WorldWideScience

Sample records for graphene including van

  1. Adsorption of Cu, Ag, and Au atoms on graphene including van der Waals interactions

    International Nuclear Information System (INIS)

    Amft, Martin; Eriksson, Olle; Skorodumova, Natalia V; Lebegue, Sebastien

    2011-01-01

    We performed a systematic density functional (DF) study of the adsorption of copper, silver, and gold adatoms on pristine graphene, especially accounting for van der Waals (vdW) interactions by the vdW-DF and PBE + D2 methods. In particular, we analyze the preferred adsorption site (among top, bridge, and hollow positions) together with the corresponding distortion of the graphene sheet and identify diffusion paths. Both vdW schemes show that the coinage metal atoms do bind to the graphene sheet and that in some cases the buckling of the graphene layer can be significant. Only the results for silver are qualitatively at variance with those obtained with the generalized gradient approximation, which gives no binding in this case. However in all three cases, we observe some quantitative differences between the vdW-DF and PBE + D2 methods. For instance the adsorption energies calculated with the PBE + D2 method are systematically higher than the ones obtained with vdW-DF. Moreover, the equilibrium distances computed with PBE + D2 are shorter than those calculated with the vdW-DF method. (paper)

  2. Moire superlattice effects in graphene/boron-nitride van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Wallbank, John R.; Chen, Xi; Fal' ko, Vladimir I. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Mucha-Kruczynski, Marcin [Department of Physics, University of Bath (United Kingdom)

    2015-06-15

    Van der Waals heterostructures of graphene and hexagonal boron nitride feature a moire superlattice for graphene's Dirac electrons. Here, we review the effects generated by this superlattice, including a specific miniband structure featuring gaps and secondary Dirac points, and a fractal spectrum of magnetic minibands known as Hofstadter's butterfly. (copyright 2015 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Dynamical screening of the van der Waals interaction between graphene layers

    International Nuclear Information System (INIS)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-01-01

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp 3 d 5 basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  4. Dynamical screening of the van der Waals interaction between graphene layers.

    Science.gov (United States)

    Dappe, Y J; Bolcatto, P G; Ortega, J; Flores, F

    2012-10-24

    The interaction between graphene layers is analyzed combining local orbital DFT and second order perturbation theory. For this purpose we use the linear combination of atomic orbitals-orbital occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as the sum of a weak chemical interaction between graphene layers plus the van der Waals interaction (Dappe et al 2006 Phys. Rev. B 74 205434). In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations using an atomic-like sp(3)d(5) basis set. The van der Waals interaction is calculated by means of second order perturbation theory using an atom-atom interaction approximation and the atomic-like-orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals interaction using a simple model. We find that this dynamical screening reduces by 40% the van der Waals interaction. Taking this effect into account, we obtain a graphene-graphene interaction energy of 70 ± 5 meV/atom in reasonable agreement with the experimental evidence.

  5. Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures

    International Nuclear Information System (INIS)

    Guo, Hongwei; Liu, Yunlong; Xu, Yang; Meng, Nan; Luo, Jikui; Wang, Hongtao; Hasan, Tawfique; Wang, Xinran; Yu, Bin

    2014-01-01

    Ultrathin dielectric materials prepared by atomic-layer-deposition (ALD) technology are commonly used in graphene electronics. Using the first-principles density functional theory calculations with van der Waals (vdW) interactions included, we demonstrate that single-side fluorinated graphene (SFG) and hexagonal boron nitride (h-BN) exhibit large physical adsorption energy and strong electrostatic interactions with H 2 O-based ALD precursors, indicating their potential as the ALD seed layer for dielectric growth on graphene. In graphene-SFG vdW heterostructures, graphene is n-doped after ALD precursor adsorption on the SFG surface caused by vertical intrinsic polarization of SFG. However, graphene-h-BN vdW heterostructures help preserving the intrinsic characteristics of the underlying graphene due to in-plane intrinsic polarization of h-BN. By choosing SFG or BN as the ALD seed layer on the basis of actual device design needs, the graphene vdW heterostructures may find applications in low-dimensional electronics. (paper)

  6. Spontaneous doping on high quality talc-graphene-hBN van der Waals heterostructures

    Science.gov (United States)

    Mania, E.; Alencar, A. B.; Cadore, A. R.; Carvalho, B. R.; Watanabe, K.; Taniguchi, T.; Neves, B. R. A.; Chacham, H.; Campos, L. C.

    2017-09-01

    Steady doping, added to its remarkable electronic properties, would make graphene a valuable commodity in the solar cell market, as energy power conversion could be substantially increased. Here we report a graphene van der Waals heterostructure which is able to spontaneously dope graphene (p-type) up to n ~ 2.2  ×  1013 cm-2 while providing excellent charge mobility (μ ~ 25 000 cm2 V-1 s-1). Such properties are achieved via deposition of graphene on atomically flat layered talc, a natural and abundant dielectric crystal. Raman investigation shows a preferential charge accumulation on graphene-talc van der Waals heterostructures, which are investigated through the electronic properties of talc/graphene/hBN heterostructure devices. These heterostructures preserve graphene’s good electronic quality, verified by the observation of quantum Hall effect at low magnetic fields (B  =  0.4 T) at T  =  4.2 K. In order to investigate the physical mechanisms behind graphene-on-talc p-type doping, we performed first-principles calculations of their interface structural and electronic properties. In addition to potentially improving solar cell efficiency, graphene doping via van der Waals stacking is also a promising route towards controlling the band gap opening in bilayer graphene, promoting a steady n or p type doping in graphene and, eventually, providing a new path to access superconducting states in graphene, predicted to exist only at very high doping.

  7. Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene

    Science.gov (United States)

    Heilmann, M.; Bashouti, M.; Riechert, H.; Lopes, J. M. J.

    2018-04-01

    Van der Waals heterostructures comprising of hexagonal boron nitride and graphene are promising building blocks for novel two-dimensional devices such as atomically thin transistors or capacitors. However, demonstrators of those devices have been so far mostly fabricated by mechanical assembly, a non-scalable and time-consuming method, where transfer processes can contaminate the surfaces. Here, we investigate a direct growth process for the fabrication of insulating hexagonal boron nitride on high quality epitaxial graphene using plasma assisted molecular beam epitaxy. Samples were grown at varying temperatures and times and studied using atomic force microscopy, revealing a growth process limited by desorption at high temperatures. Nucleation was mostly commencing from morphological defects in epitaxial graphene, such as step edges or wrinkles. Raman spectroscopy combined with x-ray photoelectron measurements confirm the formation of hexagonal boron nitride and prove the resilience of graphene against the nitrogen plasma used during the growth process. The electrical properties and defects in the heterostructures were studied with high lateral resolution by tunneling current and Kelvin probe force measurements. This correlated approach revealed a nucleation apart from morphological defects in epitaxial graphene, which is mediated by point defects. The presented results help understanding the nucleation and growth behavior during van der Waals epitaxy of 2D materials, and point out a route for a scalable production of van der Waals heterostructures.

  8. Including screening in van der Waals corrected density functional theory calculations: The case of atoms and small molecules physisorbed on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Silvestrelli, Pier Luigi; Ambrosetti, Alberto [Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I–35131 Padova, Italy and DEMOCRITOS National Simulation Center of the Italian Istituto Officina dei Materiali (IOM) of the Italian National Research Council (CNR), Trieste (Italy)

    2014-03-28

    The Density Functional Theory (DFT)/van der Waals-Quantum Harmonic Oscillator-Wannier function (vdW-QHO-WF) method, recently developed to include the vdW interactions in approximated DFT by combining the quantum harmonic oscillator model with the maximally localized Wannier function technique, is applied to the cases of atoms and small molecules (X=Ar, CO, H{sub 2}, H{sub 2}O) weakly interacting with benzene and with the ideal planar graphene surface. Comparison is also presented with the results obtained by other DFT vdW-corrected schemes, including PBE+D, vdW-DF, vdW-DF2, rVV10, and by the simpler Local Density Approximation (LDA) and semilocal generalized gradient approximation approaches. While for the X-benzene systems all the considered vdW-corrected schemes perform reasonably well, it turns out that an accurate description of the X-graphene interaction requires a proper treatment of many-body contributions and of short-range screening effects, as demonstrated by adopting an improved version of the DFT/vdW-QHO-WF method. We also comment on the widespread attitude of relying on LDA to get a rough description of weakly interacting systems.

  9. Cl-intercalated graphene on SiC: Influence of van der Waals forces

    KAUST Repository

    Cheng, Yingchun; Zhu, Zhiyong; Schwingenschlö gl, Udo

    2013-01-01

    The atomic and electronic structures of Cl-intercalated epitaxial graphene on SiC are studied by first-principles calculations. By increasing the Cl concentration, doping levels from n-type to slightly p-type are achieved on the SiC(0001) surface, while a wider range of doping levels is possible on the SiC(0001̄) surface. We find that the Cl atoms prefer bonding to the substrate rather than to the graphene. By varying the Cl concentration the doping level can be tailored. Consideration of van der Waals forces improves the distance between the graphene and the substrate as well as the binding energy, but it is not essential for the formation energy. For understanding the doping mechanism the introduction of non-local van der Waals contributions to the exchange correlation functional is shown to be essential. Copyright © EPLA, 2013.

  10. A van der Waals DFT study of PtH_2 systems absorbed on pristine and defective graphene

    International Nuclear Information System (INIS)

    López-Corral, Ignacio; Piriz, Sebastián; Faccio, Ricardo; Juan, Alfredo; Avena, Marcelo

    2016-01-01

    Highlights: • We performed DFT calculations including van der Waals interactions. • Kubas-type Pt-H2 complex is stable on defective graphene. • Carbon vacancy decreases the reactivity of the metal decoration. • The interaction between σ-H and π-C states favors the Kubas-type complex. - Abstract: We used a density functional that incorporates van der Waals interactions to study hydrogen adsorption onto Pt atoms attached to carbon-vacancies on graphene layers, considering molecular and dissociated hydrogen-platinum coordination structures. PtH_2 complexes adsorbed on several sites of pristine graphene were also studied for comparison. Our results indicate that both a Kubas-type dihydrogen complex and a classic hydride without H−H bond are the preferential PtH_2 systems on the vacancy site of graphene. In contrast, the Kubas complex is unstable onto pristine graphene and the hydride is obtained at all adsorption sites. Our simulations suggest that the C-vacancy decreases the reactivity of the metal decoration, allowing a non-dissociative hydrogen adsorption. The H_2 molecule is oriented almost perpendicular to the outermost C−Pt bond, interacting also with the graphene surface through σ-H and π-C states. This stabilization of the Kubas-type complex could play a very important role for hydrogen storage in Pt-decorated carbon adsorbents with vacancies.

  11. Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures

    Science.gov (United States)

    Lin, Yu-Chuan; Li, Jun; de La Barrera, Sergio C.; Eichfeld, Sarah M.; Nie, Yifan; Addou, Rafik; Mende, Patrick C.; Wallace, Robert M.; Cho, Kyeongjae; Feenstra, Randall M.; Robinson, Joshua A.

    2016-04-01

    Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low-energy electron microscopy and reflectivity on these samples, we extract the work function difference between the WSe2 and graphene and employ a charge transfer model to determine the WSe2 carrier density in both cases. The results indicate that WSe2-EGFH displays ohmic behavior at small biases due to a large hole density in the WSe2, whereas WSe2-EGPH forms a Schottky barrier junction.Two-dimensional tungsten diselenide (WSe2) has been used as a component in atomically thin photovoltaic devices, field effect transistors, and tunneling diodes in tandem with graphene. In some applications it is necessary to achieve efficient charge transport across the interface of layered WSe2-graphene, a semiconductor to semimetal junction with a van der Waals (vdW) gap. In such cases, band alignment engineering is required to ensure a low-resistance, ohmic contact. In this work, we investigate the impact of graphene electronic properties on the transport at the WSe2-graphene interface. Electrical transport measurements reveal a lower resistance between WSe2 and fully hydrogenated epitaxial graphene (EGFH) compared to WSe2 grown on partially hydrogenated epitaxial graphene (EGPH). Using low

  12. Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation

    Science.gov (United States)

    Hu, Xue-Rong; Zheng, Ji-Ming; Ren, Zhao-Yu

    2018-04-01

    Based on first-principles calculations within the framework of density functional theory, we study the electronic properties of phosphorene/graphene heterostructures. Band gaps with different sizes are observed in the heterostructure, and charges transfer from graphene to phosphorene, causing the Fermi level of the heterostructure to shift downward with respect to the Dirac point of graphene. Significantly, strong coupling between two layers is discovered in the band spectrum even though it has a van der Waals heterostructure. A tight-binding Hamiltonian model is used to reveal that the resonance of the Bloch states between the phosphorene and graphene layers in certain K points combines with the symmetry matching between band states, which explains the reason for the strong coupling in such heterostructures. This work may enhance the understanding of interlayer interaction and composition mechanisms in van der Waals heterostructures consisting of two-dimensional layered nanomaterials, and may indicate potential reference information for nanoelectronic and optoelectronic applications.

  13. Tunable band gaps in graphene/GaN van der Waals heterostructures

    International Nuclear Information System (INIS)

    Huang, Le; Kang, Jun; Li, Yan; Li, Jingbo; Yue, Qu

    2014-01-01

    Van der Waals (vdW) heterostructures consisting of graphene and other two-dimensional materials provide good opportunities for achieving desired electronic and optoelectronic properties. Here, we focus on vdW heterostructures composed of graphene and gallium nitride (GaN). Using density functional theory, we perform a systematic study on the structural and electronic properties of heterostructures consisting of graphene and GaN. Small band gaps are opened up at or near the Γ point of the Brillouin zone for all of the heterostructures. We also investigate the effect of the stacking sequence and electric fields on their electronic properties. Our results show that the tunability of the band gap is sensitive to the stacking sequence in bilayer-graphene-based heterostructures. In particular, in the case of graphene/graphene/GaN, a band gap of up to 334 meV is obtained under a perpendicular electric field. The band gap of bilayer graphene between GaN sheets (GaN/graphene/graphene/GaN) shows similar tunability, and increases to 217 meV with the perpendicular electric field reaching 0.8 V Å  − 1 . (paper)

  14. Graphene on metals: A van der Waals density functional study

    DEFF Research Database (Denmark)

    Vanin, Marco; Mortensen, Jens Jørgen; Kelkkanen, Kari André

    2010-01-01

    We use density functional theory (DFT) with a recently developed van der Waals density functional (vdW-DF) to study the adsorption of graphene on Co, Ni, Pd, Ag, Au, Cu, Pt, and Al(111) surfaces. In contrast to the local-density approximation (LDA) which predicts relatively strong binding for Ni...

  15. Atomic layer MoS2-graphene van der Waals heterostructure nanomechanical resonators.

    Science.gov (United States)

    Ye, Fan; Lee, Jaesung; Feng, Philip X-L

    2017-11-30

    Heterostructures play significant roles in modern semiconductor devices and micro/nanosystems in a plethora of applications in electronics, optoelectronics, and transducers. While state-of-the-art heterostructures often involve stacks of crystalline epi-layers each down to a few nanometers thick, the intriguing limit would be hetero-atomic-layer structures. Here we report the first experimental demonstration of freestanding van der Waals heterostructures and their functional nanomechanical devices. By stacking single-layer (1L) MoS 2 on top of suspended single-, bi-, tri- and four-layer (1L to 4L) graphene sheets, we realize an array of MoS 2 -graphene heterostructures with varying thickness and size. These heterostructures all exhibit robust nanomechanical resonances in the very high frequency (VHF) band (up to ∼100 MHz). We observe that fundamental-mode resonance frequencies of the heterostructure devices fall between the values of graphene and MoS 2 devices. Quality (Q) factors of heterostructure resonators are lower than those of graphene but comparable to those of MoS 2 devices, suggesting interface damping related to interlayer interactions in the van der Waals heterostructures. This study validates suspended atomic layer heterostructures as an effective device platform and provides opportunities for exploiting mechanically coupled effects and interlayer interactions in such devices.

  16. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    OpenAIRE

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe2 vdW interface is ...

  17. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons.

    Science.gov (United States)

    Correa, Julián David; Orellana, Pedro Alejandro; Pacheco, Mónica

    2017-03-20

    The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon-fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  18. Optoelectronic Properties of Van Der Waals Hybrid Structures: Fullerenes on Graphene Nanoribbons

    Directory of Open Access Journals (Sweden)

    Julián David Correa

    2017-03-01

    Full Text Available The search for new optical materials capable of absorbing light in the frequency range from visible to near infrared is of great importance for applications in optoelectronic devices. In this paper, we report a theoretical study of the electronic and optical properties of hybrid structures composed of fullerenes adsorbed on graphene and on graphene nanoribbons. The calculations are performed in the framework of the density functional theory including the van der Waals dispersive interactions. We found that the adsorption of the C 60 fullerenes on a graphene layer does not modify its low energy states, but it has strong consequences for its optical spectrum, introducing new absorption peaks in the visible energy region. The optical absorption of fullerenes and graphene nanoribbon composites shows a strong dependence on photon polarization and geometrical characteristics of the hybrid systems, covering a broad range of energies. We show that an external electric field across the nanoribbon edges can be used to tune different optical transitions coming from nanoribbon–fullerene hybridized states, which yields a very rich electro-absorption spectrum for longitudinally polarized photons. We have carried out a qualitative analysis on the potential of these hybrids as possible donor-acceptor systems in photovoltaic cells.

  19. Printable Transfer-Free and Wafer-Size MoS2/Graphene van der Waals Heterostructures for High-Performance Photodetection.

    Science.gov (United States)

    Liu, Qingfeng; Cook, Brent; Gong, Maogang; Gong, Youpin; Ewing, Dan; Casper, Matthew; Stramel, Alex; Wu, Judy

    2017-04-12

    Two-dimensional (2D) MoS 2 /graphene van der Waals heterostructures integrate the superior light-solid interaction in MoS 2 and charge mobility in graphene for high-performance optoelectronic devices. Key to the device performance lies in a clean MoS 2 /graphene interface to facilitate efficient transfer of photogenerated charges. Here, we report a printable and transfer-free process for fabrication of wafer-size MoS 2 /graphene van der Waals heterostructures obtained using a metal-free-grown graphene, followed by low-temperature growth of MoS 2 from the printed thin film of ammonium thiomolybdate on graphene. The photodetectors based on the transfer-free MoS 2 /graphene heterostructures exhibit extraordinary short photoresponse rise/decay times of 20/30 ms, which are significantly faster than those of the previously reported MoS 2 /transferred-graphene photodetectors (0.28-1.5 s). In addition, a high photoresponsivity of up to 835 mA/W was observed in the visible spectrum on such transfer-free MoS 2 /graphene heterostructures, which is much higher than that of the reported photodetectors based on the exfoliated layered MoS 2 (0.42 mA/W), the graphene (6.1 mA/W), and transfer-free MoS 2 /graphene/SiC heterostructures (∼40 mA/W). The enhanced performance is attributed to the clean interface on the transfer-free MoS 2 /graphene heterostructures. This printable and transfer-free process paves the way for large-scale commercial applications of the emerging 2D heterostructures in optoelectronics and sensors.

  20. Electric field modulation of Schottky barrier height in graphene/MoSe2 van der Waals heterointerface

    International Nuclear Information System (INIS)

    Sata, Yohta; Moriya, Rai; Morikawa, Sei; Yabuki, Naoto; Masubuchi, Satoru; Machida, Tomoki

    2015-01-01

    We demonstrate a vertical field-effect transistor based on a graphene/MoSe 2 van der Waals (vdW) heterostructure. The vdW interface between the graphene and MoSe 2 exhibits a Schottky barrier with an ideality factor of around 1.3, suggesting a high-quality interface. Owing to the low density of states in graphene, the position of the Fermi level in the graphene can be strongly modulated by an external electric field. Therefore, the Schottky barrier height at the graphene/MoSe 2 vdW interface is also modulated. We demonstrate a large current ON-OFF ratio of 10 5 . These results point to the potential high performance of the graphene/MoSe 2 vdW heterostructure for electronics applications

  1. Lifshitz-type formulas for graphene and single-wall carbon nanotubes: van der Waals and Casimir interactions

    International Nuclear Information System (INIS)

    Bordag, M.; Geyer, B.; Klimchitskaya, G. L.; Mostepanenko, V. M.

    2006-01-01

    Lifshitz-type formulas are obtained for the van der Waals and Casimir interaction between graphene and a material plate, graphene and an atom or a molecule, and between a single-wall carbon nanotube and a plate. The reflection properties of electromagnetic oscillations on graphene are governed by the specific boundary conditions imposed on the infinitely thin positively charged plasma sheet, carrying a continuous fluid with some mass and charge density. The obtained formulas are applied to graphene interacting with Au and Si plates, to hydrogen atoms and molecules interacting with graphene, and to single-wall carbon nanotubes interacting with Au and Si plates. The generalizations to more complicated carbon nanostructures are discussed

  2. Tuning the Schottky barrier in the arsenene/graphene van der Waals heterostructures by electric field

    Science.gov (United States)

    Li, Wei; Wang, Tian-Xing; Dai, Xian-Qi; Wang, Xiao-Long; Ma, Ya-Qiang; Chang, Shan-Shan; Tang, Ya-Nan

    2017-04-01

    Using density functional theory calculations, we investigate the electronic properties of arsenene/graphene van der Waals (vdW) heterostructures by applying external electric field perpendicular to the layers. It is demonstrated that weak vdW interactions dominate between arsenene and graphene with their intrinsic electronic properties preserved. We find that an n-type Schottky contact is formed at the arsenene/graphene interface with a Schottky barrier of 0.54 eV. Moreover, the vertical electric field can not only control the Schottky barrier height but also the Schottky contacts (n-type and p-type) and Ohmic contacts (n-type) at the interface. Tunable p-type doping in graphene is achieved under the negative electric field because electrons can transfer from the Dirac point of graphene to the conduction band of arsenene. The present study would open a new avenue for application of ultrathin arsenene/graphene heterostructures in future nano- and optoelectronics.

  3. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.

    Science.gov (United States)

    Padilha, J E; Fazzio, A; da Silva, Antônio J R

    2015-02-13

    In this Letter, we study the structural and electronic properties of single-layer and bilayer phosphorene with graphene. We show that both the properties of graphene and phosphorene are preserved in the composed heterostructure. We also show that via the application of a perpendicular electric field, it is possible to tune the position of the band structure of phosphorene with respect to that of graphene. This leads to control of the Schottky barrier height and doping of phosphorene, which are important features in the design of new devices based on van der Waals heterostructures.

  4. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.

    Science.gov (United States)

    Pei, Qing-Xiang; Zhang, Xiaoliang; Ding, Zhiwei; Zhang, Ying-Yan; Zhang, Yong-Wei

    2017-07-14

    Phosphorene, a new two-dimensional (2D) semiconducting material, has attracted tremendous attention recently. However, its structural instability under ambient conditions poses a great challenge to its practical applications. A possible solution for this problem is to encapsulate phosphorene with more stable 2D materials, such as graphene, forming van der Waals heterostructures. In this study, using molecular dynamics simulations, we show that the thermal stability of phosphorene in phosphorene/graphene heterostructures can be enhanced significantly. By sandwiching phosphorene between two graphene sheets, its thermally stable temperature is increased by 150 K. We further study the thermal transport properties of phosphorene and find surprisingly that the in-plane thermal conductivity of phosphorene in phosphorene/graphene heterostructures is much higher than that of the free-standing one, with a net increase of 20-60%. This surprising increase in thermal conductivity arises from the increase in phonon group velocity and the extremely strong phonon coupling between phosphorene and the graphene substrate. Our findings have an important meaning for the practical applications of phosphorene in nanodevices.

  5. Schottky barrier tuning of the graphene/SnS2 van der Waals heterostructures through electric field

    Science.gov (United States)

    Zhang, Fang; Li, Wei; Ma, Yaqiang; Dai, Xianqi

    2018-03-01

    Combining the electronic structures of two-dimensional monolayers in ultrathin hybrid nanocomposites is expected to display new properties beyond their single components. The effects of external electric field (Eext) on the electronic structures of monolayer SnS2 with graphene hybrid heterobilayers are studied by using the first-principle calculations. It is demonstrated that the intrinsic electronic properties of SnS2 and graphene are quite well preserved due to the weak van der Waals (vdW) interactions. We find that the n-type Schottky contacts with the significantly small Schottky barrier are formed at the graphene/SnS2 interface. In the graphene/SnS2 heterostructure, the vertical Eext can control not only the Schottky barriers (n-type and p-type) but also contact types (Schottky contact or Ohmic contact) at the interface. The present study would open a new avenue for application of ultrathin graphene/SnS2 heterostructures in future nano- and optoelectronics.

  6. Van der Waals pressure sensors using reduced graphene oxide composites

    Science.gov (United States)

    Jung, Ju Ra; Ahn, Sung Il

    2018-04-01

    Reduced graphene oxide (RGO) films intercalated with various polymers were fabricated by reaction-based self-assembly, and their characteristics as vacuum pressure sensors based on van der Waals interactions were studied. At low temperature, the electrical resistances of the samples decrease linearly with increasing vacuum pressure, whereas at high temperature the variation of the electrical resistance shows secondary order curves. Among all samples, the poly vinyl alcohol intercalated RGO shows the highest sensitivity, being almost two times more sensitive than reference RGO. All samples show almost the same signal for repetitive sudden pressure changes, indicating reasonable reproducibility and durability.

  7. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

    Science.gov (United States)

    Choi, Ji Eun; Yoo, Jinkyoung; Lee, Donghwa; Hong, Young Joon; Fukui, Takashi

    2018-04-01

    This study demonstrates the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. The WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

  8. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Science.gov (United States)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  9. Van der Waals Epitaxy of GaSe/Graphene Heterostructure: Electronic and Interfacial Properties.

    Science.gov (United States)

    Ben Aziza, Zeineb; Henck, Hugo; Pierucci, Debora; Silly, Mathieu G; Lhuillier, Emmanuel; Patriarche, Gilles; Sirotti, Fausto; Eddrief, Mahmoud; Ouerghi, Abdelkarim

    2016-10-07

    Stacking two-dimensional materials in so-called van der Waals (vdW) heterostructures, like the combination of GaSe and graphene, provides the ability to obtain hybrid systems which are suitable to design optoelectronic devices. Here, we report the structural and electronic properties of the direct growth of multilayered GaSe by Molecular beam Epitaxy (MBE) on graphene. Reflection high-energy electron diffraction (RHEED) images exhibited sharp streaky features indicative of high quality GaSe layer produced via a vdW epitaxy. Micro-Raman spectroscopy showed that, after the vdW hetero-interface formation, the Raman signature of pristine graphene is preserved. However, the GaSe film tuned the charge density of graphene layer by shifting the Dirac point by about 80 meV toward lower binding energies, attesting an electron transfer from graphene to GaSe. Angle-resolved photoemission spectroscopy (ARPES) measurements showed that the maximum of the valence band of few layers of GaSe are located at the Γ point at a binding energy of about -0.73 eV relatively to the Fermi level (p-type doping). From the ARPES measurements, a hole effective mass defined along the ΓM direction and equal to about m*/m0 = -1.1 was determined. By coupling the ARPES data with high resolution X-ray photoemission spectroscopy (HR-XPS) measurements, the Schottky interface barrier height was estimated to be 1.2 eV. These findings allow deeper understanding of the interlayer interactions and the electronic structure of GaSe/graphene vdW heterostructure.

  10. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag2/graphene

    International Nuclear Information System (INIS)

    Lara-Castells, María Pilar de; Mitrushchenkov, Alexander O.; Stoll, Hermann

    2015-01-01

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag 2 /graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag 2 /graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications

  11. Inter-layer and intra-layer heat transfer in bilayer/monolayer graphene van der Waals heterostructure: Is there a Kapitza resistance analogous?

    Science.gov (United States)

    Rajabpour, Ali; Fan, Zheyong; Vaez Allaei, S. Mehdi

    2018-06-01

    Van der Waals heterostructures have exhibited interesting physical properties. In this paper, heat transfer in hybrid coplanar bilayer/monolayer (BL-ML) graphene, as a model layered van der Waals heterostructure, was studied using non-equilibrium molecular dynamics (MD) simulations. The temperature profile and inter- and intra-layer heat fluxes of the BL-ML graphene indicated that, there is no fully developed thermal equilibrium between layers and the drop in the average temperature profile at the step-like BL-ML interface is not attributable to the effect of Kapitza resistance. By increasing the length of the system up to 1 μm in the studied MD simulations, the thermally non-equilibrium region was reduced to a small area near the step-like interface. All MD results were compared to a continuum model and a good match was observed between the two approaches. Our results provide a useful understanding of heat transfer in nano- and micro-scale layered materials and van der Waals heterostructures.

  12. Combining density functional and incremental post-Hartree-Fock approaches for van der Waals dominated adsorbate-surface interactions: Ag{sub 2}/graphene

    Energy Technology Data Exchange (ETDEWEB)

    Lara-Castells, María Pilar de, E-mail: Pilar.deLara.Castells@csic.es [Instituto de Física Fundamental (C.S.I.C.), Serrano 123, E-28006 Madrid (Spain); Mitrushchenkov, Alexander O. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Stoll, Hermann [Institut für Theoretische Chemie, Universität Stuttgart, D-70550 Stuttgart (Germany)

    2015-09-14

    A combined density functional (DFT) and incremental post-Hartree-Fock (post-HF) approach, proven earlier to calculate He-surface potential energy surfaces [de Lara-Castells et al., J. Chem. Phys. 141, 151102 (2014)], is applied to describe the van der Waals dominated Ag{sub 2}/graphene interaction. It extends the dispersionless density functional theory developed by Pernal et al. [Phys. Rev. Lett. 103, 263201 (2009)] by including periodic boundary conditions while the dispersion is parametrized via the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)]. Starting with the elementary cluster unit of the target surface (benzene), continuing through the realistic cluster model (coronene), and ending with the periodic model of the extended system, modern ab initio methodologies for intermolecular interactions as well as state-of-the-art van der Waals-corrected density functional-based approaches are put together both to assess the accuracy of the composite scheme and to better characterize the Ag{sub 2}/graphene interaction. The present work illustrates how the combination of DFT and post-HF perspectives may be efficient to design simple and reliable ab initio-based schemes in extended systems for surface science applications.

  13. h-BN/graphene van der Waals vertical heterostructure: a fully spin-polarized photocurrent generator.

    Science.gov (United States)

    Tao, Xixi; Zhang, Lei; Zheng, Xiaohong; Hao, Hua; Wang, Xianlong; Song, Lingling; Zeng, Zhi; Guo, Hong

    2017-12-21

    By constructing transport junctions using graphene-based van der Waals (vdW) heterostructures in which a zigzag-edged graphene nanoribbon (ZGNR) is sandwiched between two hexagonal boron-nitride sheets, we computationally demonstrate a new scheme for generating perfect spin-polarized quantum transport in ZGNRs by light irradiation. The mechanism lies in the lift of spin degeneracy of ZGNR induced by the stagger potential it receives from the BN sheets and the subsequent possibility of single spin excitation of electrons from the valence band to the conduction band by properly tuning the photon energy. This scheme is rather robust in that we always achieve desirable results irrespective of whether we decrease or increase the interlayer distance by applying compressive or tensile strain vertically to the sheets or shift the BN sheets in-plane relative to the graphene nanoribbons. More importantly, this scheme overcomes the long-standing difficulties in traditional ways of using solely electrical field or chemical modification for obtaining half-metallic transport in ZGNRs and thus paves a more feasible way for their application in spintronics.

  14. Binding mechanisms of DNA/RNA nucleobases adsorbed on graphene under charging: first-principles van der Waals study

    Science.gov (United States)

    Gürel, Hikmet Hakan; Salmankurt, Bahadır

    2017-06-01

    Graphene is a 2D material that has attracted much attention due to its outstanding properties. Because of its high surface area and unique chemical and physical properties, graphene is a good candidate for biological applications. For this reason, a deep understanding of the mechanism of interaction of graphene with biomolecules is required. In this study, theoretical investigation of van der Waals effects has been conducted using density functional theory. Here we show that the order of the binding energies of five nucleobases with graphene is G  >  A  >  T  >  C  >   U. This trend is in good agreement with most of the theoretical and experimental data. Also, the effects of charging on the electronic and structural properties of the graphene-nucleubase systems are studied for the first time. We show that the binding energy can be changed by adding or removing an electron from the system. The results presented in this work provide fundamental insights into the quantum interactions of DNA with carbon-based nanostructures and will be useful for developments in biotechnology and nanotechnology.

  15. Electronic band structure of Two-Dimensional WS2/Graphene van der Waals Heterostructures

    Science.gov (United States)

    Henck, Hugo; Ben Aziza, Zeineb; Pierucci, Debora; Laourine, Feriel; Reale, Francesco; Palczynski, Pawel; Chaste, Julien; Silly, Mathieu G.; Bertran, François; Le Fèvre, Patrick; Lhuillier, Emmanuel; Wakamura, Taro; Mattevi, Cecilia; Rault, Julien E.; Calandra, Matteo; Ouerghi, Abdelkarim

    2018-04-01

    Combining single-layer two-dimensional semiconducting transition-metal dichalcogenides (TMDs) with a graphene layer in van der Waals heterostructures offers an intriguing means of controlling the electronic properties through these heterostructures. Here, we report the electronic and structural properties of transferred single-layer W S2 on epitaxial graphene using micro-Raman spectroscopy, angle-resolved photoemission spectroscopy measurements, and density functional theory (DFT) calculations. The results show good electronic properties as well as a well-defined band arising from the strong splitting of the single-layer W S2 valence band at the K points, with a maximum splitting of 0.44 eV. By comparing our DFT results with local and hybrid functionals, we find the top valence band of the experimental heterostructure is close to the calculations for suspended single-layer W S2 . Our results provide an important reference for future studies of electronic properties of W S2 and its applications in valleytronic devices.

  16. Comparison of frictional forces on graphene and graphite

    International Nuclear Information System (INIS)

    Lee, Hyunsoo; Lee, Naesung; Seo, Yongho; Eom, Jonghwa; Lee, SangWook

    2009-01-01

    We report on the frictional force between an SiN tip and graphene/graphite surfaces using lateral force microscopy. The cantilever we have used was made of an SiN membrane and has a low stiffness of 0.006 N m -1 . We prepared graphene flakes on a Si wafer covered with silicon oxides. The frictional force on graphene was smaller than that on the Si oxide and larger than that on graphite (multilayer of graphene). Force spectroscopy was also employed to study the van der Waals force between the graphene and the tip. Judging that the van der Waals force was also in graphite-graphene-silicon oxide order, the friction is suspected to be related to the van der Waals interactions. As the normal force acting on the surface was much weaker than the attractive force, such as the van der Waals force, the friction was independent of the normal force strength. The velocity dependency of the friction showed a logarithmic behavior which was attributed to the thermally activated stick-slip effect.

  17. Van der Waals stacks of few-layer h-AlN with graphene: an ab initio study of structural, interaction and electronic properties

    International Nuclear Information System (INIS)

    Dos Santos, Renato B; Mota, F de Brito; Rivelino, R; Kakanakova-Georgieva, A; Gueorguiev, G K

    2016-01-01

    Graphite-like hexagonal AlN (h-AlN) multilayers have been experimentally manifested and theoretically modeled. The development of any functional electronics applications of h-AlN would most certainly require its integration with other layered materials, particularly graphene. Here, by employing vdW-corrected density functional theory calculations, we investigate structure, interaction energy, and electronic properties of van der Waals stacking sequences of few-layer h-AlN with graphene. We find that the presence of a template such as graphene induces enough interlayer charge separation in h-AlN, favoring a graphite-like stacking formation. We also find that the interface dipole, calculated per unit cell of the stacks, tends to increase with the number of stacked layers of h-AlN and graphene. (paper)

  18. Development of Biosensors From Graphene

    Institute of Scientific and Technical Information of China (English)

    高瑞红; 孙红; 李霄寒; 于冲

    2017-01-01

    Graphene's success has stimulated great interest and research in the synthesis and characterization of graphene -like 2D materials, single and few -atom -thick layers of van der Waals materials, which show fascinating and technologically useful properties.This review presents an overview of recent electrochemical sensors and biosensors based on graphene and on graphene-like 2D materials.

  19. Unobtrusive graphene coatings

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with

  20. Interlayer coupling effects on Schottky barrier in the arsenene-graphene van der Waals heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congxin, E-mail: xiacongxin@htu.edu.cn; Xue, Bin; Wang, Tianxing; Peng, Yuting [Department of Physic, Henan Normal University, Xinxiang 453007 (China); Jia, Yu [School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052 (China)

    2015-11-09

    The electronic characteristics of arsenene-graphene van der Waals (vdW) heterostructures are studied by using first-principles methods. The results show that a linear Dirac-like dispersion relation around the Fermi level can be quite well preserved in the vdW heterostructures. Moreover, the p-type Schottky barrier (0.18 eV) to n-type Schottky barrier (0.31 eV) transition occurs when the interlayer distance increases from 2.8 to 4.5 Å, which indicates that the Schottky barrier can be tuned effectively by the interlayer distance in the vdW heterostructures.

  1. Anomalous van der Waals-Casimir interactions on graphene: A concerted effect of temperature, retardation, and non-locality

    Science.gov (United States)

    Ambrosetti, Alberto; Silvestrelli, Pier Luigi

    2018-04-01

    Dispersion forces play a major role in graphene, largely influencing adhesion of adsorbate moieties and stabilization of functional multilayered structures. However, the reliable prediction of dispersion interactions on graphene up to the relevant ˜10 nm scale is an extremely challenging task: in fact, electromagnetic retardation effects and the highly non-local character of π electrons can imply sizeable qualitative variations of the interaction with respect to known pairwise approaches. Here we address both issues, determining the finite-temperature van der Waals (vdW)-Casimir interaction for point-like and extended adsorbates on graphene, explicitly accounting for the non-local dielectric permittivity. We find that temperature, retardation, and non-locality play a crucial role in determining the actual vdW scaling laws and the stability of both atomic and larger molecular adsorbates. Our results highlight the importance of these effects for a proper description of systems of current high interest, such as graphene interacting with biomolecules, and self-assembly of complex nanoscale structures. Due to the generality of our approach and the observed non-locality of other 2D materials, our results suggest non-trivial vdW interactions from hexagonal mono-layered materials from group 14 of the periodic table, to transition metal dichalcogenides.

  2. Graphene-based heterojunction photocatalysts

    Science.gov (United States)

    Li, Xin; Shen, Rongchen; Ma, Song; Chen, Xiaobo; Xie, Jun

    2018-02-01

    Due to their unique physicochemical, optical and electrical properties, 2D semimetallic or semiconducting graphene has been extensively utilized to construct highly efficient heterojunction photocatalysts for driving a variety of redox reactions under proper light irradiation. In this review, we carefully addressed the fundamental mechanism of heterogeneous photocatalysis, fundamental properties and advantages of graphene in photocatalysis, and classification and comparison of graphene-based heterojunction photocatalysts. Subsequently, we thoroughly highlighted and discussed various graphene-based heterojunction photocatalysts, including Schottky junctions, Type-II heterojunctions, Z-scheme heterojunctions, Van der Waals heterostructures, in plane heterojunctions and multicomponent heterojunctions. Several important photocatalytic applications, such as photocatalytic water splitting (H2 evolution and overall water splitting), degradation of pollutants, carbon dioxide reduction and bacteria disinfection, are also summarized. Through reviewing the important advances on this topic, it may inspire some new ideas for exploiting highly effective graphene-based heterojunction photocatalysts for a number of applications in photocatlysis and other fields, such as photovoltaic, (photo)electrocatalysis, lithium battery, fuel cell, supercapacitor and adsorption separation.

  3. Heterostructures based on inorganic and organic van der Waals systems

    International Nuclear Information System (INIS)

    Lee, Gwan-Hyoung; Lee, Chul-Ho; Zande, Arend M. van der; Han, Minyong; Cui, Xu; Arefe, Ghidewon; Hone, James; Nuckolls, Colin; Heinz, Tony F.; Kim, Philip

    2014-01-01

    The two-dimensional limit of layered materials has recently been realized through the use of van der Waals (vdW) heterostructures composed of weakly interacting layers. In this paper, we describe two different classes of vdW heterostructures: inorganic vdW heterostructures prepared by co-lamination and restacking; and organic-inorganic hetero-epitaxy created by physical vapor deposition of organic molecule crystals on an inorganic vdW substrate. Both types of heterostructures exhibit atomically clean vdW interfaces. Employing such vdW heterostructures, we have demonstrated various novel devices, including graphene/hexagonal boron nitride (hBN) and MoS 2 heterostructures for memory devices; graphene/MoS 2 /WSe 2 /graphene vertical p-n junctions for photovoltaic devices, and organic crystals on hBN with graphene electrodes for high-performance transistors

  4. Ultrasensitive near-infrared photodetectors based on graphene-MoTe2-graphene vertical van der Waals heterostructure

    Science.gov (United States)

    Zhang, Kun; Ye, Yu; Dai, Lun; School of Physics, Peking University Team

    Two-dimensional (2D) materials have rapidly established themselves as exceptional building blocks for optoelectronic applications, due to their unique properties and atomically thin nature. Nevertheless, near-infrared (NIR) photodetectors based on layered 2D semiconductors are rarely realized. In this work, we fabricate graphene-MoTe2-graphene vertical vdWs heterostructure by a facile and reliable site controllable transfer method, and apply it for photodetection from visible to the NIR wavelength range. Compared to the 2D semiconductor based photodetectors reported thus far, the graphene-MoTe2-graphene photodetector has superior performance, including high photoresponsivity (110 mA W-1 at 1064 nm and 205 mA W-1 at 473 nm), high external quantum efficiency (EQE, 12.9% at 1064 nm and 53.8% at 473 nm), rapid response and recovery processes (rise time of 24 μs, fall time of 46 μs under 1064 nm illumination), and free from an external source-drain power supply. The all-2D-materials heterostructure has promising applications in future novel high responsivity, high speed and flexible NIR devices.

  5. Pharmaceutical applications of graphene

    Directory of Open Access Journals (Sweden)

    Justyna Żwawiak

    2017-02-01

    Full Text Available Nowadays, dynamic development in nanotechnological sciences is observed. Nanoparticles are frequently used in medicine and pharmacy as delivery systems for different kinds of active substances. One of the latest developed substances, with an unusually wide scope of utility, is graphene. The ways of its use in different fields of industry, not only pharmaceutical and medical, have been a subject of study for many research groups since the moment of its development in 2004. Graphene in pure form is highly hydrophobic. However, the presence of defects on its surface allows chemical modifications to be made, e.g. introduction of oxygen groups by covalent bonding. Also, non-covalent modifications are extensively used, including van der Waals forces, hydrogen bonding, coordination bonds, electrostatic and π-π stacking interactions. Due to the large surface area, graphene can be used in combination therapy, consisting in simultaneous administration of two or more pharmacologically active agents. Another interesting approach is gene therapy. Application of the PEI-graphene oxide system increased the efficacy of transfection. Possibilities of graphene and graphene oxide are not limited to their use as active substance delivery systems. These compounds by themselves were also found to be bacteriostatic and antibacterial agents.

  6. Chemical Functionalization of Graphene Family Members

    Science.gov (United States)

    Vacchi, Isabella Anna; Ménard-Moyon, Cécilia; Bianco, Alberto

    2017-01-01

    Thanks to their outstanding physicochemical properties, graphene and its derivatives are interesting nanomaterials with a high potential in several fields. Graphene, graphene oxide, and reduced graphene oxide, however, differ partially in their characteristics due to their diverse surface composition. Those differences influence the chemical reactivity of these materials. In the following chapter the reactivity and main functionalization reactions performed on graphene, graphene oxide, and reduced graphene oxide are discussed. A part is also dedicated to the main analytical techniques used for characterization of these materials. Functionalization of graphene and its derivatives is highly important to modulate their characteristics and design graphene-based conjugates with novel properties. Functionalization can be covalent by forming strong and stable bonds with the graphene surface, or non-covalent via π-π, electrostatic, hydrophobic, and/or van der Waals interactions. Both types of functionalization are currently exploited.

  7. Terahertz optoelectronics in graphene

    International Nuclear Information System (INIS)

    Otsuji, Taiichi

    2016-01-01

    Graphene has attracted considerable attention due to its extraordinary carrier transport, optoelectronic, and plasmonic properties originated from its gapless and linear energy spectra enabling various functionalities with extremely high quantum efficiencies that could never be obtained in any existing materials. This paper reviews recent advances in graphene optoelectronics particularly focused on the physics and device functionalities in the terahertz (THz) electromagnetic spectral range. Optical response of graphene is characterized by its optical conductivity and nonequilibrium carrier energy relaxation dynamics, enabling amplification of THz radiation when it is optically or electrically pumped. Current-injection THz lasing has been realized very recently. Graphene plasmon polaritons can greatly enhance the THz light and graphene matter interaction, enabling giant enhancement in detector responsivity as well as amplifier/laser gain. Graphene-based van der Waals heterostructures could give more interesting and energy-efficient functionalities. (author)

  8. Graphene growth by conversion of aromatic self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Turchanin, Andrey [Institute of Physical Chemistry, Friedrich Schiller University Jena (Germany); Jena Center for Soft Matter (JCSM), Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC), Jena (Germany); Abbe Center of Photonics (ACP), Jena (Germany)

    2017-11-15

    Despite present diversity of graphene production methods there is still a high demand for improvement of the existing production schemes or development of new. Here a method is reviewed to produce graphene employing aromatic self-assembled monolayers (SAMs) as molecular precursors. This method is based on electron irradiation induced crosslinking of aromatic SAMs resulting in their conversion into carbon nanomembranes (CNMs) with high thermal stability and subsequent pyrolysis of CNMs into graphene in vacuum or in the inert atmosphere. Depending on the production conditions, such as chemical structure of molecular precursors, irradiation and annealing parameters, various properties of the produced graphene sheets including shape, crystallinity, thickness, optical properties and electric transport can be adjusted. The assembly of CNM/graphene van der Waals heterostructures opens a flexible route to non-destructive chemical functionalization of graphene for a variety of applications in electronic and photonic devices. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  10. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  11. First-principles study of SF_6 decomposed gas adsorbed on Au-decorated graphene

    International Nuclear Information System (INIS)

    Zhang, Xiaoxing; Yu, Lei; Gui, Yingang; Hu, Weihua

    2016-01-01

    Graphical abstract: - Highlights: • We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF_6), namely, H_2S, SO_2, SOF_2, and SO_2F_2, adsorbed on pristine and Au-embedded graphene based on DFT-D, in which the van der Waals effect is considered. • H_2S, SO_2, SOF_2, and SO_2F_2 are chemisorption on Au-doped graphene, appreciably stronger than physisorption on pristine graphene in which the van der Waals dominates. • Only H_2S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. The n-type and p-type sensing behaviors that Au-doped graphene displays to different gases play a crucial role in selective sensing application. • Magnetic moments fluctuate substantially in the original Au-graphene when H_2S and SO_2 are adsorbed. While the adsorption effects of SOF_2 and SO_2F_2 generate magnetism quenching. The different changes of magnetic moments in every adsorption system provide another approach to selective detection. • The charge transfer mechanism is deeply discussed in this paper. - Abstract: We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF_6), namely, H_2S, SO_2, SOF_2, and SO_2F_2, adsorbed on pristine and Au-embedded graphene based on the revised Perdew–Burke–Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF_2 and SO_2F_2 exhibit a strong chemisorption interaction with Au-graphene, while H_2S and SO_2 exhibit quasi-molecular binding

  12. Spin-Orbit Coupling and Magnetism in Multilayer Graphene

    NARCIS (Netherlands)

    van Gelderen, R.

    2013-01-01

    The topics covered in this work are - spin-density-wave instabilities in monolayer graphene doped to the van Hove singularity. Nesting of the Fermi surface and a diverging density of states are often ingredients for charge and/or magnetic instabilities. For highly doped monolayer graphene these

  13. Epitaxially grown strained pentacene thin film on graphene membrane.

    Science.gov (United States)

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Plasmonic energy transfer in periodically doped graphene

    International Nuclear Information System (INIS)

    Silveiro, I; Manjavacas, A; Thongrattanasiri, S; García de Abajo, F J

    2013-01-01

    We predict unprecedentedly large values of the energy-transfer rate between an optical emitter and a layer of periodically doped graphene. The transfer exhibits divergences at photon frequencies corresponding to the Van Hove singularities of the plasmonic band structure of the graphene. In particular, we find flat bands associated with regions of vanishing doping charge, which appear in graphene when it is patterned through gates of spatially alternating signs, giving rise to intense transfer rate singularities. Graphene is thus shown to provide a unique platform for fast control of optical energy transfer via fast electrostatic inhomogeneous doping. (paper)

  15. Optical Third-Harmonic Generation in Graphene

    Directory of Open Access Journals (Sweden)

    Sung-Young Hong

    2013-06-01

    Full Text Available We report strong third-harmonic generation in monolayer graphene grown by chemical vapor deposition and transferred to an amorphous silica (glass substrate; the photon energy is in three-photon resonance with the exciton-shifted van Hove singularity at the M point of graphene. The polarization selection rules are derived and experimentally verified. In addition, our polarization- and azimuthal-rotation-dependent third-harmonic-generation measurements reveal in-plane isotropy as well as anisotropy between the in-plane and out-of-plane nonlinear optical responses of graphene. Since the third-harmonic signal exceeds that from bulk glass by more than 2 orders of magnitude, the signal contrast permits background-free scanning of graphene and provides insight into the structural properties of graphene.

  16. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  17. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Bonn, Daniel

    2016-01-01

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid 'marbles' with molecularly thin graphene.

  18. Wetting of Water on Graphene

    KAUST Repository

    Bera, Bijoyendra

    2016-11-28

    The wetting properties of graphene have proven controversial and difficult to assess. The presence of a graphene layer on top of a substrate does not significantly change the wetting properties of the solid substrate, suggesting that a single graphene layer does not affect the adhesion between the wetting phase and the substrate. However, wetting experiments of water on graphene show contact angles that imply a large amount of adhesion. Here, we investigate the wetting of graphene by measuring the mass of water vapor adsorbing to graphene flakes of different thickness at different relative humidities. Our experiments unambiguously show that the thinnest of graphene flakes do not adsorb water, from which it follows that the contact angle of water on these flakes is ~180o. Thicker flakes of graphene nanopowder, on the other hand, do adsorb water. A calculation of the van der Waals (vdW) interactions that dominate the adsorption in this system confirms that the adhesive interactions between a single atomic layer of graphene and water are so weak that graphene is superhydrophobic. The observations are confirmed in an independent experiment on graphene-coated water droplets that shows that it is impossible to make liquid \\'marbles\\' with molecularly thin graphene.

  19. The growth of Fe clusters over graphene/Cu(111)

    International Nuclear Information System (INIS)

    Takahashi, Keisuke

    2015-01-01

    The growth of Fe clusters up to nine atoms over graphene/Cu(111) is investigated within the density functional theory. Graphene is weakly physisorbed on Cu(111) through van der Waals force. The structures of Fe clusters over graphene/Cu(111) grow differently compared to gas-phase Fe clusters where Fe clusters are predicted to form towards a pyramid-like structure on graphene/Cu(111). The graphene is negatively charged upon the adsorption of Fe clusters as a result of charge transfer from Fe to graphene. Despite the fact that the electronic structure of graphene is affected by Fe clusters, magnetic moment of Fe clusters over graphene/Cu(111) remains relatively high. This suggests that graphene can be a potential substrate for supporting Fe clusters towards applications in magnetism and catalysis. (paper)

  20. Introducing lattice strain to graphene encapsulated in hBN

    Science.gov (United States)

    Tomori, Hikari; Hiraide, Rineka; Ootuka, Youiti; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    Due to the characteristic lattice structure, lattice strain in graphene produces an effective gauge field. Theories tell that by controlling spatial variation of lattice strain, one can tailor the electronic state and transport properties of graphene. For example, under uniaxial local strain, graphene exhibits a transport gap at low energies, which is attractive for a graphene application to field effect devices. Here, we develop a method for encapsulating a strained graphene film in hexagonal boron-nitride (hBN). It is known that the graphene carrier mobility is significantly improved by the encapsulation of graphene in hBN, which has never been applied to strained graphene. We encapsulate graphene in hBN using the van der Waals assembly method. Strain is induced by sandwiching a graphene film between patterned hBN sheets. Spatial variation of strain is confirmed with micro Raman spectroscopy. Transport measurement of encapsulated strained graphene is in progress.

