WorldWideScience

Sample records for graphene films configured

  1. Engineering Graphene Films from Coal

    Vijapur, Santosh H.

    Graphene is a unique material with remarkable properties suitable for a wide array of applications. Chemical vapor deposition (CVD) is a simple technique for synthesis of large area and high quality graphene films on various metal substrates. Among the metal substrates, copper has been shown to be an excellent support for the growth of graphene films. Traditionally, hydrocarbon gases are used for the graphene synthesis via CVD. Unconventional solid carbon sources such as various polymers and food waste have also shown great potential for synthesis of graphene films. Coal is one such carbon enriched and abundantly available unconventional source. Utilization of coal as a carbon source to synthesize large area, transparent, and high quality few-layer graphene films via CVD has been demonstrated in the present work. Hydrocarbon gases are released as products of coal pyrolysis at temperatures ≥400 °C. This study hypothesized that, these hydrocarbon gases act as precursors for the synthesis of graphene films on the copper substrate. Hence, atmospheric pressure CVD and low temperature of 400 °C were utilized initially for the production of graphene films. These conditions were suitable for the formation of amorphous carbon (a-C) films but not crystalline graphene films that were the objective of this work. The synthesized a-C films on the copper substrate were shown to be uniform and transparent with large surface area. The thickness and surface roughness of the a-C films were determined to have typical values of 5 nm and 0.55 nm, respectively. The a-C film has >95 % optical transmittance and sheet resistivity of 0.6 MO sq-1. These values are comparable to other carbon thin films synthesized at higher temperatures. Further, the a-C films were transferred onto any type of substrate such as silicon wafer and titanium foil, and can be utilized for diverse applications. However, crystalline graphene films were not produced by implementing atmospheric pressure CVD and low

  2. FDTD subcell graphene model beyond the thin-film approximation

    Valuev, Ilya; Belousov, Sergei; Bogdanova, Maria; Kotov, Oleg; Lozovik, Yurii

    2017-01-01

    A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.

  3. Surface acoustic wave propagation in graphene film

    Roshchupkin, Dmitry; Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-01-01

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals

  4. Adsorption configurations of two nitrogen atoms on graphene

    Rani, Babita; Jindal, V. K.; Dharamvir, Keya

    2014-01-01

    We present calculations for different possible configurations of two nitrogen adatoms on graphene using the code VASP, based on Density Functional Theory (DFT). Two N atoms adsorbed on the graphene sheet can share a bond in two ways. They take positions either just above two adjacent carbon atoms or they form a bridge across opposite bonds of a hexagon in the graphene sheet. Both these configurations result into structural distortion of the sheet. Another stable configuration involving two N atoms consists of an N 2 molecule which is physisorbed at a distance 3.69 Å on the graphene sheet. Two N atoms can also be adsorbed on alternate bridge sites of neighbouring hexagons of graphene. This configuration again leads to distortion of the sheet in perpendicular direction

  5. Superlubricating graphene and graphene oxide films

    Sumant, Anirudha V.; Erdemir, Ali; Choi, Junho; Berman, Diana

    2018-02-13

    A system and method for forming at least one of graphene and graphene oxide on a substrate and an opposed wear member. The system includes graphene and graphene oxide formed by an exfoliation process or solution processing method to dispose graphene and/or graphene oxide onto a substrate. The system further includes an opposing wear member disposed on another substrate and a gas atmosphere of an inert gas like N2, ambient, a humid atmosphere and a water solution.

  6. Stable configurations of graphene on silicon

    Javvaji, Brahmanandam; Shenoy, Bhamy Maithry [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Mahapatra, D. Roy, E-mail: droymahapatra@aero.iisc.ernet.in [Department of Aerospace Engineering, Indian Institute of Science, Bangalore 560012 (India); Ravikumar, Abhilash [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India); Hegde, G.M. [Center for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012 (India); Rizwan, M.R. [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal 575025 (India)

    2017-08-31

    Highlights: • Simulations of epitaxial growth process for silicon–graphene system is performed. • Identified the most favourable orientation of graphene sheet on silicon substrate. • Atomic local strain due to the silicon–carbon bond formation is analyzed. - Abstract: Integration of graphene on silicon-based nanostructures is crucial in advancing graphene based nanoelectronic device technologies. The present paper provides a new insight on the combined effect of graphene structure and silicon (001) substrate on their two-dimensional anisotropic interface. Molecular dynamics simulations involving the sub-nanoscale interface reveal a most favourable set of temperature independent orientations of the monolayer graphene sheet with an angle of ∽15° between its armchair direction and [010] axis of the silicon substrate. While computing the favorable stable orientations, both the translation and the rotational vibrations of graphene are included. The possible interactions between the graphene atoms and the silicon atoms are identified from their coordination. Graphene sheet shows maximum bonding density with bond length 0.195 nm and minimum bond energy when interfaced with silicon substrate at 15° orientation. Local deformation analysis reveals probability distribution with maximum strain levels of 0.134, 0.047 and 0.029 for 900 K, 300 K and 100 K, respectively in silicon surface for 15° oriented graphene whereas the maximum probable strain in graphene is about 0.041 irrespective of temperature. Silicon–silicon dimer formation is changed due to silicon–carbon bonding. These results may help further in band structure engineering of silicon–graphene lattice.

  7. Intrinsic graphene field effect transistor on amorphous carbon films

    Tinchev, Savcho

    2013-01-01

    Fabrication of graphene field effect transistor is described which uses an intrinsic graphene on the surface of as deposited hydrogenated amorphous carbon films. Ambipolar characteristic has been demonstrated typical for graphene devices, which changes to unipolar characteristic if the surface graphene was etched in oxygen plasma. Because amorphous carbon films can be growth easily, with unlimited dimensions and no transfer of graphene is necessary, this can open new perspective for graphene ...

  8. Highly controllable and green reduction of graphene oxide to flexible graphene film with high strength

    Wan, Wubo; Zhao, Zongbin; Hu, Han; Gogotsi, Yury; Qiu, Jieshan

    2013-01-01

    Graphical abstract: Highly controllable and green reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant. Self-assembly of the as-made CCG sheets results in a flexible CCG film, of which the tensile strength strongly depends on the deoxygenation degree of graphene sheets. - Highlights: • Graphene was synthesized by an effective and environmentally friendly approach. • We introduced a facile X-ray diffraction analysis method to investigate the reduction process from graphene oxide to graphene. • Flexible graphene films were prepared by self-assembly of the graphene sheets. • The strength of the graphene films depends on the reduction degree of graphene. - Abstract: Graphene film with high strength was fabricated by the assembly of graphene sheets derived from graphene oxide (GO) in an effective and environmentally friendly approach. Highly controllable reduction of GO to chemical converted graphene (CCG) was achieved with sodium citrate as a facile reductant, in which the reduction process was monitored by XRD analysis and UV–vis absorption spectra. Self-assembly of the as-made CCG sheets results in a flexible CCG film. This method may open an avenue to the easy and scalable preparation of graphene film with high strength which has promising potentials in many fields where strong, flexible and electrically conductive films are highly demanded

  9. Nano-Architecture of nitrogen-doped graphene films synthesized from a solid CN source.

    Maddi, Chiranjeevi; Bourquard, Florent; Barnier, Vincent; Avila, José; Asensio, Maria-Carmen; Tite, Teddy; Donnet, Christophe; Garrelie, Florence

    2018-02-19

    New synthesis routes to tailor graphene properties by controlling the concentration and chemical configuration of dopants show great promise. Herein we report the direct reproducible synthesis of 2-3% nitrogen-doped 'few-layer' graphene from a solid state nitrogen carbide a-C:N source synthesized by femtosecond pulsed laser ablation. Analytical investigations, including synchrotron facilities, made it possible to identify the configuration and chemistry of the nitrogen-doped graphene films. Auger mapping successfully quantified the 2D distribution of the number of graphene layers over the surface, and hence offers a new original way to probe the architecture of graphene sheets. The films mainly consist in a Bernal ABA stacking three-layer architecture, with a layer number distribution ranging from 2 to 6. Nitrogen doping affects the charge carrier distribution but has no significant effects on the number of lattice defects or disorders, compared to undoped graphene synthetized in similar conditions. Pyridinic, quaternary and pyrrolic nitrogen are the dominant chemical configurations, pyridinic N being preponderant at the scale of the film architecture. This work opens highly promising perspectives for the development of self-organized nitrogen-doped graphene materials, as synthetized from solid carbon nitride, with various functionalities, and for the characterization of 2D materials using a significant new methodology.

  10. Fluorinated graphene films with graphene quantum dots for electronic applications

    Antonova, I. V., E-mail: antonova@isp.nsc.ru [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nebogatikova, N. A.; Prinz, V. Ya. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch, Novosibirsk 630090 (Russian Federation)

    2016-06-14

    This work analyzes carrier transport, the relaxation of non-equilibrium charge, and the electronic structure of fluorinated graphene (FG) films with graphene quantum dots (GQDs). The FG films with GQDs were fabricated by means of chemical functionalization in an aqueous solution of hydrofluoric acid. High fluctuations of potential relief inside the FG barriers have been detected in the range of up to 200 mV. A phenomenological expression that describes the dependence of the time of non-equilibrium charge emission from GQDs on quantum confinement levels and film thickness (potential barrier parameters between GQDs) is suggested. An increase in the degree of functionalization leads to a decrease in GQD size, the removal of the GQD effect on carrier transport, and the relaxation of non-equilibrium charge. The study of the electronic properties of FG films with GQDs has revealed a unipolar resistive switching effect in the films with a relatively high degree of fluorination and a high current modulation (up to ON/OFF ∼ 10{sup 4}–10{sup 5}) in transistor-like structures with a lower degree of fluorination. 2D films with GQDs are believed to have considerable potential for various electronic applications (nonvolatile memory, 2D connections with optical control and logic elements).

  11. High-quality AlN films grown on chemical vapor-deposited graphene films

    Chen Bin-Hao

    2016-01-01

    Full Text Available We report the growth of high-quality AlN films on graphene. The graphene films were synthesized by CVD and then transferred onto silicon substrates. Epitaxial aluminum nitride films were deposited by DC magnetron sputtering on both graphene as an intermediate layer and silicon as a substrate. The structural characteristics of the AlN films and graphene were investigated. Highly c-axis-oriented AlN crystal structures are investigated based on the XRDpatterns observations.

  12. Graphene diamond-like carbon films heterostructure

    Zhao, Fang; Afandi, Abdulkareem; Jackman, Richard B.

    2015-01-01

    A limitation to the potential use of graphene as an electronic material is the lack of control over the 2D materials properties once it is deposited on a supporting substrate. Here, the use of Diamond-like Carbon (DLC) interlayers between the substrate and the graphene is shown to offer the prospect of overcoming this problem. The DLC films used here, more properly known as a-C:H with ∼25% hydrogen content, have been terminated with N or F moieties prior to graphene deposition. It is found that nitrogen terminations lead to an optical band gap shrinkage in the DLC, whilst fluorine groups reduce the DLC's surface energy. CVD monolayer graphene subsequently transferred to DLC, N terminated DLC, and F terminated DLC has then been studied with AFM, Raman and XPS analysis, and correlated with Hall effect measurements that give an insight into the heterostructures electrical properties. The results show that different terminations strongly affect the electronic properties of the graphene heterostructures. G-F-DLC samples were p-type and displayed considerably higher mobility than the other heterostructures, whilst G-N-DLC samples supported higher carrier densities, being almost metallic in character. Since it would be possible to locally pattern the distribution of these differing surface terminations, this work offers the prospect for 2D lateral control of the electronic properties of graphene layers for device applications

  13. Photoconductivity of reduced graphene oxide and graphene oxide composite films

    Liang, Haifeng; Ren, Wen; Su, Junhong; Cai, Changlong

    2012-01-01

    A photoconductive device was fabricated by patterning magnetron sputtered Pt/Ti electrode and Reduced Graphene Oxide (RGO)/Graphene Oxide (GO) composite films with a sensitive area of 10 × 20 mm 2 . The surface morphology of as-deposited GO films was observed by scanning electronic microscopy, optical microscopy and atomic force microscopy, respectively. The absorption properties and chemical structure of RGO/GO composite films were obtained using a spectrophotometer and an X-ray photoelectron spectroscopy. The photoconductive properties of the system were characterized under white light irradiation with varied output power and biased voltage. The results show that the resistance decreased from 210 kΩ to 11.5 kΩ as the irradiation power increased from 0.0008 mW to 625 mW. The calculated responsiveness of white light reached 0.53 × 10 −3 A/W. Furthermore, the device presents a high photo-conductivity response and displays a photovoltaic response with an open circuit voltage from 0.017 V to 0.014 V with irradiation power. The sources of charge are attributed to efficient excitation dissociation at the interface of the RGO/GO composite film, coupled with cross-surface charge percolation.

  14. Single crystalline metal films as substrates for graphene growth

    Zeller, Patrick; Henss, Ann-Kathrin; Wintterlin, Joost [Department Chemie, Ludwig-Maximilians-Universitaet Muenchen (Germany); Weinl, Michael; Schreck, Matthias [Institut fuer Physik, Universitaet Augsburg (Germany); Speck, Florian; Ostler, Markus [Lehrstuhl fuer Technische Physik, Universitaet Erlangen-Nuernberg, Erlangen (Germany); Institut fuer Physik, Technische Universitaet Chemnitz (Germany); Seyller, Thomas [Institut fuer Physik, Technische Universitaet Chemnitz (Germany)

    2017-11-15

    Single crystalline metal films deposited on YSZ-buffered Si(111) wafers were investigated with respect to their suitability as substrates for epitaxial graphene. Graphene was grown by CVD of ethylene on Ru(0001), Ir(111), and Ni(111) films in UHV. For analysis a variety of surface science methods were used. By an initial annealing step the surface quality of the films was strongly improved. The temperature treatments of the metal films caused a pattern of slip lines, formed by thermal stress in the films, which, however, did not affect the graphene quality and even prevented wrinkle formation. Graphene was successfully grown on all three types of metal films in a quality comparable to graphene grown on bulk single crystals of the same metals. In the case of the Ni(111) films the originally obtained domain structure of rotational graphene phases could be transformed into a single domain by annealing. This healing process is based on the control of the equilibrium between graphene and dissolved carbon in the film. For the system graphene/Ni(111) the metal, after graphene growth, could be removed from underneath the epitaxial graphene layer by a pure gas phase reaction, using the reaction of CO with Ni to give gaseous Ni(CO){sub 4}. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Correlating defect density with growth time in continuous graphene films.

    Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok

    2014-12-01

    We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.

  16. Growth of graphene films from non-gaseous carbon sources

    Tour, James; Sun, Zhengzong; Yan, Zheng; Ruan, Gedeng; Peng, Zhiwei

    2015-08-04

    In various embodiments, the present disclosure provides methods of forming graphene films by: (1) depositing a non-gaseous carbon source onto a catalyst surface; (2) exposing the non-gaseous carbon source to at least one gas with a flow rate; and (3) initiating the conversion of the non-gaseous carbon source to the graphene film, where the thickness of the graphene film is controllable by the gas flow rate. Additional embodiments of the present disclosure pertain to graphene films made in accordance with the methods of the present disclosure.

  17. Symmetry Breaking in Few Layer Graphene Films

    Bostwick, A.; Ohta, T.; McChesney, J.L.; Emtsev, K.; Seyller,Th.; Horn, K.; Rotenberg, E.

    2007-05-25

    Recently, it was demonstrated that the quasiparticledynamics, the layer-dependent charge and potential, and the c-axisscreening coefficient could be extracted from measurements of thespectral function of few layer graphene films grown epitaxially on SiCusing angle-resolved photoemission spectroscopy (ARPES). In this articlewe review these findings, and present detailed methodology for extractingsuch parameters from ARPES. We also present detailed arguments againstthe possibility of an energy gap at the Dirac crossing ED.

  18. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H.

    2014-01-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  19. Stable Nafion-functionalized graphene dispersions for transparent conducting films

    Liu Yangqiao; Gao Lian; Sun Jing; Wang Yan; Zhang Jing

    2009-01-01

    Nafion was used for the first time to aid in preparing stable graphene dispersions in mixed water/ethanol (1:1) solvents via the reduction of graphite oxide using hydrazine. The dispersion was characterized by ultraviolet-visible (UV-vis) spectra, transmission electron microscopy, zeta potential analysis, etc. It was found that for Nafion-to-graphene ratios higher than 5:1, graphene solutions with concentrations up to 1 mg ml -1 and stabilities of over three months were obtained. It was proposed that the Nafion adsorbed onto the graphene by the hydrophobic interaction of its fluoro-backbones with the graphene layer and imparted stability by an electrosteric mechanism. Furthermore, transparent and conductive films were prepared using these highly stable Nafion-stabilized graphene dispersions. The prepared Nafion-graphene films possess smooth and homogeneous surfaces and the sheet resistance was as low as 30 kΩ/sq for a transmittance of 80% at 550 nm, which was much lower than for other graphene films obtained by chemical reduction. X-ray photoelectron spectroscopy and Raman spectroscopy confirmed the p-doping of the graphene by Nafion. It was expected that this p-doping effect, as well as the high dispersing ability of Nafion for graphene and the connection of the sp 2 domains by residual Nafion combined to produce good properties of the Nafion-graphene films.

  20. Graphene Squeeze-Film Pressure Sensors.

    Dolleman, Robin J; Davidovikj, Dejan; Cartamil-Bueno, Santiago J; van der Zant, Herre S J; Steeneken, Peter G

    2016-01-13

    The operating principle of squeeze-film pressure sensors is based on the pressure dependence of a membrane's resonance frequency, caused by the compression of the surrounding gas which changes the resonator stiffness. To realize such sensors, not only strong and flexible membranes are required, but also minimization of the membrane's mass is essential to maximize responsivity. Here, we demonstrate the use of a few-layer graphene membrane as a squeeze-film pressure sensor. A clear pressure dependence of the membrane's resonant frequency is observed, with a frequency shift of 4 MHz between 8 and 1000 mbar. The sensor shows a reproducible response and no hysteresis. The measured responsivity of the device is 9000 Hz/mbar, which is a factor 45 higher than state-of-the-art MEMS-based squeeze-film pressure sensors while using a 25 times smaller membrane area.

  1. Direct transfer of graphene films for polyurethane substrate

    Vilani, C.; Romani, E.C.; Larrudé, D.G. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Barbosa, Gelza M. [Diretoria de Sistemas de Armas da Marinha, Marinha do Brasil, 20010-00 Rio de Janeiro, RJ (Brazil); Freire, F.L., E-mail: lazaro@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ (Brazil); Centro Brasileiro de Pesquisas Físicas, 22290-180 Rio de Janeiro, RJ (Brazil)

    2015-11-30

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  2. Direct transfer of graphene films for polyurethane substrate

    Vilani, C.; Romani, E.C.; Larrudé, D.G.; Barbosa, Gelza M.; Freire, F.L.

    2015-01-01

    Highlights: • Graphene was prepared by CVD using copper foils as substrates. • Monolayer, bilayer and multilayer graphene were transferred to PU. • Samples were characterized by Raman and optical spectroscopies. • PU/monolayer graphene has transmittance around 80% in visible range. - Abstract: We have proposed the direct transfer of large-area graphene films grown by chemical vapor deposition to polymeric substrate by evaporating of solvents of polyurethane/tetrahydrofurane solution. The graphene films on polyurethane substrates were characterized by Raman spectroscopy, optical and atomic force microscopies and UV–vis spectroscopy measurements. The Raman spectra revealed that it is possible to transfer in a controlled manner monolayer, bilayer and multilayer graphene films over polyurethane substrate.

