, etc. The results are described and discussed in the present paper. 6 refs., 2 tabs.

  4. An Electron Microscopy Study of Graphite Growth in Nodular Cast Irons

    Science.gov (United States)

    Laffont, L.; Jday, R.; Lacaze, J.

    2018-04-01

    Growth of graphite during solidification and high-temperature solid-state transformation has been investigated in samples cut out from a thin-wall casting which solidified partly in the stable (iron-graphite) and partly in the metastable (iron-cementite) systems. Transmission electron microscopy has been used to characterize graphite nodules in as-cast state and in samples having been fully graphitized at various temperatures in the austenite field. Nodules in the as-cast material show a twofold structure characterized by an inner zone where graphite is disoriented and an outer zone where it is well crystallized. In heat-treated samples, graphite nodules consist of well-crystallized sectors radiating from the nucleus. These observations suggest that the disoriented zone appears because of mechanical deformation when the liquid contracts during its solidification in the metastable system. During heat-treatment, the graphite in this zone recrystallizes. In turn, it can be concluded that nodular graphite growth mechanism is the same during solidification and solid-state transformation.

  5. Chemical vapor deposition of TiB2 on graphite

    International Nuclear Information System (INIS)

    Pierson, H.O.; Randich, E.; Mattox, D.M.

    1978-01-01

    This study is an experimental investigation of the coating of graphite with TiB 2 by chemical vapor deposition (CVD) using the hydrogen reduction of BCl 3 and TiCl 4 at 925 0 C and 1 atm. Reasonable matching of the thermal expansion of TiB 2 and graphite was necessary to eliminate cracking. A suitable graphite was POCO DFP-1. Adhesion was improved by having a slightly rough graphite surface. Heat treatment at 2000 0 C and above resulted in a certain degree of diffusion. No melting or solid phases other than TiB 2 and graphite were detected up to 2400 0 C. The coatings showed no failure when repeatedly submitted to an electron beam pulse of 2 KW/cm 2 for 0.8 sec

  6. Abrasion behavior of graphite pebble in lifting pipe of pebble-bed HTR

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Ke; Su, Jiageng [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Zhou, Hongbo [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Chinergy Co., LTD., Beijing 100193 (China); Peng, Wei; Liu, Bing [Institute of Nuclear and New Energy Technology, Advanced Nuclear Energy Technology Cooperation Innovation Center, The Key Laboratory of Advanced Nuclear Engineering and Safety, Ministry of Education, Beijing 10084 (China); Yu, Suyun, E-mail: suyuan@tsinghua.edu.cn [Center for Combustion Energy, The Key Laboratory for Thermal Science and Power Engineering, Ministry of Educations, Tsinghua University, Beijing 10084 (China)

    2015-11-15

    Highlights: • Quantitative determination of abrasion rate of graphite pebbles in different lifting velocities. • Abrasion behavior of graphite pebble in helium, air and nitrogen. • In helium, intensive collisions caused by oscillatory motion result in more graphite dust production. - Abstract: A pebble-bed high-temperature gas-cooled reactor (pebble-bed HTR) uses a helium coolant, graphite core structure, and spherical fuel elements. The pebble-bed design enables on-line refueling, avoiding refueling shutdowns. During circulation process, the pebbles are lifted pneumatically via a stainless steel lifting pipe and reinserted into the reactor. Inevitably, the movement of the fuel elements as they recirculate in the reactor produces graphite dust. Mechanical wear is the primary source of graphite dust production. Specifically, the sources are mechanisms of pebble–pebble contact, pebble–wall (structural graphite) contact, and fuel handling (pebble–metal abrasion). The key contribution to graphite dust production is from the fuel handling system, particularly from the lifting pipe. During pneumatic lift, graphite pebbles undergo multiple collisions with the stainless steel lifting pipe, thereby causing abrasion of the graphite pebbles and producing graphite dust. The present work explored the abrasion behavior of graphite pebble in the lifting pipe by measuring the abrasion rate at different lifting velocities. The abrasion rate of the graphite pebble in helium was found much higher than those in air and nitrogen. This gas environment effect could be explained by either tribology behavior or dynamic behavior. Friction testing excluded the possibility of tribology reason. The dynamic behavior of the graphite pebble was captured by analysis of the audio waveforms during pneumatic lift. The analysis results revealed unique dynamic behavior of the graphite pebble in helium. Oscillation and consequently intensive collisions occur during pneumatic lift, causing

  7. Friction and wear of carbon-graphite materials for high-energy brakes

    Science.gov (United States)

    Bill, R. C.

    1978-01-01

    Caliper type brake simulation experiments were conducted on seven different carbon graphite materials formulations against a steel disk material and against a carbon graphite disk material. The effects of binder level, boron carbide (B4C) additions, SiC additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level, additions of B4C, and additions of SiC each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. The transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur.

  8. Graphite Recycling from Spent Lithium-Ion Batteries.

    Science.gov (United States)

    Rothermel, Sergej; Evertz, Marco; Kasnatscheew, Johannes; Qi, Xin; Grützke, Martin; Winter, Martin; Nowak, Sascha

    2016-12-20

    The present work reports on challenges in utilization of spent lithium-ion batteries (LIBs)-an increasingly important aspect associated with a significantly rising demand for electric vehicles (EVs). In this context, the feasibility of anode recycling in combination with three different electrolyte extraction concepts is investigated. The first method is based on a thermal treatment of graphite without electrolyte recovery. The second method additionally utilizes a subcritical carbon-dioxide (subcritical CO 2 )-assisted electrolyte extraction prior to thermal treatment. And the final investigated approach uses supercritical carbon dioxide (scCO 2 ) as extractant, subsequently followed by the thermal treatment. It is demonstrated that the best performance of recycled graphite anodes can be achieved when electrolyte extraction is performed using subcritical CO 2 . Comparative studies reveal that, in the best case, the electrochemical performance of recycled graphite exceeds the benchmark consisting of a newly synthesized graphite anode. As essential efforts towards electrolyte extraction and cathode recycling have been made in the past, the electrochemical behavior of recycled graphite, demonstrating the best performance, is investigated in combination with a recycled LiNi 1/3 Co 1/3 Mn 1/3 O 2 cathode. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Glassy carbon coated graphite for nuclear applications

    International Nuclear Information System (INIS)

    Delpeux S; Cacciaguerra T; Duclaux L

    2005-01-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF 2 , ThF 4 , and UF 4 ) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin or polyvinyl chloride precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm 3 and closed pores with nano-metric size (∼ 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons, in good agreement with the proposed texture model for glassy carbon. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry of the graphite substrate. The deposit regions where

  10. Glassy carbon coated graphite for nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Delpeux, S.; Cacciaguerra, T.; Duclaux, L. [Orleans Univ., CRMD, CNRS, 45 (France)

    2005-07-01

    Taking into account the problems caused by the treatment of nuclear wastes, the molten salts breeder reactors are expected to a great development. They use a molten fluorinated salt (mixture of LiF, BeF{sub 2}, ThF{sub 4}, and UF{sub 4}) as fuel and coolant. The reactor core, made of graphite, is used as a neutrons moderator. Despite of its compatibility with nuclear environment, it appears crucial to improve the stability and inertness of graphite against the diffusion of chemicals species leading to its corrosion. One way is to cover the graphite surface by a protective impermeable deposit made of glassy carbon obtained by the pyrolysis of phenolic resin [1,2] or polyvinyl chloride [3] precursors. The main difficulty in the synthesis of glassy carbon is to create exclusively, in the primary pyrolysis product, a micro-porosity of about twenty Angstroms which closes later at higher temperature. Therefore, the evacuation of the volatile products occurring mainly between 330 and 600 C, must progress slowly to avoid the material to crack. In this study, the optimal parameters for the synthesis of glassy carbon as well as glassy carbon deposits on nuclear-type graphite pieces are discussed. Both thermal treatment of phenolic and PVC resins have been performed. The structure and micro-texture of glassy carbon have been investigated by X-ray diffraction, scanning and transmission electron microscopies and helium pycno-metry. Glassy carbon samples (obtained at 1200 C) show densities ranging from 1.3 to 1.55 g/cm{sup 3} and closed pores with nano-metric size ({approx} 5 to 10 nm) appear clearly on the TEM micrographs. Then, a thermal treatment to 2700 C leads to the shrinkage of the entangled graphene ribbons (Fig 1), in good agreement with the proposed texture model for glassy carbon (Fig 2) [4]. Glassy carbon deposits on nuclear graphite have been developed by an impregnation method. The uniformity of the deposit depends clearly on the surface texture and the chemistry

  11. Diffusion of graphite. The effect of cylindrical canals; Longueur de diffusion du graphite effet des canaux cylindriques

    Energy Technology Data Exchange (ETDEWEB)

    Carle, R; Clouet d' Orval, C; Martelly, J; Mazancourt, T de; Sagot, M; Lattes, R; Teste du Bailler, A [Commissariat a l' Energie Atomique, Dir. Industrielle, Saclay (France). Centre d' Etudes Nucleaires; Robert, C [Ecole Normale Superieure, 75 - Paris (France)

    1957-07-01

    Experiments on thermal neutron diffusion in the graphite used as moderator in the pile G1 have been carried out. The object of these experiments is to determine: - the intrinsic quality of this graphite, characterised by its diffusion length L or its Laplacian 1/L{sup 2} - the effect of the canals, which modifies anisotropically the macroscopic diffusion equation and is characterized by two principal diffusion regions (or two principal Laplacian), valid respectively for the diffusion in the direction of the canals and in a perpendicular direction. In order to determine them two experiments are necessary, in which the second derivatives of the flux in relation to the space coordinates are very different. These experiments form the object of the first two parts. Part 1: Diffusion along the axis of a flux coming from the pile source, and limited radially by a quasi cylindrical screen of cadmium bars. This screen, or Faraday cage is designed to give to the thermal flux produced the same radius of extrapolation to zero as that of the pile source. The determination of L (with the graphite full) has been made under the same conditions. The measurements have been interpreted in two ways. The influence of the brackets holding the detectors is discussed. Part 2: Radial diffusion in the graphite surrounding the 'long' cylindrical pile. This is well described by a sum of Bessel functions. Part 3: Results (valid for d = 1.61 t = 17 deg. C). For the graphite without cavity L = 52.7 {+-} 0.4 cm. The effect of the canals on the diffusion area and its anisotropy are in excellent agreement with the theory of Behrens: L(parallel) = 64.6 cm and L(perpendicular) 62.2 cm. Appendix: Theory of the Faraday cage. (author) [French] Des experiences de diffusion des neutrons thermiques dans le graphite constituant le moderateur de la pile G1 ont ete effectuees. Elles ont pour objet de determiner: - la qualite intrinseque de ce graphite, caracterisee par sa longueur de diffusion L ou son

  12. A study on wear behaviour of Al/6101/graphite composites

    Directory of Open Access Journals (Sweden)

    Pardeep Sharma

    2017-03-01

    Full Text Available The current research work scrutinizes aluminium alloy 6101-graphite composites for their mechanical and tribological behaviour in dry sliding environments. The orthodox liquid casting technique had been used for the manufacturing of composite materials and imperilled to T6 heat treatment. The content of reinforcement particles was taken as 0, 4, 8, 12 and 16 wt.% of graphite to ascertain it is prospective as self-lubricating reinforcement in sliding wear environments. Hardness, tensile strength and flexural strength of cast Al6101 metal matrix and manufactured composites were evaluated. Hardness, tensile strength and flexural strength decreases with increasing volume fraction of graphite reinforcement as compared to cast Al6101 metal matrix. Wear tests were performed on pin on disc apparatus to assess the tribological behaviour of composites and to determine the optimum volume fraction of graphite for its minimum wear rate. Wear rate reduces with increase in graphite volume fraction and minimum wear rate was attained at 4 wt.% graphite. The wear was found to decrease with increase in sliding distance. The average co-efficient of friction also reduces with graphite addition and its minimum value was found to be at 4 wt.% graphite. The worn surfaces of wear specimens were studied through scanning electron microscopy. The occurrence of 4 wt.% of graphite reinforcement in the composites can reveal loftier wear possessions as compared to cast Al6101 metal matrix.

