WorldWideScience

Sample records for graphical gaussian models

  1. Graphical Gaussian models with edge and vertex symmetries

    Højsgaard, Søren; Lauritzen, Steffen L

    2008-01-01

    We introduce new types of graphical Gaussian models by placing symmetry restrictions on the concentration or correlation matrix. The models can be represented by coloured graphs, where parameters that are associated with edges or vertices of the same colour are restricted to being identical. We...... study the properties of such models and derive the necessary algorithms for calculating maximum likelihood estimates. We identify conditions for restrictions on the concentration and correlation matrices being equivalent. This is for example the case when symmetries are generated by permutation...

  2. A Gaussian graphical model approach to climate networks

    Zerenner, Tanja, E-mail: tanjaz@uni-bonn.de [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Friederichs, Petra; Hense, Andreas [Meteorological Institute, University of Bonn, Auf dem Hügel 20, 53121 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany); Lehnertz, Klaus [Department of Epileptology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn (Germany); Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Nussallee 14-16, 53115 Bonn (Germany); Interdisciplinary Center for Complex Systems, University of Bonn, Brühler Straße 7, 53119 Bonn (Germany)

    2014-06-15

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately.

  3. A Gaussian graphical model approach to climate networks

    Zerenner, Tanja; Friederichs, Petra; Hense, Andreas; Lehnertz, Klaus

    2014-01-01

    Distinguishing between direct and indirect connections is essential when interpreting network structures in terms of dynamical interactions and stability. When constructing networks from climate data the nodes are usually defined on a spatial grid. The edges are usually derived from a bivariate dependency measure, such as Pearson correlation coefficients or mutual information. Thus, the edges indistinguishably represent direct and indirect dependencies. Interpreting climate data fields as realizations of Gaussian Random Fields (GRFs), we have constructed networks according to the Gaussian Graphical Model (GGM) approach. In contrast to the widely used method, the edges of GGM networks are based on partial correlations denoting direct dependencies. Furthermore, GRFs can be represented not only on points in space, but also by expansion coefficients of orthogonal basis functions, such as spherical harmonics. This leads to a modified definition of network nodes and edges in spectral space, which is motivated from an atmospheric dynamics perspective. We construct and analyze networks from climate data in grid point space as well as in spectral space, and derive the edges from both Pearson and partial correlations. Network characteristics, such as mean degree, average shortest path length, and clustering coefficient, reveal that the networks posses an ordered and strongly locally interconnected structure rather than small-world properties. Despite this, the network structures differ strongly depending on the construction method. Straightforward approaches to infer networks from climate data while not regarding any physical processes may contain too strong simplifications to describe the dynamics of the climate system appropriately

  4. Gaussian graphical modeling reveals specific lipid correlations in glioblastoma cells

    Mueller, Nikola S.; Krumsiek, Jan; Theis, Fabian J.; Böhm, Christian; Meyer-Bäse, Anke

    2011-06-01

    Advances in high-throughput measurements of biological specimens necessitate the development of biologically driven computational techniques. To understand the molecular level of many human diseases, such as cancer, lipid quantifications have been shown to offer an excellent opportunity to reveal disease-specific regulations. The data analysis of the cell lipidome, however, remains a challenging task and cannot be accomplished solely based on intuitive reasoning. We have developed a method to identify a lipid correlation network which is entirely disease-specific. A powerful method to correlate experimentally measured lipid levels across the various samples is a Gaussian Graphical Model (GGM), which is based on partial correlation coefficients. In contrast to regular Pearson correlations, partial correlations aim to identify only direct correlations while eliminating indirect associations. Conventional GGM calculations on the entire dataset can, however, not provide information on whether a correlation is truly disease-specific with respect to the disease samples and not a correlation of control samples. Thus, we implemented a novel differential GGM approach unraveling only the disease-specific correlations, and applied it to the lipidome of immortal Glioblastoma tumor cells. A large set of lipid species were measured by mass spectrometry in order to evaluate lipid remodeling as a result to a combination of perturbation of cells inducing programmed cell death, while the other perturbations served solely as biological controls. With the differential GGM, we were able to reveal Glioblastoma-specific lipid correlations to advance biomedical research on novel gene therapies.

  5. Interactive Gaussian Graphical Models for Discovering Depth Trends in ChemCam Data

    Oyen, D. A.; Komurlu, C.; Lanza, N. L.

    2018-04-01

    Interactive Gaussian graphical models discover surface compositional features on rocks in ChemCam targets. Our approach visualizes shot-to-shot relationships among LIBS observations, and identifies the wavelengths involved in the trend.

  6. The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

    Epskamp, Sacha; Waldorp, Lourens J; Mõttus, René; Borsboom, Denny

    2018-04-16

    We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

  7. Gaussian Graphical Models Identify Networks of Dietary Intake in a German Adult Population.

    Iqbal, Khalid; Buijsse, Brian; Wirth, Janine; Schulze, Matthias B; Floegel, Anna; Boeing, Heiner

    2016-03-01

    Data-reduction methods such as principal component analysis are often used to derive dietary patterns. However, such methods do not assess how foods are consumed in relation to each other. Gaussian graphical models (GGMs) are a set of novel methods that can address this issue. We sought to apply GGMs to derive sex-specific dietary intake networks representing consumption patterns in a German adult population. Dietary intake data from 10,780 men and 16,340 women of the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort were cross-sectionally analyzed to construct dietary intake networks. Food intake for each participant was estimated using a 148-item food-frequency questionnaire that captured the intake of 49 food groups. GGMs were applied to log-transformed intakes (grams per day) of 49 food groups to construct sex-specific food networks. Semiparametric Gaussian copula graphical models (SGCGMs) were used to confirm GGM results. In men, GGMs identified 1 major dietary network that consisted of intakes of red meat, processed meat, cooked vegetables, sauces, potatoes, cabbage, poultry, legumes, mushrooms, soup, and whole-grain and refined breads. For women, a similar network was identified with the addition of fried potatoes. Other identified networks consisted of dairy products and sweet food groups. SGCGMs yielded results comparable to those of GGMs. GGMs are a powerful exploratory method that can be used to construct dietary networks representing dietary intake patterns that reveal how foods are consumed in relation to each other. GGMs indicated an apparent major role of red meat intake in a consumption pattern in the studied population. In the future, identified networks might be transformed into pattern scores for investigating their associations with health outcomes. © 2016 American Society for Nutrition.

  8. Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model

    Ingkasuwan Papapit

    2012-08-01

    Full Text Available Abstract Background Starch serves as a temporal storage of carbohydrates in plant leaves during day/night cycles. To study transcriptional regulatory modules of this dynamic metabolic process, we conducted gene regulation network analysis based on small-sample inference of graphical Gaussian model (GGM. Results Time-series significant analysis was applied for Arabidopsis leaf transcriptome data to obtain a set of genes that are highly regulated under a diurnal cycle. A total of 1,480 diurnally regulated genes included 21 starch metabolic enzymes, 6 clock-associated genes, and 106 transcription factors (TF. A starch-clock-TF gene regulation network comprising 117 nodes and 266 edges was constructed by GGM from these 133 significant genes that are potentially related to the diurnal control of starch metabolism. From this network, we found that β-amylase 3 (b-amy3: At4g17090, which participates in starch degradation in chloroplast, is the most frequently connected gene (a hub gene. The robustness of gene-to-gene regulatory network was further analyzed by TF binding site prediction and by evaluating global co-expression of TFs and target starch metabolic enzymes. As a result, two TFs, indeterminate domain 5 (AtIDD5: At2g02070 and constans-like (COL: At2g21320, were identified as positive regulators of starch synthase 4 (SS4: At4g18240. The inference model of AtIDD5-dependent positive regulation of SS4 gene expression was experimentally supported by decreased SS4 mRNA accumulation in Atidd5 mutant plants during the light period of both short and long day conditions. COL was also shown to positively control SS4 mRNA accumulation. Furthermore, the knockout of AtIDD5 and COL led to deformation of chloroplast and its contained starch granules. This deformity also affected the number of starch granules per chloroplast, which increased significantly in both knockout mutant lines. Conclusions In this study, we utilized a systematic approach of microarray

  9. Graphical calculus for Gaussian pure states

    Menicucci, Nicolas C.; Flammia, Steven T.; Loock, Peter van

    2011-01-01

    We provide a unified graphical calculus for all Gaussian pure states, including graph transformation rules for all local and semilocal Gaussian unitary operations, as well as local quadrature measurements. We then use this graphical calculus to analyze continuous-variable (CV) cluster states, the essential resource for one-way quantum computing with CV systems. Current graphical approaches to CV cluster states are only valid in the unphysical limit of infinite squeezing, and the associated graph transformation rules only apply when the initial and final states are of this form. Our formalism applies to all Gaussian pure states and subsumes these rules in a natural way. In addition, the term 'CV graph state' currently has several inequivalent definitions in use. Using this formalism we provide a single unifying definition that encompasses all of them. We provide many examples of how the formalism may be used in the context of CV cluster states: defining the 'closest' CV cluster state to a given Gaussian pure state and quantifying the error in the approximation due to finite squeezing; analyzing the optimality of certain methods of generating CV cluster states; drawing connections between this graphical formalism and bosonic Hamiltonians with Gaussian ground states, including those useful for CV one-way quantum computing; and deriving a graphical measure of bipartite entanglement for certain classes of CV cluster states. We mention other possible applications of this formalism and conclude with a brief note on fault tolerance in CV one-way quantum computing.

  10. Graphical Models with R

    Højsgaard, Søren; Edwards, David; Lauritzen, Steffen

    Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many...... of these software developments have taken place within the R community, either in the form of new packages or by providing an R ingerface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In addition......, the book provides examples of how more advanced aspects of graphical modeling can be represented and handled within R. Topics covered in the seven chapters include graphical models for contingency tables, Gaussian and mixed graphical models, Bayesian networks and modeling high dimensional data...

  11. Graphical Rasch models

    Kreiner, Svend; Christensen, Karl Bang

    Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models......Rasch models; Partial Credit models; Rating Scale models; Item bias; Differential item functioning; Local independence; Graphical models...

  12. Bayesian Graphical Models

    Jensen, Finn Verner; Nielsen, Thomas Dyhre

    2016-01-01

    Mathematically, a Bayesian graphical model is a compact representation of the joint probability distribution for a set of variables. The most frequently used type of Bayesian graphical models are Bayesian networks. The structural part of a Bayesian graphical model is a graph consisting of nodes...

  13. Graphical Models with R

    Højsgaard, Søren; Lauritzen, Steffen

    2012-01-01

    Graphical models in their modern form have been around since the late 1970s and appear today in many areas of the sciences. Along with the ongoing developments of graphical models, a number of different graphical modeling software programs have been written over the years. In recent years many of these software developments have taken place within the R community, either in the form of new packages or by providing an R interface to existing software. This book attempts to give the reader a gentle introduction to graphical modeling using R and the main features of some of these packages. In add

  14. Optimal covariance selection for estimation using graphical models

    Vichik, Sergey; Oshman, Yaakov

    2011-01-01

    We consider a problem encountered when trying to estimate a Gaussian random field using a distributed estimation approach based on Gaussian graphical models. Because of constraints imposed by estimation tools used in Gaussian graphical models, the a priori covariance of the random field is constrained to embed conditional independence constraints among a significant number of variables. The problem is, then: given the (unconstrained) a priori covariance of the random field, and the conditiona...

  15. Learning Graphical Models With Hubs.

    Tan, Kean Ming; London, Palma; Mohan, Karthik; Lee, Su-In; Fazel, Maryam; Witten, Daniela

    2014-10-01

    We consider the problem of learning a high-dimensional graphical model in which there are a few hub nodes that are densely-connected to many other nodes. Many authors have studied the use of an ℓ 1 penalty in order to learn a sparse graph in the high-dimensional setting. However, the ℓ 1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set.

  16. Planar graphical models which are easy

    Chertkov, Michael [Los Alamos National Laboratory; Chernyak, Vladimir [WAYNE STATE UNIV

    2009-01-01

    We describe a rich family of binary variables statistical mechanics models on planar graphs which are equivalent to Gaussian Grassmann Graphical models (free fermions). Calculation of partition function (weighted counting) in the models is easy (of polynomial complexity) as reduced to evaluation of determinants of matrixes linear in the number of variables. In particular, this family of models covers Holographic Algorithms of Valiant and extends on the Gauge Transformations discussed in our previous works.

  17. Graphical models for genetic analyses

    Lauritzen, Steffen Lilholt; Sheehan, Nuala A.

    2003-01-01

    This paper introduces graphical models as a natural environment in which to formulate and solve problems in genetics and related areas. Particular emphasis is given to the relationships among various local computation algorithms which have been developed within the hitherto mostly separate areas...... of graphical models and genetics. The potential of graphical models is explored and illustrated through a number of example applications where the genetic element is substantial or dominating....

  18. Transforming Graphical System Models to Graphical Attack Models

    Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, Rene Rydhof

    2016-01-01

    Manually identifying possible attacks on an organisation is a complex undertaking; many different factors must be considered, and the resulting attack scenarios can be complex and hard to maintain as the organisation changes. System models provide a systematic representation of organisations...... approach to transforming graphical system models to graphical attack models in the form of attack trees. Based on an asset in the model, our transformations result in an attack tree that represents attacks by all possible actors in the model, after which the actor in question has obtained the asset....

  19. Modeling chemical kinetics graphically

    Heck, A.

    2012-01-01

    In literature on chemistry education it has often been suggested that students, at high school level and beyond, can benefit in their studies of chemical kinetics from computer supported activities. Use of system dynamics modeling software is one of the suggested quantitative approaches that could

  20. Gaussian Mixture Model of Heart Rate Variability

    Costa, Tommaso; Boccignone, Giuseppe; Ferraro, Mario

    2012-01-01

    Heart rate variability (HRV) is an important measure of sympathetic and parasympathetic functions of the autonomic nervous system and a key indicator of cardiovascular condition. This paper proposes a novel method to investigate HRV, namely by modelling it as a linear combination of Gaussians. Results show that three Gaussians are enough to describe the stationary statistics of heart variability and to provide a straightforward interpretation of the HRV power spectrum. Comparisons have been made also with synthetic data generated from different physiologically based models showing the plausibility of the Gaussian mixture parameters. PMID:22666386

  1. Graphical models for inferring single molecule dynamics

    Gonzalez Ruben L

    2010-10-01

    Full Text Available Abstract Background The recent explosion of experimental techniques in single molecule biophysics has generated a variety of novel time series data requiring equally novel computational tools for analysis and inference. This article describes in general terms how graphical modeling may be used to learn from biophysical time series data using the variational Bayesian expectation maximization algorithm (VBEM. The discussion is illustrated by the example of single-molecule fluorescence resonance energy transfer (smFRET versus time data, where the smFRET time series is modeled as a hidden Markov model (HMM with Gaussian observables. A detailed description of smFRET is provided as well. Results The VBEM algorithm returns the model’s evidence and an approximating posterior parameter distribution given the data. The former provides a metric for model selection via maximum evidence (ME, and the latter a description of the model’s parameters learned from the data. ME/VBEM provide several advantages over the more commonly used approach of maximum likelihood (ML optimized by the expectation maximization (EM algorithm, the most important being a natural form of model selection and a well-posed (non-divergent optimization problem. Conclusions The results demonstrate the utility of graphical modeling for inference of dynamic processes in single molecule biophysics.

  2. Modeling text with generalizable Gaussian mixtures

    Hansen, Lars Kai; Sigurdsson, Sigurdur; Kolenda, Thomas

    2000-01-01

    We apply and discuss generalizable Gaussian mixture (GGM) models for text mining. The model automatically adapts model complexity for a given text representation. We show that the generalizability of these models depends on the dimensionality of the representation and the sample size. We discuss...

  3. Model selection for Gaussian kernel PCA denoising

    Jørgensen, Kasper Winther; Hansen, Lars Kai

    2012-01-01

    We propose kernel Parallel Analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel PCA. Parallel Analysis [1] is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also...... tune the Gaussian kernel scale of radial basis function based kernel PCA.We evaluate kPA for denoising of simulated data and the US Postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio (SNR...

  4. Extended Linear Models with Gaussian Priors

    Quinonero, Joaquin

    2002-01-01

    In extended linear models the input space is projected onto a feature space by means of an arbitrary non-linear transformation. A linear model is then applied to the feature space to construct the model output. The dimension of the feature space can be very large, or even infinite, giving the model...... a very big flexibility. Support Vector Machines (SVM's) and Gaussian processes are two examples of such models. In this technical report I present a model in which the dimension of the feature space remains finite, and where a Bayesian approach is used to train the model with Gaussian priors...... on the parameters. The Relevance Vector Machine, introduced by Tipping, is a particular case of such a model. I give the detailed derivations of the expectation-maximisation (EM) algorithm used in the training. These derivations are not found in the literature, and might be helpful for newcomers....

  5. Graphical interpretation of numerical model results

    Drewes, D.R.

    1979-01-01

    Computer software has been developed to produce high quality graphical displays of data from a numerical grid model. The code uses an existing graphical display package (DISSPLA) and overcomes some of the problems of both line-printer output and traditional graphics. The software has been designed to be flexible enough to handle arbitrarily placed computation grids and a variety of display requirements

  6. Direct Importance Estimation with Gaussian Mixture Models

    Yamada, Makoto; Sugiyama, Masashi

    The ratio of two probability densities is called the importance and its estimation has gathered a great deal of attention these days since the importance can be used for various data processing purposes. In this paper, we propose a new importance estimation method using Gaussian mixture models (GMMs). Our method is an extention of the Kullback-Leibler importance estimation procedure (KLIEP), an importance estimation method using linear or kernel models. An advantage of GMMs is that covariance matrices can also be learned through an expectation-maximization procedure, so the proposed method — which we call the Gaussian mixture KLIEP (GM-KLIEP) — is expected to work well when the true importance function has high correlation. Through experiments, we show the validity of the proposed approach.

  7. Mastering probabilistic graphical models using Python

    Ankan, Ankur

    2015-01-01

    If you are a researcher or a machine learning enthusiast, or are working in the data science field and have a basic idea of Bayesian learning or probabilistic graphical models, this book will help you to understand the details of graphical models and use them in your data science problems.

  8. Graphical Model Debugger Framework for Embedded Systems

    Zeng, Kebin

    2010-01-01

    Model Driven Software Development has offered a faster way to design and implement embedded real-time software by moving the design to a model level, and by transforming models to code. However, the testing of embedded systems has remained at the code level. This paper presents a Graphical Model...... Debugger Framework, providing an auxiliary avenue of analysis of system models at runtime by executing generated code and updating models synchronously, which allows embedded developers to focus on the model level. With the model debugger, embedded developers can graphically test their design model...

  9. White Gaussian Noise - Models for Engineers

    Jondral, Friedrich K.

    2018-04-01

    This paper assembles some information about white Gaussian noise (WGN) and its applications. It starts from a description of thermal noise, i. e. the irregular motion of free charge carriers in electronic devices. In a second step, mathematical models of WGN processes and their most important parameters, especially autocorrelation functions and power spectrum densities, are introduced. In order to proceed from mathematical models to simulations, we discuss the generation of normally distributed random numbers. The signal-to-noise ratio as the most important quality measure used in communications, control or measurement technology is accurately introduced. As a practical application of WGN, the transmission of quadrature amplitude modulated (QAM) signals over additive WGN channels together with the optimum maximum likelihood (ML) detector is considered in a demonstrative and intuitive way.

  10. Graphical modelling software in R - status

    Detlefsen, Claus; Højsgaard, Søren; Lauritzen, Steffen L

    2007-01-01

    Graphical models in their modern form have been around for nearly a quarter of a century.  Various computer programs for inference in graphical models have been developed over that period. Some examples of free software programs are BUGS (Thomas 1994), CoCo (Badsberg2001), Digram (Klein, Keiding......, and Kreiner 1995), MIM (Edwards  2000), and Tetrad (Glymour, Scheines, Spirtes, and Kelley 1987). The gR initiative (Lauritzen 2002) aims at making graphical models available in R (R Development Core Team 2006). A small grant from the Danish Science Foundation supported this initiative. We will summarize...... the results of the initiative so far. Specifically we will illustrate some of the R packages for graphical modelling currently on CRAN and discuss their strengths and weaknesses....

  11. Functional Dual Adaptive Control with Recursive Gaussian Process Model

    Prüher, Jakub; Král, Ladislav

    2015-01-01

    The paper deals with dual adaptive control problem, where the functional uncertainties in the system description are modelled by a non-parametric Gaussian process regression model. Current approaches to adaptive control based on Gaussian process models are severely limited in their practical applicability, because the model is re-adjusted using all the currently available data, which keeps growing with every time step. We propose the use of recursive Gaussian process regression algorithm for significant reduction in computational requirements, thus bringing the Gaussian process-based adaptive controllers closer to their practical applicability. In this work, we design a bi-criterial dual controller based on recursive Gaussian process model for discrete-time stochastic dynamic systems given in an affine-in-control form. Using Monte Carlo simulations, we show that the proposed controller achieves comparable performance with the full Gaussian process-based controller in terms of control quality while keeping the computational demands bounded. (paper)

  12. Light reflection models for computer graphics.

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.

  13. Graphical Model Theory for Wireless Sensor Networks

    Davis, William B.

    2002-01-01

    Information processing in sensor networks, with many small processors, demands a theory of computation that allows the minimization of processing effort, and the distribution of this effort throughout the network. Graphical model theory provides a probabilistic theory of computation that explicitly addresses complexity and decentralization for optimizing network computation. The junction tree algorithm, for decentralized inference on graphical probability models, can be instantiated in a variety of applications useful for wireless sensor networks, including: sensor validation and fusion; data compression and channel coding; expert systems, with decentralized data structures, and efficient local queries; pattern classification, and machine learning. Graphical models for these applications are sketched, and a model of dynamic sensor validation and fusion is presented in more depth, to illustrate the junction tree algorithm

  14. Transforming Graphical System Models To Graphical Attack Models

    Ivanova, Marieta Georgieva; Probst, Christian W.; Hansen, René Rydhof; Kammüller, Florian; Mauw, S.; Kordy, B.

    2015-01-01

    Manually identifying possible attacks on an organisation is a complex undertaking; many different factors must be considered, and the resulting attack scenarios can be complex and hard to maintain as the organisation changes. System models provide a systematic representation of organisations that

  15. A note on moving average models for Gaussian random fields

    Hansen, Linda Vadgård; Thorarinsdottir, Thordis L.

    The class of moving average models offers a flexible modeling framework for Gaussian random fields with many well known models such as the Matérn covariance family and the Gaussian covariance falling under this framework. Moving average models may also be viewed as a kernel smoothing of a Lévy...... basis, a general modeling framework which includes several types of non-Gaussian models. We propose a new one-parameter spatial correlation model which arises from a power kernel and show that the associated Hausdorff dimension of the sample paths can take any value between 2 and 3. As a result...

  16. Diffusion weighted imaging in patients with rectal cancer: Comparison between Gaussian and non-Gaussian models.

    Georgios C Manikis

    Full Text Available The purpose of this study was to compare the performance of four diffusion models, including mono and bi-exponential both Gaussian and non-Gaussian models, in diffusion weighted imaging of rectal cancer.Nineteen patients with rectal adenocarcinoma underwent MRI examination of the rectum before chemoradiation therapy including a 7 b-value diffusion sequence (0, 25, 50, 100, 500, 1000 and 2000 s/mm2 at a 1.5T scanner. Four different diffusion models including mono- and bi-exponential Gaussian (MG and BG and non-Gaussian (MNG and BNG were applied on whole tumor volumes of interest. Two different statistical criteria were recruited to assess their fitting performance, including the adjusted-R2 and Root Mean Square Error (RMSE. To decide which model better characterizes rectal cancer, model selection was relied on Akaike Information Criteria (AIC and F-ratio.All candidate models achieved a good fitting performance with the two most complex models, the BG and the BNG, exhibiting the best fitting performance. However, both criteria for model selection indicated that the MG model performed better than any other model. In particular, using AIC Weights and F-ratio, the pixel-based analysis demonstrated that tumor areas better described by the simplest MG model in an average area of 53% and 33%, respectively. Non-Gaussian behavior was illustrated in an average area of 37% according to the F-ratio, and 7% using AIC Weights. However, the distributions of the pixels best fitted by each of the four models suggest that MG failed to perform better than any other model in all patients, and the overall tumor area.No single diffusion model evaluated herein could accurately describe rectal tumours. These findings probably can be explained on the basis of increased tumour heterogeneity, where areas with high vascularity could be fitted better with bi-exponential models, and areas with necrosis would mostly follow mono-exponential behavior.

  17. Efficiently adapting graphical models for selectivity estimation

    Tzoumas, Kostas; Deshpande, Amol; Jensen, Christian S.

    2013-01-01

    cardinality estimation without making the independence assumption. By carefully using concepts from the field of graphical models, we are able to factor the joint probability distribution over all the attributes in the database into small, usually two-dimensional distributions, without a significant loss...... in estimation accuracy. We show how to efficiently construct such a graphical model from the database using only two-way join queries, and we show how to perform selectivity estimation in a highly efficient manner. We integrate our algorithms into the PostgreSQL DBMS. Experimental results indicate...

  18. Building probabilistic graphical models with Python

    Karkera, Kiran R

    2014-01-01

    This is a short, practical guide that allows data scientists to understand the concepts of Graphical models and enables them to try them out using small Python code snippets, without being too mathematically complicated. If you are a data scientist who knows about machine learning and want to enhance your knowledge of graphical models, such as Bayes network, in order to use them to solve real-world problems using Python libraries, this book is for you. This book is intended for those who have some Python and machine learning experience, or are exploring the machine learning field.

  19. New deconvolution method for microscopic images based on the continuous Gaussian radial basis function interpolation model.

    Chen, Zhaoxue; Chen, Hao

    2014-01-01

    A deconvolution method based on the Gaussian radial basis function (GRBF) interpolation is proposed. Both the original image and Gaussian point spread function are expressed as the same continuous GRBF model, thus image degradation is simplified as convolution of two continuous Gaussian functions, and image deconvolution is converted to calculate the weighted coefficients of two-dimensional control points. Compared with Wiener filter and Lucy-Richardson algorithm, the GRBF method has an obvious advantage in the quality of restored images. In order to overcome such a defect of long-time computing, the method of graphic processing unit multithreading or increasing space interval of control points is adopted, respectively, to speed up the implementation of GRBF method. The experiments show that based on the continuous GRBF model, the image deconvolution can be efficiently implemented by the method, which also has a considerable reference value for the study of three-dimensional microscopic image deconvolution.

  20. Formal Analysis of Graphical Security Models

    Aslanyan, Zaruhi

    , software components and human actors interacting with each other to form so-called socio-technical systems. The importance of socio-technical systems to modern societies requires verifying their security properties formally, while their inherent complexity makes manual analyses impracticable. Graphical...... models for security offer an unrivalled opportunity to describe socio-technical systems, for they allow to represent different aspects like human behaviour, computation and physical phenomena in an abstract yet uniform manner. Moreover, these models can be assigned a formal semantics, thereby allowing...... formal verification of their properties. Finally, their appealing graphical notations enable to communicate security concerns in an understandable way also to non-experts, often in charge of the decision making. This dissertation argues that automated techniques can be developed on graphical security...

  1. Application Of Shared Gamma And Inverse-Gaussian Frailty Models ...

    Shared Gamma and Inverse-Gaussian Frailty models are used to analyze the survival times of patients who are clustered according to cancer/tumor types under Parametric Proportional Hazard framework. The result of the ... However, no evidence is strong enough for preference of either Gamma or Inverse Gaussian Frailty.

  2. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  3. Probabilistic reasoning with graphical security models

    Kordy, Barbara; Pouly, Marc; Schweitzer, Patrick

    This work provides a computational framework for meaningful probabilistic evaluation of attack–defense scenarios involving dependent actions. We combine the graphical security modeling technique of attack–defense trees with probabilistic information expressed in terms of Bayesian networks. In order

  4. Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models

    Wen, Xian-Huan; Gómez-Hernández, J. Jaime

    1998-03-01

    The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than

  5. Revisiting non-Gaussianity from non-attractor inflation models

    Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei

    2018-05-01

    Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.

  6. Stochastic Spectral Descent for Discrete Graphical Models

    Carlson, David; Hsieh, Ya-Ping; Collins, Edo; Carin, Lawrence; Cevher, Volkan

    2015-01-01

    Interest in deep probabilistic graphical models has in-creased in recent years, due to their state-of-the-art performance on many machine learning applications. Such models are typically trained with the stochastic gradient method, which can take a significant number of iterations to converge. Since the computational cost of gradient estimation is prohibitive even for modestly sized models, training becomes slow and practically usable models are kept small. In this paper we propose a new, largely tuning-free algorithm to address this problem. Our approach derives novel majorization bounds based on the Schatten- norm. Intriguingly, the minimizers of these bounds can be interpreted as gradient methods in a non-Euclidean space. We thus propose using a stochastic gradient method in non-Euclidean space. We both provide simple conditions under which our algorithm is guaranteed to converge, and demonstrate empirically that our algorithm leads to dramatically faster training and improved predictive ability compared to stochastic gradient descent for both directed and undirected graphical models.

  7. Computer Simulation for Dispersion of Air Pollution Released from a Line Source According to Gaussian Model

    Emad, A.A.; El Shazly, S.M.; Kassem, Kh.O.

    2010-01-01

    A line source model, developed in laboratory of environmental physics, faculty of science at Qena, Egypt is proposed to describe the downwind dispersion of pollutants near roadways, at different cities in Egypt. The model is based on the Gaussian plume methodology and is used to predict air pollutants' concentrations near roadways. In this direction, simple software has been presented in this paper, developed by authors, adopted completely Graphical User Interface (GUI) technique for operating in various windows-based microcomputers. The software interface and code have been designed by Microsoft Visual basic 6.0 based on the Gaussian diffusion equation. This software is developed to predict concentrations of gaseous pollutants (eg. CO, SO 2 , NO 2 and particulates) at a user specified receptor grid

  8. A Local Poisson Graphical Model for inferring networks from sequencing data.

    Allen, Genevera I; Liu, Zhandong

    2013-09-01

    Gaussian graphical models, a class of undirected graphs or Markov Networks, are often used to infer gene networks based on microarray expression data. Many scientists, however, have begun using high-throughput sequencing technologies such as RNA-sequencing or next generation sequencing to measure gene expression. As the resulting data consists of counts of sequencing reads for each gene, Gaussian graphical models are not optimal for this discrete data. In this paper, we propose a novel method for inferring gene networks from sequencing data: the Local Poisson Graphical Model. Our model assumes a Local Markov property where each variable conditional on all other variables is Poisson distributed. We develop a neighborhood selection algorithm to fit our model locally by performing a series of l1 penalized Poisson, or log-linear, regressions. This yields a fast parallel algorithm for estimating networks from next generation sequencing data. In simulations, we illustrate the effectiveness of our methods for recovering network structure from count data. A case study on breast cancer microRNAs (miRNAs), a novel application of graphical models, finds known regulators of breast cancer genes and discovers novel miRNA clusters and hubs that are targets for future research.

  9. Perturbative corrections for approximate inference in gaussian latent variable models

    Opper, Manfred; Paquet, Ulrich; Winther, Ole

    2013-01-01

    Expectation Propagation (EP) provides a framework for approximate inference. When the model under consideration is over a latent Gaussian field, with the approximation being Gaussian, we show how these approximations can systematically be corrected. A perturbative expansion is made of the exact b...... illustrate on tree-structured Ising model approximations. Furthermore, they provide a polynomial-time assessment of the approximation error. We also provide both theoretical and practical insights on the exactness of the EP solution. © 2013 Manfred Opper, Ulrich Paquet and Ole Winther....

  10. An approximate fractional Gaussian noise model with computational cost

    Sø rbye, Sigrunn H.; Myrvoll-Nilsen, Eirik; Rue, Haavard

    2017-01-01

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood

  11. Supervised Gaussian mixture model based remote sensing image ...

    Using the supervised classification technique, both simulated and empirical satellite remote sensing data are used to train and test the Gaussian mixture model algorithm. For the purpose of validating the experiment, the resulting classified satellite image is compared with the ground truth data. For the simulated modelling, ...

  12. A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction

    Yu, Jie; Chen, Kuilin; Mori, Junichi; Rashid, Mudassir M.

    2013-01-01

    Optimizing wind power generation and controlling the operation of wind turbines to efficiently harness the renewable wind energy is a challenging task due to the intermittency and unpredictable nature of wind speed, which has significant influence on wind power production. A new approach for long-term wind speed forecasting is developed in this study by integrating GMCM (Gaussian mixture copula model) and localized GPR (Gaussian process regression). The time series of wind speed is first classified into multiple non-Gaussian components through the Gaussian mixture copula model and then Bayesian inference strategy is employed to incorporate the various non-Gaussian components using the posterior probabilities. Further, the localized Gaussian process regression models corresponding to different non-Gaussian components are built to characterize the stochastic uncertainty and non-stationary seasonality of the wind speed data. The various localized GPR models are integrated through the posterior probabilities as the weightings so that a global predictive model is developed for the prediction of wind speed. The proposed GMCM–GPR approach is demonstrated using wind speed data from various wind farm locations and compared against the GMCM-based ARIMA (auto-regressive integrated moving average) and SVR (support vector regression) methods. In contrast to GMCM–ARIMA and GMCM–SVR methods, the proposed GMCM–GPR model is able to well characterize the multi-seasonality and uncertainty of wind speed series for accurate long-term prediction. - Highlights: • A novel predictive modeling method is proposed for long-term wind speed forecasting. • Gaussian mixture copula model is estimated to characterize the multi-seasonality. • Localized Gaussian process regression models can deal with the random uncertainty. • Multiple GPR models are integrated through Bayesian inference strategy. • The proposed approach shows higher prediction accuracy and reliability

  13. Modelling and control of dynamic systems using gaussian process models

    Kocijan, Juš

    2016-01-01

    This monograph opens up new horizons for engineers and researchers in academia and in industry dealing with or interested in new developments in the field of system identification and control. It emphasizes guidelines for working solutions and practical advice for their implementation rather than the theoretical background of Gaussian process (GP) models. The book demonstrates the potential of this recent development in probabilistic machine-learning methods and gives the reader an intuitive understanding of the topic. The current state of the art is treated along with possible future directions for research. Systems control design relies on mathematical models and these may be developed from measurement data. This process of system identification, when based on GP models, can play an integral part of control design in data-based control and its description as such is an essential aspect of the text. The background of GP regression is introduced first with system identification and incorporation of prior know...

  14. Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs

    Jensen, Jesper Højvang; Ellis, Dan P. W.; Christensen, Mads Græsbøll

    2007-01-01

    In music similarity and in the related task of genre classification, a distance measure between Gaussian mixture models is frequently needed. We present a comparison of the Kullback-Leibler distance, the earth movers distance and the normalized L2 distance for this application. Although...

  15. Inverse Gaussian model for small area estimation via Gibbs sampling

    We present a Bayesian method for estimating small area parameters under an inverse Gaussian model. The method is extended to estimate small area parameters for finite populations. The Gibbs sampler is proposed as a mechanism for implementing the Bayesian paradigm. We illustrate the method by application to ...

  16. Bayesian graphical models for genomewide association studies.

    Verzilli, Claudio J; Stallard, Nigel; Whittaker, John C

    2006-07-01

    As the extent of human genetic variation becomes more fully characterized, the research community is faced with the challenging task of using this information to dissect the heritable components of complex traits. Genomewide association studies offer great promise in this respect, but their analysis poses formidable difficulties. In this article, we describe a computationally efficient approach to mining genotype-phenotype associations that scales to the size of the data sets currently being collected in such studies. We use discrete graphical models as a data-mining tool, searching for single- or multilocus patterns of association around a causative site. The approach is fully Bayesian, allowing us to incorporate prior knowledge on the spatial dependencies around each marker due to linkage disequilibrium, which reduces considerably the number of possible graphical structures. A Markov chain-Monte Carlo scheme is developed that yields samples from the posterior distribution of graphs conditional on the data from which probabilistic statements about the strength of any genotype-phenotype association can be made. Using data simulated under scenarios that vary in marker density, genotype relative risk of a causative allele, and mode of inheritance, we show that the proposed approach has better localization properties and leads to lower false-positive rates than do single-locus analyses. Finally, we present an application of our method to a quasi-synthetic data set in which data from the CYP2D6 region are embedded within simulated data on 100K single-nucleotide polymorphisms. Analysis is quick (<5 min), and we are able to localize the causative site to a very short interval.

  17. Rao-Blackwellization for Adaptive Gaussian Sum Nonlinear Model Propagation

    Semper, Sean R.; Crassidis, John L.; George, Jemin; Mukherjee, Siddharth; Singla, Puneet

    2015-01-01

    When dealing with imperfect data and general models of dynamic systems, the best estimate is always sought in the presence of uncertainty or unknown parameters. In many cases, as the first attempt, the Extended Kalman filter (EKF) provides sufficient solutions to handling issues arising from nonlinear and non-Gaussian estimation problems. But these issues may lead unacceptable performance and even divergence. In order to accurately capture the nonlinearities of most real-world dynamic systems, advanced filtering methods have been created to reduce filter divergence while enhancing performance. Approaches, such as Gaussian sum filtering, grid based Bayesian methods and particle filters are well-known examples of advanced methods used to represent and recursively reproduce an approximation to the state probability density function (pdf). Some of these filtering methods were conceptually developed years before their widespread uses were realized. Advanced nonlinear filtering methods currently benefit from the computing advancements in computational speeds, memory, and parallel processing. Grid based methods, multiple-model approaches and Gaussian sum filtering are numerical solutions that take advantage of different state coordinates or multiple-model methods that reduced the amount of approximations used. Choosing an efficient grid is very difficult for multi-dimensional state spaces, and oftentimes expensive computations must be done at each point. For the original Gaussian sum filter, a weighted sum of Gaussian density functions approximates the pdf but suffers at the update step for the individual component weight selections. In order to improve upon the original Gaussian sum filter, Ref. [2] introduces a weight update approach at the filter propagation stage instead of the measurement update stage. This weight update is performed by minimizing the integral square difference between the true forecast pdf and its Gaussian sum approximation. By adaptively updating

  18. Dynamical reduction models with general gaussian noises

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-02-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the statevector, white noise stochastic processes with non white ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view the most relevant motivation for the approach we propose here derives from the fact that in relativistic models the occurrence of white noises is the main responsible for the appearance of untractable divergences. Therefore, one can hope that resorting to non white noises one can overcome such a difficulty. We investigate stochastic equations with non white noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above mentioned subject but also for the general study of dissipative systems and decoherence. (author)

  19. Dynamical reduction models with general Gaussian noises

    Bassi, Angelo; Ghirardi, GianCarlo

    2002-01-01

    We consider the effect of replacing in stochastic differential equations leading to the dynamical collapse of the state vector, white-noise stochastic processes with nonwhite ones. We prove that such a modification can be consistently performed without altering the most interesting features of the previous models. One of the reasons to discuss this matter derives from the desire of being allowed to deal with physical stochastic fields, such as the gravitational one, which cannot give rise to white noises. From our point of view, the most relevant motivation for the approach we propose here derives from the fact that in relativistic models intractable divergences appear as a consequence of the white nature of the noises. Therefore, one can hope that resorting to nonwhite noises, one can overcome such a difficulty. We investigate stochastic equations with nonwhite noises, we discuss their reduction properties and their physical implications. Our analysis has a precise interest not only for the above-mentioned subject but also for the general study of dissipative systems and decoherence

  20. ModelMate - A graphical user interface for model analysis

    Banta, Edward R.

    2011-01-01

    ModelMate is a graphical user interface designed to facilitate use of model-analysis programs with models. This initial version of ModelMate supports one model-analysis program, UCODE_2005, and one model software program, MODFLOW-2005. ModelMate can be used to prepare input files for UCODE_2005, run UCODE_2005, and display analysis results. A link to the GW_Chart graphing program facilitates visual interpretation of results. ModelMate includes capabilities for organizing directories used with the parallel-processing capabilities of UCODE_2005 and for maintaining files in those directories to be identical to a set of files in a master directory. ModelMate can be used on its own or in conjunction with ModelMuse, a graphical user interface for MODFLOW-2005 and PHAST.

  1. Markov chain Monte Carlo methods in directed graphical models

    Højbjerre, Malene

    Directed graphical models present data possessing a complex dependence structure, and MCMC methods are computer-intensive simulation techniques to approximate high-dimensional intractable integrals, which emerge in such models with incomplete data. MCMC computations in directed graphical models h...

  2. An approximate fractional Gaussian noise model with computational cost

    Sørbye, Sigrunn H.

    2017-09-18

    Fractional Gaussian noise (fGn) is a stationary time series model with long memory properties applied in various fields like econometrics, hydrology and climatology. The computational cost in fitting an fGn model of length $n$ using a likelihood-based approach is ${\\\\mathcal O}(n^{2})$, exploiting the Toeplitz structure of the covariance matrix. In most realistic cases, we do not observe the fGn process directly but only through indirect Gaussian observations, so the Toeplitz structure is easily lost and the computational cost increases to ${\\\\mathcal O}(n^{3})$. This paper presents an approximate fGn model of ${\\\\mathcal O}(n)$ computational cost, both with direct or indirect Gaussian observations, with or without conditioning. This is achieved by approximating fGn with a weighted sum of independent first-order autoregressive processes, fitting the parameters of the approximation to match the autocorrelation function of the fGn model. The resulting approximation is stationary despite being Markov and gives a remarkably accurate fit using only four components. The performance of the approximate fGn model is demonstrated in simulations and two real data examples.

  3. Quantum Graphical Models and Belief Propagation

    Leifer, M.S.; Poulin, D.

    2008-01-01

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described

  4. On a Generalized Squared Gaussian Diffusion Model for Option Valuation

    Edeki S.O.

    2017-01-01

    Full Text Available In financial mathematics, option pricing models are vital tools whose usefulness cannot be overemphasized. Modern approaches and modelling of financial derivatives are therefore required in option pricing and valuation settings. In this paper, we derive via the application of Ito lemma, a pricing model referred to as Generalized Squared Gaussian Diffusion Model (GSGDM for option pricing and valuation. Same approach can be considered via Stratonovich stochastic dynamics. We also show that the classical Black-Scholes, and the square root constant elasticity of variance models are special cases of the GSGDM. In addition, general solution of the GSGDM is obtained using modified variational iterative method (MVIM.

  5. Color Texture Segmentation by Decomposition of Gaussian Mixture Model

    Grim, Jiří; Somol, Petr; Haindl, Michal; Pudil, Pavel

    2006-01-01

    Roč. 19, č. 4225 (2006), s. 287-296 ISSN 0302-9743. [Iberoamerican Congress on Pattern Recognition. CIARP 2006 /11./. Cancun, 14.11.2006-17.11.2006] R&D Projects: GA AV ČR 1ET400750407; GA MŠk 1M0572; GA MŠk 2C06019 EU Projects: European Commission(XE) 507752 - MUSCLE Institutional research plan: CEZ:AV0Z10750506 Keywords : texture segmentation * gaussian mixture model * EM algorithm Subject RIV: IN - Informatics, Computer Science Impact factor: 0.402, year: 2005 http://library.utia.cas.cz/separaty/historie/grim-color texture segmentation by decomposition of gaussian mixture model.pdf

  6. On the thermodynamic properties of the generalized Gaussian core model

    B.M.Mladek

    2005-01-01

    Full Text Available We present results of a systematic investigation of the properties of the generalized Gaussian core model of index n. The potential of this system interpolates via the index n between the potential of the Gaussian core model and the penetrable sphere system, thereby varying the steepness of the repulsion. We have used both conventional and self-consistent liquid state theories to calculate the structural and thermodynamic properties of the system; reference data are provided by computer simulations. The results indicate that the concept of self-consistency becomes indispensable to guarantee excellent agreement with simulation data; in particular, structural consistency (in our approach taken into account via the zero separation theorem is obviously a very important requirement. Simulation results for the dimensionless equation of state, β P / ρ, indicate that for an index-value of 4, a clustering transition, possibly into a structurally ordered phase might set in as the system is compressed.

  7. XDGMM: eXtreme Deconvolution Gaussian Mixture Modeling

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-08-01

    XDGMM uses Gaussian mixtures to do density estimation of noisy, heterogenous, and incomplete data using extreme deconvolution (XD) algorithms which is compatible with the scikit-learn machine learning methods. It implements both the astroML and Bovy et al. (2011) algorithms, and extends the BaseEstimator class from scikit-learn so that cross-validation methods work. It allows the user to produce a conditioned model if values of some parameters are known.

  8. Prediction of Geological Subsurfaces Based on Gaussian Random Field Models

    Abrahamsen, Petter

    1997-12-31

    During the sixties, random functions became practical tools for predicting ore reserves with associated precision measures in the mining industry. This was the start of the geostatistical methods called kriging. These methods are used, for example, in petroleum exploration. This thesis reviews the possibilities for using Gaussian random functions in modelling of geological subsurfaces. It develops methods for including many sources of information and observations for precise prediction of the depth of geological subsurfaces. The simple properties of Gaussian distributions make it possible to calculate optimal predictors in the mean square sense. This is done in a discussion of kriging predictors. These predictors are then extended to deal with several subsurfaces simultaneously. It is shown how additional velocity observations can be used to improve predictions. The use of gradient data and even higher order derivatives are also considered and gradient data are used in an example. 130 refs., 44 figs., 12 tabs.

  9. A model of non-Gaussian diffusion in heterogeneous media

    Lanoiselée, Yann; Grebenkov, Denis S.

    2018-04-01

    Recent progress in single-particle tracking has shown evidence of the non-Gaussian distribution of displacements in living cells, both near the cellular membrane and inside the cytoskeleton. Similar behavior has also been observed in granular materials, turbulent flows, gels and colloidal suspensions, suggesting that this is a general feature of diffusion in complex media. A possible interpretation of this phenomenon is that a tracer explores a medium with spatio-temporal fluctuations which result in local changes of diffusivity. We propose and investigate an ergodic, easily interpretable model, which implements the concept of diffusing diffusivity. Depending on the parameters, the distribution of displacements can be either flat or peaked at small displacements with an exponential tail at large displacements. We show that the distribution converges slowly to a Gaussian one. We calculate statistical properties, derive the asymptotic behavior and discuss some implications and extensions.

  10. Graphical modeling and query language for hospitals.

    Barzdins, Janis; Barzdins, Juris; Rencis, Edgars; Sostaks, Agris

    2013-01-01

    So far there has been little evidence that implementation of the health information technologies (HIT) is leading to health care cost savings. One of the reasons for this lack of impact by the HIT likely lies in the complexity of the business process ownership in the hospitals. The goal of our research is to develop a business model-based method for hospital use which would allow doctors to retrieve directly the ad-hoc information from various hospital databases. We have developed a special domain-specific process modelling language called the MedMod. Formally, we define the MedMod language as a profile on UML Class diagrams, but we also demonstrate it on examples, where we explain the semantics of all its elements informally. Moreover, we have developed the Process Query Language (PQL) that is based on MedMod process definition language. The purpose of PQL is to allow a doctor querying (filtering) runtime data of hospital's processes described using MedMod. The MedMod language tries to overcome deficiencies in existing process modeling languages, allowing to specify the loosely-defined sequence of the steps to be performed in the clinical process. The main advantages of PQL are in two main areas - usability and efficiency. They are: 1) the view on data through "glasses" of familiar process, 2) the simple and easy-to-perceive means of setting filtering conditions require no more expertise than using spreadsheet applications, 3) the dynamic response to each step in construction of the complete query that shortens the learning curve greatly and reduces the error rate, and 4) the selected means of filtering and data retrieving allows to execute queries in O(n) time regarding the size of the dataset. We are about to continue developing this project with three further steps. First, we are planning to develop user-friendly graphical editors for the MedMod process modeling and query languages. The second step is to do evaluation of usability the proposed language and tool

  11. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  12. Evaluation of Gaussian approximations for data assimilation in reservoir models

    Iglesias, Marco A.

    2013-07-14

    The Bayesian framework is the standard approach for data assimilation in reservoir modeling. This framework involves characterizing the posterior distribution of geological parameters in terms of a given prior distribution and data from the reservoir dynamics, together with a forward model connecting the space of geological parameters to the data space. Since the posterior distribution quantifies the uncertainty in the geologic parameters of the reservoir, the characterization of the posterior is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based on Gaussian approximations, are often used for characterizing the posterior distribution. Evaluating the performance of those Gaussian approximations is typically conducted by assessing their ability at reproducing the truth within the confidence interval provided by the ad hoc technique under consideration. This has the disadvantage of mixing up the approximation properties of the history matching algorithm employed with the information content of the particular observations used, making it hard to evaluate the effect of the ad hoc approximations alone. In this paper, we avoid this disadvantage by comparing the ad hoc techniques with a fully resolved state-of-the-art probing of the Bayesian posterior distribution. The ad hoc techniques whose performance we assess are based on (1) linearization around the maximum a posteriori estimate, (2) randomized maximum likelihood, and (3) ensemble Kalman filter-type methods. In order to fully resolve the posterior distribution, we implement a state-of-the art Markov chain Monte Carlo (MCMC) method that scales well with respect to the dimension of the parameter space, enabling us to study realistic forward models, in two space dimensions, at a high level of grid refinement. Our

  13. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  14. A methodology for acquiring qualitative knowledge for probabilistic graphical models

    Kjærulff, Uffe Bro; Madsen, Anders L.

    2004-01-01

    We present a practical and general methodology that simplifies the task of acquiring and formulating qualitative knowledge for constructing probabilistic graphical models (PGMs). The methodology efficiently captures and communicates expert knowledge, and has significantly eased the model...

  15. Case studies in Gaussian process modelling of computer codes

    Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony

    2006-01-01

    In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics

  16. Gaussian Process Regression Model in Spatial Logistic Regression

    Sofro, A.; Oktaviarina, A.

    2018-01-01

    Spatial analysis has developed very quickly in the last decade. One of the favorite approaches is based on the neighbourhood of the region. Unfortunately, there are some limitations such as difficulty in prediction. Therefore, we offer Gaussian process regression (GPR) to accommodate the issue. In this paper, we will focus on spatial modeling with GPR for binomial data with logit link function. The performance of the model will be investigated. We will discuss the inference of how to estimate the parameters and hyper-parameters and to predict as well. Furthermore, simulation studies will be explained in the last section.