  3. Preventing Thin Film Dewetting via Graphene Capping.

    Cao, Peigen; Bai, Peter; Omrani, Arash A; Xiao, Yihan; Meaker, Kacey L; Tsai, Hsin-Zon; Yan, Aiming; Jung, Han Sae; Khajeh, Ramin; Rodgers, Griffin F; Kim, Youngkyou; Aikawa, Andrew S; Kolaczkowski, Mattew A; Liu, Yi; Zettl, Alex; Xu, Ke; Crommie, Michael F; Xu, Ting

    2017-09-01

    A monolayer 2D capping layer with high Young's modulus is shown to be able to effectively suppress the dewetting of underlying thin films of small organic semiconductor molecule, polymer, and polycrystalline metal, respectively. To verify the universality of this capping layer approach, the dewetting experiments are performed for single-layer graphene transferred onto polystyrene (PS), semiconducting thienoazacoronene (EH-TAC), gold, and also MoS 2 on PS. Thermodynamic modeling indicates that the exceptionally high Young's modulus and surface conformity of 2D capping layers such as graphene and MoS 2 substantially suppress surface fluctuations and thus dewetting. As long as the uncovered area is smaller than the fluctuation wavelength of the thin film in a dewetting process via spinodal decomposition, the dewetting should be suppressed. The 2D monolayer-capping approach opens up exciting new possibilities to enhance the thermal stability and expands the processing parameters for thin film materials without significantly altering their physical properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    YU; Yue; LI; Meicheng; CHU; Lihua; YU; Hakki; Wodtke; A.M.; ZHAO; Yan; ZHANG; Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of graphene-based organic solar cells(OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film. Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited graphene/PEDOT:PSS film on graphene-based OSCs.

  5. Epitaxially grown strained pentacene thin film on graphene membrane.

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Reduction of graphene oxide and its effect on square resistance of reduced graphene oxide films

    Hou, Zhaoxia; Zhou, Yin; Li, Guang Bin; Wang, Shaohong; Wang, Mei Han; Hu, Xiaodan; Li, Siming [Liaoning Province Key Laboratory of New Functional Materials and Chemical Technology, School ofMechanical Engineering, Shenyang University, Shenyang (China)

    2015-06-15

    Graphite oxide was prepared via the modified Hummers’ method and graphene via chemical reduction. Deoxygenation efficiency of graphene oxide was compared among single reductants including sodium borohydride, hydrohalic acids, hydrazine hydrate, and vitamin C. Two-step reduction of graphene oxide was primarily studied. The reduced graphene oxide was characterized by XRD, TG, SEM, XPS, and Raman spectroscopy. Square resistance was measured as well. Results showed that films with single-step N2H4 reduction have the best transmittance and electrical conductivity with square resistance of ~5746 Ω/sq at 70% transmittance. This provided an experimental basis of using graphene for electronic device applications.

  7. Thin NiTi Films Deposited on Graphene Substrates

    Hahn, S.; Schulze, A.; Böhme, M.; Hahn, T.; Wagner, M. F.-X.

    2017-03-01

    We present experimental results on the deposition of Nickel Titanium (NiTi) films on graphene substrates using a PVD magnetron sputter process. Characterization of the 2-4 micron thick NiTi films by electron microscopy, electron backscatter diffraction, and transmission electron microscopy shows that grain size and orientation of the thin NiTi films strongly depend on the type of combination of graphene and copper layers below. Our experimental findings are supported by density functional theory calculations: a theoretical estimation of the binding energies of different NiTi-graphene interfaces is in line with the experimentally determined microstructural features of the functional NiTi top layer.

  8. Ultraviolet laser deposition of graphene thin films without catalytic layers

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  9. Ultraviolet laser deposition of graphene thin films without catalytic layers

    Sarath Kumar, S. R.; Alshareef, Husam N.

    2013-01-01

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  10. Electrophoretic Nanocrystalline Graphene Film Electrode for Lithium Ion Battery

    Kaprans, Kaspars; Bajars, Gunars; Kucinskis, Gints; Dorondo, Anna; Mateuss, Janis; Gabrusenoks, Jevgenijs; Kleperis, Janis; Lusis, Andrejs

    2015-01-01

    Graphene sheets were fabricated by electrophoretic deposition method from water suspension of graphene oxide followed by thermal reduction. The formation of nanocrystalline graphene sheets has been confirmed by scanning electron microscopy, X-ray diffraction and Raman spectroscopy. The electrochemical performance of graphene sheets as anode material for lithium ion batteries was evaluated by cycling voltammetry, galvanostatic charge-discharge cycling, and electrochemical impedance spectroscopy. Fabricated graphene sheets exhibited high discharge capacity of about 1120 mAh·g −1 and demonstrated good reversibility of lithium intercalation and deintercalation in graphene sheet film with capacity retention over 85 % after 50 cycles. Results show that nanocrystalline graphene sheets prepared by EPD demonstrated a high potential for application as anode material in lithium ion batteries

  11. Doping graphene films via chemically mediated charge transfer

    Ishikawa Ryousuke

    2011-01-01

    Full Text Available Abstract Transparent conductive films (TCFs are critical components of a myriad of technologies including flat panel displays, light-emitting diodes, and solar cells. Graphene-based TCFs have attracted a lot of attention because of their high electrical conductivity, transparency, and low cost. Carrier doping of graphene would potentially improve the properties of graphene-based TCFs for practical industrial applications. However, controlling the carrier type and concentration of dopants in graphene films is challenging, especially for the synthesis of p-type films. In this article, a new method for doping graphene using the conjugated organic molecule, tetracyanoquinodimethane (TCNQ, is described. Notably, TCNQ is well known as a powerful electron accepter and is expected to favor electron transfer from graphene into TCNQ molecules, thereby leading to p-type doping of graphene films. Small amounts of TCNQ drastically improved the resistivity without degradation of optical transparency. Our carrier doping method based on charge transfer has a huge potential for graphene-based TCFs.

  12. Palladium configuration dependence of hydrogen detection sensitivity based on graphene FET for breath analysis

    Sakamoto, Yuri; Uemura, Kohei; Ikuta, Takashi; Maehashi, Kenzo

    2018-04-01

    We have succeeded in fabricating a hydrogen gas sensor based on palladium-modified graphene field-effect transistors (FETs). The negative-voltage shift in the transfer characteristics was observed with exposure to hydrogen gas, which was explained by the change in work function. The hydrogen concentration dependence of the voltage shift was investigated using graphene FETs with palladium deposited by three different evaporation processes. The results indicate that the hydrogen detection sensitivity of the palladium-modified graphene FETs is strongly dependent on the palladium configuration. Therefore, the palladium-modified graphene FET is a candidate for breath analysis.

  13. Chitosan/graphene oxide biocomposite film from pencil rod

    Gea, S.; Sari, J. N.; Bulan, R.; Piliang, A.; Amaturrahim, S. A.; Hutapea, Y. A.

    2018-03-01

    Graphene Oxide (GO) has been succesfully synthesized using Hummber method from graphite powder of pencil rod. The excellent solubility of graphene oxide (GO)in water imparts its feasibilty as new filler for reinforcement hydrophilic biopolymers. In this research, the biocomposite film was fabricated from chitosan/graphene oxide. The characteristics of graphene oxide were investigated using Fourier Transform Infrared (FT-IR) and X-ray Diffraction (XRD). The results of the XRD showed graphene structur in 2θ, appeared at 9.0715°with interlayer spacing was about 9.74063Å. Preparation films with several variations of chitosan/graphene oxide was done by casting method and characterized by mechanical and morphological analysis. The mechanical properties of the tensile test in the film show that the film CS/GO (85: 15)% has the optimum Young’s modulus size of 2.9 GPa compared to other variations of CS / GO film. Morphological analysis film CS/GO (85:15)% by Scanning Electron Microscopy (SEM), the obtained biocomposites film showed fine dispersion of GO in the CS matrix and could mix each other homogeneously.

  14. Free standing graphene oxide film for hydrogen peroxide sensing

    Ranjan, Pranay; Balakrishnan, Jayakumar; Thakur, Ajay D.

    2018-05-01

    We report hydrogen peroxide (H2O2)sensing using free standing graphene oxide thin films prepared using a cost effective scalable approach. Such sensors may find application in pharmaceutical and food processing industries.

  15. Transparent Conducting Graphene Hybrid Films To Improve Electromagnetic Interference (EMI) Shielding Performance of Graphene.

    Ma, Limin; Lu, Zhengang; Tan, Jiubin; Liu, Jian; Ding, Xuemei; Black, Nicola; Li, Tianyi; Gallop, John; Hao, Ling

    2017-10-04

    Conducting graphene-based hybrids have attracted considerable attention in recent years for their scientific and technological significance in many applications. In this work, conductive graphene hybrid films, consisting of a metallic network fully encapsulated between monolayer graphene and quartz-glass substrate, were fabricated and characterized for their electromagnetic interference shielding capabilities. Experimental results show that by integration with a metallic network the sheet resistance of graphene was significantly suppressed from 813.27 to 5.53 Ω/sq with an optical transmittance at 91%. Consequently, the microwave shielding effectiveness (SE) exceeded 23.60 dB at the K u -band and 13.48 dB at the K a -band. The maximum SE value was 28.91 dB at 12 GHz. Compared with the SE of pristine monolayer graphene (3.46 dB), the SE of graphene hybrid film was enhanced by 25.45 dB (99.7% energy attenuation). At 94% optical transmittance, the sheet resistance was 20.67 Ω/sq and the maximum SE value was 20.86 dB at 12 GHz. Our results show that hybrid graphene films incorporate both high conductivity and superior electromagnetic shielding comparable to existing ITO shielding modalities. The combination of high conductivity and shielding along with the materials' earth-abundant nature, and facile large-scale fabrication, make these graphene hybrid films highly attractive for transparent EMI shielding.

  16. Graphene-based flexible and stretchable thin film transistors.

    Yan, Chao; Cho, Jeong Ho; Ahn, Jong-Hyun

    2012-08-21

    Graphene has been attracting wide attention owing to its superb electronic, thermal and mechanical properties. These properties allow great applications in the next generation of optoelectronics, where flexibility and stretchability are essential. In this context, the recent development of graphene growth/transfer and its applications in field-effect transistors are involved. In particular, we provide a detailed review on the state-of-the-art of graphene-based flexible and stretchable thin film transistors. We address the principles of fabricating high-speed graphene analog transistors and the key issues of producing an array of graphene-based transistors on flexible and stretchable substrates. It provides a platform for future work to focus on understanding and realizing high-performance graphene-based transistors.

  17. Transfer-free synthesis of doped and patterned graphene films.

    Zhuo, Qi-Qi; Wang, Qi; Zhang, Yi-Ping; Zhang, Duo; Li, Qin-Liang; Gao, Chun-Hong; Sun, Yan-Qiu; Ding, Lei; Sun, Qi-Jun; Wang, Sui-Dong; Zhong, Jun; Sun, Xu-Hui; Lee, Shuit-Tong

    2015-01-27

    High-quality and wafer-scale graphene on insulating gate dielectrics is a prerequisite for graphene electronic applications. For such applications, graphene is typically synthesized and then transferred to a desirable substrate for subsequent device processing. Direct production of graphene on substrates without transfer is highly desirable for simplified device processing. However, graphene synthesis directly on substrates suitable for device applications, though highly demanded, remains unattainable and challenging. Here, we report a simple, transfer-free method capable of synthesizing graphene directly on dielectric substrates at temperatures as low as 600 °C using polycyclic aromatic hydrocarbons as the carbon source. Significantly, N-doping and patterning of graphene can be readily and concurrently achieved by this growth method. Remarkably, the graphene films directly grown on glass attained a small sheet resistance of 550 Ω/sq and a high transmittance of 91.2%. Organic light-emitting diodes (OLEDs) fabricated on N-doped graphene on glass achieved a current density of 4.0 mA/cm(2) at 8 V compared to 2.6 mA/cm(2) for OLEDs similarly fabricated on indium tin oxide (ITO)-coated glass, demonstrating that the graphene thus prepared may have potential to serve as a transparent electrode to replace ITO.

  18. VOx effectively doping CVD-graphene for transparent conductive films

    Ji, Qinghua; Shi, Liangjing; Zhang, Qinghong; Wang, Weiqi; Zheng, Huifeng; Zhang, Yuzhi; Liu, Yangqiao; Sun, Jing

    2016-11-01

    Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VOx doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86-90%. The optimized VOx-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VOx can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VOx species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VOx doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  19. Application of graphene from exfoliation in kitchen mixer allows mechanical reinforcement of PVA/graphene film

    Ismail, Zulhelmi; Abdullah, Abu Hannifa; Zainal Abidin, Anis Sakinah; Yusoh, Kamal

    2017-08-01

    Mechanical properties of polyvinyl alcohol (PVA) can be reinforced from the addition of graphene into its matrix. However, pristine graphene lacks solubility in water and thus makes dispersion a challenging task. Notably, functionalisation of graphene is required to accommodate graphene presence in the water. In this work, we have used a kitchen mixer to produce gum Arabic-graphene (GGA) for the first time as filler for mechanical reinforcement of PVA. For the characterisation of exfoliated graphene, mean lateral size of GGA was measured from the imaging by transmission electron microscopy while the mean thickness of graphene was predicted from the obtained spectra by Raman spectroscopy. During the preparation of PVA/graphene film by solution casting, GGA was varied between 0, 0.05, 0.075, 0.10 and 0.15 wt% in concentration. We found that the presence of GGA in PVA improves the tensile stress and elastic modulus about 72-200 and 19-187% from the original values. The data from Halpin-Tsai meanwhile suggested that the mechanical reinforcement of PVA/graphene film is due to the random distribution network of GGA in PVA.

  20. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W.; Ryu, Koungmin; Thompson, Mark E.; Zhou, Chongwu

    2010-01-01

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD

  1. Preparation of Composited Graphene/PEDOT:PSS Film for Its Possible Application in Graphene-based Organic Solar Cells

    YU Yue; LI Meicheng; CHU Lihua; YU Hakki; Wodtke A M; ZHAO Yan; ZHANG Zhongmo

    2015-01-01

    The interface between graphene and organic layers is a key factor responsible for the performance of gra-phene-based organic solar cells (OSCs). In this paper, we focus on coating PEDOT:PSS onto the surface of graphene. We demonstrate two approaches, applying UV/Ozone treatment on graphene and modifying PEDOT:PSS with Zonyl, to get a PEDOT:PSS well-coated graphene film . Our results prove that both methods can be effective to solve the interface issue between graphene and PEDOT: PSS. Thereby it shows a positive application of the composited gra-phene/PEDOT:PSS film on graphene-based OSCs.

  2. Low-threshold optical bistability with multilayer graphene-covering Otto configuration

    Wang, Hengliang; Wu, Jipeng; Xiang, Yuanjiang; Wen, Shuangchun; Guo, Jun; Jiang, Leyong

    2016-01-01

    In this paper, we propose a modified Otto configuration to realize tunable and low-threshold optical bistability at terahertz frequencies by attaching multilayer graphene sheets to a nonlinear substrate interface. Our work demonstrates that the threshold of optical bistability can be markedly reduced (three orders of magnitude) by covering the nonlinear substrate with multilayer graphene sheets, due to strong local field enhancement with the excitation of surface plasmons. We present the influences of the Fermi energy of graphene, the incident angle, the thickness of air gap and the relaxation time of graphene on the hysteresis phenomenon and give a way to optimize the surface plasmon resonance, which will enable us to further lower the minimal power requirements for realizing optical bistability due to the strong interaction of light with graphene sheets. These results are promising for realization of terahertz optical switches, optical modulators and logical devices. (paper)

  3. Time-dependent protection of ground and polished Cu using graphene film

    Dong, Yuhua; Liu, Qingqing; Zhou, Qiong

    2015-01-01

    Highlights: • Graphene was deposited on polished and ground Cu sheets by CVD. • Graphene films provide better protection to polished Cu for short time. • Multilayer graphene films provide better protection for short time. - Abstract: Graphene was deposited on Cu sheets with different morphologies by chemical vapor deposition. Scanning electron microscopy (SEM) analysis indicated that the morphology of the Cu sheet affected the graphene film properties. Electrochemical impedance spectroscopy measurements showed that the graphene film did not effectively protect Cu against corrosion because of prolonged exposure to ionic environments (3.5 wt.% NaCl solution). For short durations, graphene films provided better protection to polished Cu than ground Cu. Prolonged electrolyte immersion of graphene-coated Cu samples showed that the graphene film from the polished Cu surface was detached more easily than that from ground Cu

  4. Langmuir-Blodgett Films of Graphene Derivatives

    Petersen, Søren Vermehren

    The work presented in this PhD thesis can be divided into two main categories: 1) Syn-thesis and Langmuir-Blodgett assembly of graphene derivatives and 2) Application and characterization of graphene derivatives as an interface material in molecular electron-ics. While the first category could...... be divided further, the synthesis and Langmuir-Blodgett results are intertwined in such a way that it would be more confusing to pre-sent them separately. The Langmuir-Blodgett deposition also played a crucial, but more isolated, part in the investigation of graphene derivatives as interface material....... Solution processable graphene in the form of chemically derived graphene has been synthesized through the modified Hummers method with subsequent reduction into reduced graphene oxide with hydrazine. The completeness of oxidation, the effect of the refinement steps and the reduction of the graphene oxide...

  5. Synthesis and electrical characterization of Graphene Oxide films

    Yasin, Muhammad; Tauqeer, T.; Zaidi, Syed M.H.; San, Sait E.; Mahmood, Asad; Köse, Muhammet E.; Canimkurbey, Betul; Okutan, Mustafa

    2015-01-01

    In this work, we have synthesized Graphene Oxide (GO) using modified Hummers method and investigated its electrical properties using parallel plate impedance spectroscopic technique. Graphene Oxide films were prepared using drop casting method on Indium Tin Oxide (ITO) coated glass substrate. Atomic force microscopy was used to characterize the films' microstructure and surface topography. Electrical characterization was carried out using LCR meter in frequency regime (100 Hz to 10 MHz) at different temperatures. AC conductivity σ ac of the films was observed to be varied with angular frequency, ω as ω S , with S < 1. The electrical properties of GO were found to be both frequency and temperature dependent. Analysis showed that GO film contains direct current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Photon absorption and transmittance capability in the visible range and excellent electrical parameters of solution processed Graphene Oxide suggest its suitability for the realization of low cost flexible organic solar cells and organic Thin Film Transistors, respectively. - Highlights: • Synthesize and electrical characterization of Graphene Oxide (GO) Film was undertaken. • Temperature dependent impedance spectroscopy was used for electrical analysis. • AFM was used to characterize films' microstructure and surface topography. • Electrical parameters were found to vary with both temperature and frequency. • GO showed DC and CBH conductivity mechanisms at low and high frequency, respectively

  6. Monolithic acoustic graphene transistors based on lithium niobate thin film

    Liang, J.; Liu, B.-H.; Zhang, H.-X.; Zhang, H.; Zhang, M.-L.; Zhang, D.-H.; Pang, W.