  13. Direct brazing of ceramics, graphite, and refractory metals

    International Nuclear Information System (INIS)

    Canonico, D.A.; Cole, N.C.; Slaughter, G.M.

    1976-03-01

    ORNL has been instrumental in the development of brazing filler metals for joining ceramics, graphite, and refractory metals for application at temperatures above 1000 0 C. The philosophy and techniques employed in the development of these alloys are presented. A number of compositions are discussed that have been satisfactorily used to braze ceramics, graphite, and refractory metals without a prior surface treatment. One alloy, Ti--25 percent Cr--21 percent V, has wet and flowed on aluminum oxide and graphite. Further, it has been utilized in making brazes between different combinations of the three subject materials. The excellent flowability of this alloy and alloys from the Ti--Zr--Ge system is evidenced by the presence of filler metal in the minute pores of the graphite and ceramics

  14. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    Science.gov (United States)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  15. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  16. Solvents effects on electrochemical characteristics of graphite fluoride-lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Nobuatsu, W.; Hidekazu, T.; Rika, H.; Tsuyoshi, N.

    1982-11-01

    A study was made of the electrochemical characteristics of graphite fluoride-lithium batteries in various non-aqueous solvents. Two types of graphite fluorides (C/sub 2/F) /SUB n/ and (CF) /SUB n/ were used as cathode materials. The discharge characteristics of graphite fluorides were better in dimethylsulfoxide, ..gamma..-butyrolactone, propylene carbonate and sulfolane in that order. The relation between electrod potential of graphite fluoride and solvation energy of lithium ion with each solvent indicates that solvated lithium ion is intercalated into graphite fluoride layers by the electrode reaction. Both the difference in the overpotentials and in the rates of OCV recovery among these solvents further supports the proposed reaction mechanism.

  17. Colliding almost-plane gravitational waves: Colliding plane waves and general properties of almost-plane-wave spacetimes

    International Nuclear Information System (INIS)

    Yurtsever, U.

    1988-01-01

    It is well known that when two precisely plane-symmetric gravitational waves propagating in an otherwise flat background collide, they focus each other so strongly as to produce a curvature singularity. This paper is the first of several devoted to almost-plane gravitational waves and their collisions. Such waves are more realistic than plane waves in having a finite but very large transverse size. In this paper we review some crucial features of the well-known exact solutions for colliding plane waves and we argue that one of these features, the breakdown of ''local inextendibility'' can be regarded as nongeneric. We then introduce a new framework for analyzing general colliding plane-wave spacetimes; we give an alternative proof of a theorem due to Tipler implying the existence of singularities in all generic colliding plane-wave solutions; and we discuss the fact that the recently constructed Chandrasekhar-Xanthopoulos colliding plane-wave solutions are not strictly plane symmetric and thus do not satisfy the conditions and the conclusion of Tipler's theorem

  18. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  19. Functional interface of polymer modified graphite anode

    Science.gov (United States)

    Komaba, S.; Ozeki, T.; Okushi, K.

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm -3 LiClO 4 ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li +, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface.

  20. Physics experiments in graphite lattices (1962); Experiences sur les reseaux a graphite (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Bacher, P; Cogne, F [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-07-01

    A review is made of the various experimental methods used to determine the physics of graphite, natural uranium lattices: integral lattice experiments; both absolute and differential, effective cross section measurements, both by activation methods and by analysis of irradiated fuels, fine structure measurements. A number of experimental results are also given. (authors) [French] On decrit les differentes methodes experimentales utilisees pour determiner les parametres physiques de reseaux a uranium-graphite. Il s'agit d'experiences globales: mesures absolues et relatives de laplaciens, mesures de sections efficaces effectives par activation et par analyses de combustibles irradies, mesures de structures fines. Un certain nombre de resultats experimentaux sont communiques. (auteurs)

  1. In-plane and cross-plane thermal conductivities of molybdenum disulfide

    International Nuclear Information System (INIS)

    Ding, Zhiwei; Pei, Qing-Xiang; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    We investigate the in-plane and cross-plane thermal conductivities of molybdenum disulfide (MoS 2 ) using non-equilibrium molecular dynamics simulations. We find that the in-plane thermal conductivity of monolayer MoS 2 is about 19.76 W mK −1 . Interestingly, the in-plane thermal conductivity of multilayer MoS 2 is insensitive to the number of layers, which is in strong contrast to the in-plane thermal conductivity of graphene where the interlayer interaction strongly affects the in-plane thermal conductivity. This layer number insensitivity is attributable to the finite energy gap in the phonon spectrum of MoS 2 , which makes the phonon–phonon scattering channel almost unchanged with increasing layer number. For the cross-plane thermal transport, we find that the cross-plane thermal conductivity of multilayer MoS 2 can be effectively tuned by applying cross-plane strain. More specifically, a 10% cross-plane compressive strain can enhance the thermal conductivity by a factor of 10, while a 5% cross-plane tensile strain can reduce the thermal conductivity by 90%. Our findings are important for thermal management in MoS 2 based nanodevices and for thermoelectric applications of MoS 2 . (paper)

  2. 40 CFR 436.380 - Applicability; description of the graphite subcategory.

    Science.gov (United States)

    2010-07-01

    ... graphite subcategory. 436.380 Section 436.380 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY Graphite Subcategory § 436.380 Applicability; description of the graphite subcategory. The provisions of this subpart...

  3. Thermal shock test of TiC and graphite

    International Nuclear Information System (INIS)

    Shirakawa, H.; Okamura, J.; Son, P.; Miyake, M.

    1989-01-01

    Thermal shock tests were performed by pulse electron beam heating on chemically vapor deposited coatings of TiC on Poco graphite, bulk TiC, and several kinds of isotropic graphite. The specimens were heated at various power densities (10-45 MW/m 2 ) for various pulse durations (1-2 s) to examine the dependence of thermal failures on heating conditions. The TiC coating on graphite suffered cracking, surface melting and evaporation by the thermal pulse. The surface melting limit, defined as F τ 1/2 , where F is the minimum power density that causes surface melting for a specified pulse duration τ, was approximately 48 MWs 1/2 /m 2 for the TiC coating. The combined-Carbon/Titanium ratio of the coating after electron beam heating decreased with increasing power density and pulse duration. The bulk TiC specimens were so brittle that they fractured at heat load conditions where the coating showed no damage. The graphite specimens showed sublimation as a principal damage mechanism by the thermal pulse, and the sublimation weight loss decreased with increasing the thermal conductivity of the specimen. It was confirmed that the TiC coating on graphite had favorable resistance to thermal shock as compared to the bulk TiC and that graphite with high thermal conductivity is promising material as a high heat flux component. (orig.)

  4. Expansion and exfoliation of graphite to form graphene

    KAUST Repository

    Patole, Shashikan P.; Da Costa, Pedro M. F. J.

    2017-01-01

    Graphene production methods are described based on subjecting non- covalent graphite intercalated compounds, such as graphite bisulfate, to expansion conditions such as shocks of heat and/or microwaves followed by turbulence-assisted exfoliation

  5. Protection of nuclear graphite toward fluoride molten salt by glassy carbon deposit

    International Nuclear Information System (INIS)

    Bernardet, V.; Gomes, S.; Delpeux, S.; Dubois, M.; Guerin, K.; Avignant, D.; Renaudin, G.; Duclaux, L.

    2009-01-01

    Molten salt reactor represents one of the promising future Generation IV nuclear reactors families where the fuel, a liquid molten fluoride salt, is circulating through the graphite reactor core. The interactions between nuclear graphite and fluoride molten salt and also the graphite surface protection were investigated in this paper by powder X-ray diffraction, micro-Raman spectroscopy and scanning electron microscopy coupled with X-ray microanalysis. Nuclear graphite discs were covered by two kinds of protection deposit: a glassy carbon coating and a double coating of pyrolitic carbon/glassy carbon. Different behaviours have been highlighted according to the presence and the nature of the coated protection film. Intercalation of molten salt between the graphite layers did not occur. Nevertheless the molten salt adhered more or less to the surface of the graphite disc, filled more or less the graphite surface porosity and perturbed more or less the graphite stacking order at the disc surface. The behaviour of unprotected graphite was far to be satisfactory after two days of immersion of graphite in molten salt at 500 deg. C. The best protection of the graphite disc surface, with the maximum of inertness towards molten salt, has been obtained with the double coating of pyrolitic carbon/glassy carbon

  6. Reactivity of lithium exposed graphite surface

    International Nuclear Information System (INIS)

    Harilal, S.S.; Allain, J.P.; Hassanein, A.; Hendricks, M.R.; Nieto-Perez, M.

    2009-01-01

    Lithium as a plasma-facing component has many attractive features in fusion devices. We investigated chemical properties of the lithiated graphite surfaces during deposition using X-ray photoelectron spectroscopy and low-energy ion scattering spectroscopy. In this study we try to address some of the known issues during lithium deposition, viz., the chemical state of lithium on graphite substrate, oxide layer formation mechanisms, Li passivation effects over time, and chemical change during exposure of the sample to ambient air. X-ray photoelectron studies indicate changes in the chemical composition with various thickness of lithium on graphite during deposition. An oxide layer formation is noticed during lithium deposition even though all the experiments were performed in ultrahigh vacuum. The metal oxide is immediately transformed into carbonate when the deposited sample is exposed to air.

  7. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    Science.gov (United States)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-10-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 °C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 °C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 °C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 °C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed.

  8. Comparison of the oxidation rate and degree of graphitization of selected IG and NBG nuclear graphite grades

    International Nuclear Information System (INIS)

    Chi, Se-Hwan; Kim, Gen-Chan

    2008-01-01

    The oxidation rate and degree of graphitization (DOG) were determined for some selected nuclear graphite grades (i.e., IG-110, IG-430, NBG-18, NBG-25) and compared in view of their filler coke type (i.e., pitch or petroleum coke) and the physical property of the grades. Oxidation rates were determined at six temperatures between 600 and 960 deg. C in air by using a three-zone vertical tube furnace at a 10 l/min air flow rate. The specimens were a cylinder with a 25.4 mm diameter and a 25.4 mm length. The DOG was determined based on the lattice parameter c determined from an X-ray diffraction (XRD). Results showed that, even though the four examined nuclear graphite grades showed a highly temperature-sensitive oxidation behavior through out the test temperature range of 600-950 deg. C, the differences between the grades were not significant. The oxidation rates determined for a 5-10% weight loss at the six temperatures were nearly the same except for 702 and 808 deg. C, where the pitch coke graphites showed an apparent decrease in their oxidation rate, more so than the petroleum coke graphites. These effects of the coke type reduced or nearly disappeared with an increasing temperature. The average activation energy determined for 608-808 deg. C was 161.5 ± 7.3 kJ/mol, showing that the dominant oxidation reaction occurred by a chemical control. A relationship between the oxidation rate and DOG was not observed

  9. Graphite based Schottky diodes formed semiconducting substrates

    Science.gov (United States)

    Schumann, Todd; Tongay, Sefaattin; Hebard, Arthur

    2010-03-01

    We demonstrate the formation of semimetal graphite/semiconductor Schottky barriers where the semiconductor is either silicon (Si), gallium arsenide (GaAs) or 4H-silicon carbide (4H-SiC). The fabrication can be as easy as allowing a dab of graphite paint to air dry on any one of the investigated semiconductors. Near room temperature, the forward-bias diode characteristics are well described by thermionic emission, and the extracted barrier heights, which are confirmed by capacitance voltage measurements, roughly follow the Schottky-Mott relation. Since the outermost layer of the graphite electrode is a single graphene sheet, we expect that graphene/semiconductor barriers will manifest similar behavior.