  17. The complete guide to blender graphics computer modeling and animation

    Blain, John M

    2014-01-01

    Smoothly Leads Users into the Subject of Computer Graphics through the Blender GUIBlender, the free and open source 3D computer modeling and animation program, allows users to create and animate models and figures in scenes, compile feature movies, and interact with the models and create video games. Reflecting the latest version of Blender, The Complete Guide to Blender Graphics: Computer Modeling & Animation, 2nd Edition helps beginners learn the basics of computer animation using this versatile graphics program. This edition incorporates many new features of Blender, including developments

  18. Incorporating prior information into differential network analysis using non-paranormal graphical models.

    Zhang, Xiao-Fei; Ou-Yang, Le; Yan, Hong

    2017-08-15

    Understanding how gene regulatory networks change under different cellular states is important for revealing insights into network dynamics. Gaussian graphical models, which assume that the data follow a joint normal distribution, have been used recently to infer differential networks. However, the distributions of the omics data are non-normal in general. Furthermore, although much biological knowledge (or prior information) has been accumulated, most existing methods ignore the valuable prior information. Therefore, new statistical methods are needed to relax the normality assumption and make full use of prior information. We propose a new differential network analysis method to address the above challenges. Instead of using Gaussian graphical models, we employ a non-paranormal graphical model that can relax the normality assumption. We develop a principled model to take into account the following prior information: (i) a differential edge less likely exists between two genes that do not participate together in the same pathway; (ii) changes in the networks are driven by certain regulator genes that are perturbed across different cellular states and (iii) the differential networks estimated from multi-view gene expression data likely share common structures. Simulation studies demonstrate that our method outperforms other graphical model-based algorithms. We apply our method to identify the differential networks between platinum-sensitive and platinum-resistant ovarian tumors, and the differential networks between the proneural and mesenchymal subtypes of glioblastoma. Hub nodes in the estimated differential networks rediscover known cancer-related regulator genes and contain interesting predictions. The source code is at https://github.com/Zhangxf-ccnu/pDNA. szuouyl@gmail.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  19. A semiparametric graphical modelling approach for large-scale equity selection.

    Liu, Han; Mulvey, John; Zhao, Tianqi

    2016-01-01

    We propose a new stock selection strategy that exploits rebalancing returns and improves portfolio performance. To effectively harvest rebalancing gains, we apply ideas from elliptical-copula graphical modelling and stability inference to select stocks that are as independent as possible. The proposed elliptical-copula graphical model has a latent Gaussian representation; its structure can be effectively inferred using the regularized rank-based estimators. The resulting algorithm is computationally efficient and scales to large data-sets. To show the efficacy of the proposed method, we apply it to conduct equity selection based on a 16-year health care stock data-set and a large 34-year stock data-set. Empirical tests show that the proposed method is superior to alternative strategies including a principal component analysis-based approach and the classical Markowitz strategy based on the traditional buy-and-hold assumption.

  20. Fractional Gaussian noise: Prior specification and model comparison

    Sø rbye, Sigrunn Holbek; Rue, Haavard

    2017-01-01

    Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.

  1. Fractional Gaussian noise: Prior specification and model comparison

    Sørbye, Sigrunn Holbek

    2017-07-07

    Fractional Gaussian noise (fGn) is a stationary stochastic process used to model antipersistent or persistent dependency structures in observed time series. Properties of the autocovariance function of fGn are characterised by the Hurst exponent (H), which, in Bayesian contexts, typically has been assigned a uniform prior on the unit interval. This paper argues why a uniform prior is unreasonable and introduces the use of a penalised complexity (PC) prior for H. The PC prior is computed to penalise divergence from the special case of white noise and is invariant to reparameterisations. An immediate advantage is that the exact same prior can be used for the autocorrelation coefficient ϕ(symbol) of a first-order autoregressive process AR(1), as this model also reflects a flexible version of white noise. Within the general setting of latent Gaussian models, this allows us to compare an fGn model component with AR(1) using Bayes factors, avoiding the confounding effects of prior choices for the two hyperparameters H and ϕ(symbol). Among others, this is useful in climate regression models where inference for underlying linear or smooth trends depends heavily on the assumed noise model.

  2. State of the art atmospheric dispersion modelling. Should the Gaussian plume model still be used?

    Richter, Cornelia [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2016-11-15

    For regulatory purposes with respect to licensing and supervision of airborne releases of nuclear installations, the Gaussian plume model is still in use in Germany. However, for complex situations the Gaussian plume model is to be replaced by a Lagrangian particle model. Now the new EU basic safety standards for protection against the dangers arising from exposure to ionising radiation (EU BSS) [1] asks for a realistic assessment of doses to the members of the public from authorised practices. This call for a realistic assessment raises the question whether dispersion modelling with the Gaussian plume model is an adequate approach anymore or whether the use of more complex models is mandatory.

  3. Performance of monitoring networks estimated from a Gaussian plume model

    Seebregts, A.J.; Hienen, J.F.A.

    1990-10-01

    In support of the ECN study on monitoring strategies after nuclear accidents, the present report describes the analysis of the performance of a monitoring network in a square grid. This network is used to estimate the distribution of the deposition pattern after a release of radioactivity into the atmosphere. The analysis is based upon a single release, a constant wind direction and an atmospheric dispersion according to a simplified Gaussian plume model. A technique is introduced to estimate the parameters in this Gaussian model based upon measurements at specific monitoring locations and linear regression, although this model is intrinsically non-linear. With these estimated parameters and the Gaussian model the distribution of the contamination due to deposition can be estimated. To investigate the relation between the network and the accuracy of the estimates for the deposition, deposition data have been generated by the Gaussian model, including a measurement error by a Monte Carlo simulation and this procedure has been repeated for several grid sizes, dispersion conditions, number of measurements per location, and errors per single measurement. The present technique has also been applied for the mesh sizes of two networks in the Netherlands, viz. the Landelijk Meetnet Radioaciviteit (National Measurement Network on Radioactivity, mesh size approx. 35 km) and the proposed Landelijk Meetnet Nucleaire Incidenten (National Measurement Network on Nuclear Incidents, mesh size approx. 15 km). The results show accuracies of 11 and 7 percent, respectively, if monitoring locations are used more than 10 km away from the postulated accident site. These figures are based upon 3 measurements per location and a dispersion during neutral weather with a wind velocity of 4 m/s. For stable weather conditions and low wind velocities, i.e. a small plume, the calculated accuracies are at least a factor 1.5 worse.The present type of analysis makes a cost-benefit approach to the

  4. Fault Tolerant Control Using Gaussian Processes and Model Predictive Control

    Yang Xiaoke

    2015-03-01

    Full Text Available Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very promising candidates for the first of these, and model predictive control has a proven capability for the second. We therefore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several reasonably realistic examples drawn from flight control.

  5. Gaussian free turbulence: structures and relaxation in plasma models

    Gruzinov, A.V.

    1993-01-01

    Free-turbulent relaxation in two-dimensional MHD, the degenerate Hasegawa-Mima equation and a two-dimensional microtearing model are studied. The Gibbs distributions of these three systems can be completely analyzed, due to the special structure of their invariants and due to the existence of ultraviolet catastrophe. The free-turbulent field is seen to be a sum of a certain coherent structure (statistical attractor) and Gaussian random noise. Two-dimensional current layers are shown to be statistical attractors in 2D MHD. (author)

  6. Gaussian random bridges and a geometric model for information equilibrium

    Mengütürk, Levent Ali

    2018-03-01

    The paper introduces a class of conditioned stochastic processes that we call Gaussian random bridges (GRBs) and proves some of their properties. Due to the anticipative representation of any GRB as the sum of a random variable and a Gaussian (T , 0) -bridge, GRBs can model noisy information processes in partially observed systems. In this spirit, we propose an asset pricing model with respect to what we call information equilibrium in a market with multiple sources of information. The idea is to work on a topological manifold endowed with a metric that enables us to systematically determine an equilibrium point of a stochastic system that can be represented by multiple points on that manifold at each fixed time. In doing so, we formulate GRB-based information diversity over a Riemannian manifold and show that it is pinned to zero over the boundary determined by Dirac measures. We then define an influence factor that controls the dominance of an information source in determining the best estimate of a signal in the L2-sense. When there are two sources, this allows us to construct information equilibrium as a functional of a geodesic-valued stochastic process, which is driven by an equilibrium convergence rate representing the signal-to-noise ratio. This leads us to derive price dynamics under what can be considered as an equilibrium probability measure. We also provide a semimartingale representation of Markovian GRBs associated with Gaussian martingales and a non-anticipative representation of fractional Brownian random bridges that can incorporate degrees of information coupling in a given system via the Hurst exponent.

  7. A probabilistic graphical model based stochastic input model construction

    Wan, Jiang; Zabaras, Nicholas

    2014-01-01

    Model reduction techniques have been widely used in modeling of high-dimensional stochastic input in uncertainty quantification tasks. However, the probabilistic modeling of random variables projected into reduced-order spaces presents a number of computational challenges. Due to the curse of dimensionality, the underlying dependence relationships between these random variables are difficult to capture. In this work, a probabilistic graphical model based approach is employed to learn the dependence by running a number of conditional independence tests using observation data. Thus a probabilistic model of the joint PDF is obtained and the PDF is factorized into a set of conditional distributions based on the dependence structure of the variables. The estimation of the joint PDF from data is then transformed to estimating conditional distributions under reduced dimensions. To improve the computational efficiency, a polynomial chaos expansion is further applied to represent the random field in terms of a set of standard random variables. This technique is combined with both linear and nonlinear model reduction methods. Numerical examples are presented to demonstrate the accuracy and efficiency of the probabilistic graphical model based stochastic input models. - Highlights: • Data-driven stochastic input models without the assumption of independence of the reduced random variables. • The problem is transformed to a Bayesian network structure learning problem. • Examples are given in flows in random media

  8. A general graphical user interface for automatic reliability modeling

    Liceaga, Carlos A.; Siewiorek, Daniel P.

    1991-01-01

    Reported here is a general Graphical User Interface (GUI) for automatic reliability modeling of Processor Memory Switch (PMS) structures using a Markov model. This GUI is based on a hierarchy of windows. One window has graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration capabilities, and requirements. Other windows have field texts, popup menus, and buttons for specifying parameters and selecting actions. An example application of the GUI is given.

  9. Out-of-equilibrium dynamics in a Gaussian trap model

    Diezemann, Gregor

    2007-01-01

    The violations of the fluctuation-dissipation theorem are analysed for a trap model with a Gaussian density of states. In this model, the system reaches thermal equilibrium for long times after a quench to any finite temperature and therefore all ageing effect are of a transient nature. For not too long times after the quench it is found that the so-called fluctuation-dissipation ratio tends to a non-trivial limit, thus indicating the possibility for the definition of a timescale-dependent effective temperature. However, different definitions of the effective temperature yield distinct results. In particular, plots of the integrated response versus the correlation function strongly depend on the way they are constructed. Also the definition of effective temperatures in the frequency domain is not unique for the model considered. This may have some implications for the interpretation of results from computer simulations and experimental determinations of effective temperatures

  10. An integrated introduction to computer graphics and geometric modeling

    Goldman, Ronald

    2009-01-01

    … this book may be the first book on geometric modelling that also covers computer graphics. In addition, it may be the first book on computer graphics that integrates a thorough introduction to 'freedom' curves and surfaces and to the mathematical foundations for computer graphics. … the book is well suited for an undergraduate course. … The entire book is very well presented and obviously written by a distinguished and creative researcher and educator. It certainly is a textbook I would recommend. …-Computer-Aided Design, 42, 2010… Many books concentrate on computer programming and soon beco

  11. The Gaussian streaming model and convolution Lagrangian effective field theory

    Vlah, Zvonimir [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States); Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  12. Fast uncertainty reduction strategies relying on Gaussian process models

    Chevalier, Clement

    2013-01-01

    This work deals with sequential and batch-sequential evaluation strategies of real-valued functions under limited evaluation budget, using Gaussian process models. Optimal Stepwise Uncertainty Reduction (SUR) strategies are investigated for two different problems, motivated by real test cases in nuclear safety. First we consider the problem of identifying the excursion set above a given threshold T of a real-valued function f. Then we study the question of finding the set of 'safe controlled configurations', i.e. the set of controlled inputs where the function remains below T, whatever the value of some others non-controlled inputs. New SUR strategies are presented, together with efficient procedures and formulas to compute and use them in real world applications. The use of fast formulas to recalculate quickly the posterior mean or covariance function of a Gaussian process (referred to as the 'kriging update formulas') does not only provide substantial computational savings. It is also one of the key tools to derive closed form formulas enabling a practical use of computationally-intensive sampling strategies. A contribution in batch-sequential optimization (with the multi-points Expected Improvement) is also presented. (author)

  13. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    Irincheeva, Irina

    2012-08-03

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  14. A Non-Gaussian Spatial Generalized Linear Latent Variable Model

    Irincheeva, Irina; Cantoni, Eva; Genton, Marc G.

    2012-01-01

    We consider a spatial generalized linear latent variable model with and without normality distributional assumption on the latent variables. When the latent variables are assumed to be multivariate normal, we apply a Laplace approximation. To relax the assumption of marginal normality in favor of a mixture of normals, we construct a multivariate density with Gaussian spatial dependence and given multivariate margins. We use the pairwise likelihood to estimate the corresponding spatial generalized linear latent variable model. The properties of the resulting estimators are explored by simulations. In the analysis of an air pollution data set the proposed methodology uncovers weather conditions to be a more important source of variability than air pollution in explaining all the causes of non-accidental mortality excluding accidents. © 2012 International Biometric Society.

  15. Stochastic cluster algorithms for discrete Gaussian (SOS) models

    Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.

    1990-10-01

    We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)

  16. Modelling of JET diagnostics using Bayesian Graphical Models

    Svensson, J. [IPP Greifswald, Greifswald (Germany); Ford, O. [Imperial College, London (United Kingdom); McDonald, D.; Hole, M.; Nessi, G. von; Meakins, A.; Brix, M.; Thomsen, H.; Werner, A.; Sirinelli, A.

    2011-07-01

    The mapping between physics parameters (such as densities, currents, flows, temperatures etc) defining the plasma 'state' under a given model and the raw observations of each plasma diagnostic will 1) depend on the particular physics model used, 2) is inherently probabilistic, from uncertainties on both observations and instrumental aspects of the mapping, such as calibrations, instrument functions etc. A flexible and principled way of modelling such interconnected probabilistic systems is through so called Bayesian graphical models. Being an amalgam between graph theory and probability theory, Bayesian graphical models can simulate the complex interconnections between physics models and diagnostic observations from multiple heterogeneous diagnostic systems, making it relatively easy to optimally combine the observations from multiple diagnostics for joint inference on parameters of the underlying physics model, which in itself can be represented as part of the graph. At JET about 10 diagnostic systems have to date been modelled in this way, and has lead to a number of new results, including: the reconstruction of the flux surface topology and q-profiles without any specific equilibrium assumption, using information from a number of different diagnostic systems; profile inversions taking into account the uncertainties in the flux surface positions and a substantial increase in accuracy of JET electron density and temperature profiles, including improved pedestal resolution, through the joint analysis of three diagnostic systems. It is believed that the Bayesian graph approach could potentially be utilised for very large sets of diagnostics, providing a generic data analysis framework for nuclear fusion experiments, that would be able to optimally utilize the information from multiple diagnostics simultaneously, and where the explicit graph representation of the connections to underlying physics models could be used for sophisticated model testing. This

  17. The gRbase Package for Graphical Modelling in R

    Højsgaard, Søren; Dethlefsen, Claus

    We have developed a package, called , consisting of a number of classes and associated methods to support the analysis of data using graphical models. It is developed for the open source language, R, and is available for several platforms. The package is intended to be widely extendible...... these building blocks can be combined and integrated with inference engines in the special cases of hierarchical log-linear models (undirected models). gRbase gRbase dynamicGraph...... and flexible so that package developers may implement further types of graphical models using the available methods. contains methods for representing data, specification of models using a formal language, and is linked to , an interactive graphical user interface for manipulating graphs. We show how...

  18. Integrating Surface Modeling into the Engineering Design Graphics Curriculum

    Hartman, Nathan W.

    2006-01-01

    It has been suggested there is a knowledge base that surrounds the use of 3D modeling within the engineering design process and correspondingly within engineering design graphics education. While solid modeling receives a great deal of attention and discussion relative to curriculum efforts, and rightly so, surface modeling is an equally viable 3D…

  19. GaussianCpG: a Gaussian model for detection of CpG island in human genome sequences.

    Yu, Ning; Guo, Xuan; Zelikovsky, Alexander; Pan, Yi

    2017-05-24

    As crucial markers in identifying biological elements and processes in mammalian genomes, CpG islands (CGI) play important roles in DNA methylation, gene regulation, epigenetic inheritance, gene mutation, chromosome inactivation and nuclesome retention. The generally accepted criteria of CGI rely on: (a) %G+C content is ≥ 50%, (b) the ratio of the observed CpG content and the expected CpG content is ≥ 0.6, and (c) the general length of CGI is greater than 200 nucleotides. Most existing computational methods for the prediction of CpG island are programmed on these rules. However, many experimentally verified CpG islands deviate from these artificial criteria. Experiments indicate that in many cases %G+C is human genome. We analyze the energy distribution over genomic primary structure for each CpG site and adopt the parameters from statistics of Human genome. The evaluation results show that the new model can predict CpG islands efficiently by balancing both sensitivity and specificity over known human CGI data sets. Compared with other models, GaussianCpG can achieve better performance in CGI detection. Our Gaussian model aims to simplify the complex interaction between nucleotides. The model is computed not by the linear statistical method but by the Gaussian energy distribution and accumulation. The parameters of Gaussian function are not arbitrarily designated but deliberately chosen by optimizing the biological statistics. By using the pseudopotential analysis on CpG islands, the novel model is validated on both the real and artificial data sets.

  20. Multiple Response Regression for Gaussian Mixture Models with Known Labels.

    Lee, Wonyul; Du, Ying; Sun, Wei; Hayes, D Neil; Liu, Yufeng

    2012-12-01

    Multiple response regression is a useful regression technique to model multiple response variables using the same set of predictor variables. Most existing methods for multiple response regression are designed for modeling homogeneous data. In many applications, however, one may have heterogeneous data where the samples are divided into multiple groups. Our motivating example is a cancer dataset where the samples belong to multiple cancer subtypes. In this paper, we consider modeling the data coming from a mixture of several Gaussian distributions with known group labels. A naive approach is to split the data into several groups according to the labels and model each group separately. Although it is simple, this approach ignores potential common structures across different groups. We propose new penalized methods to model all groups jointly in which the common and unique structures can be identified. The proposed methods estimate the regression coefficient matrix, as well as the conditional inverse covariance matrix of response variables. Asymptotic properties of the proposed methods are explored. Through numerical examples, we demonstrate that both estimation and prediction can be improved by modeling all groups jointly using the proposed methods. An application to a glioblastoma cancer dataset reveals some interesting common and unique gene relationships across different cancer subtypes.

  1. A Graphical User Interface to Generalized Linear Models in MATLAB

    Peter Dunn

    1999-07-01

    Full Text Available Generalized linear models unite a wide variety of statistical models in a common theoretical framework. This paper discusses GLMLAB-software that enables such models to be fitted in the popular mathematical package MATLAB. It provides a graphical user interface to the powerful MATLAB computational engine to produce a program that is easy to use but with many features, including offsets, prior weights and user-defined distributions and link functions. MATLAB's graphical capacities are also utilized in providing a number of simple residual diagnostic plots.

  2. Discrete Discriminant analysis based on tree-structured graphical models

    Perez de la Cruz, Gonzalo; Eslava, Guillermina

    The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant a...... analysis based on tree{structured graphical models is a simple nonlinear method competitive with, and sometimes superior to, other well{known linear methods like those assuming mutual independence between variables and linear logistic regression.......The purpose of this paper is to illustrate the potential use of discriminant analysis based on tree{structured graphical models for discrete variables. This is done by comparing its empirical performance using estimated error rates for real and simulated data. The results show that discriminant...

  3. The appliance of graphics modeling in nuclear plant information system

    Bai Zhe; Li Guofang

    2010-01-01

    The nuclear plants contain a lot of sub-system, such as operation management, manufacture system, inventory system, human resource system and so forth. The standardized data graphics modeling technology can ensure the data interaction, compress the design cycle, avoid the replicated design, ensure the data integrity and consistent. The standardized data format which is on the basis of STEP standard and complied with XML is competent tool in different sub-system of nuclear plants. In order to meet this demand, a data graphics modeling standard is proposed. It is shown the relationship between systems, in system, between data by the standard. The graphic modeling effectively improves the performance between systems, designers, engineers, operations, supports department. It also provides the reliable and available data source for data mining and business intelligence. (authors)

  4. Surrogacy assessment using principal stratification and a Gaussian copula model.

    Conlon, Asc; Taylor, Jmg; Elliott, M R

    2017-02-01

    In clinical trials, a surrogate outcome ( S) can be measured before the outcome of interest ( T) and may provide early information regarding the treatment ( Z) effect on T. Many methods of surrogacy validation rely on models for the conditional distribution of T given Z and S. However, S is a post-randomization variable, and unobserved, simultaneous predictors of S and T may exist, resulting in a non-causal interpretation. Frangakis and Rubin developed the concept of principal surrogacy, stratifying on the joint distribution of the surrogate marker under treatment and control to assess the association between the causal effects of treatment on the marker and the causal effects of treatment on the clinical outcome. Working within the principal surrogacy framework, we address the scenario of an ordinal categorical variable as a surrogate for a censored failure time true endpoint. A Gaussian copula model is used to model the joint distribution of the potential outcomes of T, given the potential outcomes of S. Because the proposed model cannot be fully identified from the data, we use a Bayesian estimation approach with prior distributions consistent with reasonable assumptions in the surrogacy assessment setting. The method is applied to data from a colorectal cancer clinical trial, previously analyzed by Burzykowski et al.

  5. Track-stitching using graphical models and message passing

    Van der Merwe, LJ

    2013-07-01

    Full Text Available In order to stitch tracks together, two tasks are required, namely tracking and track stitching. In this study track stitching is performed using a graphical model and message passing (belief propagation) approach. Tracks are modelled as nodes in a...

  6. Efficient probabilistic model checking on general purpose graphic processors

    Bosnacki, D.; Edelkamp, S.; Sulewski, D.; Pasareanu, C.S.

    2009-01-01

    We present algorithms for parallel probabilistic model checking on general purpose graphic processing units (GPGPUs). For this purpose we exploit the fact that some of the basic algorithms for probabilistic model checking rely on matrix vector multiplication. Since this kind of linear algebraic

  7. Adaptive Inference on General Graphical Models

    Acar, Umut A.; Ihler, Alexander T.; Mettu, Ramgopal; Sumer, Ozgur

    2012-01-01

    Many algorithms and applications involve repeatedly solving variations of the same inference problem; for example we may want to introduce new evidence to the model or perform updates to conditional dependencies. The goal of adaptive inference is to take advantage of what is preserved in the model and perform inference more rapidly than from scratch. In this paper, we describe techniques for adaptive inference on general graphs that support marginal computation and updates to the conditional ...

  8. Engineering graphic modelling a workbook for design engineers

    Tjalve, E; Frackmann Schmidt, F

    2013-01-01

    Engineering Graphic Modelling: A Practical Guide to Drawing and Design covers how engineering drawing relates to the design activity. The book describes modeled properties, such as the function, structure, form, material, dimension, and surface, as well as the coordinates, symbols, and types of projection of the drawing code. The text provides drawing techniques, such as freehand sketching, bold freehand drawing, drawing with a straightedge, a draughting machine or a plotter, and use of templates, and then describes the types of drawing. Graphic designers, design engineers, mechanical engine

  9. Memory effects in the relaxation of the Gaussian trap model

    Diezemann, Gregor; Heuer, Andreas

    2011-03-01

    We investigate the memory effect in a simple model for glassy relaxation, a trap model with a Gaussian density of states. In this model, thermal equilibrium is reached at all finite temperatures and we therefore can consider jumps from low to high temperatures in addition to the quenches usually considered in aging studies. We show that the evolution of the energy following the Kovacs protocol can approximately be expressed as a difference of two monotonously decaying functions and thus show the existence of a so-called Kovacs hump whenever these functions are not single exponentials. It is well established that the Kovacs effect also occurs in the linear response regime, and we show that most of the gross features do not change dramatically when large temperature jumps are considered. However, there is one distinguishing feature that only exists beyond the linear regime, which we discuss in detail. For the memory experiment with inverted temperatures, i.e., jumping up and then down again, we find a very similar behavior apart from an opposite sign of the hump.

  10. Gaussian copula as a likelihood function for environmental models

    Wani, O.; Espadas, G.; Cecinati, F.; Rieckermann, J.

    2017-12-01

    Parameter estimation of environmental models always comes with uncertainty. To formally quantify this parametric uncertainty, a likelihood function needs to be formulated, which is defined as the probability of observations given fixed values of the parameter set. A likelihood function allows us to infer parameter values from observations using Bayes' theorem. The challenge is to formulate a likelihood function that reliably describes the error generating processes which lead to the observed monitoring data, such as rainfall and runoff. If the likelihood function is not representative of the error statistics, the parameter inference will give biased parameter values. Several uncertainty estimation methods that are currently being used employ Gaussian processes as a likelihood function, because of their favourable analytical properties. Box-Cox transformation is suggested to deal with non-symmetric and heteroscedastic errors e.g. for flow data which are typically more uncertain in high flows than in periods with low flows. Problem with transformations is that the results are conditional on hyper-parameters, for which it is difficult to formulate the analyst's belief a priori. In an attempt to address this problem, in this research work we suggest learning the nature of the error distribution from the errors made by the model in the "past" forecasts. We use a Gaussian copula to generate semiparametric error distributions . 1) We show that this copula can be then used as a likelihood function to infer parameters, breaking away from the practice of using multivariate normal distributions. Based on the results from a didactical example of predicting rainfall runoff, 2) we demonstrate that the copula captures the predictive uncertainty of the model. 3) Finally, we find that the properties of autocorrelation and heteroscedasticity of errors are captured well by the copula, eliminating the need to use transforms. In summary, our findings suggest that copulas are an

  11. Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data

    Ji Hoon Ryoo

    2017-08-01

    Full Text Available As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.

  12. MAGIC: Model and Graphic Information Converter

    Herbert, W. C.

    2009-01-01

    MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

  13. Graphical models for inference under outcome-dependent sampling

    Didelez, V; Kreiner, S; Keiding, N

    2010-01-01

    a node for the sampling indicator, assumptions about sampling processes can be made explicit. We demonstrate how to read off such graphs whether consistent estimation of the association between exposure and outcome is possible. Moreover, we give sufficient graphical conditions for testing and estimating......We consider situations where data have been collected such that the sampling depends on the outcome of interest and possibly further covariates, as for instance in case-control studies. Graphical models represent assumptions about the conditional independencies among the variables. By including...

  14. Fast pencil beam dose calculation for proton therapy using a double-Gaussian beam model

    Joakim eda Silva

    2015-12-01

    Full Text Available The highly conformal dose distributions produced by scanned proton pencil beams are more sensitive to motion and anatomical changes than those produced by conventional radiotherapy. The ability to calculate the dose in real time as it is being delivered would enable, for example, online dose monitoring, and is therefore highly desirable. We have previously described an implementation of a pencil beam algorithm running on graphics processing units (GPUs intended specifically for online dose calculation. Here we present an extension to the dose calculation engine employing a double-Gaussian beam model to better account for the low-dose halo. To the best of our knowledge, it is the first such pencil beam algorithm for proton therapy running on a GPU. We employ two different parametrizations for the halo dose, one describing the distribution of secondary particles from nuclear interactions found in the literature and one relying on directly fitting the model to Monte Carlo simulations of pencil beams in water. Despite the large width of the halo contribution, we show how in either case the second Gaussian can be included whilst prolonging the calculation of the investigated plans by no more than 16%, or the calculation of the most time-consuming energy layers by about 25%. Further, the calculation time is relatively unaffected by the parametrization used, which suggests that these results should hold also for different systems. Finally, since the implementation is based on an algorithm employed by a commercial treatment planning system, it is expected that with adequate tuning, it should be able to reproduce the halo dose from a general beam line with sufficient accuracy.

  15. Interactive computer graphics for bio-stereochemical modelling

    Proc, Indian Acad. Sci., Vol. 87 A (Chem. Sci.), No. 4, April 1978, pp. 95-113, (e) printed in India. Interactive computer graphics for bio-stereochemical modelling. ROBERT REIN, SHLOMONIR, KAREN HAYDOCK and. ROBERTD MACELROY. Department of Experimental Pathology, Roswell Park Memorial Institute,. 666 Elm ...

  16. Methods for teaching geometric modelling and computer graphics

    Rotkov, S.I.; Faitel`son, Yu. Ts.

    1992-05-01

    This paper considers methods for teaching the methods and algorithms of geometric modelling and computer graphics to programmers, designers and users of CAD and computer-aided research systems. There is a bibliography that can be used to prepare lectures and practical classes. 37 refs., 1 tab.

  17. Analysis of Local Dependence and Multidimensionality in Graphical Loglinear Rasch Models

    Kreiner, Svend; Christensen, Karl Bang

    2004-01-01

    Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model......Local independence; Multidimensionality; Differential item functioning; Uniform local dependence and DIF; Graphical Rasch models; Loglinear Rasch model...

  18. Reasoning with probabilistic and deterministic graphical models exact algorithms

    Dechter, Rina

    2013-01-01

    Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well

  19. Linear velocity fields in non-Gaussian models for large-scale structure

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  20. A comparison of the Gaussian Plume models of Pasquill and Smith

    Barker, C.D.

    1978-03-01

    The Gaussian Plume models of Pasquill and Smith are compared over the full range of atmospheric stability for both short and continuous releases of material. For low level releases the two models compare well (to within a factor of approximately 2) except for very unstable conditions. The agreement between the two models for high level sources is not so good. It is concluded that the two Gaussian models are cheap and simple to use, but may require experimental verification in specific applications. (author)

  1. Type-2 fuzzy graphical models for pattern recognition

    Zeng, Jia

    2015-01-01

    This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.

  2. Simulation of ultrasonic surface waves with multi-Gaussian and point source beam models

    Zhao, Xinyu; Schmerr, Lester W. Jr.; Li, Xiongbing; Sedov, Alexander

    2014-01-01

    In the past decade, multi-Gaussian beam models have been developed to solve many complicated bulk wave propagation problems. However, to date those models have not been extended to simulate the generation of Rayleigh waves. Here we will combine Gaussian beams with an explicit high frequency expression for the Rayleigh wave Green function to produce a three-dimensional multi-Gaussian beam model for the fields radiated from an angle beam transducer mounted on a solid wedge. Simulation results obtained with this model are compared to those of a point source model. It is shown that the multi-Gaussian surface wave beam model agrees well with the point source model while being computationally much more efficient

  3. On a Graphical Technique for Evaluating Some Rational Expectations Models

    Johansen, Søren; Swensen, Anders R.

    2011-01-01

    Campbell and Shiller (1987) proposed a graphical technique for the present value model, which consists of plotting estimates of the spread and theoretical spread as calculated from the cointegrated vector autoregressive model without imposing the restrictions implied by the present value model....... In addition to getting a visual impression of the fit of the model, the purpose is to see if the two spreads are nevertheless similar as measured by correlation, variance ratio, and noise ratio. We extend these techniques to a number of rational expectation models and give a general definition of spread...

  4. American Option Pricing using GARCH models and the Normal Inverse Gaussian distribution

    Stentoft, Lars Peter

    In this paper we propose a feasible way to price American options in a model with time varying volatility and conditional skewness and leptokurtosis using GARCH processes and the Normal Inverse Gaussian distribution. We show how the risk neutral dynamics can be obtained in this model, we interpret...... properties shows that there are important option pricing differences compared to the Gaussian case as well as to the symmetric special case. A large scale empirical examination shows that our model outperforms the Gaussian case for pricing options on three large US stocks as well as a major index...

  5. Background based Gaussian mixture model lesion segmentation in PET

    Soffientini, Chiara Dolores, E-mail: chiaradolores.soffientini@polimi.it; Baselli, Giuseppe [DEIB, Department of Electronics, Information, and Bioengineering, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milan 20133 (Italy); De Bernardi, Elisabetta [Department of Medicine and Surgery, Tecnomed Foundation, University of Milano—Bicocca, Monza 20900 (Italy); Zito, Felicia; Castellani, Massimo [Nuclear Medicine Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, Milan 20122 (Italy)

    2016-05-15

    Purpose: Quantitative {sup 18}F-fluorodeoxyglucose positron emission tomography is limited by the uncertainty in lesion delineation due to poor SNR, low resolution, and partial volume effects, subsequently impacting oncological assessment, treatment planning, and follow-up. The present work develops and validates a segmentation algorithm based on statistical clustering. The introduction of constraints based on background features and contiguity priors is expected to improve robustness vs clinical image characteristics such as lesion dimension, noise, and contrast level. Methods: An eight-class Gaussian mixture model (GMM) clustering algorithm was modified by constraining the mean and variance parameters of four background classes according to the previous analysis of a lesion-free background volume of interest (background modeling). Hence, expectation maximization operated only on the four classes dedicated to lesion detection. To favor the segmentation of connected objects, a further variant was introduced by inserting priors relevant to the classification of neighbors. The algorithm was applied to simulated datasets and acquired phantom data. Feasibility and robustness toward initialization were assessed on a clinical dataset manually contoured by two expert clinicians. Comparisons were performed with respect to a standard eight-class GMM algorithm and to four different state-of-the-art methods in terms of volume error (VE), Dice index, classification error (CE), and Hausdorff distance (HD). Results: The proposed GMM segmentation with background modeling outperformed standard GMM and all the other tested methods. Medians of accuracy indexes were VE <3%, Dice >0.88, CE <0.25, and HD <1.2 in simulations; VE <23%, Dice >0.74, CE <0.43, and HD <1.77 in phantom data. Robustness toward image statistic changes (±15%) was shown by the low index changes: <26% for VE, <17% for Dice, and <15% for CE. Finally, robustness toward the user-dependent volume initialization was

  6. Design of Graphic Aggregation Model for Evaluation of Energy Systems

    An, Sang Ha; Jeong, Yong Hoon; Chang, Won Joon; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon

    2006-01-01

    Korea is meeting the growing electric power needs by mix of nuclear, fossil, hydro energy and so on. But we can not depend on fossil energy forever, and the people's concern about environment has been changed. So it is time to plan future energy mix considering multiple parameters such as economics, environment, social, energy security, etc. A multiple aggregation model has been used for decision making process in which multiple variables should be considered like energy mix. In this context, we designed Graphic Aggregation Model for Evaluation of energy systems (GAME) for the dynamic analysis of decision on the energy systems. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface

  7. GENI: A graphical environment for model-based control

    Kleban, S.; Lee, M.; Zambre, Y.

    1989-10-01

    A new method to operate machine and beam simulation programs for accelerator control has been developed. Existing methods, although cumbersome, have been used in control systems for commissioning and operation of many machines. We developed GENI, a generalized graphical interface to these programs for model-based control. This ''object-oriented''-like environment is described and some typical applications are presented. 4 refs., 5 figs

  8. Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models

    Mohammadi, A.; Abegaz, F.; van den Heuvel, E.R.; Wit, E.C.

    2017-01-01

    Dupuytren disease is a fibroproliferative disorder with unknown aetiology that often progresses and eventually can cause permanent contractures of the fingers affected. We provide a computationally efficient Bayesian framework to discover potential risk factors and investigate which fingers are

  9. Statistical imitation system using relational interest points and Gaussian mixture models

    Claassens, J

    2009-11-01

    Full Text Available The author proposes an imitation system that uses relational interest points (RIPs) and Gaussian mixture models (GMMs) to characterize a behaviour. The system's structure is inspired by the Robot Programming by Demonstration (RDP) paradigm...

  10. Improved Expectation Maximization Algorithm for Gaussian Mixed Model Using the Kernel Method

    Mohd Izhan Mohd Yusoff

    2013-01-01

    Full Text Available Fraud activities have contributed to heavy losses suffered by telecommunication companies. In this paper, we attempt to use Gaussian mixed model, which is a probabilistic model normally used in speech recognition to identify fraud calls in the telecommunication industry. We look at several issues encountered when calculating the maximum likelihood estimates of the Gaussian mixed model using an Expectation Maximization algorithm. Firstly, we look at a mechanism for the determination of the initial number of Gaussian components and the choice of the initial values of the algorithm using the kernel method. We show via simulation that the technique improves the performance of the algorithm. Secondly, we developed a procedure for determining the order of the Gaussian mixed model using the log-likelihood function and the Akaike information criteria. Finally, for illustration, we apply the improved algorithm to real telecommunication data. The modified method will pave the way to introduce a comprehensive method for detecting fraud calls in future work.

  11. Probabilistic wind power forecasting with online model selection and warped gaussian process

    Kou, Peng; Liang, Deliang; Gao, Feng; Gao, Lin

    2014-01-01

    Highlights: • A new online ensemble model for the probabilistic wind power forecasting. • Quantifying the non-Gaussian uncertainties in wind power. • Online model selection that tracks the time-varying characteristic of wind generation. • Dynamically altering the input features. • Recursive update of base models. - Abstract: Based on the online model selection and the warped Gaussian process (WGP), this paper presents an ensemble model for the probabilistic wind power forecasting. This model provides the non-Gaussian predictive distributions, which quantify the non-Gaussian uncertainties associated with wind power. In order to follow the time-varying characteristics of wind generation, multiple time dependent base forecasting models and an online model selection strategy are established, thus adaptively selecting the most probable base model for each prediction. WGP is employed as the base model, which handles the non-Gaussian uncertainties in wind power series. Furthermore, a regime switch strategy is designed to modify the input feature set dynamically, thereby enhancing the adaptiveness of the model. In an online learning framework, the base models should also be time adaptive. To achieve this, a recursive algorithm is introduced, thus permitting the online updating of WGP base models. The proposed model has been tested on the actual data collected from both single and aggregated wind farms

  12. MathModelica - An Extensible Modeling and Simulation Environment with Integrated Graphics and Literate Programming

    Fritzson, Peter; Gunnarsson, Johan; Jirstrand, Mats

    2002-01-01

    MathModelica is an integrated interactive development environment for advanced system modeling and simulation. The environment integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, integration of program code, test cases, graphics, documentation, mathematical type setting, and symbolic formula manipulation provided via Mathematica. The user interface consists of a graphical Model Editor and Notebooks. The Model Editor is a graphical user interfa...

  13. Information Geometric Complexity of a Trivariate Gaussian Statistical Model

    Domenico Felice

    2014-05-01

    Full Text Available We evaluate the information geometric complexity of entropic motion on low-dimensional Gaussian statistical manifolds in order to quantify how difficult it is to make macroscopic predictions about systems in the presence of limited information. Specifically, we observe that the complexity of such entropic inferences not only depends on the amount of available pieces of information but also on the manner in which such pieces are correlated. Finally, we uncover that, for certain correlational structures, the impossibility of reaching the most favorable configuration from an entropic inference viewpoint seems to lead to an information geometric analog of the well-known frustration effect that occurs in statistical physics.

  14. Graphics-based nuclear facility modeling and management

    Rod, S.R.

    1991-07-01

    Nuclear waste management facilities are characterized by their complexity, many unprecedented features, and numerous competing design requirements. This paper describes the development of comprehensive descriptive databases and three-dimensional models of nuclear waste management facilities and applies the database/model to an example facility. The important features of the facility database/model are its abilities to (1) process large volumes of site data, plant data, and nuclear material inventory data in an efficient, integrated manner; (2) produce many different representations of the data to fulfill information needs as they arise; (3) create a complete three-dimensional solid model of the plant with all related information readily accessible; and (4) support complete, consistent inventory control and plant configuration control. While the substantive heart of the system is the database, graphic visualization of the data vastly improves the clarity of the information presented. Graphic representations are a convenient framework for the presentation of plant and inventory data, allowing all types of information to be readily located and presented in a manner that is easily understood. 2 refs., 5 figs., 1 tab

  15. Comparison of non-Gaussian and Gaussian diffusion models of diffusion weighted imaging of rectal cancer at 3.0 T MRI.

    Zhang, Guangwen; Wang, Shuangshuang; Wen, Didi; Zhang, Jing; Wei, Xiaocheng; Ma, Wanling; Zhao, Weiwei; Wang, Mian; Wu, Guosheng; Zhang, Jinsong

    2016-12-09

    Water molecular diffusion in vivo tissue is much more complicated. We aimed to compare non-Gaussian diffusion models of diffusion-weighted imaging (DWI) including intra-voxel incoherent motion (IVIM), stretched-exponential model (SEM) and Gaussian diffusion model at 3.0 T MRI in patients with rectal cancer, and to determine the optimal model for investigating the water diffusion properties and characterization of rectal carcinoma. Fifty-nine consecutive patients with pathologically confirmed rectal adenocarcinoma underwent DWI with 16 b-values at a 3.0 T MRI system. DWI signals were fitted to the mono-exponential and non-Gaussian diffusion models (IVIM-mono, IVIM-bi and SEM) on primary tumor and adjacent normal rectal tissue. Parameters of standard apparent diffusion coefficient (ADC), slow- and fast-ADC, fraction of fast ADC (f), α value and distributed diffusion coefficient (DDC) were generated and compared between the tumor and normal tissues. The SEM exhibited the best fitting results of actual DWI signal in rectal cancer and the normal rectal wall (R 2  = 0.998, 0.999 respectively). The DDC achieved relatively high area under the curve (AUC = 0.980) in differentiating tumor from normal rectal wall. Non-Gaussian diffusion models could assess tissue properties more accurately than the ADC derived Gaussian diffusion model. SEM may be used as a potential optimal model for characterization of rectal cancer.

  16. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  17. Spatio-Temporal Data Analysis at Scale Using Models Based on Gaussian Processes

    Stein, Michael [Univ. of Chicago, IL (United States)

    2017-03-13

    Gaussian processes are the most commonly used statistical model for spatial and spatio-temporal processes that vary continuously. They are broadly applicable in the physical sciences and engineering and are also frequently used to approximate the output of complex computer models, deterministic or stochastic. We undertook research related to theory, computation, and applications of Gaussian processes as well as some work on estimating extremes of distributions for which a Gaussian process assumption might be inappropriate. Our theoretical contributions include the development of new classes of spatial-temporal covariance functions with desirable properties and new results showing that certain covariance models lead to predictions with undesirable properties. To understand how Gaussian process models behave when applied to deterministic computer models, we derived what we believe to be the first significant results on the large sample properties of estimators of parameters of Gaussian processes when the actual process is a simple deterministic function. Finally, we investigated some theoretical issues related to maxima of observations with varying upper bounds and found that, depending on the circumstances, standard large sample results for maxima may or may not hold. Our computational innovations include methods for analyzing large spatial datasets when observations fall on a partially observed grid and methods for estimating parameters of a Gaussian process model from observations taken by a polar-orbiting satellite. In our application of Gaussian process models to deterministic computer experiments, we carried out some matrix computations that would have been infeasible using even extended precision arithmetic by focusing on special cases in which all elements of the matrices under study are rational and using exact arithmetic. The applications we studied include total column ozone as measured from a polar-orbiting satellite, sea surface temperatures over the

  18. Grms or graphical representation of model spaces. Vol. I Basics

    Duch, W.

    1986-01-01

    This book presents a novel approach to the many-body problem in quantum chemistry, nuclear shell-theory and solid-state theory. Many-particle model spaces are visualized using graphs, each path of a graph labeling a single basis function or a subspace of functions. Spaces of a very high dimension are represented by small graphs. Model spaces have structure that is reflected in the architecture of the corresponding graphs, that in turn is reflected in the structure of the matrices corresponding to operators acting in these spaces. Insight into this structure leads to formulation of very efficient computer algorithms. Calculation of matrix elements is reduced to comparison of paths in a graph, without ever looking at the functions themselves. Using only very rudimentary mathematical tools graphical rules of matrix element calculation in abelian cases are derived, in particular segmentation rules obtained in the unitary group approached are rederived. The graphs are solutions of Diophantine equations of the type appearing in different branches of applied mathematics. Graphical representation of model spaces should find as many applications as has been found for diagramatical methods in perturbation theory

  19. Implementing the lattice Boltzmann model on commodity graphics hardware

    Kaufman, Arie; Fan, Zhe; Petkov, Kaloian

    2009-01-01

    Modern graphics processing units (GPUs) can perform general-purpose computations in addition to the native specialized graphics operations. Due to the highly parallel nature of graphics processing, the GPU has evolved into a many-core coprocessor that supports high data parallelism. Its performance has been growing at a rate of squared Moore's law, and its peak floating point performance exceeds that of the CPU by an order of magnitude. Therefore, it is a viable platform for time-sensitive and computationally intensive applications. The lattice Boltzmann model (LBM) computations are carried out via linear operations at discrete lattice sites, which can be implemented efficiently using a GPU-based architecture. Our simulations produce results comparable to the CPU version while improving performance by an order of magnitude. We have demonstrated that the GPU is well suited for interactive simulations in many applications, including simulating fire, smoke, lightweight objects in wind, jellyfish swimming in water, and heat shimmering and mirage (using the hybrid thermal LBM). We further advocate the use of a GPU cluster for large scale LBM simulations and for high performance computing. The Stony Brook Visual Computing Cluster has been the platform for several applications, including simulations of real-time plume dispersion in complex urban environments and thermal fluid dynamics in a pressurized water reactor. Major GPU vendors have been targeting the high performance computing market with GPU hardware implementations. Software toolkits such as NVIDIA CUDA provide a convenient development platform that abstracts the GPU and allows access to its underlying stream computing architecture. However, software programming for a GPU cluster remains a challenging task. We have therefore developed the Zippy framework to simplify GPU cluster programming. Zippy is based on global arrays combined with the stream programming model and it hides the low-level details of the

  20. GRAPHIC REALIZATION FOUNDATIONS OF LOGIC-SEMANTIC MODELING IN DIDACTICS

    V. E. Steinberg

    2017-01-01

    Full Text Available Introduction. Nowadays, there are not a lot of works devoted to a graphic method of logic-semantic modeling of knowledge. Meanwhile, an interest towards this method increases due to the fact of essential increase of the content of visual component in information and educational sources. The present publication is the authors’ contribution into the solution of the problem of search of new forms and means convenient for visual and logic perception of a training material, its assimilation, operating by elements of knowledge and their transformations.The aim of the research is to justify graphical implementation of the method of logic-semantic modeling of knowledge, presented by a natural language (training language and to show the possibilities of application of figurative and conceptual models in student teaching.Methodology and research methods. The research methodology is based on the specified activity-regulatory, system-multi-dimensional and structural-invariant approach and the principle of multidimensionality. The methodology the graphic realization of the logic-semantic models in learning technologies is based on didactic design using computer training programs.Results and scientific novelty. Social and anthropological-cultural adaptation bases of the method of logical-semantic knowledge modeling to the problems of didactics are established and reasoned: coordinate-invariant matrix structure is presented as the basis of logical-semantic models of figurative and conceptual nature; the possibilities of using such models as multifunctional didactic regulators – support schemes, navigation in the content of the educational material, educational activities carried out by navigators, etc., are shown. The characteristics of new teaching tools as objects of semiotics and didactic of regulators are considered; their place and role in the structure of the external and internal training curricula learning activities are pointed out

  1. Exploratory graphical models of functional and structural connectivity patterns for Alzheimer's Disease diagnosis

    Andres eOrtiz

    2015-11-01

    Full Text Available Alzheimer’s Disease (AD is the most common neurodegenerative disease in elderly people. Itsdevelopment has been shown to be closely related to changes in the brain connectivity networkand in the brain activation patterns along with structural changes caused by the neurodegenerativeprocess.Methods to infer dependence between brain regions are usually derived from the analysis ofcovariance between activation levels in the different areas. However, these covariance-basedmethods are not able to estimate conditional independence between variables to factor out theinfluence of other regions. Conversely, models based on the inverse covariance, or precisionmatrix, such as Sparse Gaussian Graphical Models allow revealing conditional independencebetween regions by estimating the covariance between two variables given the rest as constant.This paper uses Sparse Inverse Covariance Estimation (SICE methods to learn undirectedgraphs in order to derive functional and structural connectivity patterns from Fludeoxyglucose(18F-FDG Position Emission Tomography (PET data and segmented Magnetic Resonanceimages (MRI, drawn from the ADNI database, for Control, MCI (Mild Cognitive ImpairmentSubjects and AD subjects. Sparse computation fits perfectly here as brain regions usually onlyinteract with a few other areas.The models clearly show different metabolic covariation patters between subject groups, revealingthe loss of strong connections in AD and MCI subjects when compared to Controls. Similarly,the variance between GM (Grey Matter densities of different regions reveals different structuralcovariation patterns between the different groups. Thus, the different connectivity patterns forcontrols and AD are used in this paper to select regions of interest in PET and GM images withdiscriminative power for early AD diagnosis. Finally, functional an structural models are combinedto leverage the classification accuracy.The results obtained in this work show the usefulness

  2. Receiver design for SPAD-based VLC systems under Poisson-Gaussian mixed noise model.

    Mao, Tianqi; Wang, Zhaocheng; Wang, Qi

    2017-01-23

    Single-photon avalanche diode (SPAD) is a promising photosensor because of its high sensitivity to optical signals in weak illuminance environment. Recently, it has drawn much attention from researchers in visible light communications (VLC). However, existing literature only deals with the simplified channel model, which only considers the effects of Poisson noise introduced by SPAD, but neglects other noise sources. Specifically, when an analog SPAD detector is applied, there exists Gaussian thermal noise generated by the transimpedance amplifier (TIA) and the digital-to-analog converter (D/A). Therefore, in this paper, we propose an SPAD-based VLC system with pulse-amplitude-modulation (PAM) under Poisson-Gaussian mixed noise model, where Gaussian-distributed thermal noise at the receiver is also investigated. The closed-form conditional likelihood of received signals is derived using the Laplace transform and the saddle-point approximation method, and the corresponding quasi-maximum-likelihood (quasi-ML) detector is proposed. Furthermore, the Poisson-Gaussian-distributed signals are converted to Gaussian variables with the aid of the generalized Anscombe transform (GAT), leading to an equivalent additive white Gaussian noise (AWGN) channel, and a hard-decision-based detector is invoked. Simulation results demonstrate that, the proposed GAT-based detector can reduce the computational complexity with marginal performance loss compared with the proposed quasi-ML detector, and both detectors are capable of accurately demodulating the SPAD-based PAM signals.