    2018-05-01

    This paper introduces an on-chip acoustic graphene transistor based on lithium niobate thin film. The graphene transistor is embedded in a microelectromechanical systems (MEMS) acoustic wave device, and surface acoustic waves generated by the resonator induce a macroscopic current in the graphene due to the acousto-electric (AE) effect. The acoustic resonator and the graphene share the lithium niobate film, and a gate voltage is applied through the back side of the silicon substrate. The AE current induced by the Rayleigh and Sezawa modes was investigated, and the transistor outputs a larger current in the Rayleigh mode because of a larger coupling to velocity ratio. The output current increases linearly with the input radiofrequency power and can be effectively modulated by the gate voltage. The acoustic graphene transistor realized a five-fold enhancement in the output current at an optimum gate voltage, outperforming its counterpart with a DC input. The acoustic graphene transistor demonstrates a paradigm for more-than-Moore technology. By combining the benefits of MEMS and graphene circuits, it opens an avenue for various system-on-chip applications.

  7. Characterizations of photoconductivity of graphene oxide thin films

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  8. Substrate considerations for graphene synthesis on thin copper films

    Howsare, Casey A; Robinson, Joshua A; Weng Xiaojun; Bojan, Vince; Snyder, David

    2012-01-01

    Chemical vapor deposition on copper substrates is a primary technique for synthesis of high quality graphene films over large areas. While well-developed processes are in place for catalytic growth of graphene on bulk copper substrates, chemical vapor deposition of graphene on thin films could provide a means for simplified device processing through the elimination of the layer transfer process. Recently, it was demonstrated that transfer-free growth and processing is possible on SiO 2 . However, the Cu/SiO 2 /Si material system must be stable at high temperatures for high quality transfer-free graphene. This study identifies the presence of interdiffusion at the Cu/SiO 2 interface and investigates the influence of metal (Ni, Cr, W) and insulating (Si 3 N 4 , Al 2 O 3 , HfO 2 ) diffusion barrier layers on Cu–SiO 2 interdiffusion, as well as graphene structural quality. Regardless of barrier choice, we find the presence of Cu diffusion into the silicon substrate as well as the presence of Cu–Si–O domains on the surface of the copper film. As a result, we investigate the choice of a sapphire substrate and present evidence that it is a robust substrate for synthesis and processing of high quality, transfer-free graphene. (paper)

  9. A novel Graphene Oxide film: Synthesis and Dielectric properties

    Canimkurbey, Betul; San, Sait Eren; Yasin, Muhammad; Köse, Muhammet Erkan

    In this work, we used Hummers method to synthesize Graphene Oxide (GO) and its parallel plate impedance spectroscopic technique to investigate dielectric properties. Graphene Oxide films were coated using drop casting method on ITO substrate. To analyze film morphology, atomic force microscopy was used. Dielectrics measurements of the samples were performed using impedance analyzer (HP-4194) in frequency range (100 Hz to 10MHz) at different temperatures. It was observed that the films' AC conductivity σac varied with angular frequency, ω as ωS, with Sdirect current (DC) and Correlated Barrier Hopping (CBH) conductivity mechanisms at low and high frequency ranges, respectively. Using solution processed Graphene Oxide will provide potential for organic electronic applications through its photon absorption and transmittance capability in the visible range and excellent electrical parameters.

  10. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Configuration and stability of 1, 1-diamino-2, 2-dinitrothylene (FOX-7) embedded in graphene

    Wang, Yan Qun; Wang, Gui Xiang

    2016-01-01

    The configuration and stability of 1,1-diamino-2,2-dinitroethylene (FOX-7) embedded in graphene were studied using density functional theory with all-electron double numerical polarized basis sets. The results suggested that graphene had a greater impact on the planarity of FOX-7 molecules than did H-bonding. Under the synergistic effect of graphene and H-bonding, the geometry of H-bonded FOX-7 embedded in graphene was flatter than that of FOX-7 without H-bonds, which facilitated π–π stacking, as well as the stability of FOX-7 in graphene. The conjugated structure of FOX-7 contributed to its stability between layers of graphene. When the conjugated structure in FOX-7 was completely disrupted, the stabilization energy decreased by 48.6%. This theoretical work is useful for gaining new insights into the microscopic interaction of energetic molecules with graphene, and it will provide theoretical guidance for the encapsulation and storage of energetic materials

  12. Configuration and stability of 1, 1-diamino-2, 2-dinitrothylene (FOX-7) embedded in graphene

    Wang, Yan Qun [College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou (China); Wang, Gui Xiang [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing (China)

    2016-10-15

    The configuration and stability of 1,1-diamino-2,2-dinitroethylene (FOX-7) embedded in graphene were studied using density functional theory with all-electron double numerical polarized basis sets. The results suggested that graphene had a greater impact on the planarity of FOX-7 molecules than did H-bonding. Under the synergistic effect of graphene and H-bonding, the geometry of H-bonded FOX-7 embedded in graphene was flatter than that of FOX-7 without H-bonds, which facilitated π–π stacking, as well as the stability of FOX-7 in graphene. The conjugated structure of FOX-7 contributed to its stability between layers of graphene. When the conjugated structure in FOX-7 was completely disrupted, the stabilization energy decreased by 48.6%. This theoretical work is useful for gaining new insights into the microscopic interaction of energetic molecules with graphene, and it will provide theoretical guidance for the encapsulation and storage of energetic materials.

  13. Photoinduced hydrophobic surface of graphene oxide thin films

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  14. Structural, chemical and electrical characterisation of conductive graphene-polymer composite films

    Brennan, Barry; Spencer, Steve J.; Belsey, Natalie A. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Faris, Tsegie [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Cronin, Harry [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Silva, S. Ravi P. [Advanced Technology Institute (ATI), University of Surrey, Guildford, GU2 7XH (United Kingdom); Sainsbury, Toby; Gilmore, Ian S. [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom); Stoeva, Zlatka [DZP Technologies Ltd., Future Business Centre, Cambridge, CB4 2HY (United Kingdom); Pollard, Andrew J., E-mail: andrew.pollard@npl.co.uk [National Physical Laboratory, Teddington, TW11 0LW (United Kingdom)

    2017-05-01

    Graphical abstract: Secondary Ion Mass Spectrometry (SIMS) imaging of the dispersion of graphene within graphene-polymer composites using the Na{sup +} signal. - Highlights: • Relation of properties of graphene flakes with electrical properties of composite. • Standardised characterisation method for structural properties of graphene flakes. • Structural and chemical characterisation of commercial graphene flakes. • ToF-SIMS used to determine dispersion of graphene in polymer. - Abstract: Graphene poly-acrylic and PEDOT:PSS nanocomposite films were produced using two alternative commercial graphene powders to explore how the graphene flake dimensions and chemical composition affected the electrical performance of the film. A range of analytical techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS), were employed to systematically analyse the initial graphene materials as well as the nanocomposite films. Electrical measurements indicated that the sheet resistance of the films was affected by the properties of the graphene flakes used. To further explore the composition of the films, ToF-SIMS mapping was employed and provided a direct means to elucidate the nature of the graphene dispersion in the films and to correlate this with the electrical analysis. These results reveal important implications for how the dispersion of the graphene material in films produced from printable inks can be affected by the type of graphene powder used and the corresponding effect on electrical performance of the nanocomposites. This work provides direct evidence for how accurate and comparable characterisation of the graphene material is required for real-world graphene materials to develop graphene enabled films and proposes a measurement protocol for comparing graphene materials that can be used for international

  15. Dewetting Properties of Metallic Liquid Film on Nanopillared Graphene

    Li, Xiongying; He, Yezeng; Wang, Yong; Dong, Jichen; Li, Hui

    2014-01-01

    In this work, we report simulation evidence that the graphene surface decorated by carbon nanotube pillars shows strong dewettability, which can give it great advantages in dewetting and detaching metallic nanodroplets on the surfaces. Molecular dynamics (MD) simulations show that the ultrathin liquid film first contracts then detaches from the graphene on a time scale of several nanoseconds, as a result of the inertial effect. The detaching velocity is in the order of 10 m/s for the droplet with radii smaller than 50 nm. Moreover, the contracting and detaching behaviors of the liquid film can be effectively controlled by tuning the geometric parameters of the liquid film or pillar. In addition, the temperature effects on the dewetting and detaching of the metallic liquid film are also discussed. Our results show that one can exploit and effectively control the dewetting properties of metallic nanodroplets by decorating the surfaces with nanotube pillars. PMID:24487279

  16. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  17. Nanoscale reduction of graphene oxide thin films and its characterization

    Lorenzoni, M.; Giugni, Andrea; Di Fabrizio, Enzo M.; Pé rez-Murano, Francesc; Mescola, A.; Torre, Bruno

    2015-01-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip

  18. Large-area self-assembled reduced graphene oxide/electrochemically exfoliated graphene hybrid films for transparent electrothermal heaters

    Sun, Hongyan; Chen, Ding; Ye, Chen; Li, Xinming; Dai, Dan; Yuan, Qilong; Chee, Kuan W. A.; Zhao, Pei; Jiang, Nan; Lin, Cheng-Te

    2018-03-01

    Graphene shows great promise as a high-efficiency electrothermal film for flexible transparent defoggers/defrosters. However, it remains a great challenge to achieve a good balance between the production cost and the properties of graphene films. Here, we proposed a cost-effective self-assembly method to fabricate high-performance, large-area graphene oxide/electrochemically exfoliated graphene hybrid films for heater applications. The self-assembled graphene hybrid films with the area of 20 × 20 cm2 could be transferred onto arbitrary substrates with nonplanar surfaces and simply patterned with the hard mask. After reduction by hydrogen iodide vapor followed by 800 °C thermal treatment, the hybrid films with the transmittance of 76.2% exhibit good heating characteristics and defogging performance, which reach a saturation temperature of up to 127.5 °C when 40 V was applied for 60 s.

  19. Direct observation of oxygen configuration on individual graphene oxide sheets

    Liu, Zilong; Nørgaard, Kasper; Overgaard, Marc H.

    2018-01-01

    a resolution high enough to unambiguously identify oxygen configuration. We used a new, label free spectroscopic technique to map oxygen bonding on GO, with spatial resolution of nanometres and high chemical specificity. AFM-IR, atomic force microscopy coupled with infrared spectroscopy, overcomes conventional...... structural model for GO, with C[dbnd]O on its edge and plane, which confirms parts of earlier proposed models. The results have interesting implications. Determining atomic position and configuration from precise imaging offers the possibility to link nanoscale structure and composition with material...

  20. Electron field emission from screen-printed graphene/DWCNT composite films

    Xu, Jinzhuo; Pan, Rong; Chen, Yiwei; Piao, Xianqin; Qian, Min; Feng, Tao; Sun, Zhuo

    2013-01-01

    Highlights: ► The field emission performance improved significantly when adding graphene into DWCNTs as the emission material. ► We set up a model of pure DWCNT films and graphene/DWCNT composite films. ► We discussed the contact barrier between emission films and electric substrates by considering the Fermi energies of silver, DWCNT and graphene. - Abstract: The electron field emission properties of graphene/double-walled carbon nanotube (DWCNT) composite films prepared by screen printing have been systematically studied. Comparing with the pure DWCNT films and pure graphene films, a significant enhancement of electron emission performance of the composite films are observed, such as lower turn-on field, higher emission current density, higher field enhancement factor, and long-term stability. The optimized composite films with 20% weight ratio of graphene show the best electron emission performance with a low turn-on field of 0.62 V μm −1 (at 1 μA cm −2 ) and a high field enhancement factor β of 13,000. A model of the graphene/DWCNT composite films is proposed, which indicate that a certain amount of graphene will contribute the electron transmission in the silver substrate/composite films interface and in the interior of composite films, and finally improve the electron emission performance of the graphene/DWCNT composite films.

  1. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector

    Notarianni, Marco; Liu, Jinzhang; Motta, Nunzio; Mirri, Francesca; Pasquali, Matteo

    2014-01-01

    Flexible graphene-based thin film supercapacitors were made using carbon nanotube (CNT) films as current collectors and graphene films as electrodes. The graphene sheets were produced by simple electrochemical exfoliation, while the graphene films with controlled thickness were prepared by vacuum filtration. The solid-state supercapacitor was made by using two graphene/CNT films on plastic substrates to sandwich a thin layer of gelled electrolyte. We found that the thin graphene film with thickness <1 μm can greatly increase the capacitance. Using only CNT films as electrodes, the device exhibited a capacitance as low as ∼0.4 mF cm −2 , whereas by adding a 360 nm thick graphene film to the CNT electrodes led to a ∼4.3 mF cm −2 capacitance. We experimentally demonstrated that the conductive CNT film is equivalent to gold as a current collector while it provides a stronger binding force to the graphene film. Combining the high capacitance of the thin graphene film and the high conductivity of the CNT film, our devices exhibited high energy density (8–14 Wh kg −1 ) and power density (250–450 kW kg −1 ). (paper)

  2. Effect of structure on the tribology of ultrathin graphene and graphene oxide films.

    Chen, Hang; Filleter, Tobin

    2015-03-27

    The friction and wear properties of graphene and graphene oxide (GO) with varying C/O ratio were investigated using friction force microscopy. When applied as solid lubricants between a sliding contact of a silicon (Si) tip and a SiO2/Si substrate, graphene and ultrathin GO films (as thin as 1-2 atomic layers) were found to reduce friction by ∼6 times and ∼2 times respectively as compared to the unlubricated contact. The differences in measured friction were attributed to different interfacial shear strengths. Ultrathin films of GO with a low C/O ratio of ∼2 were found to wear easily under small normal load. The onset of wear, and the location of wear initiation, is attributed to differences in the local shear strength of the sliding interface as a result of the non-homogeneous surface structure of GO. While the exhibited low friction of GO as compared to SiO2 makes it an economically viable coating for micro/nano-electro-mechanical systems with the potential to extend the lifetime of devices, its higher propensity for wear may limit its usefulness. To address this limitation, the wear resistance of GO samples with a higher C/O ratio (∼4) was also studied. The higher C/O ratio GO was found to exhibit much improved wear resistance which approached that of the graphene samples. This demonstrates the potential of tailoring the structure of GO to achieve graphene-like tribological properties.

  3. Electrical behavior of amide functionalized graphene oxide and graphene oxide films annealed at different temperatures

    Rani, Sumita; Kumar, Mukesh; Kumar, Dinesh; Sharma, Sumit

    2015-01-01

    Films of graphene oxide (GO) and amide functionalized graphene oxides (AGOs) were deposited on SiO 2 /Si(100) by spin coating and were thermally annealed at different temperatures. Sheet resistance of GO and AGOs films was measured using four probe resistivity method. GO an insulator at room temperature, exhibits decrease in sheet resistance with increase in annealing temperature. However, AGOs' low sheet resistance (250.43 Ω) at room temperature further decreases to 39.26 Ω after annealing at 800 °C. It was observed that the sheet resistance of GO was more than AGOs up to 700 °C, but effect was reversed after annealing at higher temperature. At higher annealing temperatures the oxygen functionality reduces in GO and sheet resistance decreases. Sheet resistance was found to be annealing time dependent. Longer duration of annealing at a particular temperature results in decrease of sheet resistance. - Highlights: • Amide functionalized graphene oxides (AGOs) were synthesized at room temperature (RT). • AGO films have low sheet resistance at RT as compared to graphene oxide (GO). • Fast decrease in the sheet resistance of GO with annealing as compared to AGOs • AGOs were found to be highly dispersible in polar solvents

  4. Graphene based humidity-insensitive films

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time

  5. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films.

    Wu, Qiong; Xu, Yuxi; Yao, Zhiyi; Liu, Anran; Shi, Gaoquan

    2010-04-27

    Composite films of chemically converted graphene (CCG) and polyaniline nanofibers (PANI-NFs) were prepared by vacuum filtration the mixed dispersions of both components. The composite film has a layered structure, and PANI-NFs are sandwiched between CCG layers. Furthermore, it is mechanically stable and has a high flexibility; thus, it can be bent into large angles or be shaped into various desired structures. The conductivity of the composite film containing 44% CCG (5.5 x 10(2) S m(-1)) is about 10 times that of a PANI-NF film. Supercapacitor devices based on this conductive flexible composite film showed large electrochemical capacitance (210 F g(-1)) at a discharge rate of 0.3 A g(-1). They also exhibited greatly improved electrochemical stability and rate performances.

  6. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    Chen, Wei

    2013-03-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found that the capacitive properties of graphene films are related to the number of graphene layers. Owing to the close attachment of graphene films on the nickel substrate and the low charge-transfer resistance, the specific capacitance of thinner graphene films is almost twice that of the thicker ones and remains stable up to 1000 cycles. These results illustrate the potential for developing high-performance graphene-based electrical energy storage devices. © 2012 Elsevier B.V. All rights reserved.

  7. Ground state configurations in antiferromagnetic ultrathin films with dipolar anisotropy

    León, H.

    2013-01-01

    The formalism developed in a previous work to calculate the dipolar energy in quasi-two-dimensional crystals with ferromagnetic order is now extended to collinear antiferromagnetic order. Numerical calculations of the dipolar energy are carried out for systems with tetragonally distorted fcc [001] structures, the case of NiO and MnO ultrathin film grown in non-magnetic substrates, where the magnetic phase is a consequence of superexchange and dipolar interactions. The employed approximation allows to demonstrate that dipolar coupling between atomic layers is responsible for the orientation of the magnetization when it differs from the one in a single layer. The ground state energy of a given NiO or MnO film is found to depend not only on the strain, but also on how much the interlayer separation and the 2D lattice constant are changed with respect to the ideal values corresponding to the non-distorted cubic structure. Nevertheless, it is shown that the orientation of the magnetization in the magnetic phase of any of these films is determined by the strain exclusively. A striped phase with the magnetization along the [112 ¯ ] direction appears as the ground state configuration of NiO and MnO ultrathin films. In films with equally oriented stripes along the layers this magnetic phase is twofold degenerate, while in films with multidomain layers it is eightfold degenerate. These results are not in contradiction with experimentally observed out-of-plane or in-plane magnetization of striped phases in NiO and MnO ultrathin films. - Highlights: ► Dipolar energy in collinear antiferromagnetic ultrathin films is calculated. ► Numerical results are presented for distorted fcc [001] structures. ► The lowest energy of a system depends on how the tetragonal distortion is achieved. ► A striped phase with magnetization in the [112 ¯ ] direction is the ground state. ► In multidomain NiO and MnO films it is eightfold degenerate.

  8. Graphene based humidity-insensitive films

    Tai, Yanlong

    2017-09-08

    A humidity nonsensitive material based on reduced-graphene oxide (r-GO) and methods of making the same are provided, in an embodiment, the materia! has a resistance/humidity variation of about -15% to 15% based on different sintering time or temperature. In an aspect, the resistance variation to humidity can be close to zero or -0.5% to 0.5%, showing a humidity non sensitivity property. In an embodiment, a humidity nonsensitive material based on the r-GO and carbon nanotube (CNT) composites is provided, wherein the ratio of CNT to r-GO is adjusted. The ratio can be adjusted based on the combined contribution of carbon nanotube (positive resistance variation) and reduced- graphene oxide (negative resistance variation) behaviors.