  10. Characterization, treatment and conditioning of radioactive graphite from decommissioning of nuclear reactors

    International Nuclear Information System (INIS)

    2006-09-01

    Graphite has been used as a moderator and reflector of neutrons in more than 100 nuclear power plants and in many research and plutonium-production reactors. It is used primarily as a neutron reflector or neutron moderator, although graphite is also used for other features of reactor cores, such as fuel sleeves. Many of the graphite-moderated reactors are now quite old, with some already shutdown. Therefore radioactive graphite dismantling and the management of radioactive graphite waste are becoming an increasingly important issue for a number of IAEA Member States. Worldwide, there are more than 230 000 tonnes of radioactive graphite which will eventually need to be managed as radioactive waste. Proper management of radioactive graphite waste requires complex planning and the implementation of several interrelated operations. There are two basic options for graphite waste management: (1) packaging of non-conditioned graphite waste with subsequent direct disposal of the waste packages, and (2) conditioning of graphite waste (principally either by incineration or calcination) with separate disposal of any waste products produced, such as incinerator ash. In both cases, the specific properties of graphite - such as Wigner energy, graphite dust explosibility, and radioactive gases released from waste graphite - have a potential impact on the safety of radioactive graphite waste management and need to be carefully considered. Radioactive graphite waste management is not specifically addressed in IAEA publications. Only general and limited information is available in publications dealing with decommissioning of nuclear reactors. This report provides a comprehensive discussion of radioactive graphite waste characterization, handling, conditioning and disposal throughout the operating and decommissioning life cycle. The first draft report was prepared at a meeting on 23-27 February 1998. A technical meeting (TM) was held in October 1999 in coincidence with the Seminar on

  11. Contribution to the study of internal friction in graphites; Contribution a l'etude du frottement interieur des graphites

    Energy Technology Data Exchange (ETDEWEB)

    Merlin, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-03-01

    A study has been made of the internal friction in different graphites between -180 C and +500 C using a torsion pendulum; the graphites had been previously treated thermo-mechanically, by neutron irradiation and subjected to partial annealings. It has been shown that there occurs: a hysteretic type dissipation of energy, connected with interactions between dislocations and other defects in the matrix; a dissipation having a partially hysteretic character which can be interpreted by a Granato-Luke type formalism and which is connected with the presence of an 'ultra-micro porosity'; a dissipation by a relaxation mechanism after a small dose of irradiation; this is attributed to the reorientation of bi-interstitials; a dissipation having the characteristics of a solid state transformation, this during an annealing after irradiation. It is attributed to the reorganization of interstitial defects. Some information has thus been obtained concerning graphites, in particular: their behaviour at low mechanical stresses, the nature of irradiation defects and their behaviour during annealing, the structural changes occurring during graphitization, the relationship between internal friction and macroscopic mechanical properties. (author) [French] L'etude du coefficient de frottement interieur au moyen d'un pendule de torsion entre -180 C et +500 C a ete realisee pour differents graphites apres des traitements thermo-mecaniques, des irradiations neutroniques et des guerisons partielles. Il a ete mis en evidence: une dissipation d'energie a caractere hysteretique, reliee aux interactions des dislocations avec les autres defauts de la matrice; une dissipation a caractere partiellement hysteretique, interpretable par un formalisme type Granato-Lucke et reliee a la presence d'une ''ultra-microporosite''; une dissipation par un mecanisme de relaxation, apres irradiation a faible dose, attribuee a la reorientation de di-interstitiels; une dissipation presentant les caracteristiques d

  12. Future of newer basal insulin

    OpenAIRE

    Madhu, S. V.; Velmurugan, M.

    2013-01-01

    Basal insulin have been developed over the years. In recent times newer analogues have been added to the armanentarium for diabetes therapy. This review specifically reviews the current status of different basal insulins

  13. On the Thermal Conductivity Change of Matrix Graphite Materials after Neutron Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Woo; Yeo, Seunghwan; Kim, Eung-Seon; Sah, Injin; Park, Daegyu; Kim, Youngjun; Cho, Moon Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this work, the variations of the thermal conductivity of the A3-3 matrix graphite after neutron irradiation is discussed as well as of the IG-110 graphite for comparison. Neutron irradiation of the graphite specimens was carried out as a part of the first irradiation test of KAERI's coated particle fuel specimens by use of Hanaro research reactor. This work can be summarized as follows: 1) In the evaluation of the specific heat of the graphite materials, various literature data were used and the variations of the specific heat data of all the graphite specimens are observed well agreed, irrespectively of the difference in specimens (graphite and matrix graphite and irradiated and un-irradiated). 2) This implies that it should be reasonable that for both structural graphite and fuel matrix graphite, and even for the neuron-irradiated graphite, any of these specific heat data set be used in the calculation of the thermal conductivity. 3) For the irradiated A3-3 matrix graphite specimens, the thermal conductivity decreased on both directions. On the radial direction, the tendency of variation upon temperature is similar to that of unirradiated specimen, i.e., decreasing as the temperature increases. 4) In the German irradiation experiments with A3-27 matrix graphite specimens, the thermal conductivity of the un-irradiated specimen shows a decrease and that of irradiated specimen is nearly constant as the temperature increases. 5) The thermal conductivity of the irradiated IG-110 was considerably decreased compared with that of un-irradiated specimens The difference of the thermal conductivity of un-irradiated and irradiated IG-110 graphite specimens is much larger than that of un-irradiated and irradiated A3-3 matrix graphite specimens.

  14. Effects of graphite on rheological and conventional properties of bituminous binders

    Directory of Open Access Journals (Sweden)

    Yunus Erkuş

    2017-07-01

    Full Text Available In this study, the effects of graphite used for developing the rheological and conventional properties of bitumen were investigated using various bituminous binder tests. Penetration, softening point, rotational viscosity (RV, dynamic shear rheometer (DSR and bending beam rheometer (BBR tests were applied to bituminous binders modified with four different proportions of graphite by bitumen weight. The penetration values declined while softening point values increased with rising graphite content. While graphite induced 8 °C increases in mixing-compacting temperature by increasing the viscosity values, it also increased the rutting parameter. According to the BBR test, the deformation and stiffness values changed significantly with increasing graphite content, but the m-values did not change significantly. These results showed that graphite generally used for improving the thermal properties can improve to high temperature performance of mixtures. Keywords: Graphite, Bitumen, Conventional properties, Rheological properties

  15. Friction and wear of carbon-graphite materials for high energy brakes

    Science.gov (United States)

    Bill, R. C.

    1975-01-01

    Caliper-type brakes simulation experiments were conducted on seven different carbon-graphite material formulations against a steel disk material and against a carbon-graphite disk material. The effects of binder level, boron carbide (B4C) additions, graphite fiber additions, and graphite cloth reinforcement on friction and wear behavior were investigated. Reductions in binder level and additions of B4C each resulted in increased wear. The wear rate was not affected by the addition of graphite fibers. Transition to severe wear and high friction was observed in the case of graphite-cloth-reinforced carbon sliding against a disk of similar composition. This transition was related to the disruption of a continuous graphite shear film that must form on the sliding surfaces if low wear is to occur. The exposure of the fiber structure of the cloth constituent is believed to play a role in the shear film disruption.

  16. Thermogravimetric and Differential Scanning Calorimetric Behavior of Ball-Milled Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung Seon; Kim, Min Hwan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Yi Hyun; Cho, Seung Yon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    An examination was made to characterize the oxidation behavior of ball-milled nuclear graphite powder through a TG-DSC analysis. With the ball milling time, the BET surface area increased with the reduction of particle size, but decreased with the chemisorptions of O{sub 2} on the activated surface. The enhancement of the oxidation after the ball milling is attributed to both increases in the specific surface area and atomic scale defects in the graphite structure. In a high temperature gas-cooled reactor, nuclear graphite has been widely used as fuel elements, moderator or reflector blocks, and core support structures owing to its excellent moderating power, mechanical properties and machinability. For the same reason, it will be used in a helium cooled ceramic reflector test blanket module for the ITER. Each submodule has a seven-layer breeding zone, including three neutron multiplier layers packed with beryllium pebbles, three lithium ceramic pebbles packed tritium breeder layers, and a reflector layer packed with 1 mm diameter graphite pebbles to reduce the volume of beryllium. The abrasion of graphite structures owing to relative motion or thermal cycle during operation may produce graphite dust. It is expected that graphite dust will be more oxidative than bulk graphite, and thus the oxidation behavior of graphite dust must be examined to analyze the safety of the reactors during an air ingress accident. In this study, the thermal stability of ball-milled graphite powder was investigated using a simultaneous thermogravimeter-differential scanning calorimeter.

  17. Nearaffine planes

    NARCIS (Netherlands)

    Wilbrink, H.A.

    1982-01-01

    In this paper we develop a theory for nearaffine planes analogous to the theory of ordinary affine translation planes. In a subsequent paper we shall use this theory to give a characterization of a certain class of Minkowski planes.

  18. Research on the phenomenon of graphitization. Crystallographic study - Study of bromine sorption

    International Nuclear Information System (INIS)

    Maire, Jacques

    1967-01-01

    This research thesis reports the study of the mechanism of graphitization of carbon by using X-ray diffraction analysis and the physical and chemical study of lamellar reactions between carbon and bromine. The author first presents generalities and results of preliminary studies (meaning of graphitization, presentation of the various carbon groups and classes), and then reports the study of the graphitization of compact carbons (soft carbons). More precisely, he reports the crystallographic study of partially graphitized carbons: methods and principles, experimental results and their analysis, discussion of the graphitization mechanism. In the next part, the author reports the study of bromine sorption on carbons: experimental method, isotherms of a natural graphite and of a graphitized carbon, structure of carbon-bromine complexes, isotherms of graphitizable carbons and of all other carbons, distribution of bromine layers in partially graphitized carbons, bromine sorption and Fermi level

  19. Impermeable Graphite: A New Development for Embedding Radioactive Waste

    International Nuclear Information System (INIS)

    Fachinger, Johannes

    2016-01-01

    Irradiated graphite has to be handled as radioactive waste after the operational period of the reactor. However, the waste management of irradiated graphite e.g. from the Spanish Vandellos reactor shows, that waste management of even low contaminated graphite could be expensive and requires special retrieval, treatment and disposal technologies for safe long term storage as low or medium radioactive waste. FNAG has developed an impermeable graphite matrix (IGM) as nuclear waste embedding material. This IGM provides a long term stable enclosure of radioactive waste and can reuse irradiated graphite as feedstock material. Therefore, no additional disposal volume is required if e.g. concrete waste packages were replaced by IGM waste packages. The variability of IGM as embedding has been summarized in the following paper usable for metal scraps, ion exchange resins or debris from buildings. Furthermore the main physical, chemical and structural properties are described. (author)

  20. Fort St. Vrain graphite site mechanical separation concept selection

    International Nuclear Information System (INIS)

    Berry, S.M.