  1. Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures

    International Nuclear Information System (INIS)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    Hexagonal boron nitride (h-BN) is a large bandgap insulating isomorph of graphene, ideal for atomically thin tunnel barrier applications. In this letter, we demonstrate large area chemical vapor deposited (CVD) h-BN as a promising spin tunnel barrier in graphene spin transport devices. In such structures, the ferromagnetic tunnel contacts with h-BN barrier are found to show robust tunneling characteristics over a large scale with resistances in the favorable range for efficient spin injection into graphene. The non-local spin transport and precession experiments reveal spin lifetime ≈500 ps and spin diffusion length ≈1.6 μm in graphene with tunnel spin polarization ≈11% at 100 K. The electrical and spin transport measurements at different injection bias current and gate voltages confirm tunnel spin injection through h-BN barrier. These results open up possibilities for implementation of large area CVD h-BN in spintronic technologies

  2. Vertical electron transport in van der Waals heterostructures with graphene layers

    International Nuclear Information System (INIS)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Aleshkin, V. Ya.; Dubinov, A. A.; Mitin, V.; Shur, M. S.

    2015-01-01

    We propose and analyze an analytical model for the self-consistent description of the vertical electron transport in van der Waals graphene-layer (GL) heterostructures with the GLs separated by the barriers layers. The top and bottom GLs serve as the structure emitter and collector. The vertical electron transport in such structures is associated with the propagation of the electrons thermionically emitted from GLs above the inter-GL barriers. The model under consideration describes the processes of the electron thermionic emission from and the electron capture to GLs. It accounts for the nonuniformity of the self-consistent electric field governed by the Poisson equation which accounts for the variation of the electron population in GLs. The model takes also under consideration the cooling of electrons in the emitter layer due to the Peltier effect. We find the spatial distributions of the electric field and potential with the high-electric-field domain near the emitter GL in the GL heterostructures with different numbers of GLs. Using the obtained spatial distributions of the electric field, we calculate the current-voltage characteristics. We demonstrate that the Peltier cooling of the two-dimensional electron gas in the emitter GL can strongly affect the current-voltage characteristics resulting in their saturation. The obtained results can be important for the optimization of the hot-electron bolometric terahertz detectors and different devices based on GL heterostructures

  3. Electronic orbital angular momentum and magnetism of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ji, E-mail: ji.luo@upr.edu

    2014-10-01

    Orbital angular momentum (OAM) of graphene electrons in a perpendicular magnetic field is calculated and corresponding magnetic moment is used to investigate the magnetism of perfect graphene. Variation in magnetization demonstrates its decrease with carrier-doping, plateaus in a large field, and de Haas–van Alphen oscillation. Regulation of graphene's magnetism by a parallel electric field is presented. The OAM originates from atomic-scale electronic motion in graphene lattice, and vector hopping interaction between carbon atomic orbitals is the building element. A comparison between OAM of graphene electrons, OAM of Dirac fermions, and total angular momentum of the latter demonstrates their different roles in graphene's magnetism. Applicability and relation to experiments of the results are discussed. - Highlights: • Orbital angular momentum of graphene electrons is calculated. • Orbital magnetic moment of graphene electrons is obtained. • Variation in magnetization of graphene is calculated. • Roles of different kinds of angular momentum are investigated.

  4. Strain engineering of van der Waals heterostructures

    NARCIS (Netherlands)

    Vermeulen, Paul A.; Mulder, Jefta; Momand, Jamo; Kooi, Bart J.

    2018-01-01

    Modifying the strain state of solids allows control over a plethora of functional properties. The weak interlayer bonding in van der Waals (vdWaals) materials such as graphene, hBN, MoS2, and Bi2Te3 might seem to exclude strain engineering, since strain would immediately relax at the vdWaals

  5. Elastic Buckling Behaviour of General Multi-Layered Graphene Sheets

    Directory of Open Access Journals (Sweden)

    Rong Ming Lin

    2015-04-01

    Full Text Available Elastic buckling behaviour of multi-layered graphene sheets is rigorously investigated. Van der Waals forces are modelled, to a first order approximation, as linear physical springs which connect the nodes between the layers. Critical buckling loads and their associated modes are established and analyzed under different boundary conditions, aspect ratios and compressive loading ratios in the case of graphene sheets compressed in two perpendicular directions. Various practically possible loading configurations are examined and their effect on buckling characteristics is assessed. To model more accurately the buckling behaviour of multi-layered graphene sheets, a physically more representative and realistic mixed boundary support concept is proposed and applied. For the fundamental buckling mode under mixed boundary support, the layers with different boundary supports deform similarly but non-identically, leading to resultant van der Waals bonding forces between the layers which in turn affect critical buckling load. Results are compared with existing known solutions to illustrate the excellent numerical accuracy of the proposed modelling approach. The buckling characteristics of graphene sheets presented in this paper form a comprehensive and wholesome study which can be used as potential structural design guideline when graphene sheets are employed for nano-scale sensing and actuation applications such as nano-electro-mechanical systems.

  6. First-principles study of SF{sub 6} decomposed gas adsorbed on Au-decorated graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoxing, E-mail: xiaoxing.zhang@outlook.com [State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 (China); Yu, Lei; Gui, Yingang [State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044 (China); Hu, Weihua [Institute for Clean Energy & Advanced Materials, Southwest University, Chongqing 400715 (China)

    2016-03-30

    Graphical abstract: - Highlights: • We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF{sub 6}), namely, H{sub 2}S, SO{sub 2}, SOF{sub 2}, and SO{sub 2}F{sub 2}, adsorbed on pristine and Au-embedded graphene based on DFT-D, in which the van der Waals effect is considered. • H{sub 2}S, SO{sub 2}, SOF{sub 2}, and SO{sub 2}F{sub 2} are chemisorption on Au-doped graphene, appreciably stronger than physisorption on pristine graphene in which the van der Waals dominates. • Only H{sub 2}S exhibits n-type doping to Au-graphene, whereas the rest gases exhibit p-type doping. The n-type and p-type sensing behaviors that Au-doped graphene displays to different gases play a crucial role in selective sensing application. • Magnetic moments fluctuate substantially in the original Au-graphene when H{sub 2}S and SO{sub 2} are adsorbed. While the adsorption effects of SOF{sub 2} and SO{sub 2}F{sub 2} generate magnetism quenching. The different changes of magnetic moments in every adsorption system provide another approach to selective detection. • The charge transfer mechanism is deeply discussed in this paper. - Abstract: We theoretically investigated the decomposed gaseous components of sulfur hexafluoride (SF{sub 6}), namely, H{sub 2}S, SO{sub 2}, SOF{sub 2}, and SO{sub 2}F{sub 2}, adsorbed on pristine and Au-embedded graphene based on the revised Perdew–Burke–Ernzerhof calculation, which empirically includes a dispersion correction (DFT-D) for van der Waals interaction with standard generalized gradient approximation. Pristine graphene exhibits weak adsorption and absence of charge transfer, which indicates barely satisfactory sensing for decomposed components. The Au atom introduces magnetism to the pristine graphene after metal-embedded decoration as well as enhances conductivity. All four molecules induce certain hybridization between the molecules and Au-graphene, which results in chemical interactions. SOF{sub 2} and SO

  7. Epitaxial graphene-encapsulated surface reconstruction of Ge(110)

    Science.gov (United States)

    Campbell, Gavin P.; Kiraly, Brian; Jacobberger, Robert M.; Mannix, Andrew J.; Arnold, Michael S.; Hersam, Mark C.; Guisinger, Nathan P.; Bedzyk, Michael J.

    2018-04-01

    Understanding and engineering the properties of crystalline surfaces has been critical in achieving functional electronics at the nanoscale. Employing scanning tunneling microscopy, surface x-ray diffraction, and high-resolution x-ray reflectivity experiments, we present a thorough study of epitaxial graphene (EG)/Ge(110) and report a Ge(110) "6 × 2" reconstruction stabilized by the presence of epitaxial graphene unseen in group-IV semiconductor surfaces. X-ray studies reveal that graphene resides atop the surface reconstruction with a 0.34 nm van der Waals (vdW) gap and provides protection from ambient degradation.

  8. Advances in graphene spintronics

    Science.gov (United States)

    van Wees, Bart

    I will give an overview of the status of graphene spintronics, from both scientific as technological perspectives. In the introduction I will show that (single) layer graphene is the ideal host for electronic spins, allowing spin transport by diffusion over distances exceeding 20 micrometers at room temperature. I will show how by the use of carrier drift, induced by charge currents, effective spin relaxation lengths of 90 micrometer can be obtained in graphene encapsulated between boron-nitride layers. This also allows the controlled flow and guiding of spin currents, opening new avenues for spin logic devices based on lateral architectures. By preparing graphene on top of a ferromagnetic insulator (yttrium iron garnet (YIG)) we have shown that we can induce an exchange interaction in the graphene, thus effectively making the graphene magnetic. This allows for new ways to induce and control spin precession for new applications. Finally I will show how, by using two-layer BN tunnel barriers, spins can be injected from a ferromagnet into graphene with a spin polarization which can be tuned continuously from -80% to 40%, using a bias range from -0.3V to 0.3V across the barrier. These unique record values of the spin polarization are not yet understood, but they highlight the potential of Van der Waals stacking of graphene and related 2D materials for spintronics.

  9. On the kinetic barriers of graphene homo-epitaxy

    International Nuclear Information System (INIS)

    Zhang, Wei; Yu, Xinke; Xie, Ya-Hong; Cahyadi, Erica; Ratsch, Christian

    2014-01-01

    The diffusion processes and kinetic barriers of individual carbon adatoms and clusters on graphene surfaces are investigated to provide fundamental understanding of the physics governing epitaxial growth of multilayer graphene. It is found that individual carbon adatoms form bonds with the underlying graphene whereas the interaction between graphene and carbon clusters, consisting of 6 atoms or more, is very weak being van der Waals in nature. Therefore, small carbon clusters are quite mobile on the graphene surfaces and the diffusion barrier is negligibly small (∼6 meV). This suggests the feasibility of high-quality graphene epitaxial growth at very low growth temperatures with small carbon clusters (e.g., hexagons) as carbon source. We propose that the growth mode is totally different from 3-dimensional bulk materials with the surface mobility of carbon hexagons being the highest over graphene surfaces that gradually decreases with further increase in cluster size

  10. Numerical investigation of elastic mechanical properties of graphene structures

    International Nuclear Information System (INIS)

    Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K.

    2010-01-01

    The computation of the elastic mechanical properties of graphene sheets, nanoribbons and graphite flakes using spring based finite element models is the aim of this paper. Interatomic bonded interactions as well as van der Waals forces between carbon atoms are simulated via the use of appropriate spring elements expressing corresponding potential energies provided by molecular theory. Each layer is idealized as a spring-like structure with carbon atoms represented by nodes while interatomic forces are simulated by translational and torsional springs with linear behavior. The non-bonded van der Waals interactions among atoms which are responsible for keeping the graphene layers together are simulated with the Lennard-Jones potential using appropriate spring elements. Numerical results concerning the Young's modulus, shear modulus and Poisson's ratio for graphene structures are derived in terms of their chilarity, width, length and number of layers. The numerical results from finite element simulations show good agreement with existing numerical values in the open literature.

  11. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2016-05-26

    A possible approach to achieve quasi-freestanding graphene on a substrate for technological purpose is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) therefore is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. We find that Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which agrees with experiments, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  12. Quasi-freestanding graphene on Ni(111) by Cs intercalation

    KAUST Repository

    Alattas, Maha Hassan Mohssen

    2017-01-08

    It is of technological interest to achieve quasi-freestanding graphene on a substrate. A possible approach is the intercalation of alkali metal atoms. Cs intercalation between graphene and Ni(111) is investigated using density functional theory, incorporating van der Waals corrections. It is known that direct contact between graphene and Ni(111) perturbs the Dirac states. Cs intercalation restores the linear dispersion characteristic of Dirac fermions, which is in agreement with experiments1, but the Dirac cone is shifted to lower energy, i.e., the graphene sheet is n-doped. Cs intercalation therefore effectively decouples the graphene sheet from the substrate except for a charge transfer. On the other hand, the spin polarization of Ni(111) does not extend through the intercalated atoms to the graphene sheet, for which we find virtually spin-degeneracy.

  13. Adsorption of single Li and the formation of small Li clusters on graphene for the anode of lithium-ion batteries.

    Science.gov (United States)

    Fan, Xiaofeng; Zheng, W T; Kuo, Jer-Lai; Singh, David J

    2013-08-28

    We analyzed the adsorption of Li on graphene in the context of anodes for lithium-ion batteries (LIBs) using first-principles methods including van der Waals interactions. We found that although Li can reside on the surface of defect-free graphene under favorable conditions, the binding is much weaker than to graphite and the concentration on a graphene surface is not higher than in graphite. At low concentration, Li ions spread out on graphene because of Coulomb repulsion. With increased Li content, we found that small Li clusters can be formed on graphene. Although this result suggests that graphene nanosheets can conceivably have a higher ultimate Li capacity than graphite, it should be noted that such nanoclusters can potentially nucleate Li dendrites, leading to failure. The implications for nanostructured carbon anodes in batteries are discussed.

  14. Midgap states and band gap modification in defective graphene/h-BN heterostructures

    NARCIS (Netherlands)

    Sachs, B.; Wehling, T.O.; Katsnelson, M.I.; Lichtenstein, A.I.

    2016-01-01

    The role of defects in van der Waals heterostructures made of graphene and hexagonal boron nitride (h-BN) is studied using a combination of ab initio and model calculations. Despite the weak van der Waals interaction between layers, defects residing in h-BN, such as carbon impurities and antisite

  15. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.

    Science.gov (United States)

    Pan, Douxing; Wang, Chao; Wang, Tzu-Chiang; Yao, Yugui

    2017-09-26

    Because of the combined advantages of both porous materials and two-dimensional (2D) graphene sheets, superior mechanical properties of three-dimensional (3D) graphene foams have received much attention from material scientists and energy engineers. Here, a 2D mesoscopic graphene model (Modell. Simul. Mater. Sci. Eng. 2011, 19, 054003), was expanded into a 3D bonded graphene foam system by utilizing physical cross-links and van der Waals forces acting among different mesoscopic graphene flakes by considering the debonding behavior, to evaluate the uniaxial tension behavior and fracture mode based on in situ SEM tensile testing (Carbon 2015, 85, 299). We reasonably reproduced a multipeak stress-strain relationship including its obvious yielding plateau and a ductile fracture mode near 45° plane from the tensile direction including the corresponding fracture morphology. Then, a power scaling law of tensile elastic modulus with mass density and an anisotropic strain-dependent Poisson's ratio were both deduced. The mesoscopic physical mechanism of tensile deformation was clearly revealed through the local stress state and evolution of mesostructure. The fracture feature of bonded graphene foam and its thermodynamic state were directly navigated to the tearing pattern of mesoscopic graphene flakes. This study provides an effective way to understand the mesoscopic physical nature of 3D graphene foams, and hence it may contribute to the multiscale computations of micro/meso/macromechanical performances and optimal design of advanced graphene-foam-based materials.

  16. Oscillations of spherical fullerenes interacting with graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Ghavanloo, Esmaeal, E-mail: ghavanloo@shirazu.ac.ir; Fazelzadeh, S. Ahmad

    2017-01-01

    In the present study, the oscillations of spherical fullerenes in the vicinity of a fully constrained graphene sheet are investigated. Using the continuous approximation and Lennard-Jones potential, the van der Waals (vdW) potential energy and interaction forces are obtained. The equation of motion is derived and directly solved based on the actual force distribution between the fullerene molecules and the graphene sheet. Numerical results are obtained and shown that the oscillation is sensitive to the size of the fullerene as well as the distance between the center of the fullerene and the graphene sheet.

  17. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan; Ghosh, Ram Krishna; Addou, Rafik; Lu, Ning; Eichfeld, Sarah M.; Zhu, Hui; Li, Ming-Yang; Peng, Xin; Kim, Moon J.; Li, Lain-Jong; Wallace, Robert M.; Datta, Suman; Robinson, Joshua A.

    2015-01-01

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  18. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures

    KAUST Repository

    Lin, Yu-Chuan

    2015-06-19

    Vertical integration of two-dimensional van der Waals materials is predicted to lead to novel electronic and optical properties not found in the constituent layers. Here, we present the direct synthesis of two unique, atomically thin, multi-junction heterostructures by combining graphene with the monolayer transition-metal dichalcogenides: molybdenum disulfide (MoS2), molybdenum diselenide (MoSe2) and tungsten diselenide (WSe2). The realization of MoS2–WSe2–graphene and WSe2–MoS2–graphene heterostructures leads to resonant tunnelling in an atomically thin stack with spectrally narrow, room temperature negative differential resistance characteristics.

  19. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye

    2017-01-26

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets. The composition has high conductivity and flexibility. The composition can be made by a one-pot synthesis in which a graphene material precursor is converted to the graphene material, and the metal precursor is converted to the metal. A reducing solvent or dispersant such as NMP can be used. Devices made from the composition include a pressure sensor which has high sensitivity. Two two- dimension materials can be combined to form a hybrid material.

  20. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  1. Tunneling spectra of graphene on copper unraveled

    DEFF Research Database (Denmark)

    Zhang, Xin; Stradi, Daniele; Liu, Lei

    2016-01-01

    mechanisms, etc. The interpretation of the spectra can be complicated, however. Specifically for graphene grown on copper, there have been conflicting reports of tunneling spectra. A clear understanding of the mechanisms behind the variability is desired. In this work, we have revealed that the root cause...... of the variability in tunneling spectra is the variation in graphene-substrate coupling under various experimental conditions, providing a salutary perspective on the important role of 2D material-substrate interactions. The conclusions are drawn from measured data and theoretical calculations for monolayer, AB......-stacked bilayer, and twisted bilayer graphene coexisting on the same substrates in areas with and without intercalated oxygen, demonstrating a high degree of consistency. The Van Hove singularities of the twisted graphene unambiguously indicate the Dirac energy between them, lending strong evidence to our...

  2. Graphene device and method of using graphene device

    Science.gov (United States)

    Bouchiat, Vincent; Girit, Caglar; Kessler, Brian; Zettl, Alexander K.

    2015-08-11

    An embodiment of a graphene device includes a layered structure, first and second electrodes, and a dopant island. The layered structure includes a conductive layer, an insulating layer, and a graphene layer. The electrodes are coupled to the graphene layer. The dopant island is coupled to an exposed surface of the graphene layer between the electrodes. An embodiment of a method of using a graphene device includes providing the graphene device. A voltage is applied to the conductive layer of the graphene device. Another embodiment of a method of using a graphene device includes providing the graphene device without the dopant island. A dopant island is placed on an exposed surface of the graphene layer between the electrodes. A voltage is applied to the conductive layer of the graphene device. A response of the dopant island to the voltage is observed.

  3. Mechanics of the scrolling and folding of graphene

    Science.gov (United States)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-01

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  4. Mechanics of the scrolling and folding of graphene.

    Science.gov (United States)

    Li, Hao; Li, Ming; Kang, Zhan

    2018-06-15

    The competition between the out-of-plane rigidity and the van der Waals interaction leads to the scrolled and folded structural configurations of graphene. These configuration changes, as compared with the initially planar geometry, significantly affect the electronic, optical and mechanical properties of graphene, promising exciting applications in graphene-nanoelectronics. We propose a finite-deformation theoretical model, in which no presumed assumptions on the geometries of deformed configurations are required. Both the predicted deformed profiles and the critical conditions show great agreements with molecular dynamics simulations results when compared with existing studies with simple geometrical assumptions. Moreover, MD simulations are performed to explore the morphology transitions between different configurations. It is observed that the folded configuration is energetically favorable for a short graphene sheet, while a long graphene sheet tends to scroll. Of particular interest, we observe the morphology transition from a Fermat scroll to the Archimedean scroll for the bi-scrolled graphene. These findings are useful for understanding the stability of graphene and may provide guidance to the design of programmable graphene-nanoelectronics.

  5. Superlubricating graphene and graphene oxide films

    Science.gov (United States)

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho; Berman, Diana

    2018-02-13

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  6. CVD-Graphene-Based Flexible, Thermoelectrochromic Sensor

    Directory of Open Access Journals (Sweden)

    Adam Januszko

    2017-01-01

    Full Text Available The main idea behind this work was demonstrated in a form of a new thermoelectrochromic sensor on a flexible substrate using graphene as an electrically reconfigurable thermal medium (TEChrom™. Our approach relies on electromodulation of thermal properties of graphene on poly(ethylene terephthalate (PET via mechanical destruction of a graphene layer. Graphene applied in this work was obtained by chemical vapor deposition (CVD technique on copper substrate and characterized by Raman and scanning tunneling spectroscopy. Electrical parameters of graphene were evaluated by the van der Pauw method on the transferred graphene layers onto SiO2 substrates by electrochemical delamination method. Two configurations of architecture of sensors, without and with the thermochromic layer, were investigated, taking into account the increase of voltage from 0 to 50 V and were observed by thermographic camera to define heat energy. Current-voltage characteristics obtained for the sensor with damaged graphene layer are linear, and the resistivity is independent from the current applied. The device investigated under 1000 W/m2 exhibited rise of resistivity along with increased temperature. Flexible thermoelectrochromic device with graphene presented here can be widely used as a sensor for both the military and civil monitoring.

  7. An all-carbon vdW heterojunction composed of penta-graphene and graphene: Tuning the Schottky barrier by electrostatic gating or nitrogen doping

    Science.gov (United States)

    Guo, Yaguang; Wang, Fancy Qian; Wang, Qian

    2017-08-01

    The non-zero band gap together with other unique properties endows penta-graphene with potential for device applications. Here, we study the performance of penta-graphene as the channel material contacting with graphene to form a van der Waals heterostructure. Based on first-principles calculations, we show that the intrinsic properties of penta-graphene are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The stacked system forms an n-type Schottky barrier (Φe) at the vertical interface, while a negative band bending occurs at the lateral interface in a current-in-plane model. From the device point of view, we further demonstrate that a low-Φe or an Ohmic contact can be realized by applying an external electric field or doping graphene with nitrogen atoms. This allows the control of the Schottky barrier height, which is essential in fabricating penta-graphene-based nanotransistors.

  8. Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Science.gov (United States)

    Freitag, Nils M.; Reisch, Tobias; Chizhova, Larisa A.; Nemes-Incze, Péter; Holl, Christian; Woods, Colin R.; Gorbachev, Roman V.; Cao, Yang; Geim, Andre K.; Novoselov, Kostya S.; Burgdörfer, Joachim; Libisch, Florian; Morgenstern, Markus

    2018-05-01

    Coherent manipulation of the binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid-state systems, whereas exploitation of the valley has only recently been started, albeit without control at the single-electron level. Here, we show that van der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunnelling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits.

  9. Spin-polarized semiconductors: tuning the electronic structure of graphene by introducing a regular pattern of sp3 carbons on the graphene plane.

    Science.gov (United States)

    Jing, Long; Huang, Ping; Zhu, Huarui; Gao, Xueyun

    2013-01-28

    First-principles calculations (generalized gradient approximation, density functional therory (DFT) with dispersion corrections, and DFT plus local atomic potential) are carried out on the stability and electronic structures of superlattice configurations of nitrophenyl diazonium functionalized graphene with different coverage. In the calculations, the stabilities of these structures are strengthened significantly since van der Waals interactions between nitrophenyl groups are taken into account. Furthermore, spin-polarized and wider-bandgap electronic structures are obtained when the nitrophenyl groups break the sublattice symmetry of the graphene. The unpaired quasi-localized p electrons are responsible for this itinerant magnetism. The results provide a novel approach to tune graphene's electronic structures as well as to form ferromagnetic semiconductive graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Compositions of graphene materials with metal nanostructures and microstructures and methods of making and using including pressure sensors

    KAUST Repository

    Chen, Ye; Khashab, Niveen M.; Tao, Jing

    2017-01-01

    Composition comprising at least one graphene material and at least one metal. The metal can be in the form of nanoparticles as well as microflakes, including single crystal microflakes. The metal can be intercalated in the graphene sheets

  11. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    International Nuclear Information System (INIS)

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  12. Wetting of water on graphene nanopowders of different thicknesses

    Science.gov (United States)

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Grégory F.; Bonn, Daniel

    2018-04-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. "Liquid marble" tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated "wetting transparency" of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  13. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra; Shahidzadeh, Noushine; Mishra, Himanshu; Belyaeva, Liubov A.; Schneider, Gré gory F.; Bonn, Daniel

    2018-01-01

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  14. Wetting of water on graphene nanopowders of different thicknesses

    KAUST Repository

    Bera, Bijoyendra

    2018-04-12

    We study the wetting of graphene nanopowders by measuring the water adsorption in nanopowder flakes of different flake thicknesses. Chemical analysis shows that the graphene flakes, especially the thin ones, might exist in the partially oxidized state. We observe that the thinnest graphene nanopowder flakes do not adsorb water at all, independent of the relative humidity. Thicker flakes, on the other hand, do adsorb an increasing amount of water with increasing humidity. This allows us to assess their wetting behavior which is actually the result of the competition between the adhesive interactions of water and graphene and the cohesive interactions of water. Explicit calculation of these contributions from the van der Waals interactions confirms that the adhesive interactions between very thin flakes of graphene oxide and water are extremely weak, which makes the flakes superhydrophobic. “Liquid marble” tests with graphene nanopowder flakes confirm the superhydrophobicity. This shows that the origin of the much debated “wetting transparency” of graphene is due to the fact that a single graphene or graphene oxide layer does not contribute significantly to the adhesion between a wetting phase and the substrate.

  15. 2D halide perovskite-based van der Waals heterostructures: contact evaluation and performance modulation

    Science.gov (United States)

    Guo, Yaguang; Saidi, Wissam A.; Wang, Qian

    2017-09-01

    Halide perovskites and van der Waals (vdW) heterostructures are both of current interest owing to their novel properties and potential applications in nano-devices. Here, we show the great potential of 2D halide perovskite sheets (C4H9NH3)2PbX4 (X  =  Cl, Br and I) that were synthesized recently (Dou et al 2015 Science 349 1518-21) as the channel materials contacting with graphene and other 2D metallic sheets to form van der Waals heterostructures for field effect transistor (FET). Based on state-of-the-art theoretical simulations, we show that the intrinsic properties of the 2D halide perovskites are preserved in the heterojunction, which is different from the conventional contact with metal surfaces. The 2D halide perovskites form a p-type Schottky barrier (Φh) contact with graphene, where tunneling barrier exists, and a negative band bending occurs at the lateral interface. We demonstrate that the Schottky barrier can be turned from p-type to n-type by doping graphene with nitrogen atoms, and a low-Φh or an Ohmic contact can be realized by doping graphene with boron atoms or replacing graphene with other high-work-function 2D metallic sheets such as ZT-MoS2, ZT-MoSe2 and H-NbS2. This study not only predicts a 2D halide perovskite-based FETs, but also enhances the understanding of tuning Schottky barrier height in device applications.

  16. Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.

    Science.gov (United States)

    Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E

    2016-02-10

    Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.

  17. Graphene-based structure, method of suspending graphene membrane, and method of depositing material onto graphene membrane

    Science.gov (United States)

    Zettl, Alexander K.; Meyer, Jannik Christian

    2013-04-02

    An embodiment of a method of suspending a graphene membrane across a gap in a support structure includes attaching graphene to a substrate. A pre-fabricated support structure having the gap is attached to the graphene. The graphene and the pre-fabricated support structure are then separated from the substrate which leaves the graphene membrane suspended across the gap in the pre-fabricated support structure. An embodiment of a method of depositing material includes placing a support structure having a graphene membrane suspended across a gap under vacuum. A precursor is adsorbed to a surface of the graphene membrane. A portion of the graphene membrane is exposed to a focused electron beam which deposits a material from the precursor onto the graphene membrane. An embodiment of a graphene-based structure includes a support structure having a gap, a graphene membrane suspended across the gap, and a material deposited in a pattern on the graphene membrane.

  18. Highly Sensitive and Selective Potassium Ion Detection Based on Graphene Hall Effect Biosensors

    Directory of Open Access Journals (Sweden)

    Xiangqi Liu

    2018-03-01

    Full Text Available Potassium (K+ ion is an important biological substance in the human body and plays a critical role in the maintenance of transmembrane potential and hormone secretion. Several detection techniques, including fluorescent, electrochemical, and electrical methods, have been extensively investigated to selectively recognize K+ ions. In this work, a highly sensitive and selective biosensor based on single-layer graphene has been developed for K+ ion detection under Van der Pauw measurement configuration. With pre-immobilization of guanine-rich DNA on the graphene surface, the graphene devices exhibit a very low limit of detection (≈1 nM with a dynamic range of 1 nM–10 μM and excellent K+ ion specificity against other alkali cations, such as Na+ ions. The origin of K+ ion selectivity can be attributed to the fact that the formation of guanine-quadruplexes from guanine-rich DNA has a strong affinity for capturing K+ ions. The graphene-based biosensors with improved sensing performance for K+ ion recognition can be applied to health monitoring and early disease diagnosis.

  19. Realization of free-standing silicene using bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Neek-Amal, M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16785-136 (Iran, Islamic Republic of); Sadeghi, A. [Department of Physics, Basel University, Klingelbergestrasse 82, CH-4056 Basel (Switzerland); Berdiyorov, G. R.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2013-12-23

    The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e.g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 Å and without any lattice distortion. We found that these stacked layers are stable well above room temperature.

  20. Electronic structure of graphene- and BN-supported phosphorene

    Science.gov (United States)

    Davletshin, Artur R.; Ustiuzhanina, Svetlana V.; Kistanov, Andrey A.; Saadatmand, Danial; Dmitriev, Sergey V.; Zhou, Kun; Korznikova, Elena A.

    2018-04-01

    By using first-principles calculations, the effects of graphene and boron nitride (BN) substrates on the electronic properties of phosphorene are studied. Graphene-supported phosphorene is found to be metallic, while the BN-supported phosphorene is a semiconductor with a moderate band gap of 1.02 eV. Furthermore, the effects of the van der Waals interactions between the phosphorene and graphene or BN layers by means of the interlayer distance change are investigated. It is shown that the interlayer distance change leads to significant band gap size modulations and direct-indirect band gap transitions in the phosphorene-BN heterostructure. The presented band gap engineering of phosphorene may be a powerful technique for the fabrication of high-performance phosphorene-based nanodevices.

  1. Adsorption and Formation of Small Na Clusters on Pristine and Double-Vacancy Graphene for Anodes of Na-Ion Batteries.

    Science.gov (United States)

    Liang, Zhicong; Fan, Xiaofeng; Zheng, Weitao; Singh, David J

    2017-05-24

    Layered carbon is a likely anode material for Na-ion batteries (NIBs). Graphitic carbon has a low capacity of approximately 35 (mA h)/g due to the formation of NaC 64 . Using first-principles methods including van der Waals interactions, we analyze the adsorption of Na ions and clusters on graphene in the context of anodes. The interaction between Na ions and graphene is found to be weak. Small Na clusters are not stable on the surface of pristine graphene in the electrochemical environment of NIBs. However, we find that Na ions and clusters can be stored effectively on defected graphene that has double vacancies. In addition, the adsorption energy of small Na clusters near a double vacancy is found to decrease with increasing cluster size. With high concentrations of vacancies the capacity of Na on defective graphene is found to be as much as 10-30 times higher than that of graphitic carbon.

  2. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    International Nuclear Information System (INIS)

    Dimakis, Nicholas; Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade; Vargas, Sarah; Saenz, Justin

    2017-01-01

    Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic

  3. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Dimakis, Nicholas, E-mail: nicholas.dimakis@utrgv.edu [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Valdez, Danielle; Flor, Fernando Antonio; Salgado, Andres; Adjibi, Kolade [Department of Physics, University of Texas Rio Grande Valley, Edinburg, TX (United States); Vargas, Sarah; Saenz, Justin [Robert Vela High School, Edinburg, TX (United States)

    2017-08-15

    Highlights: • Li, K, Na, and Ca graphene interaction is primarily ionic, whereas small covalent interactions also co-exist in these cases. • Van der Waals interactions are revealed by comparing adatom-graphene geometries between 1.4% and 3% adatom coverages and using Grimme corrections. • The Li, K, Na graphene interactions are accurately described by both PBE0 and PBE functionals. For Ca/graphene, the PBE0 functional should not be used. • For Li, K, and Na adsorbed on graphene, adatom-graphene interaction weakens as the adatom coverages increases. • The Ca-graphene interaction strength, which is stronger at high coverages, is opposite to increases in the Ca–4s orbital population. - Abstract: The adsorption of the alkali Li, K, and Na and the alkaline Ca on graphene is studied using periodic density functional theory (DFT) under various adatom coverages. The charge transfers between the adatom and the graphene sheet and the almost unchanged densities-of-states spectra in the energy region near and below the Fermi level support an ionic bond pattern between the adatom and the graphene atoms. However, the presence of small orbital overlap between the metal and the nearest graphene atom is indicative of small covalent bonding. Van der Waals interactions are examined through a semiempirical correction in the DFT functional and by comparing adatom-graphene calculations between 3% and 1.4% adatom coverages. Optimized adatom-graphene geometries identify the preferred adatom sites, whereas the adatom-graphene strength is correlated with the adsorption energy and the adatom distance from the graphene plane. Calculated electronic properties and structural parameters are obtained using hybrid functionals and a generalized gradient approximation functional paired with basis sets of various sizes. We found that due to long range electrostatic forces between the alkali/alkaline adatoms and the graphene monolayer, the adatom-graphene structural and electronic

  4. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili

    2014-07-07

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  5. Non-covalent functionalization of single wall carbon nanotubes and graphene by a conjugated polymer

    KAUST Repository

    Jiwuer, Jilili; Abdurahman, Ayjamal; Gü lseren, Oğuz; Schwingenschlö gl, Udo

    2014-01-01

    We report first-principles calculations on the binding of poly[(9,9-bis-(6-bromohexylfluorene-2,7-diyl)-co-(benzene-1,4-diyl)] to a (8,0) single wall carbon nanotube (SWCNT) and to graphene. Considering different relative orientations of the subsystems, we find for the generalized gradient approximation a non-binding state, whereas the local density approximation predicts reasonable binding energies. The results coincide after inclusion of van der Waals corrections, which demonstrates a weak interaction between the polymer and SWCNT/graphene, mostly of van der Waals type. Accordingly, the density of states shows essentially no hybridization. The physisorption mechanism explains recent experimental observations and suggests that the conjugated polymer can be used for non-covalent functionalization.

  6. Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene

    Science.gov (United States)

    Zuo, Wei-Jie; Qiao, Jia-Bin; Ma, Dong-Lin; Yin, Long-Jing; Sun, Gan; Zhang, Jun-Yang; Guan, Li-Yang; He, Lin

    2018-01-01

    Twist, as a simple and unique degree of freedom, could lead to enormous novel quantum phenomena in bilayer graphene. A small rotation angle introduces low-energy van Hove singularities (VHSs) approaching the Fermi level, which result in unusual correlated states in the bilayer graphene. It is reasonable to expect that the twist could also affect the electronic properties of few-layer graphene dramatically. However, such an issue has remained experimentally elusive. Here, by using scanning tunneling microscopy/spectroscopy (STM/STS), we systematically studied a twisted trilayer graphene (TTG) with two different small twist angles between adjacent layers. Two sets of VHSs, originating from the two twist angles, were observed in the TTG, indicating that the TTG could be simply regarded as a combination of two different twisted bilayers of graphene. By using high-resolution STS, we observed a split of the VHSs and directly imaged the spatial symmetry breaking of electronic states around the VHSs. These results suggest that electron-electron interactions play an important role in affecting the electronic properties of graphene systems with low-energy VHSs.

  7. Electromechanics of graphene spirals

    Energy Technology Data Exchange (ETDEWEB)

    Korhonen, Topi; Koskinen, Pekka, E-mail: pekka.koskinen@iki.fi [NanoScience Center, Department of Physics, University of Jyväskylä, 40014 Jyväskylä (Finland)

    2014-12-15

    Among the most fascinating nanostructure morphologies are spirals, hybrids of somewhat obscure topology and dimensionality with technologically attractive properties. Here, we investigate mechanical and electromechanical properties of graphene spirals upon elongation by using density-functional tight-binding, continuum elasticity theory, and classical force field molecular dynamics. It turns out that electronic properties are governed by interlayer interactions as opposed to strain effects. The structural behavior is governed by van der Waals interaction: in its absence spirals unfold with equidistant layer spacings, ripple formation at spiral perimeter, and steadily increasing axial force; in its presence, on the contrary, spirals unfold via smooth local peeling, complex geometries, and nearly constant axial force. These electromechanical trends ought to provide useful guidelines not only for additional theoretical investigations but also for forthcoming experiments on graphene spirals.

  8. The hot pick-up technique for batch assembly of van der Waals heterostructures

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Gammelgaard, Lene; Jessen, Bjarke Sørensen

    2016-01-01

    The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces...... between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron...

  9. Graphene aerogels

    Science.gov (United States)

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  10. Experimental Study on Characteristics of Grinded Graphene Nanofluids with Surfactants

    Directory of Open Access Journals (Sweden)

    HeonJin Seong

    2018-06-01

    Full Text Available In earlier studies, much research has focused on increasing the efficiency of heat exchanger fields. Therefore, in this study, graphene nanofluid was fabricated for use as a heat transfer medium for a heat exchanger. Graphene has excellent electrical conductivity, mechanical properties, and heat transfer properties. It is expected that the heat transfer efficiency will be improved by fabricating the nanofluid. However, graphene is prone to sedimentation, because of its cohesion due to van der Waals binding force. In this experiment, a nanofluid was fabricated with enhanced dispersibility by surfactant and the ball-milling process. The zeta potential, absorbance, and thermal conductivity of the nanofluid were measured. As a result, when using the ratio of 2:1 (graphene:sodium dodecyl sulfate (SDS, a higher thermal conductivity was obtained than in other conditions.

  11. Probing interfacial electronic properties of graphene/CH3NH3PbI3 heterojunctions: A theoretical study

    Science.gov (United States)

    Hu, Jisong; Ji, Gepeng; Ma, Xinguo; He, Hua; Huang, Chuyun

    2018-05-01

    Interfacial interactions and electronic properties of graphene/CH3NH3PbI3 heterojunctions were investigated by first-principles calculations incorporating semiempirical dispersion-correction scheme to describe van der Waals interactions. Two lattice match configurations between graphene and CH3NH3PbI3(0 0 1) slab were constructed in parallel contact and both of them were verified to form remarkable van der Waals heterojunctions with similar work functions. Our calculated energy band structures show that the Dirac-cone of graphene and the direct band gap of CH3NH3PbI3 are still preserved in the heterojunctions, thus graphene can be a promising candidate either as a capping or supporting layer for encapsulating CH3NH3PbI3 layer. It is identified that the Schottky barrier of graphene/CH3NH3PbI3 heterojunctions can be controlled by the interlayer distance and affected by the stacking pattern of graphene and CH3NH3PbI3. The 3D charge density differences present the build-in internal electric field from graphene to CH3NH3PbI3 after interface equilibrium and thus, a low n-type Schottky barrier is needed for high efficient charge transferring in the interface. The possible mechanism of the band edge modulations in the heterojunctions and corresponding photoinduced charge transfer processes are also described.

  12. Direct Measurement of the Surface Energy of Graphene.

    Science.gov (United States)

    van Engers, Christian D; Cousens, Nico E A; Babenko, Vitaliy; Britton, Jude; Zappone, Bruno; Grobert, Nicole; Perkin, Susan

    2017-06-14

    Graphene produced by chemical vapor deposition (CVD) is a promising candidate for implementing graphene in a range of technologies. In most device configurations, one side of the graphene is supported by a solid substrate, wheras the other side is in contact with a medium of interest, such as a liquid or other two-dimensional material within a van der Waals stack. In such devices, graphene interacts on both faces via noncovalent interactions and therefore surface energies are key parameters for device fabrication and operation. In this work, we directly measured adhesive forces and surface energies of CVD-grown graphene in dry nitrogen, water, and sodium cholate using a modified surface force balance. For this, we fabricated large (∼1 cm 2 ) and clean graphene-coated surfaces with smooth topography at both macro- and nanoscales. By bringing two such surfaces into contact and measuring the force required to separate them, we measured the surface energy of single-layer graphene in dry nitrogen to be 115 ± 4 mJ/m 2 , which was similar to that of few-layer graphene (119 ± 3 mJ/m 2 ). In water and sodium cholate, we measured interfacial energies of 83 ± 7 and 29 ± 6 mJ/m 2 , respectively. Our work provides the first direct measurement of graphene surface energy and is expected to have an impact both on the development of graphene-based devices and contribute to the fundamental understanding of surface interactions.

  13. Understanding the interfacial properties of graphene-based materials/BiOI heterostructures by DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093 (China)

    2017-06-01

    Highlights: • Heterostructure constructing is an effective way to enhance the photocatalytic performance. • Graphene-like materials and BiOI were in contact and formed van der Waals heterostructures. • Band edge positions of GO/g-C{sub 3}N{sub 4} and BiOI changed to form standard type-II heterojunction. • 2D materials can promote the separation of photo-generated electron-hole pairs in BiOI. - Abstract: Heterostructure constructing is a feasible and powerful strategy to enhance the performance of photocatalysts, because they can be tailored to have desirable photo-electronics properties and couple distinct advantageous of components. As a novel layered photocatalyst, the main drawback of BiOI is the low edge position of the conduction band. To address this problem, it is meaningful to find materials that possess suitable band gap, proper band edge position, and high mobility of carrier to combine with BiOI to form hetertrostructure. In this study, graphene-based materials (including: graphene, graphene oxide, and g-C{sub 3}N{sub 4}) were chosen as candidates to achieve this purpose. The charge transfer, interface interaction, and band offsets are focused on and analyzed in detail by DFT calculations. Results indicated that graphene-based materials and BiOI were in contact and formed van der Waals heterostructures. The valence and conduction band edge positions of graphene oxide, g-C{sub 3}N{sub 4} and BiOI changed with the Fermi level and formed the standard type-II heterojunction. In addition, the overall analysis of charge density difference, Mulliken population, and band offsets indicated that the internal electric field is facilitate for the separation of photo-generated electron-hole pairs, which means these heterostructures can enhance the photocatalytic efficiency of BiOI. Thus, BiOI combines with 2D materials to construct heterostructure not only make use of the unique high electron mobility, but also can adjust the position of energy bands and

  14. A theoretical study of symmetry-breaking organic overlayers on single- and bi-layer graphene

    Science.gov (United States)

    Morales-Cifuentes, Josue; Einstein, T. L.

    2013-03-01

    An ``overlayer'' of molecules that breaks the AB symmetry of graphene can produce (modify) a band gap in single- (bi-) layer graphene.[2] Since the triangular shaped trimesic acid (TMA) molecule forms two familiar symmetry breaking configurations, we are motivated to model TMA physisorption on graphene surfaces in conjunction with experiments by Groce et al. at UMD. Using VASP, with ab initio van der Waals density functionals (vdW-DF), we simulate adsorption of TMA onto a graphene surface in several symmetry-breaking arrangements in order to predict/understand the effect of TMA adsorption on experimental observables. Supported by NSF-MRSEC Grant DMR 05-20471.

  15. Metallic behavior and enhanced adsorption energy of graphene on BN layer induced by Cu(111) substrate

    International Nuclear Information System (INIS)

    Hashmi, Arqum; Hong, Jisang

    2014-01-01

    We have investigated the adsorption properties and the electronic structure of graphene/BN and graphene/BN/Cu(111) systems by using van der Waals density functional theory. The ground-state adsorption site of graphene on BN/Cu(111) is found to be the same as that of graphene/BN. The Cu(111) substrate did not induce a significant change in the geometrical feature of graphene/BN. However, the adsorption energy of graphene on BN/Cu(111) is observed to be enhanced due to the Cu(111) substrate. In addition, we have found that the graphene layer displays a weak metallic character in graphene/BN/Cu(111) whereas an energy band gap is observed in the graphene in the graphene/BN bilayer system. Therefore, we have found that the metallic Cu(111) substrate affects the electronic structure and adsorption properties of graphene on BN/Cu(111), although it has no significant effect on the geometrical features.

  16. Novel electronic structures of superlattice composed of graphene and silicene

    International Nuclear Information System (INIS)

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-01-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction

  17. Graphene oxide and adsorption of chloroform: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Kuisma, Elena; Hansson, C. Fredrik; Lindberg, Th. Benjamin; Gillberg, Christoffer A.; Idh, Sebastian; Schröder, Elsebeth, E-mail: schroder@chalmers.se [Quantum Device Physics Laboratory, Microtechnology and Nanoscience (MC2), Chalmers University of Technology, SE-412 96 Göteborg (Sweden)

    2016-05-14

    Chlorinated hydrocarbon compounds are of environmental concerns, since they are toxic to humans and other mammals, and are widespread, and exposure is hard to avoid. Understanding and improving methods to reduce the amount of the substances are important. We present an atomic-scale calculational study of the adsorption of chlorine-based substance chloroform (CHCl{sub 3}) on graphene oxide, as a step in estimating the capacity of graphene oxide for filtering out such substances, e.g., from drinking water. The calculations are based on density functional theory, and the recently developed consistent-exchange functional for the van der Waals density-functional method is employed. We obtain values of the chloroform adsorption energy varying from roughly 0.2 to 0.4 eV per molecule. This is comparable to previously found results for chloroform adsorbed directly on clean graphene, using similar calculations. In a wet environment, like filters for drinking water, the graphene will not stay clean and will likely oxidize, and thus adsorption onto graphene oxide, rather than clean graphene, is a more relevant process to study.

  18. Bias induced up to 100% spin-injection and detection polarizations in ferromagnet/bilayer-hBN/graphene/hBN heterostructures

    NARCIS (Netherlands)

    Gurram, Mallikarjuna; Omar, Siddharta; van Wees, Bart

    2017-01-01

    We study spin transport in a fully hBN encapsulated monolayer-graphene van der Waals heterostructure at room temperature. A top-layer of bilayer-hBN is used as a tunnel barrier for spin-injection and detection in graphene with ferromagnetic cobalt electrodes. We report surprisingly large and

  19. Organic molecules deposited on graphene: A computational investigation of self-assembly and electronic structure

    International Nuclear Information System (INIS)

    Oliveira, I. S. S. de; Miwa, R. H.

    2015-01-01

    We use ab initio simulations to investigate the adsorption and the self-assembly processes of tetracyanoquinodimethane (TCNQ), tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), and tetrasodium 1,3,6,8-pyrenetetrasulfonic acid (TPA) on the graphene surface. We find that there are no chemical bonds at the molecule–graphene interface, even at the presence of grain boundaries on the graphene surface. The molecules bond to graphene through van der Waals interactions. In addition to the molecule–graphene interaction, we performed a detailed study of the role played by the (lateral) molecule–molecule interaction in the formation of the, experimentally verified, self-assembled layers of TCNQ and TPA on graphene. Regarding the electronic properties, we calculate the electronic charge transfer from the graphene sheet to the TCNQ and F4-TCNQ molecules, leading to a p-doping of graphene. Meanwhile, such charge transfer is reduced by an order of magnitude for TPA molecules on graphene. In this case, it is not expected a significant doping process upon the formation of self-assembled layer of TPA molecules on the graphene sheet

  20. Investigation of short and ballistic coupling in vertical NbSe2 - graphene - NbSe2 Josephson junctions

    Science.gov (United States)

    Kim, Minsoo; Park, Geon-Hyoung; Yi, Jongyoon; Lee, Jae Hyeong; Park, Jinho; Lee, Hu-Jong

    2H-NbSe2 is a layered two-dimensional superconducting material, which can be constructed into a van der Waals heterostructure with versatile functionality. Here we fabricated a vertically stacked NbSe2 - graphene - NbSe2 heterostructure by the dry transfer technique, where defect-free contact via van der Waals force provides the high interfacial transparency. Insertion of an atomically thin graphene layer between two NbSe2 flakes ensures the formation of highly coherent proximity Josephson coupling. Observed temperature dependence of the junction critical current (Ic) and large value of IcRn product (as large as 2.3ΔNbSe 2) reveal the short and ballistic Josephson coupling characteristics. Large junction critical current density of 104 A/cm2, multiple Andreev reflection in the subgap structure of the differential conductance, and magnetic field modulation of Ic also suggest the strong Josephson coupling via the graphene layer.

  1. Carbon dioxide adsorption in graphene sheets

    Directory of Open Access Journals (Sweden)

    Ashish Kumar Mishra

    2011-09-01

    Full Text Available Control over the CO2 emission via automobiles and industrial exhaust in atmosphere, is one of the major concerns to render environmental friendly milieu. Adsorption can be considered to be one of the more promising methods, offering potential energy savings compared to absorbent systems. Different carbon nanostructures (activated carbon and carbon nanotubes have attracted attention as CO2 adsorbents due to their unique surface morphology. In the present work, we have demonstrated the CO2 adsorption capacity of graphene, prepared via hydrogen induced exfoliation of graphitic oxide at moderate temperatures. The CO2 adsorption study was performed using high pressure Sieverts apparatus and capacity was calculated by gas equation using van der Waals corrections. Physical adsorption of CO2 molecules in graphene was confirmed by FTIR study. Synthesis of graphene sheets via hydrogen exfoliation is possible at large scale and lower cost and higher adsorption capacity of as prepared graphene compared to other carbon nanostructures suggests its possible use as CO2 adsorbent for industrial application. Maximum adsorption capacity of 21.6 mmole/g was observed at 11 bar pressure and room temperature (25 ºC.

  2. First-principles study of the alkali earth metal atoms adsorption on graphene

    International Nuclear Information System (INIS)

    Sun, Minglei; Tang, Wencheng; Ren, Qingqiang; Wang, Sake; JinYu; Du, Yanhui; Zhang, Yajun

    2015-01-01

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  3. First-principles study of the alkali earth metal atoms adsorption on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sake [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); JinYu [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Zhang, Yajun [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, Zhejiang (China)

    2015-11-30

    Graphical abstract: - Highlights: • The adsorption of Be and Mg adatoms on graphene is physisorption. • Ca, Sr, and Ba adatoms bond ionically to graphene and the most stable adsorption site for them is hollow site. • The zero band gap semiconductor graphene becomes metallic and magnetic after the adsorption of Ca, Sr, and Ba adatoms. - Abstract: Geometries, electronic structures, and magnetic properties for alkali earth metal atoms absorbed graphene have been studied by first-principle calculations. For Be and Mg atoms, the interactions between the adatom and graphene are weak van der Waals interactions. In comparison, Ca, Sr and Ba atoms adsorption on graphene exhibits strong ionic bonding with graphene. We found that these atoms bond to graphene at the hollow site with a significant binding energy and large electron transfer. It is intriguing that these adatoms may induce important changes in both the electronic and magnetic properties of graphene. Semimetal graphene becomes metallic and magnetic due to n-type doping. Detailed analysis shows that the s orbitals of these adatoms should be responsible for the arising of the magnetic moment. We believe that our results are suitable for experimental exploration and useful for graphene-based nanoelectronic and data storage.