  9. Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films

    Erçarıkcı, Elif; Dağcı, Kader; Topçu, Ezgi; Alanyalıoğlu, Murat

    2014-01-01

    Highlights: • Poly(MB)/graphene thin films are prepared by a simple electrochemical approach. • Graphene layers in the film show a broad band in visible region of absorbance spectra. • Morphology of composite films indicates both disordered and ordered regions. • XRD reveals that nanocomposite films include rGO layers after electropolymerization process. • Chemically prepared graphene is better than electrochemically prepared graphene for electrooxidation of nitrite. - Abstract: Poly(methylene blue)/graphene nanocomposite thin films were prepared by electropolymerization of methylene blue in the presence of graphene which have been synthesized by two different methods of a chemical oxidation process and an electrochemical approach. Synthesized nanocomposite thin films were characterized by using cyclic voltammetry, UV–vis. absorption spectroscopy, powder X-ray diffraction, and scanning tunneling microscopy techniques. Electrocatalytical properties of prepared poly(methylene blue)/graphene nanocomposite films were compared toward electrochemical oxidation of nitrite. Under optimized conditions, electrocatalytical effect of nanocomposite films of chemically prepared graphene through electrochemical oxidation of nitrite was better than that of electrochemically prepared graphene

  10. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film

    Fan Tian-Ju; Yuan Chun-Qiu; Tang Wei; Tong Song-Zhao; Huang Wei; Min Yong-Gang; Liu Yi-Dong; Epstein, Arthur J.

    2015-01-01

    We fabricate flexible conductive and transparent graphene films on position-emission-tomography substrates and prepare large area graphene films by graphite oxide sheets with the new technical process. The multi-layer graphene oxide sheets can be chemically reduced by HNO 3 and HI to form a highly conductive graphene film on a substrate at lower temperature. The reduced graphene oxide sheets show a high conductivity sheet with resistance of 476 Ω/sq and transmittance of 76% at 550 nm (6 layers). The technique used to produce the transparent conductive graphene thin film is facile, inexpensive, and can be tunable for a large area production applied for electronics or touch screens. (paper)

  11. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.

    Ding, Jiheng; Ur Rahman, Obaid; Zhao, Hongran; Peng, Wanjun; Dou, Huimin; Chen, Hao; Yu, Haibin

    2017-09-29

    Graphene-based films are widely used in the electronics industry. Here, surface hydroxylated graphene sheets (HGS) have been synthesized from natural graphite (NG) by a rapid and efficient molten hydroxide-assisted exfoliation technique. This method enables preparation of aqueous dispersible graphene sheets with a high dispersed concentration (∼10.0 mg ml -1 ) and an extraordinary production yield (∼100%). The HGS dispersion was processed into graphene flexible film (HGCF) through fast filtration, annealing treatment and mechanical compression. The HGS endows graphene flexible film with a high electrical conductivity of 11.5 × 10 4 S m -1 and a superior thermal conductivity of 1842 W m -1 K -1 . Simultaneously, the superflexible HGCF could endure 3000 repeated cycles of bending or folding. As a result, this graphene flexible film is expected to be integrated into electronic packaging and high-power electronics applications.

  12. X-ray diffractometer configurations for thin film analysis

    Haase, A.

    1996-01-01

    A presentation of various configurations of focusing Seemann-Bohlin diffractometer, parafocusing Bragg-Brentano diffractometer and parallel beam are demonstrated. Equipped with different thin film attachments a comparison to conventional measurements are given. The application of different detector types like scintillation, gas proportional, electroluminescence (LUX) and solid state are described. Typical instrument set-ups for reflectometry, grazing incidence diffraction, total reflection, high resolution X-ray diffraction are explained. Different elements like slits, soller slits, pinhole collimators, crystal monochromators, monofiber (FOX) and polycapillaries (multifiber lens, Kumakhov lens'), flat or curved multilayer with constant or variable d-spacing, and their combinations are presented. The comparison of different beam conditioners in peak-to-background ratios are given. Wavelength dispersive scans show the energy discrimination possibilities of different beam optics

  13. X-ray diffractometer configurations for thin film analysis

    Haase, A [Rich. Seifert and Co., Analytical X-ray Systems, Ahrensburg (Germany)

    1996-09-01

    A presentation of various configurations of focusing Seemann-Bohlin diffractometer, parafocusing Bragg-Brentano diffractometer and parallel beam are demonstrated. Equipped with different thin film attachments a comparison to conventional measurements are given. The application of different detector types like scintillation, gas proportional, electroluminescence (LUX) and solid state are described. Typical instrument set-ups for reflectometry, grazing incidence diffraction, total reflection, high resolution X-ray diffraction are explained. Different elements like slits, soller slits, pinhole collimators, crystal monochromators, monofiber (FOX) and polycapillaries (multifiber lens, Kumakhov lens`), flat or curved multilayer with constant or variable d-spacing, and their combinations are presented. The comparison of different beam conditioners in peak-to-background ratios are given. Wavelength dispersive scans show the energy discrimination possibilities of different beam optics.

  14. Graphene Films Show Stable Cell Attachment and Biocompatibility with Electrogenic Primary Cardiac Cells

    Kim, Taeyong; Kahng, Yung Ho; Lee, Takhee; Lee, Kwanghee; Kim, Do Han

    2013-01-01

    Graphene has attracted substantial attention due to its advantageous materialistic applicability. In the present study, we tested the biocompatibility of graphene films synthesized by chemical vapor deposition with electrogenic primary adult cardiac cells (cardiomyocytes) by measuring the cell properties such as cell attachment, survival, contractility and calcium transients. The results show that the graphene films showed stable cell attachment and excellent biocompatibility with the electro...

  15. Graphene Conductance Uniformity Mapping

    Buron, Jonas Christian Due; Petersen, Dirch Hjorth; Bøggild, Peter

    2012-01-01

    We demonstrate a combination of micro four-point probe (M4PP) and non-contact terahertz time-domain spectroscopy (THz-TDS) measurements for centimeter scale quantitative mapping of the sheet conductance of large area chemical vapor deposited graphene films. Dual configuration M4PP measurements......, demonstrated on graphene for the first time, provide valuable statistical insight into the influence of microscale defects on the conductance, while THz-TDS has potential as a fast, non-contact metrology method for mapping of the spatially averaged nanoscopic conductance on wafer-scale graphene with scan times......, dominating the microscale conductance of the investigated graphene film....

  16. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

    Wu Wei; Yu Qingkai; Pei, Shin-Shem; Peng Peng; Bao Jiming; Liu Zhihong

    2012-01-01

    Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e.g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications. (paper)

  17. Graphene-based LbL deposited films: further study of electrical and gas sensing properties

    Nabok A.

    2017-01-01

    Full Text Available Graphene-surfactant composite materials obtained by the ultrasonic exfoliation of graphite powder in the presence of ionic surfactants (either CTAB or SDS were utilised to construct thin films using layer-by-layer (LbL electrostatic deposition technique. A series of graphene-based thin films were made by alternating layers of either graphene-SDS with polycations (PEI or PAH or graphene-CTAB with polyanions (PSS. Also, graphene-phthalocyanine composite films were produced by alternating layers of graphene-CTAB with tetrasulfonated nickel phthalocyanine. Graphene-surfactant LbL films exhibited good electric conductivity (about 0.1 S/cm of semiconductor type with a band gap of about 20 meV. Judging from UV-vis spectra measurements, graphene-phthalocyanine LbL films appeared to form joint π-electron system. Gas sensing testing of such composite films combining high conductivity of graphene with the gas sensing abilities of phthalocyanines showed substantial changes (up to 10% in electrical conductivity upon exposure to electro-active gases such as HCl and NH3.

  18. Clean graphene electrodes on organic thin-film devices via orthogonal fluorinated chemistry.

    Beck, Jonathan H; Barton, Robert A; Cox, Marshall P; Alexandrou, Konstantinos; Petrone, Nicholas; Olivieri, Giorgia; Yang, Shyuan; Hone, James; Kymissis, Ioannis

    2015-04-08

    Graphene is a promising flexible, highly transparent, and elementally abundant electrode for organic electronics. Typical methods utilized to transfer large-area films of graphene synthesized by chemical vapor deposition on metal catalysts are not compatible with organic thin-films, limiting the integration of graphene into organic optoelectronic devices. This article describes a graphene transfer process onto chemically sensitive organic semiconductor thin-films. The process incorporates an elastomeric stamp with a fluorinated polymer release layer that can be removed, post-transfer, via a fluorinated solvent; neither fluorinated material adversely affects the organic semiconductor materials. We used Raman spectroscopy, atomic force microscopy, and scanning electron microscopy to show that chemical vapor deposition graphene can be successfully transferred without inducing defects in the graphene film. To demonstrate our transfer method's compatibility with organic semiconductors, we fabricate three classes of organic thin-film devices: graphene field effect transistors without additional cleaning processes, transparent organic light-emitting diodes, and transparent small-molecule organic photovoltaic devices. These experiments demonstrate the potential of hybrid graphene/organic devices in which graphene is deposited directly onto underlying organic thin-film structures.

  19. Passivated graphene transistors fabricated on a millimeter-sized single-crystal graphene film prepared with chemical vapor deposition

    Lin, Meng-Yu; Lee, Si-Chen; Lin, Shih-Yen; Wang, Cheng-Hung; Chang, Shu-Wei

    2015-01-01

    In this work, we first investigate the effects of partial pressures and flow rates of precursors on the single-crystal graphene growth using chemical vapor depositions on copper foils. These factors are shown to be critical to the growth rate, seeding density and size of graphene single crystals. The prepared graphene films in millimeter sizes are then bubbling transferred to silicon-dioxide/silicon substrates for high-mobility graphene transistor fabrications. After high-temperature annealing and hexamethyldisilazane passivation, the water attachment is removed from the graphene channel. The elimination of uncontrolled doping and enhancement of carrier mobility accompanied by these procedures indicate that they are promising for fabrications of graphene transistors. (paper)

  20. The Preparation and Property of Graphene /Tin Oxide Transparent Conductive Film

    SUN Tao

    2017-02-01

    Full Text Available Graphene doped tin oxide composites were prepared with SnCIZ·2HZ 0 and graphene oxide as raw materials with sol-gel method and then spincoated on the quartz glass to manufacture a new transparent conductive film. The composite film was characterized with X-ray diffraction(XRDand scanning electron microscopy(SEM analysis. XRD results show that the graphene oxide was successfully prepared with Hummers method. The graphene layers and particulate SnOZ can be clearly observed in SEM photos. The transmittance and conductivity of the thin films were tested with ultraviolet visible spectrophotometer and Hall effect measurement. The results show that the transmittivity of composite film in visible region is more than 90% and surface square resistance is 41 S2/口.The graphene/ SnOZ film exhibits a higher performance in transparence and conductivity than commercial FTO glass.

  1. Effects of graphene imperfections on the structure of self-assembled pentacene films

    Jung, W; Ahn, S J; Lee, S Y; Kim, Y; Shin, H-C; Moon, Y; Park, C-Y; Ahn, J R; Woo, S H

    2015-01-01

    The quality of pentacene films in pentacene-based devices significantly affects their performance. In this report, the effects of various defects in graphene on a pentacene film were studied with scanning tunneling microscopy. The two most common defects found in the epitaxial graphene grown on SiC(0 0 0 1) substrates were subsurface carbon nanotube (CNT) defects and step edges. The most significant perturbation of the pentacene films was induced by step edges between single-layer and bilayer graphene domains, while the effect of step edges between single-layer domains was marginal. The subsurface CNT defects slightly distorted the structure of the single-layer pentacene, but the influence of such defects decreased as the thickness of the pentacene film increased. These results suggest that the uniformity of the graphene layer is the most important parameter in the growth of high-quality pentacene films on graphene. (paper)

  2. Modification of graphene oxide films by radiofrequency N2 plasma

    Neustroev, E. P.; Burtseva, E. K.; Soloviev, B. D.; Prokopiev, A. R.; Popov, V. I.; Timofeev, V. B.

    2018-04-01

    The effect of treatment in nitrogen plasma on the properties of partially reduced graphene oxide (rGO) was studied. A comparison is made between two different sample locations in the reaction chamber. It is shown that in the case when rGO films were turned towards the inductor of the plasma system, the etching rate is much higher. Effective nitrogen functionalization of rGO was established in the second position, when the rGO films were turned in the opposite direction. In this case, the nitrogen content increases to 5 at% of the initial value. The change in the current-voltage characteristics is observed under illumination, which is independent of the wavelength. On and off daylight changes the resistance to 30% of the initial value. The magnitude of the photocurrent increases depending on the applied voltage. The effect is most noticeable for thin rGO films 10-15 nm in thickness.

  3. Free-standing graphene films prepared via foam film method for great capacitive flexible supercapacitors

    Zhu, Yucan; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan; Jia, Chunyang

    2017-11-01

    Recently, graphene films have always attracted attention due to their excellent characteristics in energy storage. In this work, a novel graphene oxide (GO) film with excellent mechanical properties, whose thickness was regulated simply via changing the concentration of the surfactant, was successfully prepared by foam film method. After chemical reduction, the reduced GO (rGO) films have excellent electrical conductivity of ∼172 S cm-1. Moreover, the supercapacitors based on the rGO films exhibit satisfied capacitive performance of ∼56 mF cm-2 at 0.2 mA cm-2 in 6 M KOH aqueous solution. Meanwhile, the flexible all solid state supercapacitors (FSSCs) based on the rGO films also show great volumetric capacitance of ∼2810 mF cm-3 at 12 mA cm-3 (∼1607 mF cm-3 at 613 mA cm-3) with polyvinyl alcohol-KOH gel electrolyte. Besides, after 10000 cycles and continuously bent to 180° for 300 times, the volumetric capacitance of the FSSC remains at 81.4% and 90.4% of its initial capacitance value, respectively. Therefore, the free-standing rGO films prepared via foam film method could be considered as promising electrode materials for high performance flexible supercapacitors.

  4. Nanoscale reduction of graphene oxide thin films and its characterization.

    Lorenzoni, M; Giugni, A; Di Fabrizio, E; Pérez-Murano, Francesc; Mescola, A; Torre, B

    2015-07-17

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  5. Nanoscale reduction of graphene oxide thin films and its characterization

    Lorenzoni, M.

    2015-06-29

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material. © 2015 IOP Publishing Ltd.

  6. Critical heat flux enhancement regarding to the thickness of graphene films under pool boiling

    Kim, Jin Man; Park, Hyun Sun; Park, Youngjae; Kim, Hyungdae; Kim, Dong Eok; Kim, Moo Hwan; Ahn, Ho Seon

    2014-01-01

    The large thermal conductivity of the graphene films inhibits the formation of hot spots, thereby increasing the CHF. An infrared high-speed visualization showed graphene effect on boiling characteristics during operation. The graphene-coated heater showed an increase in BHT and CHF. As the thickness of the graphene films increased, the CHF also increased up to an asymptotic limit when the graphene layer was approximately 150 nm thick. The increased BHT was explained by the slight decrease in the wettability and the folded edges of the RGO flakes, which led to a decrease in the diameter of the departing bubbles, a larger bubble generation frequency, and an increase in the areal density of the bubble nucleation sites. The increase in the CHF was explained by considering the thermal activity of the graphene films, and the dependence thereof on the thickness and thermal properties of the layer, which was calculated based on high-speed IR visualization data

  7. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer.

    Li, Jinhua; Wang, Gang; Zhu, Hongqin; Zhang, Miao; Zheng, Xiaohu; Di, Zengfeng; Liu, Xuanyong; Wang, Xi

    2014-03-12

    Graphene has attracted increasing attention for potential applications in biotechnology due to its excellent electronic property and biocompatibility. Here we use both Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) to investigate the antibacterial actions of large-area monolayer graphene film on conductor Cu, semiconductor Ge and insulator SiO2. The results show that the graphene films on Cu and Ge can surprisingly inhibit the growth of both bacteria, especially the former. However, the proliferation of both bacteria cannot be significantly restricted by the graphene film on SiO2. The morphology of S. aureus and E. coli on graphene films further confirms that the direct contact of both bacteria with graphene on Cu and Ge can cause membrane damage and destroy membrane integrity, while no evident membrane destruction is induced by graphene on SiO2. From the viewpoint of charge transfer, a plausible mechanism is proposed here to explain this phenomenon. This study may provide new insights for the better understanding of antibacterial actions of graphene film and for the better designing of graphene-based antibiotics or other biomedical applications.

  8. Configuration of ripple domains and their topological defects formed under local mechanical stress on hexagonal monolayer graphene.

    Park, Yeonggu; Choi, Jin Sik; Choi, Taekjib; Lee, Mi Jung; Jia, Quanxi; Park, Minwoo; Lee, Hoonkyung; Park, Bae Ho

    2015-03-24

    Ripples in graphene are extensively investigated because they ensure the mechanical stability of two-dimensional graphene and affect its electronic properties. They arise from spontaneous symmetry breaking and are usually manifested in the form of domains with long-range order. It is expected that topological defects accompany a material exhibiting long-range order, whose functionality depends on characteristics of domains and topological defects. However, there remains a lack of understanding regarding ripple domains and their topological defects formed on monolayer graphene. Here we explore configuration of ripple domains and their topological defects in exfoliated monolayer graphenes on SiO2/Si substrates using transverse shear microscope. We observe three-color domains with three different ripple directions, which meet at a core. Furthermore, the closed domain is surrounded by an even number of cores connected together by domain boundaries, similar to topological vortex and anti-vortex pairs. In addition, we have found that axisymmetric three-color domains can be induced around nanoparticles underneath the graphene. This fascinating configuration of ripple domains may result from the intrinsic hexagonal symmetry of two-dimensional graphene, which is supported by theoretical simulation using molecular dynamics. Our findings are expected to play a key role in understanding of ripple physics in graphene and other two-dimensional materials.

  9. ZnO film deposition by DC magnetron sputtering: Effect of target configuration on the film properties

    Arakelova, E.; Khachatryan, A.; Kteyan, A.; Avjyan, K.; Grigoryan, S.

    2016-08-01

    Ballistic transport model for target-to-substrate atom transfer during magnetron sputter deposition was used to develop zinc target (cathode) configuration that enabled growth of uniform zinc oxide films on extensive surfaces and provided reproducibility of films characteristics irrespective of the cathode wear-out. The advantage of the developed target configuration for high-quality ZnO film deposition was observed in the sputtering pressure range of 5− 50 mTorr, and in the range of cathode-to-substrate distances 7–20 cm. Characteristics of the deposited films were demonstrated by using X-ray diffraction analysis, as well as optical and electrical measurements. - Highlights: • Change of target configuration for optimization of magnetron sputtering deposition is proposed. • Improvement of ZnO film properties due to use of this target is demonstrated. • This configuration provided reproducibility of the deposited films properties.

  10. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    Loan, Phan Thi Kim

    2017-07-19

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1 pM – 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition.