  3. Fitting non-gaussian Models to Financial data: An Empirical Study

    Pablo Olivares

    2011-04-01

    Full Text Available In this paper are presented some experiences about the modeling of financial data by three classes of models as alternative to Gaussian Linear models. Dynamic Volatility, Stable L'evy and Diffusion with Jumps models are considered. The techniques are illustrated with some examples of financial series on currency, futures and indexes.

  4. A Probabilistic Graphical Model to Detect Chromosomal Domains

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  5. Statistical mechanics of sparse generalization and graphical model selection

    Lage-Castellanos, Alejandro; Pagnani, Andrea; Weigt, Martin

    2009-01-01

    One of the crucial tasks in many inference problems is the extraction of an underlying sparse graphical model from a given number of high-dimensional measurements. In machine learning, this is frequently achieved using, as a penalty term, the L p norm of the model parameters, with p≤1 for efficient dilution. Here we propose a statistical mechanics analysis of the problem in the setting of perceptron memorization and generalization. Using a replica approach, we are able to evaluate the relative performance of naive dilution (obtained by learning without dilution, following by applying a threshold to the model parameters), L 1 dilution (which is frequently used in convex optimization) and L 0 dilution (which is optimal but computationally hard to implement). Whereas both L p diluted approaches clearly outperform the naive approach, we find a small region where L 0 works almost perfectly and strongly outperforms the simpler to implement L 1 dilution

  6. Ice-sheet modelling accelerated by graphics cards

    Brædstrup, Christian Fredborg; Damsgaard, Anders; Egholm, David Lundbek

    2014-11-01

    Studies of glaciers and ice sheets have increased the demand for high performance numerical ice flow models over the past decades. When exploring the highly non-linear dynamics of fast flowing glaciers and ice streams, or when coupling multiple flow processes for ice, water, and sediment, researchers are often forced to use super-computing clusters. As an alternative to conventional high-performance computing hardware, the Graphical Processing Unit (GPU) is capable of massively parallel computing while retaining a compact design and low cost. In this study, we present a strategy for accelerating a higher-order ice flow model using a GPU. By applying the newest GPU hardware, we achieve up to 180× speedup compared to a similar but serial CPU implementation. Our results suggest that GPU acceleration is a competitive option for ice-flow modelling when compared to CPU-optimised algorithms parallelised by the OpenMP or Message Passing Interface (MPI) protocols.

  7. An Accurate and Dynamic Computer Graphics Muscle Model

    Levine, David Asher

    1997-01-01

    A computer based musculo-skeletal model was developed at the University in the departments of Mechanical and Biomedical Engineering. This model accurately represents human shoulder kinematics. The result of this model is the graphical display of bones moving through an appropriate range of motion based on inputs of EMGs and external forces. The need existed to incorporate a geometric muscle model in the larger musculo-skeletal model. Previous muscle models did not accurately represent muscle geometries, nor did they account for the kinematics of tendons. This thesis covers the creation of a new muscle model for use in the above musculo-skeletal model. This muscle model was based on anatomical data from the Visible Human Project (VHP) cadaver study. Two-dimensional digital images from the VHP were analyzed and reconstructed to recreate the three-dimensional muscle geometries. The recreated geometries were smoothed, reduced, and sliced to form data files defining the surfaces of each muscle. The muscle modeling function opened these files during run-time and recreated the muscle surface. The modeling function applied constant volume limitations to the muscle and constant geometry limitations to the tendons.

  8. Infrared maritime target detection using a probabilistic single Gaussian model of sea clutter in Fourier domain

    Zhou, Anran; Xie, Weixin; Pei, Jihong; Chen, Yapei

    2018-02-01

    For ship targets detection in cluttered infrared image sequences, a robust detection method, based on the probabilistic single Gaussian model of sea background in Fourier domain, is put forward. The amplitude spectrum sequences at each frequency point of the pure seawater images in Fourier domain, being more stable than the gray value sequences of each background pixel in the spatial domain, are regarded as a Gaussian model. Next, a probability weighted matrix is built based on the stability of the pure seawater's total energy spectrum in the row direction, to make the Gaussian model more accurate. Then, the foreground frequency points are separated from the background frequency points by the model. Finally, the false-alarm points are removed utilizing ships' shape features. The performance of the proposed method is tested by visual and quantitative comparisons with others.

  9. Local fit evaluation of structural equation models using graphical criteria.

    Thoemmes, Felix; Rosseel, Yves; Textor, Johannes

    2018-03-01

    Evaluation of model fit is critically important for every structural equation model (SEM), and sophisticated methods have been developed for this task. Among them are the χ² goodness-of-fit test, decomposition of the χ², derived measures like the popular root mean square error of approximation (RMSEA) or comparative fit index (CFI), or inspection of residuals or modification indices. Many of these methods provide a global approach to model fit evaluation: A single index is computed that quantifies the fit of the entire SEM to the data. In contrast, graphical criteria like d-separation or trek-separation allow derivation of implications that can be used for local fit evaluation, an approach that is hardly ever applied. We provide an overview of local fit evaluation from the viewpoint of SEM practitioners. In the presence of model misfit, local fit evaluation can potentially help in pinpointing where the problem with the model lies. For models that do fit the data, local tests can identify the parts of the model that are corroborated by the data. Local tests can also be conducted before a model is fitted at all, and they can be used even for models that are globally underidentified. We discuss appropriate statistical local tests, and provide applied examples. We also present novel software in R that automates this type of local fit evaluation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  10. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Ma, Denglong [Fuli School of Food Equipment Engineering and Science, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); Zhang, Zaoxiao, E-mail: zhangzx@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China); School of Chemical Engineering and Technology, Xi’an Jiaotong University, No.28 Xianning West Road, Xi’an 710049 (China)

    2016-07-05

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  11. Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere

    Ma, Denglong; Zhang, Zaoxiao

    2016-01-01

    Highlights: • The intelligent network models were built to predict contaminant gas concentrations. • The improved network models coupled with Gaussian dispersion model were presented. • New model has high efficiency and accuracy for concentration prediction. • New model were applied to indentify the leakage source with satisfied results. - Abstract: Gas dispersion model is important for predicting the gas concentrations when contaminant gas leakage occurs. Intelligent network models such as radial basis function (RBF), back propagation (BP) neural network and support vector machine (SVM) model can be used for gas dispersion prediction. However, the prediction results from these network models with too many inputs based on original monitoring parameters are not in good agreement with the experimental data. Then, a new series of machine learning algorithms (MLA) models combined classic Gaussian model with MLA algorithm has been presented. The prediction results from new models are improved greatly. Among these models, Gaussian-SVM model performs best and its computation time is close to that of classic Gaussian dispersion model. Finally, Gaussian-MLA models were applied to identifying the emission source parameters with the particle swarm optimization (PSO) method. The estimation performance of PSO with Gaussian-MLA is better than that with Gaussian, Lagrangian stochastic (LS) dispersion model and network models based on original monitoring parameters. Hence, the new prediction model based on Gaussian-MLA is potentially a good method to predict contaminant gas dispersion as well as a good forward model in emission source parameters identification problem.

  12. Superdiffusion in a non-Markovian random walk model with a Gaussian memory profile

    Borges, G. M.; Ferreira, A. S.; da Silva, M. A. A.; Cressoni, J. C.; Viswanathan, G. M.; Mariz, A. M.

    2012-09-01

    Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e.g., fractional Brownian motion, Lévy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation σt which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.

  13. A Robust Non-Gaussian Data Assimilation Method for Highly Non-Linear Models

    Elias D. Nino-Ruiz

    2018-03-01

    Full Text Available In this paper, we propose an efficient EnKF implementation for non-Gaussian data assimilation based on Gaussian Mixture Models and Markov-Chain-Monte-Carlo (MCMC methods. The proposed method works as follows: based on an ensemble of model realizations, prior errors are estimated via a Gaussian Mixture density whose parameters are approximated by means of an Expectation Maximization method. Then, by using an iterative method, observation operators are linearized about current solutions and posterior modes are estimated via a MCMC implementation. The acceptance/rejection criterion is similar to that of the Metropolis-Hastings rule. Experimental tests are performed on the Lorenz 96 model. The results show that the proposed method can decrease prior errors by several order of magnitudes in a root-mean-square-error sense for nearly sparse or dense observational networks.

  14. Non-gaussian turbulence

    Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)

    1999-03-01

    The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)

  15. Development of virtual hands using animation software and graphical modelling

    Oliveira, Erick da S.; Junior, Alberico B. de C.

    2016-01-01

    The numerical dosimetry uses virtual anthropomorphic simulators to represent the human being in computational framework and thus assess the risks associated with exposure to a radioactive source. With the development of computer animation software, the development of these simulators was facilitated using only knowledge of human anatomy to prepare various types of simulators (man, woman, child and baby) in various positions (sitting, standing, running) or part thereof (head, trunk and limbs). These simulators are constructed by loops of handling and due to the versatility of the method, one can create various geometries irradiation was not possible before. In this work, we have built an exhibition of a radiopharmaceutical scenario manipulating radioactive material using animation software and graphical modeling and anatomical database. (author)

  16. COGNITIVE COMPUTER GRAPHICS AS A MEANS OF "SOFT" MODELING IN PROBLEMS OF RESTORATION OF FUNCTIONS OF TWO VARIABLES

    A.N. Khomchenko

    2016-08-01

    Full Text Available The paper considers the problem of bi-cubic interpolation on the final element of serendipity family. With cognitive-graphical analysis the rigid model of Ergatoudis, Irons and Zenkevich (1968 compared with alternative models, obtained by the methods: direct geometric design, a weighted averaging of the basis polynomials, systematic generation of bases (advanced Taylor procedure. The emphasis is placed on the phenomenon of "gravitational repulsion" (Zenkevich paradox. The causes of rising of inadequate physical spectra nodal loads on serendipity elements of higher orders are investigated. Soft modeling allows us to build a lot of serendipity elements of bicubic interpolation, and you do not even need to know the exact form of the rigid model. The different interpretations of integral characteristics of the basis polynomials: geometrical, physical, probability are offered. Under the soft model in the theory of interpolation of function of two variables implies the model amenable to change through the choice of basis. Such changes in the family of Lagrangian finite elements of higher orders are excluded (hard simulation. Standard models of serendipity family (Zenkevich were also tough. It was found that the "responsibility" for the rigidity of serendipity model rests on ruled surfaces (zero Gaussian curvature - conoids that predominate in the base set. Cognitive portraits zero lines of standard serendipity surfaces suggested that in order to "mitigate" of serendipity pattern conoid should better be replaced by surfaces of alternating Gaussian curvature. The article shows the alternative (soft bases of serendipity models. The work is devoted to solving scientific and technological problems aimed at the creation, dissemination and use of cognitive computer graphics in teaching and learning. The results are of interest to students of specialties: "Computer Science and Information Technologies", "System Analysis", "Software Engineering", as well as

  17. 'The formula that killed Wall Street': the Gaussian copula and modelling practices in investment banking.

    MacKenzie, Donald; Spears, Taylor

    2014-06-01

    Drawing on documentary sources and 114 interviews with market participants, this and a companion article discuss the development and use in finance of the Gaussian copula family of models, which are employed to estimate the probability distribution of losses on a pool of loans or bonds, and which were centrally involved in the credit crisis. This article, which explores how and why the Gaussian copula family developed in the way it did, employs the concept of 'evaluation culture', a set of practices, preferences and beliefs concerning how to determine the economic value of financial instruments that is shared by members of multiple organizations. We identify an evaluation culture, dominant within the derivatives departments of investment banks, which we call the 'culture of no-arbitrage modelling', and explore its relation to the development of Gaussian copula models. The article suggests that two themes from the science and technology studies literature on models (modelling as 'impure' bricolage, and modelling as articulating with heterogeneous objectives and constraints) help elucidate the history of Gaussian copula models in finance.

  18. Graphic-based musculoskeletal model for biomechanical analyses and animation.

    Chao, Edmund Y S

    2003-04-01

    The ability to combine physiology and engineering analyses with computer sciences has opened the door to the possibility of creating the 'Virtual Human' reality. This paper presents a broad foundation for a full-featured biomechanical simulator for the human musculoskeletal system physiology. This simulation technology unites the expertise in biomechanical analysis and graphic modeling to investigate joint and connective tissue mechanics at the structural level and to visualize the results in both static and animated forms together with the model. Adaptable anatomical models including prosthetic implants and fracture fixation devices and a robust computational infrastructure for static, kinematic, kinetic, and stress analyses under varying boundary and loading conditions are incorporated on a common platform, the VIMS (Virtual Interactive Musculoskeletal System). Within this software system, a manageable database containing long bone dimensions, connective tissue material properties and a library of skeletal joint system functional activities and loading conditions are also available and they can easily be modified, updated and expanded. Application software is also available to allow end-users to perform biomechanical analyses interactively. This paper details the design, capabilities, and features of the VIMS development at Johns Hopkins University, an effort possible only through academic and commercial collaborations. Examples using these models and the computational algorithms in a virtual laboratory environment are used to demonstrate the utility of this unique database and simulation technology. This integrated system will impact on medical education, basic research, device development and application, and clinical patient care related to musculoskeletal diseases, trauma, and rehabilitation.

  19. Model-independent test for scale-dependent non-Gaussianities in the cosmic microwave background.

    Räth, C; Morfill, G E; Rossmanith, G; Banday, A J; Górski, K M

    2009-04-03

    We present a model-independent method to test for scale-dependent non-Gaussianities in combination with scaling indices as test statistics. Therefore, surrogate data sets are generated, in which the power spectrum of the original data is preserved, while the higher order correlations are partly randomized by applying a scale-dependent shuffling procedure to the Fourier phases. We apply this method to the Wilkinson Microwave Anisotropy Probe data of the cosmic microwave background and find signatures for non-Gaussianities on large scales. Further tests are required to elucidate the origin of the detected anomalies.

  20. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  1. Kinect Posture Reconstruction Based on a Local Mixture of Gaussian Process Models.

    Liu, Zhiguang; Zhou, Liuyang; Leung, Howard; Shum, Hubert P H

    2016-11-01

    Depth sensor based 3D human motion estimation hardware such as Kinect has made interactive applications more popular recently. However, it is still challenging to accurately recognize postures from a single depth camera due to the inherently noisy data derived from depth images and self-occluding action performed by the user. In this paper, we propose a new real-time probabilistic framework to enhance the accuracy of live captured postures that belong to one of the action classes in the database. We adopt the Gaussian Process model as a prior to leverage the position data obtained from Kinect and marker-based motion capture system. We also incorporate a temporal consistency term into the optimization framework to constrain the velocity variations between successive frames. To ensure that the reconstructed posture resembles the accurate parts of the observed posture, we embed a set of joint reliability measurements into the optimization framework. A major drawback of Gaussian Process is its cubic learning complexity when dealing with a large database due to the inverse of a covariance matrix. To solve the problem, we propose a new method based on a local mixture of Gaussian Processes, in which Gaussian Processes are defined in local regions of the state space. Due to the significantly decreased sample size in each local Gaussian Process, the learning time is greatly reduced. At the same time, the prediction speed is enhanced as the weighted mean prediction for a given sample is determined by the nearby local models only. Our system also allows incrementally updating a specific local Gaussian Process in real time, which enhances the likelihood of adapting to run-time postures that are different from those in the database. Experimental results demonstrate that our system can generate high quality postures even under severe self-occlusion situations, which is beneficial for real-time applications such as motion-based gaming and sport training.

  2. Semiparametric Gaussian copula models : Geometry and efficient rank-based estimation

    Segers, J.; van den Akker, R.; Werker, B.J.M.

    2014-01-01

    We propose, for multivariate Gaussian copula models with unknown margins and structured correlation matrices, a rank-based, semiparametrically efficient estimator for the Euclidean copula parameter. This estimator is defined as a one-step update of a rank-based pilot estimator in the direction of

  3. Ground states and formal duality relations in the Gaussian core model

    Cohn, H.; Kumar, A.; Schürmann, A.

    2009-01-01

    We study dimensional trends in ground states for soft-matter systems. Specifically, using a high-dimensional version of Parrinello-Rahman dynamics, we investigate the behavior of the Gaussian core model in up to eight dimensions. The results include unexpected geometric structures, with surprising

  4. Fractional statistics in 2+1 dimensions through the Gaussian model

    Murthy, G.

    1986-01-01

    The free massless field in 2+1 dimensions is written as an ''integral'' over free massless fields in 1+1 dimensions. Taking the operators with fractional dimension in the Gaussian model as a springboard we construct operators with fractional statistics in the former theory

  5. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  6. An equivalence between the discrete Gaussian model and a generalized Sine Gordon theory on a lattice

    Baskaran, G.; Gupte, N.

    1983-11-01

    We demonstrate an equivalence between the statistical mechanics of the discrete Gaussian model and a generalized Sine-Gordon theory on an Euclidean lattice in arbitrary dimensions. The connection is obtained by a simple transformation of the partition function and is non perturbative in nature. (author)

  7. Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models

    Koopman, S.J.; Lucas, A.; Scharth, M.

    2015-01-01

    We propose a general likelihood evaluation method for nonlinear non-Gaussian state-space models using the simulation-based method of efficient importance sampling. We minimize the simulation effort by replacing some key steps of the likelihood estimation procedure by numerical integration. We refer

  8. A Statistical Graphical Model of the California Reservoir System

    Taeb, A.; Reager, J. T.; Turmon, M.; Chandrasekaran, V.

    2017-11-01

    The recent California drought has highlighted the potential vulnerability of the state's water management infrastructure to multiyear dry intervals. Due to the high complexity of the network, dynamic storage changes in California reservoirs on a state-wide scale have previously been difficult to model using either traditional statistical or physical approaches. Indeed, although there is a significant line of research on exploring models for single (or a small number of) reservoirs, these approaches are not amenable to a system-wide modeling of the California reservoir network due to the spatial and hydrological heterogeneities of the system. In this work, we develop a state-wide statistical graphical model to characterize the dependencies among a collection of 55 major California reservoirs across the state; this model is defined with respect to a graph in which the nodes index reservoirs and the edges specify the relationships or dependencies between reservoirs. We obtain and validate this model in a data-driven manner based on reservoir volumes over the period 2003-2016. A key feature of our framework is a quantification of the effects of external phenomena that influence the entire reservoir network. We further characterize the degree to which physical factors (e.g., state-wide Palmer Drought Severity Index (PDSI), average temperature, snow pack) and economic factors (e.g., consumer price index, number of agricultural workers) explain these external influences. As a consequence of this analysis, we obtain a system-wide health diagnosis of the reservoir network as a function of PDSI.

  9. Graphical User Interface for Simulink Integrated Performance Analysis Model

    Durham, R. Caitlyn

    2009-01-01

    The J-2X Engine (built by Pratt & Whitney Rocketdyne,) in the Upper Stage of the Ares I Crew Launch Vehicle, will only start within a certain range of temperature and pressure for Liquid Hydrogen and Liquid Oxygen propellants. The purpose of the Simulink Integrated Performance Analysis Model is to verify that in all reasonable conditions the temperature and pressure of the propellants are within the required J-2X engine start boxes. In order to run the simulation, test variables must be entered at all reasonable values of parameters such as heat leak and mass flow rate. To make this testing process as efficient as possible in order to save the maximum amount of time and money, and to show that the J-2X engine will start when it is required to do so, a graphical user interface (GUI) was created to allow the input of values to be used as parameters in the Simulink Model, without opening or altering the contents of the model. The GUI must allow for test data to come from Microsoft Excel files, allow those values to be edited before testing, place those values into the Simulink Model, and get the output from the Simulink Model. The GUI was built using MATLAB, and will run the Simulink simulation when the Simulate option is activated. After running the simulation, the GUI will construct a new Microsoft Excel file, as well as a MATLAB matrix file, using the output values for each test of the simulation so that they may graphed and compared to other values.

  10. Deadlock Detection Based on Automatic Code Generation from Graphical CSP Models

    Jovanovic, D.S.; Liet, Geert K.; Broenink, Johannes F.; Karelse, F.

    2004-01-01

    The paper describes a way of using standard formal analysis tools for checking deadlock freedom in graphical models for CSP descriptions of concurrent systems. The models capture specification of a possible concurrent implementation of a system to be realized. Building the graphical models and

  11. JACK - ANTHROPOMETRIC MODELING SYSTEM FOR SILICON GRAPHICS WORKSTATIONS

    Smith, B.

    1994-01-01

    JACK is an interactive graphics program developed at the University of Pennsylvania that displays and manipulates articulated geometric figures. JACK is typically used to observe how a human mannequin interacts with its environment and what effects body types will have upon the performance of a task in a simulated environment. Any environment can be created, and any number of mannequins can be placed anywhere in that environment. JACK includes facilities to construct limited geometric objects, position figures, perform a variety of analyses on the figures, describe the motion of the figures and specify lighting and surface property information for rendering high quality images. JACK is supplied with a variety of body types pre-defined and known to the system. There are both male and female bodies, ranging from the 5th to the 95th percentile, based on NASA Standard 3000. Each mannequin is fully articulated and reflects the joint limitations of a normal human. JACK is an editor for manipulating previously defined objects known as "Peabody" objects. Used to describe the figures as well as the internal data structure for representing them, Peabody is a language with a powerful and flexible mechanism for representing connectivity between objects, both the joints between individual segments within a figure and arbitrary connections between different figures. Peabody objects are generally comprised of several individual figures, each one a collection of segments. Each segment has a geometry represented by PSURF files that consist of polygons or curved surface patches. Although JACK does not have the capability to create new objects, objects may be created by other geometric modeling programs and then translated into the PSURF format. Environment files are a collection of figures and attributes that may be dynamically moved under the control of an animation file. The animation facilities allow the user to create a sequence of commands that duplicate the movements of a

  12. Evaluation of Gaussian approximations for data assimilation in reservoir models

    Iglesias, Marco A.; Law, Kody J H; Stuart, Andrew M.

    2013-01-01

    is fundamental for the optimal management of reservoirs. Unfortunately, due to the large-scale highly nonlinear properties of standard reservoir models, characterizing the posterior is computationally prohibitive. Instead, more affordable ad hoc techniques, based

  13. Bayes factor between Student t and Gaussian mixed models within an animal breeding context

    García-Cortés Luis

    2008-07-01

    Full Text Available Abstract The implementation of Student t mixed models in animal breeding has been suggested as a useful statistical tool to effectively mute the impact of preferential treatment or other sources of outliers in field data. Nevertheless, these additional sources of variation are undeclared and we do not know whether a Student t mixed model is required or if a standard, and less parameterized, Gaussian mixed model would be sufficient to serve the intended purpose. Within this context, our aim was to develop the Bayes factor between two nested models that only differed in a bounded variable in order to easily compare a Student t and a Gaussian mixed model. It is important to highlight that the Student t density converges to a Gaussian process when degrees of freedom tend to infinity. The twomodels can then be viewed as nested models that differ in terms of degrees of freedom. The Bayes factor can be easily calculated from the output of a Markov chain Monte Carlo sampling of the complex model (Student t mixed model. The performance of this Bayes factor was tested under simulation and on a real dataset, using the deviation information criterion (DIC as the standard reference criterion. The two statistical tools showed similar trends along the parameter space, although the Bayes factor appeared to be the more conservative. There was considerable evidence favoring the Student t mixed model for data sets simulated under Student t processes with limited degrees of freedom, and moderate advantages associated with using the Gaussian mixed model when working with datasets simulated with 50 or more degrees of freedom. For the analysis of real data (weight of Pietrain pigs at six months, both the Bayes factor and DIC slightly favored the Student t mixed model, with there being a reduced incidence of outlier individuals in this population.

  14. Speech Enhancement by MAP Spectral Amplitude Estimation Using a Super-Gaussian Speech Model

    Lotter Thomas

    2005-01-01

    Full Text Available This contribution presents two spectral amplitude estimators for acoustical background noise suppression based on maximum a posteriori estimation and super-Gaussian statistical modelling of the speech DFT amplitudes. The probability density function of the speech spectral amplitude is modelled with a simple parametric function, which allows a high approximation accuracy for Laplace- or Gamma-distributed real and imaginary parts of the speech DFT coefficients. Also, the statistical model can be adapted to optimally fit the distribution of the speech spectral amplitudes for a specific noise reduction system. Based on the super-Gaussian statistical model, computationally efficient maximum a posteriori speech estimators are derived, which outperform the commonly applied Ephraim-Malah algorithm.

  15. An integrated numerical model for the prediction of Gaussian and billet shapes

    Hattel, J.H.; Pryds, N.H.; Pedersen, T.B.

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency and the shading effect for Gaussian and billet shape, respectively. From the obtained results, the effect of these parameters on the final shape is illustrated

  16. Factoring variations in natural images with deep Gaussian mixture models

    van den Oord, Aäron; Schrauwen, Benjamin

    2014-01-01

    Generative models can be seen as the swiss army knives of machine learning, as many problems can be written probabilistically in terms of the distribution of the data, including prediction, reconstruction, imputation and simulation. One of the most promising directions for unsupervised learning may lie in Deep Learning methods, given their success in supervised learning. However, one of the cur- rent problems with deep unsupervised learning methods, is that they often are harder to scale. As ...

  17. Modelling Inverse Gaussian Data with Censored Response Values: EM versus MCMC

    R. S. Sparks

    2011-01-01

    Full Text Available Low detection limits are common in measure environmental variables. Building models using data containing low or high detection limits without adjusting for the censoring produces biased models. This paper offers approaches to estimate an inverse Gaussian distribution when some of the data used are censored because of low or high detection limits. Adjustments for the censoring can be made if there is between 2% and 20% censoring using either the EM algorithm or MCMC. This paper compares these approaches.

  18. A Gaussian beam method for ultrasonic non-destructive evaluation modeling

    Jacquet, O.; Leymarie, N.; Cassereau, D.

    2018-05-01

    The propagation of high-frequency ultrasonic body waves can be efficiently estimated with a semi-analytic Dynamic Ray Tracing approach using paraxial approximation. Although this asymptotic field estimation avoids the computational cost of numerical methods, it may encounter several limitations in reproducing identified highly interferential features. Nevertheless, some can be managed by allowing paraxial quantities to be complex-valued. This gives rise to localized solutions, known as paraxial Gaussian beams. Whereas their propagation and transmission/reflection laws are well-defined, the fact remains that the adopted complexification introduces additional initial conditions. While their choice is usually performed according to strategies specifically tailored to limited applications, a Gabor frame method has been implemented to indiscriminately initialize a reasonable number of paraxial Gaussian beams. Since this method can be applied for an usefully wide range of ultrasonic transducers, the typical case of the time-harmonic piston radiator is investigated. Compared to the commonly used Multi-Gaussian Beam model [1], a better agreement is obtained throughout the radiated field between the results of numerical integration (or analytical on-axis solution) and the resulting Gaussian beam superposition. Sparsity of the proposed solution is also discussed.

  19. BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

    Mohammadi, A.; Wit, E.C.

    2017-01-01

    Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce an R package BDgraph which performs Bayesian structure learning for general undirected graphical models with

  20. Time Series Analysis of Non-Gaussian Observations Based on State Space Models from Both Classical and Bayesian Perspectives

    Durbin, J.; Koopman, S.J.M.

    1998-01-01

    The analysis of non-Gaussian time series using state space models is considered from both classical and Bayesian perspectives. The treatment in both cases is based on simulation using importance sampling and antithetic variables; Monte Carlo Markov chain methods are not employed. Non-Gaussian

  1. Topology in two dimensions. IV - CDM models with non-Gaussian initial conditions

    Coles, Peter; Moscardini, Lauro; Plionis, Manolis; Lucchin, Francesco; Matarrese, Sabino; Messina, Antonio

    1993-02-01

    The results of N-body simulations with both Gaussian and non-Gaussian initial conditions are used here to generate projected galaxy catalogs with the same selection criteria as the Shane-Wirtanen counts of galaxies. The Euler-Poincare characteristic is used to compare the statistical nature of the projected galaxy clustering in these simulated data sets with that of the observed galaxy catalog. All the models produce a topology dominated by a meatball shift when normalized to the known small-scale clustering properties of galaxies. Models characterized by a positive skewness of the distribution of primordial density perturbations are inconsistent with the Lick data, suggesting problems in reconciling models based on cosmic textures with observations. Gaussian CDM models fit the distribution of cell counts only if they have a rather high normalization but possess too low a coherence length compared with the Lick counts. This suggests that a CDM model with extra large scale power would probably fit the available data.

  2. Variable Selection for Nonparametric Gaussian Process Priors: Models and Computational Strategies.

    Savitsky, Terrance; Vannucci, Marina; Sha, Naijun

    2011-02-01

    This paper presents a unified treatment of Gaussian process models that extends to data from the exponential dispersion family and to survival data. Our specific interest is in the analysis of data sets with predictors that have an a priori unknown form of possibly nonlinear associations to the response. The modeling approach we describe incorporates Gaussian processes in a generalized linear model framework to obtain a class of nonparametric regression models where the covariance matrix depends on the predictors. We consider, in particular, continuous, categorical and count responses. We also look into models that account for survival outcomes. We explore alternative covariance formulations for the Gaussian process prior and demonstrate the flexibility of the construction. Next, we focus on the important problem of selecting variables from the set of possible predictors and describe a general framework that employs mixture priors. We compare alternative MCMC strategies for posterior inference and achieve a computationally efficient and practical approach. We demonstrate performances on simulated and benchmark data sets.

  3. Gaussian tunneling model of c-axis twist Josephson junctions

    Bille, A.; Klemm, R.A.; Scharnberg, K.

    2001-01-01

    We calculate the critical current density J c J ((var p hi) 0 ) for Josephson tunneling between identical high-temperature superconductors twisted an angle (var p hi) 0 about the c axis. Regardless of the shape of the two-dimensional Fermi surface and for very general tunneling matrix elements, an order parameter (OP) with general d-wave symmetry leads to J c J (π/4)=0. This general result is inconsistent with the data of Li et al. [Phys. Rev. Lett. 83, 4160 (1999)] on Bi 2 Sr 2 CaCu 2 O 8+δ (Bi2212), which showed J c J to be independent of (var p hi) 0 . If the momentum parallel to the barrier is conserved in the tunneling process, J c J should vary substantially with the twist angle (var p hi) 0 when the tight-binding Fermi surface appropriate for Bi2212 is taken into account, even if the OP is completely isotropic. We quantify the degree of momentum nonconservation necessary to render J c J ((var p hi) 0 ) constant within experimental error for a variety of pair states by interpolating between the coherent and incoherent limits using five specific models to describe the momentum dependence of the tunneling matrix element squared. From the data of Li et al., we conclude that the c-axis tunneling in Bi2212 must be very nearly incoherent, and that the OP must have a nonvanishing Fermi-surface average for T c . We further show that the apparent conventional sum-rule violation observed by Basov et al. [Science 283, 49 (1999)] can be consistent with such strongly incoherent c-axis tunneling.

  4. Maximum Correntropy Criterion Kalman Filter for α-Jerk Tracking Model with Non-Gaussian Noise

    Bowen Hou

    2017-11-01

    Full Text Available As one of the most critical issues for target track, α -jerk model is an effective maneuver target track model. Non-Gaussian noises always exist in the track process, which usually lead to inconsistency and divergence of the track filter. A novel Kalman filter is derived and applied on α -jerk tracking model to handle non-Gaussian noise. The weighted least square solution is presented and the standard Kalman filter is deduced firstly. A novel Kalman filter with the weighted least square based on the maximum correntropy criterion is deduced. The robustness of the maximum correntropy criterion is also analyzed with the influence function and compared with the Huber-based filter, and, moreover, the kernel size of Gaussian kernel plays an important role in the filter algorithm. A new adaptive kernel method is proposed in this paper to adjust the parameter in real time. Finally, simulation results indicate the validity and the efficiency of the proposed filter. The comparison study shows that the proposed filter can significantly reduce the noise influence for α -jerk model.

  5. Soft Sensor Modeling Based on Multiple Gaussian Process Regression and Fuzzy C-mean Clustering

    Xianglin ZHU

    2014-06-01

    Full Text Available In order to overcome the difficulties of online measurement of some crucial biochemical variables in fermentation processes, a new soft sensor modeling method is presented based on the Gaussian process regression and fuzzy C-mean clustering. With the consideration that the typical fermentation process can be distributed into 4 phases including lag phase, exponential growth phase, stable phase and dead phase, the training samples are classified into 4 subcategories by using fuzzy C- mean clustering algorithm. For each sub-category, the samples are trained using the Gaussian process regression and the corresponding soft-sensing sub-model is established respectively. For a new sample, the membership between this sample and sub-models are computed based on the Euclidean distance, and then the prediction output of soft sensor is obtained using the weighting sum. Taking the Lysine fermentation as example, the simulation and experiment are carried out and the corresponding results show that the presented method achieves better fitting and generalization ability than radial basis function neutral network and single Gaussian process regression model.

  6. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  7. The application of feature selection to the development of Gaussian process models for percutaneous absorption.

    Lam, Lun Tak; Sun, Yi; Davey, Neil; Adams, Rod; Prapopoulou, Maria; Brown, Marc B; Moss, Gary P

    2010-06-01

    The aim was to employ Gaussian processes to assess mathematically the nature of a skin permeability dataset and to employ these methods, particularly feature selection, to determine the key physicochemical descriptors which exert the most significant influence on percutaneous absorption, and to compare such models with established existing models. Gaussian processes, including automatic relevance detection (GPRARD) methods, were employed to develop models of percutaneous absorption that identified key physicochemical descriptors of percutaneous absorption. Using MatLab software, the statistical performance of these models was compared with single linear networks (SLN) and quantitative structure-permeability relationships (QSPRs). Feature selection methods were used to examine in more detail the physicochemical parameters used in this study. A range of statistical measures to determine model quality were used. The inherently nonlinear nature of the skin data set was confirmed. The Gaussian process regression (GPR) methods yielded predictive models that offered statistically significant improvements over SLN and QSPR models with regard to predictivity (where the rank order was: GPR > SLN > QSPR). Feature selection analysis determined that the best GPR models were those that contained log P, melting point and the number of hydrogen bond donor groups as significant descriptors. Further statistical analysis also found that great synergy existed between certain parameters. It suggested that a number of the descriptors employed were effectively interchangeable, thus questioning the use of models where discrete variables are output, usually in the form of an equation. The use of a nonlinear GPR method produced models with significantly improved predictivity, compared with SLN or QSPR models. Feature selection methods were able to provide important mechanistic information. However, it was also shown that significant synergy existed between certain parameters, and as such it

  8. Extreme-Strike and Small-time Asymptotics for Gaussian Stochastic Volatility Models

    Zhang, Xin

    2016-01-01

    Asymptotic behavior of implied volatility is of our interest in this dissertation. For extreme strike, we consider a stochastic volatility asset price model in which the volatility is the absolute value of a continuous Gaussian process with arbitrary prescribed mean and covariance. By exhibiting a Karhunen-Loève expansion for the integrated variance, and using sharp estimates of the density of a general second-chaos variable, we derive asymptotics for the asset price density for large or smal...

  9. Particle rejuvenation of Rao-Blackwellized sequential Monte Carlo smoothers for conditionally linear and Gaussian models

    Nguyen, Ngoc Minh; Corff, Sylvain Le; Moulines, Éric

    2017-12-01

    This paper focuses on sequential Monte Carlo approximations of smoothing distributions in conditionally linear and Gaussian state spaces. To reduce Monte Carlo variance of smoothers, it is typical in these models to use Rao-Blackwellization: particle approximation is used to sample sequences of hidden regimes while the Gaussian states are explicitly integrated conditional on the sequence of regimes and observations, using variants of the Kalman filter/smoother. The first successful attempt to use Rao-Blackwellization for smoothing extends the Bryson-Frazier smoother for Gaussian linear state space models using the generalized two-filter formula together with Kalman filters/smoothers. More recently, a forward-backward decomposition of smoothing distributions mimicking the Rauch-Tung-Striebel smoother for the regimes combined with backward Kalman updates has been introduced. This paper investigates the benefit of introducing additional rejuvenation steps in all these algorithms to sample at each time instant new regimes conditional on the forward and backward particles. This defines particle-based approximations of the smoothing distributions whose support is not restricted to the set of particles sampled in the forward or backward filter. These procedures are applied to commodity markets which are described using a two-factor model based on the spot price and a convenience yield for crude oil data.

  10. Performance modeling and analysis of parallel Gaussian elimination on multi-core computers

    Fadi N. Sibai

    2014-01-01

    Full Text Available Gaussian elimination is used in many applications and in particular in the solution of systems of linear equations. This paper presents mathematical performance models and analysis of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet in the Middle –MiM– algorithms and their variants with SIMD vectorization on multi-core systems. Analytical performance models of the four methods are formulated and presented followed by evaluations of these models with modern multi-core systems’ operation latencies. Our results reveal that the four methods generally exhibit good performance scaling with increasing matrix size and number of cores. SIMD vectorization only makes a large difference in performance for low number of cores. For a large matrix size (n ⩾ 16 K, the performance difference between the MiM and Original methods falls from 16× with four cores to 4× with 16 K cores. The efficiencies of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems where the network-on-chip and memory latencies are too high in relation to basic arithmetic operations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but higher performance gains can be achieved if multi-core systems can be designed with lower memory operation, synchronization, and interconnect communication latencies, requirements of utmost importance and challenge in the exascale computing age.

  11. Modeling and forecasting foreign exchange daily closing prices with normal inverse Gaussian

    Teneng, Dean

    2013-09-01

    We fit the normal inverse Gaussian(NIG) distribution to foreign exchange closing prices using the open software package R and select best models by Käärik and Umbleja (2011) proposed strategy. We observe that daily closing prices (12/04/2008 - 07/08/2012) of CHF/JPY, AUD/JPY, GBP/JPY, NZD/USD, QAR/CHF, QAR/EUR, SAR/CHF, SAR/EUR, TND/CHF and TND/EUR are excellent fits while EGP/EUR and EUR/GBP are good fits with a Kolmogorov-Smirnov test p-value of 0.062 and 0.08 respectively. It was impossible to estimate normal inverse Gaussian parameters (by maximum likelihood; computational problem) for JPY/CHF but CHF/JPY was an excellent fit. Thus, while the stochastic properties of an exchange rate can be completely modeled with a probability distribution in one direction, it may be impossible the other way around. We also demonstrate that foreign exchange closing prices can be forecasted with the normal inverse Gaussian (NIG) Lévy process, both in cases where the daily closing prices can and cannot be modeled by NIG distribution.

  12. Gaussian and Affine Approximation of Stochastic Diffusion Models for Interest and Mortality Rates

    Marcus C. Christiansen

    2013-10-01

    Full Text Available In the actuarial literature, it has become common practice to model future capital returns and mortality rates stochastically in order to capture market risk and forecasting risk. Although interest rates often should and mortality rates always have to be non-negative, many authors use stochastic diffusion models with an affine drift term and additive noise. As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative values occur with positive probability. The argument is that the class of Gaussian diffusions would be a good approximation of the real future development. We challenge that reasoning and study the asymptotics of diffusion processes with affine drift and a general noise term with corresponding diffusion processes with an affine drift term and an affine noise term or additive noise. Our study helps to quantify the error that is made by approximating diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions. In particular, we discuss forward interest and forward mortality rates and the error that approximations cause on the valuation of life insurance claims.

  13. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  14. An integrated numerical model for the prediction of Gaussian and billet shapes

    Hattel, Jesper; Pryds, Nini; Pedersen, Trine Bjerre

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtained...... by this model. After a short review of the models and their coupling, the important factors which influence the resulting shape, i.e. Gaussian or billet, are addressed. The key parameters, which are utilized to predict the geometry and dimension of the deposited material, are the sticking efficiency...

  15. Decision making in water resource planning: Models and computer graphics

    Fedra, K; Carlsen, A J [ed.

    1987-01-01

    This paper describes some basic concepts of simulation-based decision support systems for water resources management and the role of symbolic, graphics-based user interfaces. Designed to allow direct and easy access to advanced methods of analysis and decision support for a broad and heterogeneous group of users, these systems combine data base management, system simulation, operations research techniques such as optimization, interactive data analysis, elements of advanced decision technology, and artificial intelligence, with a friendly and conversational, symbolic display oriented user interface. Important features of the interface are the use of several parallel or alternative styles of interaction and display, indlucing colour graphics and natural language. Combining quantitative numerical methods with qualitative and heuristic approaches, and giving the user direct and interactive control over the systems function, human knowledge, experience and judgement are integrated with formal approaches into a tightly coupled man-machine system through an intelligent and easily accessible user interface. 4 drawings, 42 references.

  16. Parameter estimation and statistical test of geographically weighted bivariate Poisson inverse Gaussian regression models

    Amalia, Junita; Purhadi, Otok, Bambang Widjanarko

    2017-11-01

    Poisson distribution is a discrete distribution with count data as the random variables and it has one parameter defines both mean and variance. Poisson regression assumes mean and variance should be same (equidispersion). Nonetheless, some case of the count data unsatisfied this assumption because variance exceeds mean (over-dispersion). The ignorance of over-dispersion causes underestimates in standard error. Furthermore, it causes incorrect decision in the statistical test. Previously, paired count data has a correlation and it has bivariate Poisson distribution. If there is over-dispersion, modeling paired count data is not sufficient with simple bivariate Poisson regression. Bivariate Poisson Inverse Gaussian Regression (BPIGR) model is mix Poisson regression for modeling paired count data within over-dispersion. BPIGR model produces a global model for all locations. In another hand, each location has different geographic conditions, social, cultural and economic so that Geographically Weighted Regression (GWR) is needed. The weighting function of each location in GWR generates a different local model. Geographically Weighted Bivariate Poisson Inverse Gaussian Regression (GWBPIGR) model is used to solve over-dispersion and to generate local models. Parameter estimation of GWBPIGR model obtained by Maximum Likelihood Estimation (MLE) method. Meanwhile, hypothesis testing of GWBPIGR model acquired by Maximum Likelihood Ratio Test (MLRT) method.

  17. How Non-Gaussian Shocks Affect Risk Premia in Non-Linear DSGE Models

    Andreasen, Martin Møller

    This paper studies how non-Gaussian shocks affect risk premia in DSGE models approximated to second and third order. Based on an extension of the results in Schmitt-Grohé & Uribe (2004) to third order, we derive propositions for how rare disasters, stochastic volatility, and GARCH affect any risk...... premia in a wide class of DSGE models. To quantify these effects, we then set up a standard New Keynesian DSGE model where total factor productivity includes rare disasters, stochastic volatility, and GARCH. We …find that rare disasters increase the mean level of the 10-year nominal term premium, whereas...

  18. Oscillometric blood pressure estimation by combining nonparametric bootstrap with Gaussian mixture model.

    Lee, Soojeong; Rajan, Sreeraman; Jeon, Gwanggil; Chang, Joon-Hyuk; Dajani, Hilmi R; Groza, Voicu Z

    2017-06-01

    Blood pressure (BP) is one of the most important vital indicators and plays a key role in determining the cardiovascular activity of patients. This paper proposes a hybrid approach consisting of nonparametric bootstrap (NPB) and machine learning techniques to obtain the characteristic ratios (CR) used in the blood pressure estimation algorithm to improve the accuracy of systolic blood pressure (SBP) and diastolic blood pressure (DBP) estimates and obtain confidence intervals (CI). The NPB technique is used to circumvent the requirement for large sample set for obtaining the CI. A mixture of Gaussian densities is assumed for the CRs and Gaussian mixture model (GMM) is chosen to estimate the SBP and DBP ratios. The K-means clustering technique is used to obtain the mixture order of the Gaussian densities. The proposed approach achieves grade "A" under British Society of Hypertension testing protocol and is superior to the conventional approach based on maximum amplitude algorithm (MAA) that uses fixed CR ratios. The proposed approach also yields a lower mean error (ME) and the standard deviation of the error (SDE) in the estimates when compared to the conventional MAA method. In addition, CIs obtained through the proposed hybrid approach are also narrower with a lower SDE. The proposed approach combining the NPB technique with the GMM provides a methodology to derive individualized characteristic ratio. The results exhibit that the proposed approach enhances the accuracy of SBP and DBP estimation and provides narrower confidence intervals for the estimates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Gaussian model for emission rate measurement of heated plumes using hyperspectral data

    Grauer, Samuel J.; Conrad, Bradley M.; Miguel, Rodrigo B.; Daun, Kyle J.

    2018-02-01

    This paper presents a novel model for measuring the emission rate of a heated gas plume using hyperspectral data from an FTIR imaging spectrometer. The radiative transfer equation (RTE) is used to relate the spectral intensity of a pixel to presumed Gaussian distributions of volume fraction and temperature within the plume, along a line-of-sight that corresponds to the pixel, whereas previous techniques exclusively presume uniform distributions for these parameters. Estimates of volume fraction and temperature are converted to a column density by integrating the local molecular density along each path. Image correlation velocimetry is then employed on raw spectral intensity images to estimate the volume-weighted normal velocity at each pixel. Finally, integrating the product of velocity and column density along a control surface yields an estimate of the instantaneous emission rate. For validation, emission rate estimates were derived from synthetic hyperspectral images of a heated methane plume, generated using data from a large-eddy simulation. Calculating the RTE with Gaussian distributions of volume fraction and temperature, instead of uniform distributions, improved the accuracy of column density measurement by 14%. Moreover, the mean methane emission rate measured using our approach was within 4% of the ground truth. These results support the use of Gaussian distributions of thermodynamic properties in calculation of the RTE for optical gas diagnostics.

  20. Application of Gaussian cubature to model two-dimensional population balances

    Bałdyga Jerzy

    2017-09-01

    Full Text Available In many systems of engineering interest the moment transformation of population balance is applied. One of the methods to solve the transformed population balance equations is the quadrature method of moments. It is based on the approximation of the density function in the source term by the Gaussian quadrature so that it preserves the moments of the original distribution. In this work we propose another method to be applied to the multivariate population problem in chemical engineering, namely a Gaussian cubature (GC technique that applies linear programming for the approximation of the multivariate distribution. Examples of the application of the Gaussian cubature (GC are presented for four processes typical for chemical engineering applications. The first and second ones are devoted to crystallization modeling with direction-dependent two-dimensional and three-dimensional growth rates, the third one represents drop dispersion accompanied by mass transfer in liquid-liquid dispersions and finally the fourth case regards the aggregation and sintering of particle populations.

  1. Parametric estimation of covariance function in Gaussian-process based Kriging models. Application to uncertainty quantification for computer experiments

    Bachoc, F.

    2013-01-01

    The parametric estimation of the covariance function of a Gaussian process is studied, in the framework of the Kriging model. Maximum Likelihood and Cross Validation estimators are considered. The correctly specified case, in which the covariance function of the Gaussian process does belong to the parametric set used for estimation, is first studied in an increasing-domain asymptotic framework. The sampling considered is a randomly perturbed multidimensional regular grid. Consistency and asymptotic normality are proved for the two estimators. It is then put into evidence that strong perturbations of the regular grid are always beneficial to Maximum Likelihood estimation. The incorrectly specified case, in which the covariance function of the Gaussian process does not belong to the parametric set used for estimation, is then studied. It is shown that Cross Validation is more robust than Maximum Likelihood in this case. Finally, two applications of the Kriging model with Gaussian processes are carried out on industrial data. For a validation problem of the friction model of the thermal-hydraulic code FLICA 4, where experimental results are available, it is shown that Gaussian process modeling of the FLICA 4 code model error enables to considerably improve its predictions. Finally, for a meta modeling problem of the GERMINAL thermal-mechanical code, the interest of the Kriging model with Gaussian processes, compared to neural network methods, is shown. (author) [fr

  2. Graphics-based intelligent search and abstracting using Data Modeling

    Jaenisch, Holger M.; Handley, James W.; Case, Carl T.; Songy, Claude G.

    2002-11-01

    This paper presents an autonomous text and context-mining algorithm that converts text documents into point clouds for visual search cues. This algorithm is applied to the task of data-mining a scriptural database comprised of the Old and New Testaments from the Bible and the Book of Mormon, Doctrine and Covenants, and the Pearl of Great Price. Results are generated which graphically show the scripture that represents the average concept of the database and the mining of the documents down to the verse level.

  3. Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models

    Vehtari, Aki; Mononen, Tommi; Tolvanen, Ville

    2016-01-01

    The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study...... the properties of several Bayesian leave-one-out (LOO) cross-validation approximations that in most cases can be computed with a small additional cost after forming the posterior approximation given the full data. Our main objective is to assess the accuracy of the approximative LOO cross-validation estimators...

  4. Mathematic model analysis of Gaussian beam propagation through an arbitrary thickness random phase screen.

    Tian, Yuzhen; Guo, Jin; Wang, Rui; Wang, Tingfeng

    2011-09-12

    In order to research the statistical properties of Gaussian beam propagation through an arbitrary thickness random phase screen for adaptive optics and laser communication application in the laboratory, we establish mathematic models of statistical quantities, which are based on the Rytov method and the thin phase screen model, involved in the propagation process. And the analytic results are developed for an arbitrary thickness phase screen based on the Kolmogorov power spectrum. The comparison between the arbitrary thickness phase screen and the thin phase screen shows that it is more suitable for our results to describe the generalized case, especially the scintillation index.

  5. MODELS OF COVARIANCE FUNCTIONS OF GAUSSIAN RANDOM FIELDS ESCAPING FROM ISOTROPY, STATIONARITY AND NON NEGATIVITY

    Pablo Gregori

    2014-03-01

    Full Text Available This paper represents a survey of recent advances in modeling of space or space-time Gaussian Random Fields (GRF, tools of Geostatistics at hand for the understanding of special cases of noise in image analysis. They can be used when stationarity or isotropy are unrealistic assumptions, or even when negative covariance between some couples of locations are evident. We show some strategies in order to escape from these restrictions, on the basis of rich classes of well known stationary or isotropic non negative covariance models, and through suitable operations, like linear combinations, generalized means, or with particular Fourier transforms.

  6. Co-occurrence rate networks: towards separate training for undirected graphical models

    Zhu, Zhemin

    2015-01-01

    Dependence is a universal phenomenon which can be observed everywhere. In machine learning, probabilistic graphical models (PGMs) represent dependence relations with graphs. PGMs find wide applications in natural language processing (NLP), speech processing, computer vision, biomedicine, information

  7. Stochastic Analysis of a Queue Length Model Using a Graphics Processing Unit

    Přikryl, Jan; Kocijan, J.