  4. Vibrational Properties of h-BN and h-BN-Graphene Heterostructures Probed by Inelastic Electron Tunneling Spectroscopy.

    Science.gov (United States)

    Jung, Suyong; Park, Minkyu; Park, Jaesung; Jeong, Tae-Young; Kim, Ho-Jong; Watanabe, Kenji; Taniguchi, Takashi; Ha, Dong Han; Hwang, Chanyong; Kim, Yong-Sung

    2015-11-13

    Inelastic electron tunneling spectroscopy is a powerful technique for investigating lattice dynamics of nanoscale systems including graphene and small molecules, but establishing a stable tunnel junction is considered as a major hurdle in expanding the scope of tunneling experiments. Hexagonal boron nitride is a pivotal component in two-dimensional Van der Waals heterostructures as a high-quality insulating material due to its large energy gap and chemical-mechanical stability. Here we present planar graphene/h-BN-heterostructure tunneling devices utilizing thin h-BN as a tunneling insulator. With much improved h-BN-tunneling-junction stability, we are able to probe all possible phonon modes of h-BN and graphite/graphene at Γ and K high symmetry points by inelastic tunneling spectroscopy. Additionally, we observe that low-frequency out-of-plane vibrations of h-BN and graphene lattices are significantly modified at heterostructure interfaces. Equipped with an external back gate, we can also detect high-order coupling phenomena between phonons and plasmons, demonstrating that h-BN-based tunneling device is a wonderful playground for investigating electron-phonon couplings in low-dimensional systems.

  5. Metalized T graphene: A reversible hydrogen storage material at room temperature

    International Nuclear Information System (INIS)

    Ye, Xiao-Juan; Zhong, Wei; Du, You-Wei; Liu, Chun-Sheng; Zeng, Zhi

    2014-01-01

    Lithium (Li)-decorated graphene is a promising hydrogen storage medium due to its high capacity. However, homogeneous mono-layer coating graphene with lithium atoms is metastable and the lithium atoms would cluster on the surface, resulting in the poor reversibility. Using van der Waals-corrected density functional theory, we demonstrated that lithium atoms can be homogeneously dispersed on T graphene due to a nonuniform charge distribution in T graphene and strong hybridizations between the C-2p and Li-2p orbitals. Thus, Li atoms are not likely to form clusters, indicating a good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 7.7 wt. %) with an optimal adsorption energy of 0.19 eV/H 2 . The adsorption/desorption of H 2 at ambient temperature and pressure is also discussed. Our results can serve as a guide in the design of new hydrogen storage materials based on non-hexagonal graphenes.

  6. Eerste inschatting van vrijkomen van plastics als gevolg van slijtage van Mosselzaad-Invagsystemen (MZI's)

    NARCIS (Netherlands)

    Hartog, E.; Brink, van den A.M.; Kamermans, P.

    2014-01-01

    IMARES heeft onderzoek uitgevoerd naar het ontstaan en de aanwezigheid van microplastic zwerfvuil afkomstig van mosselzaad invangsystemen (hierna MZI’s genoemd). Deze studie is onderdeel van een opdracht van het ministerie van EL&I, om de ecologische effecten van opschaling van MZI’s in de

  7. Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film

    Science.gov (United States)

    Li, Yang; Zhao, Yun; Wei, Tongbo; Liu, Zhiqiang; Duan, Ruifei; Wang, Yunyu; Zhang, Xiang; Wu, QingQing; Yan, Jianchang; Yi, Xiaoyao; Yuan, Guodong; Wang, Junxi; Li, Jimin

    2017-08-01

    We experimentally investigated the possibility of using multilayer graphene to solve large mismatch problems between sapphire and nitride and further studied the effects of a multilayer graphene interlayer on the optical and electrical properties of LEDs. For the subsequent growth of 3-µm-thick GaN on AlN, multilayer graphene helps release stress and effectively removes cracks. In addition, multilayer graphene increases the diffraction of the substrate surface as determined from the increase in optical transmittance spectra in the wavelength range of 400-900 nm. Although the crystalline quality of GaN with multilayer graphene is slightly decreased, LEDs grown on multilayer graphene still show a higher output power than those grown on conventional sapphire. The present findings showed that the multilayer graphene layer is attractive as a potential substrate for the epitaxial growth of III-nitride to reduce stress and it could improve back light extraction as a rough layer to increase external quantum efficiency.

  8. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    Science.gov (United States)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Kim, Seong Dae; Ahn, Jong-Hyun

    2015-12-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (Ion/Ioff) of up to ˜103, with a current density of 102 A cm-2. We also observed significant dependence of Schottky barrier height Δφb on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier.

  9. Vertical field effect tunneling transistor based on graphene-ultrathin Si nanomembrane heterostructures

    International Nuclear Information System (INIS)

    Das, Tanmoy; Jang, Houk; Bok Lee, Jae; Chu, Hyunwoo; Dae Kim, Seong; Ahn, Jong-Hyun

    2015-01-01

    Graphene-based heterostructured vertical transistors have attracted a great deal of research interest. Herein we propose a Si-based technology platform for creating graphene/ultrathin semiconductor/metal (GSM) junctions, which can be applied to large-scale and low-power electronics compatible with a variety of substrates. We fabricated graphene/Si nanomembrane (NM)/metal vertical heterostructures by using a dry transfer technique to transfer Si NMs onto chemical vapor deposition-grown graphene layers. The resulting van der Waals interfaces between graphene and p-Si NMs exhibited nearly ideal Schottky barrier behavior. Due to the low density of states of graphene, the graphene/Si NM Schottky barrier height can be modulated by modulating the band profile in the channel region, yielding well-defined current modulation. We obtained a maximum current on/off ratio (I on /I off ) of up to ∼10 3 , with a current density of 10 2 A cm −2 . We also observed significant dependence of Schottky barrier height Δφ b on the thickness of the Si NMs. We confirmed that the transport in these devices is dominated by the effects of the graphene/Si NM Schottky barrier. (paper)

  10. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Science.gov (United States)

    Yang, H. F.; Chen, C.; Wang, H.; Liu, Z. K.; Zhang, T.; Peng, H.; Schröter, N. B. M.; Ekahana, S. A.; Jiang, J.; Yang, L. X.; Kandyba, V.; Barinov, A.; Chen, C. Y.; Avila, J.; Asensio, M. C.; Peng, H. L.; Liu, Z. F.; Chen, Y. L.

    2018-03-01

    Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES) to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation). Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001) copper surface structure but also discovered that the square graphene sheets' sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures)

  11. Single crystalline electronic structure and growth mechanism of aligned square graphene sheets

    Directory of Open Access Journals (Sweden)

    H. F. Yang

    2018-03-01

    Full Text Available Recently, commercially available copper foil has become an efficient and inexpensive catalytic substrate for scalable growth of large-area graphene films for fundamental research and applications. Interestingly, despite its hexagonal honeycomb lattice, graphene can be grown into large aligned square-shaped sheets on copper foils. Here, by applying angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES to study the three-dimensional electronic structures of square graphene sheets grown on copper foils, we verified the high quality of individual square graphene sheets as well as their merged regions (with aligned orientation. Furthermore, by simultaneously measuring the graphene sheets and their substrate copper foil, we not only established the (001 copper surface structure but also discovered that the square graphene sheets’ sides align with the ⟨110⟩ copper direction, suggesting an important role of copper substrate in the growth of square graphene sheets—which will help the development of effective methods to synthesize high-quality large-size regularly shaped graphene sheets for future applications. This work also demonstrates the effectiveness of micro-ARPES in exploring low-dimensional materials down to atomic thickness and sub-micron lateral size (e.g., besides graphene, it can also be applied to transition metal dichalcogenides and various van der Waals heterostructures

  12. Electronic Properties of Graphene-PtSe2 Contacts.

    Science.gov (United States)

    Sattar, Shahid; Schwingenschlögl, Udo

    2017-05-10

    In this article, we study the electronic properties of graphene in contact with monolayer and bilayer PtSe 2 using first-principles calculations. It turns out that there is no charge transfer between the components because of the weak van der Waals interaction. We calculate the work functions of monolayer and bilayer PtSe 2 and analyze the band bending at the contact with graphene. The formation of an n-type Schottky contact with monolayer PtSe 2 and a p-type Schottky contact with bilayer PtSe 2 is demonstrated. The Schottky barrier height is very low in the bilayer case and can be reduced to zero by 0.8% biaxial tensile strain.

  13. Nematic phase formation in suspensions of graphene oxide

    Science.gov (United States)

    Fresneau, Nathalie; Campidelli, Stéphane

    The last decade has seen the rise of graphene. Graphene is a single layer of graphite; it can be obtained by direct liquid phase exfoliation of the latter through harsh sonication. This technique presents the disadvantage to produce small graphene flakes (typically in the 0.05 to 0.4 μm2 range for the monolayers) and multilayer graphene with uncontrolled thickness distributions. In order to improve the exfoliation process, one has to counter the strong van der Waals interactions between the carbon planes of graphite. This implies to increase the distance between two planes and it can be done, for example, by oxidizing graphite to introduce oxygen species in the graphenic planes. The fabrication of graphite oxide is known for almost 150 years, and it became popular again these last ten years. Generally, the oxidation of graphite is performed following a method described by Hummers in the 1950's and the material produced by this technique exfoliates quasi-spontaneously into monolayer species called graphene oxide (GO). The highly anisotropic shape of GO (several μm in length and width for a thickness of ca. 1 nm) combined with the presence of oxygenated functions on the sp2 carbon structure of graphene lead to the formation of a lyotropic liquid crystalline phase in water. Above a certain concentration of graphene flakes the gain in translational entropy for a long-range ordered phase outweighs the loss in rotational entropy, and the liquid crystal phase then forms. The value of the threshold is affected by the aspect ratio of the graphene flakes but other factors such as the interactions also play a strong role.

  14. Controlling Water Intercalation Is Key to a Direct Graphene Transfer.

    Science.gov (United States)

    Verguts, Ken; Schouteden, Koen; Wu, Cheng-Han; Peters, Lisanne; Vrancken, Nandi; Wu, Xiangyu; Li, Zhe; Erkens, Maksiem; Porret, Clement; Huyghebaert, Cedric; Van Haesendonck, Chris; De Gendt, Stefan; Brems, Steven

    2017-10-25

    The key steps of a transfer of two-dimensional (2D) materials are the delamination of the as-grown material from a growth substrate and the lamination of the 2D material on a target substrate. In state-of-the-art transfer experiments, these steps remain very challenging, and transfer variations often result in unreliable 2D material properties. Here, it is demonstrated that interfacial water can insert between graphene and its growth substrate despite the hydrophobic behavior of graphene. It is understood that interfacial water is essential for an electrochemistry-based graphene delamination from a Pt surface. Additionally, the lamination of graphene to a target wafer is hindered by intercalation effects, which can even result in graphene delamination from the target wafer. For circumvention of these issues, a direct, support-free graphene transfer process is demonstrated, which relies on the formation of interfacial water between graphene and its growth surface, while avoiding water intercalation between graphene and the target wafer by using hydrophobic silane layers on the target wafer. The proposed direct graphene transfer also avoids polymer contamination (no temporary support layer) and eliminates the need for etching of the catalyst metal. Therefore, recycling of the growth template becomes feasible. The proposed transfer process might even open the door for the suggested atomic-scale interlocking-toy-brick-based stacking of different 2D materials, which will enable a more reliable fabrication of van der Waals heterostructure-based devices and applications.

  15. Solving the Controversy on the Wetting Transparency of Graphene.

    Science.gov (United States)

    Kim, Donggyu; Pugno, Nicola M; Buehler, Markus J; Ryu, Seunghwa

    2015-10-26

    Since its discovery, the wetting transparency of graphene, the transmission of the substrate wetting property over graphene coating, has gained significant attention due to its versatility for potential applications. Yet, there have been debates on the interpretation and validity of the wetting transparency. Here, we present a theory taking two previously disregarded factors into account and elucidate the origin of the partial wetting transparency. We show that the liquid bulk modulus is crucial to accurately calculate the van der Waals interactions between the liquid and the surface, and that various wetting states on rough surfaces must be considered to understand a wide range of contact angle measurements that cannot be fitted with a theory considering the flat surface. In addition, we reveal that the wetting characteristic of the substrate almost vanishes when covered by any coating as thick as graphene double layers. Our findings reveal a more complete picture of the wetting transparency of graphene as well as other atomically thin coatings, and can be applied to study various surface engineering problems requiring wettability-tuning.

  16. Molecular dynamics simulation of square graphene-nanoflake oscillator on graphene nanoribbon.

    Science.gov (United States)

    Kang, Jeong Won; Lee, Kang Whan

    2014-12-01

    Graphene nanoflakes (GNFs) have been of interest for a building block in order to develop electromechanical devices on a nanometer scale. Here, we present the oscillation motions of a square GNF oscillator on graphene nanoribbon (GNR) in the retracting-motions by performing classical molecular dynamics simulations. The simulation results showed that the GNF oscillators can be considered as a building block for nanoelectromechanical systems such as carbon-nanotube (CNT) oscillators. The oscillation dynamics of the GNF oscillator were similar to those of the CNT oscillators. When the square GNF had an initial velocity as impulse dynamics, its oscillation motions on the GNR were achieved from its self-retracting van der Waals force. For low initial velocity, its translational motions were dominant in its motions rather than its rotational motions. The kinetic energy damping ratio rapidly decreased as initial velocity increased and the kinetic energy for the translational motion of the GNF oscillator rapidly transferred into that for its rotational motion. The oscillation frequency of the GNF oscillator was dependent on its initial velocity.

  17. Fully Transparent Quantum Dot Light-Emitting Diode with a Laminated Top Graphene Anode.

    Science.gov (United States)

    Yao, Li; Fang, Xin; Gu, Wei; Zhai, Wenhao; Wan, Yi; Xie, Xixi; Xu, Wanjin; Pi, Xiaodong; Ran, Guangzhao; Qin, Guogang

    2017-07-19

    A new method to employ graphene as top electrode was introduced, and based on that, fully transparent quantum dot light-emitting diodes (T-QLEDs) were successfully fabricated through a lamination process. We adopted the widely used wet transfer method to transfer bilayer graphene (BG) on polydimethylsiloxane/polyethylene terephthalate (PDMS/PET) substrate. The sheet resistance of graphene reduced to ∼540 Ω/□ through transferring BG for 3 times on the PDMS/PET. The T-QLED has an inverted device structure of glass/indium tin oxide (ITO)/ZnO nanoparticles/(CdSSe/ZnS quantum dots (QDs))/1,1-bis[(di-4-tolylamino)phenyl] cyclohexane (TAPC)/MoO 3 /graphene/PDMS/PET. The graphene anode on PDMS/PET substrate can be directly laminated on the MoO 3 /TAPC/(CdSSe/ZnS QDs)/ZnO nanoparticles/ITO/glass, which relied on the van der Waals interaction between the graphene/PDMS and the MoO 3 . The transmittance of the T-QLED is 79.4% at its main electroluminescence peak wavelength of 622 nm.

  18. AA stacking, tribological and electronic properties of double-layer graphene with krypton spacer.

    Science.gov (United States)

    Popov, Andrey M; Lebedeva, Irina V; Knizhnik, Andrey A; Lozovik, Yurii E; Potapkin, Boris V; Poklonski, Nikolai A; Siahlo, Andrei I; Vyrko, Sergey A

    2013-10-21

    Structural, energetic, and tribological characteristics of double-layer graphene with commensurate and incommensurate krypton spacers of nearly monolayer coverage are studied within the van der Waals-corrected density functional theory. It is shown that when the spacer is in the commensurate phase, the graphene layers have the AA stacking. For this phase, the barriers to relative in-plane translational and rotational motion and the shear mode frequency of the graphene layers are calculated. For the incommensurate phase, both of the barriers are found to be negligibly small. A considerable change of tunneling conductance between the graphene layers separated by the commensurate krypton spacer at their relative subangstrom displacement is revealed by the use of the Bardeen method. The possibility of nanoelectromechanical systems based on the studied tribological and electronic properties of the considered heterostructures is discussed.

  19. Promising applications of graphene and graphene-based nanostructures

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  20. Metal-doped graphene layers composed with boron nitride-graphene as an insulator: a nano-capacitor.

    Science.gov (United States)

    Monajjemi, Majid

    2014-11-01

    A model of a nanoscale dielectric capacitor composed of a few dopants has been investigated in this study. This capacitor includes metallic graphene layers which are separated by an insulating medium containing a few h-BN layers. It has been observed that the elements from group IIIA of the periodic table are more suitable as dopants for hetero-structures of the {metallic graphene/hBN/metallic graphene} capacitors compared to those from groups IA or IIA. In this study, we have specifically focused on the dielectric properties of different graphene/h-BN/graphene including their hetero-structure counterparts, i.e., Boron-graphene/h-BN/Boron-graphene, Al-graphene/h-BN/Al-graphene, Mg-graphene/h-BN/Mg-graphene, and Be-graphene/h-BN/Be-graphene stacks for monolayer form of dielectrics. Moreover, we studied the multi dielectric properties of different (h-BN)n/graphene hetero-structures of Boron-graphene/(h-BN)n/Boron-graphene.

  1. Two-Dimensional Graphene-Gold Interfaces Serve as Robust Templates for Dielectric Capacitors.

    Science.gov (United States)

    Teshome, Tamiru; Datta, Ayan

    2017-10-04

    The electronic structures of novel heterostructures, namely, graphene-Au van der Waals (vdW) interfaces, have been studied using density functional theory. Dispersion-corrected PBE-D2 functionals are used to describe the phonon spectrum and binding energies. Ab initio molecular dynamics simulations reveal that the vdW framework is preserved till 1200 K. Beyond T = 1200 K, a transition of the quasiplanar Au into the three-dimensional cluster-like structure is observed. A dielectric capacitor is designed by placing 1-4 hexagonal boron nitride (h-BN) monolayers between graphene and Au conductive plates. Charge separation between the Au and graphene plates is carried out under the effect of an external field normal to the graphene-h-BN-Au interface. The gravimetric capacitances are computed as C 1 = 7.6 μF/g and C 2 = 3.2 μF/g for h-BN bilayers with the Au-graphene heterostructures. The capacitive behavior shows strong deviations from the classical charging models and exemplifies the importance of quantum phenomenon at short contacts, which eventually nullifies at large interelectrode distances. The graphene-Au interface is predicted to be an exciting vdW heterostructure with a potential application as a dielectric capacitor.

  2. Nondestructive and in situ determination of graphene layers using optical fiber Fabry–Perot interference

    International Nuclear Information System (INIS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Fan, Shangchun; Gan, Xin; Lv, Ruitao

    2017-01-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry–Perot (F–P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F–P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µ m inner diameter by van der Waals interactions to construct micro F–P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F–P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F–P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials. (paper)

  3. Versterking van de loopbaanladder van leraren : wat kunnen we leren van Singapore?

    NARCIS (Netherlands)

    Elffers, L.

    2015-01-01

    In de Lerarenagenda 2013-2020 is een aantal doelstellingen geformuleerd ten aanzien van de bevordering van de loopbaan en professionele ontwikkeling van leraren. Enerzijds wordt ingezet op het stimuleren van professionalisering van leraren na hun initiële opleiding, anderzijds op het versterken van

  4. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

    Science.gov (United States)

    Shautsova, Viktoryia; Gilbertson, Adam M.; Black, Nicola C. G.; Maier, Stefan A.; Cohen, Lesley F.

    2016-07-01

    We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping.

  5. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-03-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  6. Graphene-Reinforced Aluminum Matrix Composites: A Review of Synthesis Methods and Properties

    Science.gov (United States)

    Chen, Fei; Gupta, Nikhil; Behera, Rakesh K.; Rohatgi, Pradeep K.

    2018-06-01

    Graphene-reinforced aluminum (Gr-Al) matrix nanocomposites (NCs) have attracted strong interest from both research and industry in high-performance weight-sensitive applications. Due to the vastly different bonding characteristics of the Al matrix (metallic) and graphene (in-plane covalent + inter-plane van der Waals), the graphene phase has a general tendency to agglomerate and phase separate in the metal matrix, which is detrimental for the mechanical and chemical properties of the composite. Thus, synthesis of Gr-Al NCs is extremely challenging. This review summarizes the different methods available to synthesize Gr-Al NCs and the resulting properties achieved in these NCs. Understanding the effect of processing parameters on the realized properties opens up the possibility of tailoring the synthesis methods to achieve the desired properties for a given application.

  7. Synthesis, properties and applications of 2D non-graphene materials

    International Nuclear Information System (INIS)

    Wang, Feng; Wang, Zhenxing; Wang, Qisheng; Wang, Fengmei; Yin, Lei; Xu, Kai; Huang, Yun; He, Jun

    2015-01-01

    As an emerging class of new materials, two-dimensional (2D) non-graphene materials, including layered and non-layered, and their heterostructures are currently attracting increasing interest due to their promising applications in electronics, optoelectronics and clean energy. In contrast to traditional semiconductors, such as Si, Ge and III–V group materials, 2D materials show significant merits of ultrathin thickness, very high surface-to-volume ratio, and high compatibility with flexible devices. Owing to these unique properties, while scaling down to ultrathin thickness, devices based on these materials as well as artificially synthetic heterostructures exhibit novel and surprising functions and performances. In this review, we aim to provide a summary on the state-of-the-art research activities on 2D non-graphene materials. The scope of the review will cover the preparation of layered and non-layered 2D materials, construction of 2D vertical van der Waals and lateral ultrathin heterostructures, and especially focus on the applications in electronics, optoelectronics and clean energy. Moreover, the review is concluded with some perspectives on the future developments in this field. (topical review)

  8. Tuning the Interfacial Mechanical Behaviors of Monolayer Graphene/PMMA Nanocomposites.

    Science.gov (United States)

    Wang, Guorui; Dai, Zhaohe; Liu, Luqi; Hu, Hai; Dai, Qing; Zhang, Zhong

    2016-08-31

    The van der Waals (vdW) force dominated interface between graphene and polymer matrix creates weak points in the mechanical sense. Chemical functionalization was expected to be an effective approach in transfer of the outstanding performance of graphene across multiple length scales up to the macroscopic level, due to possible improvements in the interfacial adhesion. However, published works showed the contradiction that improvements, insensitivity, or even worsening of macro-mechanical performance have all been reported in graphene-based polymer nanocomposites. Particularly central cause of such discrepancy is the variations in graphene/polymer interfacial chemistry, which is critical in nanocomposites with vast interfacial area. Herein, O3/H2O gaseous mixture was utilized to oxidize monolayer graphene sheet with controlled functionalization degrees. Hydrogen bonds (H bonds) are expected to form between oxidized graphene sheet/poly(methyl methacrylate) (PMMA) at the interface. On the basis of in situ tensile-micro Raman spectroscopy, the impacts of bonding types (vdW and H-bonds) on both key interfacial parameters (such as interfacial shear strength and critical length) and failure modes of graphene/PMMA nanocomposite were clarified for the first time at the microscopic level. Our results show that owing to improved interfacial interaction via H bonds, the interface tends to be stiffening and strengthening. Moreover, the mechanical properties of the functionalized graphene/PMMA interface will be set by the competition between the enhanced interfacial adhesion and the degraded elastic modulus of graphene, which was caused by structural defects in the graphene sheet during the functionalization process and could lead to catastrophic failure of graphene sheets in our experimental observation. Our results will be helpful to design various nanofiller-based nanocomposites with high mechanical performance.

  9. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion.

    Science.gov (United States)

    Li, Changli; Cao, Qi; Wang, Faze; Xiao, Yequan; Li, Yanbo; Delaunay, Jean-Jacques; Zhu, Hongwei

    2018-05-08

    Graphene and two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant interest due to their unique properties that cannot be obtained in their bulk counterparts. These atomically thin 2D materials have demonstrated strong light-matter interactions, tunable optical bandgap structures and unique structural and electrical properties, rendering possible the high conversion efficiency of solar energy with a minimal amount of active absorber material. The isolated 2D monolayer can be stacked into arbitrary van der Waals (vdWs) heterostructures without the need to consider lattice matching. Several combinations of 2D/3D and 2D/2D materials have been assembled to create vdWs heterojunctions for photovoltaic (PV) and photoelectrochemical (PEC) energy conversion. However, the complex, less-constrained, and more environmentally vulnerable interface in a vdWs heterojunction is different from that of a conventional, epitaxially grown heterojunction, engendering new challenges for surface and interface engineering. In this review, the physics of band alignment, the chemistry of surface modification and the behavior of photoexcited charge transfer at the interface during PV and PEC processes will be discussed. We will present a survey of the recent progress and challenges of 2D/3D and 2D/2D vdWs heterojunctions, with emphasis on their applicability to PV and PEC devices. Finally, we will discuss emerging issues yet to be explored for 2D materials to achieve high solar energy conversion efficiency and possible strategies to improve their performance.

  10. Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices

    Science.gov (United States)

    Pan, Chengbin; Miranda, Enrique; Villena, Marco A.; Xiao, Na; Jing, Xu; Xie, Xiaoming; Wu, Tianru; Hui, Fei; Shi, Yuanyuan; Lanza, Mario

    2017-06-01

    Despite the enormous interest raised by graphene and related materials, recent global concern about their real usefulness in industry has raised, as there is a preoccupying lack of 2D materials based electronic devices in the market. Moreover, analytical tools capable of describing and predicting the behavior of the devices (which are necessary before facing mass production) are very scarce. In this work we synthesize a resistive random access memory (RRAM) using graphene/hexagonal-boron-nitride/graphene (G/h-BN/G) van der Waals structures, and we develop a compact model that accurately describes its functioning. The devices were fabricated using scalable methods (i.e. CVD for material growth and shadow mask for electrode patterning), and they show reproducible resistive switching (RS). The measured characteristics during the forming, set and reset processes were fitted using the model developed. The model is based on the nonlinear Landauer approach for mesoscopic conductors, in this case atomic-sized filaments formed within the 2D materials system. Besides providing excellent overall fitting results (which have been corroborated in log-log, log-linear and linear-linear plots), the model is able to explain the dispersion of the data obtained from cycle-to-cycle in terms of the particular features of the filamentary paths, mainly their confinement potential barrier height.

  11. Mechanical and thermal stability of graphene and graphene-based materials

    Science.gov (United States)

    Galashev, A. E.; Rakhmanova, O. R.

    2014-10-01

    Graphene has rapidly become one of the most popular materials for technological applications and a test material for new condensed matter ideas. This paper reviews the mechanical properties of graphene and effects related to them that have recently been discovered experimentally or predicted theoretically or by simulation. The topics discussed are of key importance for graphene's use in integrated electronics, thermal materials, and electromechanical devices and include the following: graphene transformation into other sp^2 hybridization forms; stability to stretching and compression; ion-beam-induced structural modifications; how defects and graphene edges affect the electronic properties and thermal stability of graphene and related composites.

  12. ’n Etiek van liefde: Die etiese perspektiewe van die Heidelbergse Kategismus

    Directory of Open Access Journals (Sweden)

    Koos Vorster

    2013-06-01

    Full Text Available Hierdie artikel behandel die etiese perspektiewe van die Heidelbergse Kategismus – een van die prominente belydenisskrifte in die gereformeerde tradisie. Die etiese relevansie is ingebed in die konfessie se verklaring van die tien gebooie. Die artikel verduidelik dat die etiek van die Heidelbergse Kategismus ten diepste ’n karakteretiek is en dat dit gelowiges oproep tot ’n etiek van liefde. Hierdie liefde sluit in liefde vir die verbondsgemeenskap, die bediening van die Woord, die heiligheid van God en die waardigheid van mense, die gemeenskap van die gelowiges, gesag, die lewe, die huwelik, privaatbesit en arbeid asook waarheid en geregtigheid. As gevolg van die sinekdogeekarakter van die wet is hierdie etiek van liefde vandag baie relevant. This article deals with the ethical relevance of one of the prominent confessions in the reformed tradition, namely the Heidelberg Cathechism. The ethical relevance lies in the confession’s elucidation of the ten commandments and its application to moral conduct. The article explains that the ethics of the Heidelberg Catechism is essentially a virtue ethics calling for an ethics of love. This love should include love for the covenantal communion, ministry of the Word, the holiness of God and the dignity of people, the communion of the saints, authority, life, marriage, private property and labour, and truth and justice. Due to the synecdochical character of the ten commandments this ethics of love is highy relevant in the present times.

  13. Influence of graphene coating on the adsorption and tribology of Xe on Au(1 1 1) substrate.

    Science.gov (United States)

    Zhang, Y N; Bortolani, V; Mistura, G

    2014-11-05

    The adsorption and tribological properties of graphene have received increasing attention for the further development of graphene-based coatings in applications. In this work, we performed first principles calculations with the inclusion of the nonlocal van der Waals correction to study the effect of graphene coating on the adsorption geometries, sliding frictions and electronic properties of Xe monolayer on the Au(1 1 1) substrate. The calculated activation energies indicate that Xe becomes movable on pure Au(1 1 1) surface at a temperature of around 30 K, whereas its motion can be activated only at a high temperature of ~50 K on graphene and on graphene-coated Au(1 1 1) substrates, in good agreement with recent experimental measurements by quartz crystal microbalance technique.

  14. Tuning the Schottky contacts in the phosphorene and graphene heterostructure by applying strain.

    Science.gov (United States)

    Liu, Biao; Wu, Li-Juan; Zhao, Yu-Qing; Wang, Lin-Zhi; Caii, Meng-Qiu

    2016-07-20

    The structures and electronic properties of the phosphorene and graphene heterostructure are investigated by density functional calculations using the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. The results show that the intrinsic properties of phosphorene and graphene are preserved due to the weak van der Waals contact. But the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure can be tuned from p-type to n-type by the in-plane compressive strains from -2% to -4%. After analyzing the total band structure and density of states of P atom orbitals, we find that the Schottky barrier height (SBH) is determined by the P-pz orbitals. What is more, the variation of the work function of the phosphorene monolayer and the graphene electrode and the Fermi level shift are the nature of the transition of Schottky barrier from n-type Schottky contact to p-type Schottky contact in the phosphorene and graphene heterostructure under different in-plane strains. We speculate that these are general results of tuning of the electronic properties of the Schottky contacts in the phosphorene and graphene heterostructure by controlling the in-plane compressive strains to obtain a promising method to design and fabricate a phosphorene-graphene based field effect transistor.

  15. Duurzame inzetbaarheid van ouderen: resultaten van de eerste twee metingen van STREAM

    NARCIS (Netherlands)

    Heuvel, S. van den; Ybema, J.F; Leijten, F.; Wind, A. de

    2013-01-01

    In deze notitie richten we ons op voorspellers van duurzame inzetbaarheid, waarbij we gebruik maken van de resultaten van de eerste twee metingen van STREAM en van een interviewstudie bij deelnemers aan STREAM. Meer specifiek gaan we na hoe personen met gezondheidsproblemen toch productief kunnen

  16. Morphological and electronic properties of epitaxial graphene on SiC

    International Nuclear Information System (INIS)

    Yakimova, R.; Iakimov, T.; Yazdi, G.R.; Bouhafs, C.; Eriksson, J.; Zakharov, A.; Boosalis, A.; Schubert, M.; Darakchieva, V.

    2014-01-01

    We report on the structural and electronic properties of graphene grown on SiC by high-temperature sublimation. We have studied thickness uniformity of graphene grown on 4H–SiC (0 0 0 1), 6H–SiC (0 0 0 1), and 3C–SiC (1 1 1) substrates and investigated in detail graphene surface morphology and electronic properties. Differences in the thickness uniformity of the graphene layers on different SiC polytypes is related mainly to the minimization of the terrace surface energy during the step bunching process. It is also shown that a lower substrate surface roughness results in more uniform step bunching and consequently better quality of the grown graphene. We have compared the three SiC polytypes with a clear conclusion in favor of 3C–SiC. Localized lateral variations in the Fermi energy of graphene are mapped by scanning Kelvin probe microscopy. It is found that the overall single-layer graphene coverage depends strongly on the surface terrace width, where a more homogeneous coverage is favored by wider terraces. It is observed that the step distance is a dominating, factor in determining the unintentional doping of graphene from the SiC substrate. Microfocal spectroscopic ellipsometry mapping of the electronic properties and thickness of epitaxial graphene on 3C–SiC (1 1 1) is also reported. Growth of one monolayer graphene is demonstrated on both Si- and C-polarity of the 3C–SiC substrates and it is shown that large area homogeneous single monolayer graphene can be achieved on the Si-face substrates. Correlations between the number of graphene monolayers on one hand and the main transition associated with an exciton enhanced van Hove singularity at ∼4.5 eV and the free-charge carrier scattering time, on the other are established. It is shown that the interface structure on the Si- and C-polarity of the 3C–SiC (1 1 1) differs and has a determining role for the thickness and electronic properties homogeneity of the epitaxial graphene.

  17. FOCUS ON GRAPHENE

    International Nuclear Information System (INIS)

    Peres, N M R; Ribeiro, Ricardo M

    2009-01-01

    Graphene physics is currently one of the most active research areas in condensed matter physics. Countless theoretical and experimental studies have already been performed, targeting electronic, magnetic, thermal, optical, structural and vibrational properties. Also, studies that modify pristine graphene, aiming at finding new physics and possible new applications, have been considered. These include patterning nanoribbons and quantum dots, exposing graphene's surface to different chemical species, studying multilayer systems, and inducing strain and curvature (modifying in this way graphene's electronic properties). This focus issue includes many of the latest developments on graphene research. Focus on Graphene Contents The effect of sublattice symmetry breaking on the electronic properties of doped graphene A Qaiumzadeh and R Asgari Interfaces within graphene nanoribbons J Wurm, M Wimmer, I Adagideli, K Richter and H U Baranger Weak localization and transport gap in graphene antidot lattices J Eroms and D Weiss Electronic properties of graphene antidot lattices J A Fuerst, J G Pedersen, C Flindt, N A Mortensen, M Brandbyge, T G Pedersen and A-P Jauho Splitting of critical energies in the n=0 Landau level of graphene Ana L C Pereira Double-gated graphene-based devices S Russo, M F Craciun, M Yamamoto, S Tarucha and A F Morpurgo Pinning and switching of magnetic moments in bilayer graphene Eduardo V Castro, M P Lopez-Sancho and M A H Vozmediano Electronic transport properties of graphene nanoribbons Katsunori Wakabayashi, Yositake Takane, Masayuki Yamamoto and Manfred Sigrist Many-body effects on out-of-plane phonons in graphene J Gonzalez and E Perfetto Graphene zigzag ribbons, square lattice models and quantum spin chains Mahdi Zarea and Nancy Sandler On the universal ac optical background in graphene V P Gusynin, S G Sharapov and J P Carbotte Heat conduction in graphene: experimental study and theoretical interpretation S Ghosh, D L Nika, E P Pokatilov and A A

  18. Quantifying electronic band interactions in van der Waals materials using angle-resolved reflected-electron spectroscopy.

    Science.gov (United States)

    Jobst, Johannes; van der Torren, Alexander J H; Krasovskii, Eugene E; Balgley, Jesse; Dean, Cory R; Tromp, Rudolf M; van der Molen, Sense Jan

    2016-11-29

    High electron mobility is one of graphene's key properties, exploited for applications and fundamental research alike. Highest mobility values are found in heterostructures of graphene and hexagonal boron nitride, which consequently are widely used. However, surprisingly little is known about the interaction between the electronic states of these layered systems. Rather pragmatically, it is assumed that these do not couple significantly. Here we study the unoccupied band structure of graphite, boron nitride and their heterostructures using angle-resolved reflected-electron spectroscopy. We demonstrate that graphene and boron nitride bands do not interact over a wide energy range, despite their very similar dispersions. The method we use can be generally applied to study interactions in van der Waals systems, that is, artificial stacks of layered materials. With this we can quantitatively understand the 'chemistry of layers' by which novel materials are created via electronic coupling between the layers they are composed of.

  19. Towards inducing superconductivity into graphene

    Science.gov (United States)

    Efetov, Dmitri K.

    dependent effective Debey temperature - the so-called Bloch-Gruneisen temperature theta BG. We also probe the transport properties of the high energy sub-bands in bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates can be used to drive intercalation reactions in graphite and present an all optical study of the reaction kinetics during the creation of the graphene derived graphite intercalation compound LiC 6, and show the general applicability of the electrolyte gates to other 2-dimensional materials such as thin films of complex oxides, where we demonstrate gating dependent conductance changes in the spin-orbit Mott insulator Sr 2IrO4. Another, entirely different approach to induce superconducting correlations into graphene is by bringing it into proximity to a superconductor. Although not intrinsic to graphene, Cooper pairs can leak in from the superconductor and exist in graphene in the form of phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a new way of fabricating highly transparent graphene/superconductor junctions by vertical stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2's high upper critical field of Hc2=4T we are able to test a long proposed and yet not well understood regime, where proximity effect and quantum Hall effect coexist.

  20. van der Waals interactions mediating the cohesion of fullerenes on graphene

    Czech Academy of Sciences Publication Activity Database

    Švec, Martin; Merino, P.; Dappe, Y.J.; González, C.; Abad, E.; Jelínek, Pavel; Martín-Gago, J.A.

    2012-01-01

    Roč. 86, č. 12 (2012), "121407-1"-"121407-5" ISSN 1098-0121 R&D Projects: GA ČR GAP204/10/0952; GA AV ČR IAA100100905 Institutional research plan: CEZ:AV0Z10100521 Keywords : STM * graphene * C60 * surface diffusion * DFT * vdW Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.767, year: 2012

  1. Bepaling van de kwaliteit van reinigingsprocessen.

    NARCIS (Netherlands)

    Terpstra, P.M.J.

    1993-01-01

    Ingegaan wordt op de operationalisering van het begrip schoon voor verschillende toepassingen. Daarna worden twee recent ontwikkelde onderzoekmethoden gepresenteerd voor de meting van respectievelijk het reinigingseffect van textiel reinigen en het reinigen van harde vloeroppervlakken en enkele met

  2. Interlayer thermal conductance within a phosphorene and graphene bilayer.

    Science.gov (United States)

    Hong, Yang; Zhang, Jingchao; Zeng, Xiao Cheng

    2016-11-24

    Monolayer graphene possesses unusual thermal properties, and is often considered as a prototype system for the study of thermal physics of low-dimensional electronic/thermal materials, despite the absence of a direct bandgap. Another two-dimensional (2D) atomic layered material, phosphorene, is a natural p-type semiconductor and it has attracted growing interest in recent years. When a graphene monolayer is overlaid on phosphorene, the hybrid van der Waals (vdW) bilayer becomes a potential candidate for high-performance thermal/electronic applications, owing to the combination of the direct-bandgap properties of phosphorene with the exceptional thermal properties of graphene. In this work, the interlayer thermal conductance at the phosphorene/graphene interface is systematically investigated using classical molecular dynamics (MD) simulation. The transient pump-probe heating method is employed to compute the interfacial thermal resistance (R) of the bilayer. The predicted R value at the phosphorene/graphene interface is 8.41 × 10 -8 K m 2 W -1 at room temperature. Different external and internal conditions, i.e., temperature, contact pressure, vacancy defect, and chemical functionalization, can all effectively reduce R at the interface. Numerical results of R reduction as a function of temperature, interfacial coupling strength, defect ratio, or hydrogen coverage are reported with the most R reduction amounting to 56.5%, 70.4%, 34.8% and 84.5%, respectively.

  3. Structural and electronic transformation in low-angle twisted bilayer graphene

    Science.gov (United States)

    Gargiulo, Fernando; Yazyev, Oleg V.

    2018-01-01

    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  4. Silver nanoparticles decorated on a three-dimensional graphene scaffold for electrochemical applications

    CSIR Research Space (South Africa)

    Bello, A

    2014-01-01

    Full Text Available –87 [40] J. Lee, K. Novoselov, H. Shin, ACS Nano. 5 (2010) 608–612. [41] S.J. Chae, F. Güneş, K.K. Kim, E.S. Kim, G.H. Han, S.M. Kim, H.J. Shin, S. Yoon, J. Choi, M.H. Park, C.W. Yang, D. Pribat, Y.H. Lee, Adv. Mater. 21 (2009) 2328–2333. [42] L-R. Zhang....5 respectively. The low values could be attributed to the weak van der Waals interaction between Ag and graphene, which may change the structure of the graphene. The results here are similar to those obtained by Lee, Novoselov and Shin [40] who proposed...

  5. Verbeteren van functionele fitheid van brandweermensen

    NARCIS (Netherlands)

    van Orden, Claudia Y.D.

    Posterpresentatie over IAG4-project 'Functional Fitness Monitor', een methodiek voor het verbeteren van functionele fitheid van brandweermensen door een combinatie van meten, presenteren van feedback en coaching. Gepresenteerd op Symposium Healthy Work: Good for Business, gehouden op 29 april 2016

  6. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.

    Science.gov (United States)

    Sun, Minglei; Chou, Jyh-Pin; Yu, Jin; Tang, Wencheng

    2017-07-05

    Blue phosphorene (BlueP) is a graphene-like phosphorus nanosheet which was synthesized very recently for the first time [Nano Lett., 2016, 16, 4903-4908]. The combination of electronic properties of two different two-dimensional materials in an ultrathin van der Waals (vdW) vertical heterostructure has been proved to be an effective approach to the design of novel electronic and optoelectronic devices. Therefore, we used density functional theory to investigate the structural and electronic properties of two BlueP-based heterostructures - BlueP/graphene (BlueP/G) and BlueP/graphene-like gallium nitride (BlueP/g-GaN). Our results showed that the semiconducting nature of BlueP and the Dirac cone of G are well preserved in the BlueP/G vdW heterostructure. Moreover, by applying a perpendicular electric field, it is possible to tune the position of the Dirac cone of G with respect to the band edge of BlueP, resulting in the ability to control the Schottky barrier height. For the BlueP/g-GaN vdW heterostructure, BlueP forms an interface with g-GaN with a type-II band alignment, which is a promising feature for unipolar electronic device applications. Furthermore, we discovered that both G and g-GaN can be used as an active layer for BlueP to facilitate charge injection and enhance the device performance.

  7. Density functional theory study on the interactions of l-cysteine with graphene: adsorption stability and magnetism

    International Nuclear Information System (INIS)

    Luo, Huijuan; Li, Hejun; Fu, Qiangang; Chu, Yanhui; Cao, Xiaoyu; Sun, Can; Yuan, Xiaoyan; Liu, Lei

    2013-01-01

    Understanding the interactions between graphene and biomolecules is of fundamental relevance to the area of nanobiotechnology. Herein, we take l-cysteine as the probe biomolecule and investigate its adsorption on pristine graphene and B-, N-, Al-, Ni-, Ga-, Pd-doped graphene using density functional theory calculations. Three kinds of upright adsorption configurations, via unprotonated functional groups (–SH, –NH 2 , –COOH), are considered. The calculations reveal pristine graphene physically adsorbs l-cysteine. N-doped graphene shows physisorption towards the S-end and N-end l-cysteine, and chemisorption towards the O-end radical. Strong chemisorption, with site-specific preference, occurs on Al-, Ni-, Ga- and Pd-doped graphene, accompanied by severe structural changes. Spin polarization with an unusual mirror symmetry on Ni- and Pd-doped graphene is induced by chemisorption of unprotonated l-cysteine, except for O-end adsorption on Pd-doped graphene. The magnetization arises mainly from spin polarization of the C 2p z orbital, with a minor magnetism located on Ni or Pd. The influence of van der Waals forces is also evaluated. A thorough analysis of the adsorption stability and magnetism of these systems would be beneficial to facilitate applications in graphene-based biosensing, biomolecule immobilization, magnetic bio-separation and other fields in bionanotechnology. (paper)

  8. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Science.gov (United States)

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  9. Geometric stability, electronic structure, and intercalation mechanism of Co adatom anchors on graphene sheets

    International Nuclear Information System (INIS)

    Tang, Yanan; Chen, Weiguang; Li, Chenggang; Dai, Xianqi; Li, Wei

    2015-01-01

    We perform a systematic study of the adsorption of Co adatom on monolayer and bilayer graphene sheets, and the calculated results are compared through the van der Waals density functional (vdW-DF) and the generalized gradient approximation of Perdew, Burke and Ernzernhof (GGA + PBE) methods. For the single Co adatom, its adsorption energy at vacancy site was found to be larger than at the high-symmetry adsorption sites. For the different vdW corrections, the calculated adsorption energies of Co adatom on graphene substrates are slightly changed to some extent, but they do not affect the most preferable adsorption configurations. NEB calculations prove that the Co adatom has smaller energy barrier within pristine bilayer graphene (PBG) than that on the upper layer, indicating the high mobility of Co atom anchors at overlayer and easily aggregates. For the PBG substrate, the Co adatom intercalates into graphene sheets with a large energy barrier (9.29 eV). On the bilayer graphene with a single-vacancy (SV), the Co adatom can easily be trapped at the SV site and intercalates into graphene sheets with a much lower energy barrier (2.88 eV). These results provide valuable information on the intercalation reaction and the formation mechanism of metal impurity in graphene sheets. (paper)

  10. Modeling the physisorption of graphene on metals

    Science.gov (United States)

    Tao, Jianmin; Tang, Hong; Patra, Abhirup; Bhattarai, Puskar; Perdew, John P.

    2018-04-01

    Many processes of technological and fundamental importance occur on surfaces. Adsorption is one of these phenomena that has received the most attention. However, it presents a great challenge to conventional density functional theory. Starting with the Lifshitz-Zaremba-Kohn second-order perturbation theory, here we develop a long-range van der Waals (vdW) correction for physisorption of graphene on metals. The model importantly includes quadrupole-surface interaction and screening effects. The results show that, when the vdW correction is combined with the Perdew-Burke-Enzerhof functional, it yields adsorption energies in good agreement with the random-phase approximation, significantly improving upon other vdW methods. We also find that, compared with the leading-order interaction, the higher-order quadrupole-surface correction accounts for about 25 % of the total vdW correction, suggesting the importance of the higher-order term.

  11. Preparation of an amide group-connected graphene-polyaniline nanofiber hybrid and its application in supercapacitors.

    Science.gov (United States)

    Jianhua, Liu; Junwei, An; Yecheng, Zhou; Yuxiao, Ma; Mengliu, Li; Mei, Yu; Songmei, Li

    2012-06-27

    Polyaniline (PANI) nanofiber is grafted onto graphene to obtain a novel graphene-polyaniline (GP) hybrid. Graphene is activated using SOCl2 and reacts with PANI to form an amide group that intimately connects graphene and PANI. The existence of the amide group and its anchoring effect in the GP hybrid are confirmed and characterized by SEM, TEM, FT-IR, Raman, XPS and quantum chemistry analyses. Electrochemical tests reveal that the GP hybrid has high capacitance performances of 579.8 and 361.9 F g(-1) at current densities of 0.3 and 1 A g(-1). These values indicate superiority to materials interacted by van der Waals force. Long-term charge/discharge tests at high current densities show that the GP hybrid preserves 96% of its initial capacitance, demonstrating good electrochemical stability. The improved electrochemical performance suggests promising application of the GP hybrid in high-performance supercapacitors.

  12. Reconfigurable Diodes Based on Vertical WSe2 Transistors with van der Waals Bonded Contacts.

    Science.gov (United States)

    Avsar, Ahmet; Marinov, Kolyo; Marin, Enrique Gonzalez; Iannaccone, Giuseppe; Watanabe, Kenji; Taniguchi, Takashi; Fiori, Gianluca; Kis, Andras

    2018-05-01

    New device concepts can increase the functionality of scaled electronic devices, with reconfigurable diodes allowing the design of more compact logic gates being one of the examples. In recent years, there has been significant interest in creating reconfigurable diodes based on ultrathin transition metal dichalcogenide crystals due to their unique combination of gate-tunable charge carriers, high mobility, and sizeable band gap. Thanks to their large surface areas, these devices are constructed under planar geometry and the device characteristics are controlled by electrostatic gating through rather complex two independent local gates or ionic-liquid gating. In this work, similar reconfigurable diode action is demonstrated in a WSe 2 transistor by only utilizing van der Waals bonded graphene and Co/h-BN contacts. Toward this, first the charge injection efficiencies into WSe 2 by graphene and Co/h-BN contacts are characterized. While Co/h-BN contact results in nearly Schottky-barrier-free charge injection, graphene/WSe 2 interface has an average barrier height of ≈80 meV. By taking the advantage of the electrostatic transparency of graphene and the different work-function values of graphene and Co/h-BN, vertical devices are constructed where different gate-tunable diode actions are demonstrated. This architecture reveals the opportunities for exploring new device concepts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Graphene quantum dots

    CERN Document Server

    Güçlü, Alev Devrim; Korkusinski, Marek; Hawrylak, Pawel

    2014-01-01

    This book reflects the current status of theoretical and experimental research of graphene based nanostructures, in particular quantum dots, at a level accessible to young researchers, graduate students, experimentalists and theorists. It presents the current state of research of graphene quantum dots, a single or few monolayer thick islands of graphene. It introduces the reader to the electronic and optical properties of graphite, intercalated graphite and graphene, including Dirac fermions, Berry's phase associated with sublattices and valley degeneracy, covers single particle properties of

  14. Photosensitive graphene transistors.

    Science.gov (United States)

    Li, Jinhua; Niu, Liyong; Zheng, Zijian; Yan, Feng

    2014-08-20

    High performance photodetectors play important roles in the development of innovative technologies in many fields, including medicine, display and imaging, military, optical communication, environment monitoring, security check, scientific research and industrial processing control. Graphene, the most fascinating two-dimensional material, has demonstrated promising applications in various types of photodetectors from terahertz to ultraviolet, due to its ultrahigh carrier mobility and light absorption in broad wavelength range. Graphene field effect transistors are recognized as a type of excellent transducers for photodetection thanks to the inherent amplification function of the transistors, the feasibility of miniaturization and the unique properties of graphene. In this review, we will introduce the applications of graphene transistors as photodetectors in different wavelength ranges including terahertz, infrared, visible, and ultraviolet, focusing on the device design, physics and photosensitive performance. Since the device properties are closely related to the quality of graphene, the devices based on graphene prepared with different methods will be addressed separately with a view to demonstrating more clearly their advantages and shortcomings in practical applications. It is expected that highly sensitive photodetectors based on graphene transistors will find important applications in many emerging areas especially flexible, wearable, printable or transparent electronics and high frequency communications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Comment on "Theoretical study of the dynamics of atomic hydrogen adsorbed on graphene multilayers"

    Science.gov (United States)

    Bonfanti, Matteo; Martinazzo, Rocco

    2018-03-01

    It is shown that the theoretical prediction of a transient magnetization in bilayer and multilayer graphene (M. Moaied et al., Phys. Rev. B 91, 155419 (2015), 10.1103/PhysRevB.91.155419) relies on an incorrect physical scenario for adsorption, namely, one in which H atoms adsorb barrierless on graphitic substrates and form a random adsorption pattern of monomers. Rather, according to experimental evidence, H atom sticking is an activated process, and adsorption is under kinetic control, largely ruled by a preferential sticking mechanism that leads to stable, nonmagnetic dimers at all but the smallest coverages (Theory and experiments are reconciled by reconsidering the hydrogen atom adsorption energetics with the help of van der Waals-inclusive density functional calculations that properly account for the basis set superposition error. It is shown that today van der Waals-density functional theory predicts a shallow physisorption well that nicely agrees with available experimental data and suggests that the hydrogen atom adsorption barrier in graphene is 180 meV high, within ˜5 meV accuracy.