  11. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-01-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10 −4 to 1.2×10 −3 M with the detect limit of 5×10 −6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept electroactivity in

  12. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing, E-mail: jingluo19801007@126.com; Liu, Xiaoya

    2014-10-15

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet–visible absorption spectrum (UV–vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10{sup −4} to 1.2×10{sup −3} M with the detect limit of 5×10{sup −6} M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor. - Graphical abstract: A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. - Highlights: • A novel graphene/polyaniline (CCG/PANI) film was prepared by layer-by-layer assembly. • The water dispersible and negatively charged graphene (CCG) was used as building block. • CCG was achieved through partly reduced graphene oxide with carboxyl group on its surface. • CCG/PANI film kept

  13. Graphene as tunable contact for high performance thin film transistor

    Liu, Yuan

    Graphene has been one of the most extensively studied materials due to its unique band structure, the linear dispersion at the K point. It gives rise to novel phenomena, such as the anomalous quantum Hall effect, and has opened up a new category of "Fermi-Dirac" physics. Graphene has also attracted enormous attention for future electronics because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. However, graphene has zero intrinsic band gap, thus can not be used as the active channel material for logic transistors with sufficient on/off current ratio. Previous approaches to address this challenge include the induction of a transport gap in graphene nanostructures or bilayer graphene. However, these approaches have proved successful in improving the on-- off ratio of the resulting devices, but often at a severe sacrifice of the deliverable current density. Alternatively, with a finite density of states, tunable work-function and optical transparency, graphene can function as a unique tunable contact material to create a new structure of electronic devices. In this thesis, I will present my effort toward on-off ratio of graphene based vertical thin film transistor. I will include the work form four of my first author publication. I will first present my research studies on the a dramatic enhancement of the overall quantum efficiency and spectral selectivity of graphene photodetector, by coupling with plasmonic nanostructures. It is observed that metallic plasmonic nanostructures can be integrated with graphene photodetectors to greatly enhance the photocurrent and external quantum efficiency by up to 1,500%. Plasmonic nanostructures of variable resonance frequencies selectively amplify the photoresponse of graphene to light of different wavelengths, enabling highly specific detection of multicolours. Then I will show a new design of highly flexible vertical TFTs (VTFTs) with superior electrical

  14. Barrier Performance of CVD Graphene Films Using a Facile P3HT Thin Film Optical Transmission Test

    Srinivasa Kartik Nemani

    2018-01-01

    Full Text Available The barrier performance of CVD graphene films was determined using a poly(3-hexylthiophene (P3HT thin film optical transmission test. P3HT is a semiconducting polymer that photo-oxidatively degrades upon exposure to oxygen and light. The polymer is stable under ambient conditions and indoor lighting, enabling P3HT films to be deposited and encapsulated in air. P3HT’s stability under ambient conditions makes it desirable for an initial evaluation of barrier materials as a complimentary screening method in combination with conventional barrier tests. The P3HT test was used to demonstrate improved barrier performance for polymer substrates after addition of CVD graphene films. A layer-by-layer transfer method was utilized to enhance the barrier performance of monolayer graphene. Another set of absorption measurements were conducted to demonstrate the barrier performance of graphene and the degradation mechanism of graphene/P3HT over multiple wavelengths from 400 to 800 nm. The absorption spectra for graphene/polymer composite were simulated by solving Fresnel equations. The simulation results were found to be in good agreement with the measured absorption spectra. The P3HT degradation results qualitatively indicate the potential of graphene films as a possible candidate for medium performance barriers.

  15. Organic nonvolatile memory devices with charge trapping multilayer graphene film

    Ji, Yongsung; Choe, Minhyeok; Cho, Byungjin; Song, Sunghoon; Yoon, Jongwon; Ko, Heung Cho; Lee, Takhee

    2012-01-01

    We fabricated an array-type organic nonvolatile memory device with multilayer graphene (MLG) film embedded in polyimide (PI) layers. The memory devices showed a high ON/OFF ratio (over 10 6 ) and a long retention time (over 10 4 s). The switching of the Al/PI/MLG/PI/Al memory devices was due to the presence of the MLG film inserted into the PI layers. The double-log current–voltage characteristics could be explained by the space-charge-limited current conduction based on a charge-trap model. A conductive atomic force microscopy found that the conduction paths in the low-resistance ON state were distributed in a highly localized area, which was associated with a carbon-rich filamentary switching mechanism. (paper)

  16. Interfacial Shear Strength of Multilayer Graphene Oxide Films.

    Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer

    2016-02-23

    Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.

  17. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  18. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  19. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  20. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  1. Large-area graphene films by simple solution casting of edge-selectively functionalized graphite.

    Bae, Seo-Yoon; Jeon, In-Yup; Yang, Jieun; Park, Noejung; Shin, Hyeon Suk; Park, Sungjin; Ruoff, Rodney S; Dai, Liming; Baek, Jong-Beom

    2011-06-28

    We report edge-selective functionalization of graphite (EFG) for the production of large-area uniform graphene films by simply solution-casting EFG dispersions in dichloromethane on silicon oxide substrates, followed by annealing. The resultant graphene films show ambipolar transport properties with sheet resistances of 0.52-3.11 kΩ/sq at 63-90% optical transmittance. EFG allows solution processing methods for the scalable production of electrically conductive, optically transparent, and mechanically robust flexible graphene films for use in practice.

  2. Contamination-Free Graphene Transfer from Cu-Foil and Cu-Thin-Film/Sapphire

    Jaeyeong Lee

    2017-12-01

    Full Text Available The separation of graphene grown on metallic catalyst by chemical vapor deposition (CVD is essential for device applications. The transfer techniques of graphene from metallic catalyst to target substrate usually use the chemical etching method to dissolve the metallic catalyst. However, this causes not only high material cost but also environmental contamination in large-scale fabrication. We report a bubble transfer method to transfer graphene films to arbitrary substrate, which is nondestructive to both the graphene and the metallic catalyst. In addition, we report a type of metallic catalyst, which is 700 nm of Cu on sapphire substrate, which is hard enough to endure against any procedure in graphene growth and transfer. With the Cr adhesion layer between sapphire and Cu film, electrochemically delaminated graphene shows great quality during several growth cycles. The electrochemical bubble transfer method can offer high cost efficiency, little contamination and environmental advantages.

  3. Optical and magnetic properties of porous graphene films produced by electrospraying

    Zhao, Jun; Yang, Shan-Shan; Chen, Li-Qing; Zhang, Zhao-Chun; Zheng, Hou-Li

    2013-01-01

    Graphene films have been produced by electrospraying on SiO 2 -coated silicon substrate and subsequent heat treatment, offering a simple and typical method to produce porous graphene films and exhibiting a good adhesion to silicon substrate. The microstructures of as-prepared graphene films were characterized by field emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction and atomic force microscopy. X-ray photoelectron spectroscopy, infrared spectroscopy and Raman spectroscopy further confirmed the formation of porous graphene films. Moreover, the reflection spectrum of as-prepared graphene films was studied by ultraviolet–visible spectroscopy, revealing that light absorption played dominant roles at 375 and 635 nm, respectively. Finally, the resistance and magnetoresistance were measured, and some preliminary theoretical explanations were proposed. - Highlights: ► Porous graphene films were produced by electrospraying. ► Light absorption plays dominant roles at 375 and 635 nm. ► A negative magnetoresistance is emerged at low temperature. ► A 2D weak localization effect arises from random stacking of graphene

  4. Physical deoxygenation of graphene oxide paper surface and facile in situ synthesis of graphene based ZnO films

    Ding, Jijun; Wang, Minqiang; Zhang, Xiangyu; Ran, Chenxin; Shao, Jinyou; Ding, Yucheng

    2014-01-01

    In-situ sputtering ZnO films on graphene oxide (GO) paper are used to fabricate graphene based ZnO films. Crystal structure and surface chemical states are investigated. Results indicated that GO paper can be effectively deoxygenated by in-situ sputtering ZnO on them without adding any reducing agent. Based on the principle of radio frequency magnetron sputtering, we propose that during magnetron sputtering process, plasma streams contain large numbers of electrons. These electrons not only collide with argon atoms to produce secondary electrons but also they are accelerated to bombard the substrates (GO paper) resulting in effective deoxygenation of oxygen-containing functional groups. In-situ sputtering ZnO films on GO paper provide an approach to design graphene-semiconductor nanocomposites

  5. A simple and flexible route to large-area conductive transparent graphene thin-films

    Arapov, K.; Goryachev, A.; With, de G.; Friedrich, H.

    2015-01-01

    Solution-processed conductive, flexible and transparent graphene thin films continue drawing attention from science and technology due to their potential for many electrical applications. Here, an up-scalable method for the solution processing of graphite to graphene and further to self-assembled

  6. Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam

    Chen, Wei; Fan, Zhongli; Zeng, Gaofeng; Lai, Zhiping

    2013-01-01

    High-quality, large-area graphene films with few layers are synthesized on commercial nickel foams under optimal chemical vapor deposition conditions. The number of graphene layers is adjusted by varying the rate of the cooling process. It is found

  7. 3D nanoporous graphene films converted from liquid-crystalline holey graphene oxide for thin and high-performance supercapacitors

    Wang, Bin; Liu, Jinzhang; Zhao, Yi; Zheng, Dezhi; Li, Yan; Sha, Jiangbo

    2018-01-01

    Holey graphene oxide (HGO) is prepared and its liquid crystal (LC) formation in water is investigated. The blade-coated LC-HGO hydrogel is hydrothermally reduced to form 3D nanoporous films used as supercapacitor electrodes. Holey graphene sheets are rumpled and interconnected to form a cellular structure with pore size around 100 nm during the reduction process. Reduced HGO films with different thicknesses are integrated into solid-state symmetric supercapacitors and their electrochemical performances are studied. High specific capacitance up to 304 F g-1 and high volumetric capacitance around 400 F cm-3 are achieved from our thin and flexible devices.

  8. Building up Graphene-Based Conductive Polymer Composite Thin Films Using Reduced Graphene Oxide Prepared by γ-Ray Irradiation

    Siyuan Xie

    2013-01-01

    Full Text Available In this paper, reduced graphene oxide (RGO was prepared by means of γ-ray irradiation of graphene oxide (GO in a water/ethanol mix solution, and we investigated the influence of reaction parameters, including ethanol concentration, absorbed dose, and dose rate during the irradiation. Due to the good dispersibility of the RGO in the mix solution, we built up flexible and conductive composite films based on the RGO and polymeric matrix through facile vacuum filtration and polymer coating. The electrical and optical properties of the obtained composite films were tested, showing good electrical conductivity with visible transmittance but strong ultraviolet absorbance.

  9. Structural Analysis of Planar sp3 and sp2 Films: Diamond-Like Carbon and Graphene Overlayers

    Mansour, Ahmed

    2011-07-07

    The special electronic configuration of carbon enables the existence of wide ranging allotropes taking all possible dimensionalities. The allotropes of carbon are characterized by the type of hybridized bonding forming its structure, ranging from pure sp2 as in graphene, carbon nanotubes and fullerenes, to pure sp3 as in diamond. Amorphous and diamond-like carbon consists of a mixture of both hybridizations. This variation in hybridization in carbon materials enables a wide spectrum of properties, ranging from high bulk mechanical hardness, tribological properties and chemical inertness made possible by moving towards pure sp3 bonding to the extraordinary electrical conductivity, optical properties and in-plane mechanical strength resulting from pure sp2 bonding. Two allotropes at the extremes of this spectrum, diamond like carbon (DLC) and graphene, are investigated in this thesis; the former is investigated as a protective coating in hard drive applications, while the latter is investigated in the context of chemically derived graphene as material for transparent conducting electrode applications. DLC thin films are a main component in computer hard drives, acting as a protective coating against corrosion and mechanical wear of the magnetic layer and read-write head. The thickness of DLC films greatly affects the storage density in such devices, as larger separation between the read/write head and the magnetic layer decreases the storage density. A targeted DLC thickness of 2 nm would increase the storage density towards 1 Tbits/inch2. However, difficulty achieving continuous films at such thicknesses by commonly used sputtering methods challenges the industry to investigate alternative methods. Filtered cathodic vacuum arc (FCVA) has been proposed as an efficient technique to provide continuous, smooth and ultra-thin DLC films. We investigate the influence of deposition angle, deposition time, and substrate biasing to define the optimum process window to obtain

  10. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Macroporous 'bubble' graphene film via template-directed ordered-assembly for high rate supercapacitors.

    Chen, Cheng-Meng; Zhang, Qiang; Huang, Chun-Hsien; Zhao, Xiao-Chen; Zhang, Bing-Sen; Kong, Qing-Qiang; Wang, Mao-Zhang; Yang, Yong-Gang; Cai, Rong; Sheng Su, Dang

    2012-07-21

    A three-dimensional bubble graphene film, with controllable and uniform macropores and tailorable microstructure, was fabricated by a facile hard templating strategy and exhibit extraordinary electrochemical capacitance with high rate capability (1.0 V s(-1)).

  12. Preparation of polyvinyl alcohol graphene oxide phosphonate film and research of thermal stability and mechanical properties.

    Li, Jihui; Song, Yunna; Ma, Zheng; Li, Ning; Niu, Shuai; Li, Yongshen

    2018-05-01

    In this article, flake graphite, nitric acid, peroxyacetic acid and phosphoric acid are used to prepare graphene oxide phosphonic and phosphinic acids (GOPAs), and GOPAs and polyvinyl alcohol (PVA) are used to synthesize polyvinyl alcohol graphene oxide phosphonate and phosphinate (PVAGOPs) in the case of faint acidity and ultrasound irradiation, and PVAGOPs are used to fabricate PVAGOPs film, and the structure and morphology of GOPAs, PVAGOPs and PVAGOPs film are characterized, and the thermal stability and mechanical properties of PVAGOPs film are investigated. Based on these, it has been proved that GOPAs consist of graphene oxide phosphonic acid and graphene oxide phosphinic acid, and there are CP covalent bonds between them, and PVAGOPs are composed of GOPAs and PVA, and there are six-member lactone rings between GOPAs and PVA, and the thermal stability and mechanical properties of PVAGOPs film are improved effectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Transparent and flexible conducting hybrid film combined with 3-Aminopropyltriethoxysilane-coated polymer and graphene

    Jung, Daesung; Ko, Yong-Hun; Cho, Jumi; Adhikari, Prashanta Dhoj; Lee, Su Il; Kim, Yooseok; Song, Wooseok; Jung, Min Wook; Jang, Sung Won; Lee, Seung Youb; An, Ki-Seok; Park, Chong-Yun

    2015-01-01

    A simple approach to fabricate graphene hybrid film consisted of Graphene/3-aminopropyltriethoxysilane (APTES)/polyethylene terephthalate (PET) is presented, using self-assembled monolayers (SAMs) for enhancement of conductivity. The SAMs of APTES was prepared on ultraviolet-ozone (UVO)-irradiated PET films via wet chemical technique. The density of APTES was saturated after UV treatment time of 1 h for PET films; the carrier density and the optical transmittance were 9.3 × 10 12 /cm 2 and 82% for pristine graphene and 1.16 × 10 13 /cm 2 and 86% for graphene hybrid films, respectively, and experienced at inflection point at 30 min in UV treatment time. This behavior can be explained by surface morphology transition due to coalescence or clustering of mobile and low-molecular-weight oxidized components of PET.

  14. Design and simulation analysis of a novel pressure sensor based on graphene film

    Nie, M.; Xia, Y. H.; Guo, A. Q.

    2018-02-01

    A novel pressure sensor structure based on graphene film as the sensitive membrane was proposed in this paper, which solved the problem to measure low and minor pressure with high sensitivity. Moreover, the fabrication process was designed which can be compatible with CMOS IC fabrication technology. Finite element analysis has been used to simulate the displacement distribution of the thin movable graphene film of the designed pressure sensor under the different pressures with different dimensions. From the simulation results, the optimized structure has been obtained which can be applied in the low measurement range from 10hPa to 60hPa. The length and thickness of the graphene film could be designed as 100μm and 0.2μm, respectively. The maximum mechanical stress on the edge of the sensitive membrane was 1.84kPa, which was far below the breaking strength of the silicon nitride and graphene film.

  15. Graphene and water-based elastomers thin-film composites by dip-moulding.

    Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind

    2016-09-01

    Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.

  16. VO{sub x} effectively doping CVD-graphene for transparent conductive films

    Ji, Qinghua; Shi, Liangjing [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Qinghong [State Key Laboratory of Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Wang, Weiqi; Zheng, Huifeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Zhang, Yuzhi [The Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Liu, Yangqiao, E-mail: yqliu@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); Sun, Jing, E-mail: jingsun@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China)

    2016-11-30

    Highlights: • Doping process operated easily. • Sheet resistance decreased efficiently after doping. • Sheet resistance of doped graphene is stable after exposed in the air. • Mechanism of doping process is studied. - Abstract: Chemical vapor deposition(CVD)-synthesized graphene is potentially an alternative for tin-doped indium oxide (ITO) transparent conductive films (TCFs), however its sheet resistance is still too high to meet many demands. Vanadium oxide has been widely applied as smart window materials, however, no study has been reported to use it as dopant to improve the conductivity of graphene TCFs. In this study, we firstly reported that VO{sub x} doping can effectively lower the sheet resistance of CVD-graphene films while keeping its good optical properties, whose transmittance is as high as 86–90%. The optimized VO{sub x}-doped graphene exhibits a sheet resistance as low as 176 Ω/□, which decreases by 56% compared to the undoped graphene films. The doping process is convenient, stable, economical and easy to operate. What is more, VO{sub x} can effectively increase the work function(WF) of the film, making it more appropriate for use in solar cells. The evolution of the VO{sub x} species annealed at different temperatures below 400 °C has been detailed studied for the first time, based on which the doping mechanism is proposed. The prepared VO{sub x} doped graphene is expected to be a promising candidate for transparent conductive film purposes.

  17. One-Step Laser Patterned Highly Uniform Reduced Graphene Oxide Thin Films for Circuit-Enabled Tattoo and Flexible Humidity Sensor Application

    Rowoon Park

    2018-06-01

    Full Text Available The conversion of graphene oxide (GO into reduced graphene oxide (rGO is imperative for the electronic device applications of graphene-based materials. Efficient and cost-effective fabrication of highly uniform GO films and the successive reduction into rGO on a large area is still a cumbersome task through conventional protocols. Improved film casting of GO sheets on a polymeric substrate with quick and green reduction processes has a potential that may establish a path to the practical flexible electronics. Herein, we report a facile deposition process of GO on flexible polymer substrates to create highly uniform thin films over a large area by a flow-enabled self-assembly approach. The self-assembly of GO sheets was successfully performed by dragging the trapped solution of GO in confined geometry, which consisted of an upper stationary blade and a lower moving substrate on a motorized translational stage. The prepared GO thin films could be selectively reduced and facilitated from the simple laser direct writing process for programmable circuit printing with the desired configuration and less sample damage due to the non-contact mode operation without the use of photolithography, toxic chemistry, or high-temperature reduction methods. Furthermore, two different modes of the laser operating system for the reduction of GO films turned out to be valuable for the construction of novel graphene-based high-throughput electrical circuit boards compatible with integrating electronic module chips and flexible humidity sensors.

  18. Photocatalytic Graphene-TiO2 Thin Films Fabricated by Low-Temperature Ultrasonic Vibration-Assisted Spin and Spray Coating in a Sol-Gel Process

    Fatemeh Zabihi

    2017-05-01

    Full Text Available In this work, we communicate a facile and low temperature synthesis process for the fabrication of graphene-TiO2 photocatalytic composite thin films. A sol-gel chemical route is used to synthesize TiO2 from the precursor solutions and spin and spray coating are used to deposit the films. Excitation of the wet films during the casting process by ultrasonic vibration favorably influences both the sol-gel route and the deposition process, through the following mechanisms. The ultrasound energy imparted to the wet film breaks down the physical bonds of the gel phase. As a result, only a low-temperature post annealing process is required to eliminate the residues to complete the conversion of precursors to TiO2. In addition, ultrasonic vibration creates a nanoscale agitating motion or microstreaming in the liquid film that facilitates mixing of TiO2 and graphene nanosheets. The films made based on the above-mentioned ultrasonic vibration-assisted method and annealed at 150 °C contain both rutile and anatase phases of TiO2, which is the most favorable configuration for photocatalytic applications. The photoinduced and photocatalytic experiments demonstrate effective photocurrent generation and elimination of pollutants by graphene-TiO2 composite thin films fabricated via scalable spray coating and mild temperature processing, the results of which are comparable with those made using lab-scale and energy-intensive processes.