    2012-01-01

    Roč. 5, č. 2 (2012), s. 55-62 ISSN 1802-971X R&D Projects: GA MŠk(CZ) MEB091015 Institutional support: RVO:67985556 Keywords : graphics processing unit * GPU * Monte Carlo simulation * computer simulation * modeling Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2012/AS/prikryl-stochastic analysis of a queue length model using a graphics processing unit.pdf

  8. Vertical dispersion from surface and elevated releases: An investigation of a Non-Gaussian plume model

    Brown, M.J.; Arya, S.P.; Snyder, W.H.

    1993-01-01

    The vertical diffusion of a passive tracer released from surface and elevated sources in a neutrally stratified boundary layer has been studied by comparing field and laboratory experiments with a non-Gaussian K-theory model that assumes power-law profiles for the mean velocity and vertical eddy diffusivity. Several important differences between model predictions and experimental data were discovered: (1) the model overestimated ground-level concentrations from surface and elevated releases at distances beyond the peak concentration; (2) the model overpredicted vertical mixing near elevated sources, especially in the upward direction; (3) the model-predicted exponent α in the exponential vertical concentration profile for a surface release [bar C(z)∝ exp(-z α )] was smaller than the experimentally measured exponent. Model closure assumptions and experimental short-comings are discussed in relation to their probable effect on model predictions and experimental measurements. 42 refs., 13 figs., 3 tabs

  9. Discrimination of numerical proportions: A comparison of binomial and Gaussian models.

    Raidvee, Aire; Lember, Jüri; Allik, Jüri

    2017-01-01

    Observers discriminated the numerical proportion of two sets of elements (N = 9, 13, 33, and 65) that differed either by color or orientation. According to the standard Thurstonian approach, the accuracy of proportion discrimination is determined by irreducible noise in the nervous system that stochastically transforms the number of presented visual elements onto a continuum of psychological states representing numerosity. As an alternative to this customary approach, we propose a Thurstonian-binomial model, which assumes discrete perceptual states, each of which is associated with a certain visual element. It is shown that the probability β with which each visual element can be noticed and registered by the perceptual system can explain data of numerical proportion discrimination at least as well as the continuous Thurstonian-Gaussian model, and better, if the greater parsimony of the Thurstonian-binomial model is taken into account using AIC model selection. We conclude that Gaussian and binomial models represent two different fundamental principles-internal noise vs. using only a fraction of available information-which are both plausible descriptions of visual perception.

  10. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    McDowell, Ian C; Manandhar, Dinesh; Vockley, Christopher M; Schmid, Amy K; Reddy, Timothy E; Engelhardt, Barbara E

    2018-01-01

    Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  11. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Ian C McDowell

    2018-01-01

    Full Text Available Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP, which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  12. Primordial non-Gaussianities in single field inflationary models with non-trivial initial states

    Bahrami, Sina; Flanagan, Éanna É., E-mail: sb933@cornell.edu, E-mail: eef3@cornell.edu [Department of Physics, Cornell University, Ithaca, NY 14853 (United States)

    2014-10-01

    We compute the non-Gaussianities that arise in single field, slow roll inflationary models arising from arbitrary homogeneous initial states, as well as subleading contributions to the power spectrum. Non Bunch-Davies vacuum initial states can arise if the transition to the single field, slow roll inflation phase occurs only shortly before observable modes left the horizon. They can also arise from new physics at high energies that has been integrated out. Our general result for the bispectrum exhibits several features that were previously seen in special cases.

  13. Encrypted data stream identification using randomness sparse representation and fuzzy Gaussian mixture model

    Zhang, Hong; Hou, Rui; Yi, Lei; Meng, Juan; Pan, Zhisong; Zhou, Yuhuan

    2016-07-01

    The accurate identification of encrypted data stream helps to regulate illegal data, detect network attacks and protect users' information. In this paper, a novel encrypted data stream identification algorithm is introduced. The proposed method is based on randomness characteristics of encrypted data stream. We use a l1-norm regularized logistic regression to improve sparse representation of randomness features and Fuzzy Gaussian Mixture Model (FGMM) to improve identification accuracy. Experimental results demonstrate that the method can be adopted as an effective technique for encrypted data stream identification.

  14. Modeling of Video Sequences by Gaussian Mixture: Application in Motion Estimation by Block Matching Method

    Abdenaceur Boudlal

    2010-01-01

    Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.

  15. The Gaussian copula model for the joint deficit index for droughts

    Van de Vyver, H.; Van den Bergh, J.

    2018-06-01

    The characterization of droughts and their impacts is very dependent on the time scale that is involved. In order to obtain an overall drought assessment, the cumulative effects of water deficits over different times need to be examined together. For example, the recently developed joint deficit index (JDI) is based on multivariate probabilities of precipitation over various time scales from 1- to 12-months, and was constructed from empirical copulas. In this paper, we examine the Gaussian copula model for the JDI. We model the covariance across the temporal scales with a two-parameter function that is commonly used in the specific context of spatial statistics or geostatistics. The validity of the covariance models is demonstrated with long-term precipitation series. Bootstrap experiments indicate that the Gaussian copula model has advantages over the empirical copula method in the context of drought severity assessment: (i) it is able to quantify droughts outside the range of the empirical copula, (ii) provides adequate drought quantification, and (iii) provides a better understanding of the uncertainty in the estimation.

  16. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.

    Zhao, Lei; Mi, Dong; Sun, Yeqing

    2017-05-07

    The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes

    Tomoaki Nakamura

    2017-12-01

    Full Text Available Humans divide perceived continuous information into segments to facilitate recognition. For example, humans can segment speech waves into recognizable morphemes. Analogously, continuous motions are segmented into recognizable unit actions. People can divide continuous information into segments without using explicit segment points. This capacity for unsupervised segmentation is also useful for robots, because it enables them to flexibly learn languages, gestures, and actions. In this paper, we propose a Gaussian process-hidden semi-Markov model (GP-HSMM that can divide continuous time series data into segments in an unsupervised manner. Our proposed method consists of a generative model based on the hidden semi-Markov model (HSMM, the emission distributions of which are Gaussian processes (GPs. Continuous time series data is generated by connecting segments generated by the GP. Segmentation can be achieved by using forward filtering-backward sampling to estimate the model's parameters, including the lengths and classes of the segments. In an experiment using the CMU motion capture dataset, we tested GP-HSMM with motion capture data containing simple exercise motions; the results of this experiment showed that the proposed GP-HSMM was comparable with other methods. We also conducted an experiment using karate motion capture data, which is more complex than exercise motion capture data; in this experiment, the segmentation accuracy of GP-HSMM was 0.92, which outperformed other methods.

  18. Fast fitting of non-Gaussian state-space models to animal movement data via Template Model Builder

    Albertsen, Christoffer Moesgaard; Whoriskey, Kim; Yurkowski, David

    2015-01-01

    recommend using the Laplace approximation combined with automatic differentiation (as implemented in the novel R package Template Model Builder; TMB) for the fast fitting of continuous-time multivariate non-Gaussian SSMs. Through Argos satellite tracking data, we demonstrate that the use of continuous...... are able to estimate additional parameters compared to previous methods, all without requiring a substantial increase in computational time. The model implementation is made available through the R package argosTrack....

  19. User's manual for DWNWND: an interactive Gaussian plume atmospheric transport model with eight dispersion parameter options

    Fields, D.E.; Miller, C.W.

    1980-05-01

    The most commonly used approach for estimating the atmospheric concentration and deposition of material downwind from its point of release is the Gaussian plume atmospheric dispersion model. Two of the critical parameters in this model are sigma/sub y/ and sigma/sub z/, the horizontal and vertical dispersion parameters, respectively. A number of different sets of values for sigma/sub y/ and sigma/sub z/ have been determined empirically for different release heights and meteorological and terrain conditions. The computer code DWNWND, described in this report, is an interactive implementation of the Gaussian plume model. This code allows the user to specify any one of eight different sets of the empirically determined dispersion paramters. Using the selected dispersion paramters, ground-level normalized exposure estimates are made at any specified downwind distance. Computed values may be corrected for plume depletion due to deposition and for plume settling due to gravitational fall. With this interactive code, the user chooses values for ten parameters which define the source, the dispersion and deposition process, and the sampling point. DWNWND is written in FORTRAN for execution on a PDP-10 computer, requiring less than one second of central processor unit time for each simulation

  20. Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model

    Liu, Bo

    2016-02-03

    An ensemble-based Gaussian mixture (GM) filtering framework is studied in this paper in term of its dependence on the choice of the clustering method to construct the GM. In this approach, a number of particles sampled from the posterior distribution are first integrated forward with the dynamical model for forecasting. A GM representation of the forecast distribution is then constructed from the forecast particles. Once an observation becomes available, the forecast GM is updated according to Bayes’ rule. This leads to (i) a Kalman filter-like update of the particles, and (ii) a Particle filter-like update of their weights, generalizing the ensemble Kalman filter update to non-Gaussian distributions. We focus on investigating the impact of the clustering strategy on the behavior of the filter. Three different clustering methods for constructing the prior GM are considered: (i) a standard kernel density estimation, (ii) clustering with a specified mixture component size, and (iii) adaptive clustering (with a variable GM size). Numerical experiments are performed using a two-dimensional reactive contaminant transport model in which the contaminant concentration and the heterogenous hydraulic conductivity fields are estimated within a confined aquifer using solute concentration data. The experimental results suggest that the performance of the GM filter is sensitive to the choice of the GM model. In particular, increasing the size of the GM does not necessarily result in improved performances. In this respect, the best results are obtained with the proposed adaptive clustering scheme.

  1. A novel Gaussian model based battery state estimation approach: State-of-Energy

    He, HongWen; Zhang, YongZhi; Xiong, Rui; Wang, Chun

    2015-01-01

    Highlights: • The Gaussian model is employed to construct a novel battery model. • The genetic algorithm is used to implement model parameter identification. • The AIC is used to decide the best hysteresis order of the battery model. • A novel battery SoE estimator is proposed and verified by two kinds of batteries. - Abstract: State-of-energy (SoE) is a very important index for battery management system (BMS) used in electric vehicles (EVs), it is indispensable for ensuring safety and reliable operation of batteries. For achieving battery SoE accurately, the main work can be summarized in three aspects. (1) In considering that different kinds of batteries show different open circuit voltage behaviors, the Gaussian model is employed to construct the battery model. What is more, the genetic algorithm is employed to locate the optimal parameter for the selecting battery model. (2) To determine an optimal tradeoff between battery model complexity and prediction precision, the Akaike information criterion (AIC) is used to determine the best hysteresis order of the combined battery model. Results from a comparative analysis show that the first-order hysteresis battery model is thought of being the best based on the AIC values. (3) The central difference Kalman filter (CDKF) is used to estimate the real-time SoE and an erroneous initial SoE is considered to evaluate the robustness of the SoE estimator. Lastly, two kinds of lithium-ion batteries are used to verify the proposed SoE estimation approach. The results show that the maximum SoE estimation error is within 1% for both LiFePO 4 and LiMn 2 O 4 battery datasets

  2. TaskMaster: a prototype graphical user interface to a schedule optimization model

    Banham, Stephen R.

    1990-01-01

    Approved for public release, distribution is unlimited This thesis investigates the use of current graphical interface techniques to build more effective computer-user interfaces to Operations Research (OR) schedule optimization models. The design is directed at the scheduling decision maker who possesses limited OR experience. The feasibility and validity of building an interface for this kind of user is demonstrated in the development of a prototype graphical user interface called TaskMa...

  3. Stable Graphical Model Estimation with Random Forests for Discrete, Continuous, and Mixed Variables

    Fellinghauer, Bernd; Bühlmann, Peter; Ryffel, Martin; von Rhein, Michael; Reinhardt, Jan D.

    2011-01-01

    A conditional independence graph is a concise representation of pairwise conditional independence among many variables. Graphical Random Forests (GRaFo) are a novel method for estimating pairwise conditional independence relationships among mixed-type, i.e. continuous and discrete, variables. The number of edges is a tuning parameter in any graphical model estimator and there is no obvious number that constitutes a good choice. Stability Selection helps choosing this parameter with respect to...

  4. Mixed Platoon Flow Dispersion Model Based on Speed-Truncated Gaussian Mixture Distribution

    Weitiao Wu

    2013-01-01

    Full Text Available A mixed traffic flow feature is presented on urban arterials in China due to a large amount of buses. Based on field data, a macroscopic mixed platoon flow dispersion model (MPFDM was proposed to simulate the platoon dispersion process along the road section between two adjacent intersections from the flow view. More close to field observation, truncated Gaussian mixture distribution was adopted as the speed density distribution for mixed platoon. Expectation maximum (EM algorithm was used for parameters estimation. The relationship between the arriving flow distribution at downstream intersection and the departing flow distribution at upstream intersection was investigated using the proposed model. Comparison analysis using virtual flow data was performed between the Robertson model and the MPFDM. The results confirmed the validity of the proposed model.

  5. Inverse modelling of atmospheric tracers: non-Gaussian methods and second-order sensitivity analysis

    M. Bocquet

    2008-02-01

    Full Text Available For a start, recent techniques devoted to the reconstruction of sources of an atmospheric tracer at continental scale are introduced. A first method is based on the principle of maximum entropy on the mean and is briefly reviewed here. A second approach, which has not been applied in this field yet, is based on an exact Bayesian approach, through a maximum a posteriori estimator. The methods share common grounds, and both perform equally well in practice. When specific prior hypotheses on the sources are taken into account such as positivity, or boundedness, both methods lead to purposefully devised cost-functions. These cost-functions are not necessarily quadratic because the underlying assumptions are not Gaussian. As a consequence, several mathematical tools developed in data assimilation on the basis of quadratic cost-functions in order to establish a posteriori analysis, need to be extended to this non-Gaussian framework. Concomitantly, the second-order sensitivity analysis needs to be adapted, as well as the computations of the averaging kernels of the source and the errors obtained in the reconstruction. All of these developments are applied to a real case of tracer dispersion: the European Tracer Experiment [ETEX]. Comparisons are made between a least squares cost function (similar to the so-called 4D-Var approach and a cost-function which is not based on Gaussian hypotheses. Besides, the information content of the observations which is used in the reconstruction is computed and studied on the application case. A connection with the degrees of freedom for signal is also established. As a by-product of these methodological developments, conclusions are drawn on the information content of the ETEX dataset as seen from the inverse modelling point of view.

  6. Bayesian sensitivity analysis of a 1D vascular model with Gaussian process emulators.

    Melis, Alessandro; Clayton, Richard H; Marzo, Alberto

    2017-12-01

    One-dimensional models of the cardiovascular system can capture the physics of pulse waves but involve many parameters. Since these may vary among individuals, patient-specific models are difficult to construct. Sensitivity analysis can be used to rank model parameters by their effect on outputs and to quantify how uncertainty in parameters influences output uncertainty. This type of analysis is often conducted with a Monte Carlo method, where large numbers of model runs are used to assess input-output relations. The aim of this study was to demonstrate the computational efficiency of variance-based sensitivity analysis of 1D vascular models using Gaussian process emulators, compared to a standard Monte Carlo approach. The methodology was tested on four vascular networks of increasing complexity to analyse its scalability. The computational time needed to perform the sensitivity analysis with an emulator was reduced by the 99.96% compared to a Monte Carlo approach. Despite the reduced computational time, sensitivity indices obtained using the two approaches were comparable. The scalability study showed that the number of mechanistic simulations needed to train a Gaussian process for sensitivity analysis was of the order O(d), rather than O(d×103) needed for Monte Carlo analysis (where d is the number of parameters in the model). The efficiency of this approach, combined with capacity to estimate the impact of uncertain parameters on model outputs, will enable development of patient-specific models of the vascular system, and has the potential to produce results with clinical relevance. © 2017 The Authors International Journal for Numerical Methods in Biomedical Engineering Published by John Wiley & Sons Ltd.

  7. Segmentation of Concealed Objects in Passive Millimeter-Wave Images Based on the Gaussian Mixture Model

    Yu, Wangyang; Chen, Xiangguang; Wu, Lei

    2015-04-01

    Passive millimeter wave (PMMW) imaging has become one of the most effective means to detect the objects concealed under clothing. Due to the limitations of the available hardware and the inherent physical properties of PMMW imaging systems, images often exhibit poor contrast and low signal-to-noise ratios. Thus, it is difficult to achieve ideal results by using a general segmentation algorithm. In this paper, an advanced Gaussian Mixture Model (GMM) algorithm for the segmentation of concealed objects in PMMW images is presented. Our work is concerned with the fact that the GMM is a parametric statistical model, which is often used to characterize the statistical behavior of images. Our approach is three-fold: First, we remove the noise from the image using both a notch reject filter and a total variation filter. Next, we use an adaptive parameter initialization GMM algorithm (APIGMM) for simulating the histogram of images. The APIGMM provides an initial number of Gaussian components and start with more appropriate parameter. Bayesian decision is employed to separate the pixels of concealed objects from other areas. At last, the confidence interval (CI) method, alongside local gradient information, is used to extract the concealed objects. The proposed hybrid segmentation approach detects the concealed objects more accurately, even compared to two other state-of-the-art segmentation methods.

  8. Childhood malnutrition in Egypt using geoadditive Gaussian and latent variable models.

    Khatab, Khaled

    2010-04-01

    Major progress has been made over the last 30 years in reducing the prevalence of malnutrition amongst children less than 5 years of age in developing countries. However, approximately 27% of children under the age of 5 in these countries are still malnourished. This work focuses on the childhood malnutrition in one of the biggest developing countries, Egypt. This study examined the association between bio-demographic and socioeconomic determinants and the malnutrition problem in children less than 5 years of age using the 2003 Demographic and Health survey data for Egypt. In the first step, we use separate geoadditive Gaussian models with the continuous response variables stunting (height-for-age), underweight (weight-for-age), and wasting (weight-for-height) as indicators of nutritional status in our case study. In a second step, based on the results of the first step, we apply the geoadditive Gaussian latent variable model for continuous indicators in which the 3 measurements of the malnutrition status of children are assumed as indicators for the latent variable "nutritional status".

  9. Multivariate spatial Gaussian mixture modeling for statistical clustering of hemodynamic parameters in functional MRI

    Fouque, A.L.; Ciuciu, Ph.; Risser, L.; Fouque, A.L.; Ciuciu, Ph.; Risser, L.

    2009-01-01

    In this paper, a novel statistical parcellation of intra-subject functional MRI (fMRI) data is proposed. The key idea is to identify functionally homogenous regions of interest from their hemodynamic parameters. To this end, a non-parametric voxel-based estimation of hemodynamic response function is performed as a prerequisite. Then, the extracted hemodynamic features are entered as the input data of a Multivariate Spatial Gaussian Mixture Model (MSGMM) to be fitted. The goal of the spatial aspect is to favor the recovery of connected components in the mixture. Our statistical clustering approach is original in the sense that it extends existing works done on univariate spatially regularized Gaussian mixtures. A specific Gibbs sampler is derived to account for different covariance structures in the feature space. On realistic artificial fMRI datasets, it is shown that our algorithm is helpful for identifying a parsimonious functional parcellation required in the context of joint detection estimation of brain activity. This allows us to overcome the classical assumption of spatial stationarity of the BOLD signal model. (authors)

  10. Non-Gaussianity and statistical anisotropy from vector field populated inflationary models

    Dimastrogiovanni, Emanuela; Matarrese, Sabino; Riotto, Antonio

    2010-01-01

    We present a review of vector field models of inflation and, in particular, of the statistical anisotropy and non-Gaussianity predictions of models with SU(2) vector multiplets. Non-Abelian gauge groups introduce a richer amount of predictions compared to the Abelian ones, mostly because of the presence of vector fields self-interactions. Primordial vector fields can violate isotropy leaving their imprint in the comoving curvature fluctuations zeta at late times. We provide the analytic expressions of the correlation functions of zeta up to fourth order and an analysis of their amplitudes and shapes. The statistical anisotropy signatures expected in these models are important and, potentially, the anisotropic contributions to the bispectrum and the trispectrum can overcome the isotropic parts.

  11. Sensitivity analysis of an operational advanced Gaussian model to different turbulent regimes

    Mangia, C.; Rizza, U.; Tirabassi, T.

    1998-01-01

    A non-reactive air pollution model evaluating ground level concentration is presented. It relies on a new Gaussian formulation (Lupini, R. and Tirabassi, T., J. Appl. Meteor., 20 (1981) 565-570; Tirabassi, T. and Rizza, U., Atmos. Environ., 28 (1994) 611-615) for transport and vertical diffusion in the Atmospheric Boundary Layer (ABL). In this formulation, the source height is replaced by a virtual height expressed by simple functions of meteorological variables. The model accepts a general profile of wind u(z) and eddy diffusivity coefficient K z . The lateral dispersion coefficient is based on Taylor's theory (Taylor, G. I., Proc. London Math. Soc., 20 (1921) 196-204). The turbulence in the ABL is subdivided into various regimes, each characterized by different parameters for length and velocity scales. The model performances under unstable conditions have been tested utilizing two different data sets

  12. Finite size scaling of the Higgs-Yukawa model near the Gaussian fixed point

    Chu, David Y.J.; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu, Taiwan (China); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Univ. Berlin (Germany)

    2016-12-15

    We study the scaling properties of Higgs-Yukawa models. Using the technique of Finite-Size Scaling, we are able to derive scaling functions that describe the observables of the model in the vicinity of a Gaussian fixed point. A feasibility study of our strategy is performed for the pure scalar theory in the weak-coupling regime. Choosing the on-shell renormalisation scheme gives us an advantage to fit the scaling functions against lattice data with only a small number of fit parameters. These formulae can be used to determine the universality of the observed phase transitions, and thus play an essential role in future investigations of Higgs-Yukawa models, in particular in the strong Yukawa coupling region.

  13. On a Numerical and Graphical Technique for Evaluating some Models Involving Rational Expectations

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  14. On a numerical and graphical technique for evaluating some models involving rational expectations

    Johansen, Søren; Swensen, Anders Rygh

    Campbell and Shiller (1987) proposed a graphical technique for the present value model which consists of plotting the spread and theoretical spread as calculated from the cointegrated vector autoregressive model. We extend these techniques to a number of rational expectation models and give...

  15. Gaussian mixture models and semantic gating improve reconstructions from human brain activity

    Sanne eSchoenmakers

    2015-01-01

    Full Text Available Better acquisition protocols and analysis techniques are making it possible to use fMRI to obtain highly detailed visualizations of brain processes. In particular we focus on the reconstruction of natural images from BOLD responses in visual cortex. We expand our linear Gaussian framework for percept decoding with Gaussian mixture models to better represent the prior distribution of natural images. Reconstruction of such images then boils down to probabilistic inference in a hybrid Bayesian network. In our set-up, different mixture components correspond to different character categories. Our framework can automatically infer higher-order semantic categories from lower-level brain areas. Furthermore the framework can gate semantic information from higher-order brain areas to enforce the correct category during reconstruction. When categorical information is not available, we show that automatically learned clusters in the data give a similar improvement in reconstruction. The hybrid Bayesian network leads to highly accurate reconstructions in both supervised and unsupervised settings.

  16. Thermal time constant: optimising the skin temperature predictive modelling in lower limb prostheses using Gaussian processes.

    Mathur, Neha; Glesk, Ivan; Buis, Arjan

    2016-06-01

    Elevated skin temperature at the body/device interface of lower-limb prostheses is one of the major factors that affect tissue health. The heat dissipation in prosthetic sockets is greatly influenced by the thermal conductive properties of the hard socket and liner material employed. However, monitoring of the interface temperature at skin level in lower-limb prosthesis is notoriously complicated. This is due to the flexible nature of the interface liners used which requires consistent positioning of sensors during donning and doffing. Predicting the residual limb temperature by monitoring the temperature between socket and liner rather than skin and liner could be an important step in alleviating complaints on increased temperature and perspiration in prosthetic sockets. To predict the residual limb temperature, a machine learning algorithm - Gaussian processes is employed, which utilizes the thermal time constant values of commonly used socket and liner materials. This Letter highlights the relevance of thermal time constant of prosthetic materials in Gaussian processes technique which would be useful in addressing the challenge of non-invasively monitoring the residual limb skin temperature. With the introduction of thermal time constant, the model can be optimised and generalised for a given prosthetic setup, thereby making the predictions more reliable.

  17. Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator

    Chang, Eugene T Y; Strong, Mark; Clayton, Richard H

    2015-01-01

    Models of electrical activity in cardiac cells have become important research tools as they can provide a quantitative description of detailed and integrative physiology. However, cardiac cell models have many parameters, and how uncertainties in these parameters affect the model output is difficult to assess without undertaking large numbers of model runs. In this study we show that a surrogate statistical model of a cardiac cell model (the Luo-Rudy 1991 model) can be built using Gaussian process (GP) emulators. Using this approach we examined how eight outputs describing the action potential shape and action potential duration restitution depend on six inputs, which we selected to be the maximum conductances in the Luo-Rudy 1991 model. We found that the GP emulators could be fitted to a small number of model runs, and behaved as would be expected based on the underlying physiology that the model represents. We have shown that an emulator approach is a powerful tool for uncertainty and sensitivity analysis in cardiac cell models. PMID:26114610

  18. Efficient Blind System Identification of Non-Gaussian Auto-Regressive Models with HMM Modeling of the Excitation

    Li, Chunjian; Andersen, Søren Vang

    2007-01-01

    We propose two blind system identification methods that exploit the underlying dynamics of non-Gaussian signals. The two signal models to be identified are: an Auto-Regressive (AR) model driven by a discrete-state Hidden Markov process, and the same model whose output is perturbed by white Gaussi...... outputs. The signal models are general and suitable to numerous important signals, such as speech signals and base-band communication signals. Applications to speech analysis and blind channel equalization are given to exemplify the efficiency of the new methods....

  19. PySSM: A Python Module for Bayesian Inference of Linear Gaussian State Space Models

    Christopher Strickland

    2014-04-01

    Full Text Available PySSM is a Python package that has been developed for the analysis of time series using linear Gaussian state space models. PySSM is easy to use; models can be set up quickly and efficiently and a variety of different settings are available to the user. It also takes advantage of scientific libraries NumPy and SciPy and other high level features of the Python language. PySSM is also used as a platform for interfacing between optimized and parallelized Fortran routines. These Fortran routines heavily utilize basic linear algebra and linear algebra Package functions for maximum performance. PySSM contains classes for filtering, classical smoothing as well as simulation smoothing.

  20. Estimation of Seismic Wavelets Based on the Multivariate Scale Mixture of Gaussians Model

    Jing-Huai Gao

    2009-12-01

    Full Text Available This paper proposes a new method for estimating seismic wavelets. Suppose a seismic wavelet can be modeled by a formula with three free parameters (scale, frequency and phase. We can transform the estimation of the wavelet into determining these three parameters. The phase of the wavelet is estimated by constant-phase rotation to the seismic signal, while the other two parameters are obtained by the Higher-order Statistics (HOS (fourth-order cumulant matching method. In order to derive the estimator of the Higher-order Statistics (HOS, the multivariate scale mixture of Gaussians (MSMG model is applied to formulating the multivariate joint probability density function (PDF of the seismic signal. By this way, we can represent HOS as a polynomial function of second-order statistics to improve the anti-noise performance and accuracy. In addition, the proposed method can work well for short time series.

  1. A study of the Gaussian overlap approach in the two-center shell model

    Reinhard, P.-G.

    1976-01-01

    The Gaussian overlap approach (GOA) to the generator coordinate method (GCM) is carried through up to fourth order in the derivatives. By diagonalizing the norm overlap, a collective Schroedinger equation is obtained. The potential therein contains the usual potential energy surface (PES) plus correction terms, which subtract the zero-point energies (ZPE) is the PES. The formalism is applied to BCS states obtained from a two-center shell model (TCSM). To understand the crucial role of the pairing contributions in the GOA a schematic picture, the multi-level model, is constructed. An explicit numerical study of the convergence of the GOA is given for the TCSM, with the result that the GOA seems to be justified for medium and heavy nuclei but critical for light nuclei. (Auth.)

  2. LEARNING VECTOR QUANTIZATION FOR ADAPTED GAUSSIAN MIXTURE MODELS IN AUTOMATIC SPEAKER IDENTIFICATION

    IMEN TRABELSI

    2017-05-01

    Full Text Available Speaker Identification (SI aims at automatically identifying an individual by extracting and processing information from his/her voice. Speaker voice is a robust a biometric modality that has a strong impact in several application areas. In this study, a new combination learning scheme has been proposed based on Gaussian mixture model-universal background model (GMM-UBM and Learning vector quantization (LVQ for automatic text-independent speaker identification. Features vectors, constituted by the Mel Frequency Cepstral Coefficients (MFCC extracted from the speech signal are used to train the New England subset of the TIMIT database. The best results obtained (90% for gender- independent speaker identification, 97 % for male speakers and 93% for female speakers for test data using 36 MFCC features.

  3. Propagation of Gaussian laser beam in cold plasma of Drude model

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  4. tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models

    Robert B. Gramacy

    2007-06-01

    Full Text Available The tgp package for R is a tool for fully Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian processes with jumps to the limiting linear model. Special cases also implemented include Bayesian linear models, linear CART, stationary separable and isotropic Gaussian processes. In addition to inference and posterior prediction, the package supports the (sequential design of experiments under these models paired with several objective criteria. 1-d and 2-d plotting, with higher dimension projection and slice capabilities, and tree drawing functions (requiring maptree and combinat packages, are also provided for visualization of tgp objects.

  5. ADAPTIVE BACKGROUND DENGAN METODE GAUSSIAN MIXTURE MODELS UNTUK REAL-TIME TRACKING

    Silvia Rostianingsih

    2008-01-01

    Full Text Available Nowadays, motion tracking application is widely used for many purposes, such as detecting traffic jam and counting how many people enter a supermarket or a mall. A method to separate background and the tracked object is required for motion tracking. It will not be hard to develop the application if the tracking is performed on a static background, but it will be difficult if the tracked object is at a place with a non-static background, because the changing part of the background can be recognized as a tracking area. In order to handle the problem an application can be made to separate background where that separation can adapt to change that occur. This application is made to produce adaptive background using Gaussian Mixture Models (GMM as its method. GMM method clustered the input pixel data with pixel color value as it’s basic. After the cluster formed, dominant distributions are choosen as background distributions. This application is made by using Microsoft Visual C 6.0. The result of this research shows that GMM algorithm could made adaptive background satisfactory. This proofed by the result of the tests that succeed at all condition given. This application can be developed so the tracking process integrated in adaptive background maker process. Abstract in Bahasa Indonesia : Saat ini, aplikasi motion tracking digunakan secara luas untuk banyak tujuan, seperti mendeteksi kemacetan dan menghitung berapa banyak orang yang masuk ke sebuah supermarket atau sebuah mall. Sebuah metode untuk memisahkan antara background dan obyek yang di-track dibutuhkan untuk melakukan motion tracking. Membuat aplikasi tracking pada background yang statis bukanlah hal yang sulit, namun apabila tracking dilakukan pada background yang tidak statis akan lebih sulit, dikarenakan perubahan background dapat dikenali sebagai area tracking. Untuk mengatasi masalah tersebut, dapat dibuat suatu aplikasi untuk memisahkan background dimana aplikasi tersebut dapat

  6. Group Targets Tracking Using Multiple Models GGIW-CPHD Based on Best-Fitting Gaussian Approximation and Strong Tracking Filter

    Yun Wang

    2016-01-01

    Full Text Available Gamma Gaussian inverse Wishart cardinalized probability hypothesis density (GGIW-CPHD algorithm was always used to track group targets in the presence of cluttered measurements and missing detections. A multiple models GGIW-CPHD algorithm based on best-fitting Gaussian approximation method (BFG and strong tracking filter (STF is proposed aiming at the defect that the tracking error of GGIW-CPHD algorithm will increase when the group targets are maneuvering. The best-fitting Gaussian approximation method is proposed to implement the fusion of multiple models using the strong tracking filter to correct the predicted covariance matrix of the GGIW component. The corresponding likelihood functions are deduced to update the probability of multiple tracking models. From the simulation results we can see that the proposed tracking algorithm MM-GGIW-CPHD can effectively deal with the combination/spawning of groups and the tracking error of group targets in the maneuvering stage is decreased.

  7. Graphical means for inspecting qualitative models of system behaviour

    Bouwer, A.; Bredeweg, B.

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are

  8. Graphics metafile interface to ARAC emergency response models for remote workstation study

    Lawver, B.S.

    1985-01-01

    The Department of Energy's Atmospheric Response Advisory Capability models are executed on computers at a central computer center with the output distributed to accident advisors in the field. The output of these atmospheric diffusion models are generated as contoured isopleths of concentrations. When these isopleths are overlayed with local geography, they become a useful tool to the accident site advisor. ARAC has developed a workstation that is located at potential accident sites. The workstation allows the accident advisor to view color plots of the model results, scale those plots and print black and white hardcopy of the model results. The graphics metafile, also known as Virtual Device Metafile (VDM) allows the models to generate a single device independent output file that is partitioned into geography, isoopleths and labeling information. The metafile is a very compact data storage technique that is output device independent. The metafile frees the model from either generating output for all known graphic devices or requiring the model to be rerun for additional graphic devices. With the partitioned metafile ARAC can transmit to the remote workstation the isopleths and labeling for each model. The geography database may not change and can be transmitted only when needed. This paper describes the important features of the remote workstation and how these features are supported by the device independent graphics metafile

  9. Nonintersecting string model and graphical approach: equivalence with a Potts model

    Perk, J.H.H.; Wu, F.Y.

    1986-01-01

    Using a graphical method the authors establish the exact equivalence of the partition function of a q-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced lattice with that of a q 2 -state Potts model on a relaxed lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagome lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition for q greater than 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model the authors discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases

  10. Construction of the exact Fisher information matrix of Gaussian time series models by means of matrix differential rules

    Klein, A.A.B.; Melard, G.; Zahaf, T.

    2000-01-01

    The Fisher information matrix is of fundamental importance for the analysis of parameter estimation of time series models. In this paper the exact information matrix of a multivariate Gaussian time series model expressed in state space form is derived. A computationally efficient procedure is used

  11. Fractional Gaussian noise-enhanced information capacity of a nonlinear neuron model with binary signal input

    Gao, Feng-Yin; Kang, Yan-Mei; Chen, Xi; Chen, Guanrong

    2018-05-01

    This paper reveals the effect of fractional Gaussian noise with Hurst exponent H ∈(1 /2 ,1 ) on the information capacity of a general nonlinear neuron model with binary signal input. The fGn and its corresponding fractional Brownian motion exhibit long-range, strong-dependent increments. It extends standard Brownian motion to many types of fractional processes found in nature, such as the synaptic noise. In the paper, for the subthreshold binary signal, sufficient conditions are given based on the "forbidden interval" theorem to guarantee the occurrence of stochastic resonance, while for the suprathreshold binary signal, the simulated results show that additive fGn with Hurst exponent H ∈(1 /2 ,1 ) could increase the mutual information or bits count. The investigation indicated that the synaptic noise with the characters of long-range dependence and self-similarity might be the driving factor for the efficient encoding and decoding of the nervous system.

  12. Gaussian mixture models-based ship target recognition algorithm in remote sensing infrared images

    Yao, Shoukui; Qin, Xiaojuan

    2018-02-01

    Since the resolution of remote sensing infrared images is low, the features of ship targets become unstable. The issue of how to recognize ships with fuzzy features is an open problem. In this paper, we propose a novel ship target recognition algorithm based on Gaussian mixture models (GMMs). In the proposed algorithm, there are mainly two steps. At the first step, the Hu moments of these ship target images are calculated, and the GMMs are trained on the moment features of ships. At the second step, the moment feature of each ship image is assigned to the trained GMMs for recognition. Because of the scale, rotation, translation invariance property of Hu moments and the power feature-space description ability of GMMs, the GMMs-based ship target recognition algorithm can recognize ship reliably. Experimental results of a large simulating image set show that our approach is effective in distinguishing different ship types, and obtains a satisfactory ship recognition performance.

  13. Spot counting on fluorescence in situ hybridization in suspension images using Gaussian mixture model

    Liu, Sijia; Sa, Ruhan; Maguire, Orla; Minderman, Hans; Chaudhary, Vipin

    2015-03-01

    Cytogenetic abnormalities are important diagnostic and prognostic criteria for acute myeloid leukemia (AML). A flow cytometry-based imaging approach for FISH in suspension (FISH-IS) was established that enables the automated analysis of several log-magnitude higher number of cells compared to the microscopy-based approaches. The rotational positioning can occur leading to discordance between spot count. As a solution of counting error from overlapping spots, in this study, a Gaussian Mixture Model based classification method is proposed. The Akaike information criterion (AIC) and Bayesian information criterion (BIC) of GMM are used as global image features of this classification method. Via Random Forest classifier, the result shows that the proposed method is able to detect closely overlapping spots which cannot be separated by existing image segmentation based spot detection methods. The experiment results show that by the proposed method we can obtain a significant improvement in spot counting accuracy.

  14. Asymptotic properties of Pearson's rank-variate correlation coefficient under contaminated Gaussian model.

    Ma, Rubao; Xu, Weichao; Zhang, Yun; Ye, Zhongfu

    2014-01-01

    This paper investigates the robustness properties of Pearson's rank-variate correlation coefficient (PRVCC) in scenarios where one channel is corrupted by impulsive noise and the other is impulsive noise-free. As shown in our previous work, these scenarios that frequently encountered in radar and/or sonar, can be well emulated by a particular bivariate contaminated Gaussian model (CGM). Under this CGM, we establish the asymptotic closed forms of the expectation and variance of PRVCC by means of the well known Delta method. To gain a deeper understanding, we also compare PRVCC with two other classical correlation coefficients, i.e., Spearman's rho (SR) and Kendall's tau (KT), in terms of the root mean squared error (RMSE). Monte Carlo simulations not only verify our theoretical findings, but also reveal the advantage of PRVCC by an example of estimating the time delay in the particular impulsive noise environment.

  15. Optimal multigrid algorithms for the massive Gaussian model and path integrals

    Brandt, A.; Galun, M.

    1996-01-01

    Multigrid algorithms are presented which, in addition to eliminating the critical slowing down, can also eliminate the open-quotes volume factorclose quotes. The elimination of the volume factor removes the need to produce many independent fine-grid configurations for averaging out their statistical deviations, by averaging over the many samples produced on coarse grids during the multigrid cycle. Thermodynamic limits of observables can be calculated to relative accuracy var-epsilon r in just O(var-epsilon r -2 ) computer operations, where var-epsilon r is the error relative to the standard deviation of the observable. In this paper, we describe in detail the calculation of the susceptibility in the one-dimensional massive Gaussian model, which is also a simple example of path integrals. Numerical experiments show that the susceptibility can be calculated to relative accuracy var-epsilon r in about 8 var-epsilon r -2 random number generations, independent of the mass size

  16. A Grasp-Pose Generation Method Based on Gaussian Mixture Models

    Wenjia Wu

    2015-11-01

    Full Text Available A Gaussian Mixture Model (GMM-based grasp-pose generation method is proposed in this paper. Through offline training, the GMM is set up and used to depict the distribution of the robot's reachable orientations. By dividing the robot's workspace into small 3D voxels and training the GMM for each voxel, a look-up table covering all the workspace is built with the x, y and z positions as the index and the GMM as the entry. Through the definition of Task Space Regions (TSR, an object's feasible grasp poses are expressed as a continuous region. With the GMM, grasp poses can be preferentially sampled from regions with high reachability probabilities in the online grasp-planning stage. The GMM can also be used as a preliminary judgement of a grasp pose's reachability. Experiments on both a simulated and a real robot show the superiority of our method over the existing method.

  17. SpineCreator: a Graphical User Interface for the Creation of Layered Neural Models.

    Cope, A J; Richmond, P; James, S S; Gurney, K; Allerton, D J

    2017-01-01

    There is a growing requirement in computational neuroscience for tools that permit collaborative model building, model sharing, combining existing models into a larger system (multi-scale model integration), and are able to simulate models using a variety of simulation engines and hardware platforms. Layered XML model specification formats solve many of these problems, however they are difficult to write and visualise without tools. Here we describe a new graphical software tool, SpineCreator, which facilitates the creation and visualisation of layered models of point spiking neurons or rate coded neurons without requiring the need for programming. We demonstrate the tool through the reproduction and visualisation of published models and show simulation results using code generation interfaced directly into SpineCreator. As a unique application for the graphical creation of neural networks, SpineCreator represents an important step forward for neuronal modelling.

  18. Joint hierarchical Gaussian process model with application to personalized prediction in medical monitoring.

    Duan, Leo L; Wang, Xia; Clancy, John P; Szczesniak, Rhonda D

    2018-01-01

    A two-level Gaussian process (GP) joint model is proposed to improve personalized prediction of medical monitoring data. The proposed model is applied to jointly analyze multiple longitudinal biomedical outcomes, including continuous measurements and binary outcomes, to achieve better prediction in disease progression. At the population level of the hierarchy, two independent GPs are used to capture the nonlinear trends in both the continuous biomedical marker and the binary outcome, respectively; at the individual level, a third GP, which is shared by the longitudinal measurement model and the longitudinal binary model, induces the correlation between these two model components and strengthens information borrowing across individuals. The proposed model is particularly advantageous in personalized prediction. It is applied to the motivating clinical data on cystic fibrosis disease progression, for which lung function measurements and onset of acute respiratory events are monitored jointly throughout each patient's clinical course. The results from both the simulation studies and the cystic fibrosis data application suggest that the inclusion of the shared individual-level GPs under the joint model framework leads to important improvements in personalized disease progression prediction.

  19. A comparison of the Gaussian Plume Diffusion Model with experimental data from Tilbury and Northfleet

    Barker, C.D.

    1979-07-01

    The Gaussian Plume Diffusion Model, using Smith's scheme for σsub(z) and various models for σsub(y), is compared with measured values of the location and strength of maximum ground level concentration taken during the Tilbury and Northfleet experiments. The position of maximum ground level concentration (xsub(m)) is found to be relatively insensitive to σsub(y) and Smith's model for σsub(z) is found to predict xsub(m) on average to within 50% for plume heights less than 200 - 400m (dependent on atmosphere stability). Several models for σsub(y) are examined by comparing predicted and observed values for the normalised maximum ground level concentration (Xsub(m)) and a modified form of Moore's model for σsub(y) is found to give the best overall fit, on average to within 30%. Gifford's release duration dependent model for σsub(y) is found to consistently underestimate Xsub(m) by 35 - 45%. This comparison is only a partial validation of the models described above and suggestions are made as to where further work is required. (author)

  20. Gaussian Process Regression (GPR) Representation in Predictive Model Markup Language (PMML).

    Park, J; Lechevalier, D; Ak, R; Ferguson, M; Law, K H; Lee, Y-T T; Rachuri, S

    2017-01-01

    This paper describes Gaussian process regression (GPR) models presented in predictive model markup language (PMML). PMML is an extensible-markup-language (XML) -based standard language used to represent data-mining and predictive analytic models, as well as pre- and post-processed data. The previous PMML version, PMML 4.2, did not provide capabilities for representing probabilistic (stochastic) machine-learning algorithms that are widely used for constructing predictive models taking the associated uncertainties into consideration. The newly released PMML version 4.3, which includes the GPR model, provides new features: confidence bounds and distribution for the predictive estimations. Both features are needed to establish the foundation for uncertainty quantification analysis. Among various probabilistic machine-learning algorithms, GPR has been widely used for approximating a target function because of its capability of representing complex input and output relationships without predefining a set of basis functions, and predicting a target output with uncertainty quantification. GPR is being employed to various manufacturing data-analytics applications, which necessitates representing this model in a standardized form for easy and rapid employment. In this paper, we present a GPR model and its representation in PMML. Furthermore, we demonstrate a prototype using a real data set in the manufacturing domain.

  1. Model Verification and Validation Using Graphical Information Systems Tools

    2013-07-31

    Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be...12 Geomorphic Measurements...to a model. Ocean flows, which are organized E-2 current systems, transport heat and salinity and cause water to pile up as a water surface

  2. Dynamic Socialized Gaussian Process Models for Human Behavior Prediction in a Health Social Network

    Shen, Yelong; Phan, NhatHai; Xiao, Xiao; Jin, Ruoming; Sun, Junfeng; Piniewski, Brigitte; Kil, David; Dou, Dejing

    2016-01-01

    Modeling and predicting human behaviors, such as the level and intensity of physical activity, is a key to preventing the cascade of obesity and helping spread healthy behaviors in a social network. In our conference paper, we have developed a social influence model, named Socialized Gaussian Process (SGP), for socialized human behavior modeling. Instead of explicitly modeling social influence as individuals' behaviors influenced by their friends' previous behaviors, SGP models the dynamic social correlation as the result of social influence. The SGP model naturally incorporates personal behavior factor and social correlation factor (i.e., the homophily principle: Friends tend to perform similar behaviors) into a unified model. And it models the social influence factor (i.e., an individual's behavior can be affected by his/her friends) implicitly in dynamic social correlation schemes. The detailed experimental evaluation has shown the SGP model achieves better prediction accuracy compared with most of baseline methods. However, a Socialized Random Forest model may perform better at the beginning compared with the SGP model. One of the main reasons is the dynamic social correlation function is purely based on the users' sequential behaviors without considering other physical activity-related features. To address this issue, we further propose a novel “multi-feature SGP model” (mfSGP) which improves the SGP model by using multiple physical activity-related features in the dynamic social correlation learning. Extensive experimental results illustrate that the mfSGP model clearly outperforms all other models in terms of prediction accuracy and running time. PMID:27746515

  3. Graphics gems

    Heckbert, Paul S

    1994-01-01

    Graphics Gems IV contains practical techniques for 2D and 3D modeling, animation, rendering, and image processing. The book presents articles on polygons and polyhedral; a mix of formulas, optimized algorithms, and tutorial information on the geometry of 2D, 3D, and n-D space; transformations; and parametric curves and surfaces. The text also includes articles on ray tracing; shading 3D models; and frame buffer techniques. Articles on image processing; algorithms for graphical layout; basic interpolation methods; and subroutine libraries for vector and matrix algebra are also demonstrated. Com

  4. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  5. PENENTUAN HARGA KONTRAK OPSI TIPE ASIA MENGGUNAKAN MODEL SIMULASI NORMAL INVERSE GAUSSIAN (NIG

    I PUTU OKA PARAMARTHA

    2015-02-01

    Full Text Available The aim to determine of the simulation results and to calculate the stock price of Asian Option with Normal Inverse Gaussian (NIG method and Monte Carlo method using MATLAB program. Results of both models are compared and selected a fair price. Besides to determine simulation accuracy of the stock price, speed of program execution MATLAB is calculated for both models for time efficiency. The first part, set variabels used to calculate the trajectory of stock prices at time t to simulate the stock price at the time. The second part, simulate the stock price with NIG model. The third part, simulate the stock price with Monte Carlo model. After simulating the stock price, calculated the value of the pay-off of the Asian Option, and then estimate the price of Asian Option by averaging the entire value of pay-off from each iteration. The last part, compare result of both models. The results of this research is price of Asian Option calculated using Monte Carlo simulation and NIG. The rates were calculated using the NIG produce a fair price, because of the pricing contract NIG using four parameters ?, ?, ?, and ?, while Monte Carlo is using only two parameters ? and ?. For execution time of the program, the Monte Carlo model is better in all iterations.

  6. Missing Value Imputation Based on Gaussian Mixture Model for the Internet of Things

    Xiaobo Yan

    2015-01-01

    Full Text Available This paper addresses missing value imputation for the Internet of Things (IoT. Nowadays, the IoT has been used widely and commonly by a variety of domains, such as transportation and logistics domain and healthcare domain. However, missing values are very common in the IoT for a variety of reasons, which results in the fact that the experimental data are incomplete. As a result of this, some work, which is related to the data of the IoT, can’t be carried out normally. And it leads to the reduction in the accuracy and reliability of the data analysis results. This paper, for the characteristics of the data itself and the features of missing data in IoT, divides the missing data into three types and defines three corresponding missing value imputation problems. Then, we propose three new models to solve the corresponding problems, and they are model of missing value imputation based on context and linear mean (MCL, model of missing value imputation based on binary search (MBS, and model of missing value imputation based on Gaussian mixture model (MGI. Experimental results showed that the three models can improve the accuracy, reliability, and stability of missing value imputation greatly and effectively.

  7. PENENTUAN HARGA KONTRAK OPSI TIPE ASIA MENGGUNAKAN MODEL SIMULASI NORMAL INVERSE GAUSSIAN (NIG

    I PUTU OKA PARAMARTHA

    2014-08-01

    Full Text Available The aim to determine of the simulation results and to calculate the stock price of Asian Option with Normal Inverse Gaussian (NIG method and Monte Carlo method using MATLAB program. Results of both models are compared and selected a fair price. Besides to determine simulation accuracy of the stock price, speed of program execution MATLAB is calculated for both models for time efficiency. The first part, set variabels used to calculate the trajectory of stock prices at time t to simulate the stock price at the time. The second part, simulate the stock price with NIG model. The third part, simulate the stock price with Monte Carlo model. After simulating the stock price, calculated the value of the pay-off of the Asian Option, and then estimate the price of Asian Option by averaging the entire value of pay-off from each iteration. The last part, compare result of both models. The results of this research is price of Asian Option calculated using Monte Carlo simulation and NIG. The rates were calculated using the NIG produce a fair price, because of the pricing contract NIG using four parameters ?, ?, ?, and ?, while Monte Carlo is using only two parameters ? and ?. For execution time of the program, the Monte Carlo model is better in all iterations.