  16. Localized in situ polymerization on graphene surfaces for stabilized graphene dispersions.

    Science.gov (United States)

    Das, Sriya; Wajid, Ahmed S; Shelburne, John L; Liao, Yen-Chih; Green, Micah J

    2011-06-01

    We demonstrate a novel in situ polymerization technique to develop localized polymer coatings on the surface of dispersed pristine graphene sheets. Graphene sheets show great promise as strong, conductive fillers in polymer nanocomposites; however, difficulties in dispersion quality and interfacial strength between filler and matrix have been a persistent problem for graphene-based nanocomposites, particularly for pristine graphene. With this in mind, a physisorbed polymer layer is used to stabilize graphene sheets in solution. To create this protective layer, we formed an organic microenvironment around dispersed graphene sheets in surfactant solutions, and created a nylon 6, 10 or nylon 6, 6 coating via interfacial polymerization. Technique lies at the intersection of emulsion and admicellar polymerization; a similar technique was originally developed to protect luminescent properties of carbon nanotubes in solution. These coated graphene dispersions are aggregation-resistant and may be reversibly redispersed in water even after freeze-drying. The coated graphene holds promise for a number of applications, including multifunctional graphene-polymer nanocomposites. © 2011 American Chemical Society

  17. Verdeling van oxytetraxycline (afkomstig van versleping) in diervoeders

    NARCIS (Netherlands)

    Stolker, A.A.M.; Zuidema, T.; Egmond, van H.J.; Jong, de J.; Haelermans, P.J.M.; Hooglugt, J.H.

    2012-01-01

    De laatste jaren is er een toenemende aandacht voor de mogelijke bijdrage van therapeutisch gebruik van antibiotica in de dierhouderij op de ontwikkeling van antimicrobiële resistentie. Een additionele bron van blootstelling van landbouwhuisdieren aan antibiotica is versleping via diervoeders. In

  18. Controllable Schottky barrier in GaSe/graphene heterostructure: the role of interface dipole

    Science.gov (United States)

    Si, Chen; Lin, Zuzhang; Zhou, Jian; Sun, Zhimei

    2017-03-01

    The discoveries of graphene and other related two-dimensional crystals have recently led to a new technology: van der Waals (vdW) heterostructures based on these atomically thin materials. Such a paradigm has been proved promising for a wide range of applications from nanoelectronics to optoelectronics and spintronics. Here, using first-principles calculations, we investigate the electronic structure and interface characteristics of a newly synthesized GaSe/graphene (GaSe/g) vdW heterostructure. We show that the intrinsic electronic properties of GaSe and graphene are both well preserved in the heterostructure, with a Schottky barrier formed at the GaSe/g interface. More interestingly, the band alignment between graphene and GaSe can be effectively modulated by tuning the interfacial distance or applying an external electric filed. This makes the Schottky barrier height (SBH) controllable, which is highly desirable in the electronic and optoelectronic devices based on vdW heterostructures. In particular, the tunability of the interface dipole and potential step is further uncovered to be the underlying mechanism that ensures this controllable tuning of SBH.

  19. Synthesis of soluble graphite and graphene.

    Science.gov (United States)

    Kelly, K F; Billups, W E

    2013-01-15

    Because of graphene's anticipated applications in electronics and its thermal, mechanical, and optical properties, many scientists and engineers are interested in this material. Graphene is an isolated layer of the π-stacked hexagonal allotrope of carbon known as graphite. The interlayer cohesive energy of graphite, or exfoliation energy, that results from van der Waals attractions over the interlayer spacing distance of 3.34 Å (61 meV/C atom) is many times weaker than the intralayer covalent bonding. Since graphene itself does not occur naturally, scientists and engineers are still learning how to isolate and manipulate individual layers of graphene. Some researchers have relied on the physical separation of the sheets, a process that can sometimes be as simple as peeling of sheets from crystalline graphite using Scotch tape. Other researchers have taken an ensemble approach, where they exploit the chemical conversion of graphite to the individual layers. The typical intermediary state is graphite oxide, which is often produced using strong oxidants under acidic conditions. Structurally, researchers hypothesize that acidic functional groups functionalize the oxidized material at the edges and a network of epoxy groups cover the sp(2)-bonded carbon network. The exfoliated material formed under these conditions can be used to form dispersions that are usually unstable. However, more importantly, irreversible defects form in the basal plane during oxidation and remain even after reduction of graphite oxide back to graphene-like material. As part of our interest in the dissolution of carbon nanomaterials, we have explored the derivatization of graphite following the same procedures that preserve the sp(2) bonding and the associated unique physical and electronic properties in the chemical processing of single-walled carbon nanotubes. In this Account, we describe efficient routes to exfoliate graphite either into graphitic nanoparticles or into graphene without

  20. Selectie van Italiaanse werkwoordsvormen op basis van frequentieonderzoek

    NARCIS (Netherlands)

    Boer, M.G. de

    2009-01-01

    SAMENVATTING Dit artikel is een vroege recensie (mei 1972) van het LIF, de frequentielijst van IBM Italia uit 1971. De auteur concentreert zich op de verschillen met het project van Juilland, dat als uitgangspunt voor het LIF heeft gefungeerd. Op grond van de gegevens van het LIF is een basislijst

  1. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hyonkwang; Kim, Hyunkook; Hwang, Sookhyun; Jeon, Minhyon [Department of Nano Systems Engineering, Center of Nano Manufacturing, Inje University, Obang, Gimhae, Gyungnam 621-749 (Korea, Republic of); Choi, Wonbong [Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174 (United States)

    2011-01-15

    We demonstrated a counter electrode in dye-sensitized solar cells (DSSCs) using the graphene-based multi-walled carbon nanotubes (GMWNTs) structure. Graphene layers were prepared by drop casting on a SiO{sub 2}/Si substrate and multi-walled carbon nanotubes (MWNTs) were synthesized on graphene layers using iron catalyst by chemical vapor deposition. The structural properties of GMWNTs were investigated by transmission electron microscope and field-emission scanning electron microscopy. The GMWNTs sheets were lifted off from the Si substrate by buffered oxide etching and were transplanted on fluorine-doped tin oxide glass by Van der Waals force as a counter electrode. From the electrochemical impedance spectroscopy and energy conversion efficiencies, electrochemical properties of GMWNTs were comparable with those of MWNTs counter electrode. The results suggested that GMWNTs were one of the candidates for a counter electrode for dye-sensitized solar cells. (author)

  2. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  3. Graphene-based vdW heterostructure Induced High-efficiency Thermoelectric Devices

    Science.gov (United States)

    Liang, Shijun; Ang, Lay Kee

    Thermoelectric material (TE) can convert the heat into electricity to provide green energy source and its performance is characterized by a figure of merit (ZT) parameter. Traditional TE materials only give ZT equal to around 1 at room temperature. But, it is believed that materials with ZT >3 will find wide applications at this low temperature range. Prior studies have implied that the interrelation between electric conductivity and lattice thermal conductivity renders the goal of engineering ZT of bulk materials to reach ZT >3. In this work, we propose a high-efficiency van del Waals (vdW) heterostructure-based thermionic device with graphene electrodes, which is able to harvest wasted heat (around 400K) based on the newly established thermionic emission law of graphene electrodes instead of Seebeck effect, to boost the efficiency of power generation over 10% around room temperature. The efficiency can be above 20% if the Schottky barrier height and cross-plane lattice thermal conductivity of transition metal dichacogenides (TMD) materials can be fine-engineered. As a refrigerator at 260 K, the efficiency is 50% to 80% of Carnot efficiency. Finally, we identify two TMD materials as the ideal candidates of graphene/TMD/graphene devices based on the state-of-art technology.

  4. Spatial inhomogeneous barrier heights at graphene/semiconductor Schottky junctions

    Science.gov (United States)

    Tomer, Dushyant

    Graphene, a semimetal with linear energy dispersion, forms Schottky junction when interfaced with a semiconductor. This dissertation presents temperature dependent current-voltage and scanning tunneling microscopy/spectroscopy (STM/S) measurements performed on graphene Schottky junctions formed with both three and two dimensional semiconductors. To fabricate Schottky junctions, we transfer chemical vapor deposited monolayer graphene onto Si- and C-face SiC, Si, GaAs and MoS2 semiconducting substrates using polymer assisted chemical method. We observe three main type of intrinsic spatial inhomogeneities, graphene ripples, ridges and semiconductor steps in STM imaging that can exist at graphene/semiconductor junctions. Tunneling spectroscopy measurements reveal fluctuations in graphene Dirac point position, which is directly related to the Schottky barrier height. We find a direct correlation of Dirac point variation with the topographic undulations of graphene ripples at the graphene/SiC junction. However, no such correlation is established at graphene/Si and Graphene/GaAs junctions and Dirac point variations are attributed to surface states and trapped charges at the interface. In addition to graphene ripples and ridges, we also observe atomic scale moire patterns at graphene/MoS2 junction due to van der Waals interaction at the interface. Periodic topographic modulations due to moire pattern do not lead to local variation in graphene Dirac point, indicating that moire pattern does not contribute to fluctuations in electronic properties of the heterojunction. We perform temperature dependent current-voltage measurements to investigate the impact of topographic inhomogeneities on electrical properties of the Schottky junctions. We observe temperature dependence in junction parameters, such as Schottky barrier height and ideality factor, for all types of Schottky junctions in forward bias measurements. Standard thermionic emission theory which assumes a perfect

  5. ’n Oorsig van die bepaling van die vroeë bakterisidiese aktiwiteit van verskeie antituberkulosemiddels

    Directory of Open Access Journals (Sweden)

    P. R. Donald

    2003-06-01

    Full Text Available Die vroeë bakterisidiese aktiwiteit (VBA van ’n antituberkulosemiddel is die daaglikse afname van M tuberculosis in log10 kolonievormende eenhede per ml sputum, tydens die eerste twee dae van behandeling met die middel. Dit weerspieël die vermoë van ’n middel om aktief metaboliserende organismes in tuberkulose-longholtes te dood. Dit is ’n relatief goedkoop metode om in ’n klein groep pasiënte die antituberkulose-aktiwiteit van ’n middel, binne maande, in vivo te evalueer. Hierdie artikel som ons ondervinding op tydens sewe gepubliseerde VBA-studies, en die bronne van variasie in die prosedure word identifiseer. Die pasiënte in hierdie studies was gemiddeld 33 jaar oud, met ’n gemiddelde gewig van 50 kg en 55% het ekstensiewe of massiewe longaantasting gehad. Die hoogste VBA-waardes (0,50-0,66 is gevind in pasiënte wat isoniasied ontvang het, en die laagste waardes (0,05 en 0,09 respektiewelik was gevind in pasiënte wat die aminoglikosiede amikasien en paromomisien, albei in doserings van 15 mg/kg liggaamsgewig, ontvang het. Die algehele variasie in die VBA van 248 pasiënte was 0,0312, en die variasie toegeskryf aan die proses van sputumproduksie en -versameling was 0,0223. Dit blyk dat die verskillende aspekte van sputumproduksie en -versameling, betrokke by die lewering van ’n verteenwoordigende sputummonster, ’n groter bydrae maak tot variasie tydens die prosedure as die laboratoriumaspekte van die tegniek. Die keuring van pasiënte vir insluiting in VBA-studies, en hulle vermoë om saam te werk om ’n verteenwoordigende sputummonster te produseer, is van deurslaggewende belang in die suksesvolle voltooiing van VBA-studies.

  6. NMR detects molecular interactions of graphene with aromatic and aliphatic hydrocarbons in water

    Science.gov (United States)

    Bichenkova, Elena V.; Raju, Arun P. A.; Burusco, Kepa K.; Kinloch, Ian A.; Novoselov, Kostya S.; Clarke, David J.

    2018-03-01

    Polyaromatic carbon is widely held to be strongly diamagnetic and hydrophobic, with textbook van der Waals and ‘π-stacked’ binding of hydrocarbons, which disrupt their self-assembled supramolecular structures. The NMR of organic molecules sequestered by polyaromatic carbon is expected to be dominated by shielding from the orbital diamagnetism of π electrons. We report the first evidence of very different polar and magnetic behavior in water, wherein graphene remained well-dispersed after extensive dialysis and behaved as a 1H-NMR-silent ghost. Magnetic effects dominated the NMR of organic structures which interacted with graphene, with changes in spin-spin coupling, vast increase in relaxation, line broadening and decrease in NMR peak heights when bound to graphene. However, the interactions were weak, reversible and did not disrupt organic self-assemblies reliant on hydrophobic ‘π-stacking’, even when substantially sequestered on the surface of graphene by the high surface area available. Interacting assemblies of aromatic molecules retained their strongly-shielded NMR signals and remained within self-assembled structures, with slower rates of diffusion from association with graphene, but with no further shielding from graphene. Binding to graphene was selective for positively-charged organic assemblies, weaker for non-aromatic and negligible for strongly-negatively-charged molecules, presumably repelled by a negative zeta potential of graphene in water. Stronger binders, or considerable excess of weaker binders readily reversed physisorption, with no evidence of structural changes from chemisorption. The fundamental nature of these different electronic interactions between organic and polyaromatic carbon is considered with relevance to electronics, charge storage, sensor, medical, pharmaceutical and environmental research.

  7. Extrinsic morphology of graphene

    International Nuclear Information System (INIS)

    Li, Teng

    2011-01-01

    Graphene is intrinsically non-flat and corrugates randomly. Since the corrugating physics of atomically thin graphene is strongly tied to its electronics properties, randomly corrugating morphology of graphene poses a significant challenge to its application in nanoelectronic devices for which precise (digital) control is the key. Recent studies revealed that the morphology of substrate-supported graphene is regulated by the graphene–substrate interaction, thus is distinct from the random intrinsic morphology of freestanding graphene. The regulated extrinsic morphology of graphene sheds light on new pathways to fine tune the properties of graphene. To guide further research to explore these fertile opportunities, this paper reviews recent progress on modeling and experimental studies of the extrinsic morphology of graphene under a wide range of external regulation, including two-dimensional and one-dimensional substrate surface features and one-dimensional and zero-dimensional nanoscale scaffolds (e.g. nanowires and nanoparticles)

  8. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  9. Preparation of dispersible graphene through organic functionalization of graphene using a zwitterion intermediate cycloaddition approach

    NARCIS (Netherlands)

    Zhang, Xiaoyan; Browne, Wesley R.; Feringa, Ben L.

    2012-01-01

    Highly functionalized graphene were obtained through a zwitterion intermediate cycloaddition onto exfoliated graphene flakes under new reaction conditions. The functionalized graphene obtained formed stable dispersions in common solvents, including dimethylformamide (DMF), CHCl3 and water. Its

  10. Chloroplast DNA haplotype samenstelling van eikenopstanden (categorie "van bekende origine") van de Rassenlijst van Bomen; een aanvullende methode voor identificatie van autochtoniteit

    NARCIS (Netherlands)

    Buiteveld, J.; Boerwinkel, M.C.; Bovenschen, J.; Kranenborg, K.G.; Vries, de S.M.G.

    2005-01-01

    Tegenwoordig kan autochtoon materiaal op de Rassenlijst van Bomen geplaatst worden in de categorie `van bekende origine¿ en heeft daardoor een `officiële¿ status. Identificatie van autochtone opstanden blijft echter nog een lastige zaak. Momenteel worden autochtone opstanden geïdentificeerd met de

  11. Graphene on graphene antidot lattices

    DEFF Research Database (Denmark)

    Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen

    2015-01-01

    Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...

  12. Synthesis, toxicity, biocompatibility, and biomedical applications of graphene and graphene-related materials

    Directory of Open Access Journals (Sweden)

    Gurunathan S

    2016-05-01

    Full Text Available Sangiliyandi Gurunathan, Jin-Hoi Kim Stem Cell and Regenerative Biology, Konkuk University, Seoul, Republic of Korea Abstract: Graphene is a two-dimensional atomic crystal, and since its development it has been applied in many novel ways in both research and industry. Graphene possesses unique properties, and it has been used in many applications including sensors, batteries, fuel cells, supercapacitors, transistors, components of high-strength machinery, and display screens in mobile devices. In the past decade, the biomedical applications of graphene have attracted much interest. Graphene has been reported to have antibacterial, antiplatelet, and anticancer activities. Several salient features of graphene make it a potential candidate for biological and biomedical applications. The synthesis, toxicity, biocompatibility, and biomedical applications of graphene are fundamental issues that require thorough investigation in any kind of applications related to human welfare. Therefore, this review addresses the various methods available for the synthesis of graphene, with special reference to biological synthesis, and highlights the biological applications of graphene with a focus on cancer therapy, drug delivery, bio-imaging, and tissue engineering, together with a brief discussion of the challenges and future perspectives of graphene. We hope to provide a comprehensive review of the latest progress in research on graphene, from synthesis to applications. Keywords: biomedical applications, cancer therapy, drug delivery, graphene, graphene-related materials, tissue engineering, toxicity 

  13. Die invloed van grootgroeponderrig op die selfgereguleerde leer van tersiêre wiskundeleerders

    Directory of Open Access Journals (Sweden)

    Annalie

    2013-04-01

    Full Text Available elfregulering is belangrik in die ontwikkeling van lewenslange leerders, veral by voordiensonderwysers wat op hul beurt modelleerders van selfregulering in hul eie klaskamers gaan wees. Onderrig op tersiêre vlak word grootliks gekenmerk deur tradisionele onderrigmetodes vanweë die groot groepe leerders betrokke. In hierdie studie is vasgestel of ’n bepaalde grootgroeponderrigstrategie ’n invloed het op lede van groot klasgroepe se selfregulering, al dan nie. ’n Kwantitatiewe voortoets-natoets-ontwerp is gebruik waarin die studiegewoontesveld van die Studie-Oriëntasievraelys in Wiskunde aan die begin en einde van die semester ingesluit is. In ’n tweede vraelys het leerders hul belewenis van die grootgroeponderrigstrategie volgens ’n vyfpunt-Likertskaal beoordeel en ’n oopeindevraag voltooi wat ingesluit is om moontlike addisionele verklarings te bied vir die resultate wat verkry is uit die geslote vrae van die vraelys oor grootgroeponderrig. Beskrywende statistiek is gebruik om die data te interpreteer. Uit die resultate blyk dit dat daar nie ’n verbetering in leerders se selfregulering was nie. By ontleding van die oopeindevraag het dit aan die lig gekom dat verskeie aspekte van selfregulering by leerders ontbreek, soos tydsbestuur en goeie studiegewoontes, asook die bereidwilligheid om meer as net die voorgeskrewe probleme te doen.The influence of a large group teaching strategy on the self-regulated learning of tertiary mathematics learners. Self-regulation is important in developing lifelong learners, especially in the case of pre-service teachers who will soon be models of self-regulation in their own classrooms. In many instances, teaching at tertiary level is characterised by traditional teaching methods in large classes. In this study a particular large group instructional strategy was examined to determine whether it had an influence on learners’ self-regulation. A quantitative pre-test post-test design was used which

  14. Biologische effectiviteit van bespuitingen: effecten van druppelgrootte en waterkwaliteit

    NARCIS (Netherlands)

    Zande, van de J.C.; Schans, van der D.A.; Koster, A.T.J.

    2004-01-01

    Deze rapportage beschrijft de invloed van watervolume, druppelgrootte en kwaliteit van het tankmengsel op de biologische effectiviteit van bespuitingen. Onder kwaliteit van het tankmengsel wordt in dit verband verstaan: temperatuur, hardheid, pH en zoutgehalte (chloor en ijzerzouten) van de

  15. EDITORIAL: Epitaxial graphene Epitaxial graphene

    Science.gov (United States)

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  16. Magnetotransport in heterostructures of transition metal dichalcogenides and graphene

    Science.gov (United States)

    Völkl, Tobias; Rockinger, Tobias; Drienovsky, Martin; Watanabe, Kenji; Taniguchi, Takashi; Weiss, Dieter; Eroms, Jonathan

    2017-09-01

    We use a van der Waals pickup technique to fabricate different heterostructures containing WSe2(WS2) and graphene. The heterostructures were structured by plasma etching, contacted by one-dimensional edge contacts, and a top gate was deposited. For graphene /WSe2/SiO2 samples we observe mobilities of ˜12 000 cm2V-1s-1 . Magnetic-field-dependent resistance measurements on these samples show a peak in the conductivity at low magnetic fields. This dip is attributed to the weak antilocalization (WAL) effect, stemming from spin-orbit coupling. Samples where graphene is encapsulated between WSe2(WS2) and hexagonal boron nitride show a much higher mobility of up to ˜120 000 cm2V-1s-1 . However, in these samples no WAL peak can be observed. We attribute this to a transition from the diffusive to the quasiballistic regime. At low magnetic fields a resistance peak appears, which we ascribe to a size effect due to boundary scattering. Shubnikov-de Haas oscillations in fully encapsulated samples show all integer filling factors due to complete lifting of the spin and valley degeneracies.

  17. Verslag van de voorstudie: Paddenstoelen bedrijf van de toekomst

    NARCIS (Netherlands)

    Tuijl, van B.A.J.; Bos, A.P.; Sonnenberg, A.S.M.

    2013-01-01

    Het rapport ‘Paddenstoelenbedrijf van de toekomst’ is het resultaat van een uitgebreid vooronderzoek en geeft de eerste aanzet tot het creëren van gemeenschappelijke visie van de sector op een betere toekomst voor paddenstoelenkwekerijen. Het rapport doet verslag van een reeks interviews en een

  18. Samenstelling van de vluchtige olie van Origanum vulgare L. ssp. vulgare gedurende de ontwikkeling van de plant

    NARCIS (Netherlands)

    Maarse, Henk

    1971-01-01

    INLEIDING EN DOEL VAN HET ONDERZOEK Vele onderzoekers hebben de laatste jaren de vorming van de verbindingen in vluchtige olien van planten bestudeerd door het bepalen van de verandering in de samenstelling van de vluchtige olie tijdens de groei van de plant. Lemli (68) wees als eerste op de

  19. Onderzoek naar vermindering van de bijvangst van een boomkortuig

    NARCIS (Netherlands)

    Marlen, van B.; Ybema, M.S.; Duijn, van J.B.

    2005-01-01

    In het kader van EU-project RECOVERY werden vergelijkende visserij- en selectiviteitsproeven uitgevoerd in 2002 en 2003 aan boord van MS “Tridens” aan 12 m boomkortuigen. De resultaten van een negental vistuigproeven zijn hier gegeven, gericht op het bepalen van het effect van een grote mazen kap

  20. Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.

    Science.gov (United States)

    Liu, Donghua; Chen, Xiaosong; Hu, Yibin; Sun, Tai; Song, Zhibo; Zheng, Yujie; Cao, Yongbin; Cai, Zhi; Cao, Min; Peng, Lan; Huang, Yuli; Du, Lei; Yang, Wuli; Chen, Gang; Wei, Dapeng; Wee, Andrew Thye Shen; Wei, Dacheng

    2018-01-15

    Graphene is regarded as a potential surface-enhanced Raman spectroscopy (SERS) substrate. However, the application of graphene quantum dots (GQDs) has had limited success due to material quality. Here, we develop a quasi-equilibrium plasma-enhanced chemical vapor deposition method to produce high-quality ultra-clean GQDs with sizes down to 2 nm directly on SiO 2 /Si, which are used as SERS substrates. The enhancement factor, which depends on the GQD size, is higher than conventional graphene sheets with sensitivity down to 1 × 10 -9  mol L -1 rhodamine. This is attributed to the high-quality GQDs with atomically clean surfaces and large number of edges, as well as the enhanced charge transfer between molecules and GQDs with appropriate diameters due to the existence of Van Hove singularities in the electronic density of states. This work demonstrates a sensitive SERS substrate, and is valuable for applications of GQDs in graphene-based photonics and optoelectronics.

  1. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Science.gov (United States)

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  2. Die Romeinse nastrewing van onsterflikheid deur middel van memoria

    Directory of Open Access Journals (Sweden)

    D. R. Fouché

    1985-05-01

    Full Text Available Benewens die omvangryke en nasionale manifestasies van die oorspronklike onsterflikheidsgedagte in die Romeinse gemeenskap, vind ons by die Romein op kleiner skaal in groepe of indiwidueel ’n strewe na onsterflikheid langs die weg van memoria. Soos aangetoon sal word, verskil die pogings van die verskillende groepe radikaal van mekaar, hoewel die strewe en einddoel dieselfde bly, naamlik om deur die daarstelling van memoria op die gebied van woord of daad onsterflikheid te bekom.

  3. Het planetarium van Hartog van Laun

    Directory of Open Access Journals (Sweden)

    Hans Hooijmaaijers

    2009-12-01

    Full Text Available The instrument maker Hartog van Laun devised a special table for an orrery, a lunarium and a tellurium. Van Laun made these instruments for educational purposes, but what makes his planetariums so interesting is the great variety and accuracy of demonstrations one can perform with them. In this paper I will deal with Van Laun and his instrument makers business. I will outline the design of the planetarium and some of the firm’s other instruments. Furthermore I will demonstrate that the detailed description of the planetarium made by Professor Jan Hendrik van Swinden boosted the spread of the instrument.

  4. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Graphene antidot lattice waveguides

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels

    2012-01-01

    We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...

  6. ‘n Kritiese bespreking van roskam se seining van apartheid as grondslag van die Suid-afrikaanse samelewing

    Directory of Open Access Journals (Sweden)

    N. van Loggerenberg

    1963-03-01

    Full Text Available Segregasie is al deur vele ondersoekers histories tot ’n tradisie uit die stigtingsjaar 1652 met die aankoms van Jan van Riebeeck herlei. Roskam sion dit egter as 'n beleid wat veel later aanvaar is. Hy sien dit as beleid wat bepaalde groepe van die bevolking as 'n politieke eenheid, kragtens ’n sosiale hiërargie, van mekaar wil afskei, isoleer. Dit is vir  hom duidelik dat die politieke eenheid van Ordinansie 50 van 1828 nooit werklikheid geword het nie, en die tradisie van blanke heerskappy pas vir liom as heleid beter in die huidige situasic as segregasie. Roskam is dan van oordeel dat ..white supremacy” daarom die juiste en omskrywende betekenis van segregasie is.

  7. Detectie van ziektesymptomen met behulp van fluorescentiebeelden

    NARCIS (Netherlands)

    Loon, van P.C.C.

    2004-01-01

    Rapport over de positie van de biologische paddestoelenteelt op intersectoraal en (inter)-regionaal niveau. Het overzicht in tabel- en schemavorm van de stromen grondstoffen en producten verduidelijkt de intersectorale positie van de champignonteelt. Dit kan een aanzet zijn bij het signaleren en

  8. Een revisie van de taxonomie van gifkikkers

    NARCIS (Netherlands)

    Poelman, E.H.

    2007-01-01

    Recent kwam het lang verwachte ruim tweehonderdvijftig pagina`s tellende manuscript uit met daarin een revisie van de taxonomie van gifkikkers. De auteurs onder leiding van Taran Grant stellen een nieuwe taxonomie voor, die de familie Dendrobatidae met haar tien algemener geaccepteerde genera

  9. De toekomst van flex : een onderzoek van tno naar flexstrategieën van Nederlandse bedrijven

    NARCIS (Netherlands)

    Verbiest, S.E.; Goudswaard, A.; Wijk, E.B. van

    2014-01-01

    In 2020 zal het personeelsbestand van organisaties voor 30% uit flexkrachten bestaan. Op dit moment is dat 25%. Dit blijkt uit een onderzoek van TNO onder 900 ondernemingen in opdracht van de ABU (Algemene Bond Uitzendondernemingen). Het blijkt dat met name organisaties die al gebruikmaken van

  10. De trek van kruiden van volgroeid wortelmateriaal : handleiding van A tot Z in beknopte vorm

    NARCIS (Netherlands)

    Wijk, van C.A.P.

    2005-01-01

    Deze teelthandleiding richt zich op de trek van vooral dragon, krulpeterselie, rucola en munt, uitgaande van wortelmateriaal dat in de vollegrond wordt geteeld. Deze forcering richt zich zowel op aanbod van kruiden in potjes als de meermalige oogst van het gesneden product in een kas of een

  11. Numerieke simulatie van de blastbelasting op vlucht MH17 van Malaysia Airlines als gevolg van de detonatie van een gevechtslading (U)

    NARCIS (Netherlands)

    2015-01-01

    De Onderzoeksraad voor Veiligheid (OVV) onderzoekt de crash van vlucht MH17 van Malaysia Airlines die plaatsvond op donderdag 17 juli 2014 in de regio Donetsk (Oekraïne). De OVV wil een duidelijk beeld geven van de oorzaak van de crash. Een mogelijke oorzaak is fatale schade aan het vliegtuig als

  12. Graphene-based energy devices

    CERN Document Server

    Yusoff, A Rashid bin Mohd

    2015-01-01

    This first book dedicated to the topic provides an up-to-date account of the many opportunities graphene offers for robust, workable energy generation and storage devices. Following a brief overview of the fundamentals of graphene, including the main synthesis techniques, characterization methods and properties, the first part goes on to deal with graphene for energy storage applications, such as lithium-ion batteries, supercapacitors and hydrogen storage. The second part is concerned with graphene-based energy-generation devices, in particular conventional as well as microbial and enzymatic f

  13. Filosofiese tendense in die wordinggeskiedenis van ons verstaan van die fisiese natuur

    Directory of Open Access Journals (Sweden)

    D. F. M. Strauss

    2006-09-01

    Full Text Available Die ontstaan van ’n lang tradisie van natuurwetenskaplike denke is in antieke Griekeland te vind – die bakermat van die Westerse beskawing en die bron van geartikuleerde rasionele besinning. Die vroegste fases van die Griekse kultuur het reeds geboorte geskenk aan ’n teoretiese nadenke oor die heelal. Die Pythagoreërs is veral bekend vir hul klem op die verklaringskrag van getalsverhoudinge. In hul tese dat “alles getal is” het hulle egter slegs rasionale getalle (breuke erken en gevolglik uiteindelik vasgeloop in die ontdekking van irrasionale getalle wat tot die geometrisering van die Griekse wiskunde gelei het en tegelyk die bedding gevorm het van waaruit ’n magtige tradisie van ruimte-metafisika gegroei het wat die hele middeleeuse tydperk omspan het. Die vermeende statiese syn is in die mees ekstreme geval – die skool van Parmenides en die argumente van Zeno teen veelheid en beweging – tot in die uiteindelike antinomiese konsekwensies daarvan deurdink. Dit was egter eers die vroeg-moderne tyd – die voorgangers en nakomelinge van Galilei – wat naas getal en ruimte ’n waardering ontwikkel het vir die verklaringskrag van beweging (vergelyk die klassieke meganistiese wêreldbeeld van die heelal as ’n meganisme van stofdeeltjies in beweging. Maar ook hierdie meganistiese reduksie (waardeur alle fisiese verskynsels herlei is tot die beweging van al of niegelade massapunte sou uiteindelik misluk omdat dit nie van die onomkeerbaarheid van fisiese prosesse rekenskap kon gee nie. Gevolglik beliggaam eers die fisika van die 20ste eeu ’n erkenning van die deurslaggewend-stempelende rol van energie-werking (dus van die fisiese aspek in die aard van stoflike dinge en prosesse. Die artikel word afgesluit met ’n vlugtige verduideliking van die implikasies van die voorafgaande argumentasie vir ’n benadering van die misterie van die bestaan van materie.

  14. Beoordeling van het gedrag van bestrijdingsmiddelen in de verzadigde zone van de bodem

    NARCIS (Netherlands)

    Linden AMA van der; Beek CGEM van; Boesten JJTI; Leistra M; Meinardi CR; Puijker LM; LBG

    1994-01-01

    In het MeerJarenPlan-Gewasbescherming van 1991 is de mogelijkheid gegeven om door middel van onderzoek in de verzadigde fase van de bodem aan te tonen dat bestrijdingsmiddelen, die kunnen uitspoelen naar de verzadigde zone, alsnog voor toelating in aanmerking kunnen komen als de

  15. Onderzoek naar de effecten van snoezelen op het gedrag van demente verpleeghuisbewoners en de werkbeleving van verzorgenden.

    NARCIS (Netherlands)

    Weert, J. van; Peter, J.; Dulmen, S. van; Ribbe, M.; Bensing, J.

    2004-01-01

    Het effect van snoezelen in de 24-uurszorg op de stemming en het gedrag van demente ouderen is nooit eerder onderzocht. Ook is in geen van de eerdere studies het effect onderzocht van snoezelen op de werkbeleving van verzorgenden. Uit onderzoek is bekend dat in verpleeghuizen waar geen

  16. Space Van system update

    Science.gov (United States)

    Cormier, Len

    1992-07-01

    The Space Van is a proposed commercial launch vehicle that is designed to carry 1150 kg to a space-station orbit for a price of $1,900,000 per flight in 1992 dollars. This price includes return on preoperational investment. Recurring costs are expected to be about $840,000 per flight. The Space Van is a fully reusable, assisted-single-stage-to orbit system. The most innovative new feature of the Space Van system is the assist-stage concept. The assist stage uses only airbreathing engines for vertical takeoff and vertical landing in the horizontal attitude and for launching the rocket-powered orbiter stage at mach 0.8 and an altitude of about 12 km. The primary version of the orbiter is designed for cargo-only without a crew. However, a passenger version of the Space Van should be able to carry a crew of two plus six passengers to a space-station orbit. Since the Space Van is nearly single-stage, performance to polar orbit drops off significantly. The cargo version should be capable of carrying 350 kg to a 400-km polar orbit. In the passenger version, the Space Van should be able to carry two crew members - or one crew member plus a passenger.

  17. Beoordeling van het gedrag van bestrijdingsmiddelen in de verzadigde zone van de bodem

    NARCIS (Netherlands)

    Linden, van der A.M.A.; Beek, van C.G.E.M.; Boesten, J.J.T.I.; Leistra, M.; Meinardi, C.R.; Puijker, L.M.

    1999-01-01

    In het MeerJarenPlan-Gewasbescherming van 1991 is de mogelijkheid gegeven om door middel van onderzoek in de verzadigde fase van de bodem aan te tonen dat bestrijdingsmiddelen, die kunnen uitspoelen naar de verzadigde zone, alsnog voor toelating in aanmerking kunnen komen als de omzettingssnelheid

  18. Graphene Synthesis & Graphene/Polymer Nanocomposites

    Science.gov (United States)

    Liao, Ken-Hsuan

    We successfully developed a novel, fast, hydrazine-free, high-yield method for producing single-layered graphene. Graphene sheets were formed from graphite oxide by reduction with de-ionized water at 130 ºC. Over 65% of the sheets are single graphene layers. A dehydration reaction of exfoliated graphene oxide was utilized to reduce oxygen and transform C-C bonds from sp3 to sp2. The reduction appears to occur in large uniform interconnected oxygen-free patches so that despite the presence of residual oxygen the sp2 carbon bonds formed on the sheets are sufficient to provide electronic properties comparable to reduced graphene sheets obtained using other methods. Cytotoxicity of aqueous graphene was investigated with Dr. Yu-Shen Lin by measuring mitochondrial activity in adherent human skin fibroblasts using two assays. The methyl-thiazolyl-diphenyl-tetrazolium bromide (MTT) assay, a typical nanotoxicity assay, fails to predict the toxicity of graphene oxide and graphene toxicity because of the spontaneous reduction of MTT by graphene and graphene oxide, resulting in a false positive signal. An appropriate alternate assessment, using the water soluble tetrazolium salt (WST-8) assay, reveals that the compacted graphene sheets are more damaging to mammalian fibroblasts than the less densely packed graphene oxide. Clearly, the toxicity of graphene and graphene oxide depends on the exposure environment (i.e. whether or not aggregation occurs) and mode of interaction with cells (i.e. suspension versus adherent cell types). Ultralow percolation concentration of 0.15 wt% graphene, as determined by surface resistance and modulus, was observed from in situ polymerized thermally reduced graphene (TRG)/ poly-urethane-acrylate (PUA) nanocomposite. A homogeneous dispersion of TRG in PUA was revealed by TEM images. The aspect ratio of dispersed TRG, calculated from percolation concentration and modulus, was found to be equivalent to the reported aspect ratio of single

  19. Rectification at Graphene-Semiconductor Interfaces: Zero-Gap Semiconductor-Based Diodes

    Directory of Open Access Journals (Sweden)

    S. Tongay

    2012-01-01

    Full Text Available Using current-voltage (I-V, capacitance-voltage (C-V, and electric-field-modulated Raman measurements, we report on the unique physics and promising technical applications associated with the formation of Schottky barriers at the interface of a one-atom-thick zero-gap semiconductor (graphene and conventional semiconductors. When chemical-vapor-deposited graphene is transferred onto n-type Si, GaAs, 4H-SiC, and GaN semiconductor substrates, there is a strong van-der-Waals attraction that is accompanied by charge transfer across the interface and the formation of a rectifying (Schottky barrier. Thermionic-emission theory in conjunction with the Schottky-Mott model within the context of bond-polarization theory provides a surprisingly good description of the electrical properties. Applications can be made to sensors, where in forward bias there is exponential sensitivity to changes in the Schottky-barrier height due to the presence of absorbates on the graphene, and to analog devices, for which Schottky barriers are integral components. Such applications are promising because of graphene’s mechanical stability, its resistance to diffusion, its robustness at high temperatures, and its demonstrated capability to embrace multiple functionalities.

  20. Aqueous Exfoliation of Graphite into Graphene Assisted by Sulfonyl Graphene Quantum Dots for Photonic Crystal Applications.

    Science.gov (United States)

    Zeng, Minxiang; Shah, Smit A; Huang, Dali; Parviz, Dorsa; Yu, Yi-Hsien; Wang, Xuezhen; Green, Micah J; Cheng, Zhengdong

    2017-09-13

    We investigate the π-π stacking of polyaromatic hydrocarbons (PAHs) with graphene surfaces, showing that such interactions are general across a wide range of PAH sizes and species, including graphene quantum dots. We synthesized a series of graphene quantum dots with sulfonyl, amino, and carboxylic functional groups and employed them to exfoliate and disperse pristine graphene in water. We observed that sulfonyl-functionalized graphene quantum dots were able to stabilize the highest concentration of graphene in comparison to other functional groups; this is consistent with prior findings by pyrene. The graphene nanosheets prepared showed excellent colloidal stability, indicating great potential for applications in electronics, solar cells, and photonic displays which was demonstrated in this work.

  1. Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high- ZT Thermoelectric devices

    KAUST Repository

    Juang, Zhen-Yu; Tseng, Chien-Chih; Shi, Yumeng; Hsieh, Wen-Pin; Ryuzaki, Sou; Saito, Noboru; Hsiung, Chia-En; Chang, Wen-Hao; Hernandez, Yenny; Han, Yu; Tamada, Kaoru; Li, Lain-Jong

    2017-01-01

    Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.

  2. Graphene-Au nanoparticle based vertical heterostructures: a novel route towards high- ZT Thermoelectric devices

    KAUST Repository

    Juang, Zhen-Yu

    2017-06-03

    Monolayer graphene exhibits impressive in-plane thermal conductivity (>1000Wm–1 K–1). However, the out-of-plane thermal transport is limited due to the weak van der Waals interaction, indicating the possibility of constructing a vertical thermoelectric (TE) device. Here, we propose a cross-plane TE device based on the vertical heterostructures of few-layer graphene and gold nanoparticles (AuNPs) on Si substrates, where the incorporation of AuNPs further inhibits the phonon transport and enhances the electrical conductivity along vertical direction. A measurable Seebeck voltage is produced vertically between top graphene and bottom Si when the device is put on a hot surface and the figure of merit ZT is estimated as 1 at room temperature from the transient Harman method. The polarity of the output voltage is determined by the carrier polarity of the substrate. The device concept is also applicable to a flexible and transparent substrate as demonstrated.

  3. Bepaling van de optredende temperaturen bij tunnelcompostering van geitenmest

    NARCIS (Netherlands)

    Melse, R.W.; Sauvage, de G.J.; Roest, H.I.J.

    2010-01-01

    Het doel van het project is om inzicht te krijgen in de composteerbaarheid van geitenmest en het hiermee samenhangende temperatuursverloop . Bepaald dient te worden welke temperaturen tijdens het composteren van geitenmest worden bereikt om op basis daarvan een inschatting te kunnen maken van de

  4. Kleinschalige raffinage van bietenblad : eerste verkenning van de moglijkheden

    NARCIS (Netherlands)

    Wolf, de P.L.; Visser, de C.L.M.; Keijsers, E.R.P.; Meesters, K.P.H.; Heesakkers, J.W.M.; Aerts, M.

    2013-01-01

    Doelstelling van de eerste fase van het onderzoek was ‘het verkennen van kleinschalige keten(s) voor de raffinage van bietenblad’, met aandacht voor de technologische en economische haalbaarheid. Deze verkenning vormt de basis voor de volgende fase, waarin kansrijke opties verder worden uitgewerkt

  5. A Study of Vertical Transport through Graphene toward Control of Quantum Tunneling.

    Science.gov (United States)

    Zhu, Xiaodan; Lei, Sidong; Tsai, Shin-Hung; Zhang, Xiang; Liu, Jun; Yin, Gen; Tang, Min; Torres, Carlos M; Navabi, Aryan; Jin, Zehua; Tsai, Shiao-Po; Qasem, Hussam; Wang, Yong; Vajtai, Robert; Lake, Roger K; Ajayan, Pulickel M; Wang, Kang L

    2018-02-14

    Vertical integration of van der Waals (vdW) materials with atomic precision is an intriguing possibility brought forward by these two-dimensional (2D) materials. Essential to the design and analysis of these structures is a fundamental understanding of the vertical transport of charge carriers into and across vdW materials, yet little has been done in this area. In this report, we explore the important roles of single layer graphene in the vertical tunneling process as a tunneling barrier. Although a semimetal in the lateral lattice plane, graphene together with the vdW gap act as a tunneling barrier that is nearly transparent to the vertically tunneling electrons due to its atomic thickness and the transverse momenta mismatch between the injected electrons and the graphene band structure. This is accentuated using electron tunneling spectroscopy (ETS) showing a lack of features corresponding to the Dirac cone band structure. Meanwhile, the graphene acts as a lateral conductor through which the potential and charge distribution across the tunneling barrier can be tuned. These unique properties make graphene an excellent 2D atomic grid, transparent to charge carriers, and yet can control the carrier flux via the electrical potential. A new model on the quantum capacitance's effect on vertical tunneling is developed to further elucidate the role of graphene in modulating the tunneling process. This work may serve as a general guideline for the design and analysis of vdW vertical tunneling devices and heterostructures, as well as the study of electron/spin injection through and into vdW materials.

  6. EDITORIAL: Special issue on Graphene Special issue on Graphene

    Science.gov (United States)

    Morpurgo, Alberto F.; Trauzettel, Björn

    2010-03-01

    Since the revolutionary experimental discovery of graphene in the year 2004, research on this new two-dimensional carbon allotrope has progressed at a spectacular pace. The impact of graphene on different areas of research— including physics, chemistry, and applied sciences— is only now starting to be fully appreciated. There are different factors that make graphene a truly impressive system. Regarding nano-electronics and related fields, for instance, it is the exceptional electronic and mechanical properties that yield very high room-temperature mobility values, due to the particular band structure, the material `cleanliness' (very low-concentration of impurities), as well as its stiffness. Also interesting is the possibility to have a high electrical conductivity and optical transparency, a combination which cannot be easily found in other material systems. For other fields, other properties could be mentioned, many of which are currently being explored. In the first years following this discovery, research on graphene has mainly focused on the fundamental physics aspects, triggered by the fact that electrons in graphene behave as Dirac fermions due to their interaction with the ions of the honeycomb lattice. This direction has led to the discovery of new phenomena such as Klein tunneling in a solid state system and the so-called half-integer quantum Hall effect due to a special type of Berry phase that appears in graphene. It has also led to the appreciation of thicker layers of graphene, which also have outstanding new properties of great interest in their own right (e.g., bilayer graphene, which supports chiral quasiparticles that, contrary to Dirac electrons, are not massless). Now the time is coming to deepen our knowledge and improve our control of the material properties, which is a key aspect to take one step further towards applications. The articles in the Semiconductor Science and Technology Graphene special issue deal with a diversity of topics

  7. Presence of the vancomycin resistance gene cluster vanC1, vanXYc, and vanT in Enterococcus casseliflavus.

    Science.gov (United States)

    Hölzel, Christina; Bauer, Johann; Stegherr, Eva-Maria; Schwaiger, Karin

    2014-04-01

    The three chromosomally located clustered genes vanC1, vanXYc, and vanT confer intrinsic resistance to vancomycin and are used for species identification of Enterococcus gallinarum. In this study, 28 strains belonging to the E. gallinarum/casseliflavus group isolated from cloacal swabs from laying hens were screened for the presence of vanC1. As confirmed by species-specific multiplex PCR, 11 vanC1-positive strains were identified as E. gallinarum. Surprisingly, one yellow pigmented strain, verified as E. casseliflavus by species-specific multiplex PCR, was also vanC1 positive; vanXYc and vanT were additionally detectable in this strain. To our knowledge, this is the first report of vanC1, vanXYc, and vanT in E. casseliflavus. The minimum inhibitory concentration of vancomycin was 4 mg/L. Real-time reverse transcription-PCR revealed that none of the clustered genes was expressed in this strain. Even if the genes seem not to be active, there is a certain risk that they will be transferred to other bacteria where they might be functionally expressed. Therefore, it may be advisable to expand the search for vanC1, vanXYc, and vanT from E. gallinarum to other (enterococcal) species. This study confirms that enterococci live up to their name as being reservoir bacteria and should therefore always be closely monitored.

  8. Die gebruik van parallelplaatreologie vir die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat

    Directory of Open Access Journals (Sweden)

    O. C. Vorster

    2005-09-01

    Full Text Available Die bepaling van die intrinsieke viskositeit van poli-etileentereftalaat word bemoeilik deur die feit dat daar tans slegs twee metodes in gebruik is. In die eerste metode word die bepaling deur middel van oplossingsviskometrie gedoen, maar die toksisiteit van die oplosmiddel, asook die tydperk wat dit neem om die bepaling te doen, is ’n probleem. Die tweede metode word beperk deur die kompleksiteit en beskikbaarheid van die apparatuur in Suid-Afrika. In hierdie studie word ’n alternatiewe metode, gebaseer op parallelplaatreologie, voorgestel wat albei hierdie probleme oorkom en die resultate sodoende verkry, word vergelyk met dié wat met bestaande metodes verkry is.

  9. Unraveling the interlayer-related phonon self-energy renormalization in bilayer graphene.

    Science.gov (United States)

    Araujo, Paulo T; Mafra, Daniela L; Sato, Kentaro; Saito, Riichiro; Kong, Jing; Dresselhaus, Mildred S

    2012-01-01

    In this letter, we present a step towards understanding the bilayer graphene (2LG) interlayer (IL)-related phonon combination modes and overtones as well as their phonon self-energy renormalizations by using both gate-modulated and laser-energy dependent inelastic scattering spectroscopy. We show that although the IL interactions are weak, their respective phonon renormalization response is significant. Particularly special, the IL interactions are mediated by Van der Waals forces and are fundamental for understanding low-energy phenomena such as transport and infrared optics. Our approach opens up a new route to understanding fundamental properties of IL interactions which can be extended to any graphene-like material, such as MoS₂, WSe₂, oxides and hydroxides. Furthermore, we report a previously elusive crossing between IL-related phonon combination modes in 2LG, which might have important technological applications.

  10. An investigation into graphene exfoliation and potential graphene application in MEMS devices

    Science.gov (United States)

    Fercana, George; Kletetschka, Gunther; Mikula, Vilem; Li, Mary

    2011-02-01

    The design of microelectromecanical systems (MEMS) and micro-opto-electromechanical systems (MOEMS) are often materials-limited with respect to the efficiency and capability of the material. Graphene, a one atom thick honeycomb lattice of carbon, is a highly desired material for MEMS applications. Relevant properties of graphene include the material's optical transparency, mechanical strength, energy efficiency, and electrical and thermal conductivity due to its electron mobility. Aforementioned properties make graphene a strong candidate to supplant existing transparent electrode technology and replace the conventionally used material, indium-tin oxide. In this paper we present preliminary results on work toward integration of graphene with MEMS structures. We are studying mechanical exfoliation of highly ordered pyrolytic graphite (HOPG) crystals by repeatedly applying and separating adhesive materials from the HOPG surface. The resulting graphene sheets are then transferred to silicon oxide substrate using the previously applied adhesive material. We explored different adhesive options, particularly the use of Kapton tape, to improve the yield of graphene isolation along with chemical cross-linking agents which operate on a mechanism of photoinsertion of disassociated nitrene groups. These perfluorophenyl nitrenes participate in C=C addition reactions with graphene monolayers creating a covalent binding between the substrate and graphene. We are focusing on maximizing the size of isolated graphene sheets and comparing to conventional exfoliation. Preliminary results allow isolation of few layer graphene (FLG) sheets (ntechnology to be used in future deep space telescopes.

  11. Synthesis and Application of Graphene Based Nanomaterials

    Science.gov (United States)

    Peng, Zhiwei

    Graphene, a two-dimensional sp2-bonded carbon material, has recently attracted major attention due to its excellent electrical, optical and mechanical properties. Depending on different applications, graphene and its derived hybrid nanomaterials can be synthesized by either bottom-up chemical vapor deposition (CVD) methods for electronics, or various top-down chemical reaction methods for energy generation and storage devices. My thesis begins with the investigation of CVD synthesis of graphene thin films in Chapter 1, including the direct growth of bilayer graphene on insulating substrates and synthesis of "rebar graphene": a hybrid structure with graphene and carbon or boron nitride nanotubes. Chapter 2 discusses the synthesis of nanoribbon-shaped materials and their applications, including splitting of vertically aligned multi-walled carbon nanotube carpets for supercapacitors, synthesis of dispersable ferromagnetic graphene nanoribbon stacks with enhanced electrical percolation properties in magnetic field, graphene nanoribbon/SnO 2 nanocomposite for lithium ion batteries, and enhanced electrocatalysis for hydrogen evolution reactions from WS2 nanoribbons. Next, Chapter 3 discusses graphene coated iron oxide nanomaterials and their use in energy storage applications. Finally, Chapter 4 introduces the development, characterization, and fabrication of laser induced graphene and its application as supercapacitors.

  12. Simultaneous Reduction and Functionalization of Graphene Oxide by 4-Hydrazinobenzenesulfonic Acid for Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Song-Jie Qiao

    2016-02-01

    Full Text Available Graphene oxide (GO was functionalized and reduced simultaneously by a new reductant, 4-hydrazinobenzenesulfonic acid (HBS, with a one-step and environmentally friendly process. The hydrophilic sulfonic acid group in HBS was grafted onto the surface of GO through a covalent bond. The successful preparation of HBS reduced GO (HBS-rGO was testified by scanning electron microscope (SEM, X-ray diffraction (XRD, Raman spectroscopy, Fourier transform infrared spectra (FTIR, X-ray photoelectron spectroscopic (XPS and thermogravimetric analysis (TGA. The interlayer space of HBS-rGO was increased to 1.478 nm from 0.751 nm for GO, resulting in a subdued Van der Waals’ force between layers and less possibility to form aggregations. The aqueous dispersibility of graphene was improved to 13.49 mg/mL from 0.58 mg/mL after the functionalization. The viscosity of the epoxy resin based HBS-rGO composite could be regulated by an adjustment of the content of HBS-rGO. This study provides a new and applicable approach for the preparation of hydrophilic functionalized graphene, and makes it possible for the application of graphene in some functional polymer nanocomposites, such as specialty water-based coatings.