  19. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Salleh, Muhamad Mat; Chen, Xiaomei; Oyama, Munetaka

    2016-01-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m -1 K -2 ) and 10 μV/K (and 19.5 μW m -1 K -2 ), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  20. Structural and optical studies on spin coated ZnO-graphene conjugated thin films

    Srinatha, N.; Angadi, Basavaraj; Son, D. I.; Choi, W. K.

    2018-05-01

    ZnO-Graphene conjugated thin films were prepared using spin coating technique for different spin rates. Prior to the deposition, ZnO-Graphene nanoparticles were synthesized and their particle size and conjugation was studied through Transmission electron microscope (TEM). The deposited films were characterized using grazing incidence x-ray diffractometer (GIXRD), atomic force microscope (AFM) and UV-Visible spectrometer for their crystallinity, surface topographic features and optical properties. GIXRD patterns confirms the presence of both ZnO and Graphene related crystalline peaks supports the TEM results, which shows the quasi core-shell type conjugation of ZnO-Graphene particles. The crystallinity as well as thickness of the films found to decrease with increase of spin rate. AFM results reveal the uniform, smooth and homogeneity of films and also good adhesivity of ZnO-Graphene with glass substrates. No significant change in the transmittance and absorption with spin rate is observed, while the band gap energy found to decrease due to the reduction in the thickness of the films and conjugation of ZnO-Graphene. All films exhibit˜90 % transmittance in the visible wavelength region, could be potential candidates for optoelectronics and transparent conducting oxide (TCO) applications.

  1. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film

    Xu, Juan; Wei, Xicheng; Cao, Jianyu; Dong, Yuanzhu; Wang, Guoxin; Xue, Yufei; Wang, Wenchang; Chen, Zhidong

    2015-01-01

    Graphene/acetylene black sandwich film was fabricated by a simple vacuum filtration procedure using a stable complex suspension of graphene oxide (GO) and acetylene black followed by a hydroiodic acid (HI) immersion process to fully reduce the GO to graphene sheets. The self-restacking of individual graphene sheets were greatly alleviated and electric conductivity was obviously improved using the acetylene black nanoparticles as both effective spacers to expand the inter-layer interval of the individual graphene sheets during the film assembly course and highly conducting bridges to facilitate the electron/ion transfer between the upper and lower graphene sheets. The flexible graphene/acetylene black film was utilized as supercapacitor electrode without additional conductive additives, binders and current collectors, which achieved an obviously higher specific capacitance (ca. 136.6 F g −1 at 0.5 A g −1 ) and much better specific capacitance retention at high current densities than that of the pure graphene film electrode, indicating that such a novel sandwich film structure allows for a higher charge storage capability. More importantly, the assembled symmetric supercapacitor device displayed a satisfactory specific capacitance of 59.2 F g −1 at 0.1 A g −1 , 47.6 F g −1 at 0.5 A g −1 and 42.8 F g −1 at 1 A g −1 , and only negligible 4.05% capacitance degradation have been found after 1000 continuous charge-discharge cycles at 0.5 A g −1 , revealing outstanding rate capability, excellent electrochemical reversibility and long-term cyclability. These results proved that such a flexible and highly conductive graphene/acetylene black film can be promising electroactive materials in the development of advanced electrochemical energy storage devices

  2. Local mechanical and electromechanical properties of the P(VDF-TrFE)-graphene oxide thin films

    Silibin, M. V.; Bystrov, V. S.; Karpinsky, D. V.; Nasani, N.; Goncalves, G.; Gavrilin, I. M.; Solnyshkin, A. V.; Marques, P. A. A. P.; Singh, Budhendra; Bdikin, I. K.

    2017-11-01

    Recently, many organic materials, including carbon materials such as carbon nanotubes (CNTs) and graphene (single-walled carbon sheet structure) were studied in order to improve their mechanical and electrical properties. In particular, copolymers of poly (vinylidene fluoride) and poly trifluoroethylene [P(VDF-TrFE)] are promising materials, which can be used as probes, sensors, actuators, etc. Composite thin film of the copolymer P(VDF-TrFE) with graphene oxide (GO) were prepared by spin coating. The obtained films were investigated using piezoresponse force microscopy (PFM). The switching behavior, piezoelectric response, dielectric permittivity and mechanical properties of the films were found to depend on the presence of GO. For understanding the mechanism of piezoresponse evolution of the composite we used models of PVDF chain, its behavior in electrical field and computed the data for piezoelectric coefficients using HyperChem software. The summarized models of graphene oxide based on graphene layer from 96 carbon atoms C: with oxygen and OH groups and with COOH groups arranged by hydrogen were used for PVDF/Graphene oxide complex: 1) with H-side (hydrogen atom) connected from PVDF to graphene oxide, 2) with F-side (fluorine atom) connected from PVDF graphene oxide and 3) Graphene Oxide/PVDF with both sides (sandwich type). Experimental results qualitatively correlate with those obtained in the calculations.

  3. Efficient heat generation in large-area graphene films by electromagnetic wave absorption

    Kang, Sangmin; Choi, Haehyun; Lee, Soo Bin; Park, Seong Chae; Park, Jong Bo; Lee, Sangkyu; Kim, Youngsoo; Hong, Byung Hee

    2017-06-01

    Graphene has been intensively studied due to its outstanding electrical and thermal properties. Recently, it was found that the heat generation by Joule heating of graphene is limited by the conductivity of graphene. Here we suggest an alternative method to generate heat on a large-area graphene film more efficiently by utilizing the unique electromagnetic (EM) wave absorption property of graphene. The EM wave induces an oscillating magnetic moment generated by the orbital motion of moving electrons, which efficiently absorbs the EM energy and dissipate it as a thermal energy. In this case, the mobility of electron is more important than the conductivity, because the EM-induced diamagnetic moment is directly proportional to the speed of electron in an orbital motion. To control the charge carrier mobility of graphene we functionalized substrates with self-assembled monolayers (SAM). As the result, we find that the graphene showing the Dirac voltage close to zero can be more efficiently heated by EM waves. In addition, the temperature gradient also depends on the number of graphene. We expect that the efficient and fast heating of graphene films by EM waves can be utilized for smart heating windows and defogging windshields.

  4. Efficient and large scale synthesis of graphene from coal and its film electrical properties studies.

    Wu, Yingpeng; Ma, Yanfeng; Wang, Yan; Huang, Lu; Li, Na; Zhang, Tengfei; Zhang, Yi; Wan, Xiangjian; Huang, Yi; Chen, Yongsheng

    2013-02-01

    Coal, which is abundant and has an incompact structure, is a good candidate to replace graphite as the raw material for the production of graphene. Here, a new solution phase technique for the preparation of graphene from coal has been developed. The precursor: graphene oxide got from coal was examined by atomic force microscopy, dynamic light scattering and X-ray diffraction, the results showed the GO was a small and single layer sheet. The graphene was examined by X-ray photoelectron spectroscopy, and Raman spectroscopy. Furthermore, graphene films have been prepared using direct solution process and the electrical conductivity and Hall effect have been studied. The results showed the conductivity of the films could reach as high as 2.5 x 10(5) Sm(-1) and exhibited an n-type behavior.

  5. Raman enhancement by graphene-Ga2O3 2D bilayer film.

    Zhu, Yun; Yu, Qing-Kai; Ding, Gu-Qiao; Xu, Xu-Guang; Wu, Tian-Ru; Gong, Qian; Yuan, Ning-Yi; Ding, Jian-Ning; Wang, Shu-Min; Xie, Xiao-Ming; Jiang, Mian-Heng

    2014-01-28

    2D β-Ga2O3 flakes on a continuous 2D graphene film were prepared by a one-step chemical vapor deposition on liquid gallium surface. The composite was characterized by optical microscopy, scanning electron microscopy, Raman spectroscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy (XPS). The experimental results indicate that Ga2O3 flakes grew on the surface of graphene film during the cooling process. In particular, tenfold enhancement of graphene Raman scattering signal was detected on Ga2O3 flakes, and XPS indicates the C-O bonding between graphene and Ga2O3. The mechanism of Raman enhancement was discussed. The 2D Ga2O3-2D graphene structure may possess potential applications.

  6. A "Tandem" Strategy to Fabricate Flexible Graphene/Polypyrrole Nanofiber Film Using the Surfactant-Exfoliated Graphene for Supercapacitors.

    Shu, Kewei; Chao, Yunfeng; Chou, Shulei; Wang, Caiyun; Zheng, Tian; Gambhir, Sanjeev; Wallace, Gordon G

    2018-06-19

    The surfactant-assisted liquid-phase exfoliation of expanded graphite can produce graphene sheets in large quantities with minimal defects. However, it is difficult to completely remove the surfactant from the final product, thus affecting the electrochemical properties of the produced graphene. In this article, a novel approach to fabricate flexible graphene/polypyrrole film was developed: using surfactant cetyltrimethylammonium bromide as a template for growth of polypyrrole nanofibers (PPyNFs) instead of removal after the exfoliation process; followed by a simple filtration method. The introduction of PPyNF not only increases the electrochemical performance, but also ensures flexibility. This composite film electrode offers a capacitance up to 161 F g -1 along with a capacitance retention rate of over 80% after 5000 cycles.

  7. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.

    Gomez De Arco, Lewis; Zhang, Yi; Schlenker, Cody W; Ryu, Koungmin; Thompson, Mark E; Zhou, Chongwu

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4-ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness ( approximately 0.9 nm) and offered sheet resistance down to 230 Omega/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (eta) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138 degrees , whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60 degrees . Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications.

  8. Non-vacuum growth of graphene films using solid carbon source

    Nguyen, Ba-Son; Lin, Jen-Fin; Perng, Dung-Ching

    2015-01-01

    This study demonstrates that air annealing can grow high-quality graphene films on the surface of polycrystalline nickel film with the help of an effective SiO 2 capping layer. The number of graphene layers can be modulated by the amount of carbon embedded in the Ni film before annealing. Raman analysis results, transmission electron microscopy images, and electron diffraction patterns of the samples confirm that graphene films can be grown in air with an oxygen blocking layer and a 10 °C/s cooling rate in an open-vented rapid thermal annealing chamber or an open tube furnace. The high-quality low-defect air-annealing grown graphene is comparable to commercially available graphene grown via chemical vapor deposition. The proposed graphene growth using air annealing technique is simple and low-cost, making it highly attractive for mass production. It is transfer-free to a silicon substrate and can speed up graphene development, opening up new applications

  9. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics

    Gomez De Arco, Lewis

    2010-05-25

    We report the implementation of continuous, highly flexible, and transparent graphene films obtained by chemical vapor deposition (CVD) as transparent conductive electrodes (TCE) in organic photovoltaic cells. Graphene films were synthesized by CVD, transferred to transparent substrates, and evaluated in organic solar cell heterojunctions (TCE/poly-3,4- ethylenedioxythiophene:poly styrenesulfonate (PEDOT:PSS)/copper phthalocyanine/fullerene/bathocuproine/aluminum). Key to our success is the continuous nature of the CVD graphene films, which led to minimal surface roughness (∼ 0.9 nm) and offered sheet resistance down to 230 Ω/sq (at 72% transparency), much lower than stacked graphene flakes at similar transparency. In addition, solar cells with CVD graphene and indium tin oxide (ITO) electrodes were fabricated side-by-side on flexible polyethylene terephthalate (PET) substrates and were confirmed to offer comparable performance, with power conversion efficiencies (η) of 1.18 and 1.27%, respectively. Furthermore, CVD graphene solar cells demonstrated outstanding capability to operate under bending conditions up to 138°, whereas the ITO-based devices displayed cracks and irreversible failure under bending of 60°. Our work indicates the great potential of CVD graphene films for flexible photovoltaic applications. © 2010 American Chemical Society.

  10. Non-vacuum growth of graphene films using solid carbon source

    Nguyen, Ba-Son [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Faculty of Mechatronics – Electronics, Lac Hong University, 10 Huynh Van Nghe Road, Bienhoa (Viet Nam); Lin, Jen-Fin, E-mail: jflin@mail.ncku.edu.tw, E-mail: dcperng@ee.ncku.edu.tw [Department of Mechanical Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Perng, Dung-Ching, E-mail: jflin@mail.ncku.edu.tw, E-mail: dcperng@ee.ncku.edu.tw [Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China); Institute of Microelectronics and Electrical Engineering Department, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan (China)

    2015-06-01

    This study demonstrates that air annealing can grow high-quality graphene films on the surface of polycrystalline nickel film with the help of an effective SiO{sub 2} capping layer. The number of graphene layers can be modulated by the amount of carbon embedded in the Ni film before annealing. Raman analysis results, transmission electron microscopy images, and electron diffraction patterns of the samples confirm that graphene films can be grown in air with an oxygen blocking layer and a 10 °C/s cooling rate in an open-vented rapid thermal annealing chamber or an open tube furnace. The high-quality low-defect air-annealing grown graphene is comparable to commercially available graphene grown via chemical vapor deposition. The proposed graphene growth using air annealing technique is simple and low-cost, making it highly attractive for mass production. It is transfer-free to a silicon substrate and can speed up graphene development, opening up new applications.

  11. Study of film graphene/graphene oxide obtained by partial reduction chemical of oxide graphite; Estudo de filme de grafeno/oxido de grafeno obtido por reducao quimica parcial do oxido de grafite

    Gascho, J.L.S.; Costa, S.F.; Hoepfner, J.C.; Pezzin, S.H., E-mail: juliagascho@hotmail.com [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2014-07-01

    This study investigated the morphology of graphene/graphene oxide film obtained by partial chemical reduction of graphite oxide (OG) as well as its resistance to solvents. Films of graphene/graphene oxide are great candidates for replacement of indium oxide doped with tin (ITO) in photoelectric devices. The OG was obtained from natural graphite, by Hummer's method modified, and its reduction is made by using sodium borohydride. Infrared spectroscopy analysis of Fourier transform (FTIR), Xray diffraction (XRD) and scanning electron microscopy, high-resolution (SEM/FEG) for the characterization of graphene/graphene oxide film obtained were performed. This film proved to be resilient, not dispersing in any of the various tested solvents (such as ethanol, acetone and THF), even under tip sonication, this resistance being an important property for the applications. Furthermore, the film had a morphology similar to that obtained by other preparation methods.(author)

  12. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate) thin film

    Xia Minggang [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Center on Experimental Physics, School of Science, Xi' an Jiaotong University, 710049 (China); Su Zhidan; Zhang Shengli [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Science, Xi' an Jiaotong University, 710049 (China); Department of Applied Physics, School of Science, Xi' an Jiaotong University, 710049 (China)

    2012-09-15

    The Raman spectra of bilayer graphene covered with poly(methyl methacrylate) (PMMA) were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  13. Raman spectra of bilayer graphene covered with Poly(methyl methacrylate thin film

    Minggang Xia

    2012-09-01

    Full Text Available The Raman spectra of bilayer graphene covered with poly(methyl methacrylate (PMMA were investigated. Both the G and 2D peaks of PMMA-coated graphene were stiff and broad compared with those of uncovered graphene. This could be attributed to the residual strain induced by high-temperature baking during fabrication of the nanodevice. Furthermore, the two 2D peaks stiffened and broadened with increasing laser power, which is just the reverse to uncovered graphene. The stiffness is likely caused by graphene compression induced by the circular bubble of the thin PMMA film generated by laser irradiation. Our findings may contribute to the application of PMMA in the strain engineering of graphene nanodevices.

  14. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  15. Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films.

    Cao, Minghui; Wang, Minqiang; Li, Le; Qiu, Hengwei; Yang, Zhi

    2018-01-10

    To optimize the performance of silver nanowire (Ag NW) film heaters and explore the effect of graphene on a film, we introduced poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) and graphene modified with ethyl cellulose (graphene-EC) into the film. The high-quality and well-dispersed graphene-EC was synthesized from graphene obtained by electrochemical exfoliation as a precursor. The transparent film heaters were fabricated via spin-coating. With the assistance of graphene-EC, the stability of film heaters was greatly improved, and the conductivity was optimized by adjusting the Ag NW concentration. The film heaters exhibited a fast and accurate response to voltage, accompanied by excellent environmental endurance, and there was no significant performance degradation after being operated for a long period of time. These results indicate that graphene-EC plays a crucial role in optimizing film stability and heat dispersion in the film. The Ag NW/PEDOT:PSS-doped graphene-EC film heaters show a great potential in low-cost indium-tin-oxide-free flexible transparent electrodes, heating systems, and transparent film heaters.

  16. Fabrication of graphene/polyaniline composite multilayer films by electrostatic layer-by-layer assembly

    Cong, Jiaojiao; Chen, Yuze; Luo, Jing; Liu, Xiaoya

    2014-10-01

    A novel graphene/polyaniline composite multilayer film was fabricated by electrostatic interactions induced layer-by-layer self-assembly technique, using water dispersible and negatively charged chemically converted graphene (CCG) and positively charged polyaniline (PANI) as building blocks. CCG was achieved through partly reduced graphene oxide, which remained carboxyl group on its surface. The remaining carboxyl groups not only retain the dispersibility of CCG, but also allow the growth of the multilayer films via electrostatic interactions between graphene and PANI. The structure and morphology of the obtained CCG/PANI multilayer film are characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, Ultraviolet-visible absorption spectrum (UV-vis), scanning electron microscopy (SEM), Raman spectroscopy and X-Ray Diffraction (XRD). The electrochemical properties of the resulting film are studied using cyclic voltammetry (CV), which showed that the resulting CCG/PANI multilayer film kept electroactivity in neutral solution and showed outstanding cyclic stability up to 100 cycles. Furthermore, the composite film exhibited good electrocatalytic ability toward ascorbic acid (AA) with a linear response from 1×10-4 to 1.2×10-3 M with the detect limit of 5×10-6 M. This study provides a facile and effective strategy to fabricate graphene/PANI nanocomposite film with good electrochemical property, which may find potential applications in electronic devices such as electrochemical sensor.

  17. Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film.

    Xu, Huifeng; Dai, Hong; Chen, Guonan

    2010-04-15

    A novel, biocompatible sensing strategy based on graphene and chitosan composite film for immobilizing the hemoglobin protein was firstly adopted. The direct electron transfer and bioelectrocatalytic activity of hemoglobin after incorporation into the composite film were investigated. A pair of reversible redox waves of hemoglobin was appeared, and hemoglobin could exhibit its bioelectrocatalytic activity toward H(2)O(2) in a long term. Such results indicated that graphene and chitosan composite could be a friendly biocompatible interface for immobilizing biomolecules and keeping their native structure. Furthermore, the appearance of graphene in the composite film could facilitate the electron transfer between matrix and the electroactive center of hemoglobin. Hence, this graphene and chitosan based protocol would be a promising platform for protein immobilization and biosensor preparation. (c) 2010 Elsevier B.V. All rights reserved.