    1993-09-01

    One of the alternatives to the disposal of the Fort St. Vrain (FSV) reactor spent nuclear fuel involves the separation of the fuel rods composed of compacts from the graphite fuel block assembly. After the separation of these two components, the empty graphite fuel blocks would be disposed of as a low level waste (provided the appropriate requirements are met) and the fuel compacts would be treated as high level waste material. This report deals with the mechanical separation aspects concerning physical disassembly of the FSV graphite fuel element into the empty graphite fuel blocks and fuel compacts. This report recommends that a drilling technique is the preferred choice for accessing the, fuel channel holes and that each hole is drilled separately. This report does not cover any techniques or methods to separate the triso fuel particles from the graphite matrix of the fuel compacts

  1. Structures and Performance of Graphene/Polyimide Composite Graphite Fibers

    Directory of Open Access Journals (Sweden)

    LI Na

    2017-09-01

    Full Text Available Dry-wet spinning process was used to gain graphene oxide/polyimide composite fibers, then graphene/polyimide composite carbon and graphite fibers were obtained through carbonized and graphitized. Different graphene oxide contents of the composite carbon and graphite fibers were measured by thermal gravimetric analysis, Raman, mechanical properties, electrical properties,SEM and so on. The results show that when the GO content is 0.3%(mass fraction,the same below, the thermal property of the graphene oxide/polyimide composite fibers is the best. The mechanical and electrical properties are obriously improved by the addition of GO, graphitization degree also increases. When the composite carbon fibers are treated at 2800℃, GO content increases to 2.0%, the thermal conductivity of the composite graphite fibers reaches 435.57W·m-1·K-1 and cross-section structures of carbon fibers are more compact.

  2. Graphite structure and its relation to mechanical engineering design

    International Nuclear Information System (INIS)

    Brocklehurst, J.E.; Kelly, B.T.

    1980-01-01

    The inhomogeneous nature of polycrystalline graphite requires property measurements to be made over dimensions large enough to average the local variations in the structure. This is particularly true for mechanical integrity, and experimental data are presented which illustrate the importance of the real aggregate structure of graphite and the difficulties of interpreting strength data from different tests. The classical statistical treatments do not hold generally, and the problem of defining a failure criterion for graphite is discussed. It is suggested that the stress conditions in graphite components might be classified in terms of the dimensions and stress gradients related to the characteristic flaw size of the material as determined experimentally. (author)

  3. Floatability study of graphite ore from southeast Sulawesi (Indonesia)

    Science.gov (United States)

    Florena, Fenfen Fenda; Syarifuddin, Fahmi; Hanam, Eko Sulistio; Trisko, Nici; Kustiyanto, Eko; Enilisiana, Rianto, Anton; Arinton, Ghenadi

    2016-02-01

    Graphite ore obtained from Kolaka Regency, South East Sulawesi, Indonesia have been succesfully investigated for beneficiation by froth flotation technique. Preliminary study have been done to determine the minerals types, fixed carbon content and liberation size of the graphite. Graphite is naturally floatable due to its hydrophobic property. Some suitable reagents are usually added to increase effectiveness of recovery. In this article, enrichment of graphite by froth flotation was studied by investigating the effect of reagents concentrations, rotation speed and particle size on the carbon grade and recovery of the concentrate. The carbon grade increased from 3.00% to 60.00% at the optimum flotation conditions.

  4. Fission Product Sorptivity in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Tompson, Jr., Robert V. [Univ. of Missouri, Columbia, MO (United States); Loyalka, Sudarshan [Univ. of Missouri, Columbia, MO (United States); Ghosh, Tushar [Univ. of Missouri, Columbia, MO (United States); Viswanath, Dabir [Univ. of Missouri, Columbia, MO (United States); Walton, Kyle [Univ. of Missouri, Columbia, MO (United States); Haffner, Robert [Univ. of Missouri, Columbia, MO (United States)

    2015-04-01

    Both adsorption and absorption (sorption) of fission product (FP) gases on/into graphite are issues of interest in very high temperature reactors (VHTRs). In the original proposal, we proposed to use packed beds of graphite particles to measure sorption at a variety of temperatures and to use an electrodynamic balance (EDB) to measure sorption onto single graphite particles (a few μm in diameter) at room temperature. The use of packed beds at elevated temperature is not an issue. However, the TPOC requested revision of this initial proposal to included single particle measurements at elevated temperatures up to 1100 °C. To accommodate the desire of NEUP to extend the single particle EDB measurements to elevated temperatures it was necessary to significantly revise the plan and the budget. These revisions were approved. In the EDB method, we levitate a single graphite particle (the size, surface characteristics, morphology, purity, and composition of the particle can be varied) or agglomerate in the balance and measure the sorption of species by observing the changes in mass. This process involves the use of an electron stepping technique to measure the total charge on a particle which, in conjunction with the measured suspension voltages for the particle, allows for determinations of mass and, hence, of mass changes which then correspond to measurements of sorption. Accommodating elevated temperatures with this type of system required a significant system redesign and required additional time that ultimately was not available. These constraints also meant that the grant had to focus on fewer species as a result. Overall, the extension of the original proposed single particle work to elevated temperatures added greatly to the complexity of the proposed project and added greatly to the time that would eventually be required as well. This means that the bulk of the experimental progress was made using the packed bed sorption systems. Only being able to recruit one

  5. Selection, rejection and optimisation of pyrolytic graphite (PG) crystal analysers for use on the new IRIS graphite analyser bank

    International Nuclear Information System (INIS)

    Marshall, P.J.; Sivia, D.S.; Adams, M.A.; Telling, M.T.F.

    2000-01-01

    This report discusses design problems incurred by equipping the IRIS high-resolution inelastic spectrometer at the ISIS pulsed neutron source, UK with a new 4212 piece pyrolytic graphite crystal analyser array. Of the 4212 graphite pieces required, approximately 2500 will be newly purchased PG crystals with the remainder comprising of the currently installed graphite analysers. The quality of the new analyser pieces, with respect to manufacturing specifications, is assessed, as is the optimum arrangement of new PG pieces amongst old to circumvent degradation of the spectrometer's current angular resolution. Techniques employed to achieve these criteria include accurate calliper measurements, FORTRAN programming and statistical analysis. (author)

  6. Evaluation of Accelerated Graphitic Corrosion Test of Gray Cast Iron

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Hong, Jong Dae; Chang Heui; Na, Kyung Hwan; Lee, Jae Gon

    2011-01-01

    In operating nuclear power plants, gray cast iron is commonly used as materials for various non-safety system components including pipes in fire water system, valve bodies, bonnets, and pump castings. In such locations, operating condition does not require alloy steels with excellent mechanical properties. But, a few corrosion related degradation, or graphitic corrosion is frequently occurred to gray cast iron during the long-term operation in nuclear power plant. Graphitic corrosion is selective leaching of iron from gray cast iron, where iron gets removed and graphite grains remain intact. In U.S.A., one-time visual inspection and hardness measurement are required from regulatory body to detect the graphitic corrosion for the life extension evaluation of the operating nuclear power plant. In this study, experiments were conducted to make accelerated graphitic corrosion of gray cast iron using electrochemical method, and hardness was measured for the specimens to establish the correlation between degree of graphitic corrosion and surface hardness of gray cast iron

  7. Recent Advances in Preparation, Structure, Properties and Applications of Graphite Oxide.

    Science.gov (United States)

    Srivastava, Suneel Kumar; Pionteck, Jürgen

    2015-03-01

    Graphite oxide, also referred as graphitic oxide or graphitic acid, is an oxidized bulk product of graphite with a variable composition. However, it did not receive immense attention until it was identified as an important and easily obtainable precursor for the preparation of graphene. This inspired many researchers to explore facts related to graphite oxide in exploiting its fascinating features. The present article culminates up-dated review on different preparative methods, morphology and characterization of physical/chemical properties of graphite oxide by XRD, XPS, FTIR, Raman, NMR, UV-visible, and DRIFT analyses. Finally, recent developments on intercalation and applications of GO in multifaceted areas of catalysis, sensor, supercapacitors, water purification, hydrogen storage and magnetic shielding etc. has also been reviewed.

  8. Basal cell carcinoma-treatment with cryosurgery

    Directory of Open Access Journals (Sweden)

    Kaur S

    2003-03-01

    Full Text Available Basal cell carcinoma is a common cutaneous malignancy, frequently occurring over the face in elderly individuals. Various therapeutic modalities are available to treat these tumors. We describe three patients with basal cell carcinoma successfully treated with cryosurgery and discuss the indications and the use of this treatment modality for basal cell carcinomas.

  9. Study on wear resistance of vanadium alloying compacted/vermicular graphite cast iron

    International Nuclear Information System (INIS)

    Park, Yoon Woo

    1987-01-01

    Wear resistance of the Compacted/Vermicular graphite cast irons was studied by changing the vanadium content in the cast irons. The results obtained in this work are summarized as follows. 1. When the same amount of vanadium was added to the flake graphite cast iron, spheroidal graphitecast iron and Compacted/Vermicular graphite cast iron, spheroidal graphite cast iron and Compacted/Vermicular graphite cast iron wear resistance decreased in following sequence, that is, flake graphite cast iron> spheroidal graphite cast iron>Compacted/Vermicular graphite cast iron. 2. Addition of vanadium to the Compacted/Vermicular cast iron leaded to a remarkable increase in hardness because it made the amount of pearlite in matrix increase. 3. Addition of vanadium to the compacted/Vermicular graphite cast iron significantly enhanced wear resistance and the maximum resistance was achieved at about 0.36% vanadium. 4. The maximum amount of wear apppeared at sliding speed of about 1.4m/sec and wear mode was considered to be oxidation abrasion from the observation of wear tracks. (Author)

  10. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  11. Graphite core design in UK reactors

    International Nuclear Information System (INIS)

    Davies, M.W.

    1996-01-01

    The cores in the first power producing Magnox reactors in the UK were designed with only a limited amount of information available regarding the anisotropic dimensional change behaviour of Pile Grade graphite. As more information was gained it was necessary to make modifications to the design, some minor, some major. As the cores being built became larger, and with the switch to the Advanced Gas-cooled Reactor (AGR) with its much higher power density, additional problems had to be overcome such as increased dimensional change and radiolytic oxidation by the carbon dioxide coolant. For the AGRs a more isotropic graphite was required, with a lower initial open pore volume and higher strength. Gilsocarbon graphite was developed and was selected for all the AGRs built in the UK. Methane bearing coolants are used to limit radiolytic oxidation. (author). 5 figs

  12. Electrostatic Manipulation of Graphene On Graphite

    Science.gov (United States)

    Untiedt, Carlos; Rubio-Verdu, Carmen; Saenz-Arce, Giovanni; Martinez-Asencio, Jesús; Milan, David C.; Moaied, Mohamed; Palacios, Juan J.; Caturla, Maria Jose

    2015-03-01

    Here we report the use of a Scanning Tunneling Microscope (STM) under ambient and vacuum conditions to study the controlled exfoliation of the last layer of a graphite surface when an electrostatic force is applied from a STM tip. In this work we have focused on the study of two parameters: the applied voltage needed to compensate the graphite interlayer attractive force and the one needed to break atomic bonds to produce folded structures. Additionally, we have studied the influence of edge structure in the breaking geometry. Independently of the edge orientation the graphite layer is found to tear through the zig-zag direction and the lifled layer shows a zig-zag folding direction. Molecular Dinamics simulations and DFT calculations have been performed to understand our results, showing a strong correlation with the experiments. Comunidad Valenciana through Prometeo project.