  13. A first-principles study on adsorption behaviors of pristine and Li-decorated graphene sheets toward hydrazine molecules

    Science.gov (United States)

    Zeng, Huadong; Cheng, Xinlu; Wang, Wei

    2018-03-01

    The adsorption behaviors and properties of hydrazine (N2H4) molecules on pristine and Li-decorated graphene sheets were investigated by means of first-principles based on density functional theory. We systematically analyzed the optimal geometry, average binding energy, charge transfer, charge density difference and density of states of N2H4 molecules adsorbed on pristine and Li-decorated graphene sheets. It is found that the interaction between single N2H4 molecule and pristine graphene is weak physisorption with the low binding energy of -0.026 eV, suggesting that the pristine graphene sheet is insensitive to the presence of N2H4 molecule. However, it is markedly enhanced after lithium decoration with the high binding energy of -1.004 eV, verifying that the Li-decorated graphene sheet is significantly sensitive to detect N2H4 molecule. Meanwhile, the effects of the concentrations of N2H4 molecules on two different substrates were studied detailedly. For pristine graphene substrate, the average binding energy augments apparently with increasing the number of N2H4 molecules, which is mainly attributed to the van der Waals interactions and hydrogen bonds among N2H4 clusters. Li-decorated graphene sheet has still a strong affinity to N2H4 molecules despite the corresponding average binding energy emerges a contrary tendency. Overall, Li-decorated graphene sheet could be considered as a potential gas sensor in field of hydrazine molecules.

  14. Die identifisering van maatstawwe vir die navorsingsprestasie van akademici

    Directory of Open Access Journals (Sweden)

    H. A. Labuschagne

    1990-06-01

    Full Text Available Identification of criteria for academic research performance. At South African universities, the achievement of objectives is usually measured in terms of so-called "process criteria" (e.g. pass rates, instead of performance criteria which reflect the quality of academic personnel. Stimulated by the need to identify valid indices of research performance, as a component of academic performance, this study investigated the dimensionality of several criteria, identified from empirical and literature studies. It was found that various valid criteria could be represented by six constructs, viz.: the stature of the researcher as scientist; scientific contributions; enhancement of own profession; community development; participation in research projects; and giving advice to persons or institutions outside the university. Opsomming By Suid-Afrikaanse universiteite word doelwitbereiking gewoonlik aan die hand van sogenaamde "prosesmaat-stawwe" (bv. slaagsyfers in plaas van prestasiemaatstawwe wat die gehalte van akademiese personeel weerspieel, gemeet. Na aanleiding van 'n behoefte aan die identifisering van geldige rigtingwysers vir navorsingsprestasie as 'n komponent van akademiese prestasie, is daar ondersoek ingestel na die dimensionaliteit van verskillende maatstawwe wat vooraf deur middel van empiriese- en literatuurstudies geidentifiseer is. Daar is gevind dat verskeie geldige maatstawwe deur ses konstrukte verteenwoordig word, te wete: die statuur van die navorser as wetenskaplike, wetenskaplike bydraes, uitbouing van eie professie, gemeenskapsontwikkeling, deelname aan navorsingsprojekte en advieslewering aan persone of instellings buite die Universiteit.

  15. Approach to Multifunctional Device Platform with Epitaxial Graphene on Transition Metal Oxide (Postprint)

    Science.gov (United States)

    2015-09-23

    layers, respectively. 15. SUBJECT TERMS Heterostructures, two-dimensional materials, van der Waals interaction , 2D graphene, metal oxide (TiO2...sample holder with a 10.6 μ m CO2 IR laser . The laser output power was adjusted until the target temperature was reached. The temperature of the sample... Laser Deposited Transition- Metal Carbides for Field-Emission Cathode Coatings. ACS Appl. Mater. Interfaces 5, 9241–9246 (2013). 13. Swift, G. A

  16. Symmetry and optical selection rules in graphene quantum dots

    Science.gov (United States)

    Pohle, Rico; Kavousanaki, Eleftheria G.; Dani, Keshav M.; Shannon, Nic

    2018-03-01

    Graphene quantum dots (GQD's) have optical properties which are very different from those of an extended graphene sheet. In this paper, we explore how the size, shape, and edge structure of a GQD affect its optical conductivity. Using representation theory, we derive optical selection rules for regular-shaped dots, starting from the symmetry properties of the current operator. We find that, where the x and y components of the current operator transform with the same irreducible representation (irrep) of the point group (for example in triangular or hexagonal GQD's), the optical conductivity is independent of the polarization of the light. On the other hand, where these components transform with different irreps (for example in rectangular GQD's), the optical conductivity depends on the polarization of light. We carry out explicit calculations of the optical conductivity of GQD's described by a simple tight-binding model and, for dots of intermediate size, find an absorption peak in the low-frequency range of the spectrum which allows us to distinguish between dots with zigzag and armchair edges. We also clarify the one-dimensional nature of states at the Van Hove singularity in graphene, providing a possible explanation for very high exciton-binding energies. Finally, we discuss the role of atomic vacancies and shape asymmetry.

  17. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  18. Novel graphene-based nanostructures: physicochemical properties and applications

    International Nuclear Information System (INIS)

    Chernozatonskii, L A; Sorokin, P B; Artukh, A A

    2014-01-01

    The review concerns graphene-based nanostructures including graphene nanoribbons a few nanometres wide, structures functionalized with hydrogen and fluorine atoms as well as pure carbon composites. The physicochemical properties and the chemical engineering methods for their fabrication are considered. Methods for solving problems in modern nanotechnology are discussed. Possible applications of graphene and graphene-based nanostructures in various devices are outlined. The bibliography includes 286 references

  19. The possibility of superconductivity in twisted bilayer graphene

    International Nuclear Information System (INIS)

    Manaf, Muhamad Nasruddin; Santoso, Iman; Hermanto, Arief

    2015-01-01

    We discuss the possibility of superconductivity in Twisted Bilayer Graphene (TBG). In this study we use TBG model with commensurate rotation θ=1.16° in which the van-Hove singularities (VHS) arise at 6 meV from the Fermi level. We use BCS standard formula that include Density of States (DOS) to calculate the critical temperature (T C ). Based on our calculation we predict that superconductivity will not arise in Pristine TBG because pairing potential has infinity value. In this situation, Dirac Fermions do not interact with each other since they do not form the bound states. Superconductvity may arise when the Fermi level is shifted towards the VHS. Based on this calculation, we predict that T C has value between 0.04 K and 0.12 K. The low value of T C is due to highly energetic of in plane phonon vibration which reduce the effective electron-phonon coupling. We conclude that doped TBG is candidate for Dirac Fermion superconductor

  20. Graphene Statistical Mechanics

    Science.gov (United States)

    Bowick, Mark; Kosmrlj, Andrej; Nelson, David; Sknepnek, Rastko

    2015-03-01

    Graphene provides an ideal system to test the statistical mechanics of thermally fluctuating elastic membranes. The high Young's modulus of graphene means that thermal fluctuations over even small length scales significantly stiffen the renormalized bending rigidity. We study the effect of thermal fluctuations on graphene ribbons of width W and length L, pinned at one end, via coarse-grained Molecular Dynamics simulations and compare with analytic predictions of the scaling of width-averaged root-mean-squared height fluctuations as a function of distance along the ribbon. Scaling collapse as a function of W and L also allows us to extract the scaling exponent eta governing the long-wavelength stiffening of the bending rigidity. A full understanding of the geometry-dependent mechanical properties of graphene, including arrays of cuts, may allow the design of a variety of modular elements with desired mechanical properties starting from pure graphene alone. Supported by NSF grant DMR-1435794

  1. Invloed van minerale olie op de bestrijding van Phytophthora infestans in pootaardappelen

    NARCIS (Netherlands)

    Spits, H.G.; Bus, C.B.

    2003-01-01

    De invloed van toevoeging van olie aan een fungicide op de werking van het fungicide is afhankelijk van het gebruikte fungicide. Gezamenlijk spuiten van olie en Aviso DF, Curzate M en mogelijk ook Acrobat, verhoogt de curatieve werking van deze fungiciden. Gezamenlijk spuiten van olie en Aviso DF,

  2. B. J. van der Merwe . Pentateugtradisies in die prediking van ...

    African Journals Online (AJOL)

    B. J. van der Merwe . Pentateugtradisies in die prediking van Deuterojesaja. Proefschrift ter verkrijging van de graad van Doctor in de Godgeleerdheid aan de Rijkuniversiteit te Groningen. Uitg. J. B. Wolters, Groningen, Djakarta. 1955. 280 bls.

  3. n Oorsig van die huidige stand van navorsing oor die

    African Journals Online (AJOL)

    Test

    7 Jun 2011 ... Die eerste maal wat dit as deel van die teks van 1 Johannes aangehaal word, is in die. 4de eeu in 'n Latynse teks, Liber Apologeticus (hf 4). Eers aan die einde van die 16de eeu is dit in 'n amptelike Katolieke uitgawe van die Vulgaat ingesluit. Die doel van die Johannesbriewe. Waarom is die Briewe ...

  4. Detectie van Meloidogyne spp. in grondmonsters - een vergelijking van twee technieken

    NARCIS (Netherlands)

    Veenhuizen, P.T.M.; Schoemakers, N.; Vos, J.; Versteegen, F.; Landeweert, R.; Karssen, G.

    2007-01-01

    Hier volgen de samenvattingen van de bijeenkomst van 20 maart 2007 van de KNPV-werkgroep Meloidogyne. 1) Kwantitatieve multiplexdetectie van aaltjes; 2). Meloidogyne chitwoodi en M. fallax: vergelijking visuele beoordeling en Taqman-PCR aan pootaardappelen; 3) Detectie van Meloidogyne spp. in

  5. Stroming en samenstelling van de sprengen en het grondwater van de Veluwe in 1996; een vergelijking met de toestand van 1986

    NARCIS (Netherlands)

    Meinardi CR; LBG

    1999-01-01

    Monsters water uit sprengen en grondwater van de Veluwe zijn onderzocht op concentraties van hoofdcomponenten en van microcomponenten (bepalingen door NITG). Onderzoek is gedaan ter bepaling van verblijftijden in de bodem van grondwater en van het water in sprengen. De intrekgebieden van de

  6. Metal Oxide Vertical Graphene Hybrid Supercapacitors

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2018-01-01

    A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.

  7. Application of graphene oxide in water treatment

    Science.gov (United States)

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  8. A. VAN SELMS. LUKAS SE SEGSMAN VIR DIE GESKIEDENIS VAN ...

    African Journals Online (AJOL)

    Test

    oordele aan die eerste drie hoofstukke van sy Evangelie, het Lukas onder „van ..... Simon te onderskei van Simon Petrus, hoef ons nie erns te maak nie. .... op hulle beurt vereenselwig met Mosa van Jos. .... i&) Lukas der Arzt. Leipzig, 1906.

  9. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-02-10

    We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature-dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 μm up to 200 K.

  10. Graphene Electronic Tattoo Sensors.

    Science.gov (United States)

    Kabiri Ameri, Shideh; Ho, Rebecca; Jang, Hongwoo; Tao, Li; Wang, Youhua; Wang, Liu; Schnyer, David M; Akinwande, Deji; Lu, Nanshu

    2017-08-22

    Tattoo-like epidermal sensors are an emerging class of truly wearable electronics, owing to their thinness and softness. While most of them are based on thin metal films, a silicon membrane, or nanoparticle-based printable inks, we report sub-micrometer thick, multimodal electronic tattoo sensors that are made of graphene. The graphene electronic tattoo (GET) is designed as filamentary serpentines and fabricated by a cost- and time-effective "wet transfer, dry patterning" method. It has a total thickness of 463 ± 30 nm, an optical transparency of ∼85%, and a stretchability of more than 40%. The GET can be directly laminated on human skin just like a temporary tattoo and can fully conform to the microscopic morphology of the surface of skin via just van der Waals forces. The open-mesh structure of the GET makes it breathable and its stiffness negligible. A bare GET is able to stay attached to skin for several hours without fracture or delamination. With liquid bandage coverage, a GET may stay functional on the skin for up to several days. As a dry electrode, GET-skin interface impedance is on par with medically used silver/silver-chloride (Ag/AgCl) gel electrodes, while offering superior comfort, mobility, and reliability. GET has been successfully applied to measure electrocardiogram (ECG), electromyogram (EMG), electroencephalogram (EEG), skin temperature, and skin hydration.

  11. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  12. EDITORIAL: Van der Waals interactions in advanced materials, in memory of David C Langreth Van der Waals interactions in advanced materials, in memory of David C Langreth

    Science.gov (United States)

    Hyldgaard, Per; Rahman, Talat S.

    2012-10-01

    rationale for considering a more general switch to nonlocal functionals. Graziano et al note that the accuracy in the description of some soft layered systems like graphene and boron-nitride can be increased by changing the exchange description away from what was suggested in the original vdW-DF method. Hanke et al focused on the weak chemisorption of ethene on the various Cu facets that have an increasing degree of openness and provide a method for benchmarking through comparison with experimental observations. Finally, Björkman et al raise the question 'Are we van der Waals ready?' and proceed to test our readiness by benchmarking the performance of a range of vdW-aware methods for the group of 96 known layered structures. We have also included in this special issue one study of nonequilibrium transport which is linked to David's work in formal scattering theory [1, 2] and which observes that vdW forces (and possible generalizations to nonequilibrium transport conditions) will be of central importance in a richer computational characterization of molecular electronics under operational conditions. David was always keen to spearhead the development of tools that improved descriptions of nature and addressed actual experiments. We know that he was happy that DMP started the focused session on vdW and materials in 2011. We know that he would have thoroughly appreciated the articles in this special issue. He would have hoped, as we do, that materials theory may continue to learn how to tackle even more exciting experimental problems and that we may continue to deepen our understanding of materials and their functionality. Bibliography [1]Langreth D C 1976 1975 Nato Advanced Study Institute on Linear and Nonlinear Transport in Solids, Antwerben vol B17 (New York: Plenum) pp 3-32 [2]Langreth D C 1966 Friedel sum rule for Anderson's model of localized impurity states Phys. Rev. 150 516 [3]Langreth D C and Perdew J P 1975 The exchange-correlation energy of a metallic surface

  13. Digitale incunabelen : Over het belang van het archiveren van websites

    NARCIS (Netherlands)

    Voerman, Gerrit; Keyzer, Andreas; den Hollander, Franciscus

    'Het geheugen van Nederland verpulvert'. Zo luidde de noodkreet van ruim twintig grote bibliotheken in het voorjaar van 1998. In een advertentie in enkele landelijke dagbladen vroegen deze bibliotheken om honderden miljoenen guldens voor het restaureren, fotograferen en digitaliseren van boeken en

  14. Digitale incunabelen : Over het belang van het archiveren van websites

    NARCIS (Netherlands)

    Voerman, Gerrit; Keyzer, Andreas; den Hollander, Franciscus

    2000-01-01

    'Het geheugen van Nederland verpulvert'. Zo luidde de noodkreet van ruim twintig grote bibliotheken in het voorjaar van 1998. In een advertentie in enkele landelijke dagbladen vroegen deze bibliotheken om honderden miljoenen guldens voor het restaureren, fotograferen en digitaliseren van boeken en

  15. Inclusie door interprofessionele samenwerking. : Resultaten van de proeftuinen van PACT.

    NARCIS (Netherlands)

    Doornenbal, Jeannette; Fukkink, Ruben; van Yperen, Tom; Balledux, Mariëlle; Spoelstra, Jolanda; Verseveld, Marloes

    2017-01-01

    Deze rapportage gaat over de resultaten van de PACT-proeftuinen waaraan in opdracht van Het Kinderopvangfonds van 2015 tot 2017 is gewerkt. PACT-proeftuinen zijn innovatieve praktijken waarin door middel van interprofessionele samenwerking tussen de kinderopvang, het basisonderwijs en de zorg wordt

  16. Modal analysis of graphene-based structures for large deformations, contact and material nonlinearities

    Science.gov (United States)

    Ghaffari, Reza; Sauer, Roger A.

    2018-06-01

    The nonlinear frequencies of pre-stressed graphene-based structures, such as flat graphene sheets and carbon nanotubes, are calculated. These structures are modeled with a nonlinear hyperelastic shell model. The model is calibrated with quantum mechanics data and is valid for high strains. Analytical solutions of the natural frequencies of various plates are obtained for the Canham bending model by assuming infinitesimal strains. These solutions are used for the verification of the numerical results. The performance of the model is illustrated by means of several examples. Modal analysis is performed for square plates under pure dilatation or uniaxial stretch, circular plates under pure dilatation or under the effects of an adhesive substrate, and carbon nanotubes under uniaxial compression or stretch. The adhesive substrate is modeled with van der Waals interaction (based on the Lennard-Jones potential) and a coarse grained contact model. It is shown that the analytical natural frequencies underestimate the real ones, and this should be considered in the design of devices based on graphene structures.

  17. Enhanced Tunnel Spin Injection into Graphene using Chemical Vapor Deposited Hexagonal Boron Nitride

    Science.gov (United States)

    Kamalakar, M. Venkata; Dankert, André; Bergsten, Johan; Ive, Tommy; Dash, Saroj P.

    2014-01-01

    The van der Waals heterostructures of two-dimensional (2D) atomic crystals constitute a new paradigm in nanoscience. Hybrid devices of graphene with insulating 2D hexagonal boron nitride (h-BN) have emerged as promising nanoelectronic architectures through demonstrations of ultrahigh electron mobilities and charge-based tunnel transistors. Here, we expand the functional horizon of such 2D materials demonstrating the quantum tunneling of spin polarized electrons through atomic planes of CVD grown h-BN. We report excellent tunneling behavior of h-BN layers together with tunnel spin injection and transport in graphene using ferromagnet/h-BN contacts. Employing h-BN tunnel contacts, we observe enhancements in both spin signal amplitude and lifetime by an order of magnitude. We demonstrate spin transport and precession over micrometer-scale distances with spin lifetime up to 0.46 nanosecond. Our results and complementary magnetoresistance calculations illustrate that CVD h-BN tunnel barrier provides a reliable, reproducible and alternative approach to address the conductivity mismatch problem for spin injection into graphene. PMID:25156685

  18. Die opleiding van bedryfsielkundiges aan die universiteit van Fort Hare

    Directory of Open Access Journals (Sweden)

    W. Botha

    1977-11-01

    Full Text Available Die Departement Bedryfsielkunde aan die Universiteit van Fort Hare is 'n relatiewe jong departement en het eers in 1965 tot stand gekom. Voor hierdie datum is Bedryfsielkunde as 'n kort kursus deur die departement van suiwer Sielkunde aangebied en een van die destydse dosente, Dr. W. Backer, het die inisiatief geneem om 'n selfstandige departement van Bedryfsielkunde in die Fakulteit van Ekonomiese Wetenskappe op die been te bring.

  19. Graphene-carbon nanotube hybrid materials and use as electrodes

    Science.gov (United States)

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  20. Het effect van creatief schrijven op het lezen van korte verhalen

    NARCIS (Netherlands)

    Janssen, T.; van den Bergh, H.

    2010-01-01

    Schrijven en lezen zijn complementaire vaardigheden, niet alleen bij referentiële teksten, maar ook bij fictionele. Janssen en Van den Bergh doen verslag van een onderzoek naar de invloed van creatief schrijven op het lezen van verhalen. Als leerlingen, voorafgaand aan het lezen van een verhaal, een

  1. Databank van de lithografische opbouw en morfologische ontwikkeling van de uiterwaarden van de Midden-Waal

    NARCIS (Netherlands)

    Hebinck, K.A.

    2008-01-01

    In de uiterwaarden zijn de komende decennia veel ingrepen gepland. Een goede kennis van de sedimentatiedynamiek en morfologische ontwikkeling van de uiterwaarden is daarbij een vereiste. Daartoe is een digitale databank (op CD bij dit rapport) opgesteld van de opbouw en geomorfologische ontwikkeling

  2. N2O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study

    International Nuclear Information System (INIS)

    Gholizadeh, Reza; Yu, Yang-Xin

    2015-01-01

    Graphical abstract: Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants. - Highlights: • N 2 O can be efficiently reduced by CO over Si-doped graphenes. • Enough charge transferred from Si to N 2 O makes the N 2 –O bond break easily. • Si-doped graphene is efficient green catalysts for conversion of the airborne pollutants. • vdW interaction and ZPE energy significantly influence the predictions of activation energies. - Abstract: Catalytic conversion of non-CO 2 green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N 2 O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N 2 O, CO, N 2 and CO 2 ) as well as energy profiles along the reaction pathways. The activation energies of N 2 O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe + in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.

  3. Contact-free sheet resistance determination of large area graphene layers by an open dielectric loaded microwave cavity

    International Nuclear Information System (INIS)

    Shaforost, O.; Wang, K.; Adabi, M.; Guo, Z.; Hanham, S.; Klein, N.; Goniszewski, S.; Gallop, J.; Hao, L.

    2015-01-01

    A method for contact-free determination of the sheet resistance of large-area and arbitrary shaped wafers or sheets coated with graphene and other (semi) conducting ultrathin layers is described, which is based on an open dielectric loaded microwave cavity. The sample under test is exposed to the evanescent resonant field outside the cavity. A comparison with a closed cavity configuration revealed that radiation losses have no significant influence of the experimental results. Moreover, the microwave sheet resistance results show good agreement with the dc conductivity determined by four-probe van der Pauw measurements on a set of CVD samples transferred on quartz. As an example of a practical application, correlations between the sheet resistance and deposition conditions for CVD graphene transferred on quartz wafers are described. Our method has a high potential as measurement standard for contact-free sheet resistance measurement and mapping of large area graphene samples

  4. Graphene: from functionalization to devices

    Science.gov (United States)

    Tejeda, Antonio; Soukiassian, Patrick G.

    2014-03-01

    The year 2014 marks the first decade of the rise of graphene. Graphene, a single atomic layer of carbon atoms in sp2 bonding configuration having a honeycomb structure, has now become a well-known and well-established material. Among some of its many outstanding fundamental properties, one can mention a very high carrier mobility, a very large spin diffusion length, unsurpassed mechanical properties as graphene is the strongest material ever measured and an exceptional thermal conductivity scaling more than one order of magnitude above that of copper. After the first years of the graphene rush, graphene growth is now well controlled using various methods like epitaxial growth on silicon carbide substrate, chemical vapour deposition (CVD) or plasma techniques on metal, insulator or semiconductor substrates. More applied research is now taking over the initial studies on graphene production. Indeed, graphene is a promising material for many advanced applications such as, but not limited to, electronic, spintronics, sensors, photonics, micro/nano-electromechanical (MEMS/NEMS) systems, super-capacitors or touch-screen technologies. In this context, this Special Issue of the Journal of Physics D: Applied Physics on graphene reviews some of the recent achievements, progress and prospects in this field. It includes a collection of seventeen invited articles covering the current status and future prospects of some selected topics of strong current interest. This Special Issue is organized in four sections. The first section is dedicated to graphene devices, and opens with an article by de Heer et al on an investigation of integrating graphene devices with silicon complementary metal-oxide-semiconductor (CMOS) technology. Then, a study by Svintsov et al proposes a lateral all-graphene tunnel field-effect transistor (FET) with a high on/off current switching ratio. Next, Tsukagoshi et al present how a band-gap opening occurs in a graphene bilayer by using a perpendicular

  5. Controllable nanoscale rotating actuator system based on carbon nanotube and graphene

    International Nuclear Information System (INIS)

    Huang, Jianzhang; Han, Qiang

    2016-01-01

    A controllable nanoscale rotating actuator system consisting of a double carbon nanotube and graphene driven by a temperature gradient is proposed, and its rotating dynamics performance and driving mechanism are investigated through molecular dynamics simulations. The outer tube exhibits stable pure rotation with certain orientation under temperature gradient and the steady rotational speed rises as the temperature gradient increases. It reveals that the driving torque is caused by the difference of atomic van der Waals potentials due to the temperature gradient and geometrical features of carbon nanotube. A theoretical model for driving torque is established based on lattice dynamics theory and its predicted results agree well with molecular dynamics simulations. Further discussion is taken according to the theoretical model. The work in this study would be a guide for design and application of controllable nanoscale rotating devices based on carbon nanotubes and graphene. (paper)

  6. Fluorescentievingerafdruk van Aardappel, Melganzenvoet en Mais : Eerste resultaten van plantonderscheid met behulp van fluorescentie

    NARCIS (Netherlands)

    Groot, T.T.; Nieuwenhuizen, A.T.

    2012-01-01

    Als het spectrum van één “soort” (gewas) vergeleken wordt met de rest (onkruid) neemt het onderscheid van het “gewas” af tot 70%. Het lijkt dus nodig ook de spectra van alle soorten onkruid in het veld te kennen om een goed onderscheid mogelijk te maken. De doelstelling voor deze metingen is een

  7. Proeven van tekstkritiek. Een onderzoek betreffende de tekstgeschiedenis van de Renout van Montalbaen en de Perceval

    NARCIS (Netherlands)

    Hogenhout-Mulder, Maaike Janna

    1984-01-01

    In dit proefschrift wordt een poging gedaan de tekstgeschiedenis te achterhalen van twee Middelnederlandse tekstfragmenten: een gedeelte uit de RENOUT VAN MONTALBAEN en een gedeelte uit de PERCEVAL. ... Zie: Twee tekstfragmenten als object van onderzoek

  8. Invoering van algemene vaardigheden: mogelijkheden van een vakoverstijgende aanpak

    NARCIS (Netherlands)

    Leenders, F.J.

    2003-01-01

    Centrale vraag: Het onderzoek richtte zich op de implementatie van vakoverstijgend vaardighedenonderwijs in de Tweede Fase van het voortgezet onderwijs. Belangrijkste conclusies: De brochure bevat onder meer een beschrijving van vijf scholen waar op verschillende wijze vaardighedenonderwijs

  9. Resultaten van het Rijkswaterstaat JAMP 2009 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot

    OpenAIRE

    Hoek-van Nieuwenhuizen, van, M.; Barneveld, van, E.

    2010-01-01

    De in dit rapport beschreven werkzaamheden zijn in 2009 door IMARES uitgevoerd op basis van een opdracht van Rijkswaterstaat in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens van bot (visziekten). De benodigde monsters bot werden verzameld door IMARES. Tevens werd materiaal van bot verzameld voor chemisch onderzoek en geanalyseerd.

  10. All-Electrical Spin Field Effect Transistor in van der Waals Heterostructures at Room Temperature

    Science.gov (United States)

    Dankert, André; Dash, Saroj

    Spintronics aims to exploit the spin degree of freedom in solid state devices for data storage and information processing. Its fundamental concepts (creation, manipulation and detection of spin polarization) have been demonstrated in semiconductors and spin transistor structures using electrical and optical methods. However, an unsolved challenge is the realization of all-electrical methods to control the spin polarization in a transistor manner at ambient temperatures. Here we combine graphene and molybdenum disulfide (MoS2) in a van der Waals heterostructure to realize a spin field-effect transistor (spin-FET) at room temperature. These two-dimensional crystals offer a unique platform due to their contrasting properties, such as weak spin-orbit coupling (SOC) in graphene and strong SOC in MoS2. The gate-tuning of the Schottky barrier at the MoS2/graphene interface and MoS2 channel yields spins to interact with high SOC material and allows us to control the spin polarization and lifetime. This all-electrical spin-FET at room temperature is a substantial step in the field of spintronics and opens a new platform for testing a plethora of exotic physical phenomena, which can be key building blocks in future device architectures.

  11. Epitaxial graphene electronic structure and transport

    International Nuclear Information System (INIS)

    De Heer, Walt A; Berger, Claire; Wu Xiaosong; Sprinkle, Mike; Hu Yike; Ruan Ming; First, Phillip N; Stroscio, Joseph A; Haddon, Robert; Piot, Benjamin; Faugeras, Clement; Potemski, Marek; Moon, Jeong-Sun

    2010-01-01

    Since its inception in 2001, the science and technology of epitaxial graphene on hexagonal silicon carbide has matured into a major international effort and is poised to become the first carbon electronics platform. A historical perspective is presented and the unique electronic properties of single and multilayered epitaxial graphenes on electronics grade silicon carbide are reviewed. Early results on transport and the field effect in Si-face grown graphene monolayers provided proof-of-principle demonstrations. Besides monolayer epitaxial graphene, attention is given to C-face grown multilayer graphene, which consists of electronically decoupled graphene sheets. Production, structure and electronic structure are reviewed. The electronic properties, interrogated using a wide variety of surface, electrical and optical probes, are discussed. An overview is given of recent developments of several device prototypes including resistance standards based on epitaxial graphene quantum Hall devices and new ultrahigh frequency analogue epitaxial graphene amplifiers.

  12. Resultaten van het Rijkswaterstaat JAMP 2008 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot

    NARCIS (Netherlands)

    Hoek-van Nieuwenhuizen, van M.; Barneveld, van E.

    2009-01-01

    De in dit rapport beschreven werkzaamheden zijn door Wageningen IMARES uitgevoerd op basis van een opdracht van Rijkswaterstaat in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens van bot. De benodigde monsters

  13. Afbouw van het Wsw-bestand: actualisatie op basis van Wsw-gegevens ultimo 2013

    NARCIS (Netherlands)

    Berden, C.; Tempelman, C.

    2014-01-01

    In opdracht van het ministerie van Sociale Zaken en Werkgelegenheid heeft SEO Economisch Onderzoek onderzoek gedaan naar de verdeling van het Participatiebudget over gemeenten. Een onderdeel van dit onderzoek vormde het voorspellen van de afbouw van het huidige zittend bestand in de Wsw op basis van

  14. Resultaten van het Rijkswaterstaat JAMP 2009 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot

    NARCIS (Netherlands)

    Hoek-van Nieuwenhuizen, van M.; Barneveld, van E.

    2010-01-01

    De in dit rapport beschreven werkzaamheden zijn in 2009 door IMARES uitgevoerd op basis van een opdracht van Rijkswaterstaat in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens van bot (visziekten). De benodigde

  15. Nanotoxicity of graphene and graphene oxide.

    Science.gov (United States)

    Seabra, Amedea B; Paula, Amauri J; de Lima, Renata; Alves, Oswaldo L; Durán, Nelson

    2014-02-17

    Graphene and its derivatives are promising candidates for important biomedical applications because of their versatility. The prospective use of graphene-based materials in a biological context requires a detailed comprehension of the toxicity of these materials. Moreover, due to the expanding applications of nanotechnology, human and environmental exposures to graphene-based nanomaterials are likely to increase in the future. Because of the potential risk factors associated with the manufacture and use of graphene-related materials, the number of nanotoxicological studies of these compounds has been increasing rapidly in the past decade. These studies have researched the effects of the nanostructural/biological interactions on different organizational levels of the living system, from biomolecules to animals. This review discusses recent results based on in vitro and in vivo cytotoxicity and genotoxicity studies of graphene-related materials and critically examines the methodologies employed to evaluate their toxicities. The environmental impact from the manipulation and application of graphene materials is also reported and discussed. Finally, this review presents mechanistic aspects of graphene toxicity in biological systems. More detailed studies aiming to investigate the toxicity of graphene-based materials and to properly associate the biological phenomenon with their chemical, structural, and morphological variations that result from several synthetic and processing possibilities are needed. Knowledge about graphene-based materials could ensure the safe application of this versatile material. Consequently, the focus of this review is to provide a source of inspiration for new nanotoxicological approaches for graphene-based materials.

  16. Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics.

    Science.gov (United States)

    Wu, Xiaosong; Sprinkle, Mike; Li, Xuebin; Ming, Fan; Berger, Claire; de Heer, Walt A

    2008-07-11

    Graphene-oxide (GO) flakes have been deposited to bridge the gap between two epitaxial-graphene electrodes to produce all-graphene devices. Electrical measurements indicate the presence of Schottky barriers at the graphene/graphene-oxide junctions, as a consequence of the band gap in GO. The barrier height is found to be about 0.7 eV, and is reduced after annealing at 180 degrees C, implying that the gap can be tuned by changing the degree of oxidation. A lower limit of the GO mobility was found to be 850 cm2/V s, rivaling silicon. In situ local oxidation of patterned epitaxial graphene has been achieved.

  17. Die beskerming van biologiese diversiteit deur gebruik te maak van die gevoeligheidsvariasie van spesies vir toksiese stowwe

    Directory of Open Access Journals (Sweden)

    A. J. Reinecke

    2003-09-01

    Full Text Available Pogings om algemeen geldende standaarde of maatstawwe vir omgewingskwaliteit op te stel vir die beskerming van Suid-Afrika se ryk biodiversiteit word bemoeilik deur die feit dat spesies baie kan verskil  ten opsigte van hulle gevoeligheid vir toksiese stowwe. Daar kan dus nie sonder meer vanaf een spesie na ’n ander geëkstrapoleer word nie. Deur egter juis gebruik te maak van hierdie variasie in gevoeligheid van spesies, kan die assessering van die risiko wat besoedelingstowwe vir organismes inhou wel op ’n meer wetenskaplike grondslag bedryf word. Hierdie konsep gaan uit van die standpunt dat indien kwaliteitskriteriums opgestel word wat die sensitiefste spesies beskerm, alle ander spesies outomaties beskerm word. Hierdie bydrae fokus op die gebruik van sensitiwiteitsverspreidings van spesies as metode en kyk oorsigtelik en krities na die aard en toepassings van die ekstrapolasiemodelle wat op hierdie verspreidings gebaseer is. Die moontlike aanwending daarvan en die argumente ten gunste daarvan en daarteen word bespreek. Die gevolgtrekking word gemaak dat spesie-sensitiwiteitsverspreidings wel nuttige aanwending kan vind, maar dat  gegewens oor die gevoeligheid van plaaslike spesies  baie skaars is. Hoewel dit reeds bruikbaar is, kan die algemene aanwending daarvan  in Suid-Afrika aansienlik uitgebrei word indien meer navorsing gedoen word om betroubare toksisiteitsgegewens vir verskillende spesies in te win, sodat die model meer verfyn kan word. Daarvoor moet gestandaardiseerde toksisiteitstoetse vir plaaslike spesies eers ontwikkel word.

  18. Gevolgen van hydrocephalus

    NARCIS (Netherlands)

    Tromp, Cornelis Nicolaas

    1984-01-01

    Hydrocephalus is een aandoening van het centrale zenuwstelsel die de clinicus vrij lang voor grote problemen ten aanzien van de behandeling heeft qesteld. Door de toepassing van de ventriculo-atriale shunttechniek zijn de behandelingsmogelijkheden van hydrocephalus sterk verbeterd. Deze studie

  19. Overzicht van de onderzoekresultaten van kroketten, bitterballen en frikandellen van 1986

    NARCIS (Netherlands)

    Cazemier, G.; Veen, van der N.G.

    1987-01-01

    In 1986 werden in opdracht van de AID 54 monsters frikandellen en 237 monsters kroketten en bitterballen door het RIKILT onderzocht op de eisen, zoals die zijn vastgelegd in de Kwaliteitsverordening Kroketten, Bitterballen en Frika(n)dellen. In dit verslag zijn de analyseresultaten van deze monsters

  20. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    Science.gov (United States)

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  1. Advances in graphene-based optoelectronics, plasmonics and photonics

    International Nuclear Information System (INIS)

    Nguyen, Bich Ha; Nguyen, Van Hieu

    2016-01-01

    Since the early works on graphene it has been remarked that graphene is a marvelous electronic material. Soon after its discovery, graphene was efficiently utilized in the fabrication of optoelectronic, plasmonic and photonic devices, including graphene-based Schottky junction solar cells. The present work is a review of the progress in the experimental research on graphene-based optoelectronics, plasmonics and photonics, with the emphasis on recent advances. The main graphene-based optoelectronic devices presented in this review are photodetectors and modulators. In the area of graphene-based plasmonics, a review of the plasmonic nanostructures enhancing or tuning graphene-light interaction, as well as of graphene plasmons is presented. In the area of graphene-based photonics, we report progress on fabrication of different types of graphene quantum dots as well as functionalized graphene and graphene oxide, the research on the photoluminescence and fluorescence of graphene nanostructures as well as on the energy exchange between graphene and semiconductor quantum dots. In particular, the promising achievements of research on graphene-based Schottky junction solar cells is presented. (review)

  2. ʼn Kritiese evaluering van wetgewing wat die gesondheid van ...

    African Journals Online (AJOL)

    User

    gereguleer wat "basiese watervoorsiening" omskryf as "die voorgeskrewe minimum standaard van watervoorsieningsdienste wat nodig is vir die betroubare voorsiening van ʼn toereikende hoeveelheid en gehalte water aan huishoudings, met inbegrip van informele huishoudings, om lewe en persoonlike higiëne te steun".

  3. Karakterisering van het Etimologiewoordeboek van Afrikaans (EWA

    Directory of Open Access Journals (Sweden)

    Fons Moerdijk

    2011-10-01

    Full Text Available

    Samenvatting: Zesendertig jaar na Afrikaanse etimologieë van Boshoff en Nienaber verscheener in 2003 een nieuw etymologisch woordenboek van het Afrikaans: het Etimologiewoordeboek vanAfrikaans (EWA. Tussen die twee woordenboeken bestaat een wezenlijk verschil. Het werk vanBoshoff en Nienaber is vrijwel alleen toegankelijk voor specialisten en niet specifiek bedoeld vooreen breed publiek. EWA is juist allereerst bestemd voor de leek die zich interesseert voor de oorsprongen de geschiedenis van de eigen taal. Daarnaast biedt het ook de etymoloog en historischtaalkundige een hoop gegevens en inspiratie voor nader onderzoek. Als etymologisch woordenboekbezit EWA een aantal bijzondere, eigen kenmerken. De selectie van de woorden is bepaalddoor het beoogde gebruikerspubliek. Als gevolg daarvan bevat EWA verscheidene typen woordendie in traditionele etymologische woordenboeken doorgaans veronachtzaamd worden, zoals afleidingen,samenstellingen, neologismen en gemeenzame spreektaalwoorden. De artikelstructuurwordt gekenmerkt door een hoge graad van uniformiteit en consistentie. Het accent ligt op dezogenaamde etymologia proxima, de etymologie waarbij men één stap teruggaat en de meestdirecte herkomst van het woord biedt. Voorts is speciale aandacht besteed aan polysemie: nietalleen de herkomst van de dominante betekenis van een woord wordt gegeven, maar ook die vanzijn eventuele andere betekenis(sen. Benoemingsmotieven komen ook veelvuldig aan bod. In eeneventuele tweede druk zouden opvallende verschillen in vorm of betekenis altijd verklaard of inieder geval besproken moeten worden. Dat blijft nu nogal eens achterwege. Ook zou voorafgaandaan zo'n volgende editie meer onderzoek naar woordhistorisch materiaal uit primaire bronnenvoor met name de 17de–19de eeuw verricht moeten worden. Het zou mooi zijn als deze eersteuitgave van EWA de aanleiding tot een dergelijk onderzoek zou vormen.

    Sleutelwoorden: BENOEMINGSMOTIEF, ETYMOLOGIA PROXIMA

  4. Graphene-Based Materials for Biosensors: A Review

    Directory of Open Access Journals (Sweden)

    Phitsini Suvarnaphaet

    2017-09-01

    Full Text Available The advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.e., graphene oxide (GO, reduced graphene oxide (RGO and graphene quantum dot (GQD. The biosensing mechanisms based on the utilization of the charge interactions with biomolecules and/or nanoparticle interactions and sensing platforms are also discussed, and the importance of surface functionalization in recent up-to-date biosensors for biological and medical applications.

  5. Kwantificatie van de invloed van regen op de verkeerdoorstroming

    NARCIS (Netherlands)

    Calvert, S.C.; Van Stralen, W.; Molin, E.J.E.

    2013-01-01

    Kwantificatie van de invloed van regen op de verkeerdoorstroming Het is bekend dat het weer invloed heeft op het verkeer op snelwegen, en in het bijzonder filevorming. Op de eerste plaats wordt de wegcapaciteit tijdelijk beïnvloed door een verandering in rijgedrag van bestuurders. Ten tweede

  6. Resultaten van het RWS-RIKZ JAMP 2005 monitoringsprogramma van bot (Platichthys flesus L.) : Biologische gegevens van bot en milieukritische stoofen in bot

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    2006-01-01

    In opdracht van RWS-RIKZ werden door het RIVO werkzaamheden uitgevoerd in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens van bot. De werkzaamheden bestonden uit het verzamelen van monsters bot waarvan

  7. 'Uytnemende Schilder van Antwerpen' : Joos van Cleve: atelier, productie en werkmethoden

    NARCIS (Netherlands)

    Leeflang, Micha

    2007-01-01

    Joos van Cleve (ca. 1480-1541) was een van de meest invloedrijke Antwerpse schilders in de eerste helft van dezestiende eeuw. Hij kreeg belangrijke opdrachten voor portretten en altaarstukken van onder anderen de Franse koning Frans I. Micha Leeflang onderzocht met name de materieel-technische

  8. Graphene-Reinforced Metal and Polymer Matrix Composites

    Science.gov (United States)

    Kasar, Ashish K.; Xiong, Guoping; Menezes, Pradeep L.

    2018-06-01

    Composites have tremendous applicability due to their excellent capabilities. The performance of composites mainly depends on the reinforcing material applied. Graphene is successful as an efficient reinforcing material due to its versatile as well as superior properties. Even at very low content, graphene can dramatically improve the properties of polymer and metal matrix composites. This article reviews the fabrication followed by mechanical and tribological properties of metal and polymer matrix composites filled with different kinds of graphene, including single-layer, multilayer, and functionalized graphene. Results reported to date in literature indicate that functionalized graphene or graphene oxide-polymer composites are promising materials offering significantly improved strength and frictional properties. A similar trend of improved properties has been observed in case of graphene-metal matrix composites. However, achieving higher graphene loading with uniform dispersion in metal matrix composites remains a challenge. Although graphene-reinforced composites face some challenges, such as understanding the graphene-matrix interaction or fabrication techniques, graphene-reinforced polymer and metal matrix composites have great potential for application in various fields due to their outstanding properties.

  9. Resultaten van het RWS-RIKZ JAMP 2006 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot

    OpenAIRE

    Kotterman, M.J.J.; Barneveld, van, E.

    2007-01-01

    De in dit rapport beschreven werkzaamheden werden door IMARES uitgevoerd op basis van een opdracht van Rijkswaterstaat- Rijksinstituut voor Kust en Zee (RIKZ) in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens van bot. De benodigde monsters bot werden verzameld door IMARES. Tevens werd materiaal van bot verzameld voor chemisch onderzoek en geanalyseerd.

  10. Toepassing van de basisvrachtbenadering op fosfaat van compost; advies

    NARCIS (Netherlands)

    Ehlert, P.A.I.

    2005-01-01

    Bij het vormgeven van het stelsel van gebruiksnormen is een maatschappelijke discussie ontstaan over de aanvoer van fosfaat met grond in compost en zwarte grond. Deze deskstudie gaat in op vragen die hierbij gesteld zijn. Het aandeel grond in compost en zwarte grond en de hoeveelheid fosfaat daarin

  11. "Die beiteltjie" van N.P. van Wyk Louw en

    African Journals Online (AJOL)

    Tom

    belangrike kenmerk van die postmodernisme is, wil ek dit nie tot abso- lute kenmerk verhef nie. Een van die .... oorgang vanaf 'n epistemologiese ingesteldheid tot 'n ontologiese ingesteldheid demonstreer en ..... the neglected and a whole range of phenomena which have been denied a history. Die formulering van die ...

  12. Invioed van de zuurtegraad van varkensurine op de ammoniakemissie

    NARCIS (Netherlands)

    Eizing, A.; Aarnink, A.J.A.

    1996-01-01

    Dit rapport beschrijft het effect van een lagere urine-pH op de ammoniakemissie in een varkensstal. Het onderzoek is uitgevoerd in een modelopstelling met de zogenaamde stalsimulator, waarbij de invloed van de urine-pH op de ammoniakemissie werd onderzocht. Hiervoor werd de urine van vleesvarkens op

  13. Ontwerp van een interventie om de groenteconsumptie van jongeren te verhogen

    NARCIS (Netherlands)

    Gilissen, L.J.W.J.; Meer, van der I.M.; Reinders, M.J.; Sluis, van der A.A.; Woltering, E.J.

    2011-01-01

    In dit rapport zullen verschillende mogelijke strategieën besproken worden die ingezet kunnen worden om de consumptie van groenten door jongeren te verhogen. De centrale vragen van dit onderzoek zijn: 1) Hoe kunnen groenten in het eetpatroon van jongeren een vaste plek van voldoende omvang krijgen?

  14. Geometrical nonlinear free vibration of multi-layered graphene sheets

    International Nuclear Information System (INIS)

    Wang Jinbao; He Xiaoqiao; Kitipornchai, S; Zhang Hongwu

    2011-01-01

    A nonlinear continuum model is developed for the nonlinear vibration analysis of multi-layered graphene sheets (MLGSs), in which the nonlinear van der Waals (vdW) interaction between any two layers is formulated explicitly. The nonlinear equations of motion are studied by the harmonic-balance methods. Based on the present model, the nonlinear stiffened amplitude-frequency relations of double-layered graphene sheets (DLGSs) are investigated in the spectral neighbourhood of lower frequencies. The influence of the vdW interaction on the vibration properties of DLGSs is well illustrated by plotting the resulting modes' shapes, in which in-phase and anti-phase vibrations of DLGSs are studied. In particular, the large-amplitude vibration which associates with the anti-phase resonant frequencies, separating DLGS into single-layered GSs, is a promising application that needs to be explored further. In contrast, the vibration modes that are associated with the resonant frequencies are nonidentical and give various vibration patterns, which indicates that MLGSs are highly suited to being used as high-frequency resonators.

  15. Graphene transfer process and optimization of graphene coverage

    OpenAIRE

    Sabki Syarifah Norfaezah; Shamsuri Shafiq Hafly; Fauzi Siti Fazlina; Chon-Ki Meghashama Lim; Othman Noraini

    2017-01-01

    Graphene grown on transition metal is known to be high in quality due to its controlled amount of defects and potentially used for many electronic applications. The transfer process of graphene grown on transition metal to a new substrate requires optimization in order to ensure that high graphene coverage can be obtained. In this work, an improvement in the graphene transfer process is performed from graphene grown on copper foil. It has been observed that the graphene coverage is affected b...

  16. Reductie van het kiemgetal van bacteriën op champignons : literatuuroverzicht

    NARCIS (Netherlands)

    Baars, J.J.P.

    2006-01-01

    Dit rapport bevat een literatuurstudie waarin een overzicht wordt gegeven van de beschikbare literatuur m.b.t. hoogte van het kiemgetal van bacteriën op champignons en de grondstoffen voor de champignonteelt, aanwezigheid van pathogene bacteriën op champignons die in de retail worden aangeboden en

  17. Ground state magnetization of conduction electrons in graphene with Zeeman effect

    Energy Technology Data Exchange (ETDEWEB)

    Escudero, F., E-mail: federico.escudero@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Ardenghi, J.S., E-mail: jsardenhi@gmail.com [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Sourrouille, L., E-mail: lsourrouille@yahoo.es [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Jasen, P., E-mail: pvjasen@uns.edu.ar [Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, B8000CPB Bahía Blanca (Argentina); Instituto de Física del Sur (IFISUR, UNS-CONICET), Av. Alem 1253, B8000CPB Bahía Blanca (Argentina)

    2017-05-01

    In this work we address the ground state magnetization in graphene, considering the Zeeman effect and taking into account the conduction electrons in the long wavelength approximation. We obtain analytical expressions for the magnetization at T=0 K, where the oscillations given by the de Haas van Alphen (dHvA) effect are present. We find that the Zeeman effect modifies the magnetization by introducing new peaks associated with the spin splitting of the Landau levels. These peaks are very small for typical carrier densities in graphene, but become more important for higher densities. The obtained results provide insight of the way in which the Zeeman effect modifies the magnetization, which can be useful to control and manipulate the spin degrees of freedom. - Highlights: • The magnetization has peaks whenever the last energy level changes discontinuously. • The peaks amplitude depends on the electron density. • The Zeeman effect introduces new peaks in the magnetization.

  18. Het handwerk van de theorie in de praktijk van het Sociaal Werk

    Directory of Open Access Journals (Sweden)

    Hans Oostrik

    2010-06-01

    Sociaal werk is een narratieve praktijk. Vanuit een sociaal-constructivistische invalshoek, reflecteert de auteur in dit artikel op de vraag hoe vanuit deze narratieve praktijk tot theoretische handelingsmodellen kan worden gekomen. Drie elementen spelen daarbij een rol, welke door de auteur worden behandeld. Ten eerste zijn dat de vaardigheden van de professional, die bijdragen aan conceptualisering, zoals daar zijn: het signaleren van kwesties, het analyseren en vormen van begrippen en het ontwerpen van conceptuele modellen. Ten tweede kunnen theoretische modellen in de praktijk van het sociaal werk gebruikt worden als instrumenten om die praktijk als het ware te theoretiseren of reflectief te maken. De praktijk wordt met behulp van modellen zoals scenario’s en stappenplannen, verbeterd en verder ontwikkeld. Ten derde bestaat het handwerk van de theorie in het innemen van een theoretische houding of praktische verstandigheid waardoor sociaal werkers beter om kunnen gaan met de complexiteit van hun praktijk.

  19. Effecten van wintergewassen op verliezen en benutting van stikstof bij de teelt van snijmaos; verslag van onderzoek op ROC Aver-Heino tussen voorjaar 1991 en najaar 1994

    NARCIS (Netherlands)

    Dijk, van W.; Schröder, J.J.; Holte, ten L.; Groot, de W.J.M.

    1995-01-01

    Tussen 1988 en 1994 is onderzoek verricht naar de effecten van wintergewassen (winterrogge en onderzaai van gras) op de verliezen en benutting van stikstof bij continuteelt van snijmaos op zandgrond. Gemiddeld over de gehele onderzoeksperiode nam zowel rogge als gras 30-40 kg/ha op in de

  20. Gebruik van TaqMan PCR voor het kwantificeren van Fusarium spp. en Microdochium nivale in gewassen en gewasresten van tarwe.

    NARCIS (Netherlands)

    Köhl, J.; Haas, de B.H.; Kastelein, P.; Burgers, S.L.G.E.; Waalwijk, C.

    2005-01-01

    Infecties van tarwe door toxigene Fusarium spp. kunnen leiden tot contaminatie van graan met diverse mycotoxines. Voorkoming van mycotoxinebesmetting is uit oogpunt van voedselveiligheid, diergezondheid, maar ook bedrijfseconomisch, vereist. Voor vier Fusariumsoorten is een kwantitatieve detectie

  1. Van die Gasredakteur

    African Journals Online (AJOL)

    cherish and teach.'1. Die Fakulteit Geneeskunde van die Universiteit van die Oranje-Vrystaat het pragtig gegroei ge- durende die eerste 21 jaar van sy bestaan. Die entoesiasme, doelgerigtheid, harde werk en inisia- tiewe van 'n groot aantal persone was hiervoor verantwoordelik. 'If we see a bit more clearly than they, it is ...

  2. Electroactive and Optoelectronically Active Graphene Nanofilms

    DEFF Research Database (Denmark)

    Chi, Qijin

    As an atomic-scale-thick two-dimensional material, graphene has emerged as one of the most miracle materials and has generated intensive interest in physics, chemistry and even biology in the last decade [1, 2]. Nanoscale engineering and functionalization of graphene is a crucial step for many...... applications ranging from catalysis, electronic devices, sensors to advanced energy conversion and storage [3]. This talk highlights our recent studies on electroactive and optoelectronically active graphene ultrathin films for chemical sensors and energy technology. The presentation includes a general theme...... for functionalization of graphene nanosheets, followed by showing several case studies. Our systems cover redox-active nanoparticles, electroactive supramolecular ensembles and redox enzymes which are integrated with graphene nanosheets as building blocks for the construction of functional thin films or graphene papers....