  18. Microstructure and corrosion resistance of a fluorosilane modified silane-graphene film on 2024 aluminum alloy

    Dun, Yuchao; Zhao, Xuhui; Tang, Yuming; Dino, Sahib; Zuo, Yu

    2018-04-01

    Heptadecafluorodecyl trimethoxysilane (FAS-17) was incorporated into γ-(2,3-epoxypropoxy) propyltrimethoxysilane/graphene (GPTMS/rGO) by adding pre-hydrolyzed FAS-17 solution in GPTMS solution, and a hybrid silane-graphene film (FG/rGO) was prepared on 2024 aluminum alloy surface. The FG/rGO film showed better thermal shock resistance, good adhesion force and high micro-hardness, compared with GPTMS/rGO film. In neutral 3.5 wt% NaCl solution, the corrosion current density for 2024 AA sample with FG/rGO film was 3.40 × 10-3 μA/cm2, which is about one fifth of that for the sample with GPTMS/rGO film. In acidic and alkaline NaCl solutions, the FG/rGO film also showed obviously better corrosion resistance than GPTMS/rGO film. EIS results confirm that the FG/rGO film showed longer performance than GPTMS/rGO film for 2024 AA in NaCl solution. The hydrophobic FAS-17 increased water contact angle of the film surface from 68° to 113°, and changed the stacking structure of graphene in the film. The higher crosslink degree and less interfaces promoted the barrier property of FG/rGO film against aggressive ions and prolonged the performance time in NaCl solution.

  19. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors.

    Yang, MinHo; Lee, Kyoung G; Lee, Seok Jae; Lee, Sang Bok; Han, Young-Kyu; Choi, Bong Gill

    2015-10-14

    Carbon-based electrochemical double-layer capacitors and pseudocapacitors, consisting of a symmetric configuration of electrodes, can deliver much higher power densities than batteries, but they suffer from low energy densities. Herein, we report the development of high energy and power density supercapacitors using an asymmetric configuration of Fe2O3 and MnO2 nanoparticles incorporated into 3D macroporous graphene film electrodes that can be operated in a safe and low-cost aqueous electrolyte. The gap in working potential windows of Fe2O3 and MnO2 enables the stable expansion of the cell voltage up to 1.8 V, which is responsible for the high energy density (41.7 Wh kg(-1)). We employ a household microwave oven to simultaneously create conductivity, porosity, and the deposition of metal oxides on graphene films toward 3D hybrid architectures, which lead to a high power density (13.5 kW kg(-1)). Such high energy and power densities are maintained for over 5000 cycles, even during cycling at a high current density of 16.9 A g(-1).

  20. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    Marta, Bogdan; Leordean, Cosmin; Istvan, Todor; Botiz, Ioan; Astilean, Simion

    2016-01-01

    Graphical abstract: - Highlights: • One-step dry transfer method of CVD grown graphene onto PVA films. • Investigation of graphene quality and number of layers of the synthesized and transferred graphene. • Promising scalability and good quality of transferred graphene onto flexible transparent polymers. - Abstract: Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  1. Efficient etching-free transfer of high quality, large-area CVD grown graphene onto polyvinyl alcohol films

    Marta, Bogdan; Leordean, Cosmin [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Istvan, Todor [Babes-Bolyai University, Faculty of Physics, Biomolecular Physics Department, M Kogalniceanu Str. 1, Cluj-Napoca 400084 (Romania); Botiz, Ioan [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Astilean, Simion, E-mail: simion.astilean@phys.ubbcluj.ro [Babes-Bolyai University, Interdisciplinary Research Institute in Bio-Nano-Sciences, Nanobiophotonics and Laser Microspectroscopy Center, Treboniu Laurian Str. 42, Cluj-Napoca 400271 (Romania); Babes-Bolyai University, Faculty of Physics, Biomolecular Physics Department, M Kogalniceanu Str. 1, Cluj-Napoca 400084 (Romania)

    2016-02-15

    Graphical abstract: - Highlights: • One-step dry transfer method of CVD grown graphene onto PVA films. • Investigation of graphene quality and number of layers of the synthesized and transferred graphene. • Promising scalability and good quality of transferred graphene onto flexible transparent polymers. - Abstract: Graphene transfer is a procedure of paramount importance for the production of graphene-based electronic devices. The transfer procedure can affect the electronic properties of the transferred graphene and can be detrimental for possible applications both due to procedure induced defects which can appear and due to scalability of the method. Hence, it is important to investigate new transfer methods for graphene that are less time consuming and show great promise. In the present study we propose an efficient, etching-free transfer method that consists in applying a thin polyvinyl alcohol layer on top of the CVD grown graphene on Cu and then peeling-off the graphene onto the polyvinyl alcohol film. We investigate the quality of the transferred graphene before and after the transfer, using Raman spectroscopy and imaging as well as optical and atomic force microscopy techniques. This simple transfer method is scalable and can lead to complete transfer of graphene onto flexible and transparent polymer support films without affecting the quality of the graphene during the transfer procedure.

  2. Atomic layer deposited oxide films as protective interface layers for integrated graphene transfer

    Cabrero-Vilatela, A.; Alexander-Webber, J. A.; Sagade, A. A.; Aria, A. I.; Braeuninger-Weimer, P.; Martin, M.-B.; Weatherup, R. S.; Hofmann, S.

    2017-12-01

    The transfer of chemical vapour deposited graphene from its parent growth catalyst has become a bottleneck for many of its emerging applications. The sacrificial polymer layers that are typically deposited onto graphene for mechanical support during transfer are challenging to remove completely and hence leave graphene and subsequent device interfaces contaminated. Here, we report on the use of atomic layer deposited (ALD) oxide films as protective interface and support layers during graphene transfer. The method avoids any direct contact of the graphene with polymers and through the use of thicker ALD layers (≥100 nm), polymers can be eliminated from the transfer-process altogether. The ALD film can be kept as a functional device layer, facilitating integrated device manufacturing. We demonstrate back-gated field effect devices based on single-layer graphene transferred with a protective Al2O3 film onto SiO2 that show significantly reduced charge trap and residual carrier densities. We critically discuss the advantages and challenges of processing graphene/ALD bilayer structures.

  3. Air-stable n-type doping of graphene from overlying Si3N4 film

    Wang, Zegao; Li, Pingjian; Chen, Yuanfu; Liu, Jingbo; Qi, Fei; Tian, Hongjun; Zheng, Binjie; Zhou, Jinhao

    2014-01-01

    In this study, we report a facile method to obtain air-stable n-type graphene by plasma-enhanced chemical vapor depositing Si 3 N 4 film on the surface of graphene. We have demonstrated that the overlying Si 3 N 4 film can not only act as the penetration-barrier against H 2 O and O 2 adsorbed on the graphene surface, but also cause an effective n-type doping due to the amine groups at the interface of graphene/Si 3 N 4 . Furthermore, the studies reveal that the Dirac point of graphene can be modulated by the thickness of Si 3 N 4 film, which is due to competing effects of Si 3 N 4 -induced doping (n-type) and penetrating H 2 O (O 2 )-induced doping (p-type). We expect this method to be used for obtaining stable n-type graphene field-effect transistors in air, which will be widely used in graphene electronic devices.

  4. Synthesis of graphene on nickel films by CVD method using methane

    Castro, Manuela O. de; Liebold-Ribeiro, Yvonne; Barros, Eduardo B.; Salomao, Francisco C.C.; Mendes Filho, Josue; Souza Filho, Antonio G.; Chesman, Carlos

    2011-01-01

    Full text: Nanomaterials have opened up many possibilities for groundbreaking innovations in various technologies of modern society. One key example is graphene, which is composed of one-atom-thick sheet of sp2-bonded carbon atoms, arranged in a hexagonal symmetry. However, real world applications of graphene require well-established and large synthesis techniques. The so-called Chemical Vapor Deposition (CVD) is one of the most promising method for synthesizing graphene. The general idea of this technique is to dissolve carbon atoms inside a transition metal melt at a certain temperature, then allowing the dissolved carbon to precipitate at lower temperatures as single layer graphene (SLG). In the present work, we used the CVD method and methane gas as carbon source for the synthesis of graphene on silicon (Si) substrates (300nm thermal oxide) covered with sputtered nickel (Ni) films as catalyst. In order to achieve large-area and defect-free graphene sheets the influence of the different growth parameters (growth temperature and time, gas flow of methane, film thickness and grain size of Ni) on quality and quantity of graphene growth were studied. The obtained graphene films were transferred to a silicon substrate by the polymer coating process, using polymethyl-methacrylate (PMMA) as coating. In order to characterize the transferred graphene we used Scanning Electron Microscopy (SEM), Raman Spectroscopy, Optical Microscopy and Atomic Force Microscopy (AFM). The results show the influence of CVD process parameters on the quality and quantity of graphene growth in our experimental conditions. Acknowledgments: The authors thank Brazilian agencies CNPq and FUNCAP for financial support and Alfonso Reina (MIT, USA) for helpful discussions. (author)

  5. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  6. Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors.

    Meng, Yuena; Wang, Kai; Zhang, Yajie; Wei, Zhixiang

    2013-12-23

    A highly flexible graphene free-standing film with hierarchical structure is prepared by a facile template method. With a porous structure, the film can be easily bent and cut, and forms a composite with another material as a scaffold. The 3D graphene film exhibits excellent rate capability and its capacitance is further improved by forming a composite with polyaniline nanowire arrays. The flexible hierarchical composite proves to be an excellent electrode material for flexible supercapacitors. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Solid-phase electrochemical reduction of graphene oxide films in alkaline solution

    Basirun, Wan J.; Sookhakian, Mehran; Baradaran, Saeid; Mahmoudian, Mohammad R.; Ebadi, Mehdi

    2013-09-01

    Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

  8. Controlled Synthesis of Monolayer Graphene Toward Transparent Flexible Conductive Film Application

    Yu Han-Young

    2010-01-01

    Full Text Available Abstract We demonstrate the synthesis of monolayer graphene using thermal chemical vapor deposition and successive transfer onto arbitrary substrates toward transparent flexible conductive film application. We used electron-beam-deposited Ni thin film as a synthetic catalyst and introduced a gas mixture consisting of methane and hydrogen. To optimize the synthesis condition, we investigated the effects of synthetic temperature and cooling rate in the ranges of 850–1,000°C and 2–8°C/min, respectively. It was found that a cooling rate of 4°C/min after 1,000°C synthesis is the most effective condition for monolayer graphene production. We also successfully transferred as-synthesized graphene films to arbitrary substrates such as silicon-dioxide-coated wafers, glass, and polyethylene terephthalate sheets to develop transparent, flexible, and conductive film application.

  9. Spin coated graphene films as the transparent electrode in organic photovoltaic devices

    Kymakis, E.; Stratakis, E.; Stylianakis, M.M.; Koudoumas, E.; Fotakis, C.

    2011-01-01

    Many research efforts have been devoted to the replacement of the traditional indium–tin-oxide (ITO) electrode in organic photovoltaics. Solution-based graphene has been identified as a potential replacement, since it has less than two percent absorption per layer, relative high carrier mobility, and it offers the possibility of deposition on large area and flexible substrates, compatible with roll to roll manufacturing methods. In this work, soluble reduced graphene films with high electrical conductivity and transparency were fabricated and incorporated in poly(3-hexylthiophene) [6,6]-phenyl-C 61 -butyric acid methyl ester photovoltaic devices, as the transparent electrode. The graphene films were spin coated on glass from an aqueous dispersion of functionalized graphene, followed by a reduction process combining hydrazine vapor and annealing under argon, in order to reduce the sheet resistance. The photovoltaic devices obtained from the graphene films showed lower performance than the reference devices with ITO, due to the higher sheet resistance (2 kΩ/sq) and the poor hydrophilicity of the spin coated graphene films.

  10. Thin film solar cell configuration and fabrication method

    Menezes, Shalini

    2009-07-14

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  11. Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene

    Xu, Jinghong; Cai, Xia; Shen, Fenglei, E-mail: shenfenglei@suda.edu.cn

    2016-08-30

    Highlights: • The non-covalent modification of graphene maintains the intrinsic structure of graphene compared with the covalent functionalization of graphene. • The initial degradation temperature of nanocomposite film increases by 57 °C which is much higher than that of PUA nanocomposite previously reported. • The nanocomposite film exhibits improved dielectric property and electrical conductivity. • The outstanding performance of CTAB-G/PUA films will open up enormous opportunities for applications in various regions such as high temperature or electrical field. - Abstract: The preparation of nanocomposite films composed of UV-curable polyurethane acrylate (PUA) and modified graphene were demonstrated in this paper. Cetyl trimethyl ammonium bromide modified graphene (CTAB-G) was prepared via intercalation of cationic surfactant and subsequently incorporated into PUA by UV curing technology. Fourier transform infrared spectra, wide-angle X-ray diffraction, scanning electron microscopy and transmission electron microscopy were used to characterize the structure and morphology of CTAB-G, as well as CTAB-G/PUA nanocomposite films. The results revealed that the CTAB-G sheets were layer-by-layer structure and dispersed uniformly in PUA matrix. Thermal gravimetric analysis showed that the thermal stabilities of UV-curable PUA nanocomposite films in this work were much higher than that of PUA nanocomposites previously reported. Dynamic mechanical analysis indicated that the dynamic mechanical properties of nanocomposite films were greatly enhanced in the presence of modified graphene sheets. In addition, the CTAB-G/PUA nanocomposite films exhibited improved dielectric properties and electrical conductivities compared with the pure PUA.

  12. Immobilization of carbon nanotubes on functionalized graphene film grown by chemical vapor deposition and characterization of the hybrid material

    Prashanta Dhoj Adhikari

    2014-01-01

    Full Text Available We report the surface functionalization of graphene films grown by chemical vapor deposition and fabrication of a hybrid material combining multi-walled carbon nanotubes and graphene (CNT–G. Amine-terminated self-assembled monolayers were prepared on graphene by the UV-modification of oxidized groups introduced onto the film surface. Amine-termination led to effective interaction with functionalized CNTs to assemble a CNT–G hybrid through covalent bonding. Characterization clearly showed no defects of the graphene film after the immobilization reaction with CNT. In addition, the hybrid graphene material revealed a distinctive CNT–G structure and p–n type electrical properties. The introduction of functional groups on the graphene film surface and fabrication of CNT–G hybrids with the present technique could provide an efficient, novel route to device fabrication.

  13. Preparation of reduced graphene oxide/gelatin composite films with reinforced mechanical strength

    Wang, Wenchao; Wang, Zhipeng; Liu, Yu; Li, Nan; Wang, Wei; Gao, Jianping

    2012-01-01

    Highlights: ► We used and compared different proportion of gelatin and chitosan as reducing agents. ► The mechanical properties of the films are investigated, especially the wet films. ► The cell toxicity of the composite films as biomaterial is carried out. ► The water absorption capabilities of the composite films also studied. -- Abstract: Graphene oxide (GO) was reduced by chitosan/gelatin solution and added to gelatin (Gel) to fabricate reduced graphene oxide/gelatin (RGO/Gel) films by a solvent-casting method using genipin as cross-linking agent. The structure and properties of the films were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and UV–vis spectroscopy. The addition of RGO increased the tensile strength of the RGO/Gel films in both dry and wet states, but decreased their elongation at break. The incorperation of RGO also decreased the swelling ability of the films in water. Cell cultures were carried out in order to test the cytotoxicity of the films. The cells grew and reproduced well on the RGO/Gel films, indicating that the addition of RGO has no negative effect on the compatibility of the gelatin. Therefore, the reduced graphene oxide/gelatin composite is a promising biomaterial with excellent mechanical properties and good cell compatibility.

  14. Graphene Ink Film Based Electrochemical Detector for Paracetamol Analysis

    Li Fu

    2018-01-01

    Full Text Available Graphene ink is a commercialized product in the graphene industry with promising potential application in electronic device design. However, the limitation of the graphene ink is its low electronic performance due to the ink preparation protocol. In this work, we proposed a simple post-treatment of graphene ink coating via electrochemical oxidation. The electronic conductivity of the graphene ink coating was enhanced as expected after the treatment. The proposed electrochemical oxidation treatment also exposes the defects of graphene and triggered an electrocatalytic reaction during the sensing of paracetamol (PA. The overpotential of redox is much lower than conventional PA redox potential, which is favorable for avoiding the interference species. Under optimum conditions, the graphene ink-based electrochemical sensor could linearly detect PA from 10 to 500 micro molar (μM, with a limit of detection of 2.7 μM.

  15. Electrical properties of graphene film for counter electrode in dye sensitized solar cells

    Khalifa, Ali; Shafie, S.; Hasan, W. Z. W.; Lim, H. N.; Rusop, M.; Samaila, Buda

    2018-05-01

    A graphene counter electrode for dye-sensitized solar cell was prepared simply by drop casting method on a conducting FTO glass at room temperature. Raman spectroscopy was used to study the defection in the graphene films. The sheet resistance was also measured and recoded minimum value of 7.04 Ω/□ at 22.19µm thickness. The casted films show good adhesion to substrates with low defects. A DSSC based on graphene counter electrode demonstrates reasonable conversion efficiency of 2.78% with short circuit current of 7.60mA, open circuit voltage of 0.69V and fill factor of 0.52. The high conductivity and low defects render the prepared graphene dispersion for DSSCs' CE application.

  16. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection.

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2018-01-15

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a residue-free graphene film using a thin gold supporting layer. A Hall effect device made of this gold-transferred graphene was demonstrated to significantly enhance the sensitivity (≈ 5 times) for hybridization detection, with a linear detection range of 1pM to 100nM for DNA target. Our findings provide an efficient method to boost the sensitivity of graphene-based biosensors for DNA recognition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. High-Resolution Graphene Films for Electrochemical Sensing via Inkjet Maskless Lithography.

    Hondred, John A; Stromberg, Loreen R; Mosher, Curtis L; Claussen, Jonathan C

    2017-10-24

    Solution-phase printing of nanomaterial-based graphene inks are rapidly gaining interest for fabrication of flexible electronics. However, scalable manufacturing techniques for high-resolution printed graphene circuits are still lacking. Here, we report a patterning technique [i.e., inkjet maskless lithography (IML)] to form high-resolution, flexible, graphene films (line widths down to 20 μm) that significantly exceed the current inkjet printing resolution of graphene (line widths ∼60 μm). IML uses an inkjet printed polymer lacquer as a sacrificial pattern, viscous spin-coated graphene, and a subsequent graphene lift-off to pattern films without the need for prefabricated stencils, templates, or cleanroom technology (e.g., photolithography). Laser annealing is employed to increase conductivity on thermally sensitive, flexible substrates [polyethylene terephthalate (PET)]. Laser annealing and subsequent platinum nanoparticle deposition substantially increases the electroactive nature of graphene as illustrated by electrochemical hydrogen peroxide (H 2 O 2 ) sensing [rapid response (5 s), broad linear sensing range (0.1-550 μm), high sensitivity (0.21 μM/μA), and low detection limit (0.21 μM)]. Moreover, high-resolution, complex graphene circuits [i.e., interdigitated electrodes (IDE) with varying finger width and spacing] were created with IML and characterized via potassium chloride (KCl) electrochemical impedance spectroscopy (EIS). Results indicated that sensitivity directly correlates to electrode feature size as the IDE with the smallest finger width and spacing (50 and 50 μm) displayed the largest response to changes in KCl concentration (∼21 kΩ). These results indicate that the developed IML patterning technique is well-suited for rapid, solution-phase graphene film prototyping on flexible substrates for numerous applications including electrochemical sensing.