  13. Ag-catalyzed InAs nanowires grown on transferable graphite flakes

    DEFF Research Database (Denmark)

    Meyer-Holdt, Jakob; Kanne, Thomas; Sestoft, Joachim E.

    2016-01-01

    on exfoliated graphite flakes by molecular beam epitaxy. Ag catalyzes the InAs nanowire growth selectively on the graphite flakes and not on the underlying InAs substrates. This allows for easy transfer of the flexible graphite flakes with as-grown nanowire ensembles to arbitrary substrates by a micro...

  14. Interaction of boron with graphite: A van der Waals density functional study

    International Nuclear Information System (INIS)

    Liu, Juan; Wang, Chen; Liang, Tongxiang; Lai, Wensheng

    2016-01-01

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  15. Derivation of a radionuclide inventory for irradiated graphite-chlorine-36 inventory determination

    International Nuclear Information System (INIS)

    Brown, F.J.; Palmer, J.D.; Wood, P.

    2001-01-01

    The irradiation of materials in nuclear reactors results in neutron activation of component elements. Irradiated graphite wastes arise from their use in UK gas-cooled research and commercial reactor cores, and in fuel element components, where the graphite has acted as the neutron moderator. During irradiation the residual chlorine, which was used to purify the graphite during manufacture, is activated to chlorine-36. This isotope is long-lived and poorly retarded by geological barriers, and may therefore be a key radionuclide with respect to post-closure disposal facilities performance. United Kingdom Nirex Limited, currently responsible for the development of a disposal route for intermediate-level radioactive wastes in the UK, carried out a major research programme to support an overall assessment of the chlorine-36 activity of all wastes including graphite reactor components. The various UK gas cooled reactors reactors have used a range of graphite components made from diverse graphite types; this has necessitated a systematic programme to cover the wide range of graphite and production processes. The programme consisted of: precursor measurements - on the surface and/or bulk of representative samples of relevant materials, using specially developed methods; transfer studies - to quantify the potential for transfer of Cl-36 into and between waste streams during irradiation of graphite; theoretical assessments - to support the calculational methodology; actual measurements - to confirm the modelling. For graphite, a total of 458 measurements on samples from 57 batches were performed, to provide a detailed understanding of the composition of nuclear graphite. The work has resulted in the generation of probability density functions (PDF) for the mean chlorine concentration of three classes of graphite: fuel element graphite; Magnox moderator and reflector graphite and AGR reflector graphite; AGR moderator graphite. Transfer studies have shown that a significant

  16. Interaction of boron with graphite: A van der Waals density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Juan; Wang, Chen [Beijing Key Lab of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Liang, Tongxiang, E-mail: txliang@tsinghua.edu.cn [State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084 (China); Lai, Wensheng [Advanced Material Laboratory, School of Materials Science & Engineering, Tsinghua University, Beijing, 100084 (China)

    2016-08-30

    Highlights: • A van der Waals density-functional approach is applied to study the interaction of boron with graphite. • VdW-DF functionals give fair agreement of crystal parameters with experiments. • The π electron approaches boron while adsorbing on graphite surface. • The hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. • PBE cannot describe the interstitial boron in graphite because of the ignoring binding of graphite sheets. - Abstract: Boron doping has been widely investigated to improve oxidation resistance of graphite. In this work the interaction of boron with graphite is investigated by a van der Waals density-functional approach (vdW-DF). The traditional density-functional theory (DFT) is well accounted for the binding in boron-substituted graphite. However, to investigate the boron atom on graphite surface and the interstitial impurities require use of a description of graphite interlayer binding. Traditional DFT cannot describe the vdW physics, for instance, GGA calculations show no relevant binding between graphite sheets. LDA shows some binding, but they fail to provide an accurate account of vdW forces. In this paper, we compare the calculation results of graphite lattice constant and cohesive energy by several functionals, it shows that vdW-DF such as two optimized functionals optB88-vdW and optB86b-vdW give much improved results than traditional DFT. The vdW-DF approach is then applied to study the interaction of boron with graphite. Boron adsorption, substitution, and intercalation are discussed in terms of structural parameters and electronic structures. When adsorbing on graphite surface, boron behaves as π electron acceptor. The π electron approaches boron atom because of more electropositive of boron than carbon. For substitution situation, the hole introduced by boron mainly concentrates on boron and the nearest three carbon atoms. The B-doped graphite system with the hole has less

  17. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  18. Effective Thermal Conductivity of Graphite Materials with Cracks

    Science.gov (United States)

    Pestchaanyi, S. E.; Landman, I. S.

    The dependence of effective thermal diffusivity on temperature caused by volumetric cracks is modelled for macroscopic graphite samples using the three-dimensional thermomechanics code Pegasus-3D. At high off-normal heat loads typical of the divertor armour, thermostress due to the anisotropy of graphite grains is much larger than that due to the temperature gradient. Numerical simulation demonstrated that the volumetric crack density both in fine grain graphites and in the CFC matrix depends mainly on the local sample temperature, not on the temperature gradient. This allows to define an effective thermal diffusivity for graphite with cracks. The results obtained are used to explain intense cracking and particle release from carbon based materials under electron beam heat load. Decrease of graphite thermal diffusivity with increase of the crack density explains particle release mechanism in the experiments with CFC where a clear energy threshold for the onset of particle release has been observed in J. Linke et al. Fusion Eng. Design, in press, Bazyler et al., these proceedings. Surface temperature measurement is necessary to calibrate the Pegasus-3D code for simulation of ITER divertor armour brittle destruction.

  19. Variation of the properties of siliconized graphite during neutron irradiation

    International Nuclear Information System (INIS)

    Virgil'ev, Y.S.; Chugunova, T.K.; Pikulik, R.G.

    1986-01-01

    The authors evaluate the radiation-induced property changes in siliconized graphite of the industrial grades SG-P and SG-M. The authors simultaneously tested the reference (control) specimens of graphite that are used as the base for obtaining the SG-M siliconized graphite by impregnating with silicon. The suggested scheme (model) atributes the dimensional changes of the siliconized graphite specimens to the effect of the quantitative ratio of the carbide phase and carbon under different conditions of irradiation. If silicon is insufficient for the formation of a dense skeleton, graphite plays a devisive role, and it may be assumed that at an irradiation temperature greater than 600 K, the material shrinks. The presence of isolated carbide inclusions also affects the physicomechanical properties (including the anitfriction properties)

  20. Properties of screen-printed modified graphite layers

    Directory of Open Access Journals (Sweden)

    J. Walter

    2010-07-01

    Full Text Available During last years protection of the environment is one of the important problems that should be solved by modern technology. Theimportant problems are toxic gases emitted by conventional power plants. One of the methods that contribute to decreasing air pollution is manufacturing of cheap solar energy devices that could be applied in households. Among different type of fabrication technology of solar cells, DSSC technology looks like one of the interesting because it is relatively simple and low cost technology. Nowadays a lot of researcher groups making investigations to improve its setup, to get the cost reduction. The methods to achieve this goal were proposed in ISE (Germany as a concept of monolithic dye sensitised solar cell. One of the ideas of this solar cells setup is replacing expensive TCO electrode by much cheaper graphite electrode. Replacing TCO glass by graphite layer has to be done only in case of comparable properties of those both electrodes. There are some tested ideas of manufacturing that electrode and some of them are successfully applied. Presented work has been focused on preparation graphite conductive electrode for DSSC technology application, fabricated by screen–printing technique. Investigations concern new graphite past composition suitable for graphite layer preparation. It was been found that applying additive of titanium organic compound (Tyzor GBA to the past composition result in good properties, characterised by low resistance and good adhesion between graphite particles in the printed layer. Some tested layers prepared from proposed paste compositions characterised by better conductivity then applied in conventional DSSC cells counter electrode. The optimal addition of the modifier has not fixed yet.Among tested pastes the most promising results has been achieved for paste contained the biggest amount of Tyzor GBA.

  1. The preliminary feasibility of intercalated graphite railgun armatures

    International Nuclear Information System (INIS)

    Gaier, J.R.; Yashan, D.; Naud, S.

    1991-01-01

    This paper reports on graphite intercalation compounds which may provide an excellent material for the fabrication of electro-magnetic railgun armatures. As a pulse of power is fed into the armature the intercalate could be excited into the plasma state around the edges of the armature, while the bulk of the current would be carried through the graphite block. Such an armature would have desirable characteristics of both diffuse plasma armatures and bulk conduction armatures. In addition, the highly anisotropic nature of these materials could enable the electrical and thermal conductivity to be tailored to meet the specific requirements of electromagnetic railgun armatures. Preliminary investigations have been performed in an attempt to determine the feasibility of using graphite intercalation compounds as railgun armatures. Issues of fabrication, resistivity, stability, and electrical current spreading have been addressed for the case of highly oriented pyrolytic graphite

  2. A DSP-based readout and online processing system for a new focal-plane polarimeter at AGOR

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, M.; Bassini, R.; Berg, A.M. van den; Ellinghaus, F.; Frekers, D.; Hannen, V.M.; Haeupke, T.; Heyse, J.; Jacobs, E.; Kirsch, M.; Kruesemann, B.; Rakers, S.; Sohlbach, H.; Woertche, H.J. E-mail: wortche@ikp.uni-muenster.de

    1999-11-21

    A Focal-Plane Polarimeter (FPP) for the large acceptance Big-Bite Spectrometer (BBS) at AGOR using a novel readout architecture has been commissioned at the KVI Groningen. The instrument is optimized for medium-energy polarized proton scattering near or at 0 deg. . For the handling of the high counting rates at extreme forward angles and for the suppression of small-angle scattering in the graphite analyzer, a high-performance data processing DSP system connecting to the LeCroy FERA and PCOS ECL bus architecture has been made operational and tested successfully. Details of the system and the functions of the various electronic components are described.

  3. Effects of plane of nutrition and feed deprivation on insulin responses in dairy cattle during late gestation.

    Science.gov (United States)

    Schoenberg, K M; Ehrhardt, R M; Overton, T R

    2012-02-01

    Nonlactating Holstein cows (n=12) in late pregnancy were used to determine effects of plane of nutrition followed by feed deprivation on metabolic responses to insulin. Beginning 48 d before expected parturition, cows were fed to either a high plane (HP) or a low plane (LP) of nutrition (162 and 90% of calculated energy requirements, respectively). Cows were subjected to an intravenous glucose tolerance test [GTT; 0.25 g of dextrose/kg of body weight (BW)] on d 14 of treatment and a hyperinsulinemic-euglycemic clamp (HEC; 1 μg/kg of BW/h) on d 15. Following 24 h of feed removal, cows were subjected to a second GTT on d 17 and a second HEC on d 18 after 48 h of feed removal. During the feeding period, plasma nonesterified fatty acid (NEFA) concentrations were higher for cows fed the LP diet compared with those fed the HP diet (163.6 vs. 73.1 μEq/L), whereas plasma insulin was higher for cows fed the HP diet during the feeding period (11.1 vs. 5.2 μIU/mL). Glucose areas under the curve during both GTT were higher for cows fed the LP diet than for those fed the HP diet (4,213 vs. 3,750 mg/dL × 60 min) and was higher during the GTT in the feed-deprived state (4,878 vs. 3,085 mg/dL × 60 min) than in the GTT during the fed state, suggesting slower clearance of glucose during negative energy balance either pre-or post-feed deprivation. This corresponded with a higher dextrose infusion rate during the fed-state HEC than during the feed-deprived-state HEC (203.3 vs. 90.1 mL/h). Plasma NEFA decreased at a faster rate following GTT during feed deprivation compared with that during the fed state (8.7 vs. 2.9%/min). Suppression of NEFA was highest for cows fed the HP diet during the GTT conducted during feed deprivation, and lowest for cows fed the HP diet during the fed-state GTT (68.6 vs. 50.3% decrease from basal). Plasma insulin responses to GTT were affected by feed deprivation such that cows had a much lower insulin response to GTT by 24 h after feed removal (995 vs

  4. Polyphase diffusion of fission products in graphite

    International Nuclear Information System (INIS)

    Dannert, V.