  3. De werking van de hydro- en acetylverbindingen van kinidine en kinine op het hart van Rana esculenta

    NARCIS (Netherlands)

    Sibie, Johan Dirk

    1942-01-01

    In hoofdstuk I werd een inleiding gegeven betreffende de geschiedenis van de kina en van het begin der kinacultuur op Java, de chemie der kinaälkaloïden en enkele aspecten der pharmacologische werking van de kinaderivaten. ... Zie: Samenvatting

  4. Introductie van de Chevon : een zoektocht naar de afzet van geitenvlees

    NARCIS (Netherlands)

    Eleveld, I.; Louis Bolk,

    2008-01-01

    Het afmesten en afzetten van lammeren op een biologisch bedrijf is geen gemakkelijke weg. Aan de smaak van het vlees zal het niet liggen. De chevon, lammeren met een leeftijd van 5 tot 7 maand, geven vlees met karakter: een vleugje geit! De onbekendheid van het vlees vereist een zorgvuldige

  5. Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling

    Science.gov (United States)

    Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.

    2018-01-01

    Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.

  6. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Ding, Yaping, E-mail: wdingyp@sina.com; Jiang, Feng; Li, Li; Mo, Fan

    2014-06-23

    Graphical abstract: A nanocomposite of nitrogen-doped graphene (NGR) and nitrogen-doped carbon nanotubes (NCNTs) was first modified onto an electrode through electrodeposition method and employed to sensitively detect caffeine and vanillin simultaneously for the first time. - Highlights: • The first electrochemical sensor for caffeine (CAF) and vanillin (VAN). • NGR–NCNTs was modified through electrodeposition for the first time. • The sensor was qualified for real sample determination with satisfactory results. - Abstract: A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10{sup −3} μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application.

  7. Electrodeposited nitrogen-doped graphene/carbon nanotubes nanocomposite as enhancer for simultaneous and sensitive voltammetric determination of caffeine and vanillin

    International Nuclear Information System (INIS)

    Jiang, Lin; Ding, Yaping; Jiang, Feng; Li, Li; Mo, Fan

    2014-01-01

    Graphical abstract: A nanocomposite of nitrogen-doped graphene (NGR) and nitrogen-doped carbon nanotubes (NCNTs) was first modified onto an electrode through electrodeposition method and employed to sensitively detect caffeine and vanillin simultaneously for the first time. - Highlights: • The first electrochemical sensor for caffeine (CAF) and vanillin (VAN). • NGR–NCNTs was modified through electrodeposition for the first time. • The sensor was qualified for real sample determination with satisfactory results. - Abstract: A nitrogen-doped graphene/carbon nanotubes (NGR–NCNTs) nanocomposite was employed into the study of the electrochemical sensor via electrodeposition for the first time. The morphology and structure of NGR–NCNTs nanocomposite were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. Meanwhile, the electrochemical performance of the glassy carbon electrode (GCE) modified with electrodeposited NGR–NCNTs (ENGR–NCNTs/GCE) towards caffeine (CAF) and vanillin (VAN) determination was demonstrated by cyclic voltammetry (CV) and square wave voltammetry (SWV). Under optimal condition, ENGR–NCNTs/GCE exhibited a wide linearity of 0.06–50 μM for CAF and 0.01–10 μM for VAN with detection limits of 0.02 μM and 3.3 × 10 −3 μM, respectively. Furthermore, the application of the proposed sensor in food products was proven to be practical and reliable. The desirable results show that the ENGR–NCNTs nanocomposite has promising potential in electrocatalytic biosensor application

  8. Raman Excitation Profile of the G-band Enhancement in Twisted Bilayer Graphene

    Science.gov (United States)

    Eliel, G. S. N.; Ribeiro, H. B.; Sato, K.; Saito, R.; Lu, Chun-Chieh; Chiu, Po-Wen; Fantini, C.; Righi, A.; Pimenta, M. A.

    2017-12-01

    A resonant Raman study of twisted bilayer graphene (TBG) samples with different twisting angles using many different laser lines in the visible range is presented. The samples were fabricated by CVD technique and transferred to Si/SiO2 substrates. The Raman excitation profiles of the huge enhancement of the G-band intensity for a group of different TBG flakes were obtained experimentally, and the analysis of the profiles using a theoretical expression for the Raman intensities allowed us to obtain the energies of the van Hove singularities generated by the Moiré patterns and the lifetimes of the excited state of the Raman process. Our results exhibit a good agreement between experimental and calculated energies for van Hove singularities and show that the lifetime of photoexcited carrier does not depend significantly on the twisting angle in the range intermediate angles ( 𝜃 between 10∘ and 15∘). We observed that the width of the resonance window (Γ ≈ 250 meV) is much larger than the REP of the Raman modes of carbon nanotubes, which are also enhanced by resonances with van Hove singularities.

  9. Graphene and Graphene Metamaterials for Terahertz Absorbers

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Pizzocchero, Filippo; Booth, Tim

    2013-01-01

    Graphene, due to the possibility to tune its conductivity, is the promising material for a range of the terahertz (THz) applications, such as tunable reflectors, absorbers, modulators, filters and polarization converters. Subwavelength structuring of graphene in order to form metamaterials allows...... for even more control over the THz waves. In this poster presentation I will show an elegant way to describe the graphene metamaterials and the design of graphene based absorbers. I will also present our recent experimental results on the graphene absorbers characterization....

  10. De auteursrechtelijke aansprakelijkheid van intermediairs, het kabelpiratenarrest revisited in de tijd van Internet

    NARCIS (Netherlands)

    Dommering, E.J.; Verkade, D.W.F.; Visser, D.J.G.

    1998-01-01

    Het kabelpiratenarrest vestigde de auteursrechtelijke aansprakelijkheid van de kabelexploitant voor het verspreiden van gestolen films die clandestien na de uitzendingen van de reguliere omroepen werden uitgezonden met gebruikmaking van de centrale antenne-inrichting van KTA. Zouden wij de

  11. Graphene and graphene oxide: biofunctionalization and applications in biotechnology.

    Science.gov (United States)

    Wang, Ying; Li, Zhaohui; Wang, Jun; Li, Jinghong; Lin, Yuehe

    2011-05-01

    Graphene is the basic building block of 0D fullerene, 1D carbon nanotubes, and 3D graphite. Graphene has a unique planar structure, as well as novel electronic properties, which have attracted great interests from scientists. This review selectively analyzes current advances in the field of graphene bioapplications. In particular, the biofunctionalization of graphene for biological applications, fluorescence-resonance-energy-transfer-based biosensor development by using graphene or graphene-based nanomaterials, and the investigation of graphene or graphene-based nanomaterials for living cell studies are summarized in more detail. Future perspectives and possible challenges in this rapidly developing area are also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. De mislukte missie van mr. Maarten van Naarden als luitenant-stadhouder van Stad en Lande 1541-1557

    Directory of Open Access Journals (Sweden)

    F. Postma

    2005-01-01

    Full Text Available Maarten van Naarden’s failed mission  as lieutenant-stadholder of the province of Groningen, 1541-1557In November 1557, Maarten van Naarden resigned from his post as lieutenant-stadholder of the province of Groningen and left the province after staying there for sixteen years. Van Naarden’s resignation was preceded by a number of conflicts with the Groningen town council and the States of the province. However, these conflicts were neither confined to Van Naarden nor the province of Groningen. They had also taken place  in other provinces in the Northeast of the Netherlands. What makes Van Naarden’s clash with the Groningen provincial authorities in the 1550s so important is that it clarifies the principles that were at stake. These principles were less apparent in the conflicts between the representatives of the central government in Friesland, Overijssel and Gelderland. It was a struggle in which Van Naarden tried, as his opponents rightly saw it, to introduce the ‘constitution’ of Utrecht in the town and county of Groningen. In Utrecht, which had been annexed by Charles V in 1528, the autonomy of the province had been reduced to next to nothing. The only authority still resting with the States was the surveillance of the provincial dikes and waterways. All their other areas of authority had been taken over by the provincial court of which Van Naarden had been president between 1537 and 1541. To avoid the same thing happening to them, Van Naarden was ordered to appear before the Groningen States assembly in January 1556. At this meeting, the weakness of his position became crystal clear. None of the members took his side. Because the government lacked the means to keep Van Naarden in office, his withdrawal from Groningen was inevitable. What we see behind the story of Van Naarden more clearly than in the conflicts in the neighbouring provinces is the outline of the absolute state that Van Naarden’s superiors had in mind for the

  13. DIE ROL VAN DIE TAALWETENSKAP IN DIE ONTWIKKELING VAN ...

    African Journals Online (AJOL)

    aanslag op die sogenaamde "Intentional Fallacy", heelwat verder. n. Mens sou hier eintlik ook op die invloed van Lacan se toepassing van. De Sacs sure op Freud moet wys, en op Macherey se Theory of Literary. Production. Barthes is naamlik besig om repressie teen te werk, en die teks as produksieproses in stede van ...

  14. 'n Voordrag van Adrianus van Seims oor hermeneutiek | Boshoff ...

    African Journals Online (AJOL)

    A lecture on hermeneutics by Adrianus van Seims This article is the content of a lecture on hermeneutics given by A van Seims. After a few opening words on the introduction to the lecture and its content, the presentation is reproduced in its entirety. Van Seims considers that hermeneutics is concerned not only with ...

  15. "Krakende kaken"; psychiatrische beschouwingen over het syndroom van het pijnlijke, slecht functionerende kaakgewricht (Arthrosis deformans van het kaakgewricht of het syndroom van Costen)

    NARCIS (Netherlands)

    Schuler, Jacques

    1966-01-01

    Naar aanleiding van klinische indrukken en mede op grond van literatuurgegevens werd een psychiatrisch onderzoek verricht naar het aandeel van psychogene factoren bij het tot stand komen van kaakgewrichtsklachten. Het klachtencomplex dat van stoornissen in de functie van het kaakgewricht het gevolg

  16. Graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes

    Science.gov (United States)

    Liu, Jun; Lemmon, John P; Yang, Zhenguo; Cao, Yuiliang; Li, Xiaolin

    2014-06-17

    Rechargeable lithium-sulfur batteries having a cathode that includes a graphene-sulfur nanocomposite can exhibit improved characteristics. The graphene-sulfur nanocomposite can be characterized by graphene sheets with particles of sulfur adsorbed to the graphene sheets. The sulfur particles have an average diameter less than 50 nm..

  17. Voedselverspilling, waarden van voedsel in de keten : de mogelijke rol van het groene onderwijs bij het oplossen van een maatschappelijke opgave

    OpenAIRE

    Waarts, Y.R.; Onwezen, M.C.; Wiersinga, R.C.; Eppink, M.M.; Thoden van Velzen, E.U.; Timmermans, A.J.M.

    2009-01-01

    Het doel van deze verkenning is om op basis van literatuur en interviews met belangrijkste stakeholders een visie te formuleren over de wijze waarop het groene onderwijs een bijdrage kan leveren aan het verminderen van voedselverliezen binnen alle schakels van de keten inclusief de consument, en aan de nuttige toepassing van reststromen.

  18. die impak van metodologie op die verstaan van die nuwe testament

    African Journals Online (AJOL)

    voorbeeld eers een maal deur die bril van die vorm- en redaksiekritiek na die Evangelies gekyk het, dink jy vir altyd anders oor hulle tot- standkoming. Inderdaad, nuwe metodes lei tot nuwe perspektiewe! Dit is dan ook waar die fokus van hierdie artikel val: die impak van metodologie op die verstaan van die Nuwe ...

  19. Effectieve bestrijding van varroa

    NARCIS (Netherlands)

    Cornelissen, B.; Blacquiere, T.; Steen, van der J.J.M.

    2010-01-01

    De varroa mijtziekte (Varroa destructor) is de belangrijkste bedreiging van de Europese honingbij. Wintersterfte van honingbijen is in de meeste gevallen toe te schrijven aan deze ziekte. Deze brochure van de WUR biedt informatie over de biologie van varroa, de effecten van varroa op honingbijen en

  20. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Science.gov (United States)

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  1. Prediking aan die hand van die metafoor van fiksieskryf

    African Journals Online (AJOL)

    p1243322

    HTS 64(3) 2008 siening van die self en waarheid. In die pre-moderne paradigma kan die dominante metafoor verstaan word aan die hand van 'n spieël wat die lig uit 'n transendente oorsprong weerkaats, terwyl die moderne paradigma uitgedruk word met die metafoor van 'n lamp wat 'n eie, oorspronklike lig binne die self.

  2. Optimaliseren van een biovergister

    NARCIS (Netherlands)

    van der Bij, Joost; Rademaker, Mark; Visser, Klaas; de Vries, Herman

    2014-01-01

    Dit rapport beschrijft onderzoek van conversie van biomassa in een Swill-gasser geplaatst bij het Van der Valk restaurant in Cuijk. De Swill-gasser is een biomassa vergister voor restaurant afval. Het onderzoek heeft zich gericht op het optimaliseren van de data acquisitie en op het bepalen van de

  3. Kenmerkend van hierdie afdeling is die tema van ouderdom wat in ...

    African Journals Online (AJOL)

    8 Apr 2016 ... Kenmerkend van hierdie afdeling is die tema van ouderdom wat in menige van die stories voorkom. Hier is dit die onvermydelike aftakelingsproses van die liggaam (en verstand) wat 'n beduidende invloed op die skrywer het. In verhale soos “Wat 'n lieflike geraas”, “Die ou met die overall”, “Lofredes en ...

  4. Bepaling van enkele neurotransmitters, monoaminen, en metabolieten, met behulp van Continuous Flowapparatuur

    NARCIS (Netherlands)

    Eigeman L; Schonewille F; Borst M; van der Laan JW

    1986-01-01

    Bij het onderzoek in de psychofarmacologie kan kennis van de effecten van stoffen op de omzettingssnelheid van neurotransmitters een belangrijk aspect zijn. Met de huidige psychofarmaca lijken vooral de klassieke neurotransmitters zoals de monoaminen, noradrenaline, dopamine en serotonine van

  5. Kansen voor conflictbemiddeling : Verslag van een onderzoek naar de toepassingsmogelijkheden van conflictbemiddeling

    NARCIS (Netherlands)

    Geveke, Henk; Plant, Ernelies; Thieme, Marianneke; Verberk, Marielle

    1998-01-01

    In opdracht van het Platform ADR, een klankbordgroep en denktank op het gebied van alternatieve geschilbeslechting, is onderzoek verricht naar de toepasbaarheid van een specifieke vorm van Alternative Dispute Resolution (ADR): conflictbemiddeling (mediation). De onderzoeksopdracht was als volgt: het

  6. Nano/biosensors based on large-area graphene

    Science.gov (United States)

    Ducos, Pedro Jose

    Two dimensional materials have properties that make them ideal for applications in chemical and biomolecular sensing. Their high surface/volume ratio implies that all atoms are exposed to the environment, in contrast to three dimensional materials with most atoms shielded from interactions inside the bulk. Graphene additionally has an extremely high carrier mobility, even at ambient temperature and pressure, which makes it ideal as a transduction device. The work presented in this thesis describes large-scale fabrication of Graphene Field Effect Transistors (GFETs), their physical and chemical characterization, and their application as biomolecular sensors. Initially, work was focused on developing an easily scalable fabrication process. A large-area graphene growth, transfer and photolithography process was developed that allowed the scaling of production of devices from a few devices per single transfer in a chip, to over a thousand devices per transfer in a full wafer of fabrication. Two approaches to biomolecules sensing were then investigated, through nanoparticles and through chemical linkers. Gold and platinum Nanoparticles were used as intermediary agents to immobilize a biomolecule. First, gold nanoparticles were monodispersed and functionalized with thiolated probe DNA to yield DNA biosensors with a detection limit of 1 nM and high specificity against noncomplementary DNA. Second, devices are modified with platinum nanoparticles and functionalized with thiolated genetically engineered scFv HER3 antibodies to realize a HER3 biosensor. Sensors retain the high affinity from the scFv fragment and show a detection limit of 300 pM. We then show covalent and non-covalent chemical linkers between graphene and antibodies. The chemical linker 1-pyrenebutanoic acid succinimidyl ester (pyrene) stacks to the graphene by Van der Waals interaction, being a completely non-covalent interaction. The linker 4-Azide-2,3,5,6-tetrafluorobenzoic acid, succinimidyl ester (azide

  7. Adsorption of CO molecules on doped graphene: A first-principles study

    Directory of Open Access Journals (Sweden)

    Weidong Wang

    2016-02-01

    Full Text Available As a typical kinds of toxic gases, CO plays an important role in environmental monitoring, control of chemical processes, space missions, agricultural and medical applications. Graphene is considered a potential candidate of gases sensor, so the adsorption of CO molecules on various graphene, including pristine graphene, Nitrogen-doped graphene (N-doped graphene and Aluminum-doped graphene (Al-doped graphene, are studied by using first-principles calculations. The optimal configurations, adsorption energies, charge transfer, and electronic properties including band structures, density of states and differential charge density are obtained. The adsorption energies of CO molecules on pristine graphene and N-doped graphene are −0.01 eV, and −0.03 eV, respectively. In comparison, the adsorption energy of CO on Al-doped graphene is much larger, −2.69 eV. Our results also show that there occurs a large amount of charge transfer between CO molecules and graphene sheet after the adsorption, which suggests Al-doped graphene is more sensitive to the adsorption of CO than pristine graphene and N-doped graphene. Therefore, the sensitivity of gases on graphene can be drastically improved by introducing the suitable dopants.

  8. De mislukte missie van mr. Maarten van Naarden als luitenant-stadhouder van Stad en Lande 1541-1557

    NARCIS (Netherlands)

    Postma, F.

    2005-01-01

    Maarten van Naarden’s failed mission as lieutenant-stadholder of the province of Groningen, 1541-1557 In November 1557, Maarten van Naarden resigned from his post as lieutenant-stadholder of the province of Groningen and left the province after staying there for sixteen years. Van Naarden’s

  9. Ondersoek na ’n teoretiese onderskraging van boekkuns: Die toepassing van Bakhtin se dialogisme en heteroglossia op geselekteerde voorbeelde van kunstenaarsboeke

    Directory of Open Access Journals (Sweden)

    David Paton

    2012-11-01

    Full Text Available Onlangse navorsingsprojekte en konferensies oor boekkuns het gereageer op Johanna Drucker se oproep in 2005 dat noodsaaklike navorsingswerk gedoen moet word om ’n deegliker teoretiese basis vir die terrein van boekkunsproduksie te vestig. Die deelname van kunstenaars en ander praktisyns van boekkuns veroorsaak dat gesprekke en besprekings noodwendig en voorspelbaar neig na die praktyk en weg van die teorie. In die lig van die behoefte aan die bepaling van ’n toepaslike visie waarvolgens die kunsboek meer eksplisiet, ook teoreties, ondersoek kan word, ondersoek hierdie artikel Stéphane Mallarmé en Marcel Broodthaers se Un coup de dés publikasies, Buzz Spector se simplifiserende Marcel Broodthaers, Ulises Carrion se For fans and scholars alike, en Helen Douglas en Telfer Stokes se Real fiction. Hierdie spesifieke voorbeelde, en hulle onderlinge verbande en dialoog met mekaar, word ondersoek vanuit die perspektief van die Russiese filosoof en literêre teoretikus Mikhail Bakhtin se werk oor dialogisme en heteroglossia (‘ander-tongigheid’. Hierdie begrippe demonstreer die dialogiese, multivokale en veeltongige wisselwerking tussen en binne historiese werke as kultuuruitings. Deur die analise toon ek aan dat hierde begrippe toepaslike en funksionele raamwerke uitmaak vir die analise van spesifieke aspekte wat die teenwoordigheid van kunstenaarsboeke aankondig in die wêreld: selfbewustheid en omvattende diskoers wat wederkerend toepaslik is. Ek stel voor dat Bakthin se idees oor dialogisme en heteroglossie gebruik word as die teoretiese begronding van die kunstenaarsboek as ’n dinamiese visuele taal wat in ’n netwerk van ander tekste staan en deel is van die proses van die eindelose herbeskrywing van die wêreld.

  10. Electrochemical double-layer capacitors based on functionalized graphene

    Science.gov (United States)

    Pope, Michael Allan

    graphene monolayers can exhibit four-fold higher double-layer capacitance than pristine graphene. High temperature annealing lowered the capacitance until it approached that of pristine graphene. An optimal level of functionalization and lattice disorder is found necessary to retain high double-layer capacitance suggesting that graphene-based materials can be chemically tailored to engineer higher capacitance electrodes. The second half of this thesis focuses on understanding the factors that control the SSA of FGS aggregates when processed into dense electrodes and the development of a new electrode fabrications strategy to improve the ion-accessible surface area of FGS-based electrodes. Using various processing conditions, it was demonstrated that aggregates can exhibit a wide range of SSAs (1 m 2/g to 1750 m2/g) accessible to the adsorption of nitrogen or methylene blue. The effects of capillary forces, van der Waals interactions and aggregation kinetics on the SSA were explored and an aggregation model was proposed to account for these effects. In order to minimize aggregation, a new strategy for preparing graphene-based electrodes for EDLCs was developed. Colloidal gels of graphene oxide in a water-ethanol-ionic liquid solution were assembled into graphene-ionic liquid laminated structures. Our process involves evaporating the solvents water and ethanol yielding a graphene oxide/ionic liquid composite, followed by thermal reduction of the graphene oxide to electrically conducting functionalized graphene. This yields an electrode in which the ionic liquid serves not only as the working electrolyte but also as a spacer to separate the graphene sheets and to increase their electrolyte-accessible surface area. Using this approach, we achieve an outstanding energy density of 17.5 Wh/kg at a gravimetric capacitance of 156 F/g and 3 V operating voltage, due to a high effective density of the active electrode material of 0.46 g/cm2. By increasing the ionic liquid content and

  11. Fabrication and characterization of graphene/molecule/graphene vertical junctions with aryl alkane monolayers

    Science.gov (United States)

    Jeong, Inho; Song, Hyunwook

    2017-11-01

    In this study, we fabricated and characterized graphene/molecule/graphene (GMG) vertical junctions with aryl alkane monolayers. The constituent molecules were chemically self-assembled via electrophilic diazonium reactions into a monolayer on the graphene bottom electrode, while the other end physically contacted the graphene top electrode. A full understanding of the transport properties of molecular junctions is a key step in the realization of molecular-scale electronic devices and requires detailed microscopic characterization of the junction's active region. Using a multiprobe approach combining a variety of transport techniques, we elucidated the transport mechanisms and electronic structure of the GMG junctions, including temperature- and length-variable transport measurements, and transition voltage spectroscopy. These results provide criteria to establish a valid molecular junction and to determine the most probable transport characteristics of the GMG junctions.

  12. Graphene plasmonics: physics and potential applications

    Directory of Open Access Journals (Sweden)

    Huang Shenyang

    2016-10-01

    Full Text Available Plasmon in graphene possesses many unique properties. It originates from the collective motion of massless Dirac fermions, and the carrier density dependence is distinctively different from conventional plasmons. In addition, graphene plasmon is highly tunable and shows strong energy confinement capability. Most intriguingly, as an atom-thin layer, graphene and its plasmon are very sensitive to the immediate environment. Graphene plasmons strongly couple to polar phonons of the substrate, molecular vibrations of the adsorbates, and lattice vibrations of other atomically thin layers. In this review, we present the most important advances in graphene plasmonics field. The topics include terahertz plasmons, mid-infrared plasmons, plasmon-phonon interactions, and potential applications. Graphene plasmonics opens an avenue for reconfigurable metamaterials and metasurfaces; it is an exciting and promising new subject in the nanophotonics and plasmonics research field.

  13. Resultaten van het RWS-RIKZ JAMP 2006 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot

    NARCIS (Netherlands)

    Kotterman, M.J.J.; Barneveld, van E.

    2007-01-01

    De in dit rapport beschreven werkzaamheden werden door IMARES uitgevoerd op basis van een opdracht van Rijkswaterstaat- Rijksinstituut voor Kust en Zee (RIKZ) in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De opdracht hield in het verkrijgen van biologische gegevens

  14. Graphene oxide particles and method of making and using them

    KAUST Repository

    Rasul, Shahid; Da Costa, Pedro M. F. J.; Alazmi, Amira

    2017-01-01

    The present invention is an improved method of production of graphenic materials used to store energy and the energy storage systems using such produced graphenic materials. Provided herein is a method of producing graphene oxide that includes oxidizing graphite powder in a mixture of H3PO4 and H2SO4 in the presence of KMnO4, wherein the ratio of graphite powder to KMnO4 is about 1:9 by weight and the ratio of H3PO4 to H2SO4 is about 1:9 by volume, to produce graphene oxide; dispersing the graphene oxide in water at an acidic pH (e.g., about 0) to form a solution; adjusting the solution to about a neutral pH; and isolating the graphene oxide. An energy storage device is provided herein that includes the graphene oxide made by the disclosed methods or that includes the population (plurality) of reduced graphene oxide particles having the properties disclosed herein, such as batteries and supercapacitors.

  15. Graphene oxide particles and method of making and using them

    KAUST Repository

    Rasul, Shahid

    2017-12-07

    The present invention is an improved method of production of graphenic materials used to store energy and the energy storage systems using such produced graphenic materials. Provided herein is a method of producing graphene oxide that includes oxidizing graphite powder in a mixture of H3PO4 and H2SO4 in the presence of KMnO4, wherein the ratio of graphite powder to KMnO4 is about 1:9 by weight and the ratio of H3PO4 to H2SO4 is about 1:9 by volume, to produce graphene oxide; dispersing the graphene oxide in water at an acidic pH (e.g., about 0) to form a solution; adjusting the solution to about a neutral pH; and isolating the graphene oxide. An energy storage device is provided herein that includes the graphene oxide made by the disclosed methods or that includes the population (plurality) of reduced graphene oxide particles having the properties disclosed herein, such as batteries and supercapacitors.

  16. Voedingpraktyke en behoeftes van hulpbron-arm gemeenskappe deur die oë van laerskoolonderwysers

    Directory of Open Access Journals (Sweden)

    Ronel Ferreira

    2013-02-01

    Full Text Available In hierdie artikel bespreek ons die persepsies van onderwysers (n = 45 wat betref die voedingpraktyke van ’n steekproef laerskoolleerders en hul gesinne in ’n hulpbron-arm gemeenskap. Ons fokus spesifiek op die behoeftes, praktyke en verwagtings ten opsigte van die gebruik van voedsel, wat die produksie, keuse en voorbereiding van voedsel impliseer. Ons studie vorm die eerste deel van ’n groter institusionele navorsingprojek. Vir die doel van ons studie het ons deelnemende refleksie en aksie-gebaseerde werkwinkels gehou om data te genereer en tydens die interpretasie van bevindinge op interpretivisme staatgemaak. Hierdie studie beklemtoon die behoeftes van hulpbron-arm en werklose gemeenskapslede wat dikwels genoodsaak is om teen verlaagde pryse voedsel te koop waarvan die kwaliteit nie optimaal is nie. ’n Verskraalde ontbyt, middagete of aandete waarvan die keuse algemeen beperk is tot swart tee, pap en een of twee snye ou brood, bevestig die manifestasies van armoede in hulpbron-arm gemeenskappe. Maaltye is dikwels beperk tot groot hoeveelhede koolhidrate, min groente, ingelegde vis, pap met inkomazi en marog. Hoenderpote en afval vul soms die spyskaart aan. Onderwysers beklemtoon die feit dat gemeenskapslede tipies op skenkings van werkgewers, kerke en kruidenierswinkels staatmaak om hul voedselbegroting aan te vul. Onderwysers fokus verder op die behoeftes aan opleiding vir gemeenskapslede. Na hulle mening moet gemeenskappe ingelig word oor voedselproduksie, groentetuine, die wyses waarop die kwaliteit van grond bepaal kan word, besproeiing en die toepassing van volhoubare wisselbou. Die artikel word afgesluit met uitvoerbare en leersame wenke vir die opleiding van landelike gemeenskappe. Op grond van dié navorsingsbevindinge word ’n intervensieprogram tans ontwikkel, met die doel om dit in die onderskeie deelnemende skole te implementeer ter bevordering van gesonde voedselverwante gedrag en welsyn.

  17. Beheersing van valse meeldauw in de akkerbouwmatige teelt van peterselie

    NARCIS (Netherlands)

    Mheen, van der H.J.C.J.; Lamers, J.G.

    2009-01-01

    In 2007 en 2008 heeft PPO-agv in opdracht van het Productwschap Akkerbouw onderzoek gedaan naar de beheersing van valse meeldauw in de akkerbouwmatige teelt van peterselie. Diverse fungicidentoepassingen zijn in staat om de peterselie (in meer of mindere mate) tegen valse meeldauw te beschermen.

  18. Expansion and exfoliation of graphite to form graphene

    KAUST Repository

    Patole, Shashikan P.

    2017-07-27

    Graphene production methods are described based on subjecting non- covalent graphite intercalated compounds, such as graphite bisulfate, to expansion conditions such as shocks of heat and/or microwaves followed by turbulence-assisted exfoliation to produce few-layer, high quality graphene flakes. Depending on the approach selected for the exfoliation step, free-flowing graphene powder, graphene slurry, or an aqueous graphene mixture can be obtained. Surfactants can aid in dispersion, and graphene inks can be formed. The parameters of the process are simple, efficient and low-cost enabling therefore the scale- up of production. Applications include electrodes and energy storage devices.

  19. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xiong-Yi [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Ding, Ning [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan 250014 (China); Ng, Siu-Pang [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Wu, Chi-Man Lawrence, E-mail: lawrence.wu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Academy of Sciences, Jinan 250014 (China)

    2017-07-31

    Highlights: • H{sub 2}O, NH{sub 3}, CO, NO{sub 2} and NO are physically adsorbed on pristine graphene. • The adsorption energies of all gas molecules on graphene are increased after doping with Ga. • NO{sub 2} shows the strongest affinity to Ga-doped graphene. • The electronic properties and adsorption of NO{sub 2} on graphene and can be effectively tuned using an external electric field. - Abstract: Density functional theory calculations have been carried out to study the adsorption of varous gas molecules (H{sub 2}O, NH{sub 3}, CO, NO{sub 2} and NO) on pristine graphene and Ga-doped graphene in order to explore the feasibility of Ga-doped graphene based gas sensor. For each gas molecule, various adsorption positions and orientations were considered. The most stable configuration was determined and the adsorption energies with van der Waals interactions were calculated. Further, electronic properties such as electron density, density of states, charge transfer and band structure were investigated to understand the mechanism of adsorption. The results showed that the gas molecules studied were only weakly adsorbed on pristine graphene with small adsorption energies. On the other hand, the adsorption energies of all gas molecules on Ga-doped graphene increased by various amounts. Adsorption of gas molecules on Ga-doped graphene can open a relatively large band gap ranging from 0.267 to 0.397 eV. NO{sub 2} was found to be very sensitive to Ga-doped graphene with adsorption energy of −1.928 eV due to strong orbital hybridization and large charge transfer. Furthermore, our study suggests that the affinity and electronic properties of NO{sub 2} on Ga-doped graphene can be dramatically changed by an external electric field. A negative electric field enhances the adsorption of NO{sub 2} on Ga-doped graphene as reflected in the increase in adsorption energy. In contrast, the interaction will be weakened under a positive electric field. The results of the DFT

  20. Adsorption of gas molecules on Ga-doped graphene and effect of applied electric field: A DFT study

    International Nuclear Information System (INIS)

    Liang, Xiong-Yi; Ding, Ning; Ng, Siu-Pang; Wu, Chi-Man Lawrence

    2017-01-01

    Highlights: • H_2O, NH_3, CO, NO_2 and NO are physically adsorbed on pristine graphene. • The adsorption energies of all gas molecules on graphene are increased after doping with Ga. • NO_2 shows the strongest affinity to Ga-doped graphene. • The electronic properties and adsorption of NO_2 on graphene and can be effectively tuned using an external electric field. - Abstract: Density functional theory calculations have been carried out to study the adsorption of varous gas molecules (H_2O, NH_3, CO, NO_2 and NO) on pristine graphene and Ga-doped graphene in order to explore the feasibility of Ga-doped graphene based gas sensor. For each gas molecule, various adsorption positions and orientations were considered. The most stable configuration was determined and the adsorption energies with van der Waals interactions were calculated. Further, electronic properties such as electron density, density of states, charge transfer and band structure were investigated to understand the mechanism of adsorption. The results showed that the gas molecules studied were only weakly adsorbed on pristine graphene with small adsorption energies. On the other hand, the adsorption energies of all gas molecules on Ga-doped graphene increased by various amounts. Adsorption of gas molecules on Ga-doped graphene can open a relatively large band gap ranging from 0.267 to 0.397 eV. NO_2 was found to be very sensitive to Ga-doped graphene with adsorption energy of −1.928 eV due to strong orbital hybridization and large charge transfer. Furthermore, our study suggests that the affinity and electronic properties of NO_2 on Ga-doped graphene can be dramatically changed by an external electric field. A negative electric field enhances the adsorption of NO_2 on Ga-doped graphene as reflected in the increase in adsorption energy. In contrast, the interaction will be weakened under a positive electric field. The results of the DFT calculation indicates the potential application of Ga

  1. Inzicht in het presteren van de executieketen : Ontwikkeling van een monitor voor het meten van Kritieke Prestatie Indicatoren in de Executieketen

    NARCIS (Netherlands)

    Braak, S.W. van den; Netten, C.P.M.; Witzenburg, R. van

    2013-01-01

    Dit zijn de voorlopige resultaten van het ontwikkelprojcet Monitor Kritieke Prestatie Indicatoren Executieketen. Het structureel meten van de vastgestelde Kritieke Prestatie Indicatoren (KPI's) behelst het periodiek verzamelen, bewerken en presenteren van grote hoeveelheden data van verschillende

  2. The possibility of superconductivity in twisted bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Manaf, Muhamad Nasruddin, E-mail: muhamad.nasruddin.manaf@mail.ugm.ac.id; Santoso, Iman, E-mail: iman.santoso@ugm.ac.id; Hermanto, Arief [Jurusan Fisika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Gadjah Mada, Bulaksumur 55281, Yogyakarta (Indonesia); Yayasan Hikmah Teknosains, Jl. Kaliurang Km 5,3 Gg. Pamungkas No. 16 A, Yogyakarta (Indonesia)

    2015-09-30

    We discuss the possibility of superconductivity in Twisted Bilayer Graphene (TBG). In this study we use TBG model with commensurate rotation θ=1.16° in which the van-Hove singularities (VHS) arise at 6 meV from the Fermi level. We use BCS standard formula that include Density of States (DOS) to calculate the critical temperature (T{sub C}). Based on our calculation we predict that superconductivity will not arise in Pristine TBG because pairing potential has infinity value. In this situation, Dirac Fermions do not interact with each other since they do not form the bound states. Superconductvity may arise when the Fermi level is shifted towards the VHS. Based on this calculation, we predict that T{sub C} has value between 0.04 K and 0.12 K. The low value of T{sub C} is due to highly energetic of in plane phonon vibration which reduce the effective electron-phonon coupling. We conclude that doped TBG is candidate for Dirac Fermion superconductor.

  3. Direct transfer of graphene onto flexible substrates

    Science.gov (United States)

    Martins, Luiz G. P.; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S.; Kong, Jing; Araujo, Paulo T.

    2013-01-01

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate’s hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene. PMID:24127582

  4. Direct transfer of graphene onto flexible substrates.

    Science.gov (United States)

    Martins, Luiz G P; Song, Yi; Zeng, Tingying; Dresselhaus, Mildred S; Kong, Jing; Araujo, Paulo T

    2013-10-29

    In this paper we explore the direct transfer via lamination of chemical vapor deposition graphene onto different flexible substrates. The transfer method investigated here is fast, simple, and does not require an intermediate transfer membrane, such as polymethylmethacrylate, which needs to be removed afterward. Various substrates of general interest in research and industry were studied in this work, including polytetrafluoroethylene filter membranes, PVC, cellulose nitrate/cellulose acetate filter membranes, polycarbonate, paraffin, polyethylene terephthalate, paper, and cloth. By comparing the properties of these substrates, two critical factors to ensure a successful transfer on bare substrates were identified: the substrate's hydrophobicity and good contact between the substrate and graphene. For substrates that do not satisfy those requirements, polymethylmethacrylate can be used as a surface modifier or glue to ensure successful transfer. Our results can be applied to facilitate current processes and open up directions for applications of chemical vapor deposition graphene on flexible substrates. A broad range of applications can be envisioned, including fabrication of graphene devices for opto/organic electronics, graphene membranes for gas/liquid separation, and ubiquitous electronics with graphene.

  5. Vergelijking van vangsten van een 12 m pulskor met een conventionele wekkerboomkor

    NARCIS (Netherlands)

    Marlen, van B.; Ybema, M.S.; Kraayenoord, A.; Vries, de M.; Rink, G.J.

    2005-01-01

    In het kader van de ontwikkeling van een pulskor als alternatief voor de conventionele boomkor met wekkerkettingen werd in nov-dec 2004 en jan 2005 onderzoek uitgevoerd op het visserij-onderzoekingsvaartuig “Tridens” naar de vangstverschillen van beide visserijtechnieken en de overleving van door

  6. Het gebruik van antropometrische gegevens bij het opstellen van normen voor kantoorstoelen

    NARCIS (Netherlands)

    Groot, M.D. de; Voorbij, A.I.M.; Molenbroek, J.F.M.

    2003-01-01

    De fysieke belasting van werknemers is bij het invoeren van de personal computer veranderd. De werkplekken zijn zitplekken geworden. Het aantal gebruikers van kantoorstoelen is daarmee enorm toegenomen. Achter een monitor zitten mensen vaak lang achter elkaar in dezelfde houding, wat in weerwil van

  7. De verleidelijkheid van het grote gebaar : Het werk van Dogma

    NARCIS (Netherlands)

    Teerds, P.J.

    2013-01-01

    In vier portacabins op het parkeerterrein van de Delftse Faculteit Bouwkunde is nog tot volgende week de tentoonstelling 11+1 projects te zien, een overzichtstentoonstelling van het intrigerende werk van het Brusselse bureau Dogma. Met de tentoonstelling zet de faculteit na de brand in 2008 weer een

  8. De afschaffing van de bezwaarfase bij boetebesluiten van de ACM

    NARCIS (Netherlands)

    Jans, J.H.; Outhuijse, A.

    Per 1 maart 2013 ontstaat door samenvoeging van de NMa, de OPTA en de Consumentenautoriteit, de Autoriteit Consument en Markt. Om de ACM slagvaardig te laten functioneren, wordt voorgesteld het handhavingsinstrumentarium m.b.t. het markttoezicht van de ACM te vereenvoudigen. Eén van de voorstellen

  9. Implementatie van de Surviving Sepsis Campaign bundels : Monitoring van ervaringen

    NARCIS (Netherlands)

    Lilian Vloet; J. Schouten; N. Stevens; A. Rensen; A. Willems; F. Zeegers

    2011-01-01

    Sepsis komt vaak voor in ziekenhuizen. Ernstige sepsis is verantwoordelijk voor 10 - 20% van alle Intensive Care (IC) opnames en is de belangrijkste doodsoorzaak op niet-cardiale IC?s. De gemiddelde mortaliteit van volwassenen met ernstige sepsis op de IC is 33% en van volwassenen met septische

  10. Enhancement of Dielectric Constant of Graphene-Epoxy Composite by Inclusion of Nanodiamond Particles

    Science.gov (United States)

    Khurram, A. A.; ul-Haq, Izhar; Khan, Ajmal; Hussain, Rizwan; Gul, I. H.

    2018-02-01

    The dielectric properties of a graphene-epoxy composite have been enhanced by filling with nanodiamond particles (NDPs) as secondary filler along with graphene nanoplatelets (GNPs). The epoxy composite filled with only NDPs or GNPs to 0.1 wt.%, 0.3 wt.%, and 0.5 wt.% exhibited smaller dielectric constant compared with when filled with both. Hybrid epoxy composites were prepared with inclusion of both fillers to 0.05 + 0.05 = 0.1 wt.%, 0.15 + 0.15 = 0.3 wt.%, and 0.25 + 0.25 = 0.5 wt.%. Inclusion of NDPs in addition to GNPs also improved the dispersion of the latter in solution, which is attributable to kinetic energy transfer to GNPs and screening of van der Waals forces between GNPs. The enhanced dielectric constant after inclusion of NDPs is due to improved dispersion of GNPs in the epoxy matrix, which may increase the interfacial polarization.

  11. Electrostatic force assisted deposition of graphene

    Science.gov (United States)

    Liang, Xiaogan [Berkeley, CA

    2011-11-15

    An embodiment of a method of depositing graphene includes bringing a stamp into contact with a substrate over a contact area. The stamp has at least a few layers of the graphene covering the contact area. An electric field is developed over the contact area. The stamp is removed from the vicinity of the substrate which leaves at least a layer of the graphene substantially covering the contact area.

  12. Omkering van de bewijslast: knelpunten in de regeling en bij de toepassing van de omkering van de sanctie (deel I)

    NARCIS (Netherlands)

    Okhuizen, E.C.G.

    2013-01-01

    De omkering van de bewijslast als processuele sanctie op het niet nakomen van de aangifteplicht en de daaraan verbonden bijkomende verplichtingen lijken niet weg te denken uit ons belastingrecht. De sanctie kwam al voor in de fiscale wetgeving die dateert van vóór de invoering van de Algemene wet

  13. Vervluchtiging van EPTC, tri-allaat en parathion na bespuiting van een kleigrond

    NARCIS (Netherlands)

    Bor, G.; Berg, van den F.; Smelt, J.H.; Peppel-Groen, van de A.E.; Leistra, M.

    1995-01-01

    Op tien tijdstippen na de bespuiting van een onbegroeide kleigrond met EPTC, tri-allaat en parathion werden de snelheden van vervluchtiging van deze middelen bepaald met de kapmethode en de theoretisch-profielmethode (TP-methode). De vervluchtiging was het hoogst op de dag van toepassing. In de

  14. Enkele aspecten van de diagnostiek van hypophysaire insufficiëntie bij kinderen

    NARCIS (Netherlands)

    Israëls, Albertus Leonard Maurits

    1960-01-01

    In dit proefschrift is een onderzoek beschreven, dat naar de functie van de hypophyse bij kinderen met tekenen van hypophysaire insufficiëntie werd ingesteld. Het onderzoek werd in de kinderkliniek van het Academisch Ziekenhuis te Groningen verricht. In hoofdstuk I is een overzicht van de literatuur

  15. VT-NRK Toepassing bioplastics : verbeteren van de technische eigenschappen van PLA-folies

    NARCIS (Netherlands)

    Molenveld, K.; Schennink, G.G.J.

    2009-01-01

    Het doel van dit project, VT-NRK toepassing bioplastics, is het genereren en verspreiden van kennis met betrekking tot het verbeteren van de technische eigenschappen van PLA folies. De kennis is bedoeld voor de bedrijven die binnen de kunststofindustrie aangesloten zijn bij de MJA én folies

  16. Rituele van plesier: Dolf van Coller se Die Bieliebalies

    Directory of Open Access Journals (Sweden)

    J. van Wyk

    1998-04-01

    Full Text Available Rituals of pleasure: Dolf van Coller’s Die Bieliebalies This article is an analysis of Dolf van Coller's Die Bieliebalies (1993, read as a hedonist text. It has many points of similarity with what Bakhtin (1984 called grotesque realism, and with Nietzsche’s views as expounded in The birth of tragedy (1956. By comparing Van Caller's text to that of Bakhtin and Nietzsche, a counter-discourse to contemporary moral discourses such as feminism is explored. Van Coller’s use of laughter as a relativising mechanism is very liberating in the context where petty morality intervenes dogmatically in the field of literature and other spheres of life.

  17. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays.

    Science.gov (United States)

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J

    2015-12-21

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace levels. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species to diffuse and react with the materials, decrease charge transfer rates and block intense hot-spots. No ex situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decreases the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays by exploiting a shock pressure generated by the laser ablation of graphite and the water impermeable nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities is investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, and chemical/thermal stability, is instantaneous in nature, possesses a large scale and room temperature processing capability, and can be further extended to integrate other 2D materials with various 0-3D nanomaterials.

  18. Die ontwikkeling van menslike potensiaal in die Republiek van Suid ...

    African Journals Online (AJOL)

    Erna Kinsey

    Dit het dus ook te doen met lewenstandaard, aangesien lewenstandaard `n bepalende faktor is met betrekking tot die optimale ontwikkeling van menslike potensiaal. Ander minder materiële aspekte van menslike potensiaal het te doen met menslike vryheid, waaronder vryheid van spraak, beweging en keuse ter sake is.

  19. Graphene-on-semiconductor substrates for analog electronics

    Science.gov (United States)

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  20. Progress of Terahertz Devices Based on Graphene

    Institute of Scientific and Technical Information of China (English)

    Mai-Xia Fu; Yan Zhang

    2013-01-01

    Graphene is a one-atom-thick planar sheet of sp2-hybridized orbital bonded honeycomb carbon crystal. Its gapless and linear energy spectra of electrons and holes lead to the unique carrier transport and optical properties, such as giant carrier mobility and broadband flat optical response. As a novel material, graphene has been regarded to be extremely suitable and competent for the development of terahertz (THz) optical devices. In this paper, the fundamental electronic and optic properties of graphene are described. Based on the energy band structure and light transmittance properties of graphene, many novel graphene based THz devices have been proposed, including modulator, generator, detector, and imaging device. This progress has been reviewed. Future research directions of the graphene devices for THz applications are also proposed.

  1. Radio-graphene in theranostic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Do Won [Dept. of Nuclear Medicine, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2017-03-15

    Owing to its unique physicochemical properties such as high surface area, notable biocompatibility, robust mechanical strength, high thermal conductivity, and ease of functionalization, 2D-layered graphene has received tremendous attention as a futuristic nanomaterial and its-associated research has been rapidly evolving in a variety of fields. With the remarkable advances of graphene especially in the biomedical realm, in vivo evaluation techniques to examine in vivo behavior of graphene are largely demanded under the hope of clinical translation. Many different types of drugs such as the antisense oligomer and chemotherapeutics require optimal delivery conveyor and graphene is now recognized as a suitable candidate due to its simple and high drug loading property. Termed as ‘radio-graphene’, radioisotope-labeled graphene approach was recently harnessed in the realm of biomedicine including cancer diagnosis and therapy, contributing to the acquisition of in vivo information for targeted drug delivery. In this review, we highlight current examples for bioapplication of radiolabeled graphene with brief perspectives on future strategies in its extensive bio- or clinical applications.

  2. Stable configurations of graphene on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  3. Katalytisch verbranden van varkensmest

    NARCIS (Netherlands)

    Hendriks, J.

    1995-01-01

    Door het verbranden van mest kan het mestvolume worden verkleind. Binnenkort gaat op het Varkensproefbedrijf 'Zuid- en West-Nederland' in Sterksel onderzoek van start om de mogelijkheden van het katalytisch verbranden van varkensmest te bekijken.

  4. Synthesis and characterization of graphene/cellulose nanocomposite

    Science.gov (United States)

    Kafy, Abdullahil; Yadav, Mithilesh; Kumar, Kishor; Kumar, Kishore; Mun, Seongcheol; Gao, Xiaoyuan; Kim, Jaehwan

    2014-04-01

    Cellulose is one of attractive natural polysaccharides in nature due to its good chemical stability, mechanical strength, biocompatibility, hydrophilic, and biodegradation properties [1-2]. The main disadvantages of biopolymer films like cellulose are their poor mechanical properties. Modification of polymers with inorganic materials is a new way to improve polymer properties such as mechanical strength [3-4]. Presently, the use of graphene/graphene oxide (GO) in materials research has attracted tremendous attention in the past 40 years in various fields including biomedicine, information technology and nanotechnology[5-7]. Graphene, a single sheet of graphite, has an ideal 2D structure with a monolayer of carbon atoms packed into a honeycomb crystal plane. Using both experimental and theoretical scientific research, researchers including Geim, Rao and Stankovich [8-10] have described the attractiveness of graphene in the materials research field. Due to its sp2 hybrid carbon network as well as extraordinary mechanical, electronic, and thermal properties, graphene has opened new pathways for developing a wide range of novel functional materials. Perfect graphene does not exist naturally, but bulk and solution processable functionalized graphene materials including graphene oxide (GO) can now be prepared [11-13].The large surface area of GO has a number of functional groups, such as -OH, -COOH, -O- , and C=O, which make GO hydrophilic and readily dispersible in water as well as some organic solvents[14] , thereby providing a convenient access to fabrication of graphene-based materials by solution casting. According to several reports [15-17], GO can be dispersed throughout a selected polymer matrix to make GO-based nanocomposites with excellent mechanical and thermal properties. Since GO is prepared from low-cost graphite, it has an outstanding price advantage over CNTs, which has encouraged studies of GO/synthetic polymer composites [18-20]. In some reported papers

  5. Witte vlekken in het bereik van NME? : raamwerk voor het meten van gebruik en de effecten van NME in het primair onderwijs

    NARCIS (Netherlands)

    Vreke, J.; Langers, F.; Berg, van den A.E.

    2011-01-01

    In het NME-beleid wordt het geven van NME ingezet als instrument om bij te dragen aan het reduceren van de achteruitgang, in omvang en kwaliteit, van natuur en milieu. Het bereik van NME moet aangeven in hoeverre NME de bevolking heeft bereikt en aan dit doel heeft bijgedragen. Het identificeren van

  6. Produktie van pigmenten

    NARCIS (Netherlands)

    Etman EJ; Duesmann HB; Eijssen PHM; LAE

    1994-01-01

    Dit rapport over de produktie van pigmenten is gepubliceerd binnen het Samenwerkingsproject Procesbeschrijvingen Industrie Nederland (SPIN). In het kader van dit project is informatie verzameld over industriele bedrijven of industriele processen ter ondersteuning van het overheidsbeleid op het

  7. Het effect van het bijvoeren van tarwe aan vleeskuikens op de slachtrendementen

    NARCIS (Netherlands)

    Middelkoop, van J.H.; Harn, van J.

    1994-01-01

    Tarwe bijvoeren aan vleeskuikens staat momenteel volop in de belangstelling. Redenen hiervoor zijn de lage prijs van de tarwe en het positieve effect dat tarwe kan hebben op de resultaten en gezondheid van de koppel. Door het bijvoeren van tarwe wordt de werking van de spiermaag en de ontwikkeling

  8. St. Teresa van Avila: sentrale figuur in die werk van Cussons en Van Wyk Louw

    Directory of Open Access Journals (Sweden)

    H. van Vuuren

    1989-05-01

    Full Text Available A central poem in Van Wyk Louw’s Tristia (1962, is “H. Teresa van Avila flap uit” (literally translated: “Saint Teresa of Avila talks too much/babbles uncontrollably”. This article illustrates how intertextual reading helped to clarify the poem. Teresa of Avila’s The way of perfection (a translation of the Spanish work El Camino de la Perfección, 1573 is the intertext of the Van Wyk Louw poem. In the last section of the article it is shown how the figure of St. Teresa of Avila is central not only to Van Wyk Louw’s Tristia (1962, but also to the oeuvre of Sheila Cussons, which underlines a strong intertextuality between these two Afrikaans oeuvres.