  8. A Practical Probabilistic Graphical Modeling Tool for Weighing ...

    Past weight-of-evidence frameworks for adverse ecological effects have provided soft-scoring procedures for judgments based on the quality and measured attributes of evidence. Here, we provide a flexible probabilistic structure for weighing and integrating lines of evidence for ecological risk determinations. Probabilistic approaches can provide both a quantitative weighing of lines of evidence and methods for evaluating risk and uncertainty. The current modeling structure wasdeveloped for propagating uncertainties in measured endpoints and their influence on the plausibility of adverse effects. To illustrate the approach, we apply the model framework to the sediment quality triad using example lines of evidence for sediment chemistry measurements, bioassay results, and in situ infauna diversity of benthic communities using a simplified hypothetical case study. We then combine the three lines evidence and evaluate sensitivity to the input parameters, and show how uncertainties are propagated and how additional information can be incorporated to rapidly update the probability of impacts. The developed network model can be expanded to accommodate additional lines of evidence, variables and states of importance, and different types of uncertainties in the lines of evidence including spatial and temporal as well as measurement errors. We provide a flexible Bayesian network structure for weighing and integrating lines of evidence for ecological risk determinations

  9. Bivariate Gaussian bridges: directional factorization of diffusion in Brownian bridge models.

    Kranstauber, Bart; Safi, Kamran; Bartumeus, Frederic

    2014-01-01

    In recent years high resolution animal tracking data has become the standard in movement ecology. The Brownian Bridge Movement Model (BBMM) is a widely adopted approach to describe animal space use from such high resolution tracks. One of the underlying assumptions of the BBMM is isotropic diffusive motion between consecutive locations, i.e. invariant with respect to the direction. Here we propose to relax this often unrealistic assumption by separating the Brownian motion variance into two directional components, one parallel and one orthogonal to the direction of the motion. Our new model, the Bivariate Gaussian bridge (BGB), tracks movement heterogeneity across time. Using the BGB and identifying directed and non-directed movement within a trajectory resulted in more accurate utilisation distributions compared to dynamic Brownian bridges, especially for trajectories with a non-isotropic diffusion, such as directed movement or Lévy like movements. We evaluated our model with simulated trajectories and observed tracks, demonstrating that the improvement of our model scales with the directional correlation of a correlated random walk. We find that many of the animal trajectories do not adhere to the assumptions of the BBMM. The proposed model improves accuracy when describing the space use both in simulated correlated random walks as well as observed animal tracks. Our novel approach is implemented and available within the "move" package for R.

  10. On Diagnostic Checking of Vector ARMA-GARCH Models with Gaussian and Student-t Innovations

    Yongning Wang

    2013-04-01

    Full Text Available This paper focuses on the diagnostic checking of vector ARMA (VARMA models with multivariate GARCH errors. For a fitted VARMA-GARCH model with Gaussian or Student-t innovations, we derive the asymptotic distributions of autocorrelation matrices of the cross-product vector of standardized residuals. This is different from the traditional approach that employs only the squared series of standardized residuals. We then study two portmanteau statistics, called Q1(M and Q2(M, for model checking. A residual-based bootstrap method is provided and demonstrated as an effective way to approximate the diagnostic checking statistics. Simulations are used to compare the performance of the proposed statistics with other methods available in the literature. In addition, we also investigate the effect of GARCH shocks on checking a fitted VARMA model. Empirical sizes and powers of the proposed statistics are investigated and the results suggest a procedure of using jointly Q1(M and Q2(M in diagnostic checking. The bivariate time series of FTSE 100 and DAX index returns is used to illustrate the performance of the proposed portmanteau statistics. The results show that it is important to consider the cross-product series of standardized residuals and GARCH effects in model checking.

  11. Bayesian modeling of JET Li-BES for edge electron density profiles using Gaussian processes

    Kwak, Sehyun; Svensson, Jakob; Brix, Mathias; Ghim, Young-Chul; JET Contributors Collaboration

    2015-11-01

    A Bayesian model for the JET lithium beam emission spectroscopy (Li-BES) system has been developed to infer edge electron density profiles. The 26 spatial channels measure emission profiles with ~15 ms temporal resolution and ~1 cm spatial resolution. The lithium I (2p-2s) line radiation in an emission spectrum is calculated using a multi-state model, which expresses collisions between the neutral lithium beam atoms and the plasma particles as a set of differential equations. The emission spectrum is described in the model including photon and electronic noise, spectral line shapes, interference filter curves, and relative calibrations. This spectral modeling gets rid of the need of separate background measurements for calculating the intensity of the line radiation. Gaussian processes are applied to model both emission spectrum and edge electron density profile, and the electron temperature to calculate all the rate coefficients is obtained from the JET high resolution Thomson scattering (HRTS) system. The posterior distributions of the edge electron density profile are explored via the numerical technique and the Markov chain Monte Carlo (MCMC) samplings. See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia.

  12. Structural identifiability of cyclic graphical models of biological networks with latent variables.

    Wang, Yulin; Lu, Na; Miao, Hongyu

    2016-06-13

    Graphical models have long been used to describe biological networks for a variety of important tasks such as the determination of key biological parameters, and the structure of graphical model ultimately determines whether such unknown parameters can be unambiguously obtained from experimental observations (i.e., the identifiability problem). Limited by resources or technical capacities, complex biological networks are usually partially observed in experiment, which thus introduces latent variables into the corresponding graphical models. A number of previous studies have tackled the parameter identifiability problem for graphical models such as linear structural equation models (SEMs) with or without latent variables. However, the limited resolution and efficiency of existing approaches necessarily calls for further development of novel structural identifiability analysis algorithms. An efficient structural identifiability analysis algorithm is developed in this study for a broad range of network structures. The proposed method adopts the Wright's path coefficient method to generate identifiability equations in forms of symbolic polynomials, and then converts these symbolic equations to binary matrices (called identifiability matrix). Several matrix operations are introduced for identifiability matrix reduction with system equivalency maintained. Based on the reduced identifiability matrices, the structural identifiability of each parameter is determined. A number of benchmark models are used to verify the validity of the proposed approach. Finally, the network module for influenza A virus replication is employed as a real example to illustrate the application of the proposed approach in practice. The proposed approach can deal with cyclic networks with latent variables. The key advantage is that it intentionally avoids symbolic computation and is thus highly efficient. Also, this method is capable of determining the identifiability of each single parameter and

  13. Sworn testimony of the model evidence: Gaussian Mixture Importance (GAME) sampling

    Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.

    2017-07-01

    What is the "best" model? The answer to this question lies in part in the eyes of the beholder, nevertheless a good model must blend rigorous theory with redeeming qualities such as parsimony and quality of fit. Model selection is used to make inferences, via weighted averaging, from a set of K candidate models, Mk; k=>(1,…,K>), and help identify which model is most supported by the observed data, Y>˜=>(y˜1,…,y˜n>). Here, we introduce a new and robust estimator of the model evidence, p>(Y>˜|Mk>), which acts as normalizing constant in the denominator of Bayes' theorem and provides a single quantitative measure of relative support for each hypothesis that integrates model accuracy, uncertainty, and complexity. However, p>(Y>˜|Mk>) is analytically intractable for most practical modeling problems. Our method, coined GAussian Mixture importancE (GAME) sampling, uses bridge sampling of a mixture distribution fitted to samples of the posterior model parameter distribution derived from MCMC simulation. We benchmark the accuracy and reliability of GAME sampling by application to a diverse set of multivariate target distributions (up to 100 dimensions) with known values of p>(Y>˜|Mk>) and to hypothesis testing using numerical modeling of the rainfall-runoff transformation of the Leaf River watershed in Mississippi, USA. These case studies demonstrate that GAME sampling provides robust and unbiased estimates of the evidence at a relatively small computational cost outperforming commonly used estimators. The GAME sampler is implemented in the MATLAB package of DREAM and simplifies considerably scientific inquiry through hypothesis testing and model selection.

  14. Estimating a graphical intra-class correlation coefficient (GICC) using multivariate probit-linear mixed models.

    Yue, Chen; Chen, Shaojie; Sair, Haris I; Airan, Raag; Caffo, Brian S

    2015-09-01

    Data reproducibility is a critical issue in all scientific experiments. In this manuscript, the problem of quantifying the reproducibility of graphical measurements is considered. The image intra-class correlation coefficient (I2C2) is generalized and the graphical intra-class correlation coefficient (GICC) is proposed for such purpose. The concept for GICC is based on multivariate probit-linear mixed effect models. A Markov Chain Monte Carlo EM (mcm-cEM) algorithm is used for estimating the GICC. Simulation results with varied settings are demonstrated and our method is applied to the KIRBY21 test-retest dataset.

  15. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  16. A Monthly Water-Balance Model Driven By a Graphical User Interface

    McCabe, Gregory J.; Markstrom, Steven L.

    2007-01-01

    This report describes a monthly water-balance model driven by a graphical user interface, referred to as the Thornthwaite monthly water-balance program. Computations of monthly water-balance components of the hydrologic cycle are made for a specified location. The program can be used as a research tool, an assessment tool, and a tool for classroom instruction.

  17. Scaling-up spatially-explicit ecological models using graphics processors

    Koppel, Johan van de; Gupta, Rohit; Vuik, Cornelis

    2011-01-01

    How the properties of ecosystems relate to spatial scale is a prominent topic in current ecosystem research. Despite this, spatially explicit models typically include only a limited range of spatial scales, mostly because of computing limitations. Here, we describe the use of graphics processors to

  18. Incorporating Solid Modeling and Team-Based Design into Freshman Engineering Graphics.

    Buchal, Ralph O.

    2001-01-01

    Describes the integration of these topics through a major team-based design and computer aided design (CAD) modeling project in freshman engineering graphics at the University of Western Ontario. Involves n=250 students working in teams of four to design and document an original Lego toy. Includes 12 references. (Author/YDS)

  19. Interactive virtual simulation using a 3D computer graphics model for microvascular decompression surgery.

    Oishi, Makoto; Fukuda, Masafumi; Hiraishi, Tetsuya; Yajima, Naoki; Sato, Yosuke; Fujii, Yukihiko

    2012-09-01

    The purpose of this paper is to report on the authors' advanced presurgical interactive virtual simulation technique using a 3D computer graphics model for microvascular decompression (MVD) surgery. The authors performed interactive virtual simulation prior to surgery in 26 patients with trigeminal neuralgia or hemifacial spasm. The 3D computer graphics models for interactive virtual simulation were composed of the brainstem, cerebellum, cranial nerves, vessels, and skull individually created by the image analysis, including segmentation, surface rendering, and data fusion for data collected by 3-T MRI and 64-row multidetector CT systems. Interactive virtual simulation was performed by employing novel computer-aided design software with manipulation of a haptic device to imitate the surgical procedures of bone drilling and retraction of the cerebellum. The findings were compared with intraoperative findings. In all patients, interactive virtual simulation provided detailed and realistic surgical perspectives, of sufficient quality, representing the lateral suboccipital route. The causes of trigeminal neuralgia or hemifacial spasm determined by observing 3D computer graphics models were concordant with those identified intraoperatively in 25 (96%) of 26 patients, which was a significantly higher rate than the 73% concordance rate (concordance in 19 of 26 patients) obtained by review of 2D images only (p computer graphics model provided a realistic environment for performing virtual simulations prior to MVD surgery and enabled us to ascertain complex microsurgical anatomy.

  20. A Gaussian mixture model based cost function for parameter estimation of chaotic biological systems

    Shekofteh, Yasser; Jafari, Sajad; Sprott, Julien Clinton; Hashemi Golpayegani, S. Mohammad Reza; Almasganj, Farshad

    2015-02-01

    As we know, many biological systems such as neurons or the heart can exhibit chaotic behavior. Conventional methods for parameter estimation in models of these systems have some limitations caused by sensitivity to initial conditions. In this paper, a novel cost function is proposed to overcome those limitations by building a statistical model on the distribution of the real system attractor in state space. This cost function is defined by the use of a likelihood score in a Gaussian mixture model (GMM) which is fitted to the observed attractor generated by the real system. Using that learned GMM, a similarity score can be defined by the computed likelihood score of the model time series. We have applied the proposed method to the parameter estimation of two important biological systems, a neuron and a cardiac pacemaker, which show chaotic behavior. Some simulated experiments are given to verify the usefulness of the proposed approach in clean and noisy conditions. The results show the adequacy of the proposed cost function.

  1. A multivariate multilevel Gaussian model with a mixed effects structure in the mean and covariance part.

    Li, Baoyue; Bruyneel, Luk; Lesaffre, Emmanuel

    2014-05-20

    A traditional Gaussian hierarchical model assumes a nested multilevel structure for the mean and a constant variance at each level. We propose a Bayesian multivariate multilevel factor model that assumes a multilevel structure for both the mean and the covariance matrix. That is, in addition to a multilevel structure for the mean we also assume that the covariance matrix depends on covariates and random effects. This allows to explore whether the covariance structure depends on the values of the higher levels and as such models heterogeneity in the variances and correlation structure of the multivariate outcome across the higher level values. The approach is applied to the three-dimensional vector of burnout measurements collected on nurses in a large European study to answer the research question whether the covariance matrix of the outcomes depends on recorded system-level features in the organization of nursing care, but also on not-recorded factors that vary with countries, hospitals, and nursing units. Simulations illustrate the performance of our modeling approach. Copyright © 2013 John Wiley & Sons, Ltd.

  2. The SR Approach: a new Estimation Method for Non-Linear and Non-Gaussian Dynamic Term Structure Models

    Andreasen, Martin Møller; Christensen, Bent Jesper

    This paper suggests a new and easy approach to estimate linear and non-linear dynamic term structure models with latent factors. We impose no distributional assumptions on the factors and they may therefore be non-Gaussian. The novelty of our approach is to use many observables (yields or bonds p...

  3. A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic, and non-Gaussian errors

    Schoups, G.; Vrugt, J.A.

    2010-01-01

    Estimation of parameter and predictive uncertainty of hydrologic models has traditionally relied on several simplifying assumptions. Residual errors are often assumed to be independent and to be adequately described by a Gaussian probability distribution with a mean of zero and a constant variance.

  4. A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

    Vieira, Aitor Couce; Houmb, Siv Hilde; Insua, David Rios

    2014-01-01

    Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.

  5. A Graphical Adversarial Risk Analysis Model for Oil and Gas Drilling Cybersecurity

    Aitor Couce Vieira

    2014-04-01

    Full Text Available Oil and gas drilling is based, increasingly, on operational technology, whose cybersecurity is complicated by several challenges. We propose a graphical model for cybersecurity risk assessment based on Adversarial Risk Analysis to face those challenges. We also provide an example of the model in the context of an offshore drilling rig. The proposed model provides a more formal and comprehensive analysis of risks, still using the standard business language based on decisions, risks, and value.

  6. Normal Inverse Gaussian Model-Based Image Denoising in the NSCT Domain

    Jian Jia

    2015-01-01

    Full Text Available The objective of image denoising is to retain useful details while removing as much noise as possible to recover an original image from its noisy version. This paper proposes a novel normal inverse Gaussian (NIG model-based method that uses a Bayesian estimator to carry out image denoising in the nonsubsampled contourlet transform (NSCT domain. In the proposed method, the NIG model is first used to describe the distributions of the image transform coefficients of each subband in the NSCT domain. Then, the corresponding threshold function is derived from the model using Bayesian maximum a posteriori probability estimation theory. Finally, optimal linear interpolation thresholding algorithm (OLI-Shrink is employed to guarantee a gentler thresholding effect. The results of comparative experiments conducted indicate that the denoising performance of our proposed method in terms of peak signal-to-noise ratio is superior to that of several state-of-the-art methods, including BLS-GSM, K-SVD, BivShrink, and BM3D. Further, the proposed method achieves structural similarity (SSIM index values that are comparable to those of the block-matching 3D transformation (BM3D method.

  7. Fast and Scalable Gaussian Process Modeling with Applications to Astronomical Time Series

    Foreman-Mackey, Daniel; Agol, Eric; Ambikasaran, Sivaram; Angus, Ruth

    2017-12-01

    The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large data sets. Gaussian processes (GPs) are a popular class of models used for this purpose, but since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small data sets. In this paper, we present a novel method for GPs modeling in one dimension where the computational requirements scale linearly with the size of the data set. We demonstrate the method by applying it to simulated and real astronomical time series data sets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically driven damped harmonic oscillators—providing a physical motivation for and interpretation of this choice—but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable GP methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.

  8. Neural network-based nonlinear model predictive control vs. linear quadratic gaussian control

    Cho, C.; Vance, R.; Mardi, N.; Qian, Z.; Prisbrey, K.

    1997-01-01

    One problem with the application of neural networks to the multivariable control of mineral and extractive processes is determining whether and how to use them. The objective of this investigation was to compare neural network control to more conventional strategies and to determine if there are any advantages in using neural network control in terms of set-point tracking, rise time, settling time, disturbance rejection and other criteria. The procedure involved developing neural network controllers using both historical plant data and simulation models. Various control patterns were tried, including both inverse and direct neural network plant models. These were compared to state space controllers that are, by nature, linear. For grinding and leaching circuits, a nonlinear neural network-based model predictive control strategy was superior to a state space-based linear quadratic gaussian controller. The investigation pointed out the importance of incorporating state space into neural networks by making them recurrent, i.e., feeding certain output state variables into input nodes in the neural network. It was concluded that neural network controllers can have better disturbance rejection, set-point tracking, rise time, settling time and lower set-point overshoot, and it was also concluded that neural network controllers can be more reliable and easy to implement in complex, multivariable plants.

  9. Dipole saturated absorption modeling in gas phase: Dealing with a Gaussian beam

    Dupré, Patrick

    2018-01-01

    With the advent of new accurate and sensitive spectrometers, cf. combining optical cavities (for absorption enhancement), the requirement for reliable molecular transition modeling is becoming more pressing. Unfortunately, there is no trivial approach which can provide a definitive formalism allowing us to solve the coupled systems of equations associated with nonlinear absorption. Here, we propose a general approach to deal with any spectral shape of the electromagnetic field interacting with a molecular species under saturation conditions. The development is specifically applied to Gaussian-shaped beams. To make the analytical expressions tractable, approximations are proposed. Finally, two or three numerical integrations are required for describing the Lamb-dip profile. The implemented model allows us to describe the saturated absorption under low pressure conditions where the broadening by the transit-time may dominate the collision rates. The model is applied to two specific overtone transitions of the molecular acetylene. The simulated line shapes are discussed versus the collision and the transit-time rates. The specific collisional and collision-free regimes are illustrated, while the Rabi frequency controls the intermediate regime. We illustrate how to recover the input parameters by fitting the simulated profiles.

  10. A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography

    Aristophanous, Michalis; Penney, Bill C.; Martel, Mary K.; Pelizzari, Charles A.

    2007-01-01

    The increased interest in 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in radiation treatment planning in the past five years necessitated the independent and accurate segmentation of gross tumor volume (GTV) from FDG-PET scans. In some studies the radiation oncologist contours the GTV based on a computed tomography scan, while incorporating pertinent data from the PET images. Alternatively, a simple threshold, typically 40% of the maximum intensity, has been employed to differentiate tumor from normal tissue, while other researchers have developed algorithms to aid the PET based GTV definition. None of these methods, however, results in reliable PET tumor segmentation that can be used for more sophisticated treatment plans. For this reason, we developed a Gaussian mixture model (GMM) based segmentation technique on selected PET tumor regions from non-small cell lung cancer patients. The purpose of this study was to investigate the feasibility of using a GMM-based tumor volume definition in a robust, reliable and reproducible way. A GMM relies on the idea that any distribution, in our case a distribution of image intensities, can be expressed as a mixture of Gaussian densities representing different classes. According to our implementation, each class belongs to one of three regions in the image; the background (B), the uncertain (U) and the target (T), and from these regions we can obtain the tumor volume. User interaction in the implementation is required, but is limited to the initialization of the model parameters and the selection of an ''analysis region'' to which the modeling is restricted. The segmentation was developed on three and tested on another four clinical cases to ensure robustness against differences observed in the clinic. It also compared favorably with thresholding at 40% of the maximum intensity and a threshold determination function based on tumor to background image intensities proposed in a recent paper. The parts of the

  11. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Gao Qing; Chen Huafu; Gong Qiyong

    2009-01-01

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  12. Study of asymmetry in motor areas related to handedness using the fMRI BOLD response Gaussian convolution model

    Gao Qing [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Chen Huafu [School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054 (China); School of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: Chenhf@uestc.edu.cn; Gong Qiyong [Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu 610041 (China)

    2009-10-30

    Brain asymmetry is a phenomenon well known for handedness, and has been studied in the motor cortex. However, few studies have quantitatively assessed the asymmetrical cortical activities for handedness in motor areas. In the present study, we systematically and quantitatively investigated asymmetry in the left and right primary motor cortices during sequential finger movements using the Gaussian convolution model approach based on the functional magnetic resonance imaging (fMRI) blood oxygenation level dependent (BOLD) response. Six right-handed and six left-handed subjects were recruited to perform three types of hand movement tasks. The results for the expected value of the Gaussian convolution model showed that it took the dominant hand a longer average interval of response delay regardless of the handedness and bi- or uni-manual performance. The results for the standard deviation of the Gaussian model suggested that in the mass neurons, these intervals of the dominant hand were much more variable than those of the non-dominant hand. When comparing bi-manual movement conditions with uni-manual movement conditions in the primary motor cortex (PMC), both the expected value and standard deviation in the Gaussian function were significantly smaller (p < 0.05) in the bi-manual conditions, showing that the movement of the non-dominant hand influenced that of the dominant hand.

  13. Numerical modeling of Gaussian beam propagation and diffraction in inhomogeneous media based on the complex eikonal equation

    Huang, Xingguo; Sun, Hui

    2018-05-01

    Gaussian beam is an important complex geometrical optical technology for modeling seismic wave propagation and diffraction in the subsurface with complex geological structure. Current methods for Gaussian beam modeling rely on the dynamic ray tracing and the evanescent wave tracking. However, the dynamic ray tracing method is based on the paraxial ray approximation and the evanescent wave tracking method cannot describe strongly evanescent fields. This leads to inaccuracy of the computed wave fields in the region with a strong inhomogeneous medium. To address this problem, we compute Gaussian beam wave fields using the complex phase by directly solving the complex eikonal equation. In this method, the fast marching method, which is widely used for phase calculation, is combined with Gauss-Newton optimization algorithm to obtain the complex phase at the regular grid points. The main theoretical challenge in combination of this method with Gaussian beam modeling is to address the irregular boundary near the curved central ray. To cope with this challenge, we present the non-uniform finite difference operator and a modified fast marching method. The numerical results confirm the proposed approach.

  14. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  15. Gaussian mixed model in support of semiglobal matching leveraged by ground control points

    Ma, Hao; Zheng, Shunyi; Li, Chang; Li, Yingsong; Gui, Li

    2017-04-01

    Semiglobal matching (SGM) has been widely applied in large aerial images because of its good tradeoff between complexity and robustness. The concept of ground control points (GCPs) is adopted to make SGM more robust. We model the effect of GCPs as two data terms for stereo matching between high-resolution aerial epipolar images in an iterative scheme. One term based on GCPs is formulated by Gaussian mixture model, which strengths the relation between GCPs and the pixels to be estimated and encodes some degree of consistency between them with respect to disparity values. Another term depends on pixel-wise confidence, and we further design a confidence updating equation based on three rules. With this confidence-based term, the assignment of disparity can be heuristically selected among disparity search ranges during the iteration process. Several iterations are sufficient to bring out satisfactory results according to our experiments. Experimental results validate that the proposed method outperforms surface reconstruction, which is a representative variant of SGM and behaves excellently on aerial images.

  16. GGRaSP: A R-package for selecting representative genomes using Gaussian mixture models.

    Clarke, Thomas H; Brinkac, Lauren M; Sutton, Granger; Fouts, Derrick E

    2018-04-14

    The vast number of available sequenced bacterial genomes occasionally exceeds the facilities of comparative genomic methods or is dominated by a single outbreak strain, and thus a diverse and representative subset is required. Generation of the reduced subset currently requires a priori supervised clustering and sequence-only selection of medoid genomic sequences, independent of any additional genome metrics or strain attributes. The GGRaSP R-package described below generates a reduced subset of genomes that prioritizes maintaining genomes of interest to the user as well as minimizing the loss of genetic variation. The package also allows for unsupervised clustering by modeling the genomic relationships using a Gaussian Mixture Model to select an appropriate cluster threshold. We demonstrate the capabilities of GGRaSP by generating a reduced list of 315 genomes from a genomic dataset of 4600 Escherichia coli genomes, prioritizing selection by type strain and by genome completeness. GGRaSP is available at https://github.com/JCVenterInstitute/ggrasp/. tclarke@jcvi.org. Supplementary data are available at the GitHub site.

  17. Monthly streamflow forecasting based on hidden Markov model and Gaussian Mixture Regression

    Liu, Yongqi; Ye, Lei; Qin, Hui; Hong, Xiaofeng; Ye, Jiajun; Yin, Xingli

    2018-06-01

    Reliable streamflow forecasts can be highly valuable for water resources planning and management. In this study, we combined a hidden Markov model (HMM) and Gaussian Mixture Regression (GMR) for probabilistic monthly streamflow forecasting. The HMM is initialized using a kernelized K-medoids clustering method, and the Baum-Welch algorithm is then executed to learn the model parameters. GMR derives a conditional probability distribution for the predictand given covariate information, including the antecedent flow at a local station and two surrounding stations. The performance of HMM-GMR was verified based on the mean square error and continuous ranked probability score skill scores. The reliability of the forecasts was assessed by examining the uniformity of the probability integral transform values. The results show that HMM-GMR obtained reasonably high skill scores and the uncertainty spread was appropriate. Different HMM states were assumed to be different climate conditions, which would lead to different types of observed values. We demonstrated that the HMM-GMR approach can handle multimodal and heteroscedastic data.

  18. Improving the modelling of redshift-space distortions - I. A bivariate Gaussian description for the galaxy pairwise velocity distributions

    Bianchi, Davide; Chiesa, Matteo; Guzzo, Luigi

    2015-01-01

    As a step towards a more accurate modelling of redshift-space distortions (RSD) in galaxy surveys, we develop a general description of the probability distribution function of galaxy pairwise velocities within the framework of the so-called streaming model. For a given galaxy separation r, such function can be described as a superposition of virtually infinite local distributions. We characterize these in terms of their moments and then consider the specific case in which they are Gaussian functions, each with its own mean μ and dispersion σ. Based on physical considerations, we make the further crucial assumption that these two parameters are in turn distributed according to a bivariate Gaussian, with its own mean and covariance matrix. Tests using numerical simulations explicitly show that with this compact description one can correctly model redshift-space distortions on all scales, fully capturing the overall linear and non-linear dynamics of the galaxy flow at different separations. In particular, we naturally obtain Gaussian/exponential, skewed/unskewed distribution functions, depending on separation as observed in simulations and data. Also, the recently proposed single-Gaussian description of RSD is included in this model as a limiting case, when the bivariate Gaussian is collapsed to a two-dimensional Dirac delta function. We also show how this description naturally allows for the Taylor expansion of 1 + ξS(s) around 1 + ξR(r), which leads to the Kaiser linear formula when truncated to second order, explicating its connection with the moments of the velocity distribution functions. More work is needed, but these results indicate a very promising path to make definitive progress in our programme to improve RSD estimators.

  19. Modeling And Simulation As The Basis For Hybridity In The Graphic Discipline Learning/Teaching Area

    Jana Žiljak Vujić

    2009-01-01

    Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system. We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.

  20. Modeling and Simulation as the Basis for Hybridity in the Graphic Discipline Learning/Teaching Area

    Vilko Ziljak

    2009-11-01

    Full Text Available Only some fifteen years have passed since the scientific graphics discipline was established. In the transition period from the College of Graphics to «Integrated Graphic Technology Studies» to the contemporary Faculty of Graphics Arts with the University in Zagreb, three main periods of development can be noted: digital printing, computer prepress and automatic procedures in postpress packaging production. Computer technology has enabled a change in the methodology of teaching graphics technology and studying it on the level of secondary and higher education. The task has been set to create tools for simulating printing processes in order to master the program through a hybrid system consisting of methods that are separate in relation to one another: learning with the help of digital models and checking in the actual real system.  We are setting a hybrid project for teaching because the overall acquired knowledge is the result of completely different methods. The first method is on the free programs level functioning without consequences. Everything remains as a record in the knowledge database that can be analyzed, statistically processed and repeated with new parameter values of the system being researched. The second method uses the actual real system where the results are in proving the value of new knowledge and this is something that encourages and stimulates new cycles of hybrid behavior in mastering programs. This is the area where individual learning incurs. The hybrid method allows the possibility of studying actual situations on a computer model, proving it on an actual real model and entering the area of learning envisaging future development.

  1. Teaching Photovoltaic Array Modelling and Characterization Using a Graphical User Interface and a Flash Solar Simulator

    Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas

    2012-01-01

    This paper presents a set of laboratory tools aimed to support students with various backgrounds (no programming) to understand photovoltaic array modelling and characterization techniques. A graphical user interface (GUI) has been developed in Matlab, for modelling PV arrays and characterizing...... the effect of different types of parameters and operating conditions, on the current-voltage and power-voltage curves. The GUI is supported by experimental investigation and validation on PV module level, with the help of an indoor flash solar simulator....

  2. Graphical models for simulation and control of robotic systems for waste handling

    Drotning, W.D.; Bennett, P.C.

    1992-01-01

    This paper discusses detailed geometric models which have been used within a graphical simulation environment to study transportation cask facility design and to perform design and analyses of robotic systems for handling of nuclear waste. The models form the basis for a robot control environment which provides safety, flexibility, and reliability for operations which span the spectrum from autonomous control to tasks requiring direct human intervention

  3. Planning of O&M for Offfshore Wind Turbines using Bayesian Graphical Models

    Nielsen, Jannie Jessen; Sørensen, John Dalsgaard

    2010-01-01

    The costs to operation and maintenance (O&M) for offshore wind turbines are large, and riskbased planning of O&M has the potential of reducing these costs. This paper presents how Bayesian graphical models can be used to establish a probabilistic damage model and include data from imperfect...... inspections and monitoring. The method offers efficient updating of the failure probability, which is necessary for risk-based decision making. An application example is presented to demonstrate the capabilities of the method....

  4. Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

    Robert B. Gramacy

    2010-02-01

    Full Text Available This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method for inference in multi-modal posterior distributions that combines simulated tempering and importance sampling. These additions extend the functionality of tgp across all models in the hierarchy: from Bayesian linear models, to classification and regression trees (CART, to treed Gaussian processes with jumps to the limiting linear model. It is assumed that the reader is familiar with the baseline functionality of the package, outlined in the first vignette (Gramacy 2007.

  5. Lamb wave propagation modelling and simulation using parallel processing architecture and graphical cards

    Paćko, P; Bielak, T; Staszewski, W J; Uhl, T; Spencer, A B; Worden, K

    2012-01-01

    This paper demonstrates new parallel computation technology and an implementation for Lamb wave propagation modelling in complex structures. A graphical processing unit (GPU) and computer unified device architecture (CUDA), available in low-cost graphical cards in standard PCs, are used for Lamb wave propagation numerical simulations. The local interaction simulation approach (LISA) wave propagation algorithm has been implemented as an example. Other algorithms suitable for parallel discretization can also be used in practice. The method is illustrated using examples related to damage detection. The results demonstrate good accuracy and effective computational performance of very large models. The wave propagation modelling presented in the paper can be used in many practical applications of science and engineering. (paper)

  6. GRAPHICAL USER INTERFACE WITH APPLICATIONS IN SUSCEPTIBLE-INFECTIOUS-SUSCEPTIBLE MODELS.

    Ilea, M; Turnea, M; Arotăriţei, D; Rotariu, Mariana; Popescu, Marilena

    2015-01-01

    Practical significance of understanding the dynamics and evolution of infectious diseases increases continuously in contemporary world. The mathematical study of the dynamics of infectious diseases has a long history. By incorporating statistical methods and computer-based simulations in dynamic epidemiological models, it could be possible for modeling methods and theoretical analyses to be more realistic and reliable, allowing a more detailed understanding of the rules governing epidemic spreading. To provide the basis for a disease transmission, the population of a region is often divided into various compartments, and the model governing their relation is called the compartmental model. To present all of the information available, a graphical user interface provides icons and visual indicators. The graphical interface shown in this paper is performed using the MATLAB software ver. 7.6.0. MATLAB software offers a wide range of techniques by which data can be displayed graphically. The process of data viewing involves a series of operations. To achieve it, I had to make three separate files, one for defining the mathematical model and two for the interface itself. Considering a fixed population, it is observed that the number of susceptible individuals diminishes along with an increase in the number of infectious individuals so that in about ten days the number of individuals infected and susceptible, respectively, has the same value. If the epidemic is not controlled, it will continue for an indefinite period of time. By changing the global parameters specific of the SIS model, a more rapid increase of infectious individuals is noted. Using the graphical user interface shown in this paper helps achieving a much easier interaction with the computer, simplifying the structure of complex instructions by using icons and menus, and, in particular, programs and files are much easier to organize. Some numerical simulations have been presented to illustrate theoretical

  7. Damage Detection of Refractory Based on Principle Component Analysis and Gaussian Mixture Model

    Changming Liu

    2018-01-01

    Full Text Available Acoustic emission (AE technique is a common approach to identify the damage of the refractories; however, there is a complex problem since there are as many as fifteen involved parameters, which calls for effective data processing and classification algorithms to reduce the level of complexity. In this paper, experiments involving three-point bending tests of refractories were conducted and AE signals were collected. A new data processing method of merging the similar parameters in the description of the damage and reducing the dimension was developed. By means of the principle component analysis (PCA for dimension reduction, the fifteen related parameters can be reduced to two parameters. The parameters were the linear combinations of the fifteen original parameters and taken as the indexes for damage classification. Based on the proposed approach, the Gaussian mixture model was integrated with the Bayesian information criterion to group the AE signals into two damage categories, which accounted for 99% of all damage. Electronic microscope scanning of the refractories verified the two types of damage.

  8. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    Ait-El-Fquih, Boujemaa; Hoteit, Ibrahim

    2015-01-01

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  9. Spectrum recovery method based on sparse representation for segmented multi-Gaussian model

    Teng, Yidan; Zhang, Ye; Ti, Chunli; Su, Nan

    2016-09-01

    Hyperspectral images can realize crackajack features discriminability for supplying diagnostic characteristics with high spectral resolution. However, various degradations may generate negative influence on the spectral information, including water absorption, bands-continuous noise. On the other hand, the huge data volume and strong redundancy among spectrums produced intense demand on compressing HSIs in spectral dimension, which also leads to the loss of spectral information. The reconstruction of spectral diagnostic characteristics has irreplaceable significance for the subsequent application of HSIs. This paper introduces a spectrum restoration method for HSIs making use of segmented multi-Gaussian model (SMGM) and sparse representation. A SMGM is established to indicating the unsymmetrical spectral absorption and reflection characteristics, meanwhile, its rationality and sparse property are discussed. With the application of compressed sensing (CS) theory, we implement sparse representation to the SMGM. Then, the degraded and compressed HSIs can be reconstructed utilizing the uninjured or key bands. Finally, we take low rank matrix recovery (LRMR) algorithm for post processing to restore the spatial details. The proposed method was tested on the spectral data captured on the ground with artificial water absorption condition and an AVIRIS-HSI data set. The experimental results in terms of qualitative and quantitative assessments demonstrate that the effectiveness on recovering the spectral information from both degradations and loss compression. The spectral diagnostic characteristics and the spatial geometry feature are well preserved.

  10. Ghost imaging and its visibility with partially coherent elliptical Gaussian Schell-model beams

    Luo, Meilan; Zhu, Weiting; Zhao, Daomu

    2015-01-01

    The performances of the ghost image and the visibility with partially coherent elliptical Gaussian Schell-model beams have been studied. In that case we have derived the condition under which the goal ghost image is achievable. Furthermore, the visibility is assessed in terms of the parameters related to the source to find that the visibility reduces with the increase of the beam size, while it is a monotonic increasing function of the transverse coherence length. More specifically, it is found that the inequalities of the source sizes in x and y directions, as well as the transverse coherence lengths, play an important role in the ghost image and the visibility. - Highlights: • We studied the ghost image and visibility with partially coherent EGSM beams. • We derived the condition under which the goal ghost image is achievable. • The visibility is assessed in terms of the parameters related to the source. • The source sizes and coherence lengths play role in the ghost image and visibility.

  11. Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.

    Lin, Lanny; Goodrich, Michael A

    2014-12-01

    During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.

  12. Identification of damage in composite structures using Gaussian mixture model-processed Lamb waves

    Wang, Qiang; Ma, Shuxian; Yue, Dong

    2018-04-01

    Composite materials have comprehensively better properties than traditional materials, and therefore have been more and more widely used, especially because of its higher strength-weight ratio. However, the damage of composite structures is usually varied and complicated. In order to ensure the security of these structures, it is necessary to monitor and distinguish the structural damage in a timely manner. Lamb wave-based structural health monitoring (SHM) has been proved to be effective in online structural damage detection and evaluation; furthermore, the characteristic parameters of the multi-mode Lamb wave varies in response to different types of damage in the composite material. This paper studies the damage identification approach for composite structures using the Lamb wave and the Gaussian mixture model (GMM). The algorithm and principle of the GMM, and the parameter estimation, is introduced. Multi-statistical characteristic parameters of the excited Lamb waves are extracted, and the parameter space with reduced dimensions is adopted by principal component analysis (PCA). The damage identification system using the GMM is then established through training. Experiments on a glass fiber-reinforced epoxy composite laminate plate are conducted to verify the feasibility of the proposed approach in terms of damage classification. The experimental results show that different types of damage can be identified according to the value of the likelihood function of the GMM.

  13. Fast Kalman-like filtering for large-dimensional linear and Gaussian state-space models

    Ait-El-Fquih, Boujemaa

    2015-08-13

    This paper considers the filtering problem for linear and Gaussian state-space models with large dimensions, a setup in which the optimal Kalman Filter (KF) might not be applicable owing to the excessive cost of manipulating huge covariance matrices. Among the most popular alternatives that enable cheaper and reasonable computation is the Ensemble KF (EnKF), a Monte Carlo-based approximation. In this paper, we consider a class of a posteriori distributions with diagonal covariance matrices and propose fast approximate deterministic-based algorithms based on the Variational Bayesian (VB) approach. More specifically, we derive two iterative KF-like algorithms that differ in the way they operate between two successive filtering estimates; one involves a smoothing estimate and the other involves a prediction estimate. Despite its iterative nature, the prediction-based algorithm provides a computational cost that is, on the one hand, independent of the number of iterations in the limit of very large state dimensions, and on the other hand, always much smaller than the cost of the EnKF. The cost of the smoothing-based algorithm depends on the number of iterations that may, in some situations, make this algorithm slower than the EnKF. The performances of the proposed filters are studied and compared to those of the KF and EnKF through a numerical example.

  14. Vehicle speed detection based on gaussian mixture model using sequential of images

    Setiyono, Budi; Ratna Sulistyaningrum, Dwi; Soetrisno; Fajriyah, Farah; Wahyu Wicaksono, Danang

    2017-09-01

    Intelligent Transportation System is one of the important components in the development of smart cities. Detection of vehicle speed on the highway is supporting the management of traffic engineering. The purpose of this study is to detect the speed of the moving vehicles using digital image processing. Our approach is as follows: The inputs are a sequence of frames, frame rate (fps) and ROI. The steps are following: First we separate foreground and background using Gaussian Mixture Model (GMM) in each frames. Then in each frame, we calculate the location of object and its centroid. Next we determine the speed by computing the movement of centroid in sequence of frames. In the calculation of speed, we only consider frames when the centroid is inside the predefined region of interest (ROI). Finally we transform the pixel displacement into a time unit of km/hour. Validation of the system is done by comparing the speed calculated manually and obtained by the system. The results of software testing can detect the speed of vehicles with the highest accuracy is 97.52% and the lowest accuracy is 77.41%. And the detection results of testing by using real video footage on the road is included with real speed of the vehicle.

  15. Multi-atlas segmentation for abdominal organs with Gaussian mixture models

    Burke, Ryan P.; Xu, Zhoubing; Lee, Christopher P.; Baucom, Rebeccah B.; Poulose, Benjamin K.; Abramson, Richard G.; Landman, Bennett A.

    2015-03-01

    Abdominal organ segmentation with clinically acquired computed tomography (CT) is drawing increasing interest in the medical imaging community. Gaussian mixture models (GMM) have been extensively used through medical segmentation, most notably in the brain for cerebrospinal fluid / gray matter / white matter differentiation. Because abdominal CT exhibit strong localized intensity characteristics, GMM have recently been incorporated in multi-stage abdominal segmentation algorithms. In the context of variable abdominal anatomy and rich algorithms, it is difficult to assess the marginal contribution of GMM. Herein, we characterize the efficacy of an a posteriori framework that integrates GMM of organ-wise intensity likelihood with spatial priors from multiple target-specific registered labels. In our study, we first manually labeled 100 CT images. Then, we assigned 40 images to use as training data for constructing target-specific spatial priors and intensity likelihoods. The remaining 60 images were evaluated as test targets for segmenting 12 abdominal organs. The overlap between the true and the automatic segmentations was measured by Dice similarity coefficient (DSC). A median improvement of 145% was achieved by integrating the GMM intensity likelihood against the specific spatial prior. The proposed framework opens the opportunities for abdominal organ segmentation by efficiently using both the spatial and appearance information from the atlases, and creates a benchmark for large-scale automatic abdominal segmentation.

  16. Speech Enhancement Using Gaussian Mixture Models, Explicit Bayesian Estimation and Wiener Filtering

    M. H. Savoji

    2014-09-01

    Full Text Available Gaussian Mixture Models (GMMs of power spectral densities of speech and noise are used with explicit Bayesian estimations in Wiener filtering of noisy speech. No assumption is made on the nature or stationarity of the noise. No voice activity detection (VAD or any other means is employed to estimate the input SNR. The GMM mean vectors are used to form sets of over-determined system of equations whose solutions lead to the first estimates of speech and noise power spectra. The noise source is also identified and the input SNR estimated in this first step. These first estimates are then refined using approximate but explicit MMSE and MAP estimation formulations. The refined estimates are then used in a Wiener filter to reduce noise and enhance the noisy speech. The proposed schemes show good results. Nevertheless, it is shown that the MAP explicit solution, introduced here for the first time, reduces the computation time to less than one third with a slight higher improvement in SNR and PESQ score and also less distortion in comparison to the MMSE solution.

  17. Monitoring the trajectory of urban nighttime light hotspots using a Gaussian volume model

    Zheng, Qiming; Jiang, Ruowei; Wang, Ke; Huang, Lingyan; Ye, Ziran; Gan, Muye; Ji, Biyong

    2018-03-01

    Urban nighttime light hotspot is an ideal representation of the spatial heterogeneity of human activities within a city, which is sensitive to regional urban expansion pattern. However, most of previous studies related to nighttime light imageries focused on extracting urban extent, leaving the spatial variation of radiance intensity insufficiently explored. With the help of global radiance calibrated DMSP-OLS datasets (NTLgrc), we proposed an innovative framework to explore the spatio-temporal trajectory of polycentric urban nighttime light hotspots. Firstly, NTLgrc was inter-annually calibrated to improve the consistency. Secondly, multi-resolution segmentation and region-growing SVM classification were employed to remove blooming effect and to extract potential clusters. At last, the urban hotspots were identified by a Gaussian volume model, and the resulting parameters were used to quantitatively depict hotspot features (i.e., intensity, morphology and centroid dynamics). The result shows that our framework successfully captures hotspots in polycentric urban area, whose Ra2 are over 0.9. Meanwhile, the spatio-temporal dynamics of the hotspot features intuitively reveal the impact of the regional urban growth pattern and planning strategies on human activities. Compared to previous studies, our framework is more robust and offers an effective way to describe hotspot pattern. Also, it provides a more comprehensive and spatial-explicit understanding regarding the interaction between urbanization pattern and human activities. Our findings are expected to be beneficial to governors in term of sustainable urban planning and decision making.

  18. Gaussian Mixture Random Coefficient model based framework for SHM in structures with time-dependent dynamics under uncertainty

    Avendaño-Valencia, Luis David; Fassois, Spilios D.

    2017-12-01

    The problem of vibration-based damage diagnosis in structures characterized by time-dependent dynamics under significant environmental and/or operational uncertainty is considered. A stochastic framework consisting of a Gaussian Mixture Random Coefficient model of the uncertain time-dependent dynamics under each structural health state, proper estimation methods, and Bayesian or minimum distance type decision making, is postulated. The Random Coefficient (RC) time-dependent stochastic model with coefficients following a multivariate Gaussian Mixture Model (GMM) allows for significant flexibility in uncertainty representation. Certain of the model parameters are estimated via a simple procedure which is founded on the related Multiple Model (MM) concept, while the GMM weights are explicitly estimated for optimizing damage diagnostic performance. The postulated framework is demonstrated via damage detection in a simple simulated model of a quarter-car active suspension with time-dependent dynamics and considerable uncertainty on the payload. Comparisons with a simpler Gaussian RC model based method are also presented, with the postulated framework shown to be capable of offering considerable improvement in diagnostic performance.

  19. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  20. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-12-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away") and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  1. Subthreshold Current and Swing Modeling of Gate Underlap DG MOSFETs with a Source/Drain Lateral Gaussian Doping Profile

    Singh, Kunal; Kumar, Sanjay; Goel, Ekta; Singh, Balraj; Kumar, Mirgender; Dubey, Sarvesh; Jit, Satyabrata

    2017-01-01

    This paper proposes a new model for the subthreshold current and swing of the short-channel symmetric underlap ultrathin double gate metal oxide field effect transistors with a source/drain lateral Gaussian doping profile. The channel potential model already reported earlier has been utilized to formulate the closed form expression for the subthreshold current and swing of the device. The effects of the lateral straggle and geometrical parameters such as the channel length, channel thickness, and oxide thickness on the off current and subthreshold slope have been demonstrated. The devices with source/drain lateral Gaussian doping profiles in the underlap structure are observed to be highly resistant to short channel effects while improving the current drive. The proposed model is validated by comparing the results with the numerical simulation data obtained by using the commercially available ATLAS™, a two-dimensional (2-D) device simulator from SILVACO.

  2. Probabilistic Graphical Models for the Analysis and Synthesis of Musical Audio

    2010-11-01

    Graphical model for the HDP. . . . . . . . . . . . . . . . . . . . . . . . . 15 2.5 Chinese Restaurant Franchise (CRF) for three groups of eight observations...associated with ob- servations indirectly through table assignments in the Chinese Restaurant Franchise (CRF). This means that the concentration...other kj,−i in the same song j and on the global component proportions β is given by the Chinese 95 restaurant franchise : p(kji|kj,−i,β, α) =  n·kj

  3. Poisson-Gaussian Noise Reduction Using the Hidden Markov Model in Contourlet Domain for Fluorescence Microscopy Images

    Yang, Sejung; Lee, Byung-Uk

    2015-01-01

    In certain image acquisitions processes, like in fluorescence microscopy or astronomy, only a limited number of photons can be collected due to various physical constraints. The resulting images suffer from signal dependent noise, which can be modeled as a Poisson distribution, and a low signal-to-noise ratio. However, the majority of research on noise reduction algorithms focuses on signal independent Gaussian noise. In this paper, we model noise as a combination of Poisson and Gaussian probability distributions to construct a more accurate model and adopt the contourlet transform which provides a sparse representation of the directional components in images. We also apply hidden Markov models with a framework that neatly describes the spatial and interscale dependencies which are the properties of transformation coefficients of natural images. In this paper, an effective denoising algorithm for Poisson-Gaussian noise is proposed using the contourlet transform, hidden Markov models and noise estimation in the transform domain. We supplement the algorithm by cycle spinning and Wiener filtering for further improvements. We finally show experimental results with simulations and fluorescence microscopy images which demonstrate the improved performance of the proposed approach. PMID:26352138

  4. Sculpting proteins interactively: continual energy minimization embedded in a graphical modeling system.

    Surles, M C; Richardson, J S; Richardson, D C; Brooks, F P

    1994-02-01

    We describe a new paradigm for modeling proteins in interactive computer graphics systems--continual maintenance of a physically valid representation, combined with direct user control and visualization. This is achieved by a fast algorithm for energy minimization, capable of real-time performance on all atoms of a small protein, plus graphically specified user tugs. The modeling system, called Sculpt, rigidly constrains bond lengths, bond angles, and planar groups (similar to existing interactive modeling programs), while it applies elastic restraints to minimize the potential energy due to torsions, hydrogen bonds, and van der Waals and electrostatic interactions (similar to existing batch minimization programs), and user-specified springs. The graphical interface can show bad and/or favorable contacts, and individual energy terms can be turned on or off to determine their effects and interactions. Sculpt finds a local minimum of the total energy that satisfies all the constraints using an augmented Lagrange-multiplier method; calculation time increases only linearly with the number of atoms because the matrix of constraint gradients is sparse and banded. On a 100-MHz MIPS R4000 processor (Silicon Graphics Indigo), Sculpt achieves 11 updates per second on a 20-residue fragment and 2 updates per second on an 80-residue protein, using all atoms except non-H-bonding hydrogens, and without electrostatic interactions. Applications of Sculpt are described: to reverse the direction of bundle packing in a designed 4-helix bundle protein, to fold up a 2-stranded beta-ribbon into an approximate beta-barrel, and to design the sequence and conformation of a 30-residue peptide that mimics one partner of a protein subunit interaction. Computer models that are both interactive and physically realistic (within the limitations of a given force field) have 2 significant advantages: (1) they make feasible the modeling of very large changes (such as needed for de novo design), and

  5. Inventory of data bases, graphics packages, and models in Department of Energy laboratories

    Shriner, C.R.; Peck, L.J.

    1978-11-01

    A central inventory of energy-related environmental bibliographic and numeric data bases, graphics packages, integrated hardware/software systems, and models was established at Oak Ridge National Laboratory in an effort to make these resources at Department of Energy (DOE) laboratories better known and available to researchers and managers. This inventory will also serve to identify and avoid duplication among laboratories. The data were collected at each DOE laboratory, then sent to ORNL and merged into a single file. This document contains the data from the merged file. The data descriptions are organized under major data types: data bases, graphics packages, integrated hardware/software systems, and models. The data include descriptions of subject content, documentation, and contact persons. Also provided are computer data such as media on which the item is available, size of the item, computer on which the item executes, minimum hardware configuration necessary to execute the item, software language(s) and/or data base management system utilized, and character set used. For the models, additional data are provided to define the model more accurately. These data include a general statement of algorithms, computational methods, and theories used by the model; organizations currently using the model; the general application area of the model; sources of data utilized by the model; model validation methods, sensitivity analysis, and procedures; and general model classification. Data in this inventory will be available for on-line data retrieval on the DOE/RECON system

  6. A variational EM method for pole-zero modeling of speech with mixed block sparse and Gaussian excitation

    Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom

    2017-01-01

    The modeling of speech can be used for speech synthesis and speech recognition. We present a speech analysis method based on pole-zero modeling of speech with mixed block sparse and Gaussian excitation. By using a pole-zero model, instead of the all-pole model, a better spectral fitting can...... be expected. Moreover, motivated by the block sparse glottal flow excitation during voiced speech and the white noise excitation for unvoiced speech, we model the excitation sequence as a combination of block sparse signals and white noise. A variational EM (VEM) method is proposed for estimating...... in reconstructing of the block sparse excitation....