    1989-05-01

    The report attempts to give an introduction into the subject of fission product transport in nuclear graphite and results in an extended proposal of a transport-model. Beginning with a rough description of the graphite in question, an idea about the physical transport-phenomena in graphite is developed. Some of the basic experimental methods, especially techniques of porosimetry, determination of sorption-isotherms and of course several transport-experiments, are briefly described and their results are discussed. Some of the most frequent transport models are introduced and assessed with the criteria emphasized in this report. An extended model is proposed including the following main ideas: The transport of the fission-products is regarded as a two-phase-diffusion process through the open pores of the graphite. The two phases are: surface-diffusion and gas-diffusion. A time-dependent coupling of the two diffusion-phases by sorption-isotherms and a concentration-dependence of the surface diffusion coefficient, also related to the physical behaviour of the sorption-isotherms, are the basic properties of the proposed model. (orig./HP) [de

  5. Functional interface of polymer modified graphite anode

    Energy Technology Data Exchange (ETDEWEB)

    Komaba, S.; Ozeki, T.; Okushi, K. [Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601 (Japan)

    2009-04-01

    Graphite electrodes were modified by polyacrylic acid (PAA), polymethacrylic acid (PMA), and polyvinyl alcohol (PVA). Their electrochemical properties were examined in 1 mol dm{sup -3} LiClO{sub 4} ethylene carbonate:dimethyl carbonate (EC:DMC) and propylene carbonate (PC) solutions as an anode of lithium ion batteries. Generally, lithium ions hardly intercalate into graphite in the PC electrolyte due to a decomposition of the PC electrolyte at ca. 0.8 V vs. Li/Li{sup +}, and it results in the exfoliation of the graphene layers. However, the modified graphite electrodes with PAA, PMA, and PVA demonstrated the stable charge-discharge performance due to the reversible lithium intercalation not only in the EC:DMC but also in the PC electrolytes since the electrolyte decomposition and co-intercalation of solvent were successfully suppressed by the polymer modification. It is thought that these improvements were attributed to the interfacial function of the polymer layer on the graphite which interacted with the solvated lithium ions at the electrode interface. (author)

  6. SiC Conversion Coating Prepared from Silica-Graphite Reaction

    Directory of Open Access Journals (Sweden)

    Back-Sub Sung

    2017-01-01

    Full Text Available The β-SiC conversion coatings were successfully synthesized by the SiO(v-graphite(s reaction between silica powder and graphite specimen. This paper is to describe the effects on the characteristics of the SiC conversion coatings, fabricated according to two different reaction conditions. FE-SEM, FE-TEM microstructural morphologies, XRD patterns, pore size distribution, and oxidation behavior of the SiC-coated graphite were investigated. In the XRD pattern and SAD pattern, the coating layers showed cubic SiC peak as well as hexagonal SiC peak. The SiC coatings showed somewhat different characteristics with the reaction conditions according to the position arrangement of the graphite samples. The SiC coating on graphite, prepared in reaction zone (2, shows higher intensity of beta-SiC main peak (111 in XRD pattern as well as rather lower porosity and smaller main pore size peak under 1 μm.

  7. Structure and Performance of Epoxy Resin Cladded Graphite Used as Anode

    Science.gov (United States)

    Zhou, Zhentao; Li, Haijun

    This paper is concerning to prepare modified natural graphite which is low-cost and advanced materials used as lithium ion battery anode using the way of cladding natural graphite with epoxy resin. The results shows that the specific capacity and circular performance of the modified natural graphite, which is prepared in the range of 600°C and 1000°C, have been apparently improved compare with the not-modified natural graphite. The first reversible capacity of the modified natural graphite is 338mAh/g and maintain more than 330mAh/g after 20 charge/discharge circles.

  8. Strategy for Handling and Treatment of INPP RBMK-1500 Irradiated Graphite

    International Nuclear Information System (INIS)

    Oryšaka, A.

    2016-01-01

    There are two RBMK-1500 water-cooled graphite-moderated channel-type power reactors at Ignalina NPP. After the final shutdown of the INPP, radioactive i-graphite dismantling, handling, conditioning, storage and disposal is an important part of the decommissioning activities. The core of the INPP unit 1 and 2 contains about 3600 tons of i-graphite. Formation of activation products strongly depends on the contents of impurities, operational mode and concentration of impurities in the graphite. The case study for INPP envisages the analysis of possibilities of graphite handling and treatment in the context of immediate decommissioning. (author)

  9. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    Science.gov (United States)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  10. Forming gas treatment of lithium ion battery anode graphite powders

    Science.gov (United States)

    Contescu, Cristian Ion; Gallego, Nidia C; Howe, Jane Y; Meyer, III, Harry M; Payzant, Edward Andrew; Wood, III, David L; Yoon, Sang Young

    2014-09-16

    The invention provides a method of making a battery anode in which a quantity of graphite powder is provided. The temperature of the graphite powder is raised from a starting temperature to a first temperature between 1000 and 2000.degree. C. during a first heating period. The graphite powder is then cooled to a final temperature during a cool down period. The graphite powder is contacted with a forming gas during at least one of the first heating period and the cool down period. The forming gas includes H.sub.2 and an inert gas.

  11. Graphite-based extinguishants for liquid metal fires

    International Nuclear Information System (INIS)

    Simpson, J.M.; Gardener, N.J.L.

    1987-01-01

    Effective extinguishants for liquid alkali metal fires must be provided for all LMFBRs. Traditional sodium salt based extinguishants have disadvantages. An intercalation compound of graphite was identified as a possible alternative. Following successful tests on fires of up to 25 m 2 area the graphite based extinguishant has been introduced by the UKAEA at Dounreay. (author)

  12. Moessbauer study of small amounts of iron in graphite, around the diamond-graphite pressure-temperature stability region

    International Nuclear Information System (INIS)

    Oliveira, C.L.S. de; Silva, M.T.X.; Vasquez, A.; Jornada, J.A.H. da

    1991-01-01

    An exploratory Moessbauer spectroscopy study of the Fe-C system in the C rich region, prepared by high pressure-high temperature treatment near the graphite-diamond stability line, was made. The results obtained for the different processing conditions give no evidence of Fe intercalation in graphite. The presence of some water in the cell produced hydrated Fe complexes, which can explain the deleterious effect of water or hydrogen in the high pressure diamond synthesis. (orig.)

  13. Strength degradation of oxidized graphite support column in VHTR

    International Nuclear Information System (INIS)

    Park, Byung Ha; No, Hee Cheon

    2010-01-01

    Air-ingress events caused by large pipe breaks are important accidents considered in the design of Very High Temperature Gas-Cooled Reactors (VHTRs). A main safety concern for this type of event is the possibility of core collapse following the failure of the graphite support column, which can be oxidized by ingressed air. In this study, the main target is to predict the strength of the oxidized graphite support column. Through compression tests for fresh and oxidized graphite columns, the compressive strength of IG-110 was obtained. The buckling strength of the IG-110 column is expressed using the following empirical straight-line formula: σ cr,buckling =91.34-1.01(L/r). Graphite oxidation in Zone 1 is volume reaction and that in Zone 3 is surface reaction. We notice that the ultimate strength of the graphite column oxidized in Zones 1 and 3 only depends on the slenderness ratio and bulk density. Its strength degradation oxidized in Zone 1 is expressed in the following nondimensional form: σ/σ 0 =exp(-kd), k=0.114. We found that the strength degradation of a graphite column, oxidized in Zone 3, follows the above buckling empirical formula as the slenderness of the column changes. (author)

  14. Structural TEM study of nonpolar a-plane gallium nitride grown on(112_0) 4H-SiC by organometallic vapor phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zakharov, Dmitri N.; Liliental-Weber, Zuzanna; Wagner, Brian; Reitmeier,Zachary J.; Preble, Edward A.; Davis, Robert F.

    2005-04-05

    Conventional and high resolution electron microscopy havebeen applied for studying lattice defects in nonpolar a-plane GaN grownon a 4H-SiC substrate with an AlN buffer layer. Samples in plan-view andcross-section configurations have been investigated. Basal and prismaticstacking faults together with Frank and Shockley partial dislocationswere found to be the main defects in the GaN layers. High resolutionelectron microscopy in combination with image simulation supported Drum smodel for the prismatic stacking faults. The density of basal stackingfaults was measured to be ~;1.6_106cm-1. The densities of partialdislocations terminating I1 and I2 types of intrinsic basal stackingfaults were ~;4.0_1010cm-2 and ~;0.4_1010cm-2, respectively. The energyof the I2 stacking fault in GaN was estimated to be (40+-4) erg/cm2 basedon the separation of Shockley partial dislocations. To the best of ourknowledge, the theoretically predicted I3 basal stacking fault in GaN wasobserved experimentally for the first time.

  15. Dynamic method for the measurement of Young'S modulus. Application to nuclear graphites; Methode de mesure dynamique du module d'Young. Application aux graphites nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Pattou, F; Trutt, J C

    1963-07-01

    A dynamic method has been developed for measuring Young's modulus and the rigidity modulus using the 'Forster Elastomat'. The principle consists in the determination of the resonance frequencies of graphite samples submitted to transverse, longitudinal, and torsional vibrations. The first two modes of vibration make it possible to calculate the elasticity modulus or the Young's modulus E, the third mode makes possible the calculation of the rigidity modulus G. The relationships from which the moduli E and G are measured are given. A systematic study has been made of graphite samples produced by extrusion or compression and submitted afterwards to one or several impregnations with pitch. For graphites made from the same coke by the same method, a linear relationship has been found for Young's modulus as a function of the apparent density. For the same apparent density, graphites made from different starting materials have generally different Young's moduli that bear a relationship to the crystalline characteristics of the material. The measurements of the rigidity modulus C made on different graphites also show the influence of crystallite orientation. (authors) [French] Une methode de mesure dynamique du module d'Young et du module de rigidite du graphite utilisant 'l'Elastomat Forster' a ete mise au point. Le principe consiste a determiner les frequences de resonance d'echantillons de graphite soumis a des vibrations transversales, longitudinales et de torsion. Les deux premiers modes de vibration permettent de calculer le module d'elasticite ou module d'Young E, le troisieme mode de vibration permet de calculer le module de rigidite G. Apres avoir decrit la methode de mesure, on rappelle les relations qui permettent de calculer les modules E et G. L'etude systematique d'echantillons de graphite, fabriques par filage ou pressage et ayant subi eventuellement une ou plusieurs impregnations au brai a ete effectuee. Pour les graphites issus du meme coke et fabriques

  16. Evaluation of the significance of inverse oxidation for HTGR graphites

    International Nuclear Information System (INIS)

    Lee, B.S.; Heiser, J. III; Sastre, C.