  9. Fluorescent biosensors enabled by graphene and graphene oxide.

    Science.gov (United States)

    Zhang, Huan; Zhang, Honglu; Aldalbahi, Ali; Zuo, Xiaolei; Fan, Chunhai; Mi, Xianqiang

    2017-03-15

    During the past few years, graphene and graphene oxide (GO) have attracted numerous attentions for the potential applications in various fields from energy technology, biosensing to biomedical diagnosis and therapy due to their various functionalization, high volume surface ratio, unique physical and electrical properties. Among which, graphene and graphene oxide based fluorescent biosensors enabled by their fluorescence-quenching properties have attracted great interests. The fluorescence of fluorophore or dye labeled on probes (such as molecular beacon, aptamer, DNAzymes and so on) was quenched after adsorbed on to the surface of graphene. While in the present of the targets, due to the strong interactions between probes and targets, the probes were detached from the surface of graphene, generating dramatic fluorescence, which could be used as signals for detection of the targets. This strategy was simple and economy, together with great programmable abilities of probes; we could realize detection of different kinds of species. In this review, we first briefly introduced the history of graphene and graphene oxide, and then summarized the fluorescent biosensors enabled by graphene and GO, with a detailed account of the design mechanism and comparison with other nanomaterials (e.g. carbon nanotubes and gold nanoparticles). Following that, different sensing platforms for detection of DNAs, ions, biomolecules and pathogens or cells as well as the cytotoxicity issue of graphene and GO based in vivo biosensing were further discussed. We hope that this review would do some help to researchers who are interested in graphene related biosening research work. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid.

    Science.gov (United States)

    Xu, Gui-Liang; Xiao, Lisong; Sheng, Tian; Liu, Jianzhao; Hu, Yi-Xin; Ma, Tianyuan; Amine, Rachid; Xie, Yingying; Zhang, Xiaoyi; Liu, Yuzi; Ren, Yang; Sun, Cheng-Jun; Heald, Steve M; Kovacevic, Jasmina; Sehlleier, Yee Hwa; Schulz, Christof; Mattis, Wenjuan Liu; Sun, Shi-Gang; Wiggers, Hartmut; Chen, Zonghai; Amine, Khalil

    2018-01-10

    Room-temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize three-dimensional (3D) titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy, and computational modeling revealed that the strong interaction between titania and graphene through comparably strong van der Waals forces not only facilitates bulk Na + intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li + , K + , Mg 2+, and Al 3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  11. Electrostatic Self-Assembly Enabling Integrated Bulk and Interfacial Sodium Storage in 3D Titania-Graphene Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Gui-Liang [Chemical; Xiao, Lisong [Center; Sheng, Tian [Collaborative; Liu, Jianzhao [Chemical; Hu, Yi-Xin [Chemical; Department; Ma, Tianyuan [Chemical; Amine, Rachid [Materials; Xie, Yingying [Chemical; Zhang, Xiaoyi [X-ray Science; Liu, Yuzi [Nanoscience; Ren, Yang [X-ray Science; Sun, Cheng-Jun [X-ray Science; Heald, Steve M. [X-ray Science; Kovacevic, Jasmina [Center; Sehlleier, Yee Hwa [Center; Schulz, Christof [Center; Mattis, Wenjuan Liu [Microvast Power Solutions, 12603; Sun, Shi-Gang [Collaborative; Wiggers, Hartmut [Center; Chen, Zonghai [Chemical; Amine, Khalil [Chemical

    2017-12-15

    Room temperature sodium-ion batteries have attracted increased attention for energy storage due to the natural abundance of sodium. However, it remains a huge challenge to develop versatile electrode materials with favorable properties, which requires smart structure design and good mechanistic understanding. Herein, we reported a general and scalable approach to synthesize 3D titania-graphene hybrid via electrostatic-interaction-induced self-assembly. Synchrotron X-ray probe, transmission electron microscopy and computational modeling revealed that the strong interaction between Titania and graphene through comparably strong van-der-Waals forces not only facilitates bulk Na+ intercalation but also enhances the interfacial sodium storage. As a result, the titania-graphene hybrid exhibits exceptional long-term cycle stability up to 5000 cycles, and ultrahigh rate capability up to 20 C for sodium storage. Furthermore, density function theory calculation indicated that the interfacial Li+, K+, Mg2+ and Al3+ storage can be enhanced as well. The proposed general strategy opens up new avenues to create versatile materials for advanced battery systems.

  12. Die gebruik van ’n reologiese tegniek in die bepaling van die verhardingsreaksiekinetika van ’n reaktiewe poliësterpoeierdeklaag

    Directory of Open Access Journals (Sweden)

    O. C. Vorster

    2004-09-01

    Full Text Available

    Die studie van die verhardingsreaksiekinetika van deklae word bemoeilik deur die aanwesigheid van vlugtige stowwe, pigmente en bypigmente. In hierdie studie word die verhardingsreaksiekinetika van ’n karboksielgetermineerde poliëstertriglisediel-isosianuraat deur middel van parallelplaatspanningsreometrie bepaal. Jeltye is verkry en skaleringseksponente bepaal. ’n Nuwe metode vir die voorspelling van die verloop van die reaksie word voorgestel en vergelyk met resultate verkry deur middel van differensiël skanderingskalorimetrie.

    Abstract

    The use of a rheological technique in the determination of the curing kinetics of a reactive polyester powder coating

    In this article a study of the curing process of carboxyl terminated polyester-triglycidyl isocyanurate systems is reported. A comparison is made between the generally used Differential Scanning Calorimetric methods and rheokinetic methods, using a parallel plate oscillating stress rheometer. Gel times were determined and scaling exponents calculated. A new method for the estimation of the extent of reaction is presented and compared with results obtained by means of differential scanning calorimetry

  13. Applications of graphene an overview

    CERN Document Server

    Wolf, Edward L

    2014-01-01

    Graphene is presented and analyzed as a replacement for silicon. The Primary focus is on solar cell and CMOS device technologies, with attention to the fabrication methods, including extensions needed, in each case. Specialized applications for graphene within the existing silicon technology are discussed and found to be promising.

  14. Handelsstromen van pluimveevlees

    NARCIS (Netherlands)

    Tacken, G.M.L.; Horne, van P.L.M.

    2006-01-01

    Dit onderzoek geeft inzicht in de goederenstromen van (rauw) pluimveevlees binnen envooral naar Nederland en de daarmee gepaard gaande zoönoserisico's. Het onderzoek biedtinput voor het nog op te zetten controlebeleid, waarmee handhaving van het beleidsvoornemenom het aanbieden van rauw

  15. Tuning the electronic properties and Schottky barrier height of the vertical graphene/MoS2 heterostructure by an electric gating

    Science.gov (United States)

    Nguyen, Chuong V.

    2018-04-01

    In this paper, the electronic properties and Schottky contact in graphene/MoS2 (G/MoS2) heterostructure under an applied electric field are investigated by means of the density functional theory. It can be seen that the electronic properties of the G/MoS2 heterostructure are preserved upon contacting owing to the weak van der Waals interaction. We found that the n-type Schottky contact is formed in the G/MoS2 heterostructure with the Schottky barrier height of 0.49 eV. Furthermore, both Schottky contact and Schottky barrier height in the G/MoS2 heterostructure could be controlled by the applied electric field. If a positive electric field of 4 V/nm is applied to the system, a transformation from the n-type Schottky contact to the p-type one was observed, whereas the system keeps an n-type Schottky contact when a negative electric field is applied. Our results may provide helpful information to design, fabricate, and understand the physics mechanism in the graphene-based two-dimensional van der Waals heterostructures like as G/MoS2 heterostructure.

  16. Bekalking en toevoegen van nutriënten; evaluatie van de effecten op de vitaliteit van het bos; een veldonderzoek naar boomgroei

    NARCIS (Netherlands)

    Wolf, R.J.A.M.; Engels, M.E.; Knotters, M.; Schraven, R.; Boertjes, M.

    2006-01-01

    Dit rapport doet verslag van een deelonderzoek uit de Evaluatie van effectgerichte maatregelen in multifunctionele bossen 2004-2005 en is gericht op de effecten van de maatregelen bemes-ting en bekalking in bossen als overbruggingsmaatregel in het kader van het Overlevingsplan Bos en Natuur (OBN).

  17. Belewenis van uitbranding by nagraadse teologiese studente van die Gereformeerde Kerke in Suid-Afrika – ’n Pastorale ondersoek

    Directory of Open Access Journals (Sweden)

    Gerhardus J. Niemann

    2013-05-01

    Full Text Available Die doel met hierdie artikel is om vas te stel wat die belewenis van uitbranding by nagraadse teologiese studente van die Gereformeerde Kerke in Suid-Afrika (GKSA is. Deur middel van kwantitatiewe empiriese navorsing is vasgestel wat die vlak van uitbranding by nagraadse teologiese studente van die GKSA is. Met die navorsing is vasgestel dat 75% van die nagraadse teologiese studente wat aan die studie deelgeneem het, ’n mate van emosionele uitbranding beleef. Van hierdie 75% het 35% van die deelnemers akute uitbranding beleef en ’n verdere 15% kan binne die ineenstortingstadium van uitbranding gekategoriseer word. Verskeie faktore is geïdentifiseer wat moontlik tot die nagraadse teologiese studente se belewenis van uitbranding kan bydra. Hierdie faktore sluit onder meer in die oneffektiewe bestuur van die werkslading; die belewenis van werksoorlading en ’n gebrek aan die beheer en bestuur van hulle akademiese werkslading; ’n persepsie dat hulle nie genoeg erkenning vir hulle bydrae en of insette ontvang nie; persoonlike probleme in die private lewe van die studente; ’n verlies aan werksvreugde en gebrekkige interpersoonlike verhoudings; ’n gebrek aan die opleiding van emosionele vaardighede en interpersoonlike verhoudings in die kurrikulum; ’n gebrek aan die handhawing van gesonde emosionele grense en die volhoubare ontwikkeling van die student se eie geestelike lewe; asook ’n tekort aan die vervulling van persoonlike doelwitte. 1 Konings 19 word as bybelse vertrekpunt gebruik vir die behandeling en voorkoming van uitbranding by nagraadse teologiese studente van die GKSA. The aim of this article is to establish to what extent the postgraduate theological students of the Reformed Churches in South Africa (RCSA experience burnout. Quantitative empirical research was conducted to establish their levels of burnout. The researcher found that 75% of the postgraduate students had experienced burnout to some extent. Out of these 75

  18. Die berekening van vloeiing in ’n roterende annulus deur die metode van kunsmatige saamdrukbaarheid

    Directory of Open Access Journals (Sweden)

    H. Grobler

    1987-03-01

    Full Text Available Die vloeiing van ’n onsaamdrukbare, viskeuse vloeier word ondersoek aan die hand van die numeriese oplossing van die gediskretiseerde Navier-Stokes- en kontinuiteitsbeheervergelykings. In die besonder word vloeiing in ’n annulus bestaande uit twee koaksiale silinders wat elk ten opsigte van die ander kan roteer, en met ’n voorgeskrewe drukval oor die lengte van die silinder, beskou. Die oplossings word bereken deur die toepassing van Chorin se metode van kunsmatige saamdrukbaarheid, waarin die tydonafhanklike beheervergelykings getransformeer word na tydafhanklike hulpvergelykings deur die invoering van ’n kunsmatige toestandsvergelyking. Die oplossing van die hulpvergelykings konvergeer na ’n stasionêre oplossing, wat ooreenstem met die oplossing van die oorspronklike tydonafhanklike beheervergelykings. Die gedrag van die vloeier, wanneer ten voile ontwikkelde laminêre vloeiing bereik word, is met sukses bereken. ’n Eenvoudige model vir die bepaling van ontwikkeling van vloeiing langs die annulus vir enige gegewe invloeisnelheidsprofiel word voorgestel. Die berekende resultate stem ooreen met die resultate wat uit die fisika van die probleem verwag word.

  19. Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications.

    Science.gov (United States)

    Tian, Feng; Lyu, Jing; Shi, Jingyu; Yang, Mo

    2017-03-15

    In the past decades, Förster resonance energy transfer (FRET) has been applied in many biological applications to reveal the biological information at the nanoscale. Recently, graphene and graphene-like two-dimensional (2D) nanomaterials started to be used in FRET assays as donors or acceptors including graphene oxide (GO), graphene quantum dot (GQD), graphitic-carbon nitride nanosheets (g-C 3 N 4 ) and transition metal dichalcogenides (e.g. MoS 2 , MnO 2, and WS 2 ). Due to the remarkable properties such as large surface to volume ratio, tunable energy band, photoluminescence and excellent biocompatibility, these 2D nanomaterials based FRET assays have shown great potential in various biological applications. This review summarizes the recent development of graphene and graphene-like 2D nanomaterials based FRET assays in applications of biosensing, bioimaging, and drug delivery monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Covalent electron transfer chemistry of graphene with diazonium salts.

    Science.gov (United States)

    Paulus, Geraldine L C; Wang, Qing Hua; Strano, Michael S

    2013-01-15

    Graphene is an atomically thin, two-dimensional allotrope of carbon with exceptionally high carrier mobilities, thermal conductivity, and mechanical strength. From a chemist's perspective, graphene can be regarded as a large polycyclic aromatic molecule and as a surface without a bulk contribution. Consequently, chemistries typically performed on organic molecules and surfaces have been used as starting points for the chemical functionalization of graphene. The motivations for chemical modification of graphene include changing its doping level, opening an electronic band gap, charge storage, chemical and biological sensing, making new composite materials, and the scale-up of solution-processable graphene. In this Account, we focus on graphene functionalization via electron transfer chemistries, in particular via reactions with aryl diazonium salts. Because electron transfer chemistries depend on the Fermi energy of graphene and the density of states of the reagents, the resulting reaction rate depends on the number of graphene layers, edge states, defects, atomic structure, and the electrostatic environment. We limit our Account to focus on pristine graphene over graphene oxide, because free electrons in the latter are already bound to oxygen-containing functionalities and the resulting chemistries are dominated by localized reactivity and defects. We describe the reaction mechanism of diazonium functionalization of graphene and show that the reaction conditions determine the relative degrees of chemisorption and physisorption, which allows for controlled modulation of the electronic properties of graphene. Finally we discuss different applications for graphene modified by this chemistry, including as an additive in polymer matrices, as biosensors when coupled with cells and biomolecules, and as catalysts when combined with nanoparticles.

  1. Graphene oxide vs. reduced graphene oxide as carbon support in porphyrin peroxidase biomimetic nanomaterials.

    Science.gov (United States)

    Socaci, C; Pogacean, F; Biris, A R; Coros, M; Rosu, M C; Magerusan, L; Katona, G; Pruneanu, S

    2016-02-01

    The paper describes the preparation of supramolecular assemblies of tetrapyridylporphyrin (TPyP) and its metallic complexes with graphene oxide (GO) and thermally reduced graphene oxide (TRGO). The two carbon supports are introducing different characteristics in the absorption spectra of the investigated nanocomposites. Raman spectroscopy shows that the absorption of iron-tetrapyridylporphyrin is more efficient on GO than TRGO, suggesting that oxygen functionalities are involved in the non-covalent interaction between the iron-porphyrin and graphene. The biomimetic peroxidase activity is investigated and the two iron-containing composites exhibit a better catalytic activity than each component of the assembly, and their cobalt and manganese homologues, respectively. The main advantages of this work include the demonstration of graphene oxide as a very good support for graphene-based nanomaterials with peroxidase-like activity (K(M)=0.292 mM), the catalytic activity being observed even with very small amounts of porphyrins (the TPyP:graphene ratio=1:50). Its potential application in the detection of lipophilic antioxidants (vitamin E can be measured in the 10(-5)-10(-4) M range) is also shown. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Het format van de stad. Een evaluatie van recente Nederlandse stadsgeschiedenissen

    Directory of Open Access Journals (Sweden)

    P. Kooij

    2002-01-01

    Full Text Available R. Kunst, Leeuwarden 750-2000. Hoofdstad van Friesland; A. van der Schoor, N. Schadee, Stad in aanwas. Geschiedenis van Rotterdam tot 1813; P. van de Laar, Stad van formaat. Geschiedenis van Rotterdam in de negentiende en twintigste eeuw; R.E. de Bruin, 'Een paradijs vol weelde'. Geschiedenis van de stad Utrecht.The shape of the city. An evaluation of recent historical studies on Dutch townsUrban history in the Netherlands started roundabout 1970. It was initially promoted by mainly economic and social historians who used concepts derived from geography which centred on town and country relations, urban networks, and migration. The spatial factor was considered to be a core feature, also inside the towns and cities. An alternative view, however, argued that a completely introspective urban history, focussing on one city, would result in more integration. This hypothesis has been proved in a number of recent, more or less integral urban histories, commissioned by several independent municipal authorities in individual cities. They show that a combination of internal and external elements offers the best results with regard to integration.

  3. Psigologiese benadering van pastorale arbeid

    Directory of Open Access Journals (Sweden)

    D. J. Strümpfer

    1969-03-01

    Full Text Available In die spreektaal van ons Afrikaanse kerke is ons lief om die bedienaar van die Woord aan te dui as „die predikant”, „die leraar” of „die dominee”. Miskien plaas ons met hierdie semantiese gebruik van terme wat lering en proklamering impliseer, ’n ongelukkige klem op die preekamp. Daarteenoor, het ons semanties miskien iets te leer van die Pinkstersektes wat die benaming „pastoor” verkies, of die Amerikaanse ge­ bruik van die term „the pastor”. Ons is wel lief om te praat van „ons herder en leraar”. Veelal word die herderlike, of pastorale, deel van die taak van die bedienaar van die Woord egter in sy eie gedagtes, asook in die gedagtes van sy gemeentelede, deur die leraarskap op die agtergrond gedwing. Al te dikwels word hy deur gemeentelede beskou as iemand wat op Sondag op die kansel gesien moet word en wat niks met die res van hul lewens te doen het nie. Herstel van die pastoraat sal deel moet wees van die proses om die ontkerstening van die hedendaagse lewe teen te gaan.

  4. Verlies van (thuis en haard. Het belang van verliesbegeleiding als onderdeel van de maatschappelijke begeleiding binnen het Vluchtelingenwerk, regio Utrecht

    Directory of Open Access Journals (Sweden)

    Birgit Hoogenberk

    2014-06-01

    Full Text Available Loss of home and house. The importance of loss counseling as a part of refugee social supportIn this article it is advocated that it is important that the implementation of loss counseling is part of social support for refugees, also called integrative eclectic working. Social support from VluchtelingenWerk, also known as Refugee Council, is about supporting the client in an effective manner with their personal problems which can hinder their integration. Because the target group of VluchtelingenWerk is a group of people whom have suffered many losses, attention should be brought to this subject. Unfortunately in current work methods there is no room for loss counseling, partly due to the lack of methodological tools. The losses associated with this group have a lot of impact on their daily lives and often are the source of functional limitations. By offering loss counseling and multi-method grief counseling, volunteers and employees are offered tools to make loss more negotiable. In this article different examples will be discussed and the new loss model of Stroebe and Schut will be explained. What will be clarified is the importance of the implementation of loss counseling, for the well-being and the integration process of clients as well as achieving organizational goals.Verlies van (thuis en haard. Het belang van verliesbegeleiding als onderdeel van de maatschappelijke begeleiding binnen het VluchtelingenWerk, regio UtrechtIn dit artikel wordt gepleit voor het implementeren van verliesbegeleiding als onderdeel van de maatschappelijke begeleiding, er is sprake van integratief eclectisch werken. De maatschappelijke begeleiding van het VluchtelingenWerk heeft als taak de cliënt zo goed mogelijk te begeleiden bij persoonlijke problemen die de inburgering kunnen belemmeren. Aangezien de doelgroep van het VluchtelingenWerk bestaat uit mensen die ontzettend veel verliezen hebben geleden dient hier aandacht voor te zijn. Helaas is in de huidige

  5. From Graphene Oxide to Reduced Graphene Oxide: Impact on the Physiochemical and Mechanical Properties of Graphene-Cement Composites.

    Science.gov (United States)

    Gholampour, Aliakbar; Valizadeh Kiamahalleh, Meisam; Tran, Diana N H; Ozbakkaloglu, Togay; Losic, Dusan

    2017-12-13

    Graphene materials have been extensively explored and successfully used to improve performances of cement composites. These formulations were mainly optimized based on different dosages of graphene additives, but with lack of understanding of how other parameters such as surface chemistry, size, charge, and defects of graphene structures could impact the physiochemical and mechanical properties of the final material. This paper presents the first experimental study to evaluate the influence of oxygen functional groups of graphene and defectiveness of graphene structures on the axial tension and compression properties of graphene-cement mortar composites. A series of reduced graphene oxide (rGO) samples with different levels of oxygen groups (high, mild, and low) were prepared by the reduction of graphene oxide (GO) using different concentrations of hydrazine (wt %, 0.1, 0.15, 0.2, 0.3, and 0.4%) and different reduction times (5, 10, 15, 30, and 60 min) and were added to cement mortar composites at an optimal dosage of 0.1%. A series of characterization methods including scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, thermogravimetric analysis, and Fourier transform infrared spectroscopy were performed to determine the distribution and mixing of the prepared rGO in the cement matrix and were correlated with the observed mechanical properties of rGO-cement mortar composites. The measurement of the axial tension and compression properties revealed that the oxygen level of rGO additives has a significant influence on the mechanical properties of cement composites. An addition of 0.1% rGO prepared by 15 min reduction and 0.2% (wt %) hydrazine with mild level of oxygen groups resulted in a maximum enhancement of 45.0 and 83.7%, respectively, in the 28-day tensile and compressive strengths in comparison with the plain cement mortar and were higher compared to the composite prepared with GO (37.5 and 77.7%, respectively). These

  6. Economische gevolgen van ontwapening

    NARCIS (Netherlands)

    Duisenberg, Willem Frederik

    1965-01-01

    Samenvatting van de gehele studie 4.1. Economie en ontwapening Ontwapening betekent in deze studie de algehele, snelle afschaffing van alle militaire maatregelen in aIle landen. Het negeren van de politieke waarschijnlijkheden die veeleer wijzen op een zeer geleidelijke afschaffing van slechts

  7. Neurotoxische effecten van broomcyclohexaan

    NARCIS (Netherlands)

    Velsen; F.L.van; Danse; L.H.J.C.; Vries; L.J.de; Liefde; A.de

    1984-01-01

    Kortdurende toediening (4-7 dagen) van broomcyclohexaan (BCH) veroorzaakt in een dosering van 1200 mg/kg lichaamsgewicht (per maagsonde) necrose van gegranuleerde cellen in de korrellaag van de kleine hersenen. In deze doseringen zijn ook gedragsafwijkingen waargenomen d.m.v. een objectieve

  8. Evaluatie van het gebruik van de iPad in het klaslokaal : Een onderzoek naar het iPadgebruik onder brugklasleerlingen van een Leeuwarder Lyceum

    NARCIS (Netherlands)

    Klaas Jan Huizing; Chantal Philipsen; Luka Linster

    2013-01-01

    In november 2012 kregen alle brugklasleerlingen van het Leeuwarder Lyceum een iPad uitgereikt. Dit nieuwe ‘device’ is de aanjager van onderwijsvernieuwingen op het gebied van digitalisering van lesmateriaal. Sowijs volgde de implementatie van de iPad en vroeg zich af: hoe is het iPadgebruik na een

  9. Leven en werken van Geert Reinders. De grondlegger van de immunologie.

    NARCIS (Netherlands)

    Bruins, Luitje Hendrik

    1951-01-01

    De levensgeschiedenis van Geert Reinders is het relaas van de vele prestaties, waartoe deze man ondanks een zeer gebrekkige schoolopleiding in staat was. Hij was werkzaam als molenaar, boer, koopman, redger, gemeentesecretaris, secretaris en ontvanger van een groot zijlvest, veeartsenijdeskundige;

  10. Die rol van die blanke werker in die motivering van die swart werker

    Directory of Open Access Journals (Sweden)

    G. J. Oosthuizen

    1980-11-01

    Opsomming Die motivering van die Swart werker kan nie in die huidige situasie in isolasie bestudeer word nie, omdat die Blanke werker steeds in die bestuursposisie is en daarom die motivering van die Swart werker kan beïnvloed. Hierdie ondersoek was daarop gerig om die rol van die Blanke werker in die motivering van die Swart werker nader te ondersoek. Die houding en die leierskapsbenadering van die Blanke werker teenoor die Swart werker is gemeet, asook die behoeftes wat volgens die Blanke werker by die Swart werker bestaan, bevredig is, of nie bestaan nie. Die behoeftes van Swart werkers, soos deur hulleself gesien, is ook ondersoek. Ten opsigte van sekere aspekte is beduidende verskille gevind.

  11. De eeuw van de Beeldenstorm

    Directory of Open Access Journals (Sweden)

    F. Postma

    1988-01-01

    Full Text Available P. van Boheemen, N.P.J. van der Lof, E. van Meurs, Het boek in Nederland in de 16e eeuw S. Groenveld, Ketters en papen onder Filips II. Het godsdienstig leven in de tweede helft van de zestiende eeuw R. Kistemaker, M. Jonker, De smaak van de elite. Amsterdam in de eeuw van de Beeldenstorm W.Th. Kloek, Kunst voor de Beeldenstorm. Noord-Nederlandse kunst ca 1525-1580, [I], Inleiding, [II, Catalogus] J.R. ter Molen, A.P.E. Ruempol, A.G.A. Dongen, Huisraad van een molenaarsweduwe. Gebruiksvoorwerpen uit een 16e eeuwse boedelinventaris M. de Roever, B. Bakker, Woelige tijden. Amsterdam in de eeuw van de Beeldenstorm I.M. Veldman, Leerrijke reeksen van Maarten van Heemskerck

  12. Benaderingen van over

    NARCIS (Netherlands)

    Boer, M.G. de

    2010-01-01

    SAMENVATTING In dit hoofdstuk wordt de relatie tussen de betekenissen van het Nederlandse voorzetsel over en een aantal corpora bestudeerd. Het hoofdstuk begint met een analyse van de voorbeelden uit Uit het leven van Dik Trom (1891); daarna wordt de woordenboekinformatie behandeld en vergeleken

  13. Preparation of graphene by electrical explosion of graphite sticks.

    Science.gov (United States)

    Gao, Xin; Xu, Chunxiao; Yin, Hao; Wang, Xiaoguang; Song, Qiuzhi; Chen, Pengwan

    2017-08-03

    Graphene nanosheets were produced by electrical explosion of high-purity graphite sticks in distilled water at room temperature. The as-prepared samples were characterized by various techniques to find different forms of carbon phases, including graphite nanosheets, few-layer graphene, and especially, mono-layer graphene with good crystallinity. Delicate control of energy injection is critical for graphene nanosheet formation, whereas mono-layer graphene was produced under the charging voltage of 22.5-23.5 kV. On the basis of electrical wire explosion and our experimental results, the underlying mechanism that governs the graphene generation was carefully illustrated. This work provides a simple but innovative route for producing graphene nanosheets.

  14. N{sub 2}O + CO reaction over Si- and Se-doped graphenes: An ab initio DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Gholizadeh, Reza [Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Yu, Yang-Xin, E-mail: yangxyu@mail.tsinghua.edu.cn [Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); State Key Laboratory of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants. - Highlights: • N{sub 2}O can be efficiently reduced by CO over Si-doped graphenes. • Enough charge transferred from Si to N{sub 2}O makes the N{sub 2}–O bond break easily. • Si-doped graphene is efficient green catalysts for conversion of the airborne pollutants. • vdW interaction and ZPE energy significantly influence the predictions of activation energies. - Abstract: Catalytic conversion of non-CO{sub 2} green house gases and other harmful gases is a promising way to protect the atmospheric environment. Non-metal atom-doped graphene is attractive for use as a catalyst in the conversion due to its unique electronic properties, relatively low price and leaving no burden to the environment. To make an attempt on the development of green catalysts for the conversion, ab initio density functional theory is used to investigate the mechanisms of N{sub 2}O reduction by CO on Si- and Se-doped graphenes. We have calculated the geometries and adsorption energies of reaction species (N{sub 2}O, CO, N{sub 2} and CO{sub 2}) as well as energy profiles along the reaction pathways. The activation energies of N{sub 2}O decomposition and CO oxidation on both Si- and Se-doped graphenes have been obtained. Our calculated results indicate that the catalytic activity of Si-doped graphene is better than the Fe{sup +} in gas phase and comparable to the single Fe atom embedded on graphene. In the calculations, we found that van der Waals interactions and zero-point energy are two non-negligible factors for the predictions of the activation energies. Further discussion shows that Si-doped graphene can be one of efficient green catalysts for conversion of the airborne pollutants and Se-doped graphene can be a candidate for oxidizing CO by atomic oxygen.

  15. Die effek van intelligensie op die verhouding tussen lokus van kontrole en taakkompleksiteit

    Directory of Open Access Journals (Sweden)

    F. G. de Kock

    1995-06-01

    Full Text Available The effect of intelligence on the relationship between locus of control and task complexity. The aim of the study was to establish the effects of intelligence on the relationship between locus of control and task complexity. These constructs were selected by virtue of their importance in the literature, as well as the lack of empirical research regarding the assumed relationship which exists between them. The Human Sciences Research Council's (HSRC General Scholastic Aptitude Test (ASAT was used for measuring intelligence, Duttweiler's Internal Control Index (ICI was used for determining locus of control and the Raven's Advanced Progressive Matrices (APM was used as a criterion for coping with task complexity. These instruments were administered to 292 subjects to determine whether the relationship between locus of control and task complexity was effected when the effect of intelligence was controlled. The results indicated a significant relationship between locus of control and task complexity, however the relationship was no longer significant after the effect of intelligence was controlled. Opsomming Die doel van die studie was om die effek van intelligensie op die verhouding tussen lokus van kontrole en taak-kompleksiteit te ondersoek. Hierdie konstrukte is gekies na aanleiding van hulle belangrikheid in die literatuur asook die leemte in empiric se navorsing rakende die veronderstelde verband wat tussen hulle bestaan. Die Algemene Skolastiese Aanlegtoets (ASAT van die Raad vir Geesteswetenskaplike Navorsing (RGN is gebruik vir die meting van intelligensie, die Internal Control Index (ICI van Duttweiler is gebruik vir die meting van lokus van kontrole en die Advanced Progressive Matrices (APM van Raven is gebruik as maatstaf vir die bantering van taakkompleksiteit. Die genoemde meetinstrumente is op 292 proefpersone toegepas om te bepaal of die verband tussen lokus van kontrole en taakkompleksiteit geaffekteer word wanneer daar vir die effek

  16. Ziekten van het ruggenmerg

    NARCIS (Netherlands)

    Groen, Robertus; Kuks, Joannes; Snoek, Jozef; Kuks, Jan B.M.; Snoek, Jos W.

    2016-01-01

    Er zijn vele oorzaken voor een myelopathie. Beschadiging van het myelum kan compleet zijn (zoals in het geval van een complete dwarslaesie), maar is vaker incompleet (zoals bij een incomplete traumatische dwarslaesie en de meeste vormen van myelopathie op basis van niet-traumatische oorzaken). Er

  17. Graphene ground states

    Science.gov (United States)

    Friedrich, Manuel; Stefanelli, Ulisse

    2018-06-01

    Graphene is locally two-dimensional but not flat. Nanoscale ripples appear in suspended samples and rolling up often occurs when boundaries are not fixed. We address this variety of graphene geometries by classifying all ground-state deformations of the hexagonal lattice with respect to configurational energies including two- and three-body terms. As a consequence, we prove that all ground-state deformations are either periodic in one direction, as in the case of ripples, or rolled up, as in the case of nanotubes.

  18. Quality assessment of terahertz time-domain spectroscopy transmission and reflection modes for graphene conductivity mapping

    DEFF Research Database (Denmark)

    Mackenzie, David M.A.; Whelan, Patrick Rebsdorf; Bøggild, Peter

    2018-01-01

    We present a comparative study of electrical measurements of graphene using terahertz time-domain spectroscopy in transmission and reflection mode, and compare the measured sheet conductivity values to electrical van der Pauw measurements made independently in three different laboratories. Overall......, while offering the additional advantages associated with contactless mapping, such as high throughput, no lithography requirement, and with the spatial mapping directly revealing the presence of any inhomogeneities or isolating defects. The confirmation of the accuracy of reflection-mode removes...

  19. The sensitivity of graphene “snap-through” to substrate geometry

    KAUST Repository

    Wagner, Till J. W.

    2012-01-01

    We study theoretically the deposition of few layer graphene sheets onto a grooved substrate incorporating adhesion between substrate and sheet. We develop a model to understand the equilibrium of the sheet allowing for partial conformation of sheet to substrate. This model gives physical insight into recent observations of snap-through from flat to conforming states and emphasizes the crucial role of substrate shape in determining the nature of this transition. Our analytical results are consistent with numerical simulations using a van der Waals-like interaction. Finally, we propose a substrate shape that should exhibit a continuous, rather than snap-through, transition. © 2012 American Institute of Physics.

  20. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  1. Graphene: chemical approaches to the synthesis and modification

    Energy Technology Data Exchange (ETDEWEB)

    Grayfer, E D; Makotchenko, V G; Nazarov, Albert S; Kim, S J; Fedorov, Vladimir E

    2011-08-31

    Published data on the new carbon nanomaterial, graphene, are described systematically from the chemist's standpoint. The attention is focused on the chemical methods of the synthesis of graphene-like materials from various precursors: natural and expanded graphite, graphite oxide, graphite intercalation compounds, etc. Approaches to the chemical modification of the graphene plane by various reagents and routes for the preparation of colloidal dispersions of graphene are considered. The bibliography includes 220 references.

  2. Analyse van de vervormingen van de Fusee Ceramique daken van de productiehallen in Dongen : Rapport met bevindingen betreffende de vervormingen van de Fuseedaken van de productiehallen van Coca Cola in Dongen

    NARCIS (Netherlands)

    Kamerling, M.W.

    2014-01-01

    In 1962 werden in Dongen bedrijfshallen gemaakt met cilindervormige overkappingen waarin ter besparing van gewicht en cement ceramische elementen, de Fusée's Ceramique, werden gelegd. De schalen worden ondersteund met balken 450*750 mm2 en kolommen 450 * 450 mm2 op een raster van 5,6 m * 20,4 m. Het

  3. Effectiviteit van facultatief aansluitonderwijs wiskunde in de transitie van voortgezet naar hoger onderwijs

    NARCIS (Netherlands)

    Tempelaar, D.T.; Rienties, B.; Kaper, W.; Giesbers, B.; Gastel, van L.J.; Vrie, van de E.M.; Kooij, van der H.; Cuypers, H.

    2011-01-01

    Samenvatting Wat is het effect van vrijwillig aansluitonderwijs, zoals het remediërend wiskundeonderwijs dat op veel instellingen voor hoger onderwijs wordt gegeven ter verbetering van de doorstroom? Bepaling van de doelmatigheid van dit onderwijs wordt bemoeilijkt door selectie-effecten die kunnen

  4. De opdeling van Centraal-Afrika, 1875-1885 : een analyse van twee territoriale conflicten

    NARCIS (Netherlands)

    Foeken, D.W.J.

    1992-01-01

    Deze studie beschrijft een politiek-historisch proces en vormt een bijdrage aan de systematische studie van internationale territoriale conflicten vanuit het gezichtspunt van de politieke geografie. Tevens worden aspecten van het Europese imperialisme van de late 19e eeuw nader verklaard. De

  5. De economische kracht van de baggerindustrie: clusterstudie met behulp van de 'methode Porter'

    NARCIS (Netherlands)

    Jacobs, D.; Limpens, I.; Kuijper, J.; Ven, B. van de

    1993-01-01

    Deze clusterstudie van de Nederlands-Belgische baggerindustrie is uitgevoerd in opdracht van IHC Holland, de belangrijkste bouwer van baggerschepen ter wereld, en de Vereniging Centrale Baggerbedrijf, de branche-organisatie van aannemers in de bagger. De bedoeling is een beter inzicht te krijgen in

  6. Reversibility of Graphene-Enhanced Raman Scattering with Fluorinated Graphene

    Czech Academy of Sciences Publication Activity Database

    Valeš, Václav; Melníková Komínková, Zuzana; Verhagen, Timotheus; Vejpravová, Jana; Kalbáč, Martin

    2017-01-01

    Roč. 254, č. 11 (2017), č. článku 1700177. ISSN 0370-1972 R&D Projects: GA ČR(CZ) GA15-01953S; GA MŠk(CZ) LM2015073 Grant - others:GA MŠk(CZ) CZ.02.1.01/0.0/0.0/16_013/0001821 Institutional support: RVO:61388955 ; RVO:68378271 Keywords : fluorination * graphene * graphene-enhanced Raman * Raman spectroscopy * scattering Subject RIV: CF - Physical ; Theoretical Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) OBOR OECD: Physical chemistry; Condensed matter physics (including formerly solid state physics, supercond.) (FZU-D) Impact factor: 1.674, year: 2016

  7. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...... and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...

  8. Maatskaplike aspekte van geriatriese sorg

    Directory of Open Access Journals (Sweden)

    D. Louw

    1979-09-01

    Full Text Available Dit is maar enkele dekades gelede dat Westerse gemeenskappe bewus geword het van die besondere behoeftes van die relatief groot en nog steeds groeiende persentasie bejaardes in hulle midde. Nie alleen het die liggaamlike behoeftes van liggaamlike afgetakelde bejaardes die aandag getrek nie maar die gemeenskappe het ook bewus geword van die maatskaplike behoeftes van ouerwordendes in ’n tydperk wat gekenmerk is deur die dramatiese veranderings in die lewenswyses van ons mense — veranderinge wat in baie opsigte ’n negatiewe invloed gehad het op die lewensomstandighede van ’n groot groep bejaardes. Welsynsbeplanners het besef dat hulle in hulle beplanning spesiale voorsiening moes maak vir die lewensbehoeftes van hierdie groep in die gemeenskap en dat hulle in die verband ’n groot agterstand het om in te haal. Geneeshere wat belang begin stel het in die gesondheidsbehoeftes van bejaardes het ook besef dat gevestigde geneeskundige praktyke geensins voldoen aan die spesifieke behoeftes van ’n groot groep bejaardes nie en dat groot aanpassings gemaak moes word met betrekking tot hulle benaderings en metodes van behandeling van hierdie pasiente.

  9. Betekenis van Legionella-soorten voor preventiebeleid van leidingwaterinstallaties

    NARCIS (Netherlands)

    Versteegh JFM; Brandsema PS; Lodder WJ; de Roda Husman AM; Schalk JAC; van der Aa NGFM; IMG; LZO; EPI

    2009-01-01

    Het RIVM adviseert om de huidige normstelling voor het preventiebeleid van Legionella te handhaven en niet uitsluitend op Legionella pneumophila te richten. Als andere Legionella-soorten worden aangetroffen kan er ook groei van Legionella pneumophila optreden. Als er dan geen maatregelen worden

  10. Covalent functionalization of graphene with reactive intermediates.

    Science.gov (United States)

    Park, Jaehyeung; Yan, Mingdi

    2013-01-15

    Graphene, a material made exclusively of sp(2) carbon atoms with its π electrons delocalized over the entire 2D network, is somewhat chemically inert. Covalent functionalization can enhance graphene's properties including opening its band gap, tuning conductivity, and improving solubility and stability. Covalent functionalization of pristine graphene typically requires reactive species that can form covalent adducts with the sp(2) carbon structures in graphene. In this Account, we describe graphene functionalization reactions using reactive intermediates of radicals, nitrenes, carbenes, and arynes. These reactive species covalently modify graphene through free radical addition, CH insertion, or cycloaddition reactions. Free radical additions are among the most common reaction, and these radicals can be generated from diazonium salts and benzoyl peroxide. Electron transfer from graphene to aryl diazonium ion or photoactivation of benzoyl peroxide yields aryl radicals that subsequently add to graphene to form covalent adducts. Nitrenes, electron-deficient species generated by thermal or photochemical activation of organic azides, can functionalize graphene very efficiently. Because perfluorophenyl nitrenes show enhanced bimolecular reactions compared with alkyl or phenyl nitrenes, perfluorophenyl azides are especially effective. Carbenes are used less frequently than nitrenes, but they undergo CH insertion and C═C cycloaddition reactions with graphene. In addition, arynes can serve as a dienophile in a Diels-Alder type reaction with graphene. Further study is needed to understand and exploit the chemistry of graphene. The generation of highly reactive intermediates in these reactions leads to side products that complicate the product composition and analysis. Fundamental questions remain about the reactivity and regioselectivity of graphene. The differences in the basal plane and the undercoordinated edges of graphene and the zigzag versus arm-chair configurations

  11. Plausibiliteitsdocument STONE 2.0 (Globale verkenning van de plausibiliteit van het model STONE versie 2.0 voor de modellering van uit- en afspoeling van N en P).

    NARCIS (Netherlands)

    Overbeek, G.B.J.; Beusen, A.H.W.; Boers, P.C.M.; Born, van den G.J.; Groenendijk, P.; Grinsven, van J.J.M.; Kroon, T.; Meer, van der H.G.; Oosterom, H.P.; Puijenbroek, van P.J.T.M.; Roelsma, J.; Roest, C.W.J.; Rötter, R.; Tiktak, A.; Tol, van S.

    2002-01-01

    STONE is ontwikkeld om landsdekkend voor Nederland de effecten van bemesting en mestbeleid op de emissies van stikstof en fosfaat uit de landbouw naar grond- en oppervlaktewater te verkennen. De nadruk in de hier gerapporteerde plausibiliteitsstudie ligt op vaststelling van de geloofwaardigheid, het

  12. Plausibiliteitsdocument STONE 2.0.Globale verkenning van de plausibiliteit van het model STONE versie 2.0 voor de modellering van uit -en afspoeling van N en P

    NARCIS (Netherlands)

    Overbeek GBJ; Beusen AHW; Boers PCM; Born GJ van den; Groenendijk P; Grinsven JJM; Kroon T; Meer HG van der; Oosterom HP; Puijenbroek PJTM van; Roelsma J; Roest CJW; Rotter R; Tiktak A; Tol S van; LBG; CIM; LAE; LWD

    2002-01-01

    STONE is ontwikkeld om landsdekkend voor Nederland de effecten van bemesting en mestbeleid op de emissies van stikstof en fosfaat uit de landbouw naar grond- en oppervlaktewater te verkennen. De nadruk in de hier gerapporteerde plausibiliteitsstudie ligt op vaststelling van de geloofwaardigheid,

  13. Reduction of Graphene Oxide to Graphene by Using Gamma Irradiation

    International Nuclear Information System (INIS)

    Shamellia Sharin; Irman Abdul Rahman; Ainee Fatimah Ahmad

    2015-01-01

    This research aims to gauge the ability of gamma radiation to induce the reduction of graphene oxide to graphene. Graphene oxide powders were dispersed into a mixture of alcohol and deionized water, and the mixture was then irradiated with a "6"0Co source using a GammaCell 220 Excel irradiator at absorbed doses of 0, 5, 15, 20 and 35 kGy. According to characterization using Fourier Transformed Infrared Spectroscopy (FTIR), it can be seen that almost every oxygen-containing functional group has been removed after irradiation of the graphene oxide mixture. Reduction of graphene oxide was also proven from the characterization using UV-Vis Spectroscopy, in which the wavelength of graphene oxide at 237 nm was red-shifted to 277 nm after being irradiated and the peak at 292 nm, (indicating the carboxyl group) disappears in the UV-Vis spectrum of reduced graphene oxide. Morphology of graphene oxide also changed from a smooth and flat surface to crumpled. The ratio of carbon/ oxygen in the graphene oxide was lower than the carbon/ oxygen of reduced graphene oxide. At the end of the experiment, it can be deduced that graphene oxide underwent reduction, characterized before and after irradiation using Emission Scanned Electron Microscopy and Energy Dispersive X-ray, Fourier Transformed Infrared Spectroscopy and UV-Vis Spectroscopy. Therefore, we postulate that the irradiation technique that induces reduction, can be used to obtain reduced graphene oxide from graphene oxide. (author)

  14. Precise, Self-Limited Epitaxy of Ultrathin Organic Semiconductors and Heterojunctions Tailored by van der Waals Interactions.

    Science.gov (United States)

    Wu, Bing; Zhao, Yinghe; Nan, Haiyan; Yang, Ziyi; Zhang, Yuhan; Zhao, Huijuan; He, Daowei; Jiang, Zonglin; Liu, Xiaolong; Li, Yun; Shi, Yi; Ni, Zhenhua; Wang, Jinlan; Xu, Jian-Bin; Wang, Xinran

    2016-06-08

    Precise assembly of semiconductor heterojunctions is the key to realize many optoelectronic devices. By exploiting the strong and tunable van der Waals (vdW) forces between graphene and organic small molecules, we demonstrate layer-by-layer epitaxy of ultrathin organic semiconductors and heterostructures with unprecedented precision with well-defined number of layers and self-limited characteristics. We further demonstrate organic p-n heterojunctions with molecularly flat interface, which exhibit excellent rectifying behavior and photovoltaic responses. The self-limited organic molecular beam epitaxy (SLOMBE) is generically applicable for many layered small-molecule semiconductors and may lead to advanced organic optoelectronic devices beyond bulk heterojunctions.

  15. Geochemische bodematlas van Nederland

    NARCIS (Netherlands)

    Mol, G.; Spijker, J.H.; Gaans, van P.; Römkens, P.F.A.M.

    2012-01-01

    Deze Geochemische bodematlas geeft een uniek overzicht van de chemische samenstelling van de bodem in Nederland. Bodemmonsters van meer dan 350 locaties zijn geanalyseerd op meer dan 40 chemische elementen. De atlas geeft niet alleen informatie over de door de mens beïnvloede toplaag van de bodem,

  16. Evaluatie van bemesting en bekalking in bossen en de ontwikkeling van onbehandelde bossen

    NARCIS (Netherlands)

    Olsthoorn, A.F.M.; Berg, van den C.A.; Gruijter, de J.J.

    2006-01-01

    Dit rapport doet verslag van een deelonderzoek uit de Evaluatie van effectgerichte maatregelen in multifunctionele bossen 2004-2005 en is gericht op de effecten van de maatregelen bemesting en bekalking in bossen als overbruggingsmaatregel in het kader van het Overlevingsplan Bos en Natuur (OBN). Na

  17. Die meting van die gelyktydige hantering van teenstrydige en dubbelsinnige inligting as kritieke eienskap in 'n verskeidenheid van Beroepe

    Directory of Open Access Journals (Sweden)

    W. S. de Villiers

    1983-11-01

    Min informasie bestaan omtrent die hantering van teenstrydige en dubbelsinnige inligting as kritieke vermoë in vele werksituasies. Met hierdie ondersoek is daar gepoog om die konstruk te omlyn en aan 'n empiriese verifiering te onderwerp. ‘n Meetinstrument (posmandjie is ontwikkel om die hantering van teenstrydige en dubbelsinnige inligting te meet en is saam met ander meetinstrumente ter omlyning van die genoemde konstruk aan twee groepe proefpersone geadministreer. Daar is vasgestel dat hierdie vermoë verband hou met intellektuele vermoëns en sensories kognitiewe oordeel en nie met sekere persoonlikheids- en ander determinante van mens like gedrag nie en dat dit na alle waarskynlikheid dui op die bestaan van 'n afsonderlike werksvermoë of konstruk.

  18. Graphene for energy solutions and its industrialization

    Science.gov (United States)

    Wei, Di; Kivioja, Jani

    2013-10-01

    Graphene attracts intensive interest globally across academia and industry since the award of the Nobel Prize in Physics 2010. Within the last half decade, there has been an explosion in the number of scientific publications, patents and industry projects involved in this topic. On the other hand, energy is one of the biggest challenges of this century and related to the global sustainable economy. There are many reviews on graphene and its applications in various devices, however, few of the review articles connect the intrinsic properties of graphene with its energy. The IUPAC definition of graphene refers to a single carbon layer of graphite structure and its related superlative properties. A lot of scientific results on graphene published to date are actually dealing with multi-layer graphenes or reduced graphenes from insulating graphene oxides (GO) which contain defects and contaminants from the reactions and do not possess some of the intrinsic physical properties of pristine graphene. In this review, the focus is on the most recent advances in the study of pure graphene properties and novel energy solutions based on these properties. It also includes graphene metrology and analysis of both intellectual property and the value chain for the existing and forthcoming graphene industry that may cause a new `industry revolution' with the strong and determined support of governments and industries across the European Union, U. S., Asia and many other countries in the world.

  19. Een traditie herneemt zich - Over het belang van Aldo van Eyck

    NARCIS (Netherlands)

    Colenbrander, B.J.F.

    1997-01-01

    Zo'n zeven, acht jaar geleden veranderde Aldo van Eyck, overigens bij leven en welzijn, van een lijfelijk deelnemer aan de architectuurdiscussie in een historische figuur. Hij werd verguisd en gelauwerd. Met de Rekenkamer in Den Haag echter doet Van Eyck lang vergeten manifesten herleven. Gloort er

  20. Het belang van beschermende factoren in de risicotaxatie van tbs-gestelden

    NARCIS (Netherlands)

    Nagtegaal, M.H.; Schönberger, H.J.M.

    2013-01-01

    In dit onderzoek staan de volgende vragen centraal: Is het meenemen van beschermende factoren van toegevoegde waarde voor de risicotaxatie zoals deze plaatsvindt in de tbs-praktijk? Zo ja, op welke manier? Hierbij wordt onder ander het belang van beschermende factoren voor de behandelpraktijk en de

  1. Een geschiedenis van vleesloos eten

    NARCIS (Netherlands)

    Dagevos, H.

    2009-01-01

    Recensie van de populaire editie van het proefschrift van Dirk-Jan Verdonk: Het dierloze gerecht: een vegetarische geschiedenis in Nederland. Hierin wordt de geschiedenis van het vegetarisme vanaf de tweede helft van de 19e eeuw tot nu beschreven

  2. Een nieuwe ondersoort van Zosterops montana afkomstig van de Goenoeng Papandajan (West Java)

    NARCIS (Netherlands)

    Hoogerwerf, A.; Boer, de L.E.

    1947-01-01

    In zijn laatste revisie van het genus Zosterops (Journ. für Orn., vol. 87, 1939, p. 156-164) geeft Stresemann o.a. een schematische voorstelling van de horizontale en verticale verspreiding binnen deze Archipel van de vier voornaamste groepen van dit geslacht: montana, atricapilla, palpebrosa en

  3. Naar meer bruto nationaal sportgeluk? Verkenning van de rol van sport in geluk

    NARCIS (Netherlands)

    Dool, R. van den; Breedveld, K.

    2017-01-01

    Op verzoek van NOC*NSF heeft het Mulier Instituut, met financiële steun van het ministerie van VWS, een verkenning uitgevoerd naar de relatie tussen sport en geluk. NOC*NSF en de Nederlandse sportbonden streven, als onderdeel van het 'transitietraject', ernaar om duidelijker voor het

  4. Out-of-plane strain and electric field tunable electronic properties and Schottky contact of graphene/antimonene heterostructure

    Science.gov (United States)

    Phuc, Huynh V.; Hieu, Nguyen N.; Hoi, Bui D.; Phuong, Le T. T.; Hieu, Nguyen V.; Nguyen, Chuong V.

    2017-12-01

    In this paper, the electronic properties of graphene/monolayer antimonene (G/m-Sb) heterostructure have been studied using the density functional theory (DFT). The effects of out-of-plane strain (interlayer coupling) and electric field on the electronic properties and Schottky contact of the G/m-Sb heterostructure are also investigated. The results show that graphene is bound to m-Sb layer by a weak van-der-Waals interaction with the interlayer distance of 3.50 Å and the binding energy per carbon atom of -39.62 meV. We find that the n-type Schottky contact is formed at the G/m-Sb heterostructure with the Schottky barrier height (SBH) of 0.60 eV. By varying the interlayer distance between graphene and the m-Sb layer we can change the n-type and p-type SBH at the G/m-Sb heterostructure. Especially, we find the transformation from n-type to p-type Schottky contact with decreasing the interlayer distance. Furthermore, the SBH and the Schottky contact could be controlled by applying the perpendicular electric field. With the positive electric field, electrons can easily transfer from m-Sb to graphene layer, leading to the transition from n-type to p-type Schottky contact.