  7. Animated computer graphics models of space and earth sciences data generated via the massively parallel processor

    Treinish, Lloyd A.; Gough, Michael L.; Wildenhain, W. David

    1987-01-01

    The capability was developed of rapidly producing visual representations of large, complex, multi-dimensional space and earth sciences data sets via the implementation of computer graphics modeling techniques on the Massively Parallel Processor (MPP) by employing techniques recently developed for typically non-scientific applications. Such capabilities can provide a new and valuable tool for the understanding of complex scientific data, and a new application of parallel computing via the MPP. A prototype system with such capabilities was developed and integrated into the National Space Science Data Center's (NSSDC) Pilot Climate Data System (PCDS) data-independent environment for computer graphics data display to provide easy access to users. While developing these capabilities, several problems had to be solved independently of the actual use of the MPP, all of which are outlined.

  8. A modified Gaussian model for the thermal plume from a ground-based heat source in a cross-wind

    Selander, W.N.; Barry, P.J.; Robertson, E.

    1990-06-01

    An array of propane burners operating at ground level in a cross-wind was used as a heat source to establish a blown-over thermal plume. A three-dimensional array of thermocouples was used to continuously measure the plume temperature downwind from the source. The resulting data were used to correlate the parameters of a modified Gaussian model for plume rise and dispersion with source strength, wind speed, and atmospheric dispersion parameters

  9. Precision Measurements of the Cluster Red Sequence using an Error Corrected Gaussian Mixture Model

    Hao, Jiangang; /Fermilab /Michigan U.; Koester, Benjamin P.; /Chicago U.; Mckay, Timothy A.; /Michigan U.; Rykoff, Eli S.; /UC, Santa Barbara; Rozo, Eduardo; /Ohio State U.; Evrard, August; /Michigan U.; Annis, James; /Fermilab; Becker, Matthew; /Chicago U.; Busha, Michael; /KIPAC, Menlo Park /SLAC; Gerdes, David; /Michigan U.; Johnston, David E.; /Northwestern U. /Brookhaven

    2009-07-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red-sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically-based cluster cosmology.

  10. PRECISION MEASUREMENTS OF THE CLUSTER RED SEQUENCE USING AN ERROR-CORRECTED GAUSSIAN MIXTURE MODEL

    Hao Jiangang; Annis, James; Koester, Benjamin P.; Mckay, Timothy A.; Evrard, August; Gerdes, David; Rykoff, Eli S.; Rozo, Eduardo; Becker, Matthew; Busha, Michael; Wechsler, Risa H.; Johnston, David E.; Sheldon, Erin

    2009-01-01

    The red sequence is an important feature of galaxy clusters and plays a crucial role in optical cluster detection. Measurement of the slope and scatter of the red sequence are affected both by selection of red sequence galaxies and measurement errors. In this paper, we describe a new error-corrected Gaussian Mixture Model for red sequence galaxy identification. Using this technique, we can remove the effects of measurement error and extract unbiased information about the intrinsic properties of the red sequence. We use this method to select red sequence galaxies in each of the 13,823 clusters in the maxBCG catalog, and measure the red sequence ridgeline location and scatter of each. These measurements provide precise constraints on the variation of the average red galaxy populations in the observed frame with redshift. We find that the scatter of the red sequence ridgeline increases mildly with redshift, and that the slope decreases with redshift. We also observe that the slope does not strongly depend on cluster richness. Using similar methods, we show that this behavior is mirrored in a spectroscopic sample of field galaxies, further emphasizing that ridgeline properties are independent of environment. These precise measurements serve as an important observational check on simulations and mock galaxy catalogs. The observed trends in the slope and scatter of the red sequence ridgeline with redshift are clues to possible intrinsic evolution of the cluster red sequence itself. Most importantly, the methods presented in this work lay the groundwork for further improvements in optically based cluster cosmology.

  11. IDAS, software support for mathematical models and map-based graphics

    Birnbaum, M.D.; Wecker, D.B.

    1984-01-01

    IDAS (Intermediate Dose Assessment System) was developed for the U.S. Nuclear Regulatory Commission as a hardware/software host for radiological models and display of map-based plume graphics at the Operations Center (HQ), regional incident response centers, and site emergency facilities. IDAS design goals acknowledged the likelihood of future changes in the suite of models and the composition of map features for analysis and graphical display. IDAS provides a generalized software support environment to programmers and users of modeling programs. A database manager process provides multi-user access control to all input and output data for modeling programs. A programmer-created data description file (schema) specifies data field names, data types, legal and recommended ranges, default values, preferred units of measurement, and ''help'' text. Subroutine calls to IDAS from a model program invoke a consistent user interface which can show any of the schema contents, convert units of measurement, and route data to multiple logical devices, including the database. A stand-alone data editor allows the user to read and write model data records without execution of a model. IDAS stores digitized map features in a 4-level naming hierarchy. A user can select the map icon, color, and whether to show a stored name tag, for each map feature. The user also selects image scale (zoom) within limits set by map digitization. The resulting image combines static map information, computed analytic modeling results, and the user's feature selections for display to decision-makers

  12. The Research of Indoor Positioning Based on Double-peak Gaussian Model

    Lina Chen

    2014-04-01

    Full Text Available Location fingerprinting using Wi-Fi signals has been very popular and is a well accepted indoor positioning method. The key issue of the fingerprinting approach is generating the fingerprint radio map. Limited by the practical workload, only a few samples of the received signal strength are collected at each reference point. Unfortunately, fewer samples cannot accurately represent the actual distribution of the signal strength from each access point. This study finds most Wi- Fi signals have two peaks. According to the new finding, a double-peak Gaussian arithmetic is proposed to generate a fingerprint radio map. This approach requires little time to receive WiFi signals and it easy to estimate the parameters of the double-peak Gaussian function. Compared to the Gaussian function and histogram method to generate a fingerprint radio map, this method better approximates the occurrence signal distribution. This paper also compared the positioning accuracy using K-Nearest Neighbour theory for three radio maps, the test results show that the positioning distance error utilizing the double-peak Gaussian function is better than the other two methods.

  13. Understanding and Modeling the Evolution of Critical Points under Gaussian Blurring

    Kuijper, A.; Florack, L.M.J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    In order to investigate the deep structure of Gaussian scale space images, one needs to understand the behaviour of critical points under the influence of parameter-driven blurring. During this evolution two different types of special points are encountered, the so-called scale space saddles and the

  14. Equivariant Gröbner bases and the Gaussian two-factor model

    Brouwer, A.E.; Draisma, J.

    2009-01-01

    We show that the kernel I of the ring homomorphism R[yij | I, j ¿ N, i > j] ¿ R[si, ti | i ¿ N] determined by yij ¿ sisj +titj is generated by two types of polynomials: off-diagonal 3 x 3-minors and pentads. This confirms a conjecture by Drton, Sturmfels, and Sullivant on the Gaussian two-factor

  15. Assessing clustering strategies for Gaussian mixture filtering a subsurface contaminant model

    Liu, Bo; El Gharamti, Mohamad; Hoteit, Ibrahim

    2016-01-01

    An ensemble-based Gaussian mixture (GM) filtering framework is studied in this paper in term of its dependence on the choice of the clustering method to construct the GM. In this approach, a number of particles sampled from the posterior

  16. Positioning graphical objects on computer screens: a three-phase model.

    Pastel, Robert

    2011-02-01

    This experiment identifies and models phases during the positioning of graphical objects (called cursors in this article) on computer displays. The human computer-interaction community has traditionally used Fitts' law to model selection in graphical user interfaces, whereas human factors experiments have found the single-component Fitts' law inadequate to model positioning of real objects. Participants (N=145) repeatedly positioned variably sized square cursors within variably sized rectangular targets using computer mice. The times for the cursor to just touch the target, for the cursor to enter the target, and for participants to indicate positioning completion were observed. The positioning tolerances were varied from very precise and difficult to imprecise and easy. The time for the cursor to touch the target was proportional to the initial cursor-target distance. The time for the cursor to completely enter the target after touching was proportional to the logarithms of cursor size divided by target tolerances. The time for participants to indicate positioning after entering was inversely proportional to the tolerance. A three-phase model defined by regions--distant, proximate, and inside the target--was proposed and could model the positioning tasks. The three-phase model provides a framework for ergonomists to evaluate new positioning techniques and can explain their deficiencies. The model provides a means to analyze tasks and enhance interaction during positioning.

  17. A Module for Graphical Display of Model Results with the CBP Toolbox

    Smith, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-04-21

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to add enhanced graphical capabilities to display model results in the Cementitious Barriers Project (CBP) Toolbox. Because Version 2.0 of the CBP Toolbox has just been released, the graphing enhancements described in this report have not yet been integrated into a new version of the Toolbox. Instead they have been tested using a standalone GoldSim model and, while they are substantially complete, may undergo further refinement before full implementation. Nevertheless, this report is issued to document the FY14 development efforts which will provide a basis for further development of the CBP Toolbox.

  18. Bounded Gaussian process regression

    Jensen, Bjørn Sand; Nielsen, Jens Brehm; Larsen, Jan

    2013-01-01

    We extend the Gaussian process (GP) framework for bounded regression by introducing two bounded likelihood functions that model the noise on the dependent variable explicitly. This is fundamentally different from the implicit noise assumption in the previously suggested warped GP framework. We...... with the proposed explicit noise-model extension....

  19. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    /RK/AK values, indicating substantial anatomical variability of these discrepancies. In the HCP dataset, the median voxelwise percentage differences across the whole white matter skeleton were (nonlinear least squares algorithm) 14.5% (8.2%-23.1%) for MD, 4.3% (1.4%-17.3%) for FA, -5.2% (-48.7% to -0.8%) for MO, 12.5% (6.4%-21.2%) for RD, and 16.1% (9.9%-25.6%) for AD (all ranges computed as 0.01 and 0.99 quantiles). All differences/trends were consistent between the discovery (HCP) and replication (local) datasets and between estimation algorithms. However, the relationships between such trends, estimated diffusion tensor invariants, and kurtosis estimates were impacted by the choice of fitting routine. Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.

  20. The PC graphics handbook

    Sanchez, Julio

    2003-01-01

    Part I - Graphics Fundamentals PC GRAPHICS OVERVIEW History and Evolution Short History of PC Video PS/2 Video Systems SuperVGA Graphics Coprocessors and Accelerators Graphics Applications State-of-the-Art in PC Graphics 3D Application Programming Interfaces POLYGONAL MODELING Vector and Raster Data Coordinate Systems Modeling with Polygons IMAGE TRANSFORMATIONS Matrix-based Representations Matrix Arithmetic 3D Transformations PROGRAMMING MATRIX TRANSFORMATIONS Numeric Data in Matrix Form Array Processing PROJECTIONS AND RENDERING Perspective The Rendering Pipeline LIGHTING AND SHADING Lightin

  1. Resurfacing Graphics

    Prof. Patty K. Wongpakdee

    2013-06-01

    Full Text Available “Resurfacing Graphics” deals with the subject of unconventional design, with the purpose of engaging the viewer to experience the graphics beyond paper’s passive surface. Unconventional designs serve to reinvigorate people, whose senses are dulled by the typical, printed graphics, which bombard them each day. Today’s cutting-edge designers, illustrators and artists utilize graphics in a unique manner that allows for tactile interaction. Such works serve as valuable teaching models and encourage students to do the following: 1 investigate the trans-disciplines of art and technology; 2 appreciate that this approach can have a positive effect on the environment; 3 examine and research other approaches of design communications and 4 utilize new mediums to stretch the boundaries of artistic endeavor. This paper examines how visuals communicators are “Resurfacing Graphics” by using atypical surfaces and materials such as textile, wood, ceramics and even water. Such non-traditional transmissions of visual language serve to demonstrate student’s overreliance on paper as an outdated medium. With this exposure, students can become forward-thinking, eco-friendly, creative leaders by expanding their creative breadth and continuing the perpetual exploration for new ways to make their mark. 

  2. Resurfacing Graphics

    Prof. Patty K. Wongpakdee

    2013-06-01

    Full Text Available “Resurfacing Graphics” deals with the subject of unconventional design, with the purpose of engaging the viewer to experience the graphics beyond paper’s passive surface. Unconventional designs serve to reinvigorate people, whose senses are dulled by the typical, printed graphics, which bombard them each day. Today’s cutting-edge designers, illustrators and artists utilize graphics in a unique manner that allows for tactile interaction. Such works serve as valuable teaching models and encourage students to do the following: 1 investigate the trans-disciplines of art and technology; 2 appreciate that this approach can have a positive effect on the environment; 3 examine and research other approaches of design communications and 4 utilize new mediums to stretch the boundaries of artistic endeavor. This paper examines how visuals communicators are “Resurfacing Graphics” by using atypical surfaces and materials such as textile, wood, ceramics and even water. Such non-traditional transmissions of visual language serve to demonstrate student’s overreliance on paper as an outdated medium. With this exposure, students can become forward-thinking, eco-friendly, creative leaders by expanding their creative breadth and continuing the perpetual exploration for new ways to make their mark.

  3. Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.

    Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang

    2018-03-12

    Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.

  4. Implementation of Chaotic Gaussian Particle Swarm Optimization for Optimize Learning-to-Rank Software Defect Prediction Model Construction

    Buchari, M. A.; Mardiyanto, S.; Hendradjaya, B.

    2018-03-01

    Finding the existence of software defect as early as possible is the purpose of research about software defect prediction. Software defect prediction activity is required to not only state the existence of defects, but also to be able to give a list of priorities which modules require a more intensive test. Therefore, the allocation of test resources can be managed efficiently. Learning to rank is one of the approach that can provide defect module ranking data for the purposes of software testing. In this study, we propose a meta-heuristic chaotic Gaussian particle swarm optimization to improve the accuracy of learning to rank software defect prediction approach. We have used 11 public benchmark data sets as experimental data. Our overall results has demonstrated that the prediction models construct using Chaotic Gaussian Particle Swarm Optimization gets better accuracy on 5 data sets, ties in 5 data sets and gets worse in 1 data sets. Thus, we conclude that the application of Chaotic Gaussian Particle Swarm Optimization in Learning-to-Rank approach can improve the accuracy of the defect module ranking in data sets that have high-dimensional features.

  5. A Monte Carlo simulation model for stationary non-Gaussian processes

    Grigoriu, M.; Ditlevsen, Ove Dalager; Arwade, S. R.

    2003-01-01

    includes translation processes and is useful for both Monte Carlo simulation and analytical studies. As for translation processes, the mixture of translation processes can have a wide range of marginal distributions and correlation functions. Moreover, these processes can match a broader range of second...... athe proposed Monte Carlo algorithm and compare features of translation processes and mixture of translation processes. Keywords: Monte Carlo simulation, non-Gaussian processes, sampling theorem, stochastic processes, translation processes......A class of stationary non-Gaussian processes, referred to as the class of mixtures of translation processes, is defined by their finite dimensional distributions consisting of mixtures of finite dimensional distributions of translation processes. The class of mixtures of translation processes...

  6. Bayesian model averaging using particle filtering and Gaussian mixture modeling : Theory, concepts, and simulation experiments

    Rings, J.; Vrugt, J.A.; Schoups, G.; Huisman, J.A.; Vereecken, H.

    2012-01-01

    Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive

  7. Approximate bandpass and frequency response models of the difference of Gaussian filter

    Birch, Philip; Mitra, Bhargav; Bangalore, Nagachetan M.; Rehman, Saad; Young, Rupert; Chatwin, Chris

    2010-12-01

    The Difference of Gaussian (DOG) filter is widely used in optics and image processing as, among other things, an edge detection and correlation filter. It has important biological applications and appears to be part of the mammalian vision system. In this paper we analyse the filter and provide details of the full width half maximum, bandwidth and frequency response in order to aid the full characterisation of its performance.

  8. Non-Gaussian statistics, classical field theory, and realizable Langevin models

    Krommes, J.A.

    1995-11-01

    The direct-interaction approximation (DIA) to the fourth-order statistic Z ∼ left-angle λψ 2 ) 2 right-angle, where λ is a specified operator and ψ is a random field, is discussed from several points of view distinct from that of Chen et al. [Phys. Fluids A 1, 1844 (1989)]. It is shown that the formula for Z DIA already appeared in the seminal work of Martin, Siggia, and Rose (Phys. Rev. A 8, 423 (1973)] on the functional approach to classical statistical dynamics. It does not follow from the original generalized Langevin equation (GLE) of Leith [J. Atmos. Sd. 28, 145 (1971)] and Kraichnan [J. Fluid Mech. 41, 189 (1970)] (frequently described as an amplitude representation for the DIA), in which the random forcing is realized by a particular superposition of products of random variables. The relationship of that GLE to renormalized field theories with non-Gaussian corrections (''spurious vertices'') is described. It is shown how to derive an improved representation, that realizes cumulants through O(ψ 4 ), by adding to the GLE a particular non-Gaussian correction. A Markovian approximation Z DIA M to Z DIA is derived. Both Z DIA and Z DIA M incorrectly predict a Gaussian kurtosis for the steady state of a solvable three-mode example

  9. A computer graphics based model for scattering from objects of arbitrary shapes in the optical region

    Goel, Narendra S.; Rozehnal, Ivan; Thompson, Richard L.

    1991-01-01

    A computer-graphics-based model, named DIANA, is presented for generation of objects of arbitrary shape and for calculating bidirectional reflectances and scattering from them, in the visible and infrared region. The computer generation is based on a modified Lindenmayer system approach which makes it possible to generate objects of arbitrary shapes and to simulate their growth, dynamics, and movement. Rendering techniques are used to display an object on a computer screen with appropriate shading and shadowing and to calculate the scattering and reflectance from the object. The technique is illustrated with scattering from canopies of simulated corn plants.

  10. Learning conditional Gaussian networks

    Bøttcher, Susanne Gammelgaard

    This paper considers conditional Gaussian networks. The parameters in the network are learned by using conjugate Bayesian analysis. As conjugate local priors, we apply the Dirichlet distribution for discrete variables and the Gaussian-inverse gamma distribution for continuous variables, given...... a configuration of the discrete parents. We assume parameter independence and complete data. Further, to learn the structure of the network, the network score is deduced. We then develop a local master prior procedure, for deriving parameter priors in these networks. This procedure satisfies parameter...... independence, parameter modularity and likelihood equivalence. Bayes factors to be used in model search are introduced. Finally the methods derived are illustrated by a simple example....

  11. Utero-fetal unit and pregnant woman modeling using a computer graphics approach for dosimetry studies.

    Anquez, Jérémie; Boubekeur, Tamy; Bibin, Lazar; Angelini, Elsa; Bloch, Isabelle

    2009-01-01

    Potential sanitary effects related to electromagnetic fields exposure raise public concerns, especially for fetuses during pregnancy. Human fetus exposure can only be assessed through simulated dosimetry studies, performed on anthropomorphic models of pregnant women. In this paper, we propose a new methodology to generate a set of detailed utero-fetal unit (UFU) 3D models during the first and third trimesters of pregnancy, based on segmented 3D ultrasound and MRI data. UFU models are built using recent geometry processing methods derived from mesh-based computer graphics techniques and embedded in a synthetic woman body. Nine pregnant woman models have been generated using this approach and validated by obstetricians, for anatomical accuracy and representativeness.

  12. The joint graphical lasso for inverse covariance estimation across multiple classes.

    Danaher, Patrick; Wang, Pei; Witten, Daniela M

    2014-03-01

    We consider the problem of estimating multiple related Gaussian graphical models from a high-dimensional data set with observations belonging to distinct classes. We propose the joint graphical lasso , which borrows strength across the classes in order to estimate multiple graphical models that share certain characteristics, such as the locations or weights of nonzero edges. Our approach is based upon maximizing a penalized log likelihood. We employ generalized fused lasso or group lasso penalties, and implement a fast ADMM algorithm to solve the corresponding convex optimization problems. The performance of the proposed method is illustrated through simulated and real data examples.

  13. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Holoien, Thomas W.-S.; /Ohio State U., Dept. Astron. /Ohio State U., CCAPP /KIPAC, Menlo Park /SLAC; Marshall, Philip J.; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC

    2017-05-11

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  14. EmpiriciSN: Re-sampling Observed Supernova/Host Galaxy Populations Using an XD Gaussian Mixture Model

    Holoien, Thomas W.-S.; Marshall, Philip J.; Wechsler, Risa H.

    2017-06-01

    We describe two new open-source tools written in Python for performing extreme deconvolution Gaussian mixture modeling (XDGMM) and using a conditioned model to re-sample observed supernova and host galaxy populations. XDGMM is new program that uses Gaussian mixtures to perform density estimation of noisy data using extreme deconvolution (XD) algorithms. Additionally, it has functionality not available in other XD tools. It allows the user to select between the AstroML and Bovy et al. fitting methods and is compatible with scikit-learn machine learning algorithms. Most crucially, it allows the user to condition a model based on the known values of a subset of parameters. This gives the user the ability to produce a tool that can predict unknown parameters based on a model that is conditioned on known values of other parameters. EmpiriciSN is an exemplary application of this functionality, which can be used to fit an XDGMM model to observed supernova/host data sets and predict likely supernova parameters using a model conditioned on observed host properties. It is primarily intended to simulate realistic supernovae for LSST data simulations based on empirical galaxy properties.

  15. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking Neurons

    Pecevski, Dejan; Buesing, Lars; Maass, Wolfgang

    2011-01-01

    An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows (“explaining away”) and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons. PMID:22219717

  16. Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.

    Dejan Pecevski

    2011-12-01

    Full Text Available An important open problem of computational neuroscience is the generic organization of computations in networks of neurons in the brain. We show here through rigorous theoretical analysis that inherent stochastic features of spiking neurons, in combination with simple nonlinear computational operations in specific network motifs and dendritic arbors, enable networks of spiking neurons to carry out probabilistic inference through sampling in general graphical models. In particular, it enables them to carry out probabilistic inference in Bayesian networks with converging arrows ("explaining away" and with undirected loops, that occur in many real-world tasks. Ubiquitous stochastic features of networks of spiking neurons, such as trial-to-trial variability and spontaneous activity, are necessary ingredients of the underlying computational organization. We demonstrate through computer simulations that this approach can be scaled up to neural emulations of probabilistic inference in fairly large graphical models, yielding some of the most complex computations that have been carried out so far in networks of spiking neurons.

  17. InteractiveROSETTA: a graphical user interface for the PyRosetta protein modeling suite.

    Schenkelberg, Christian D; Bystroff, Christopher

    2015-12-15

    Modern biotechnical research is becoming increasingly reliant on computational structural modeling programs to develop novel solutions to scientific questions. Rosetta is one such protein modeling suite that has already demonstrated wide applicability to a number of diverse research projects. Unfortunately, Rosetta is largely a command-line-driven software package which restricts its use among non-computational researchers. Some graphical interfaces for Rosetta exist, but typically are not as sophisticated as commercial software. Here, we present InteractiveROSETTA, a graphical interface for the PyRosetta framework that presents easy-to-use controls for several of the most widely used Rosetta protocols alongside a sophisticated selection system utilizing PyMOL as a visualizer. InteractiveROSETTA is also capable of interacting with remote Rosetta servers, facilitating sophisticated protocols that are not accessible in PyRosetta or which require greater computational resources. InteractiveROSETTA is freely available at https://github.com/schenc3/InteractiveROSETTA/releases and relies upon a separate download of PyRosetta which is available at http://www.pyrosetta.org after obtaining a license (free for academic use). © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. ModelMuse - A Graphical User Interface for MODFLOW-2005 and PHAST

    Winston, Richard B.

    2009-01-01

    ModelMuse is a graphical user interface (GUI) for the U.S. Geological Survey (USGS) models MODFLOW-2005 and PHAST. This software package provides a GUI for creating the flow and transport input file for PHAST and the input files for MODFLOW-2005. In ModelMuse, the spatial data for the model is independent of the grid, and the temporal data is independent of the stress periods. Being able to input these data independently allows the user to redefine the spatial and temporal discretization at will. This report describes the basic concepts required to work with ModelMuse. These basic concepts include the model grid, data sets, formulas, objects, the method used to assign values to data sets, and model features. The ModelMuse main window has a top, front, and side view of the model that can be used for editing the model, and a 3-D view of the model that can be used to display properties of the model. ModelMuse has tools to generate and edit the model grid. It also has a variety of interpolation methods and geographic functions that can be used to help define the spatial variability of the model. ModelMuse can be used to execute both MODFLOW-2005 and PHAST and can also display the results of MODFLOW-2005 models. An example of using ModelMuse with MODFLOW-2005 is included in this report. Several additional examples are described in the help system for ModelMuse, which can be accessed from the Help menu.

  19. Gaussian mixture models for detection of autism spectrum disorders (ASD) in magnetic resonance imaging

    Almeida, Javier; Velasco, Nelson; Alvarez, Charlens; Romero, Eduardo

    2017-11-01

    Autism Spectrum Disorder (ASD) is a complex neurological condition characterized by a triad of signs: stereotyped behaviors, verbal and non-verbal communication problems. The scientific community has been interested on quantifying anatomical brain alterations of this disorder. Several studies have focused on measuring brain cortical and sub-cortical volumes. This article presents a fully automatic method which finds out differences among patients diagnosed with autism and control patients. After the usual pre-processing, a template (MNI152) is registered to an evaluated brain which becomes then a set of regions. Each of these regions is the represented by the normalized histogram of intensities which is approximated by mixture of Gaussian (GMM). The gray and white matter are separated to calculate the mean and standard deviation of each Gaussian. These features are then used to train, region per region, a binary SVM classifier. The method was evaluated in an adult population aged from 18 to 35 years, from the public database Autism Brain Imaging Data Exchange (ABIDE). Highest discrimination values were found for the Right Middle Temporal Gyrus, with an Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) the curve of 0.72.

  20. R graphics

    Murrell, Paul

    2005-01-01

    R is revolutionizing the world of statistical computing. Powerful, flexible, and best of all free, R is now the program of choice for tens of thousands of statisticians. Destined to become an instant classic, R Graphics presents the first complete, authoritative exposition on the R graphical system. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that takes nothing for granted and helps both neophyte and seasoned users master the intricacies of R graphics. After an introductory overview of R graphics facilities, the presentation first focuses

  1. Path generation algorithm for UML graphic modeling of aerospace test software

    Qu, MingCheng; Wu, XiangHu; Tao, YongChao; Chen, Chao

    2018-03-01

    Aerospace traditional software testing engineers are based on their own work experience and communication with software development personnel to complete the description of the test software, manual writing test cases, time-consuming, inefficient, loopholes and more. Using the high reliability MBT tools developed by our company, the one-time modeling can automatically generate test case documents, which is efficient and accurate. UML model to describe the process accurately express the need to rely on the path is reached, the existing path generation algorithm are too simple, cannot be combined into a path and branch path with loop, or too cumbersome, too complicated arrangement generates a path is meaningless, for aerospace software testing is superfluous, I rely on our experience of ten load space, tailor developed a description of aerospace software UML graphics path generation algorithm.

  2. REDUCED DATA FOR CURVE MODELING – APPLICATIONS IN GRAPHICS, COMPUTER VISION AND PHYSICS

    Małgorzata Janik

    2013-06-01

    Full Text Available In this paper we consider the problem of modeling curves in Rn via interpolation without a priori specified interpolation knots. We discuss two approaches to estimate the missing knots for non-parametric data (i.e. collection of points. The first approach (uniform evaluation is based on blind guess in which knots are chosen uniformly. The second approach (cumulative chord parameterization incorporates the geometry of the distribution of data points. More precisely, the difference is equal to the Euclidean distance between data points qi+1 and qi. The second method partially compensates for the loss of the information carried by the reduced data. We also present the application of the above schemes for fitting non-parametric data in computer graphics (light-source motion rendering, in computer vision (image segmentation and in physics (high velocity particles trajectory modeling. Though experiments are conducted for points in R2 and R3 the entire method is equally applicable in Rn.

  3. Fertility intentions and outcomes: Implementing the Theory of Planned Behavior with graphical models.

    Mencarini, Letizia; Vignoli, Daniele; Gottard, Anna

    2015-03-01

    This paper studies fertility intentions and their outcomes, analyzing the complete path leading to fertility behavior according to the social psychological model of Theory Planned Behavior (TPB). We move beyond existing research using graphical models to have a precise understanding, and a formal description, of the developmental fertility decision-making process. Our findings yield new results for the Italian case which are empirically robust and theoretically coherent, adding important insights to the effectiveness of the TPB for fertility research. In line with TPB, all intentions' primary antecedents are found to be determinants of the level of fertility intentions, but do not affect fertility outcomes, being pre-filtered by fertility intentions. Nevertheless, in contrast with TPB, background factors are not fully mediated by intentions' primary antecedents, influencing directly fertility intentions and even fertility behaviors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A scale-free structure prior for graphical models with applications in functional genomics.

    Paul Sheridan

    Full Text Available The problem of reconstructing large-scale, gene regulatory networks from gene expression data has garnered considerable attention in bioinformatics over the past decade with the graphical modeling paradigm having emerged as a popular framework for inference. Analysis in a full Bayesian setting is contingent upon the assignment of a so-called structure prior-a probability distribution on networks, encoding a priori biological knowledge either in the form of supplemental data or high-level topological features. A key topological consideration is that a wide range of cellular networks are approximately scale-free, meaning that the fraction, , of nodes in a network with degree is roughly described by a power-law with exponent between and . The standard practice, however, is to utilize a random structure prior, which favors networks with binomially distributed degree distributions. In this paper, we introduce a scale-free structure prior for graphical models based on the formula for the probability of a network under a simple scale-free network model. Unlike the random structure prior, its scale-free counterpart requires a node labeling as a parameter. In order to use this prior for large-scale network inference, we design a novel Metropolis-Hastings sampler for graphical models that includes a node labeling as a state space variable. In a simulation study, we demonstrate that the scale-free structure prior outperforms the random structure prior at recovering scale-free networks while at the same time retains the ability to recover random networks. We then estimate a gene association network from gene expression data taken from a breast cancer tumor study, showing that scale-free structure prior recovers hubs, including the previously unknown hub SLC39A6, which is a zinc transporter that has been implicated with the spread of breast cancer to the lymph nodes. Our analysis of the breast cancer expression data underscores the value of the scale

  5. Analytical modeling of subthreshold current and subthreshold swing of Gaussian-doped strained-Si-on-insulator MOSFETs

    Rawat, Gopal; Kumar, Sanjay; Goel, Ekta; Kumar, Mirgender; Jit, S.; Dubey, Sarvesh

    2014-01-01

    This paper presents the analytical modeling of subthreshold current and subthreshold swing of short-channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping profile in the channel. The subthreshold current and subthreshold swing have been derived using the parabolic approximation method. In addition to the effect of strain on silicon layer, various other device parameters such as channel length (L), gate-oxide thickness (t ox ), strained-Si channel thickness (t s-Si ), peak doping concentration (N P ), project range (R p ) and straggle (σ p ) of the Gaussian profile have been considered while predicting the device characteristics. The present work may help to overcome the degradation in subthreshold characteristics with strain engineering. These subthreshold current and swing models provide valuable information for strained-Si MOSFET design. Accuracy of the proposed models is verified using the commercially available ATLAS™, a two-dimensional (2D) device simulator from SILVACO. (semiconductor devices)

  6. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models.

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L

    2016-02-07

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  7. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    Schellenberg, Graham; Goertzen, Andrew L; Stortz, Greg

    2016-01-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x–y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5–82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  8. An algorithm for automatic crystal identification in pixelated scintillation detectors using thin plate splines and Gaussian mixture models

    Schellenberg, Graham; Stortz, Greg; Goertzen, Andrew L.

    2016-02-01

    A typical positron emission tomography detector is comprised of a scintillator crystal array coupled to a photodetector array or other position sensitive detector. Such detectors using light sharing to read out crystal elements require the creation of a crystal lookup table (CLUT) that maps the detector response to the crystal of interaction based on the x-y position of the event calculated through Anger-type logic. It is vital for system performance that these CLUTs be accurate so that the location of events can be accurately identified and so that crystal-specific corrections, such as energy windowing or time alignment, can be applied. While using manual segmentation of the flood image to create the CLUT is a simple and reliable approach, it is both tedious and time consuming for systems with large numbers of crystal elements. In this work we describe the development of an automated algorithm for CLUT generation that uses a Gaussian mixture model paired with thin plate splines (TPS) to iteratively fit a crystal layout template that includes the crystal numbering pattern. Starting from a region of stability, Gaussians are individually fit to data corresponding to crystal locations while simultaneously updating a TPS for predicting future Gaussian locations at the edge of a region of interest that grows as individual Gaussians converge to crystal locations. The algorithm was tested with flood image data collected from 16 detector modules, each consisting of a 409 crystal dual-layer offset LYSO crystal array readout by a 32 pixel SiPM array. For these detector flood images, depending on user defined input parameters, the algorithm runtime ranged between 17.5-82.5 s per detector on a single core of an Intel i7 processor. The method maintained an accuracy above 99.8% across all tests, with the majority of errors being localized to error prone corner regions. This method can be easily extended for use with other detector types through adjustment of the initial

  9. Scale dependence of the halo bias in general local-type non-Gaussian models I: analytical predictions and consistency relations

    Nishimichi, Takahiro

    2012-01-01

    The large-scale clustering pattern of biased tracers is known to be a powerful probe of the non-Gaussianities in the primordial fluctuations. The so-called scale-dependent bias has been reported in various type of models of primordial non-Gaussianities. We focus on local-type non-Gaussianities, and unify the derivations in the literature of the scale-dependent bias in the presence of multiple Gaussian source fields as well as higher-order coupling to cover the models described by frequently-discussed f NL , g NL and t NL parameterization. We find that the resultant power spectrum is characterized by two parameters responsible for the shape and the amplitude of the scale-dependent bias in addition to the Gaussian bias factor. We show how (a generalized version of) Suyama-Yamaguchi inequality between f NL and t NL can directly be accessible from the observed power spectrum through the dependence on our new parameter which controls the shape of the scale-dependent bias. The other parameter for the amplitude of the scale-dependent bias is shown to be useful to distinguish the simplest quadratic non-Gaussianities (i.e., f NL -type) from higher-order ones (g NL and higher), if one measures it from multiple species of galaxies or clusters of galaxies. We discuss the validity and limitations of our analytic results by comparison with numerical simulations in an accompanying paper

  10. Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations

    Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.

    2018-06-01

    We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.

  11. The impact of covariance misspecification in multivariate Gaussian mixtures on estimation and inference: an application to longitudinal modeling.

    Heggeseth, Brianna C; Jewell, Nicholas P

    2013-07-20

    Multivariate Gaussian mixtures are a class of models that provide a flexible parametric approach for the representation of heterogeneous multivariate outcomes. When the outcome is a vector of repeated measurements taken on the same subject, there is often inherent dependence between observations. However, a common covariance assumption is conditional independence-that is, given the mixture component label, the outcomes for subjects are independent. In this paper, we study, through asymptotic bias calculations and simulation, the impact of covariance misspecification in multivariate Gaussian mixtures. Although maximum likelihood estimators of regression and mixing probability parameters are not consistent under misspecification, they have little asymptotic bias when mixture components are well separated or if the assumed correlation is close to the truth even when the covariance is misspecified. We also present a robust standard error estimator and show that it outperforms conventional estimators in simulations and can indicate that the model is misspecified. Body mass index data from a national longitudinal study are used to demonstrate the effects of misspecification on potential inferences made in practice. Copyright © 2013 John Wiley & Sons, Ltd.

  12. Model Selection and Accounting for Model Uncertainty in Graphical Models Using OCCAM’s Window

    1991-07-22

    mental work; C, strenuous physical work; D, systolic blood pressure: E. ratio of 13 and Qt proteins; F, family anamnesis of coronary heart disease...of F, family anamnesis . The models are shown in Figure 4. 12 Table 1: Risk factors for Coronary lfeart Disea:W B No Yes A No Yes No Yes F E D C...a link from smoking (A) to systolic blood pressure (D). There is decisive evidence in favour of the marginal independence of family anamnesis of

  13. Two graphical user interfaces for managing and analyzing MODFLOW groundwater-model scenarios

    Banta, Edward R.

    2014-01-01

    Scenario Manager and Scenario Analyzer are graphical user interfaces that facilitate the use of calibrated, MODFLOW-based groundwater models for investigating possible responses to proposed stresses on a groundwater system. Scenario Manager allows a user, starting with a calibrated model, to design and run model scenarios by adding or modifying stresses simulated by the model. Scenario Analyzer facilitates the process of extracting data from model output and preparing such display elements as maps, charts, and tables. Both programs are designed for users who are familiar with the science on which groundwater modeling is based but who may not have a groundwater modeler’s expertise in building and calibrating a groundwater model from start to finish. With Scenario Manager, the user can manipulate model input to simulate withdrawal or injection wells, time-variant specified hydraulic heads, recharge, and such surface-water features as rivers and canals. Input for stresses to be simulated comes from user-provided geographic information system files and time-series data files. A Scenario Manager project can contain multiple scenarios and is self-documenting. Scenario Analyzer can be used to analyze output from any MODFLOW-based model; it is not limited to use with scenarios generated by Scenario Manager. Model-simulated values of hydraulic head, drawdown, solute concentration, and cell-by-cell flow rates can be presented in display elements. Map data can be represented as lines of equal value (contours) or as a gradated color fill. Charts and tables display time-series data obtained from output generated by a transient-state model run or from user-provided text files of time-series data. A display element can be based entirely on output of a single model run, or, to facilitate comparison of results of multiple scenarios, an element can be based on output from multiple model runs. Scenario Analyzer can export display elements and supporting metadata as a Portable

  14. Introduction of a methodology for visualization and graphical interpretation of Bayesian classification models.

    Balfer, Jenny; Bajorath, Jürgen

    2014-09-22

    Supervised machine learning models are widely used in chemoinformatics, especially for the prediction of new active compounds or targets of known actives. Bayesian classification methods are among the most popular machine learning approaches for the prediction of activity from chemical structure. Much work has focused on predicting structure-activity relationships (SARs) on the basis of experimental training data. By contrast, only a few efforts have thus far been made to rationalize the performance of Bayesian or other supervised machine learning models and better understand why they might succeed or fail. In this study, we introduce an intuitive approach for the visualization and graphical interpretation of naïve Bayesian classification models. Parameters derived during supervised learning are visualized and interactively analyzed to gain insights into model performance and identify features that determine predictions. The methodology is introduced in detail and applied to assess Bayesian modeling efforts and predictions on compound data sets of varying structural complexity. Different classification models and features determining their performance are characterized in detail. A prototypic implementation of the approach is provided.

  15. Gaussian process regression analysis for functional data

    Shi, Jian Qing

    2011-01-01

    Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime

  16. Glossiness of Colored Papers based on Computer Graphics Model and Its Measuring Method

    Aida, Teizo

    In the case of colored papers, the color of surface effects strongly upon the gloss of its paper. The new glossiness for such a colored paper is suggested in this paper. First, using the Achromatic and Chromatic Munsell colored chips, the author obtained experimental equation which represents the relation between lightness V ( or V and saturation C ) and psychological glossiness Gph of these chips. Then, the author defined a new glossiness G for the colored papers, based on the above mentioned experimental equations Gph and Cook-Torrance's reflection model which are widely used in the filed of Computer Graphics. This new glossiness is shown to be nearly proportional to the psychological glossiness Gph. The measuring system for the new glossiness G is furthermore descrived. The measuring time for one specimen is within 1 minute.

  17. Shaded computer graphic techniques for visualizing and interpreting analytic fluid flow models

    Parke, F. I.

    1981-01-01

    Mathematical models which predict the behavior of fluid flow in different experiments are simulated using digital computers. The simulations predict values of parameters of the fluid flow (pressure, temperature and velocity vector) at many points in the fluid. Visualization of the spatial variation in the value of these parameters is important to comprehend and check the data generated, to identify the regions of interest in the flow, and for effectively communicating information about the flow to others. The state of the art imaging techniques developed in the field of three dimensional shaded computer graphics is applied to visualization of fluid flow. Use of an imaging technique known as 'SCAN' for visualizing fluid flow, is studied and the results are presented.

  18. uPy: a ubiquitous computer graphics Python API with Biological Modeling Applications

    Autin, L.; Johnson, G.; Hake, J.; Olson, A.; Sanner, M.

    2015-01-01

    In this paper we describe uPy, an extension module for the Python programming language that provides a uniform abstraction of the APIs of several 3D computer graphics programs called hosts, including: Blender, Maya, Cinema4D, and DejaVu. A plugin written with uPy is a unique piece of code that will run in all uPy-supported hosts. We demonstrate the creation of complex plug-ins for molecular/cellular modeling and visualization and discuss how uPy can more generally simplify programming for many types of projects (not solely science applications) intended for multi-host distribution. uPy is available at http://upy.scripps.edu PMID:24806987

  19. Generalization of the Gaussian electrostatic model: Extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods

    Cisneros, G. Andrés; Piquemal, Jean-Philip; Darden, Thomas A.

    2006-11-01

    The simulation of biological systems by means of current empirical force fields presents shortcomings due to their lack of accuracy, especially in the description of the nonbonded terms. We have previously introduced a force field based on density fitting termed the Gaussian electrostatic model-0 (GEM-0) J.-P. Piquemal et al. [J. Chem. Phys. 124, 104101 (2006)] that improves the description of the nonbonded interactions. GEM-0 relies on density fitting methodology to reproduce each contribution of the constrained space orbital variation (CSOV) energy decomposition scheme, by expanding the electronic density of the molecule in s-type Gaussian functions centered at specific sites. In the present contribution we extend the Coulomb and exchange components of the force field to auxiliary basis sets of arbitrary angular momentum. Since the basis functions with higher angular momentum have directionality, a reference molecular frame (local frame) formalism is employed for the rotation of the fitted expansion coefficients. In all cases the intermolecular interaction energies are calculated by means of Hermite Gaussian functions using the McMurchie-Davidson [J. Comput. Phys. 26, 218 (1978)] recursion to calculate all the required integrals. Furthermore, the use of Hermite Gaussian functions allows a point multipole decomposition determination at each expansion site. Additionally, the issue of computational speed is investigated by reciprocal space based formalisms which include the particle mesh Ewald (PME) and fast Fourier-Poisson (FFP) methods. Frozen-core (Coulomb and exchange-repulsion) intermolecular interaction results for ten stationary points on the water dimer potential-energy surface, as well as a one-dimensional surface scan for the canonical water dimer, formamide, stacked benzene, and benzene water dimers, are presented. All results show reasonable agreement with the corresponding CSOV calculated reference contributions, around 0.1 and 0.15kcal/mol error for

  20. An Improved Mixture-of-Gaussians Background Model with Frame Difference and Blob Tracking in Video Stream

    Li Yao

    2014-01-01

    Full Text Available Modeling background and segmenting moving objects are significant techniques for computer vision applications. Mixture-of-Gaussians (MoG background model is commonly used in foreground extraction in video steam. However considering the case that the objects enter the scenery and stay for a while, the foreground extraction would fail as the objects stay still and gradually merge into the background. In this paper, we adopt a blob tracking method to cope with this situation. To construct the MoG model more quickly, we add frame difference method to the foreground extracted from MoG for very crowded situations. What is more, a new shadow removal method based on RGB color space is proposed.

  1. Event rate and reaction time performance in ADHD: Testing predictions from the state regulation deficit hypothesis using an ex-Gaussian model.

    Metin, Baris; Wiersema, Jan R; Verguts, Tom; Gasthuys, Roos; van Der Meere, Jacob J; Roeyers, Herbert; Sonuga-Barke, Edmund

    2014-12-06

    According to the state regulation deficit (SRD) account, ADHD is associated with a problem using effort to maintain an optimal activation state under demanding task settings such as very fast or very slow event rates. This leads to a prediction of disrupted performance at event rate extremes reflected in higher Gaussian response variability that is a putative marker of activation during motor preparation. In the current study, we tested this hypothesis using ex-Gaussian modeling, which distinguishes Gaussian from non-Gaussian variability. Twenty-five children with ADHD and 29 typically developing controls performed a simple Go/No-Go task under four different event-rate conditions. There was an accentuated quadratic relationship between event rate and Gaussian variability in the ADHD group compared to the controls. The children with ADHD had greater Gaussian variability at very fast and very slow event rates but not at moderate event rates. The results provide evidence for the SRD account of ADHD. However, given that this effect did not explain all group differences (some of which were independent of event rate) other cognitive and/or motivational processes are also likely implicated in ADHD performance deficits.

  2. Mathematical structures for computer graphics

    Janke, Steven J

    2014-01-01

    A comprehensive exploration of the mathematics behind the modeling and rendering of computer graphics scenes Mathematical Structures for Computer Graphics presents an accessible and intuitive approach to the mathematical ideas and techniques necessary for two- and three-dimensional computer graphics. Focusing on the significant mathematical results, the book establishes key algorithms used to build complex graphics scenes. Written for readers with various levels of mathematical background, the book develops a solid foundation for graphics techniques and fills in relevant grap

  3. Higher-order ice-sheet modelling accelerated by multigrid on graphics cards

    Brædstrup, Christian; Egholm, David

    2013-04-01

    Higher-order ice flow modelling is a very computer intensive process owing primarily to the nonlinear influence of the horizontal stress coupling. When applied for simulating long-term glacial landscape evolution, the ice-sheet models must consider very long time series, while both high temporal and spatial resolution is needed to resolve small effects. The use of higher-order and full stokes models have therefore seen very limited usage in this field. However, recent advances in graphics card (GPU) technology for high performance computing have proven extremely efficient in accelerating many large-scale scientific computations. The general purpose GPU (GPGPU) technology is cheap, has a low power consumption and fits into a normal desktop computer. It could therefore provide a powerful tool for many glaciologists working on ice flow models. Our current research focuses on utilising the GPU as a tool in ice-sheet and glacier modelling. To this extent we have implemented the Integrated Second-Order Shallow Ice Approximation (iSOSIA) equations on the device using the finite difference method. To accelerate the computations, the GPU solver uses a non-linear Red-Black Gauss-Seidel iterator coupled with a Full Approximation Scheme (FAS) multigrid setup to further aid convergence. The GPU finite difference implementation provides the inherent parallelization that scales from hundreds to several thousands of cores on newer cards. We demonstrate the efficiency of the GPU multigrid solver using benchmark experiments.

  4. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  5. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Marcello Benedetti

    2017-11-01

    Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  6. Gaussian curvature elasticity determined from global shape transformations and local stress distributions: a comparative study using the MARTINI model.

    Hu, Mingyang; de Jong, Djurre H; Marrink, Siewert J; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus kappa of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We find the value kappa/kappa = -1.04 +/- 0.03 for the elastic ratio between the Gaussian and the mean curvature modulus and deduce kappa(m)/kappa(m) = -0.98 +/- 0.09 for the monolayer elastic ratio, where the latter is based on plausible assumptions for the distance z0 of the monolayer neutral surface from the bilayer midplane and the spontaneous lipid curvature K(0m). By also analyzing the lateral stress profile sigma0(z) of our system, two other lipid types and pertinent data from the literature, we show that determining K(0m) and kappa through the first and second moment of sigma0(z) gives rise to physically implausible values for these observables. This discrepancy, which we previously observed for a much simpler CG model, suggests that the moment conditions derived from simple continuum assumptions miss the effect of physically important correlations in the lipid bilayer.

  7. Repositioning the knee joint in human body FE models using a graphics-based technique.

    Jani, Dhaval; Chawla, Anoop; Mukherjee, Sudipto; Goyal, Rahul; Vusirikala, Nataraju; Jayaraman, Suresh

    2012-01-01

    Human body finite element models (FE-HBMs) are available in standard occupant or pedestrian postures. There is a need to have FE-HBMs in the same posture as a crash victim or to be configured in varying postures. Developing FE models for all possible positions is not practically viable. The current work aims at obtaining a posture-specific human lower extremity model by reconfiguring an existing one. A graphics-based technique was developed to reposition the lower extremity of an FE-HBM by specifying the flexion-extension angle. Elements of the model were segregated into rigid (bones) and deformable components (soft tissues). The bones were rotated about the flexion-extension axis followed by rotation about the longitudinal axis to capture the twisting of the tibia. The desired knee joint movement was thus achieved. Geometric heuristics were then used to reposition the skin. A mapping defined over the space between bones and the skin was used to regenerate the soft tissues. Mesh smoothing was then done to augment mesh quality. The developed method permits control over the kinematics of the joint and maintains the initial mesh quality of the model. For some critical areas (in the joint vicinity) where element distortion is large, mesh smoothing is done to improve mesh quality. A method to reposition the knee joint of a human body FE model was developed. Repositions of a model from 9 degrees of flexion to 90 degrees of flexion in just a few seconds without subjective interventions was demonstrated. Because the mesh quality of the repositioned model was maintained to a predefined level (typically to the level of a well-made model in the initial configuration), the model was suitable for subsequent simulations.

  8. Utilizing General Purpose Graphics Processing Units to Improve Performance of Computer Modelling and Visualization

    Monk, J.; Zhu, Y.; Koons, P. O.; Segee, B. E.

    2009-12-01

    With the introduction of the G8X series of cards by nVidia an architecture called CUDA was released, virtually all subsequent video cards have had CUDA support. With this new architecture nVidia provided extensions for C/C++ that create an Application Programming Interface (API) allowing code to be executed on the GPU. Since then the concept of GPGPU (general purpose graphics processing unit) has been growing, this is the concept that the GPU is very good a algebra and running things in parallel so we should take use of that power for other applications. This is highly appealing in the area of geodynamic modeling, as multiple parallel solutions of the same differential equations at different points in space leads to a large speedup in simulation speed. Another benefit of CUDA is a programmatic method of transferring large amounts of data between the computer's main memory and the dedicated GPU memory located on the video card. In addition to being able to compute and render on the video card, the CUDA framework allows for a large speedup in the situation, such as with a tiled display wall, where the rendered pixels are to be displayed in a different location than where they are rendered. A CUDA extension for VirtualGL was developed allowing for faster read back at high resolutions. This paper examines several aspects of rendering OpenGL graphics on large displays using VirtualGL and VNC. It demonstrates how performance can be significantly improved in rendering on a tiled monitor wall. We present a CUDA enhanced version of VirtualGL as well as the advantages to having multiple VNC servers. It will discuss restrictions caused by read back and blitting rates and how they are affected by different sizes of virtual displays being rendered.