    1983-01-01

    The inverse oxidation refers to a higher mass loss inside the graphite than the outside. In 1980, Wichner et al reported this phenomenon (referred to as inside/out corrosion) observed in some H451 graphites, and offered an explanation that a catalyst (almost certainly Fe) is activated by the progressively increasing reducing conditions found in the graphite interior. Recently, Morgan and Thomas (1982) investigated this phenomenon is PGX graphites, and agreed on the existing mechanism to explain this pheomenon. They also called for attention to the possibility that this phenomenon may occur under HTGR (High Temperature Gas-Cooled Reactor) operating conditions. The purpose of this paper is to confirm the above mentioned explanation for this phenomenon and to evaluate the significance of this effect for HTGR graphites under realistic reactor conditions

  17. Capacitive behavior of highly-oxidized graphite

    Science.gov (United States)

    Ciszewski, Mateusz; Mianowski, Andrzej

    2014-09-01

    Capacitive behavior of a highly-oxidized graphite is presented in this paper. The graphite oxide was synthesized using an oxidizing mixture of potassium chlorate and concentrated fuming nitric acid. As-oxidized graphite was quantitatively and qualitatively analyzed with respect to the oxygen content and the species of oxygen-containing groups. Electrochemical measurements were performed in a two-electrode symmetric cell using KOH electrolyte. It was shown that prolonged oxidation causes an increase in the oxygen content while the interlayer distance remains constant. Specific capacitance increased with oxygen content in the electrode as a result of pseudo-capacitive effects, from 0.47 to 0.54 F/g for a scan rate of 20 mV/s and 0.67 to 1.15 F/g for a scan rate of 5 mV/s. Better cyclability was observed for the electrode with a higher oxygen amount.

  18. Analysis of graphite gasification by water vapor at different conversions

    International Nuclear Information System (INIS)

    Xiaowei, Luo; Xiaoyu, Yu; Suyuan, Yu; Jean-Charles, Robin

    2014-01-01

    Highlights: • Graphite was gasified at different conversions. • The reaction temperature influences on the dimensionless the reaction rate. • The thickness or radius influence on the dimensionless reaction rate. - Abstract: The gasification rate of porous solids varies with the conversions with the rate increasing to a maximum and then decreasing. Many graphite gasification experiments have illustrated that the maximum gasification rates occur at different conversions for different temperatures and sample geometries. Thus, the gasification rate is related to the conversion, temperature and geometry of the graphite. The influences of those factors were studied for the graphite gasification by water vapor. A theoretical analysis was done on the basis of several logical assumptions. The influence of temperatures on the reaction rate was investigated for plate-like and cylindrical graphite. The effects of thickness for a plate-like graphite sample and of radius for a cylindrical sample on the reaction rate were also studied theoretically. The results reveal that the maximum dimensionless reaction rate decreases with reaction temperature. The plate thickness or the cylinder radius also affects the maximum dimensionless reaction rate

  19. Correlation between some mechanical and physical properties of polycrystalline graphites

    International Nuclear Information System (INIS)

    Yoda, Shinichi; Fujisaki, Katsuo

    1982-01-01

    Mechanical and physical properties of polycrystalline graphites, tensile strength, compressive strength, flexural strength, Young's modulus, thermal expansion coefficient, electrical resistivity, volume fraction of porosity, and graphitisation were measured for ten brand graphites. Correlation between the mechanical and physical properties of the graphites were studied. Young's modulus and thermal expansion coefficient of the graphites depend on volume fraction of porosity. The Young's modulus of the graphites tended to increase with increasing the thermal expansion coefficient. For an anisotropic graphite, an interesting relationship between the Young's modulus E and the thermal expansion coefficient al pha was found in any specimen orientations; alpha E=constant. The value of alphah E was dependent upon the volume fraction of porosity. It should be noted here that the electrical resistivity increased with decreasing grain size. The flexural and the compressive strength were related with the volume fraction of porosity while the tensile strength was not, The relationships between the tensile, the compressive and the flexural strength can be approximately expressed as linear functions over a wide range of the stresses. (author)

  20. On residual gas analysis during high temperature baking of graphite tiles

    International Nuclear Information System (INIS)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C; Chauhan, N; Raole, P M

    2008-01-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles

  1. On residual gas analysis during high temperature baking of graphite tiles

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, A A; Chaudhuri, P; Khirwadkar, S; Reddy, D Chenna; Saxena, Y C [Institute for Plasma Research, Bhat, Gandhinagar - 382 428 (India); Chauhan, N; Raole, P M [Facilitation Center for Industrial Plasma Technologies, IPR, Gandhinagar (India)], E-mail: arun@ipr.res.in

    2008-05-01

    Steady-state Super-conducting Tokamak-1 (SST-1) is a medium size tokamak with major radius of 1.1 m and minor radius of 0.20 m. It is designed for plasma discharge duration of 1000 seconds to obtain fully steady-state plasma operation. Plasma Facing Components (PFC), consisting of divertors, passive stabilizers, baffles and poloidal limiters are also designed to be UHV compatible for steady state operation. All PFC are made up of graphite tiles mechanically attached to the copper alloy substrate. Graphite is one of the preferred first wall armour material in present day tokamaks. High thermal shock resistance and low atomic number of carbon are the most important properties of graphite for this application. High temperature vacuum baking of graphite tiles is the standard process to remove the impurities. Residual Gas Analyzer (RGA) has been used for qualitative and quantitative measurements of released gases from graphite tiles during baking. Surface Analysis of graphite tiles has also been done before and after baking. This paper describes the residual gas analysis during baking and surface analysis of graphite tiles.

  2. Electrical and thermal properties of graphite/polyaniline composites

    Energy Technology Data Exchange (ETDEWEB)

    Bourdo, Shawn E., E-mail: sxbourdo@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States); Warford, Brock A.; Viswanathan, Tito [Department of Chemistry, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204 (United States)

    2012-12-15

    A composite of a carbon allotrope (graphite) and an inherently conducting polymer, polyaniline (PANI), has been prepared that exhibits an electrical conductivity greater than either of the two components. An almost 2-fold increase in the bulk conductivity occurs when only a small mass fraction of polyaniline exists in the composite (91% graphite/ 9% polyaniline, by mass). This increase in dc electrical conductivity is curious since in most cases a composite material will exhibit a conductivity somewhere between the two individual components, unless a modification to the electronic nature of the material occurs. In order to elucidate the fundamental electrical properties of the composite we have performed variable temperature conductivity measurements to better understand the nature of conduction in these materials. The results from these studies suggest a change in the mechanism of conduction as the amount of polyaniline is increased in the composite. Along with superior electrical properties, the composites exhibit an increase in thermal stability as compared to the graphite. - Graphical abstract: (Left) Room temperature electrical conductivity of G-PANI composites at different mass ratios. (Right) Electrical conductivity of G-PANI composites at temperatures from 5 K to 300 K. Highlights: Black-Right-Pointing-Pointer Composites of graphite and polyaniline have been synthesized with unique electrical and thermal properties. Black-Right-Pointing-Pointer Certain G-PANI composites are more conductive and more thermally stable than graphite alone. Black-Right-Pointing-Pointer G-PANI composites exhibit a larger conductivity ratio with respect to temperature than graphite alone.

  3. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  4. NDA Position on the UK Management of Waste Graphite (December 2013)

    International Nuclear Information System (INIS)

    Norris, S.

    2016-01-01

    The purpose of this paper is to summarise a number of pieces of work that have been undertaken by the Nuclear Decommissioning Authority (NDA) to better understand the challenges of managing radioactive graphite wastes, these have led to an updated strategic position on graphite waste management. The updated strategic position takes into consideration Government’s response to Recommendation 8 from the Committee on Radioactive Waste Management’s (CoRWM), and provides the current NDA strategic position alongside circumstances where this should be reviewed. Two studies that provided input to this position are: 1. Operational Graphite Management Strategy: Credible and Preferred Options (Gate A & B); 2. The Long-term Management of Reactor Core Graphite Waste: Credible Options (Gate A). The paper highlights the key findings from the following work that has been undertaken to better inform this position: • A review by the NDA Radioactive Waste Management Directorate (RWMD)1 of the current baseline for managing radioactive graphite in England and Wales of geological disposal. The review identified some areas for optimisation and provided clarification on some aspects of the baseline e.g. the assumed ‘footprint’ of graphite wastes for a future Geological Disposal Facility (GDF). • Investigations into suitability of near-surface disposal options for graphite wastes. This included a review of the Low Level Waste Repository (LLWR) Ltd's new Environmental Safety Case (ESC) to assess the potential for graphite disposal and a feasibility study into a near-surface disposal facility for Higher Activity Waste (HAW) graphite at the Hunterston A site. • Continued monitoring of potential future treatment options. • Detailed characterisation work under the NDA’s Direct Research Portfolio using computer modelling and sample analysis to better understand any limitations of the current inventory data for graphite wastes. • Graphite behaviour work under the NDA

  5. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    International Nuclear Information System (INIS)

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife

    2010-01-01

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  6. Automotive body panel containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Adamson, Douglas (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    An automotive body panel containing a polymer composite formed of at least one polymer and a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  7. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    Science.gov (United States)

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that

  8. Isotropic nuclear graphites; the effect of neutron irradiation

    International Nuclear Information System (INIS)

    Lore, J.; Buscaillon, A.; Mottet, P.; Micaud, G.

    1977-01-01

    Several isotropic graphites have been manufactured using different forming processes and fillers such as needle coke, regular coke, or pitch coke. Their properties are described in this paper. Specimens of these products have been irradiated in the fast reactor Rapsodie between 400 to 1400 0 C, at fluences up to 1,7.10 21 n.cm -2 PHI.FG. The results show an isotropic behavior under neutron irradiation, but the induced dimensional changes are higher than those of isotropic coke graphites although they are lower than those of conventional extruded graphites made with the same coke

  9. Graphite behaviour in relation to the fuel element design

    Energy Technology Data Exchange (ETDEWEB)

    Everett, M. R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Manzel, R. [OECD High Temperature Reactor Project Dragon, Winfrith (United Kingdom); Blackstone, R. [Reactor Centrum, Petten (Netherlands); Delle, W. [Kernforschungsanlage, Juelich (Germany); Lungagnani, V. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands); Krefeld, R. [Joint Nuclear Research Centre, Euratom, Petten (Netherlands)

    1969-09-01

    The first designs of H.T.R. power reactors will probably use a Gilsocarbon based graphite for both the moderator/carrier blocks and for the fuel tubes. The initial physical properties and changes of dimensions, thermal expansion coefficient, Young*s modulus, and thermal conductivity on irradiation of Gilsocarbon graphites to typical reactor dwell-time fast neutron doses of 4 * 1021 cm -2 Ni dose Dido equivalent are given and values for the irradiation creep constant are presented. The influence of these property changes and those of chemical corrosion are considered briefly in relation to the present fuel element designs. The selection of an eventual less costly replacement graphite for Gilsocarbon graphite is discussed in terms of materials properties.

  10. Structural strength of core graphite bars

    International Nuclear Information System (INIS)

    Kikuchi, K.; Futakawa, M.