  5. Gebruik van TaqMan PCR voor het kwantificeren van Fusarium spp. en Microdochium nivale in gewassen en gewasresten van tarwe

    NARCIS (Netherlands)

    Köhl, J.; Haas, de B.H.; Kastelein, P.; Burgers, S.L.G.E.; Waalwijk, C.

    2005-01-01

    Samenvattingen van 5 presentaties: 'Heterogenity of Dutch Fusarium oxysporum strains isolated as forma specialis radicis-lycopersici';'Een proteomics benadering om eiwitten te identificeren die door Fusarium oxysporum worden uitgescheiden in xyleemsap van tomaat'; 'Ontwikkeling en implementatie van

  6. Richtlijnen voor selectie en weergave van residugehaltes van bestrijdingsmiddelen

    NARCIS (Netherlands)

    van den Velde-Koerts T; van Hoeven-Arentzen PH; Ossendorp BC; CSR

    2002-01-01

    Residubeoordelingen van bestrijdingsmiddelen worden uitgevoerd om wettelijke residulimieten (MRLs = maximum residue limits) vast te leggen. MRLs worden afgeleid uit de resultaten van die residuproeven met bestrijdingsmiddelen die volgens kritisch "Good Agricultural Practice" zijn

  7. Toepassing van optische sensoren (I). Meting van bellengrootteverdeling in luchtige levensmiddelen.

    NARCIS (Netherlands)

    Bisperink, C.G.J.; Akkerman, J.C.; Prins, A.

    1991-01-01

    Beschrijving van een methode, ontwikkeld op het laboratorium voor Zuivel en Levensmiddelennatuurkunde van de LU Wageningen in nauwe samenwerking met de TU Delft, waarmee goed en snel de verdeling van de gasfase in de vloeibare fase in de tijd en op verschillende plaatsen in een monster kan worden

  8. van der Waals

    Indian Academy of Sciences (India)

    University education was beyond reach for van der Waals as he had to work for earning his daily bread ... languages, which was a prerequisite for entering a University those days. van der Waals worked as a school ... take academic examinations at the University yet, van der Waals continued studying at Leiden. University ...

  9. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  10. Het beslissingsproces van de huisarts bij de keuze van een geneesmiddel

    NARCIS (Netherlands)

    B. Wierenga (Berend); S.J.T. Jong; A. Mantel

    1989-01-01

    textabstractHet beslissingsproces van de huisarts bij de keuze van een geneesmiddel, zoals het uit dit empirisch onderzoek naar voren kwam, kan als volgt worden getypeerd. In het merendeel van de gevallen (ca. 90%) beperkt de arts zich tot de informatie die hij al in zijn geheugen heeft. Vaak wordt

  11. Vaststellen reproduceerbaarheid van de nachtactiviteit van de Balb/c/rivm muis over de afgelopen vijf jaar

    NARCIS (Netherlands)

    Steen BVL; Jansen van ' t Land C; CDL

    1999-01-01

    Om de inschatting van de mate van ongerief onafhankelijk te maken van ervaring en interpretatie van de persoon die de observatie uitvoert, maken wij in onze studies gebruik van een volledig geautomatiseerde opstelling. Met deze geautomatiseerde opstelling kan de bewegingsactiviteit van

  12. Doping graphene films via chemically mediated charge transfer

    Directory of Open Access Journals (Sweden)

    Ishikawa Ryousuke

    2011-01-01

    Full Text Available Abstract Transparent conductive films (TCFs are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ, is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  13. Bereiding van gevriesdroogd cholesterolcalibratie en -controleserum ten behoeve van de Stichting Kwaliteitsbewaking Chemische Analyse ten behoeve van Epidemiologisch Onderzoek (KCA)

    NARCIS (Netherlands)

    Dreumel; H.J.van; Wikkeling; R.H.; Steentjes; G.M.; Buitenhuis; S.G.; Koedam; J.C.

    1986-01-01

    In het kader van de samenwerking tussen het RIVM en de Stichting KCA (Kwaliteitsbewaking Chemische Analyse t.b.v. Epidemiologisch Onderzoek) werden drie partijen cholesterolserum bereid. Uitgegaan werd van menselijk serum (Centraal Laboratorium van de Bloedtransfusiedienst). Door uit een deel

  14. De auteursrechtelijke groeipijnen van Google

    NARCIS (Netherlands)

    Hugenholtz, P.B.

    2011-01-01

    Het succesverhaal van Google behoort tot de canon van de geschiedenis van onze informatiemaatschappij. In 1998 begonnen in een studentenkamer op de campus van Stanford University, groeide Google in enkele jaren uit tot het orakel van het internet. Zo werd ‘googelen’ de gebruikelijke term voor zoeken

  15. Beoordeling van de gevoeligheid van soorten en habitattypes van Europees belang bij verstoringingrepen

    OpenAIRE

    Wouters, Jan

    2011-01-01

    Om ecologische schade te vermijden, moeten activiteiten of plannen met mogelijk schadelijke effecten doorgelicht worden. Het instrument ‘effectenindicator’ licht activiteiten in algemene termen door op mogelijke natuureffecten. De in dit advies weergegeven gevoeligheidstabellen geven de gevoeligheid op van soorten en biotopen voor effecten ten gevolge van menselijke activiteiten. De tabellen bevatten deze gegevens voor de soorten waarvoor gewestelijke instandhoudingsdoelstellingen zijn opgest...

  16. De consequenties van categorieën: een analyse van grensoverschrijdende genre-identiteit in de populaire muziek

    NARCIS (Netherlands)

    van Venrooij, A.; Schmutz, V.

    2013-01-01

    Op basis van een analyse van de genreclassificaties door recensenten van 2951 popmuziekalbums worden in dit paper de consequenties onderzocht van het bezitten van een fuzzy of grensoverschrijdende genre-identiteit op het vergaren van commercieel en kritisch succes. De resultaten bevestigen in grote

  17. Advies voor de toepassing van ground-penetrating radar bij de inventarisatie van de grondwaterdynamiek

    NARCIS (Netherlands)

    Knotters, M.

    2001-01-01

    Ground-penetrating radar (GPR) biedt mogelijk een nauwkeurig alternatief voor arbeidsintensieve metingen van de grondwaterstand in boorgaten. De GPR-metingen kunnen als hulpinformatie dienen bij geostatistische interpolatie van grondwaterstanden. Op basis van literatuurstudie en verkenning van het

  18. Vrouekarakters in enkele prosawerke van C.M. van den Heever

    Directory of Open Access Journals (Sweden)

    E. Botha

    2003-08-01

    Full Text Available The role of women in some prose works of C.M. van den Heever Re-reading the C.M. van den Heever “classics” Somer (1935 and Laat vrugte (1939 within the framework of Van den Heever criticism through the years, one becomes aware that central themes in his oeuvre are acted out by women. The beautiful young girl Linda in Somer embodies the sadness of the transcience of beauty and happiness. Through Ouma Willa, Betta and Johanna – three women from three generations in Laat vrugte – the theme of the endurance of the memory of love and passion beyond decay and death is expressed. A cursory examination of other and earlier works by Van den Heever – Op die plaas (1927, Langs die grootpad (1928, Kromburg (1937 and the short story “Leuens” (Lies from Vuurvlieg en sterre (1934 – bears out the observation that women express core meanings in C.M. van den Heever’s prose works.

  19. Tranen van bloed : Het beleg van 's-Hertogenbosch en de oorlog in de Nederlanden, 1629

    NARCIS (Netherlands)

    Cauwer, de Peter

    2008-01-01

    Het beleg van 's-Hertogenbosch en de veldtocht van 1629 staat in de Nederlandse geschiedschrijving te boek als een van de meest roemruchte gebeurtenissen van de Tachtigjarige Oorlog. Het beeld en de interpretaties van deze gebeurtenis zijn de afgelopen decennia nauwelijks veranderd. Toch bleven de

  20. Dispersive and Covalent Interactions between Graphene and Metal Surfaces from the Random Phase Approximation

    DEFF Research Database (Denmark)

    Olsen, Thomas; Yan, Jun; Mortensen, Jens Jørgen

    2011-01-01

    We calculate the potential energy surfaces for graphene adsorbed on Cu(111), Ni(111), and Co(0001) using density functional theory and the random phase approximation (RPA). For these adsorption systems covalent and dispersive interactions are equally important and while commonly used approximations...... for exchange-correlation functionals give inadequate descriptions of either van der Waals or chemical bonds, RPA accounts accurately for both. It is found that the adsorption is a delicate competition between a weak chemisorption minimum close to the surface and a physisorption minimum further from the surface....

  1. Graphene-metallic nanocomposites as modifiers in electrochemical glucose biosensor transducers

    Science.gov (United States)

    Altuntas, Derya Bal; Tepeli, Yudum; Anik, Ulku

    2016-09-01

    Graphene sheets and three different graphene-metallic nanocomposites including graphene-copper (graphene-Cu), graphene-nickel (graphene-Ni) and graphene-platinum (graphene-Pt) were prepared and characterized in the first place. Then the electrochemical performances of these nanocomposites were tested in glucose biosensor transducers, which were formed by combining these metallic nanocomposites with glucose oxidase enzyme and glassy carbon paste electrode (GCPE). This is the first work that includes the usage of these graphene-Me nanocomposites as a part of glucose biosensor transducer. Fabricated amperometric biosensors linear ranges were obtained as follow: For the plain graphene, the linear range was found in the concentration range between 50 μM and 800 μM with the RSD (n = 3 for 50 μM glucose) value of 12.86% and LOD value of 7.2 μM. For graphene-Pt modified glucose biosensor, the linear range was between 10 μM and 600 μM with the RSD (n = 3 for 50 μM glucose) value of 3.45% and LOD value of 3.06 μM. In the case of graphene-Ni modified glucose biosensor, the values were 25 μM to 600 μM with the RSD (n = 3 for 50 μM glucose) value of 8.76% and LOD value of 24.71 μM and for graphene-Cu modified glucose biosensor linear range was 25 μM to 400 μM with the RSD (n = 3 for 50 μM glucose) value of 3.93% and LOD value of 2.87 μM.

  2. Novel lithium titanate-graphene hybrid containing two graphene conductive frameworks for lithium-ion battery with excellent electrochemical performance

    Energy Technology Data Exchange (ETDEWEB)

    Ruiyi, Li; Tengyuan, Chen; Beibei, Sun [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Zaijun, Li [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Zhiquo, Gu; Guangli, Wang; Junkang, Liu [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2015-10-15

    Graphical abstract: We developed a new Novel lithium titanate-graphene nanohybrid containing two graphene conductive frameworks. The unique architecture creates fast electron transfer and rapid mass transport of electrolyte. The hybrid electrode provides excellent electrochemical performances for lithium-ion batteries, including high specific capacity, outstanding rate capability and intriguing cycling stability. - Highlights: • We reported a new LTO-graphene nanohybrid containing two graphene conductive frameworks. • One graphene framework greatly improves the electrical conductivity of LTO crystal. • Another graphene framework enhances electrical conductivity of between LTO crystals and electrolyte transport. • The unique architecture creates big tap density, ultrafast electron transfer and rapid mass transport. • The hybrid electrode provides excellent electrochemical performance for lithium-ion batteries. - ABSTRACT: The paper reported the synthesis of lithium titanate(LTO)-graphene hybrid containing two graphene conductive frameworks (G@LTO@G). Tetrabutyl titanate and graphene were dispersed in tertbutanol and heated to reflux state by microwave irradiation. Followed by adding lithium acetate to produce LTO precursor/graphene (p-LTO/G). The resulting p-LTO/G offers homogeneous morphology and ultra small size. All graphene sheets were buried in the spherical agglomerates composed of primitive particles through the second agglomeration. The p-LTO/G was calcined to LTO@graphene (LTO@G). To obtain G@LTO@G, the LTO@G was further hybridized with graphene. The as-prepared G@LTO@G shows well-defined three-dimensional structure and hierarchical porous distribution. Its unique architecture creates big tap density, fast electron transfer and rapid electrolyte transport. As a result, the G@LTO@G provides high specific capacity (175.2 mA h g{sup −1} and 293.5 mA cm{sup −3}), outstanding rate capability (155.7 mAh g{sup −1} at 10C) and intriguing cycling

  3. Ellis-van Creveld syndrome: its history.

    Science.gov (United States)

    Muensterer, Oliver J; Berdon, Walter; McManus, Chris; Oestreich, Alan; Lachman, Ralph S; Cohen, M Michael; Done, Stephen

    2013-08-01

    The story of Ellis-van Creveld syndrome is one of serendipity. By chance, Simon van Creveld and Richard Ellis purportedly met on a train and combined their independently encountered patients with short stature, dental anomalies and polydactyly into one landmark publication in 1940. They included a patient used in work published previously by Rustin McIntosh without naming McIntosh as a coauthor. This patient was followed radiologically by Caffey for nearly two decades. In 1964, Victor McKusick felt compelled to investigate a brief report in an obscure pharmaceutical journal on an unusual geographic cluster of short-statured Amish patients in Pennsylvania. This review highlights the lives of the individuals involved in the discovery of Ellis-van Creveld syndrome in their historic context.

  4. Onderdeel: Kwaliteit van uitleg, deel uitmakend van het onderzoek naar: Corporate governance in Nederland

    NARCIS (Netherlands)

    Schutte-Veenstra, J.N.; Boschma, H.E.

    2011-01-01

    De wijze en mate van naleving en toepasing van de principes en best practices van de nederlandse corporate governance code door de Nederlandse beursgenoteede vennootschappen in ht boekjaar 2010, alsmede de redengeving van eventuele afwijkingen, d.d. 21 september 2011.

  5. Fast water transport in graphene nanofluidic channels

    Science.gov (United States)

    Xie, Quan; Alibakhshi, Mohammad Amin; Jiao, Shuping; Xu, Zhiping; Hempel, Marek; Kong, Jing; Park, Hyung Gyu; Duan, Chuanhua

    2018-01-01

    Superfast water transport discovered in graphitic nanoconduits, including carbon nanotubes and graphene nanochannels, implicates crucial applications in separation processes and energy conversion. Yet lack of complete understanding at the single-conduit level limits development of new carbon nanofluidic structures and devices with desired transport properties for practical applications. Here, we show that the hydraulic resistance and slippage of single graphene nanochannels can be accurately determined using capillary flow and a novel hybrid nanochannel design without estimating the capillary pressure. Our results reveal that the slip length of graphene in the graphene nanochannels is around 16 nm, albeit with a large variation from 0 to 200 nm regardless of the channel height. We corroborate this finding with molecular dynamics simulation results, which indicate that this wide distribution of the slip length is due to the surface charge of graphene as well as the interaction between graphene and its silica substrate.

  6. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  7. Groei van ongelijkjarige mengingen van grove den en berk op arme zandgronden; resultaten van metingen in 22 opstanden op de Veluwe en de Sallandse Heuvelrug

    NARCIS (Netherlands)

    Wijdeven, S.M.J.; Oosterbaan, A.; Berg, v.d. C.; Jole, van M.

    2000-01-01

    Het voorkomen en de groei van berk in ongelijkjarige mengingen van grove den en berk is bepaald op basis van opstandgemiddelden. Er is geen duidelijk verband tussen het voorkomen en de groei van berk en de schermdichtheid van grove den. Actuele groeigegevens zijn noodzakelijk voor een nadere

  8. Nanoscale strain engineering of graphene and graphene-based devices

    Institute of Scientific and Technical Information of China (English)

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  9. Few-layer and symmetry-breaking effects on the electrical properties of ordered CF3Cl phases on graphene

    Science.gov (United States)

    Morales-Cifuentes, Josue; Wang, Yilin; Reutt-Robey, Janice; Einstein, T. L.

    2014-03-01

    An effective pseudopotential mechanism for breaking the inherent sub-lattice symmetry of graphene has been studied using DFT calculations on hexagonal boron nitride. Electrical detection of CF3Cl phase transitions on graphene shows the existence of a commensurate ordered phase in which this can be tested. We study the electronic properties of this phase using VASP ver 5.3.3, with ab initio van der Waals density functionals (vdW-DF1 and vdW-DF2). Consistent with a physisorbed phase, binding energies and charge transfer per CF3Cl molecule are calculated to be on the order of 280meV and 0.01e, respectively. By exploring different coverages and orientations of this ordered phase we are able to open a band gap in some configurations; said gap is in the range of 8 to 80meV depending on the strength of the effective pseudopotential. Furthermore, we calculate the screening of these effects in bi-layer and tri-layer graphene. Work supported by NSF-MRSEC at UMD, grant DMR 05-20471 and NSF-CHE 13-05892.

  10. Terahertz carrier dynamics in graphene and graphene nanostructures

    DEFF Research Database (Denmark)

    Jensen, Søren A.; Turchinovich, Dmitry; Tielrooij, Klaas Jan

    2014-01-01

    Photoexcited charge carriers in 2D graphene and in 1D graphene nanostructures were studied with optical pump-THz probe spectroscopy. We find efficient hot-carrier multiplication in 2D graphene, and predominantly free carrier early time response in 1D nanostructures. © 2014 OSA....

  11. Die meting van die invloed van organisasiegrootte op bruin werkers se houdings en gedrag

    Directory of Open Access Journals (Sweden)

    R. van der Bank

    1985-11-01

    'n Oorsig van die literatuur dui daarop dat bevindinge onkonsekwent is wat betref die invloed van die grootte van organisasies op veranderlikes soos die doeltreffendheid van personeel-keuringstelsels, opleiding, arbeidsomset, werkafwesigheid, werkdoeltreffendheid en so meer. In Wes-Kaapland is tien "groot" fabrieke geselekteer (aantal bruin werkers 300 of meer en vergelyk met 17 "klein" fabrieke (aantal bruin werkers minder as 50. Met behulp van t-toetse is statisties beduidende verskille gevind ten opsigte van die volgende veranderlikes waarvolgens groot organisasies meer gunstig vertoon: 1 meer keuringstegnieke word gebruik; 2 die doeltreffendheid van die keurings-programme is hoër; 3 meer opleidingstegnieke word gebruik; 4 opleidingsprogramme is meer doeltreffend; 5 werkers is meer tevrede; 6 werkers se gemiddelde beroepsaanpassing is beter, en 7 werkers is meer tevrede met hul salarisse of lone. Geen betekenisvolle verskille is egter gevind ten opsigte van arbeidsomset, werkafwesigheid en werkbehoeftes nie.

  12. 09 Van Coller 03.pmd

    African Journals Online (AJOL)

    Owner

    29 Jul 2010 ... strangeness, awakening in it a drama whose actors are all those assumptions and operations which make the text the work of another period”. Die spore van Raka: Oor herskrywing en kanonisering. (Deel 2). H.P. van Coller en A. van Jaarsveld. H. P. van Coller is hoof van die Departement. Afrikaans ...

  13. Van Buchem disease: lifetime evolution of radioclinical features

    Energy Technology Data Exchange (ETDEWEB)

    Vanhoenacker, Filip M.; De Schepper, Arthur M.; Bernaerts, Anja [Department of Radiology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium); Balemans, Wendy; Hul, Wim Van [Department of Medical Genetics, University of Antwerp, Universiteitsplein 1, 2610, Antwerp (Belgium); Tan, Gregorius J. [Department of Radiology, Dr. Janssen Ziekenhuis, Urkerweg 1, 8303, Emmeloord (Netherlands); Dikkers, Frederik G. [Department of Otorhinolaryngology, University Hospital Groningen, Hanzeplein 1, 9713, Groningen (Netherlands); Mathysen, Danny G.P. [Department of Ophthalmology, University Hospital Antwerp, Wilrijkstraat 10, 2650, Edegem (Belgium)

    2003-12-01

    The purpose of this study was to evaluate the lifetime evolution of the radioclinical features in a large family with van Buchem disease. The study population included 13 patients, ranging between 6 and 69 years. The evolution of the clinical features has been assessed by retrospective analysis of the clinical records of the patients. The age-related evolution of the cortical hyperostosis and defective modeling at the tubular bones was evaluated by morphometric analysis of hand films in 9 patients, compared with 9 control individuals. Progression of sclerosis of the craniofacial bones was evaluated by analysis of the skull radiographs of eleven van Buchem patients, taken at different age. Radioclinical features, including sclerosis of the cranial and tubular bones and cranial nerve deficit, become more prominent in older patients. Defective modeling of tubular bones, cortical thickness and medullary width progress with age. Radioclinical abnormalities of van Buchem patients become more prominent in older patients, which suggests that the van Buchem gene is very actively involved in bone metabolism throughout life. Morphometric analysis of the plain films supports the hypothesis that the physiological function of the van Buchem gene is to inhibit bone formation and possibly to regulate bone remodeling. (orig.)

  14. Het dichtwerk van Jan van Foreest (1585-1651)

    NARCIS (Netherlands)

    Vries, M. de

    2007-01-01

    The dissertation consists of an edition of Jan van Foreest's Greek poems and the greater part of those written in Latin, provided with translations and a succinct commentary in Dutch. A number of the Latin poems appears in print for the first time ever. Jan van Foreest (1586-1651) studied arts at

  15. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  16. Observing Graphene Grow: Catalyst–Graphene Interactions during Scalable Graphene Growth on Polycrystalline Copper

    Science.gov (United States)

    2013-01-01

    Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration. PMID:24041311

  17. De miskenning van Theo van Doesburg; zijn bijdrage tot de ontwikkeling van de konkrete poëzie

    Directory of Open Access Journals (Sweden)

    J. van der Elst

    1987-05-01

    Full Text Available More literary critics outside Belgium and the Netherlands have written about Theo van Doesburg than from inside these countries. The first important monograph on him appeared in English - Theo van Doesburg - Propagandist and Practitioner of the Avant-Garde, 1909-1923, by Hannah Hedrick. Van Doesburg’s poetry developed in the direction of concrete poetry - the type of poetry in which the spatial, acoustic and visual characteristics of language are maximally utilized towards the creation of the poem. Word as sound and as image is foregrounded in concrete poetry, while the imaging of persons and subjective experience is eliminated as far as possible. The anecdotal or the epic component of the concrete poem is minimal and the language of this sort of poem has been reduced to the minimum. In the spirit of the theory of concrete poetry Van Doesburg advocates the liberation of art from all the commitments imposed upon it. That with which Van Doesburg began was continued by other poets, especially in Germanic literature by poets of the so-called neo-realism.

  18. Effect minerale samenstelling van bodem en plant op de expressie van bladnecrose bij Freesia

    NARCIS (Netherlands)

    Doorduin, J.C.; Bos, van den A.L.

    2003-01-01

    Freesiatelers veronderstellen een relatie tussen de voedingstoestand in de grond, de minerale samenstelling van de plant en de expressie van bladnecrose bij freesia. Op verzoek van de Landelijke Freesiacommissie van LTO is een inventarisatie uitgevoerd op ‘gezonde’ en ‘necrose’ bedrijven naar de

  19. Lysine analoga; bereiding en enzymatische hydrolyse van peptide derivaten van lysine en lysine analoga

    NARCIS (Netherlands)

    Tesser, Godefridus Ignatius

    1961-01-01

    De synthese van enkele structuuranaloga van lysine wordt beschreven. Aangetoond wordt dat zij lysine in substraten voor trypsine, cathepsine B en papaine kan vervangen. Daar de structuur van de analoga O-(Beta-aminoaethyl)serine en S-(Beta-aminoaethyl) cysteine die van lysine dicht nadert, wordt

  20. Verspreiding en habitats van Bulinus tropicus, tussengasheerslak van die peervormige bot Calicophoron microbothrium, in Suid-Afrika

    Directory of Open Access Journals (Sweden)

    K. N. de Kock

    2002-09-01

    Full Text Available Hierdie artikel fokus op die geografiese verspreiding en habitats van Bulinus tropicus, die slaktussengasheer van die peervormige bot, Calicophoron microbothrium. Bulinus tropicus is die varswaterslakspesie met verreweg die wydste geografiese verspreiding, soos gereflekteer deur die vindplekke van die 7 992 monsters wat tans in die databasis van die Nasionale Varswaterslakversameling (NVV van Suid-Afrika op rekord is. Die voorkoms van hierdie spesie is deur versamelaars in ’n totaal van 14 waterliggaamtipes opgeteken, maar die grootste getal monsters is in damme en spruite en in habitats waarvan die water as staande, helder en vars beskryf is, versamel. Die effekgrootte van elke veranderlike is afsonderlik bereken om die rol daarvan in die bepaling van die verspreiding van hierdie spesie vas te stel. Die data in die databasis is verder verwerk en aangepas om ’n geïntegreerde besluitnemingsboom saam te stel. Dit is ’n statistiese model waarvolgens ’n seleksie van veranderlikes gemaak kan word wat maksimaal kan diskrimineer tussen die voorkomsfrekwensie van ’n gegewe spesie en die res van die spesies in die databasis. Die sukses van B. tropicus soos gereflekteer deur sy omvangryke geografiese verspreiding, is waarskynlik toe te skryf aan die omstandigheid dat hierdie spesie grootliks r-geselekteerd is soos onteenseglik in bevolkingsdinamikastudies deur verskeie outeurs bevind is. Daarbenewens beskik die spesie oor’n besondere vermoë om opdroging van ’n habitat vir relatief lang tydperke te kan oorleef. Dit kom egter voor asof sy beperkte verdraagsaamheid ten opsigte van water met ’n relatief lae geleidingsvermoë, moontlik as ’n beperkende faktor vir sy besetting van bepaalde gebiede in Suid-Afrika mag optree. As tussengasheer vir C. microbothrium, wat paramphistomose by vee veroorsaak en soms tot groot verliese kan lei, het die wye verspreiding van B. tropicus in Suid-Afrika egter ook ekonomiese implikasies, veral vir inwoners

  1. Designed graphene-peptide nanocomposites for biosensor applications: A review

    International Nuclear Information System (INIS)

    Wang, Li; Zhang, Yujie; Wu, Aiguo; Wei, Gang

    2017-01-01

    The modification of graphene with biomacromolecules like DNA, protein, peptide, and others extends the potential applications of graphene materials in various fields. The bound biomacromolecules could improve the biocompatibility and bio-recognition ability of graphene-based nanocomposites, therefore could greatly enhance their biosensing performances on both selectivity and sensitivity. In this review, we presented a comprehensive introduction and discussion on recent advance in the synthesis and biosensor applications of graphene-peptide nanocomposites. The biofunctionalization of graphene with specifically designed peptides, and the synthesis strategies of graphene-peptide (monomer, nanofibrils, and nanotubes) nanocomposites were demonstrated. On the other hand, the fabrication of graphene-peptide nanocomposite based biosensor architectures for electrochemical, fluorescent, electronic, and spectroscopic biosensing were further presented. This review includes nearly all the studies on the fabrication and applications of graphene-peptide based biosensors recently, which will promote the future developments of graphene-based biosensors in biomedical detection and environmental analysis. - Highlights: • A comprehensive review on the fabrication and application of graphene-peptide nanocomposites was presented. • The design of peptide sequences for biofunctionalization of various graphene materials was presented. • Multi-strategies on the fabrication of biosensors with graphene-peptide nanocomposites were discussed. • Designed graphene-peptide nanocomposites showed wide biosensor applications.

  2. Low-frequency 1/f noise in graphene devices

    Science.gov (United States)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  3. Graphene and Two-Dimensional Materials for Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Andreas Bablich

    2016-03-01

    Full Text Available This article reviews optoelectronic devices based on graphene and related two-dimensional (2D materials. The review includes basic considerations of process technology, including demonstrations of 2D heterostructure growth, and comments on the scalability and manufacturability of the growth methods. We then assess the potential of graphene-based transparent conducting electrodes. A major part of the review describes photodetectors based on lateral graphene p-n junctions and Schottky diodes. Finally, the progress in vertical devices made from 2D/3D heterojunctions, as well as all-2D heterostructures is discussed.

  4. Inventarisatie van mogelijke effecten van kribverlaging in de Waal op de beroepsvisserij

    NARCIS (Netherlands)

    Winter, H.V.

    2011-01-01

    Om de hoogwaterveiligheid van het rivierengebied te vergroten is het doel van Rijkswaterstaat om eind 2015 ca. 500 kribben in de Waal verlaagd te hebben en daarnaast langsdammen aangelegd te hebben tussen Wamel en Ophemert. In deze korte deskstudie wordt een inventarisatie gemaakt van mogelijke

  5. Beheersing en bestrijding van Botrytis cinerea en van Penicillium in Euphorbia fulgens

    NARCIS (Netherlands)

    Wubben, J.P.; Hazendonk, A.; Bosker, I.; Slootweg, C.; Hoope, ten M.

    2002-01-01

    De bloeiwijze van Euphorbia fulgens kent twee belangrijke schimmelbelagers, die problemen in de teelt veroorzaken: Botrytis cinerea en Penicillium. B. cinerea geeft schade in de vorm van smet of pokken, die op de bloemblaadjes verschijnen. Dit zijn kleine donkerbruine/zwarte plekjes van ongeveer 1

  6. Modellering van begrazing in SUMO : verbetering van de vegetatiemodellering in de Natuurplanner

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Wegman, R.M.A.; Slim, P.A.; Dirksen, J.; Mol-Dijkstra, J.P.; Dobben, van H.F.

    2001-01-01

    In samenwerking met het RIVM en WU wordt het vegetatievoorspellingsmodel SUMO ontwikkeld. Het model vormt een integraal onderdeel met SMART en wordt onder andere gebruikt in de natuurplanner van het RIVM. Om de modellering van de effecten van begrazing op de vegetatieontwikkeling en successie

  7. Kwaliteitsdocument inzake de bepaling van Cadmium in kunststoffen met behulp van Rontgenflurescentie

    NARCIS (Netherlands)

    Hoogerbrugge R; van de Wiel HJ; van de Beek ACW; Kliest JJG; IEM

    1999-01-01

    Bij de handhaving van het besluit Cadmium in Kunststoffen is gebleken, dat de analyse met behulp van Rvntgenfluorescentie (XRF) een snel en goedkoop alternatief zou kunnen zijn voor de op dit moment wettelijk voorgeschreven methoden. In opdracht van de Inspecteur Milieuhygikne is daarom door het

  8. De morbiditeit van astma en COPD in Nederland; een inventariserend onderzoek ten behoeve van de beleidsondersteuning van het Nederlands Astma Fonds

    NARCIS (Netherlands)

    Smit HA; Beaumont M; CZE

    2000-01-01

    In opdracht van het Nederlands Astma Fonds is een inventarisatie gemaakt van beschikbare kennis over de morbiditeit van astma en COPD in Nederland. De volgende vraagstellingen werden geformuleerd: Inventarisatie: welke gegevensbronnen zijn beschikbaar, welke gegevens zijn daarin aanwezig? In

  9. ’n Evaluering van die welstand onder werknemers van ’n mediesefondsmaatskappy in Suid-Afrika

    Directory of Open Access Journals (Sweden)

    Lee-Anne Naicker

    2015-02-01

    Full Text Available Huidige navorsing op die gebied van welstand in die werkplek is gefragmenteer en vereis ’n holistiese, geïntegreerde en stelselmatige begrip van werknemerwelstand sodat gesondheiden welstandsorg doeltreffend bestuur kan word. Die toenemende las van nie-oordraagbare toestande in Suid-Afrika beklemtoon die noodsaaklikheid van voorkomingstrategieë soos welstandprogramme. Die werkomgewing bied ’n ideale plek, aangesien ’n groot deel van die bevolking geteiken word, insluitende diegene wie se lewenstyl verbeter moet word. Hierdie studie is dus daarop gemik om verskeie gesondheid- en welstandkomponente onder werknemers van ’n mediesefondsmaatskappy te evalueer in ’n poging om risikogebiede te identifiseer wat verdere ingryping vereis. Die deelnemers het bestaan uit 140 werknemers van ’n mediesefondsmaatskappy wat ten minste 40 h per week werk. Hulle is onderwerp aan ’n welstandassesseringsbattery bestaande uit antropometrieke, gesondheidverwante en fisieke kapasiteitmetings. Die resultate toon dat ingryping nodig is betreffende alkohol- en dwelmgebruik, dieetgewoontes, hartgesondheid, liggaamsamestelling, spieruithouvermoë, kardiorespiratoriese uithouvermoë en individuele persepsies van die maatskappy. Dié studie het resultate opgelewer wat die bevindings van baie vorige navorsing op hierdie gebied staaf. Die trefwydte van welstandprogramme op die Suid-Afrikaanse bevolking is egter beperk. Die sukses van welstandprogramme wat fisieke aktiwiteit beklemtoon, is goed gedokumenteer in hoë-inkomstelande, met bewys van die ekonomiese voordele en opbrengs op belegging. Gevolglik word daar aangevoer dat die toepassing van welstandprogramme ’n positiewe uitwerking op die Suid-Afrikaanse werkmag sal hê.

  10. Graphene as multifunctional delivery platform in cancer therapy.

    Science.gov (United States)

    Nejabat, Mojgan; Charbgoo, Fahimeh; Ramezani, Mohammad

    2017-08-01

    The biomedical applications of graphene-based nanomaterials including drug and gene delivery have grown rapidly in the past few years. This is due to its high surface area that results in high cargo loading capacity. It is demonstrated that graphene can improve drug efficacy without increasing the dose of the chemotherapeutic agent in cancer treatment. Considering these valuable benefits of graphene, this review focused on the newest advancements in drug and gene delivery systems using graphene and unveiling advantages and disadvantages of different graphene-based materials in introducing an effective cargo delivery system for cancer therapy. Different approaches for reducing cytotoxic impacts of graphene oxide and production of biocompatible delivery platform were also reviewed. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2355-2367, 2017. © 2017 Wiley Periodicals, Inc.

  11. Praktijkkennis van leerkrachten als ontwerpers van een ICT rijke leeromgeving

    NARCIS (Netherlands)

    Boschman, Ferry; McKenney, Susan; Voogt, Joke

    2011-01-01

    Ormel, B., Pareja, N., & McKenney, S. (2011, 8-10 June). Praktijkkennis van leerkrachten als ontwerpers van een ICT rijke leeromgeving. Presentation at the ORD annual meeting, Maastricht, The Netherlands.

  12. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  13. Water on graphene surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Gordillo, M C [Departamento de Sistemas Fisicos, Quimicos y Naturales, Facultad de Ciencias Experimentales, Universidad Pablo de Olavide, Carretera de Utrera, km 1, E-41013 Sevilla (Spain); Marti, J, E-mail: cgorbar@upo.e, E-mail: jordi.marti@upc.ed [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, B4-B5 Campus Nord, E-08034 Barcelona, Catalonia (Spain)

    2010-07-21

    In this paper, we summarize the main results obtained in our group about the behavior of water confined inside or close to different graphene surfaces by means of molecular dynamics simulations. These include the inside and outside of carbon nanotubes, and the confinement inside a slit pore or a single graphene sheet. We paid special attention to some thermodynamical (binding energies), structural (hydrogen-bond distributions) and dynamic (infrared spectra) properties, and their comparison to their bulk counterparts.

  14. Optically Unraveling the Edge Chirality-Dependent Band Structure and Plasmon Damping in Graphene Edges.

    Science.gov (United States)

    Duan, Jiahua; Chen, Runkun; Cheng, Yuan; Yang, Tianzhong; Zhai, Feng; Dai, Qing; Chen, Jianing

    2018-05-01

    The nontrivial topological origin and pseudospinorial character of electron wavefunctions make edge states possess unusual electronic properties. Twenty years ago, the tight-binding model calculation predicted that zigzag termination of 2D sheets of carbon atoms have peculiar edge states, which show potential application in spintronics and modern information technologies. Although scanning probe microscopy is employed to capture this phenomenon, the experimental demonstration of its optical response remains challenging. Here, the propagating graphene plasmon provides an edge-selective polaritonic probe to directly detect and control the electronic edge state at ambient condition. Compared with armchair, the edge-band structure in the bandgap gives rise to additional optical absorption and strongly absorbed rim at zigzag edge. Furthermore, the optical conductivity is reconstructed and the anisotropic plasmon damping in graphene systems is revealed. The reported approach paves the way for detecting edge-specific phenomena in other van der Waals materials and topological insulators. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mogelijkheden tot productie van beertjes

    NARCIS (Netherlands)

    Scholten, R.; Huiskes, J.

    1994-01-01

    In opdracht van het Produktschap Vee en Vlees is het project Mogelijkheden tot productie van vleesbeertjes en afzet van vlees en vleesproducten hiervan uitgevoerd. De afzetmogelijkheden voor vlees van beertjes zijn en blijven vooralsnog minimaal

  16. Interactions of DNA with graphene and sensing applications of graphene field-effect transistor devices: A review

    Energy Technology Data Exchange (ETDEWEB)

    Green, Nathaniel S.; Norton, Michael L., E-mail: norton@marshall.edu

    2015-01-01

    Highlights: • The interaction of DNA, including DNA nanostructures, and graphene is reviewed. • Comparison of DNA graphene field-effect transistor (GFET) with other detection methods. • Discussion of challenges present in the detection mechanism of GFETs. • Use of DNA aptamer GFET sensors for the detection of small molecules and proteins. - Abstract: Graphene field-effect transistors (GFET) have emerged as powerful detection platforms enabled by the advent of chemical vapor deposition (CVD) production of the unique atomically thin 2D material on a large scale. DNA aptamers, short target-specific oligonucleotides, are excellent sensor moieties for GFETs due to their strong affinity to graphene, relatively short chain-length, selectivity, and a high degree of analyte variability. However, the interaction between DNA and graphene is not fully understood, leading to questions about the structure of surface-bound DNA, including the morphology of DNA nanostructures and the nature of the electronic response seen from analyte binding. This review critically evaluates recent insights into the nature of the DNA graphene interaction and its affect on sensor viability for DNA, small molecules, and proteins with respect to previously established sensing methods. We first discuss the sorption of DNA to graphene to introduce the interactions and forces acting in DNA based GFET devices and how these forces can potentially affect the performance of increasingly popular DNA aptamers and even future DNA nanostructures as sensor substrates. Next, we discuss the novel use of GFETs to detect DNA and the underlying electronic phenomena that are typically used as benchmarks for characterizing the analyte response of these devices. Finally, we address the use of DNA aptamers to increase the selectivity of GFET sensors for small molecules and proteins and compare them with other, state of the art, detection methods.

  17. Thermal conductivity of electron-irradiated graphene

    Science.gov (United States)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  18. Quality control and biophysical characterisation data of VanSA

    Directory of Open Access Journals (Sweden)

    C.S. Hughes

    2017-10-01

    Full Text Available This data article presents the results from quality control experiments including N-terminal sequencing, SEC-MALS and Mass Spectrometry for purified VanSA used in experiments described in (Hughes et al., 2017 [1]; in addition to ligand interaction measurements and thermal melting curves of VanSA in the presence of screened ligands from circular dichroism measurements as well as UV–vis absorbance spectra for the binding interaction of VanSA in the presence of screened ligands.

  19. 2012, 11/01807, (Vrijstellingsmethode niet van toepassing op Amerikaans deel van bestuurdersbeloning)

    NARCIS (Netherlands)

    D. Molenaar (Dick)

    2012-01-01

    textabstractSamenvatting: Belanghebbende is met ingang van 1 februari 2004 werkzaam als CEO bij C en vanaf 31 december 2003 als statutair bestuurder van de Amerikaanse werkmaatschappij van C. Eind 2004 heeft belanghebbende een additioneel belang in C verworven. Het verschil tussen de waarde in het

  20. Van graf tot wieg ; de rol van fintech door de generaties heen

    NARCIS (Netherlands)

    Vries, A. de; Bakas, A.

    2015-01-01

    Als financiële dienstverlener moet je rekening houden met mensen van alle leeftijden en uit alle lagen van de bevolking. Van de hulpbehoevende senior tot de nieuwsgierige kleuter. We vroegen 2 experts wat verschillende levensfasen typeert, hoe deze persona’s tegen technologie aankijken en hoe

  1. Graphene-based polymer nanocomposites in electronics

    CERN Document Server

    Sadasivuni, Kishor Kumar; Kim, Jaehwan

    2015-01-01

    This book covers graphene reinforced polymers, which are useful in electronic applications, including electrically conductive thermoplastics composites, thermosets and elastomers. It systematically introduces the reader to fundamental aspects and leads over to actual applications, such as sensor fabrication, electromagnetic interference shielding, optoelectronics, superconductivity, or memory chips. The book also describes dielectric and thermal behaviour of graphene polymer composites - properties which are essential to consider for the fabrication and production of these new electronic materials. The contributions in this book critically discuss the actual questions in the development and applications of graphene polymer composites. It will thus appeal to chemists, physicists, materials scientists as well as nano technologists, who are interested in the properties of graphene polymer composites.

  2. De fysica van polymere materialen

    NARCIS (Netherlands)

    Struik, L.C.E.

    1987-01-01

    Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik.

  3. Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus

    Directory of Open Access Journals (Sweden)

    M. M. Nel

    1990-07-01

    Full Text Available Die histologie en ultrastruktuur van die hepatopankreas van die bloukurper Oreochromis mossambicus word beskryf. ’n Dun bindweefselkapsel omring die lewer. Die hepatosietrangskikking vertoon as lobules, met die koorde van hepatosiete wat vanaf ’n sentrale vene uitradieer en met mekaar anastomaseer. Indiwiduele lewerlohules vertoon nie duidelike grense nie, maar enkele duidelike triades word wel in die lewer van O. mossambicus aangetref. Die hepatosiete bevat ’n enkele ronde kern met ’n duidelike nukleolus en die growwe endoplasmiese retikula kom in twee of meer rye om die kerne en teen die selgrense van die hepatosiete voor. Die ander sitoplasmiese organelle kom verspreid in die hepatosietsitoplasma voor. Die eksokriene pankreasselle is om die portale venes gesetel. Die kerne van hierdie selle is rond en is hasaal in die kubies- tot silindervormige selle gelee. ’n Goedontwikkelde growwe endoplasmiese retikulum — vesikulêr, tubulêr en sirkulêr in vorm — en sektretoriese granules wat apikaal in die sel gelee is, kom voor.

  4. Nonlinear graphene plasmonics

    Science.gov (United States)

    Ooi, Kelvin J. A.; Tan, Dawn T. H.

    2017-10-01

    The rapid development of graphene has opened up exciting new fields in graphene plasmonics and nonlinear optics. Graphene's unique two-dimensional band structure provides extraordinary linear and nonlinear optical properties, which have led to extreme optical confinement in graphene plasmonics and ultrahigh nonlinear optical coefficients, respectively. The synergy between graphene's linear and nonlinear optical properties gave rise to nonlinear graphene plasmonics, which greatly augments graphene-based nonlinear device performance beyond a billion-fold. This nascent field of research will eventually find far-reaching revolutionary technological applications that require device miniaturization, low power consumption and a broad range of operating wavelengths approaching the far-infrared, such as optical computing, medical instrumentation and security applications.

  5. Verspreiding van zout bij het terugwinnen van zeezand uit een depot in het Haringvliet

    NARCIS (Netherlands)

    Kranenburg, C.

    1991-01-01

    Dit rapport geeft een beknopte analyse van de verdunning en verspreiding van zout vanuit een gepland depot voor ontzilt zeezand in het Haringvliet. Beschouwd zijn de initiële menging van het zout bij terugwinnen van het zand, de verspreiding door stroming en turbulentie bij geopende spuisluis, en de

  6. Van strafbaar tot huwbaar : homorecht wereldwijd (presentatie op Ministerie van Buitenlandse Zaken, Den Haag)

    NARCIS (Netherlands)

    Waaldijk, C.

    2015-01-01

    Met de door hem ontwikkelde Global Index on Legal Recognition of Homosexual Orientation (GILRHO) geeft Kees Waaldijk op een schaal van nul tot acht aan, hoe ver een land is met het uit het strafrecht halen van homoseksualiteit, met het verbieden van homodiscriminatie en met het erkennen van

  7. Voorkoming en beheersing van gebreksverschijnselen in de bloembollenteelt : teelt en afbroeiproeven met als doel het voorkomen van ijzergebrek bij tulpen, hyacinten en narcissen van mangaangebrek bij tulpen en van vervroegde afsterving bij lelies

    NARCIS (Netherlands)

    Dam, van A.M.; Dam, van M.F.N.; Bruin, P.N.A.

    2004-01-01

    Door veranderingen in de teelten en de aanscherping van het overheidsbeleid t.a.v. het gebruik van met name dierlijke mest kunnen zich bij de teelt van bloembollen verschijnselen voordoen die mogelijk samenhangen met een gebreksituatie. PPO heeft in dit project een aantal van deze verschijnselen

  8. Layer-controllable graphene by plasma thinning and post-annealing

    Science.gov (United States)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  9. Kosten van allogene stamceltransplantaties

    NARCIS (Netherlands)

    M. van Agthoven (Michel); M.T. Groot (Martijn); C.A. Uyl-de Groot (Carin)

    2001-01-01

    textabstractAllogene stamceltransplantatie is een topspecialistische procedure die met succes kan worden ingezet in de behandeling van (hematologische) maligniteiten, met name bij leukemie. Van oudsher worden transplantaten van verwante donoren gebruikt, maar met de mogelijkheden om transplantaten

  10. Contra-expertise op bepalingen van radioactiviteit van afvalwater en ventilatielucht van de kernenergiecentrale Borssele. Periode 2008

    NARCIS (Netherlands)

    Kwakman PJM; Overwater RMW; LSO

    2012-01-01

    Dit rapport is eerder vertrouwelijk uitgebracht als briefrapport 610330093. Dit is besproken met de VROM-opdrachtgever en vertegenwoordigers van de betreffende nucleaire installatie: het commentaar op het rapport is verwerkt, voorzien van een Rapport in het Kort, en mag openbaar worden als RIVM

  11. Contra-expertise op bepalingen van radioactiviteit van afvalwater en ventilatielucht van de kernenergiecentrale Borssele. Periode 2009

    NARCIS (Netherlands)

    Kwakman PJM; Overwater RMW; LSO

    2012-01-01

    Dit rapport is eerder vertrouwelijk uitgebracht als briefrapport 610330103. Dit is besproken met de VROM-opdrachtgever en vertegenwoordigers van de betreffende nucleaire installatie: het commentaar op het rapport is verwerkt, voorzien van een Rapport in het Kort, en mag openbaar worden als RIVM

  12. Contra-expertise op bepalingen van radioactiviteit van afvalwater en ventilatielucht van de kernenergiecentrale Borssele. Periode 2007

    NARCIS (Netherlands)

    Kwakman PJM; Overwater RMW; LSO

    2012-01-01

    Dit rapport is eerder vertrouwelijk uitgebracht als briefrapport 610330076. Dit is besproken met de VROM-opdrachtgever en vertegenwoordigers van de betreffende nucleaire installatie: het commentaar op het rapport is verwerkt, voorzien van een Rapport in het Kort, en mag openbaar worden als RIVM

  13. Resultaten van het RWS-RIKZ JAMP 2003 monitoringsprogramma van bot (Platychthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot en mosselen

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    2004-01-01

    In opdracht van RWS-RIKZ werden door het RIVO werkzaamheden uitgevoerd in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De werkzaamheden bestonden uit het verzamelen van monsters bot waarvan biologische parameters werden bepaald. Tevens werden milieukritische stoffen

  14. Resultaten van het RWS-RIKZ JAMP 2004 monitoringsprogramma van bot (Platichthys flesus L.). Biologische gegevens van bot en milieukritische stoffen in bot en mosselen

    NARCIS (Netherlands)

    Kotterman, M.J.J.

    2005-01-01

    In opdracht van RWS-RIKZ werden door het RIVO werkzaamheden uitgevoerd in het kader van het Joint Assessment and Monitoring Program van de OSPARCOM. De werkzaamheden bestonden uit het verzamelen van monsters bot waarvan biologische parameters werden bepaald. Tevens werden milieukritische stoffen

  15. Heat conduction in graphene: experimental study and theoretical interpretation

    International Nuclear Information System (INIS)

    Ghosh, S; Nika, D L; Pokatilov, E P; Balandin, A A

    2009-01-01

    We review the results of our experimental investigation of heat conduction in suspended graphene and offer a theoretical interpretation of its extremely high thermal conductivity. The direct measurements of the thermal conductivity of graphene were performed using a non-contact optical technique and special calibration procedure with bulk graphite. The measured values were in the range of ∼3000-5300 W mK -1 near room temperature and depended on the lateral dimensions of graphene flakes. We explain the enhanced thermal conductivity of graphene as compared to that of bulk graphite basal planes by the two-dimensional nature of heat conduction in graphene over the whole range of phonon frequencies. Our calculations show that the intrinsic Umklapp-limited thermal conductivity of graphene grows with the increasing dimensions of graphene flakes and can exceed that of bulk graphite when the flake size is on the order of a few micrometers. The detailed theory, which includes the phonon-mode-dependent Gruneisen parameter and takes into account phonon scattering on graphene edges and point defects, gives numerical results that are in excellent agreement with the measurements for suspended graphene. Superior thermal properties of graphene are beneficial for all proposed graphene device applications.

  16. ‘Op de wijze van Kavafis’: Die voorbeeld van die digter uit Alexandrië

    Directory of Open Access Journals (Sweden)

    Phil van Schalkwyk

    2014-12-01

    Full Text Available Die Griekse digter K.P. Kavafis (1863–1933 word wêreldwyd deur lesers sowel as skrywers besonder hoog geag. Hy het nie net van die grootste twintigste-eeuse skrywers beïnvloed nie,maar is vanweë die buitengewone vertaalbaarheid van sy werk ook betreklik sterk teenwoordig in die letterkunde van meer tale as slegs Grieks en Engels. Vir baie – veral gay lesers, skrywers en kunstenaars – besit Kavafis ’n voorbeeldstatus, ten opsigte van die letterkunde sowel asdie lewe. W.H. Auden het beweer dat dit wat Kavafis onderskei, sy stemtoon is, een wat ’n persoon met ’n unieke perspektief op die wêreld openbaar. Hierdie bydrae, wat deel is van ’nnavorsingsprojek oor idiolektiese skrywersidentiteit, is daarop gerig om die onderskeidende kenmerke van Kavafis se werk, sowel in terme van vorm as inhoud, opnuut te ondersoek. Dit word gedoen binne die raamwerk van die breë kritiese diskoers oor Kavafis en met verwysing na enkele manifestasies/voorbeelde van Nederlandse en Afrikaanse kritiese en kreatieweperspektiewe op sy poësie, met die doel om spesifiek lig te werp op die besondere soortwysheid wat in Kavafis se werk oorgedra word.

  17. First-principles studies on graphene-supported transition metal clusters

    International Nuclear Information System (INIS)

    Sahoo, Sanjubala; Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-01-01

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM 13 (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM 13 clusters, Co 13 is absorbed relatively more strongly on pristine and defective graphene as compared to Fe 13 and Ni 13 clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters

  18. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  19. Electronic Properties and Device Applications of van-der-Waals Thin Films

    Science.gov (United States)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  20. Stabilisatie en samenstelling van het glycosidenmengsel van Folia digitalis

    NARCIS (Netherlands)

    Tattje, Derk Hendrik Evert

    1952-01-01

    Na een korte inleiding wordt een omschrijving van het begrip stabilisatie gegeven en besproken hoe deze stabilisatie, dit is het irreversibel inactiveren van de enzymen, in het algemeen tot stand kan worden gebracht. Tevens wordt nagegaan of ook door verschillende oplosmiddelen reeds bij gewone