  9. A Curriculum Model: Engineering Design Graphics Course Updates Based on Industrial and Academic Institution Requirements

    Meznarich, R. A.; Shava, R. C.; Lightner, S. L.

    2009-01-01

    Engineering design graphics courses taught in colleges or universities should provide and equip students preparing for employment with the basic occupational graphics skill competences required by engineering and technology disciplines. Academic institutions should introduce and include topics that cover the newer and more efficient graphics…

  10. Gaussian Plume Model Parameters for Ground-Level and Elevated Sources Derived from the Atmospheric Diffusion Equation in the Neutral and Stable Conditions

    Essa, K.S.M.

    2009-01-01

    The analytical solution of the atmospheric diffusion equation for a point source gives the ground-level concentration profiles. It depends on the wind speed ua nd vertical dispersion coefficient σ z expressed by Pasquill power laws. Both σ z and u are functions of downwind distance, stability and source elevation, while for the ground-level emission u is constant. In the neutral and stable conditions, the Gaussian plume model and finite difference numerical methods with wind speed in power law and the vertical dispersion coefficient in exponential law are estimated. This work shows that the estimated ground-level concentrations of the Gaussian model for high-level source and numerical finite difference method are very match fit to the observed ground-level concentrations of the Gaussian model

  11. Frequency Characteristics of Surface Wave Generated by Single-Line Pulsed Laser Beam with Two Kinds of Spatial Energy Profile Models: Gaussian and Square-Like

    Seo, Ho Geon; Kim, Myung Hwan; Choi, Sung Ho; Kim, Chung Seok; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2012-08-15

    Using a single-line pulsed laser beam is well known as a useful noncontact method to generate a directional surface acoustic wave. In this method, different laser beam energy profiles produce different waveforms and frequency characteristics. In this paper, we considered two typical kinds of laser beam energy profiles, Gaussian and square-like, to find out a difference in the frequency characteristics. To achieve this, mathematical models were proposed first for Gaussian laser beam profile and square-like respectively, both of which depended on the laser beam width. To verify the theoretical models, experimental setups with a cylindrical lens and a line-slit mask were respectively designed to produce a line laser beam with Gaussian spatial energy profile and square-like. The frequency responses of the theoretical models showed good agreement with experimental results in terms of the existence of harmonic frequency components and the shift of the first peak frequencies to low.

  12. Pairwise graphical models for structural health monitoring with dense sensor arrays

    Mohammadi Ghazi, Reza; Chen, Justin G.; Büyüköztürk, Oral

    2017-09-01

    Through advances in sensor technology and development of camera-based measurement techniques, it has become affordable to obtain high spatial resolution data from structures. Although measured datasets become more informative by increasing the number of sensors, the spatial dependencies between sensor data are increased at the same time. Therefore, appropriate data analysis techniques are needed to handle the inference problem in presence of these dependencies. In this paper, we propose a novel approach that uses graphical models (GM) for considering the spatial dependencies between sensor measurements in dense sensor networks or arrays to improve damage localization accuracy in structural health monitoring (SHM) application. Because there are always unobserved damaged states in this application, the available information is insufficient for learning the GMs. To overcome this challenge, we propose an approximated model that uses the mutual information between sensor measurements to learn the GMs. The study is backed by experimental validation of the method on two test structures. The first is a three-story two-bay steel model structure that is instrumented by MEMS accelerometers. The second experimental setup consists of a plate structure and a video camera to measure the displacement field of the plate. Our results show that considering the spatial dependencies by the proposed algorithm can significantly improve damage localization accuracy.

  13. Graphic Storytelling

    Thompson, John

    2009-01-01

    Graphic storytelling is a medium that allows students to make and share stories, while developing their art communication skills. American comics today are more varied in genre, approach, and audience than ever before. When considering the impact of Japanese manga on the youth, graphic storytelling emerges as a powerful player in pop culture. In…

  14. A graphical method for reducing and relating models in systems biology.

    Gay, Steven; Soliman, Sylvain; Fages, François

    2010-09-15

    In Systems Biology, an increasing collection of models of various biological processes is currently developed and made available in publicly accessible repositories, such as biomodels.net for instance, through common exchange formats such as SBML. To date, however, there is no general method to relate different models to each other by abstraction or reduction relationships, and this task is left to the modeler for re-using and coupling models. In mathematical biology, model reduction techniques have been studied for a long time, mainly in the case where a model exhibits different time scales, or different spatial phases, which can be analyzed separately. These techniques are however far too restrictive to be applied on a large scale in systems biology, and do not take into account abstractions other than time or phase decompositions. Our purpose here is to propose a general computational method for relating models together, by considering primarily the structure of the interactions and abstracting from their dynamics in a first step. We present a graph-theoretic formalism with node merge and delete operations, in which model reductions can be studied as graph matching problems. From this setting, we derive an algorithm for deciding whether there exists a reduction from one model to another, and evaluate it on the computation of the reduction relations between all SBML models of the biomodels.net repository. In particular, in the case of the numerous models of MAPK signalling, and of the circadian clock, biologically meaningful mappings between models of each class are automatically inferred from the structure of the interactions. We conclude on the generality of our graphical method, on its limits with respect to the representation of the structure of the interactions in SBML, and on some perspectives for dealing with the dynamics. The algorithms described in this article are implemented in the open-source software modeling platform BIOCHAM available at http

  15. Gaussian-Based Smooth Dielectric Function: A Surface-Free Approach for Modeling Macromolecular Binding in Solvents

    Arghya Chakravorty

    2018-03-01

    Full Text Available Conventional modeling techniques to model macromolecular solvation and its effect on binding in the framework of Poisson-Boltzmann based implicit solvent models make use of a geometrically defined surface to depict the separation of macromolecular interior (low dielectric constant from the solvent phase (high dielectric constant. Though this simplification saves time and computational resources without significantly compromising the accuracy of free energy calculations, it bypasses some of the key physio-chemical properties of the solute-solvent interface, e.g., the altered flexibility of water molecules and that of side chains at the interface, which results in dielectric properties different from both bulk water and macromolecular interior, respectively. Here we present a Gaussian-based smooth dielectric model, an inhomogeneous dielectric distribution model that mimics the effect of macromolecular flexibility and captures the altered properties of surface bound water molecules. Thus, the model delivers a smooth transition of dielectric properties from the macromolecular interior to the solvent phase, eliminating any unphysical surface separating the two phases. Using various examples of macromolecular binding, we demonstrate its utility and illustrate the comparison with the conventional 2-dielectric model. We also showcase some additional abilities of this model, viz. to account for the effect of electrolytes in the solution and to render the distribution profile of water across a lipid membrane.

  16. An Improved Gaussian Mixture Model for Damage Propagation Monitoring of an Aircraft Wing Spar under Changing Structural Boundary Conditions

    Qiu, Lei; Yuan, Shenfang; Mei, Hanfei; Fang, Fang

    2016-01-01

    Structural Health Monitoring (SHM) technology is considered to be a key technology to reduce the maintenance cost and meanwhile ensure the operational safety of aircraft structures. It has gradually developed from theoretic and fundamental research to real-world engineering applications in recent decades. The problem of reliable damage monitoring under time-varying conditions is a main issue for the aerospace engineering applications of SHM technology. Among the existing SHM methods, Guided Wave (GW) and piezoelectric sensor-based SHM technique is a promising method due to its high damage sensitivity and long monitoring range. Nevertheless the reliability problem should be addressed. Several methods including environmental parameter compensation, baseline signal dependency reduction and data normalization, have been well studied but limitations remain. This paper proposes a damage propagation monitoring method based on an improved Gaussian Mixture Model (GMM). It can be used on-line without any structural mechanical model and a priori knowledge of damage and time-varying conditions. With this method, a baseline GMM is constructed first based on the GW features obtained under time-varying conditions when the structure under monitoring is in the healthy state. When a new GW feature is obtained during the on-line damage monitoring process, the GMM can be updated by an adaptive migration mechanism including dynamic learning and Gaussian components split-merge. The mixture probability distribution structure of the GMM and the number of Gaussian components can be optimized adaptively. Then an on-line GMM can be obtained. Finally, a best match based Kullback-Leibler (KL) divergence is studied to measure the migration degree between the baseline GMM and the on-line GMM to reveal the weak cumulative changes of the damage propagation mixed in the time-varying influence. A wing spar of an aircraft is used to validate the proposed method. The results indicate that the crack

  17. Integrating a street-canyon model with a regional Gaussian dispersion model for improved characterisation of near-road air pollution

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-03-01

    The development and use of dispersion models that simulate traffic-related air pollution in urban areas has risen significantly in support of air pollution exposure research. In order to accurately estimate population exposure, it is important to generate concentration surfaces that take into account near-road concentrations as well as the transport of pollutants throughout an urban region. In this paper, an integrated modelling chain was developed to simulate ambient Nitrogen Dioxide (NO2) in a dense urban neighbourhood while taking into account traffic emissions, the regional background, and the transport of pollutants within the urban canopy. For this purpose, we developed a hybrid configuration including 1) a street canyon model, which simulates pollutant transfer along streets and intersections, taking into account the geometry of buildings and other obstacles, and 2) a Gaussian puff model, which resolves the transport of contaminants at the top of the urban canopy and accounts for regional meteorology. Each dispersion model was validated against measured concentrations and compared against the hybrid configuration. Our results demonstrate that the hybrid approach significantly improves the output of each model on its own. An underestimation appears clearly for the Gaussian model and street-canyon model compared to observed data. This is due to ignoring the building effect by the Gaussian model and undermining the contribution of other roads by the canyon model. The hybrid approach reduced the RMSE (of observed vs. predicted concentrations) by 16%-25% compared to each model on its own, and increased FAC2 (fraction of predictions within a factor of two of the observations) by 10%-34%.

  18. THREE-DIMENSIONAL MODELING TOOLS IN THE PROCESS OF FORMATION OF GRAPHIC COMPETENCE OF THE FUTURE BACHELOR OF COMPUTER SCIENCE

    Kateryna P. Osadcha

    2017-12-01

    Full Text Available The article is devoted to some aspects of the formation of future bachelor's graphic competence in computer sciences while teaching the fundamentals for working with three-dimensional modelling means. The analysis, classification and systematization of three-dimensional modelling means are given. The aim of research consists in investigating the set of instruments and classification of three-dimensional modelling means and correlation of skills, which are being formed, concerning inquired ones at the labour market in order to use them further in the process of forming graphic competence during training future bachelors in computer sciences. The peculiarities of the process of forming future bachelor's graphic competence in computer sciences by means of revealing, analyzing and systematizing three-dimensional modelling means and types of three-dimensional graphics at present stage of the development of informational technologies are traced a line round. The result of the research is a soft-ware choice in three-dimensional modelling for the process of training future bachelors in computer sciences.

  19. Fiber-coupling efficiency of Gaussian-Schell model beams through an ocean to fiber optical communication link

    Hu, Beibei; Shi, Haifeng; Zhang, Yixin

    2018-06-01

    We theoretically study the fiber-coupling efficiency of Gaussian-Schell model beams propagating through oceanic turbulence. The expression of the fiber-coupling efficiency is derived based on the spatial power spectrum of oceanic turbulence and the cross-spectral density function. Our work shows that the salinity fluctuation has a greater impact on the fiber-coupling efficiency than temperature fluctuation does. We can select longer λ in the "ocean window" and higher spatial coherence of light source to improve the fiber-coupling efficiency of the communication link. We also can achieve the maximum fiber-coupling efficiency by choosing design parameter according specific oceanic turbulence condition. Our results are able to help the design of optical communication link for oceanic turbulence to fiber sensor.

  20. FPGA Implementation of Gaussian Mixture Model Algorithm for 47 fps Segmentation of 1080p Video

    Mariangela Genovese

    2013-01-01

    Full Text Available Circuits and systems able to process high quality video in real time are fundamental in nowadays imaging systems. The circuit proposed in the paper, aimed at the robust identification of the background in video streams, implements the improved formulation of the Gaussian Mixture Model (GMM algorithm that is included in the OpenCV library. An innovative, hardware oriented, formulation of the GMM equations, the use of truncated binary multipliers, and ROM compression techniques allow reduced hardware complexity and increased processing capability. The proposed circuit has been designed having commercial FPGA devices as target and provides speed and logic resources occupation that overcome previously proposed implementations. The circuit, when implemented on Virtex6 or StratixIV, processes more than 45 frame per second in 1080p format and uses few percent of FPGA logic resources.

  1. A New Multi-Gaussian Auto-Correlation Function for the Modeling of Realistic Shot Peened Random Rough Surfaces

    Hassan, W.; Blodgett, M.

    2006-01-01

    Shot peening is the primary surface treatment used to create a uniform, consistent, and reliable sub-surface compressive residual stress layer in aero engine components. A by-product of the shot peening process is random surface roughness that can affect the measurements of the resulting residual stresses and therefore impede their NDE assessment. High frequency eddy current conductivity measurements have the potential to assess these residual stresses in Ni-base super alloys. However, the effect of random surface roughness is expected to become significant in the desired measurement frequency range of 10 to 100 MHz. In this paper, a new Multi-Gaussian (MG) auto-correlation function is proposed for modeling the resulting pseudo-random rough profiles. Its use in the calculation of the Apparent Eddy Current Conductivity (AECC) loss due to surface roughness is demonstrated. The numerical results presented need to be validated with experimental measurements

  2. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  3. Architectural Theory and Graphical Criteria for Modelling Certain Late Gothic Projects by Hernan Ruiz "the Elder"

    Antonio Luis Ampliato Briones

    2014-10-01

    Full Text Available This paper primarily reflects on the need to create graphical codes for producing images intended to communicate architecture. Each step of the drawing needs to be a deliberate process in which the proposed code highlights the relationship between architectural theory and graphic action. Our aim is not to draw the result of the architectural process but the design structure of the actual process; to draw as we design; to draw as we build. This analysis of the work of the Late Gothic architect Hernan Ruiz the Elder, from Cordoba, addresses two aspects: the historical and architectural investigation, and the graphical project for communication purposes.

  4. An Efficient Implementation of Track-Oriented Multiple Hypothesis Tracker Using Graphical Model Approaches

    Jinping Sun

    2017-01-01

    Full Text Available The multiple hypothesis tracker (MHT is currently the preferred method for addressing data association problem in multitarget tracking (MTT application. MHT seeks the most likely global hypothesis by enumerating all possible associations over time, which is equal to calculating maximum a posteriori (MAP estimate over the report data. Despite being a well-studied method, MHT remains challenging mostly because of the computational complexity of data association. In this paper, we describe an efficient method for solving the data association problem using graphical model approaches. The proposed method uses the graph representation to model the global hypothesis formation and subsequently applies an efficient message passing algorithm to obtain the MAP solution. Specifically, the graph representation of data association problem is formulated as a maximum weight independent set problem (MWISP, which translates the best global hypothesis formation into finding the maximum weight independent set on the graph. Then, a max-product belief propagation (MPBP inference algorithm is applied to seek the most likely global hypotheses with the purpose of avoiding a brute force hypothesis enumeration procedure. The simulation results show that the proposed MPBP-MHT method can achieve better tracking performance than other algorithms in challenging tracking situations.

  5. Incorporating networks in a probabilistic graphical model to find drivers for complex human diseases.

    Mezlini, Aziz M; Goldenberg, Anna

    2017-10-01

    Discovering genetic mechanisms driving complex diseases is a hard problem. Existing methods often lack power to identify the set of responsible genes. Protein-protein interaction networks have been shown to boost power when detecting gene-disease associations. We introduce a Bayesian framework, Conflux, to find disease associated genes from exome sequencing data using networks as a prior. There are two main advantages to using networks within a probabilistic graphical model. First, networks are noisy and incomplete, a substantial impediment to gene discovery. Incorporating networks into the structure of a probabilistic models for gene inference has less impact on the solution than relying on the noisy network structure directly. Second, using a Bayesian framework we can keep track of the uncertainty of each gene being associated with the phenotype rather than returning a fixed list of genes. We first show that using networks clearly improves gene detection compared to individual gene testing. We then show consistently improved performance of Conflux compared to the state-of-the-art diffusion network-based method Hotnet2 and a variety of other network and variant aggregation methods, using randomly generated and literature-reported gene sets. We test Hotnet2 and Conflux on several network configurations to reveal biases and patterns of false positives and false negatives in each case. Our experiments show that our novel Bayesian framework Conflux incorporates many of the advantages of the current state-of-the-art methods, while offering more flexibility and improved power in many gene-disease association scenarios.

  6. Configuring a Graphical User Interface for Managing Local HYSPLIT Model Runs Through AWIPS

    Wheeler, mark M.; Blottman, Peter F.; Sharp, David W.; Hoeth, Brian; VanSpeybroeck, Kurt M.

    2009-01-01

    Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.

  7. Additivity of statistical moments in the exponentially modified Gaussian model of chromatography

    Howerton, Samuel B.; Lee Chomin; McGuffin, Victoria L.

    2002-01-01

    A homologous series of saturated fatty acids ranging from C 10 to C 22 was separated by reversed-phase capillary liquid chromatography. The resultant zone profiles were found to be fit best by an exponentially modified Gaussian (EMG) function. To compare the EMG function and statistical moments for the analysis of the experimental zone profiles, a series of simulated profiles was generated by using fixed values for retention time and different values for the symmetrical (σ) and asymmetrical (τ) contributions to the variance. The simulated profiles were modified with respect to the integration limits, the number of points, and the signal-to-noise ratio. After modification, each profile was analyzed by using statistical moments and an iteratively fit EMG equation. These data indicate that the statistical moment method is much more susceptible to error when the degree of asymmetry is large, when the integration limits are inappropriately chosen, when the number of points is small, and when the signal-to-noise ratio is small. The experimental zone profiles were then analyzed by using the statistical moment and EMG methods. Although care was taken to minimize the sources of error discussed above, significant differences were found between the two methods. The differences in the second moment suggest that the symmetrical and asymmetrical contributions to broadening in the experimental zone profiles are not independent. As a consequence, the second moment is not equal to the sum of σ 2 and τ 2 , as is commonly assumed. This observation has important implications for the elucidation of thermodynamic and kinetic information from chromatographic zone profiles

  8. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Mazoyer, Bernard; Zago, Laure; Jobard, Gaël; Crivello, Fabrice; Joliot, Marc; Perchey, Guy; Mellet, Emmanuel; Petit, Laurent; Tzourio-Mazoyer, Nathalie

    2014-01-01

    Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH). A hemispheric functional lateralization index (HFLI) for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH) and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH), "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH) and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH). Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population) who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  9. Gaussian mixture modeling of hemispheric lateralization for language in a large sample of healthy individuals balanced for handedness.

    Bernard Mazoyer

    Full Text Available Hemispheric lateralization for language production and its relationships with manual preference and manual preference strength were studied in a sample of 297 subjects, including 153 left-handers (LH. A hemispheric functional lateralization index (HFLI for language was derived from fMRI acquired during a covert sentence generation task as compared with a covert word list recitation. The multimodal HFLI distribution was optimally modeled using a mixture of 3 and 4 Gaussian functions in right-handers (RH and LH, respectively. Gaussian function parameters helped to define 3 types of language hemispheric lateralization, namely "Typical" (left hemisphere dominance with clear positive HFLI values, 88% of RH, 78% of LH, "Ambilateral" (no dominant hemisphere with HFLI values close to 0, 12% of RH, 15% of LH and "Strongly-atypical" (right-hemisphere dominance with clear negative HFLI values, 7% of LH. Concordance between dominant hemispheres for hand and for language did not exceed chance level, and most of the association between handedness and language lateralization was explained by the fact that all Strongly-atypical individuals were left-handed. Similarly, most of the relationship between language lateralization and manual preference strength was explained by the fact that Strongly-atypical individuals exhibited a strong preference for their left hand. These results indicate that concordance of hemispheric dominance for hand and for language occurs barely above the chance level, except in a group of rare individuals (less than 1% in the general population who exhibit strong right hemisphere dominance for both language and their preferred hand. They call for a revisit of models hypothesizing common determinants for handedness and for language dominance.

  10. Construction of a graphic interface for a nuclear reactor modelling and simulation

    Cadrdenas C, Carlos Roberto; Riquelme R, Raul Antonio.

    1995-01-01

    A graphic interface is presented for real time transient analysis under reactivity insertion, reactor operators training, and the RECH-1 reactor licensing, using the Paret (Program for Analysis of Reactor Transients) computer code. 17 refs., 29 figs

  11. GRAPHIC ADVERTISING, SPECIALIZED COMMUNICATIONS MODEL THROUGH SYMBOLS, WORDS, IMAGES WORDS, IMAGES

    ADRONACHI Maria

    2011-01-01

    The aim of the paper is to identify the graphic advertising components: symbol, text, colour, to illustrate how they cooperate in order to create the advertising message, and to analyze the corelation product – advertising – consumer.

  12. GRAPHIC ADVERTISING, SPECIALIZED COMMUNICATIONS MODEL THROUGH SYMBOLS, WORDS, IMAGES WORDS, IMAGES

    ADRONACHI Maria

    2011-06-01

    Full Text Available The aim of the paper is to identify the graphic advertising components: symbol, text, colour, to illustrate how they cooperate in order to create the advertising message, and to analyze the corelation product – advertising – consumer.

  13. Reforging the Wedding Ring: Exploring a Semi-Artificial Model of Population for the United Kingdom with Gaussian process emulators

    Viet Dung Cao

    2013-10-01

    Full Text Available Background: We extend the "Wedding Ring‟ agent-based model of marriage formation to include some empirical information on the natural population change for the United Kingdom together with behavioural explanations that drive the observed nuptiality trends. Objective: We propose a method to explore statistical properties of agent-based demographic models. By coupling rule-based explanations driving the agent-based model with observed data we wish to bring agent-based modelling and demographic analysis closer together. Methods: We present a Semi-Artificial Model of Population, which aims to bridge demographic micro-simulation and agent-based traditions. We then utilise a Gaussian process emulator - a statistical model of the base model - to analyse the impact of selected model parameters on two key model outputs: population size and share of married agents. A sensitivity analysis is attempted, aiming to assess the relative importance of different inputs. Results: The resulting multi-state model of population dynamics has enhanced predictive capacity as compared to the original specification of the Wedding Ring, but there are some trade-offs between the outputs considered. The sensitivity analysis allows identification of the most important parameters in the modelled marriage formation process. Conclusions: The proposed methods allow for generating coherent, multi-level agent-based scenarios aligned with some aspects of empirical demographic reality. Emulators permit a statistical analysis of their properties and help select plausible parameter values. Comments: Given non-linearities in agent-based models such as the Wedding Ring, and the presence of feedback loops, the uncertainty in the model may not be directly computable by using traditional statistical methods. The use of statistical emulators offers a way forward.

  14. A Model-Driven Approach to Graphical User Interface Runtime Adaptation

    Criado, Javier; Vicente Chicote, Cristina; Iribarne, Luis; Padilla, Nicolás

    2010-01-01

    Graphical user interfaces play a key role in human-computer interaction, as they link the system with its end-users, allowing information exchange and improving communication. Nowadays, users increasingly demand applications with adaptive interfaces that dynamically evolve in response to their specific needs. Thus, providing graphical user interfaces with runtime adaptation capabilities is becoming more and more an important issue. To address this problem, this paper proposes a componen...

  15. Evaluation of the influence of double and triple Gaussian proton kernel models on accuracy of dose calculations for spot scanning technique.

    Hirayama, Shusuke; Takayanagi, Taisuke; Fujii, Yusuke; Fujimoto, Rintaro; Fujitaka, Shinichiro; Umezawa, Masumi; Nagamine, Yoshihiko; Hosaka, Masahiro; Yasui, Keisuke; Omachi, Chihiro; Toshito, Toshiyuki

    2016-03-01

    The main purpose in this study was to present the results of beam modeling and how the authors systematically investigated the influence of double and triple Gaussian proton kernel models on the accuracy of dose calculations for spot scanning technique. The accuracy of calculations was important for treatment planning software (TPS) because the energy, spot position, and absolute dose had to be determined by TPS for the spot scanning technique. The dose distribution was calculated by convolving in-air fluence with the dose kernel. The dose kernel was the in-water 3D dose distribution of an infinitesimal pencil beam and consisted of an integral depth dose (IDD) and a lateral distribution. Accurate modeling of the low-dose region was important for spot scanning technique because the dose distribution was formed by cumulating hundreds or thousands of delivered beams. The authors employed a double Gaussian function as the in-air fluence model of an individual beam. Double and triple Gaussian kernel models were also prepared for comparison. The parameters of the kernel lateral model were derived by fitting a simulated in-water lateral dose profile induced by an infinitesimal proton beam, whose emittance was zero, at various depths using Monte Carlo (MC) simulation. The fitted parameters were interpolated as a function of depth in water and stored as a separate look-up table. These stored parameters for each energy and depth in water were acquired from the look-up table when incorporating them into the TPS. The modeling process for the in-air fluence and IDD was based on the method proposed in the literature. These were derived using MC simulation and measured data. The authors compared the measured and calculated absolute doses at the center of the spread-out Bragg peak (SOBP) under various volumetric irradiation conditions to systematically investigate the influence of the two types of kernel models on the dose calculations. The authors investigated the difference

  16. Determining species expansion and extinction possibilities using probabilistic and graphical models

    Chaturvedi Rajesh

    2015-03-01

    Full Text Available Survival of plant species is governed by a number of functions. The participation of each function in species survival and the impact of the contrary behaviour of the species vary from function to function. The probability of extinction of species varies in all such scenarios and has to be calculated separately. Secondly, species follow different patterns of dispersal and localisation at different stages of occupancy state of the site, therefore, the scenarios of competition for resources with climatic shifts leading to deterioration and loss of biodiversity resulting in extinction needs to be studied. Furthermore, most possible deviations of species from climax community states needs to be calculated before species become extinct due to sudden environmental disruption. Globally, various types of anthropogenic disturbances threaten the diversity of biological systems. The impact of these anthropogenic activities needs to be analysed to identify extinction patterns with respect to these activities. All the analyses mentioned above have been tried to be achieved through probabilistic or graphical models in this study.

  17. Analysis of impact of general-purpose graphics processor units in supersonic flow modeling

    Emelyanov, V. N.; Karpenko, A. G.; Kozelkov, A. S.; Teterina, I. V.; Volkov, K. N.; Yalozo, A. V.

    2017-06-01

    Computational methods are widely used in prediction of complex flowfields associated with off-normal situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new programming models that enable to harness their large processing power and to design computational fluid dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is applied to solve three-dimensional unsteady compressible Euler and Navier-Stokes equations on unstructured meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the results computed are compared with experimental and computational data. Approaches to optimization of the CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with respect to the solution on central processor unit (CPU) is compared. Performance measurements show that numerical schemes developed achieve 20-50 speedup on GPU hardware compared to CPU reference implementation. The results obtained provide promising perspective for designing a GPU-based software framework for applications in CFD.

  18. Implementation and use of Gaussian process meta model for sensitivity analysis of numerical models: application to a hydrogeological transport computer code

    Marrel, A.

    2008-01-01

    In the studies of environmental transfer and risk assessment, numerical models are used to simulate, understand and predict the transfer of pollutant. These computer codes can depend on a high number of uncertain input parameters (geophysical variables, chemical parameters, etc.) and can be often too computer time expensive. To conduct uncertainty propagation studies and to measure the importance of each input on the response variability, the computer code has to be approximated by a meta model which is build on an acceptable number of simulations of the code and requires a negligible calculation time. We focused our research work on the use of Gaussian process meta model to make the sensitivity analysis of the code. We proposed a methodology with estimation and input selection procedures in order to build the meta model in the case of a high number of inputs and with few simulations available. Then, we compared two approaches to compute the sensitivity indices with the meta model and proposed an algorithm to build prediction intervals for these indices. Afterwards, we were interested in the choice of the code simulations. We studied the influence of different sampling strategies on the predictiveness of the Gaussian process meta model. Finally, we extended our statistical tools to a functional output of a computer code. We combined a decomposition on a wavelet basis with the Gaussian process modelling before computing the functional sensitivity indices. All the tools and statistical methodologies that we developed were applied to the real case of a complex hydrogeological computer code, simulating radionuclide transport in groundwater. (author) [fr

  19. Graphics gems

    Glassner, Andrew S

    1993-01-01

    ""The GRAPHICS GEMS Series"" was started in 1990 by Andrew Glassner. The vision and purpose of the Series was - and still is - to provide tips, techniques, and algorithms for graphics programmers. All of the gems are written by programmers who work in the field and are motivated by a common desire to share interesting ideas and tools with their colleagues. Each volume provides a new set of innovative solutions to a variety of programming problems.

  20. Graphic notation

    Bergstrøm-Nielsen, Carl

    1992-01-01

    Texbook to be used along with training the practise of graphic notation. Describes method; exercises; bibliography; collection of examples. If you can read Danish, please refer to that edition which is by far much more updated.......Texbook to be used along with training the practise of graphic notation. Describes method; exercises; bibliography; collection of examples. If you can read Danish, please refer to that edition which is by far much more updated....

  1. Tachyon mediated non-Gaussianity

    Dutta, Bhaskar; Leblond, Louis; Kumar, Jason

    2008-01-01

    We describe a general scenario where primordial non-Gaussian curvature perturbations are generated in models with extra scalar fields. The extra scalars communicate to the inflaton sector mainly through the tachyonic (waterfall) field condensing at the end of hybrid inflation. These models can yield significant non-Gaussianity of the local shape, and both signs of the bispectrum can be obtained. These models have cosmic strings and a nearly flat power spectrum, which together have been recently shown to be a good fit to WMAP data. We illustrate with a model of inflation inspired from intersecting brane models.

  2. Design Graphics

    1990-01-01

    A mathematician, David R. Hedgley, Jr. developed a computer program that considers whether a line in a graphic model of a three-dimensional object should or should not be visible. Known as the Hidden Line Computer Code, the program automatically removes superfluous lines and displays an object from a specific viewpoint, just as the human eye would see it. An example of how one company uses the program is the experience of Birdair which specializes in production of fabric skylights and stadium covers. The fabric called SHEERFILL is a Teflon coated fiberglass material developed in cooperation with DuPont Company. SHEERFILL glazed structures are either tension structures or air-supported tension structures. Both are formed by patterned fabric sheets supported by a steel or aluminum frame or cable network. Birdair uses the Hidden Line Computer Code, to illustrate a prospective structure to an architect or owner. The program generates a three- dimensional perspective with the hidden lines removed. This program is still used by Birdair and continues to be commercially available to the public.

  3. A non-Gaussian generalisation of the Airline model for robust Seasonal Adjustment

    Aston, J.; Koopman, S.J.

    2006-01-01

    In their seminal book Time Series Analysis: Forecasting and Control, Box and Jenkins (1976) introduce the Airline model, which is still routinely used for the modelling of economic seasonal time series. The Airline model is for a differenced time series (in levels and seasons) and constitutes a

  4. Adaptive wiener filter based on Gaussian mixture distribution model for denoising chest X-ray CT image

    Tabuchi, Motohiro; Yamane, Nobumoto; Morikawa, Yoshitaka

    2008-01-01

    In recent decades, X-ray CT imaging has become more important as a result of its high-resolution performance. However, it is well known that the X-ray dose is insufficient in the techniques that use low-dose imaging in health screening or thin-slice imaging in work-up. Therefore, the degradation of CT images caused by the streak artifact frequently becomes problematic. In this study, we applied a Wiener filter (WF) using the universal Gaussian mixture distribution model (UNI-GMM) as a statistical model to remove streak artifact. In designing the WF, it is necessary to estimate the statistical model and the precise co-variances of the original image. In the proposed method, we obtained a variety of chest X-ray CT images using a phantom simulating a chest organ, and we estimated the statistical information using the images for training. The results of simulation showed that it is possible to fit the UNI-GMM to the chest X-ray CT images and reduce the specific noise. (author)

  5. Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

    Douglas A. Fynan

    2016-06-01

    Full Text Available The Gaussian process model (GPM is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU and Level 1 probabilistic safety assessment (PSA success criteria definitions while dealing with a large number of uncertainties.

  6. A Gaussian mixture model based adaptive classifier for fNIRS brain-computer interfaces and its testing via simulation

    Li, Zheng; Jiang, Yi-han; Duan, Lian; Zhu, Chao-zhe

    2017-08-01

    Objective. Functional near infra-red spectroscopy (fNIRS) is a promising brain imaging technology for brain-computer interfaces (BCI). Future clinical uses of fNIRS will likely require operation over long time spans, during which neural activation patterns may change. However, current decoders for fNIRS signals are not designed to handle changing activation patterns. The objective of this study is to test via simulations a new adaptive decoder for fNIRS signals, the Gaussian mixture model adaptive classifier (GMMAC). Approach. GMMAC can simultaneously classify and track activation pattern changes without the need for ground-truth labels. This adaptive classifier uses computationally efficient variational Bayesian inference to label new data points and update mixture model parameters, using the previous model parameters as priors. We test GMMAC in simulations in which neural activation patterns change over time and compare to static decoders and unsupervised adaptive linear discriminant analysis classifiers. Main results. Our simulation experiments show GMMAC can accurately decode under time-varying activation patterns: shifts of activation region, expansions of activation region, and combined contractions and shifts of activation region. Furthermore, the experiments show the proposed method can track the changing shape of the activation region. Compared to prior work, GMMAC performed significantly better than the other unsupervised adaptive classifiers on a difficult activation pattern change simulation: 99% versus  brain-computer interfaces, including neurofeedback training systems, where operation over long time spans is required.

  7. A novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve

    Yang, Duo; Zhang, Xu; Pan, Rui; Wang, Yujie; Chen, Zonghai

    2018-04-01

    The state-of-health (SOH) estimation is always a crucial issue for lithium-ion batteries. In order to provide an accurate and reliable SOH estimation, a novel Gaussian process regression (GPR) model based on charging curve is proposed in this paper. Different from other researches where SOH is commonly estimated by cycle life, in this work four specific parameters extracted from charging curves are used as inputs of the GPR model instead of cycle numbers. These parameters can reflect the battery aging phenomenon from different angles. The grey relational analysis method is applied to analyze the relational grade between selected features and SOH. On the other hand, some adjustments are made in the proposed GPR model. Covariance function design and the similarity measurement of input variables are modified so as to improve the SOH estimate accuracy and adapt to the case of multidimensional input. Several aging data from NASA data repository are used for demonstrating the estimation effect by the proposed method. Results show that the proposed method has high SOH estimation accuracy. Besides, a battery with dynamic discharging profile is used to verify the robustness and reliability of this method.

  8. Comparison of results from dispersion models for regulatory purposes based on Gaussian-and Lagrangian-algorithms: an evaluating literature study

    Walter, H.

    2004-01-01

    Powerful tools to describe atmospheric transport processes for radiation protection can be provided by meteorology; these are atmospheric flow and dispersion models. Concerning dispersion models, Gaussian plume models have been used since a long time to describe atmospheric dispersion processes. Advantages of the Gaussian plume models are short computation time, good validation and broad acceptance worldwide. However, some limitations and their implications on model result interpretation have to be taken into account, as the mathematical derivation of an analytic solution of the equations of motion leads to severe constraints. In order to minimise these constraints, various dispersion models for scientific and regulatory purposes have been developed and applied. Among these the Lagrangian particle models are of special interest, because these models are able to simulate atmospheric transport processes close to reality, e.g. the influence of orography, topography, wind shear and other meteorological phenomena. Within this study, the characteristics and computational results of Gaussian dispersion models as well as of Lagrangian models have been compared and evaluated on the base of numerous papers and reports published in literature. Special emphasis has been laid on the intention that dispersion models should comply with EU requests (Richtlinie 96/29/Euratom, 1996) on a more realistic assessment of the radiation exposure to the population. (orig.)

  9. Downsizer - A Graphical User Interface-Based Application for Browsing, Acquiring, and Formatting Time-Series Data for Hydrologic Modeling

    Ward-Garrison, Christian; Markstrom, Steven L.; Hay, Lauren E.

    2009-01-01

    The U.S. Geological Survey Downsizer is a computer application that selects, downloads, verifies, and formats station-based time-series data for environmental-resource models, particularly the Precipitation-Runoff Modeling System. Downsizer implements the client-server software architecture. The client presents a map-based, graphical user interface that is intuitive to modelers; the server provides streamflow and climate time-series data from over 40,000 measurement stations across the United States. This report is the Downsizer user's manual and provides (1) an overview of the software design, (2) installation instructions, (3) a description of the graphical user interface, (4) a description of selected output files, and (5) troubleshooting information.

  10. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D [University at Buffalo (SUNY) School of Med., Buffalo, NY (United States)

    2016-06-15

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  11. TU-D-209-03: Alignment of the Patient Graphic Model Using Fluoroscopic Images for Skin Dose Mapping

    Oines, A; Oines, A; Kilian-Meneghin, J; Karthikeyan, B; Rudin, S; Bednarek, D

    2016-01-01

    Purpose: The Dose Tracking System (DTS) was developed to provide realtime feedback of skin dose and dose rate during interventional fluoroscopic procedures. A color map on a 3D graphic of the patient represents the cumulative dose distribution on the skin. Automated image correlation algorithms are described which use the fluoroscopic procedure images to align and scale the patient graphic for more accurate dose mapping. Methods: Currently, the DTS employs manual patient graphic selection and alignment. To improve the accuracy of dose mapping and automate the software, various methods are explored to extract information about the beam location and patient morphology from the procedure images. To match patient anatomy with a reference projection image, preprocessing is first used, including edge enhancement, edge detection, and contour detection. Template matching algorithms from OpenCV are then employed to find the location of the beam. Once a match is found, the reference graphic is scaled and rotated to fit the patient, using image registration correlation functions in Matlab. The algorithm runs correlation functions for all points and maps all correlation confidences to a surface map. The highest point of correlation is used for alignment and scaling. The transformation data is saved for later model scaling. Results: Anatomic recognition is used to find matching features between model and image and image registration correlation provides for alignment and scaling at any rotation angle with less than onesecond runtime, and at noise levels in excess of 150% of those found in normal procedures. Conclusion: The algorithm provides the necessary scaling and alignment tools to improve the accuracy of dose distribution mapping on the patient graphic with the DTS. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.

  12. Probabilistic graphical models to deal with age estimation of living persons.

    Sironi, Emanuele; Gallidabino, Matteo; Weyermann, Céline; Taroni, Franco

    2016-03-01

    Due to the rise of criminal, civil and administrative judicial situations involving people lacking valid identity documents, age estimation of living persons has become an important operational procedure for numerous forensic and medicolegal services worldwide. The chronological age of a given person is generally estimated from the observed degree of maturity of some selected physical attributes by means of statistical methods. However, their application in the forensic framework suffers from some conceptual and practical drawbacks, as recently claimed in the specialised literature. The aim of this paper is therefore to offer an alternative solution for overcoming these limits, by reiterating the utility of a probabilistic Bayesian approach for age estimation. This approach allows one to deal in a transparent way with the uncertainty surrounding the age estimation process and to produce all the relevant information in the form of posterior probability distribution about the chronological age of the person under investigation. Furthermore, this probability distribution can also be used for evaluating in a coherent way the possibility that the examined individual is younger or older than a given legal age threshold having a particular legal interest. The main novelty introduced by this work is the development of a probabilistic graphical model, i.e. a Bayesian network, for dealing with the problem at hand. The use of this kind of probabilistic tool can significantly facilitate the application of the proposed methodology: examples are presented based on data related to the ossification status of the medial clavicular epiphysis. The reliability and the advantages of this probabilistic tool are presented and discussed.

  13. The effectiveness of an interactive 3-dimensional computer graphics model for medical education.

    Battulga, Bayanmunkh; Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-07-09

    Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. To determine the educational effectiveness of interactive 3DCG. We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures.

  14. A direct derivation of the exact Fisther information matrix of Gaussian vector state space models

    Klein, A.A.B.; Neudecker, H.

    2000-01-01

    This paper deals with a direct derivation of Fisher's information matrix of vector state space models for the general case, by which is meant the establishment of the matrix as a whole and not element by element. The method to be used is matrix differentiation, see [4]. We assume the model to be

  15. A Prototype Educational Model for Hepatobiliary Interventions: Unveiling the Role of Graphic Designers in Medical 3D Printing.

    Javan, Ramin; Zeman, Merissa N

    2018-02-01

    In the context of medical three-dimensional (3D) printing, in addition to 3D reconstruction from cross-sectional imaging, graphic design plays a role in developing and/or enhancing 3D-printed models. A custom prototype modular 3D model of the liver was graphically designed depicting segmental anatomy of the parenchyma containing color-coded hepatic vasculature and biliary tree. Subsequently, 3D printing was performed using transparent resin for the surface of the liver and polyamide material to develop hollow internal structures that allow for passage of catheters and wires. A number of concepts were incorporated into the model. A representative mass with surrounding feeding arterial supply was embedded to demonstrate tumor embolization. A straight narrow hollow tract connecting the mass to the surface of the liver, displaying the path of a biopsy device's needle, and the concept of needle "throw" length was designed. A connection between the middle hepatic and right portal veins was created to demonstrate transjugular intrahepatic portosystemic shunt (TIPS) placement. A hollow amorphous structure representing an abscess was created to allow the demonstration of drainage catheter placement with the formation of pigtail tip. Percutaneous biliary drain and cholecystostomy tube placement were also represented. The skills of graphic designers may be utilized in creating highly customized 3D-printed models. A model was developed for the demonstration and simulation of multiple hepatobiliary interventions, for training purposes, patient counseling and consenting, and as a prototype for future development of a functioning interventional phantom.

  16. Analysis of the anomalous mean-field like properties of Gaussian core model in terms of entropy

    Nandi, Manoj Kumar; Maitra Bhattacharyya, Sarika

    2018-01-01

    Studies of the Gaussian core model (GCM) have shown that it behaves like a mean-field model and the properties are quite different from standard glass former. In this work, we investigate the entropies, namely, the excess entropy (Sex) and the configurational entropy (Sc) and their different components to address these anomalies. Our study corroborates most of the earlier observations and also sheds new light on the high and low temperature dynamics. We find that unlike in standard glass former where high temperature dynamics is dominated by two-body correlation and low temperature by many-body correlations, in the GCM both high and low temperature dynamics are dominated by many-body correlations. We also find that the many-body entropy which is usually positive at low temperatures and is associated with activated dynamics is negative in the GCM suggesting suppression of activation. Interestingly despite the suppression of activation, the Adam-Gibbs (AG) relation that describes activated dynamics holds in the GCM, thus suggesting a non-activated contribution in AG relation. We also find an overlap between the AG relation and mode coupling power law regime leading to a power law behavior of Sc. From our analysis of this power law behavior, we predict that in the GCM the high temperature dynamics will disappear at dynamical transition temperature and below that there will be a transition to the activated regime. Our study further reveals that the activated regime in the GCM is quite narrow.

  17. State-space models’ dirty little secrets: even simple linear Gaussian models can have estimation problems

    Auger-Méthé, Marie; Field, Chris; Albertsen, Christoffer Moesgaard

    2016-01-01

    problems. We demonstrate that these problems occur primarily when measurement error is larger than biological stochasticity, the condition that often drives ecologists to use SSMs. Using an animal movement example, we show how these estimation problems can affect ecological inference. Biased parameter......State-space models (SSMs) are increasingly used in ecology to model time-series such as animal movement paths and population dynamics. This type of hierarchical model is often structured to account for two levels of variability: biological stochasticity and measurement error. SSMs are flexible...

  18. Graphical approach to assess the soil fertility evaluation model validity for rice (case study: southern area of Merapi Mountain, Indonesia)

    Julianto, E. A.; Suntoro, W. A.; Dewi, W. S.; Partoyo

    2018-03-01

    Climate change has been reported to exacerbate land resources degradation including soil fertility decline. The appropriate validity use on soil fertility evaluation could reduce the risk of climate change effect on plant cultivation. This study aims to assess the validity of a Soil Fertility Evaluation Model using a graphical approach. The models evaluated were the Indonesian Soil Research Center (PPT) version model, the FAO Unesco version model, and the Kyuma version model. Each model was then correlated with rice production (dry grain weight/GKP). The goodness of fit of each model can be tested to evaluate the quality and validity of a model, as well as the regression coefficient (R2). This research used the Eviews 9 programme by a graphical approach. The results obtained three curves, namely actual, fitted, and residual curves. If the actual and fitted curves are widely apart or irregular, this means that the quality of the model is not good, or there are many other factors that are still not included in the model (large residual) and conversely. Indeed, if the actual and fitted curves show exactly the same shape, it means that all factors have already been included in the model. Modification of the standard soil fertility evaluation models can improve the quality and validity of a model.

  19. Graphic Ecologies

    Brook Weld Muller

    2014-12-01

    Full Text Available This essay describes strategic approaches to graphic representation associated with critical environmental engagement and that build from the idea of works of architecture as stitches in the ecological fabric of the city. It focuses on the building up of partial or fragmented graphics in order to describe inclusive, open-ended possibilities for making architecture that marry rich experience and responsive performance. An aphoristic approach to crafting drawings involves complex layering, conscious absence and the embracing of tension. A self-critical attitude toward the generation of imagery characterized by the notion of ‘loose precision’ may lead to more transformative and environmentally responsive architectures.

  20. Graphic displays on PCs of gaseous diffusion models of radionuclide releases to the atmosphere

    Campo Ortega, E. del

    1993-01-01

    The well-known MESOI program has been modified and improved to adapt it to a PC/AT with VGA colour monitor. Far from losing any of its powerful characteristics to calculate the transport, diffusion, deposition and decay of gaseous radioactive effluents discharged to the atmosphere, it has been enhanced to allow graphic viewing of concentrations, wind speed and direction and puff locations in colour, all on a background map of the site. The background covers a 75 x 75 km square and has a graphic grid density of 421 x 421 pixels. This means that effluent concentration is represented approximately every 170 metres in the 'clouded-area'. Among the modifications and enhancements made, the following are of particular interest: 1. A new subroutine called NUBE has been added, which calculates the distribution of effluent concentration of activity in a grid of 421 x 421 pixels. 2. Several subroutines have been added to obtain graphic displays and printouts of the cloud, wind field and puff locations. 3. Graphic display of the geographic plane of the area surrounding the effluent release point. 4. Off-line preparation of meteorological and topographical data files necessary for program execution. (author)

  1. Reacting to Graphic Horror: A Model of Empathy and Emotional Behavior.

    Tamborini, Ron; And Others

    1990-01-01

    Studies viewer response to graphic horror films. Reports that undergraduate mass communication students viewed clips from two horror films and a scientific television program. Concludes that people who score high on measures for wandering imagination, fictional involvement, humanistic orientation, and emotional contagion tend to find horror films…

  2. THE CAPABILITIES USING OF THREE-DIMENSIONAL MODELING SYSTEM AUTOCAD IN TEACHING TO PERFORM GRAPHICS TASKS

    A. V. Krasnyuk

    2008-03-01

    Full Text Available Three-dimensional design possibilities of the AutoCAD system for performing graphic tasks are presented in the article. On the basis of the studies conducted the features of application of computer-aided design system are noted and the methods allowing to decrease considerably the quantity of errors at making the drawings are offered.

  3. Quantifying uncertainty for predictions with model error in non-Gaussian systems with intermittency

    Branicki, Michal; Majda, Andrew J

    2012-01-01

    This paper discusses a range of important mathematical issues arising in applications of a newly emerging stochastic-statistical framework for quantifying and mitigating uncertainties associated with prediction of partially observed and imperfectly modelled complex turbulent dynamical systems. The need for such a framework is particularly severe in climate science where the true climate system is vastly more complicated than any conceivable model; however, applications in other areas, such as neural networks and materials science, are just as important. The mathematical tools employed here rely on empirical information theory and fluctuation–dissipation theorems (FDTs) and it is shown that they seamlessly combine into a concise systematic framework for measuring and optimizing consistency and sensitivity of imperfect models. Here, we utilize a simple statistically exactly solvable ‘perfect’ system with intermittent hidden instabilities and with time-periodic features to address a number of important issues encountered in prediction of much more complex dynamical systems. These problems include the role and mitigation of model error due to coarse-graining, moment closure approximations, and the memory of initial conditions in producing short, medium and long-range predictions. Importantly, based on a suite of increasingly complex imperfect models of the perfect test system, we show that the predictive skill of the imperfect models and their sensitivity to external perturbations is improved by ensuring their consistency on the statistical attractor (i.e. the climate) with the perfect system. Furthermore, the discussed link between climate fidelity and sensitivity via the FDT opens up an enticing prospect of developing techniques for improving imperfect model sensitivity based on specific tests carried out in the training phase of the unperturbed statistical equilibrium/climate. (paper)

  4. Graphics Gems III IBM version

    Kirk, David

    1994-01-01

    This sequel to Graphics Gems (Academic Press, 1990), and Graphics Gems II (Academic Press, 1991) is a practical collection of computer graphics programming tools and techniques. Graphics Gems III contains a larger percentage of gems related to modeling and rendering, particularly lighting and shading. This new edition also covers image processing, numerical and programming techniques, modeling and transformations, 2D and 3D geometry and algorithms,ray tracing and radiosity, rendering, and more clever new tools and tricks for graphics programming. Volume III also includes a

  5. Flexible Mixture-Amount Models for Business and Industry Using Gaussian Processes

    A. Ruseckaite (Aiste); D. Fok (Dennis); P.P. Goos (Peter)

    2016-01-01

    markdownabstractMany products and services can be described as mixtures of ingredients whose proportions sum to one. Specialized models have been developed for linking the mixture proportions to outcome variables, such as preference, quality and liking. In many scenarios, only the mixture

  6. Linear mixed-effects models for within-participant psychology experiments: an introductory tutorial and free, graphical user interface (LMMgui).

    Magezi, David A

    2015-01-01

    Linear mixed-effects models (LMMs) are increasingly being used for data analysis in cognitive neuroscience and experimental psychology, where within-participant designs are common. The current article provides an introductory review of the use of LMMs for within-participant data analysis and describes a free, simple, graphical user interface (LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical environment R (R Core Team).