    1987-01-01

    A HTR core consists of fuel, hot plenum, reflector and thermal barrier blocks. Each graphite block is supported by three thin cylindrical graphite bars called support post. Static and dynamic core loads are transmitted by the support posts to the thermal barrier blocks and a support plate. These posts are in contact with the blocks through hemispherical post seats to absorb the relative displacement caused by seismic force and the difference of thermal expansion of materials at the time of the start-up and shutdown of a reactor. The mixed fracture criterion of principal stress and modified Mohr-Coulomb's theory as well as the fracture criterion of principal stress based on elastic stress analysis was discussed in connection with the application to HTR graphite components. The buckling fracture of a support post was taken in consideration as one of the fracture modes. The effect that the length/diameter ratio of a post, small rotation and the curvature of post ends and seats exerted on the fracture strength was studied by using IG-110 graphite. Contacting stress analysis was carried out by using the structural analysis code 'COSMOS-7'. The experimental method, the analysis of buckling strength and the results are reported. The fracture of a support post is caused by the mixed mode of bending deformation, split fracture and shearing fracture. (Kako, I.)

  11. Corrosion behavior of a positive graphite electrode in vanadium redox flow battery

    International Nuclear Information System (INIS)

    Liu Huijun; Xu Qian; Yan Chuanwei; Qiao Yonglian

    2011-01-01

    Graphical abstract: The overpotential for gas evolution on positive graphite electrode decreases due to the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion process, which can self-catalyze the oxidation of carbon atoms therefore, accelerates corrosion process. Highlights: → Initial potential for gas evolution is higher than 1.60 V vs SCE. → Factors affecting the graphite corrosion are investigated. → Functional groups of COOH and C=O introduced during corrosion process. → The groups can self-catalyze the oxidation of carbon atoms. - Abstract: The graphite plate is easily suffered from corosion because of CO 2 evolution when it acts as the positive electrode for vanadium redox flow battery. The aim is to obtain the initial potential for gas evolution on a positive graphite electrode in 2 mol dm -3 H 2 SO 4 + 2 mol dm -3 VOSO 4 solution. The effects of polarization potential, operating temperature and polarization time on extent of graphite corrosion are investigated by potentiodynamic and potentiostatic techniques. The surface characteristics of graphite electrode before and after corrosion are examined by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. The results show that the gas begins to evolve on the graphite electrode when the anodic polarization potential is higher than 1.60 V vs saturated calomel electrode at 20 deg. C. The CO 2 evolution on the graphite electrode can lead to intergranular corrosion of the graphite when the polarization potential reaches 1.75 V. In addition, the functional groups of COOH and C=O introduced on the surface of graphite electrode during corrosion can catalyze the formation of CO 2 , therefore, accelerates the corrosion rate of graphite electrode.

  12. Inert annealing of irradiated graphite by inductive heating

    International Nuclear Information System (INIS)

    Botzem, W.; Woerner, J.

    2001-01-01

    Fission neutrons change physical properties of graphite being used in nuclear reactors as moderator and as structural material. The understanding of these effects on an atomic model is expressed by dislocations of carbon atoms within the graphite and the thereby stored energy is known as Wigner Energy. The dismantling of the Pile 1 core may necessitate the thermal treatment of the irradiated but otherwise undamaged graphite. This heat treatment - usually called annealing - initiates the release of stored Wigner Energy in a controlled manner. This energy could otherwise give rise to an increase in temperature under certain conditions during transport or preparation for final storage. In order to prevent such an effect it is intended to anneal the major part of Pile 1 graphite before it is packed into boxes suitable for final disposal. Different heating techniques have been assessed. Inductive heating in an inert atmosphere was selected for installation in the Pile 1 Waste Processing Facility built for the treatment and packaging of the dismantled Pile 1 waste. The graphite blocks will be heated up to 250 deg. C in the annealing ovens, which results in the release of significant amount of the stored energy. External heat sources in a final repository will never heat up the storage boxes to such a temperature. (author)

  13. Nonlinear seismic analysis of a graphite reactor core

    International Nuclear Information System (INIS)

    Laframboise, W.L.; Desmond, T.P.

    1988-01-01

    Design and construction of the Department of Energy's N-Reactor located in Richland, Washington was begun in the late 1950s and completed in the early 1960s. Since then, the reactor core's structural integrity has been under review and is considered by some to be a possible safety concern. The reactor core is moderated by graphite. The safety concern stems from the degradation of the graphite due to the effects of long-term irradiation. To assess the safety of the reactor core when subjected to seismic loads, a dynamic time-history structural analysis was performed. The graphite core consists of 89 layers of numerous graphite blocks which are assembled in a 'lincoln-log' lattice. This assembly permits venting of steam in the event of a pressure tube rupture. However, such a design gives rise to a highly nonlinear structure when subjected to earthquake loads. The structural model accounted for the nonlinear interlayer sliding and for the closure and opening of gaps between the graphite blocks. The model was subjected to simulated earthquake loading, and the time-varying response of selected elements critical to safety were monitored. The analytically predicted responses (displacements and strains) were compared to allowable responses to assess margins of safety. (orig.)

  14. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  15. Release enhancement of tritium from graphite by addition of hydrogen

    International Nuclear Information System (INIS)

    Saeki, Masakatsu; Masaki, N.M.

    1989-01-01

    The release behavior of tritium from graphite was studied in pure He and He + H 2 atmosphere. The release from powdered graphite was significantly enhanced in hydrogen environment. Apparent diffusion coefficients of tritium in graphite also became much higher in an atmosphere containing hydrogen than values obtained in pure helium atmosphere. A careful investigation of the release processes resulted in the conclusion that the most important process of tritium behaviour in graphite was diffusion, but the desorption process of tritium from the surface played a significant role. The enhancement of the desorption process was controlled by atomic hydrogen. (orig.)

  16. Lithium isotope effect accompanying electrochemical intercalation of lithium into graphite

    CERN Document Server

    Yanase, S; Oi, T

    2003-01-01

    Lithium has been electrochemically intercalated from a 1:2 (v/v) mixed solution of ethylene carbonate (EC) and methylethyl carbonate (MEC) containing 1 M LiClO sub 4 into graphite, and the lithium isotope fractionation accompanying the intercalation was observed. The lighter isotope was preferentially fractionated into graphite. The single-stage lithium isotope separation factor ranged from 1.007 to 1.025 at 25 C and depended little on the mole ratio of lithium to carbon of the lithium-graphite intercalation compounds (Li-GIC) formed. The separation factor increased with the relative content of lithium. This dependence seems consistent with the existence of an equilibrium isotope effect between the solvated lithium ion in the EC/MEC electrolyte solution and the lithium in graphite, and with the formation of a solid electrolyte interfaces on graphite at the early stage of intercalation. (orig.)

  17. Application of invariant plane strain (IPS) theory to γ hydride formation in dilute Zr-Nb alloys

    International Nuclear Information System (INIS)

    Srivastava, D.; Neogy, S.; Dey, G.K.; Banerjee, S.; Ranganathan, S.

    2005-01-01

    The crystallographic aspects associated with the formation of the γ hydride phase (fct) from the α (hcp) phase and the β (bcc) phase in Zr-Nb alloys have been studied in two distinct situations, viz., in the α matrix in pure Zr and Zr-2.5Nb and in the β matrix in β stabilized Zr-20Nb alloy. The β-γ formation can be treated primarily as a simple shear on the basal plane involving a change in the stacking sequence. A possible mechanism for α-γ transformation has been presented in this paper. In this paper the β->γ transformation has been considered in terms of the invariant plane strain theory (IPS) in order to predict the crystallographic features of the γ hydride formed. The lattice invariant shear (LIS) (110) β [1-bar 10] β ||(111) γ [12-bar 1] γ has been considered and the crystallographic parameters associated with bcc->fct transformation, such as the habit plane and the magnitude of the LIS and the shape strain have been computed. The predictions made in the present analysis have been compared with experimentally observed habit planes. The α/γ and β/γ interface has been examined by high resolution transmission electron microscopy (HRTEM) technique to compare with the interfaces observed in martensitic transformations

  18. High temperature tests for graphite materials

    OpenAIRE

    Zhmurikov, Evgenij

    2015-01-01

    This study was performed within the framework of the EURISOL for facilities SPIRAL-II (GANIL, France) and SPES (LNL, Italy), and aims to investigate the anticipated strength properties of fine-grained graphite at elevated temperatures. It appears that the major parameters that affect to the lifetime of a graphite target of this IP are the temperature and heating time. High temperature tests were conducted to simulate the heating under the influence of a beam of heavy particles by passing thro...

  19. Immobilization of individual nanotubes in graphitic layers for electrical characterization

    International Nuclear Information System (INIS)

    Roy, Debmalya; Tiwari, Neeru; Mukhopadhyay, K; Saxena, A K

    2014-01-01

    A simple route is followed to produce an abundance of individual carbon nanotubes (CNTs) immobilized in graphitic layers to counter the challenge of locating individual CNTs and restrict the lateral displacement of CNTs due to the high electrostatic force exerted by a scanning tunnelling microscope tip for electrical characterization. Graphitic layers are selected for the embedding matrix as graphite and the nanotubes have a similar work function and hence would not perturb the electrical configuration of the nanotube. Solvent mediated exfoliation of graphite layers to insert the nanotubes was preferred over oxidative expansion, as oxidation could perturb the electrical configuration of graphite. During the exfoliation of graphite the optimized amount of nanotubes was introduced into the medium such that an individual nanotube could be immobilized in few-layer graphene followed by precipitation and centrifugation. The dose and the time of sonication were optimized to ensure that damage to the walls of the nanotubes is minimized, although the ultrasonication causes scissoring of the nanotube length. This procedure for immobilizing nanotubes in graphitic layers would be equally applicable for functionalized CNTs as well. The capability of embedding individual nanotubes into a similar work function material in an organic solvent, which could then be transferred onto a substrate by simple drop casting or spin coating methods, has an added advantage in sample preparation for the STM characterization of CNTs. (paper)

  20. Controlled synthesis of graphitic carbon-encapsulated α-Fe2O3 nanocomposite via low-temperature catalytic graphitization of biomass and its lithium storage property

    International Nuclear Information System (INIS)

    Wu, Feng; Huang, Rong; Mu, Daobin; Wu, Borong; Chen, Yongjian

    2016-01-01

    Highlights: • Facile synthesis of graphitic carbon/α-Fe 2 O 3 nano-sized anode composite. • In situ low temperature catalytic graphitization of biomass material. • Onion-like graphitic carbon layers conformally encapsulating around α-Fe 2 O 3 core. • High lithium storage properties, especially, outstanding cycle performance. - Abstract: A delicate structure of graphitic carbon-encapsulated α-Fe 2 O 3 nanocomposite is in situ constructed via “Absorption–Catalytic graphitization–Oxidation” strategy, taking use of biomass matter of degreasing cotton as carbon precursor and solution reservoir. With the assistance of the catalytic graphitization effect of iron core, onion-like graphitic carbon (GC) shell is made directly from the biomass at low temperature (650 °C). The nanosized α-Fe 2 O 3 particles would effectively mitigate volumetric strain and shorten Li + transport path during charge/discharge process. The graphitic carbon shells may promote charge transfer and protect active particles from directly exposing to electrolyte to maintain interfacial stability. As a result, the as-prepared α-Fe 2 O 3 @GC composite displays an outstanding cycle performance with a reversible capacity of 1070 mA h g −1 after 430 cycles at 0.2C, as well as a good rate capability of ∼ 950 mA h g −1 after 100 cycles at 1C and ∼ 850 mA h g −1 even up to 200 cycles at a 2C rate.