  7. Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient.

    Mohamed Salleh, Faridah Hani; Arif, Shereena Mohd; Zainudin, Suhaila; Firdaus-Raih, Mohd

    2015-12-01

    A gene regulatory network (GRN) is a large and complex network consisting of interacting elements that, over time, affect each other's state. The dynamics of complex gene regulatory processes are difficult to understand using intuitive approaches alone. To overcome this problem, we propose an algorithm for inferring the regulatory interactions from knock-out data using a Gaussian model combines with Pearson Correlation Coefficient (PCC). There are several problems relating to GRN construction that have been outlined in this paper. We demonstrated the ability of our proposed method to (1) predict the presence of regulatory interactions between genes, (2) their directionality and (3) their states (activation or suppression). The algorithm was applied to network sizes of 10 and 50 genes from DREAM3 datasets and network sizes of 10 from DREAM4 datasets. The predicted networks were evaluated based on AUROC and AUPR. We discovered that high false positive values were generated by our GRN prediction methods because the indirect regulations have been wrongly predicted as true relationships. We achieved satisfactory results as the majority of sub-networks achieved AUROC values above 0.5. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Processor core for real time background identification of HD video based on OpenCV Gaussian mixture model algorithm

    Genovese, Mariangela; Napoli, Ettore

    2013-05-01

    The identification of moving objects is a fundamental step in computer vision processing chains. The development of low cost and lightweight smart cameras steadily increases the request of efficient and high performance circuits able to process high definition video in real time. The paper proposes two processor cores aimed to perform the real time background identification on High Definition (HD, 1920 1080 pixel) video streams. The implemented algorithm is the OpenCV version of the Gaussian Mixture Model (GMM), an high performance probabilistic algorithm for the segmentation of the background that is however computationally intensive and impossible to implement on general purpose CPU with the constraint of real time processing. In the proposed paper, the equations of the OpenCV GMM algorithm are optimized in such a way that a lightweight and low power implementation of the algorithm is obtained. The reported performances are also the result of the use of state of the art truncated binary multipliers and ROM compression techniques for the implementation of the non-linear functions. The first circuit has commercial FPGA devices as a target and provides speed and logic resource occupation that overcome previously proposed implementations. The second circuit is oriented to an ASIC (UMC-90nm) standard cell implementation. Both implementations are able to process more than 60 frames per second in 1080p format, a frame rate compatible with HD television.

  9. Exploring the roles of cannot-link constraint in community detection via Multi-variance Mixed Gaussian Generative Model

    Ge, Meng; Jin, Di; He, Dongxiao; Fu, Huazhu; Wang, Jing; Cao, Xiaochun

    2017-01-01

    Due to the demand for performance improvement and the existence of prior information, semi-supervised community detection with pairwise constraints becomes a hot topic. Most existing methods have been successfully encoding the must-link constraints, but neglect the opposite ones, i.e., the cannot-link constraints, which can force the exclusion between nodes. In this paper, we are interested in understanding the role of cannot-link constraints and effectively encoding pairwise constraints. Towards these goals, we define an integral generative process jointly considering the network topology, must-link and cannot-link constraints. We propose to characterize this process as a Multi-variance Mixed Gaussian Generative (MMGG) Model to address diverse degrees of confidences that exist in network topology and pairwise constraints and formulate it as a weighted nonnegative matrix factorization problem. The experiments on artificial and real-world networks not only illustrate the superiority of our proposed MMGG, but also, most importantly, reveal the roles of pairwise constraints. That is, though the must-link is more important than cannot-link when either of them is available, both must-link and cannot-link are equally important when both of them are available. To the best of our knowledge, this is the first work on discovering and exploring the importance of cannot-link constraints in semi-supervised community detection. PMID:28678864

  10. Graphic notation

    Bergstrøm-Nielsen, Carl

    2010-01-01

    Graphic notation is taught to music therapy students at Aalborg University in both simple and elaborate forms. This is a method of depicting music visually, and notations may serve as memory aids, as aids for analysis and reflection, and for communication purposes such as supervision or within...

  11. Fibre recruitment and shape changes of knee ligaments during motion: as revealed by a computer graphics-based model.

    Lu, T W; O'Connor, J J

    1996-01-01

    A computer graphics-based model of the knee ligaments in the sagittal plane was developed for the simulation and visualization of the shape changes and fibre recruitment process of the ligaments during motion under unloaded and loaded conditions. The cruciate and collateral ligaments were modelled as ordered arrays of fibres which link attachment areas on the tibia and femur. Fibres slacken and tighten as the ligament attachment areas on the bones rotate and translate relative to each other. A four-bar linkage, composed of the femur, tibia and selected isometric fibres of the two cruciates, was used to determine the motion of the femur relative to the tibia during passive (unloaded) movement. Fibres were assumed to slacken in a Euler buckling mode when the distances between their attachments are less than chosen reference lengths. The ligament shape changes and buckling patterns are demonstrated with computer graphics. When the tibia is translated anteriorly or posteriorly relative to the femur by muscle forces and external loads, some ligament fibres tighten and are recruited progressively to transmit increasing shear forces. The shape changes and fibre recruitment patterns predicted by the model compare well qualitatively with experimental results reported in the literature. The computer graphics approach provides insight into the micro behaviour of the knee ligaments. It may help to explain ligament injury mechanisms and provide useful information to guide the design of ligament replacements.

  12. Perception in statistical graphics

    VanderPlas, Susan Ruth

    There has been quite a bit of research on statistical graphics and visualization, generally focused on new types of graphics, new software to create graphics, interactivity, and usability studies. Our ability to interpret and use statistical graphics hinges on the interface between the graph itself and the brain that perceives and interprets it, and there is substantially less research on the interplay between graph, eye, brain, and mind than is sufficient to understand the nature of these relationships. The goal of the work presented here is to further explore the interplay between a static graph, the translation of that graph from paper to mental representation (the journey from eye to brain), and the mental processes that operate on that graph once it is transferred into memory (mind). Understanding the perception of statistical graphics should allow researchers to create more effective graphs which produce fewer distortions and viewer errors while reducing the cognitive load necessary to understand the information presented in the graph. Taken together, these experiments should lay a foundation for exploring the perception of statistical graphics. There has been considerable research into the accuracy of numerical judgments viewers make from graphs, and these studies are useful, but it is more effective to understand how errors in these judgments occur so that the root cause of the error can be addressed directly. Understanding how visual reasoning relates to the ability to make judgments from graphs allows us to tailor graphics to particular target audiences. In addition, understanding the hierarchy of salient features in statistical graphics allows us to clearly communicate the important message from data or statistical models by constructing graphics which are designed specifically for the perceptual system.

  13. Gaussian limit of compact spin systems

    Bellissard, J.; Angelis, G.F. de

    1981-01-01

    It is shown that the Wilson and Wilson-Villain U(1) models reproduce, in the low coupling limit, the gaussian lattice approximation of the Euclidean electromagnetic field. By the same methods it is also possible to prove that the plane rotator and the Villain model share a common gaussian behaviour in the low temperature limit. (Auth.)

  14. Sensitivity, applicability and validation of bi-gaussian off- and on-line models for the evaluation of the consequences of accidental releases in nuclear facilities

    Kretzschmar, J.G.; Mertens, I.; Vanderborght, B.

    1984-01-01

    A computer code CAERS (Computer Aided Emergency Response System) has been developed for the simulation of the short-term concentrations caused by an atmospheric emission. The concentration calculations are based on the bi-gaussian theorem with the possibility of using twelve different sets of turbulence typing schemes and dispersion parameters or the plume can be simulated with a bi-dimensional puff trajectory model with tri-gaussian diffusion of the puffs. With the puff trajectory model the emission and the wind conditions can be variable in time. Sixteen SF 6 tracer dispersion experiments, with mobile as well as stationary time averaging sampling, have been carried out for the validation of the on-line and off-line models of CAERS. The tracer experiments of this study have shown that the CAERS system, using the bi-gaussian model and the SCK/CEN turbulence typing scheme, can simulate short time concentration levels very well. The variations of the plume under non-steady emission and meteo conditions are well simulated by the puff trajectory model. This leads to the general conclusion that the atmospheric dispersion models of the CAERS system can give a significant contribution to the management and the interpretation of air pollution concentration measurements in emergency situations

  15. Short communication: Alteration of priors for random effects in Gaussian linear mixed model

    Vandenplas, Jérémie; Christensen, Ole Fredslund; Gengler, Nicholas

    2014-01-01

    such alterations. Therefore, the aim of this study was to propose a method to alter both the mean and (co)variance of the prior multivariate normal distributions of random effects of linear mixed models while using currently available software packages. The proposed method was tested on simulated examples with 3......, multiple-trait predictions of lactation yields, and Bayesian approaches integrating external information into genetic evaluations) need to alter both the mean and (co)variance of the prior distributions and, to our knowledge, most software packages available in the animal breeding community do not permit...... different software packages available in animal breeding. The examples showed the possibility of the proposed method to alter both the mean and (co)variance of the prior distributions with currently available software packages through the use of an extended data file and a user-supplied (co)variance matrix....

  16. Concomitant use of the matrix strategy and the mand-model procedure in teaching graphic symbol combinations.

    Nigam, Ravi; Schlosser, Ralf W; Lloyd, Lyle L

    2006-09-01

    Matrix strategies employing parts of speech arranged in systematic language matrices and milieu language teaching strategies have been successfully used to teach word combining skills to children who have cognitive disabilities and some functional speech. The present study investigated the acquisition and generalized production of two-term semantic relationships in a new population using new types of symbols. Three children with cognitive disabilities and little or no functional speech were taught to combine graphic symbols. The matrix strategy and the mand-model procedure were used concomitantly as intervention procedures. A multiple probe design across sets of action-object combinations with generalization probes of untrained combinations was used to teach the production of graphic symbol combinations. Results indicated that two of the three children learned the early syntactic-semantic rule of combining action-object symbols and demonstrated generalization to untrained action-object combinations and generalization across trainers. The results and future directions for research are discussed.

  17. Computerized prediction of intensive care unit discharge after cardiac surgery: development and validation of a Gaussian processes model

    Meyfroidt Geert

    2011-10-01

    Full Text Available Abstract Background The intensive care unit (ICU length of stay (LOS of patients undergoing cardiac surgery may vary considerably, and is often difficult to predict within the first hours after admission. The early clinical evolution of a cardiac surgery patient might be predictive for his LOS. The purpose of the present study was to develop a predictive model for ICU discharge after non-emergency cardiac surgery, by analyzing the first 4 hours of data in the computerized medical record of these patients with Gaussian processes (GP, a machine learning technique. Methods Non-interventional study. Predictive modeling, separate development (n = 461 and validation (n = 499 cohort. GP models were developed to predict the probability of ICU discharge the day after surgery (classification task, and to predict the day of ICU discharge as a discrete variable (regression task. GP predictions were compared with predictions by EuroSCORE, nurses and physicians. The classification task was evaluated using aROC for discrimination, and Brier Score, Brier Score Scaled, and Hosmer-Lemeshow test for calibration. The regression task was evaluated by comparing median actual and predicted discharge, loss penalty function (LPF ((actual-predicted/actual and calculating root mean squared relative errors (RMSRE. Results Median (P25-P75 ICU length of stay was 3 (2-5 days. For classification, the GP model showed an aROC of 0.758 which was significantly higher than the predictions by nurses, but not better than EuroSCORE and physicians. The GP had the best calibration, with a Brier Score of 0.179 and Hosmer-Lemeshow p-value of 0.382. For regression, GP had the highest proportion of patients with a correctly predicted day of discharge (40%, which was significantly better than the EuroSCORE (p Conclusions A GP model that uses PDMS data of the first 4 hours after admission in the ICU of scheduled adult cardiac surgery patients was able to predict discharge from the ICU as a

  18. Prediction error variance and expected response to selection, when selection is based on the best predictor - for Gaussian and threshold characters, traits following a Poisson mixed model and survival traits

    Andersen, Anders Holst; Korsgaard, Inge Riis; Jensen, Just

    2002-01-01

    In this paper, we consider selection based on the best predictor of animal additive genetic values in Gaussian linear mixed models, threshold models, Poisson mixed models, and log normal frailty models for survival data (including models with time-dependent covariates with associated fixed...... or random effects). In the different models, expressions are given (when these can be found - otherwise unbiased estimates are given) for prediction error variance, accuracy of selection and expected response to selection on the additive genetic scale and on the observed scale. The expressions given for non...... Gaussian traits are generalisations of the well-known formulas for Gaussian traits - and reflect, for Poisson mixed models and frailty models for survival data, the hierarchal structure of the models. In general the ratio of the additive genetic variance to the total variance in the Gaussian part...

  19. Exact Partial Information Decompositions for Gaussian Systems Based on Dependency Constraints

    Jim W. Kay

    2018-03-01

    Full Text Available The Partial Information Decomposition, introduced by Williams P. L. et al. (2010, provides a theoretical framework to characterize and quantify the structure of multivariate information sharing. A new method ( I dep has recently been proposed by James R. G. et al. (2017 for computing a two-predictor partial information decomposition over discrete spaces. A lattice of maximum entropy probability models is constructed based on marginal dependency constraints, and the unique information that a particular predictor has about the target is defined as the minimum increase in joint predictor-target mutual information when that particular predictor-target marginal dependency is constrained. Here, we apply the I dep approach to Gaussian systems, for which the marginally constrained maximum entropy models are Gaussian graphical models. Closed form solutions for the I dep PID are derived for both univariate and multivariate Gaussian systems. Numerical and graphical illustrations are provided, together with practical and theoretical comparisons of the I dep PID with the minimum mutual information partial information decomposition ( I mmi , which was discussed by Barrett A. B. (2015. The results obtained using I dep appear to be more intuitive than those given with other methods, such as I mmi , in which the redundant and unique information components are constrained to depend only on the predictor-target marginal distributions. In particular, it is proved that the I mmi method generally produces larger estimates of redundancy and synergy than does the I dep method. In discussion of the practical examples, the PIDs are complemented by the use of tests of deviance for the comparison of Gaussian graphical models.

  20. Modification of Gaussian mixture models for data classification in high energy physics

    Štěpánek, Michal; Franc, Jiří; Kůs, Václav

    2015-01-01

    In high energy physics, we deal with demanding task of signal separation from background. The Model Based Clustering method involves the estimation of distribution mixture parameters via the Expectation-Maximization algorithm in the training phase and application of Bayes' rule in the testing phase. Modifications of the algorithm such as weighting, missing data processing, and overtraining avoidance will be discussed. Due to the strong dependence of the algorithm on initialization, genetic optimization techniques such as mutation, elitism, parasitism, and the rank selection of individuals will be mentioned. Data pre-processing plays a significant role for the subsequent combination of final discriminants in order to improve signal separation efficiency. Moreover, the results of the top quark separation from the Tevatron collider will be compared with those of standard multivariate techniques in high energy physics. Results from this study has been used in the measurement of the inclusive top pair production cross section employing DØ Tevatron full Runll data (9.7 fb-1).

  1. Measuring Treasury Bond Portfolio Risk and Portfolio Optimization with a Non-Gaussian Multivariate Model

    Dong, Yijun

    The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.

  2. Survival analysis, the infinite Gaussian mixture model, FDG-PET and non-imaging data in the prediction of progression from mild cognitive impairment

    Li, Rui; Perneczky, Robert; Drzezga, Alexander; Kramer, Stefan; Initiative, for the Alzheimer's Disease Neuroimaging

    2015-01-01

    We present a method to discover interesting brain regions in [18F] fluorodeoxyglucose positron emission tomography (PET) scans, showing also the benefits when PET scans are in combined use with non-imaging variables. The discriminative brain regions facilitate a better understanding of Alzheimer's disease (AD) progression, and they can also be used for predicting conversion from mild cognitive impairment (MCI) to AD. A survival analysis(Cox regression) and infinite Gaussian mixture model (IGM...

  3. Effective leaf area index retrieving from terrestrial point cloud data: coupling computational geometry application and Gaussian mixture model clustering

    Jin, S.; Tamura, M.; Susaki, J.

    2014-09-01

    Leaf area index (LAI) is one of the most important structural parameters of forestry studies which manifests the ability of the green vegetation interacted with the solar illumination. Classic understanding about LAI is to consider the green canopy as integration of horizontal leaf layers. Since multi-angle remote sensing technique developed, LAI obliged to be deliberated according to the observation geometry. Effective LAI could formulate the leaf-light interaction virtually and precisely. To retrieve the LAI/effective LAI from remotely sensed data therefore becomes a challenge during the past decades. Laser scanning technique can provide accurate surface echoed coordinates with densely scanned intervals. To utilize the density based statistical algorithm for analyzing the voluminous amount of the 3-D points data is one of the subjects of the laser scanning applications. Computational geometry also provides some mature applications for point cloud data (PCD) processing and analysing. In this paper, authors investigated the feasibility of a new application for retrieving the effective LAI of an isolated broad leaf tree. Simplified curvature was calculated for each point in order to remove those non-photosynthetic tissues. Then PCD were discretized into voxel, and clustered by using Gaussian mixture model. Subsequently the area of each cluster was calculated by employing the computational geometry applications. In order to validate our application, we chose an indoor plant to estimate the leaf area, the correlation coefficient between calculation and measurement was 98.28 %. We finally calculated the effective LAI of the tree with 6 × 6 assumed observation directions.

  4. Gaussian curvature elasticity determined from global shape transformations and local stress distributions : a comparative study using the MARTINI model

    Hu, Mingyang; de Jong, Djurre H.; Marrink, Siewert J.; Deserno, Markus

    2013-01-01

    We calculate the Gaussian curvature modulus (k) over bar of a systematically coarse-grained (CG) one-component lipid membrane by applying the method recently proposed by Hu et al. [Biophys. J., 2012, 102, 1403] to the MARTINI representation of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We

  5. On Gaussian conditional independence structures

    Lněnička, Radim; Matúš, František

    2007-01-01

    Roč. 43, č. 3 (2007), s. 327-342 ISSN 0023-5954 R&D Projects: GA AV ČR IAA100750603 Institutional research plan: CEZ:AV0Z10750506 Keywords : multivariate Gaussian distribution * positive definite matrices * determinants * gaussoids * covariance selection models * Markov perfectness Subject RIV: BA - General Mathematics Impact factor: 0.552, year: 2007

  6. On-current modeling of short-channel double-gate (DG) MOSFETs with a vertical Gaussian-like doping profile

    Dubey, Sarvesh; Jit, S.; Tiwari Pramod Kumar

    2013-01-01

    An analytic drain current model is presented for doped short-channel double-gate MOSFETs with a Gaussian-like doping profile in the vertical direction of the channel. The present model is valid in linear and saturation regions of device operation. The drain current variation with various device parameters has been demonstrated. The model is made more physical by incorporating the channel length modulation effect. Parameters like transconductance and drain conductance that are important in assessing the analog performance of the device have also been formulated. The model results are validated by numerical simulation results obtained by using the commercially available ATLAS™, a two dimensional device simulator from SILVACO. (semiconductor devices)

  7. Building Models in the Classroom: Taking Advantage of Sophisticated Geomorphic Numerical Tools Using a Simple Graphical User Interface

    Roy, S. G.; Koons, P. O.; Gerbi, C. C.; Capps, D. K.; Tucker, G. E.; Rogers, Z. A.

    2014-12-01

    Sophisticated numerical tools exist for modeling geomorphic processes and linking them to tectonic and climatic systems, but they are often seen as inaccessible for users with an exploratory level of interest. We have improved the accessibility of landscape evolution models by producing a simple graphics user interface (GUI) that takes advantage of the Channel-Hillslope Integrated Landscape Development (CHILD) model. Model access is flexible: the user can edit values for basic geomorphic, tectonic, and climate parameters, or obtain greater control by defining the spatiotemporal distributions of those parameters. Users can make educated predictions by choosing their own parametric values for the governing equations and interpreting the results immediately through model graphics. This method of modeling allows users to iteratively build their understanding through experimentation. Use of this GUI is intended for inquiry and discovery-based learning activities. We discuss a number of examples of how the GUI can be used at the upper high school, introductory university, and advanced university level. Effective teaching modules initially focus on an inquiry-based example guided by the instructor. As students become familiar with the GUI and the CHILD model, the class can shift to more student-centered exploration and experimentation. To make model interpretations more robust, digital elevation models can be imported and direct comparisons can be made between CHILD model results and natural topography. The GUI is available online through the University of Maine's Earth and Climate Sciences website, through the Community Surface Dynamics Modeling System (CSDMS) model repository, or by contacting the corresponding author.

  8. Linking network usage patterns to traffic Gaussianity fit

    de Oliveira Schmidt, R.; Sadre, R.; Melnikov, Nikolay; Schönwälder, Jürgen; Pras, Aiko

    Gaussian traffic models are widely used in the domain of network traffic modeling. The central assumption is that traffic aggregates are Gaussian distributed. Due to its importance, the Gaussian character of network traffic has been extensively assessed by researchers in the past years. In 2001,

  9. Gaussian processes for machine learning.

    Seeger, Matthias

    2004-04-01

    Gaussian processes (GPs) are natural generalisations of multivariate Gaussian random variables to infinite (countably or continuous) index sets. GPs have been applied in a large number of fields to a diverse range of ends, and very many deep theoretical analyses of various properties are available. This paper gives an introduction to Gaussian processes on a fairly elementary level with special emphasis on characteristics relevant in machine learning. It draws explicit connections to branches such as spline smoothing models and support vector machines in which similar ideas have been investigated. Gaussian process models are routinely used to solve hard machine learning problems. They are attractive because of their flexible non-parametric nature and computational simplicity. Treated within a Bayesian framework, very powerful statistical methods can be implemented which offer valid estimates of uncertainties in our predictions and generic model selection procedures cast as nonlinear optimization problems. Their main drawback of heavy computational scaling has recently been alleviated by the introduction of generic sparse approximations.13,78,31 The mathematical literature on GPs is large and often uses deep concepts which are not required to fully understand most machine learning applications. In this tutorial paper, we aim to present characteristics of GPs relevant to machine learning and to show up precise connections to other "kernel machines" popular in the community. Our focus is on a simple presentation, but references to more detailed sources are provided.

  10. Multivariate determinants of self-management in Health Care: assessing Health Empowerment Model by comparison between structural equation and graphical models approaches

    Filippo Trentini

    2015-03-01

    Full Text Available Backgroung. In public health one debated issue is related to consequences of improper self-management in health care.  Some theoretical models have been proposed in Health Communication theory which highlight how components such general literacy and specific knowledge of the disease might be very important for effective actions in healthcare system.  Methods. This  paper aims at investigating the consistency of Health Empowerment Model by means of both graphical models approach, which is a “data driven” method and a Structural Equation Modeling (SEM approach, which is instead “theory driven”, showing the different information pattern that can be revealed in a health care research context.The analyzed dataset provides data on the relationship between the Health Empowerment Model constructs and the behavioral and health status in 263 chronic low back pain (cLBP patients. We used the graphical models approach to evaluate the dependence structure in a “blind” way, thus learning the structure from the data.Results. From the estimation results dependence structure confirms links design assumed in SEM approach directly from researchers, thus validating the hypotheses which generated the Health Empowerment Model constructs.Conclusions. This models comparison helps in avoiding confirmation bias. In Structural Equation Modeling, we used SPSS AMOS 21 software. Graphical modeling algorithms were implemented in a R software environment.

  11. Holographic non-Gaussianity

    McFadden, Paul; Skenderis, Kostas

    2011-01-01

    We investigate the non-Gaussianity of primordial cosmological perturbations within our recently proposed holographic description of inflationary universes. We derive a holographic formula that determines the bispectrum of cosmological curvature perturbations in terms of correlation functions of a holographically dual three-dimensional non-gravitational quantum field theory (QFT). This allows us to compute the primordial bispectrum for a universe which started in a non-geometric holographic phase, using perturbative QFT calculations. Strikingly, for a class of models specified by a three-dimensional super-renormalisable QFT, the primordial bispectrum is of exactly the factorisable equilateral form with f NL equil. = 5/36, irrespective of the details of the dual QFT. A by-product of this investigation is a holographic formula for the three-point function of the trace of the stress-energy tensor along general holographic RG flows, which should have applications outside the remit of this work

  12. Gaussian entanglement revisited

    Lami, Ludovico; Serafini, Alessio; Adesso, Gerardo

    2018-02-01

    We present a novel approach to the separability problem for Gaussian quantum states of bosonic continuous variable systems. We derive a simplified necessary and sufficient separability criterion for arbitrary Gaussian states of m versus n modes, which relies on convex optimisation over marginal covariance matrices on one subsystem only. We further revisit the currently known results stating the equivalence between separability and positive partial transposition (PPT) for specific classes of Gaussian states. Using techniques based on matrix analysis, such as Schur complements and matrix means, we then provide a unified treatment and compact proofs of all these results. In particular, we recover the PPT-separability equivalence for: (i) Gaussian states of 1 versus n modes; and (ii) isotropic Gaussian states. In passing, we also retrieve (iii) the recently established equivalence between separability of a Gaussian state and and its complete Gaussian extendability. Our techniques are then applied to progress beyond the state of the art. We prove that: (iv) Gaussian states that are invariant under partial transposition are necessarily separable; (v) the PPT criterion is necessary and sufficient for separability for Gaussian states of m versus n modes that are symmetric under the exchange of any two modes belonging to one of the parties; and (vi) Gaussian states which remain PPT under passive optical operations can not be entangled by them either. This is not a foregone conclusion per se (since Gaussian bound entangled states do exist) and settles a question that had been left unanswered in the existing literature on the subject. This paper, enjoyable by both the quantum optics and the matrix analysis communities, overall delivers technical and conceptual advances which are likely to be useful for further applications in continuous variable quantum information theory, beyond the separability problem.

  13. Computer graphics and research projects

    Ingtrakul, P.

    1994-01-01

    This report was prepared as an account of scientific visualization tools and application tools for scientists and engineers. It is provided a set of tools to create pictures and to interact with them in natural ways. It applied many techniques of computer graphics and computer animation through a number of full-color presentations as computer animated commercials, 3D computer graphics, dynamic and environmental simulations, scientific modeling and visualization, physically based modelling, and beavioral, skelatal, dynamics, and particle animation. It took in depth at original hardware and limitations of existing PC graphics adapters contain syste m performance, especially with graphics intensive application programs and user interfaces

  14. The Development of Web-based Graphical User Interface for Unified Modeling Data with Multi (Correlated) Responses

    Made Tirta, I.; Anggraeni, Dian

    2018-04-01

    Statistical models have been developed rapidly into various directions to accommodate various types of data. Data collected from longitudinal, repeated measured, clustered data (either continuous, binary, count, or ordinal), are more likely to be correlated. Therefore statistical model for independent responses, such as Generalized Linear Model (GLM), Generalized Additive Model (GAM) are not appropriate. There are several models available to apply for correlated responses including GEEs (Generalized Estimating Equations), for marginal model and various mixed effect model such as GLMM (Generalized Linear Mixed Models) and HGLM (Hierarchical Generalized Linear Models) for subject spesific models. These models are available on free open source software R, but they can only be accessed through command line interface (using scrit). On the othe hand, most practical researchers very much rely on menu based or Graphical User Interface (GUI). We develop, using Shiny framework, standard pull down menu Web-GUI that unifies most models for correlated responses. The Web-GUI has accomodated almost all needed features. It enables users to do and compare various modeling for repeated measure data (GEE, GLMM, HGLM, GEE for nominal responses) much more easily trough online menus. This paper discusses the features of the Web-GUI and illustrates the use of them. In General we find that GEE, GLMM, HGLM gave very closed results.

  15. Image Denoising via Bayesian Estimation of Statistical Parameter Using Generalized Gamma Density Prior in Gaussian Noise Model

    Kittisuwan, Pichid

    2015-03-01

    The application of image processing in industry has shown remarkable success over the last decade, for example, in security and telecommunication systems. The denoising of natural image corrupted by Gaussian noise is a classical problem in image processing. So, image denoising is an indispensable step during image processing. This paper is concerned with dual-tree complex wavelet-based image denoising using Bayesian techniques. One of the cruxes of the Bayesian image denoising algorithms is to estimate the statistical parameter of the image. Here, we employ maximum a posteriori (MAP) estimation to calculate local observed variance with generalized Gamma density prior for local observed variance and Laplacian or Gaussian distribution for noisy wavelet coefficients. Evidently, our selection of prior distribution is motivated by efficient and flexible properties of generalized Gamma density. The experimental results show that the proposed method yields good denoising results.

  16. SutraPlot, a graphical post-processor for SUTRA, a model for ground-water flow with solute or energy transport

    Souza, W.R.

    1999-01-01

    This report documents a graphical display post-processor (SutraPlot) for the U.S. Geological Survey Saturated-Unsaturated flow and solute or energy TRAnsport simulation model SUTRA, Version 2D3D.1. This version of SutraPlot is an upgrade to SutraPlot for the 2D-only SUTRA model (Souza, 1987). It has been modified to add 3D functionality, a graphical user interface (GUI), and enhanced graphic output options. Graphical options for 2D SUTRA (2-dimension) simulations include: drawing the 2D finite-element mesh, mesh boundary, and velocity vectors; plots of contours for pressure, saturation, concentration, and temperature within the model region; 2D finite-element based gridding and interpolation; and 2D gridded data export files. Graphical options for 3D SUTRA (3-dimension) simulations include: drawing the 3D finite-element mesh; plots of contours for pressure, saturation, concentration, and temperature in 2D sections of the 3D model region; 3D finite-element based gridding and interpolation; drawing selected regions of velocity vectors (projected on principal coordinate planes); and 3D gridded data export files. Installation instructions and a description of all graphic options are presented. A sample SUTRA problem is described and three step-by-step SutraPlot applications are provided. In addition, the methodology and numerical algorithms for the 2D and 3D finite-element based gridding and interpolation, developed for SutraPlot, are described. 1

  17. The use of probabilistic graphical models (PGMs) to develop a cost-effective vaccination strategy against Campylobacter in poultry

    Garcia Clavero, Ana Belén; Madsen, A.; Vigre, Håkan

    2012-01-01

    ’ exposure to Campylobacter.In this presentation we focus on the development of a computerized decision support system to aid management decisions on Campylobacter vaccination of commercial broilers. Broilers should be vaccinated against Campylobacter in the first 2 weeks of age. Therefore, the decision...... about vaccination needs to be made usually before Campylobacter is introduced in the flock. In fact, there is uncertainty regarding the introduction of Campylobacter into the flock that needs to be taken into account in the decision making process. Probabilistic Graphical Models (PGMs) integrate......, epidemiological and economic factors (cost-reward functions) have been included in the models. The final outcome of the models is presented in probabilities of expected level of Campylobacter and financial terms influenced by the decision on vaccination. For example, if the best decision seems to be to vaccinate...

  18. Spatial Modeling Of Infant Mortality Rate In South Central Timor Regency Using GWLR Method With Adaptive Bisquare Kernel And Gaussian Kernel

    Teguh Prawono Sabat

    2017-08-01

    Full Text Available Geographically Weighted Logistic Regression (GWLR was regression model consider the spatial factor, which could be used to analyze the IMR. The number of Infant Mortality as big as 100 cases in 2015 or 12 per 1000 live birth in South Central Timor Regency. The aim of this study was to determine the best modeling of GWLR with fixed weighting function and Adaptive Gaussian Kernel in the case of infant mortality in South Central Timor District in 2015. The response variable (Y in this study was a case of infant mortality, while variable predictor was the percentage of neonatal first visit (KN1 (X1, the percentage of neonatal visit 3 times (Complete KN (X2, the percentage of pregnant get Fe tablet (X3, percentage of poor families pre prosperous (X4. This was a non-reactive study, which is a measurement which individuals surveyed did not realize that they are part of a study, with analysis unit in 32 sub-districts of South Central Timor Districts. Data analysis used open source program that was Excel, R program, Quantum GIS and GWR4. The best GWLR spatial modeling with Adaptive Gaussian Kernel weighting function, a global model parameters GWLR Adaptive Gaussian Kernel weighting function obtained by g (x = 0.941086 - 0,892506X4, GWLR local models with adaptive Kernel bisquare weighting function in the 13 Districts were obtained g(x = 0 − 0X4, factors that affect the cases of infant mortality in 13 sub-districts of South Central Timor Regency in 2015 was the percentage of poor families pre prosperous.

  19. Fault tree graphics

    Bass, L.; Wynholds, H.W.; Porterfield, W.R.

    1975-01-01

    Described is an operational system that enables the user, through an intelligent graphics terminal, to construct, modify, analyze, and store fault trees. With this system, complex engineering designs can be analyzed. This paper discusses the system and its capabilities. Included is a brief discussion of fault tree analysis, which represents an aspect of reliability and safety modeling

  20. 3D for Graphic Designers

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  1. MCEM algorithm for the log-Gaussian Cox process

    Delmas, Celine; Dubois-Peyrard, Nathalie; Sabbadin, Regis

    2014-01-01

    Log-Gaussian Cox processes are an important class of models for aggregated point patterns. They have been largely used in spatial epidemiology (Diggle et al., 2005), in agronomy (Bourgeois et al., 2012), in forestry (Moller et al.), in ecology (sightings of wild animals) or in environmental sciences (radioactivity counts). A log-Gaussian Cox process is a Poisson process with a stochastic intensity depending on a Gaussian random eld. We consider the case where this Gaussian random eld is ...

  2. Development of interactive graphic user interfaces for modeling reaction-based biogeochemical processes in batch systems with BIOGEOCHEM

    Chang, C.; Li, M.; Yeh, G.

    2010-12-01

    The BIOGEOCHEM numerical model (Yeh and Fang, 2002; Fang et al., 2003) was developed with FORTRAN for simulating reaction-based geochemical and biochemical processes with mixed equilibrium and kinetic reactions in batch systems. A complete suite of reactions including aqueous complexation, adsorption/desorption, ion-exchange, redox, precipitation/dissolution, acid-base reactions, and microbial mediated reactions were embodied in this unique modeling tool. Any reaction can be treated as fast/equilibrium or slow/kinetic reaction. An equilibrium reaction is modeled with an implicit finite rate governed by a mass action equilibrium equation or by a user-specified algebraic equation. A kinetic reaction is modeled with an explicit finite rate with an elementary rate, microbial mediated enzymatic kinetics, or a user-specified rate equation. None of the existing models has encompassed this wide array of scopes. To ease the input/output learning curve using the unique feature of BIOGEOCHEM, an interactive graphic user interface was developed with the Microsoft Visual Studio and .Net tools. Several user-friendly features, such as pop-up help windows, typo warning messages, and on-screen input hints, were implemented, which are robust. All input data can be real-time viewed and automated to conform with the input file format of BIOGEOCHEM. A post-processor for graphic visualizations of simulated results was also embedded for immediate demonstrations. By following data input windows step by step, errorless BIOGEOCHEM input files can be created even if users have little prior experiences in FORTRAN. With this user-friendly interface, the time effort to conduct simulations with BIOGEOCHEM can be greatly reduced.

  3. Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis

    D. Béal

    2010-02-01

    Full Text Available In biogeochemical models coupled to ocean circulation models, vertical mixing is an important physical process which governs the nutrient supply and the plankton residence in the euphotic layer. However, vertical mixing is often poorly represented in numerical simulations because of approximate parameterizations of sub-grid scale turbulence, wind forcing errors and other mis-represented processes such as restratification by mesoscale eddies. Getting a sufficient knowledge of the nature and structure of these errors is necessary to implement appropriate data assimilation methods and to evaluate if they can be controlled by a given observation system.

    In this paper, Monte Carlo simulations are conducted to study mixing errors induced by approximate wind forcings in a three-dimensional coupled physical-biogeochemical model of the North Atlantic with a 1/4° horizontal resolution. An ensemble forecast involving 200 members is performed during the 1998 spring bloom, by prescribing perturbations of the wind forcing to generate mixing errors. The biogeochemical response is shown to be rather complex because of nonlinearities and threshold effects in the coupled model. The response of the surface phytoplankton depends on the region of interest and is particularly sensitive to the local stratification. In addition, the statistical relationships computed between the various physical and biogeochemical variables reflect the signature of the non-Gaussian behaviour of the system. It is shown that significant information on the ecosystem can be retrieved from observations of chlorophyll concentration or sea surface temperature if a simple nonlinear change of variables (anamorphosis is performed by mapping separately and locally the ensemble percentiles of the distributions of each state variable on the Gaussian percentiles. The results of idealized observational updates (performed with perfect observations and neglecting horizontal correlations

  4. ToxPi Graphical User Interface 2.0: Dynamic exploration, visualization, and sharing of integrated data models.

    Marvel, Skylar W; To, Kimberly; Grimm, Fabian A; Wright, Fred A; Rusyn, Ivan; Reif, David M

    2018-03-05

    Drawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates. We detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output. We present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org .

  5. Prediction of temperature and HAZ in thermal-based processes with Gaussian heat source by a hybrid GA-ANN model

    Fazli Shahri, Hamid Reza; Mahdavinejad, Ramezanali

    2018-02-01

    Thermal-based processes with Gaussian heat source often produce excessive temperature which can impose thermally-affected layers in specimens. Therefore, the temperature distribution and Heat Affected Zone (HAZ) of materials are two critical factors which are influenced by different process parameters. Measurement of the HAZ thickness and temperature distribution within the processes are not only difficult but also expensive. This research aims at finding a valuable knowledge on these factors by prediction of the process through a novel combinatory model. In this study, an integrated Artificial Neural Network (ANN) and genetic algorithm (GA) was used to predict the HAZ and temperature distribution of the specimens. To end this, a series of full factorial design of experiments were conducted by applying a Gaussian heat flux on Ti-6Al-4 V at first, then the temperature of the specimen was measured by Infrared thermography. The HAZ width of each sample was investigated through measuring the microhardness. Secondly, the experimental data was used to create a GA-ANN model. The efficiency of GA in design and optimization of the architecture of ANN was investigated. The GA was used to determine the optimal number of neurons in hidden layer, learning rate and momentum coefficient of both output and hidden layers of ANN. Finally, the reliability of models was assessed according to the experimental results and statistical indicators. The results demonstrated that the combinatory model predicted the HAZ and temperature more effective than a trial-and-error ANN model.

  6. Statistically tuned Gaussian background subtraction technique for ...

    temporal median method and mixture of Gaussian model and performance evaluation ... to process the videos captured by unmanned aerial vehicle (UAV). ..... The output is obtained by simulation using MATLAB 2010 in a standalone PC with ...

  7. An Empirical Study of Efficiency and Accuracy of Probabilistic Graphical Models

    Nielsen, Jens Dalgaard; Jaeger, Manfred

    2006-01-01

    In this paper we compare Na\\ii ve Bayes (NB) models, general Bayes Net (BN) models and Probabilistic Decision Graph (PDG) models w.r.t. accuracy and efficiency. As the basis for our analysis we use graphs of size vs. likelihood that show the theoretical capabilities of the models. We also measure...

  8. Can a numerically stable subgrid-scale model for turbulent flow computation be ideally accurate?: a preliminary theoretical study for the Gaussian filtered Navier-Stokes equations.

    Ida, Masato; Taniguchi, Nobuyuki

    2003-09-01

    This paper introduces a candidate for the origin of the numerical instabilities in large eddy simulation repeatedly observed in academic and practical industrial flow computations. Without resorting to any subgrid-scale modeling, but based on a simple assumption regarding the streamwise component of flow velocity, it is shown theoretically that in a channel-flow computation, the application of the Gaussian filtering to the incompressible Navier-Stokes equations yields a numerically unstable term, a cross-derivative term, which is similar to one appearing in the Gaussian filtered Vlasov equation derived by Klimas [J. Comput. Phys. 68, 202 (1987)] and also to one derived recently by Kobayashi and Shimomura [Phys. Fluids 15, L29 (2003)] from the tensor-diffusivity subgrid-scale term in a dynamic mixed model. The present result predicts that not only the numerical methods and the subgrid-scale models employed but also only the applied filtering process can be a seed of this numerical instability. An investigation concerning the relationship between the turbulent energy scattering and the unstable term shows that the instability of the term does not necessarily represent the backscatter of kinetic energy which has been considered a possible origin of numerical instabilities in large eddy simulation. The present findings raise the question whether a numerically stable subgrid-scale model can be ideally accurate.

  9. Choosing an optimal model for failure data analysis by graphical approach

    Zhang, Tieling; Dwight, Richard

    2013-01-01

    Many models involving combination of multiple Weibull distributions, modification of Weibull distribution or extension of its modified ones, etc. have been developed to model a given set of failure data. The application of these models to modeling a given data set can be based on plotting the data on Weibull probability paper (WPP). Of them, two or more models are appropriate to model one typical shape of the fitting plot, whereas a specific model may be fit for analyzing different shapes of the plots. Hence, a problem arises, that is how to choose an optimal model for a given data set and how to model the data. The motivation of this paper is to address this issue. This paper summarizes the characteristics of Weibull-related models with more than three parameters including sectional models involving two or three Weibull distributions, competing risk model and mixed Weibull model. The models as discussed in this present paper are appropriate to model the data of which the shapes of plots on WPP can be concave, convex, S-shaped or inversely S-shaped. Then, the method for model selection is proposed, which is based on the shapes of the fitting plots. The main procedure for parameter estimation of the models is described accordingly. In addition, the range of data plots on WPP is clearly highlighted from the practical point of view. To note this is important as mathematical analysis of a model with neglecting the applicable range of the model plot will incur discrepancy or big errors in model selection and parameter estimates

  10. Vortices in Gaussian beams

    Roux, FS

    2009-01-01

    Full Text Available , t0)} = P(du, dv) {FR{g(u, v, t0)}} Replacement: u→ du = t− t0 i2 ∂ ∂u′ v → dv = t− t0 i2 ∂ ∂v′ CSIR National Laser Centre – p.13/30 Differentiation i.s.o integration Evaluate the integral over the Gaussian beam (once and for all). Then, instead... . Gaussian beams with vortex dipoles CSIR National Laser Centre – p.2/30 Gaussian beam notation Gaussian beam in normalised coordinates: g(u, v, t) = exp ( −u 2 + v2 1− it ) u = xω0 v = yω0 t = zρ ρ = piω20 λ ω0 — 1/e2 beam waist radius; ρ— Rayleigh range ω ω...

  11. Gaussian operations and privacy

    Navascues, Miguel; Acin, Antonio

    2005-01-01

    We consider the possibilities offered by Gaussian states and operations for two honest parties, Alice and Bob, to obtain privacy against a third eavesdropping party, Eve. We first extend the security analysis of the protocol proposed in [Navascues et al. Phys. Rev. Lett. 94, 010502 (2005)]. Then, we prove that a generalized version of this protocol does not allow one to distill a secret key out of bound entangled Gaussian states

  12. Gaussian Embeddings for Collaborative Filtering

    Dos Santos , Ludovic; Piwowarski , Benjamin; Gallinari , Patrick

    2017-01-01

    International audience; Most collaborative ltering systems, such as matrix factorization, use vector representations for items and users. Those representations are deterministic, and do not allow modeling the uncertainty of the learned representation, which can be useful when a user has a small number of rated items (cold start), or when there is connict-ing information about the behavior of a user or the ratings of an item. In this paper, we leverage recent works in learning Gaussian embeddi...

  13. Loop corrections to primordial non-Gaussianity

    Boran, Sibel; Kahya, E. O.

    2018-02-01

    We discuss quantum gravitational loop effects to observable quantities such as curvature power spectrum and primordial non-Gaussianity of cosmic microwave background (CMB) radiation. We first review the previously shown case where one gets a time dependence for zeta-zeta correlator due to loop corrections. Then we investigate the effect of loop corrections to primordial non-Gaussianity of CMB. We conclude that, even with a single scalar inflaton, one might get a huge value for non-Gaussianity which would exceed the observed value by at least 30 orders of magnitude. Finally we discuss the consequences of this result for scalar driven inflationary models.

  14. Forecasting Multivariate Road Traffic Flows Using Bayesian Dynamic Graphical Models, Splines and Other Traffic Variables

    Anacleto, Osvaldo; Queen, Catriona; Albers, Casper J.

    Traffic flow data are routinely collected for many networks worldwide. These invariably large data sets can be used as part of a traffic management system, for which good traffic flow forecasting models are crucial. The linear multiregression dynamic model (LMDM) has been shown to be promising for

  15. Diffusion-weighted MR imaging of pancreatic cancer: A comparison of mono-exponential, bi-exponential and non-Gaussian kurtosis models.

    Kartalis, Nikolaos; Manikis, Georgios C; Loizou, Louiza; Albiin, Nils; Zöllner, Frank G; Del Chiaro, Marco; Marias, Kostas; Papanikolaou, Nikolaos

    2016-01-01

    To compare two Gaussian diffusion-weighted MRI (DWI) models including mono-exponential and bi-exponential, with the non-Gaussian kurtosis model in patients with pancreatic ductal adenocarcinoma. After written informed consent, 15 consecutive patients with pancreatic ductal adenocarcinoma underwent free-breathing DWI (1.5T, b-values: 0, 50, 150, 200, 300, 600 and 1000 s/mm 2 ). Mean values of DWI-derived metrics ADC, D, D*, f, K and D K were calculated from multiple regions of interest in all tumours and non-tumorous parenchyma and compared. Area under the curve was determined for all metrics. Mean ADC and D K showed significant differences between tumours and non-tumorous parenchyma (both P  < 0.001). Area under the curve for ADC, D, D*, f, K, and D K were 0.77, 0.52, 0.53, 0.62, 0.42, and 0.84, respectively. ADC and D K could differentiate tumours from non-tumorous parenchyma with the latter showing a higher diagnostic accuracy. Correction for kurtosis effects has the potential to increase the diagnostic accuracy of DWI in patients with pancreatic ductal adenocarcinoma.

  16. Inflation in random Gaussian landscapes

    Masoumi, Ali; Vilenkin, Alexander; Yamada, Masaki, E-mail: ali@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: Masaki.Yamada@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2017-05-01

    We develop analytic and numerical techniques for studying the statistics of slow-roll inflation in random Gaussian landscapes. As an illustration of these techniques, we analyze small-field inflation in a one-dimensional landscape. We calculate the probability distributions for the maximal number of e-folds and for the spectral index of density fluctuations n {sub s} and its running α {sub s} . These distributions have a universal form, insensitive to the correlation function of the Gaussian ensemble. We outline possible extensions of our methods to a large number of fields and to models of large-field inflation. These methods do not suffer from potential inconsistencies inherent in the Brownian motion technique, which has been used in most of the earlier treatments.

  17. Printing--Graphic Arts--Graphic Communications

    Hauenstein, A. Dean

    1975-01-01

    Recently, "graphic arts" has shifted from printing skills to a conceptual approach of production processes. "Graphic communications" must embrace the total system of communication through graphic media, to serve broad career education purposes; students taught concepts and principles can be flexible and adaptive. The author…

  18. Nuclear reactors; graphical symbols

    1987-11-01

    This standard contains graphical symbols that reveal the type of nuclear reactor and is used to design graphical and technical presentations. Distinguishing features for nuclear reactors are laid down in graphical symbols. (orig.) [de

  19. A standardised graphic method for describing data privacy frameworks in primary care research using a flexible zone model.

    Kuchinke, Wolfgang; Ohmann, Christian; Verheij, Robert A; van Veen, Evert-Ben; Arvanitis, Theodoros N; Taweel, Adel; Delaney, Brendan C

    2014-12-01

    To develop a model describing core concepts and principles of data flow, data privacy and confidentiality, in a simple and flexible way, using concise process descriptions and a diagrammatic notation applied to research workflow processes. The model should help to generate robust data privacy frameworks for research done with patient data. Based on an exploration of EU legal requirements for data protection and privacy, data access policies, and existing privacy frameworks of research projects, basic concepts and common processes were extracted, described and incorporated into a model with a formal graphical representation and a standardised notation. The Unified Modelling Language (UML) notation was enriched by workflow and own symbols to enable the representation of extended data flow requirements, data privacy and data security requirements, privacy enhancing techniques (PET) and to allow privacy threat analysis for research scenarios. Our model is built upon the concept of three privacy zones (Care Zone, Non-care Zone and Research Zone) containing databases, data transformation operators, such as data linkers and privacy filters. Using these model components, a risk gradient for moving data from a zone of high risk for patient identification to a zone of low risk can be described. The model was applied to the analysis of data flows in several general clinical research use cases and two research scenarios from the TRANSFoRm project (e.g., finding patients for clinical research and linkage of databases). The model was validated by representing research done with the NIVEL Primary Care Database in the Netherlands. The model allows analysis of data privacy and confidentiality issues for research with patient data in a structured way and provides a framework to specify a privacy compliant data flow, to communicate privacy requirements and to identify weak points for an adequate implementation of data privacy. Copyright © 2014 Elsevier Ireland Ltd. All rights

  20. Probabilistic Graphical Models for the Analysis and Synthesis of Musical Audio

    Hoffmann, Matthew Douglas

    Content-based Music Information Retrieval (MIR) systems seek to automatically extract meaningful information from musical audio signals. This thesis applies new and existing generative probabilistic models to several content-based MIR tasks: timbral similarity estimation, semantic annotation and retrieval, and latent source discovery and separation. In order to estimate how similar two songs sound to one another, we employ a Hierarchical Dirichlet Process (HDP) mixture model to discover a shared representation of the distribution of timbres in each song. Comparing songs under this shared representation yields better query-by-example retrieval quality and scalability than previous approaches. To predict what tags are likely to apply to a song (e.g., "rap," "happy," or "driving music"), we develop the Codeword Bernoulli Average (CBA) model, a simple and fast mixture-of-experts model. Despite its simplicity, CBA performs at least as well as state-of-the-art approaches at automatically annotating songs and finding to what songs in a database a given tag most applies. Finally, we address the problem of latent source discovery and separation by developing two Bayesian nonparametric models, the Shift-Invariant HDP and Gamma Process NMF. These models allow us to discover what sounds (e.g. bass drums, guitar chords, etc.) are present in a song or set of songs and to isolate or suppress individual source. These models' ability to decide how many latent sources are necessary to model the data is particularly valuable in this application, since it is impossible to guess a priori how many sounds will appear in a given song or set of songs. Once they have been fit to data, probabilistic models can also be used to drive the synthesis of new musical audio, both for creative purposes and to qualitatively diagnose what information a model does and does not capture. We also adapt the SIHDP model to create new versions of input audio with arbitrary sample sets, for example, to create