  18. Chitosan-graphene oxide films and CO2-dried porous aerogel microspheres: Interfacial interplay and stability.

    Frindy, Sana; Primo, Ana; Ennajih, Hamid; El Kacem Qaiss, Abou; Bouhfid, Rachid; Lahcini, Mohamed; Essassi, El Mokhtar; Garcia, Hermenegildo; El Kadib, Abdelkrim

    2017-07-01

    The intimate interplay of chitosan (CS) and graphene oxide (GO) in aqueous acidic solution has been explored to design upon casting, nanostructured "brick-and-mortar" films (CS-GO-f) and by acidic-to-basic pH inversion, porous CO 2 -dried aerogel microspheres (CS-GO-m). Owing to the presence of oxygenated functional groups in GO, good-quality crack-free hybrid films were obtained. Mechanical properties were improved independently of the GO content and it was found that a 20wt% loading affords hybrid film characterized with a Young modulus three times superior to that reached with the same loading of layered clay. The presence of graphene oxide was found to be detrimental for the thermal stability of the polysaccharide at T <350°C, a fact attributed to the well-established decomposition of the oxygenated functional groups of the graphene sheets. Irrespective to the graphene oxide loading, chitosan-graphene oxide mixture preserves the gelation memory of the polysaccharide. Supercritical drying of the resulting soft hydrogels provides macroporous network with surface areas ranging from 226m 2 g -1 to 554m 2 g -1 . XPS and RAMAN analyses evidenced the selective reduction of GO sheets inside of these microspheres, affording the hitherto unknown macroporous chitosan-entangled-reduced graphene oxide (CS-rGO-m) aerogels. Improvement in both hydrothermal stability (under water reflux) and chemical stability (under acidic conditions) have been noticed for chitosan-graphene oxide microspheres with respect to non-modified chitosan and chitosan-clay bio-hybrids, a result rooted in the substantial hydrophobic character imparted by the addition of graphenic material to the polysaccharide skeleton. In essence, this contribution demonstrates that graphene oxide loading do not disturb neither the filmogenicity of chitosan nor its gelation ability and constitutes a promising route for novel chitosan-based functional hybrid materials. Copyright © 2017 Elsevier Ltd. All rights

  19. Bioinspired, Ultrastrong, Highly Biocompatible, and Bioactive Natural Polymer/Graphene Oxide Nanocomposite Films.

    Zhu, Wen-Kun; Cong, Huai-Ping; Yao, Hong-Bin; Mao, Li-Bo; Asiri, Abdullah M; Alamry, Khalid A; Marwani, Hadi M; Yu, Shu-Hong

    2015-09-09

    Tough and biocompatible nanocomposite films: A new type of bioinspired ultrastrong, highly biocompatible, and bioactive konjac glucomannan (KGM)/graphene oxide (GO) nanocomposite film is fabricated on a large scale by a simple solution-casting method. Such KGM-GO composite films exhibit much enhanced mechanical properties under the strong hydrogen-bonding interactions, showing great potential in the fields of tissue engineering and food package. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films ...

  1. Clean-lifting transfer of large-area residual-free graphene films.

    Wang, Di-Yan; Huang, I-Sheng; Ho, Po-Hsun; Li, Shao-Sian; Yeh, Yun-Chieh; Wang, Duan-Wei; Chen, Wei-Liang; Lee, Yu-Yang; Chang, Yu-Ming; Chen, Chia-Chun; Liang, Chi-Te; Chen, Chun-Wei

    2013-08-27

    A unique "clean-lifting transfer" (CLT) technique that applies a controllable electrostatic force to transfer large-area and high-quality CVD-grown graphene onto various rigid or flexible substrates is reported. The CLT technique without using any organic support or adhesives can produce residual-free graphene films with large-area processability, and has great potential for future industrial production of graphene-based electronics or optoelectronics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Work function of few layer graphene covered nickel thin films measured with Kelvin probe force microscopy

    Eren, B. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 (United States); Gysin, U.; Marot, L., E-mail: Laurent.marot@unibas.ch; Glatzel, Th.; Steiner, R.; Meyer, E. [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland)

    2016-01-25

    Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.

  3. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-07-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  4. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng

    2016-01-01

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  5. Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate

    Yang, Lei; Hu, Gaijuan; Zhang, Dongqing [Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, School of Mechanical Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Diao, Dongfeng, E-mail: dfdiao@szu.edu.cn [Institute of Nanosurface Science and Engineering (INSE), Shenzhen University, Shenzhen 518060 (China)

    2016-07-18

    We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.

  6. Layer-by-Layer Self-Assembled Graphene Multilayer Films via Covalent Bonds for Supercapacitor Electrodes

    Xianbin Liu

    2015-05-01

    Full Text Available To maximize the utilization of its single-atom thin nature, a facile scheme to fabricate graphene multilayer films via a layer-by-layer self-assembled process was presented. The structure of multilayer films was constructed by covalently bonding graphene oxide (GO using p-phenylenediamine (PPD as a covalent cross-linking agent. The assembly process was confirmed to be repeatable and the structure was stable. With the π-π conjugated structure and a large number of spaces in the framework, the graphene multi‐ layer films exhibited excellent electrochemical perform‐ ance. The uniform ultrathin electrode exhibited a capacitance of 41.71 μF/cm2 at a discharge current of 0.1 μA/cm2, and displayed excellent stability of 88.9 % after 1000 charge-discharge cycles.

  7. Cataphoretic assembly of cationic dyes and deposition of carbon nanotube and graphene films.

    Su, Y; Zhitomirsky, I

    2013-06-01

    Cathodic electrophoretic deposition (EPD) method has been developed for the fabrication of thin films from aqueous solutions of crystal violet (CV) dyes. The films contained rod-like particles with a long axis oriented perpendicular to the substrate surface. The proposed deposition mechanism involved cataphoresis of cationic CV(+) species, base generation in the cathodic reactions, and charge neutralization at the electrode surface. The assembly of rod-like particles was governed by π-π interactions of polyaromatic CV molecules. The deposition kinetics was studied by quartz crystal microbalance. CV dyes allowed efficient dispersion of multiwalled carbon nanotubes (MWCNTs) and graphene in water at relatively low CV concentrations. The feasibility of cathodic EPD of MWCNT and graphene from aqueous suspensions, containing CV, has been demonstrated. The deposition yield was investigated at different CV concentrations and deposition voltages. The relatively high deposition yield of MWCNT and graphene indicated that CV is an efficient dispersing, charging, and film forming agent for EPD. Electron microscopy data showed that at low CV concentrations in MWCNT or graphene suspensions and low deposition voltages, the films contained mainly MWCNT or graphene. The increase in the CV concentration and/or deposition voltage resulted in enhanced co-deposition of CV. The EPD method developed in this investigation paves the way for the fabrication of advanced nanocomposites by cathodic electrodeposition. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Study on Photoelectric Properties of Composite Films of Graphene/Ti02 Nanorods

    JIN Guo-li

    2017-02-01

    Full Text Available TiOZ nanorods have large specific surface area and the ability of directional transmission electron, based on which can reduce recombination probability of light-generated electrons and holes,and improve the photoelectric conversion efficiency of DSSC. As graphene has low resistivity,good stability and excellent transparency,it can be introduced into anode film to improve the electronic transmission. The TiOZ nanorods were prepared by hydrothermal method,mixed with different quality of graphene. Its length range was 200-300 nm,with a diameter of about 20 nm. The porous graphene/TiOZ nanorods composite film were prepared by using electro- hydrodynamic technique(EHDand compositing TiOZ nanorods with different quality of grapheme. The photoelectric conversion efficiency of the DSSC device prepared with the photo-anode film with graphene mass content of 3 % was 4. 23 %,the photoelectric conversion efficiency increased by 36%,relative to that of no graphene doped TiOZ nanorods photo-anode film.

  9. Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System.

    Xu, Jianbao; Hu, Junxiong; Li, Qi; Wang, Rubing; Li, Weiwei; Guo, Yufen; Zhu, Yongbo; Liu, Fengkui; Ullah, Zaka; Dong, Guocai; Zeng, Zhongming; Liu, Liwei

    2017-07-01

    Chemical vapor deposition (CVD) growth of high-quality graphene has emerged as the most promising technique in terms of its integrated manufacturing. However, there lacks a controllable growth method for producing high-quality and a large-quantity graphene films, simultaneously, at a fast growth rate, regardless of roll-to-roll (R2R) or batch-to-batch (B2B) methods. Here, a stationary-atmospheric-pressure CVD (SAPCVD) system based on thermal molecular movement, which enables fast B2B growth of continuous and uniform graphene films on tens of stacked Cu(111) foils, with a growth rate of 1.5 µm s -1 , is demonstrated. The monolayer graphene of batch production is found to nucleate from arrays of well-aligned domains, and the films possess few defects and exhibit high carrier mobility up to 6944 cm 2 V -1 s -1 at room temperature. The results indicate that the SAPCVD system combined with single-domain Cu(111) substrates makes it possible to realize fast batch-growth of high-quality graphene films, which opens up enormous opportunities to use this unique 2D material for industrial device applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Graphene-based electrodes for enhanced organic thin film transistors based on pentacene.

    Basu, Sarbani; Lee, Mu Chen; Wang, Yeong-Her

    2014-08-21

    This paper presents 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) and pentacene-based organic thin film transistors (OTFTs) with monolayer graphene source-drain (S-D) electrodes. The electrodes are patterned using conventional photolithographic techniques combined with reactive ion etching. The monolayer graphene film grown by chemical vapor deposition on Cu foil was transferred on a Si dioxide surface using a polymer-supported transfer method to fabricate bottom-gate, bottom-contact OTFTs. The pentacene OTFTs with graphene S-D contacts exhibited superior performance with a mobility of 0.1 cm(2) V(-1) s(-1) and an on-off ratio of 10(5) compared with OTFTs with Au-based S-D contacts, which had a mobility of 0.01 cm(2) V(-1) s(-1) and an on-off ratio of 10(3). The crystallinity, grain size, and microscopic defects (or the number of layers of graphene films) of the TIPS-pentacene/pentacene films were analyzed by X-ray diffraction spectroscopy, atomic force microscopy, and Raman spectroscopy, respectively. The feasibility of using graphene as an S-D electrode in OTFTs provides an alternative material with high carrier injection efficiency, chemical stability, and excellent interface properties with organic semiconductors, thus exhibiting improved device performance of C-based electronic OTFTs at a reduced cost.

  11. Horizontally-connected ZnO-graphene hybrid films for multifunctional devices

    Lim, Yi Rang [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Song, Wooseok; Lee, Young Bum; Kim, Seong Ku; Han, Jin Kyu; Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2016-08-30

    Highlights: • We designed horizontally-connected ZnO and graphene hybrid nanofilms with improved flexibility for multifunctional nanodevices including high performance TFTs. • The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. • The hybrid thin film transistors exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}. - Abstract: Here we designed horizontally-connected ZnO thin films and graphene in order to combine advantages of ZnO thin films, which are high on/off ratio and photo responsivity, and the superior mobility and sensitivity of graphene for applications in thin film transistors (TFTs) and flexible photodetectors. To synthesize the ZnO/graphene hybrid films, a 70-nm-thick ZnO thin film with a uniformly flat surface deposited by the atomic layer deposition process was horizontally connected with highly crystalline monolayer graphene grown by thermal chemical vapor deposition. The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. The hybrid TFT exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}.

  12. Enhanced performance of GaN-based light-emitting diodes with graphene/Ag nanowires hybrid films

    Zhi Li

    2013-04-01

    Full Text Available Incorporating Ag nanowires with graphene resulted in improved electrical conductivity and enhanced contact properties between graphene and p-GaN. The graphene/AgNWs hybrid films exhibited high transmittance and lower sheet resistance compared to bare graphene. The specific contact resistance between graphene and p-GaN reduced nearly an order of magnitude with the introduction of AgNWs. As a result, light emitting diodes based on the hybrid films showed 44% lower forward voltage and 2-fold higher light output power. The enhanced performance was attributed to the bridging by AgNWs of cracks, grain boundaries in graphene and the reduction of Schottky barrier height at graphene/ p-GaN interface.

  13. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    Sarath Kumar, S. R.

    2013-11-07

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent electrical conductivity and Seebeck coefficient studies confirmed the polarity type of graphene films. Nitrogen doping at different sites of the honeycomb structure, responsible for n-type conduction, is identified using X-ray photoelectron spectroscopy, for films grown in nitrogen. A diode-like rectifying behavior is exhibited by p-n junction diodes fabricated using the graphene films.

  14. Graphene-based supercapacitors in the parallel-plate electrode configuration: ionic liquids versus organic electrolytes.

    Shim, Youngseon; Kim, Hyung J; Jung, Younjoon

    2012-01-01

    Supercapacitors with two single-sheet graphene electrodes in the parallel plate geometry are studied via molecular dynamics (MD) computer simulations. Pure 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI+BF4-) and a 1.1 M solution of EMI+BF4- in acetonitrile are considered as prototypes of room-temperature ionic liquids (RTILs) and organic electrolytes. Electrolyte structure, charge density and associated electric potential are investigated by varying the charges and separation of the two electrodes. Multiple charge layers formed in the electrolytes in the vicinity of the electrodes are found to screen the electrode surface charge almost completely. As a result, the supercapacitors show nearly an ideal electric double layer behavior, i.e., the electric potential exhibits essentially a plateau behavior in the entire electrolyte region except for sharp changes in screening zones very close to the electrodes. Due to its small size and large charge separation, BF4- is considerably more efficient in shielding electrode charges than EMI+. In the case of the acetonitrile solution, acetonitrile also plays an important role by aligning its dipoles near the electrodes; however, the overall screening mainly arises from ions. Because of the disparity of shielding efficiency between cations and anions, the capacitance of the positively-charged anode is significantly larger than that of the negatively-charged cathode. Therefore, the total cell capacitance in the parallel plate configuration is primarily governed by the cathode. Ion conductivity obtained via the Green-Kubo (GK) method is found to be largely independent of the electrode surface charge. Interestingly, EMI+BF4- shows higher GK ion conductivity than the 1.1 M acetonitrile solution between two parallel plate electrodes.

  15. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks

    Kahng, Yung Ho; Choe, Minhyeok; Jo, Gunho; Park, Woojin; Yoon, Jongwon; Hong, Woong-Ki; Lee, Byoung Hun; Lee, Takhee; Lee, Sangchul; Cho, Chun Hum

    2011-01-01

    Large-area graphene films, synthesized by the chemical vapor deposition (CVD) method, have the potential to be used as electrodes. However, the electrical properties of CVD-synthesized graphene films fall short of the best results obtained for graphene films prepared by other methods. Therefore, it is important to understand the reason why these electrical properties are inferior to improve the applicability of CVD-grown graphene films. Here, we show that CVD-grown graphene films on nickel substrates contain many small-base-area (SBA) peaks that scatter conducting electrons, thereby decreasing the Hall mobility of charges in the films. These SBA peaks were induced by small peaks on the nickel surface and are likely composed of amorphous carbon. The formation of these SBA peaks on graphene films was successfully suppressed by controlling the surface morphology of the nickel substrate. These findings may be useful for the development of a CVD synthesis method that is capable of producing better quality graphene films with large areas.

  17. Efficient reduction of graphene oxide film by low temperature heat treatment and its effect on electrical conductivity

    Hu, Xuebing; Chen, Zheng [Jingdezhen Ceramic Institute, Jingdezhen (China). Key Lab. of Inorganic Membrane; Yu, Yun [Shanghai Institute of Ceramics, Shanghai (China). Key Lab. of Inorganic Coating Materials; Zhang, Xiaozhen; Wang, Yongqing; Zhou, Jianer [Jingdezhen Ceramic Institute, Jingdezhen (China). Dept. of Materials Engineering

    2018-03-01

    Graphene-based conductive films have already attracted great attention due to their unique and outstanding physical properties. In this work, in order to develop a novel, effective method to produce these films with good electrical conductivity, a simple and green method is reported to rapidly and effectively reduce graphene oxide film using a low temperature heat treatment. The reduction of graphene oxide film is verified by XRD, FT-IR and Raman spectroscopy. Compared with graphene oxide film, the obtained reduced graphene oxide film has better electrical conductivity and its sheet resistance decreases from 25.3 kΩ x sq{sup -1} to 3.3 kΩ x sq{sup -1} after the heat treatment from 160 to 230 C. The mechanism of thermal reduction of the graphene oxide film mainly results from the removal of the oxygen-containing functional groups and the structural changes. All these results indicate that the low temperature heat treatment is a suitable and effective method for the reduction of graphene oxide film.

  18. The influence of the preparation conditions on structure and optical properties of solid films of graphene oxide

    Seliverstova, E; Ibrayev, N; Dzhanabekova, R; Gladkova, V

    2016-01-01

    In this study, we investigated the physico-chemical properties of graphene oxide monolayers at the interface water-air. Monolayers were formed by the spreading of dispersion of graphene oxide in acetone and THF. It was found than graphene monolayers are in the “liquid” state on the surface of subphase. Monolayers were transferred onto solid substrates according to Langmuir-Blodgett (LB) method. SEM images show that the films have an island structure. The films obtained from acetone solutions are more uniform, which makes them more promising in terms of their use as conductive coatings. Absorption spectrum of graphene LB films exhibits a broad band in the ultraviolet and visible region of the spectrum. The optical density of the film obtained from acetone solution is greater than the optical density of the film prepared from THF. In the visible region of the spectrum both films have high transparency. (paper)

  19. Direct Determination of Field Emission across the Heterojunctions in a ZnO/Graphene Thin-Film Barristor.

    Mills, Edmund M; Min, Bok Ki; Kim, Seong K; Kim, Seong Jun; Kang, Min-A; Song, Wooseok; Myung, Sung; Lim, Jongsun; An, Ki-Seok; Jung, Jongwan; Kim, Sangtae

    2015-08-26

    Graphene barristors are a novel type of electronic switching device with excellent performance, which surpass the low on-off ratios that limit the operation of conventional graphene transistors. In barristors, a gate bias is used to vary graphene's Fermi level, which in turn controls the height and resistance of a Schottky barrier at a graphene/semiconductor heterojunction. Here we demonstrate that the switching characteristic of a thin-film ZnO/graphene device with simple geometry results from tunneling current across the Schottky barriers formed at the ZnO/graphene heterojunctions. Direct characterization of the current-voltage-temperature relationship of the heterojunctions by ac-impedance spectroscopy reveals that this relationship is controlled predominantly by field emission, unlike most graphene barristors in which thermionic emission is observed. This governing mechanism makes the device unique among graphene barristors, while also having the advantages of simple fabrication and outstanding performance.

  20. Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns.

    Wang, Bin; Huang, Ming; Tao, Li; Lee, Sun Hwa; Jang, A-Rang; Li, Bao-Wen; Shin, Hyeon Suk; Akinwande, Deji; Ruoff, Rodney S

    2016-01-26

    We explored a support-free method for transferring large area graphene films grown by chemical vapor deposition to various fluoric self-assembled monolayer (F-SAM) modified substrates including SiO2/Si wafers, polyethylene terephthalate films, and glass. This method yields clean, ultrasmooth, and high-quality graphene films for promising applications such as transparent, conductive, and flexible films due to the absence of residues and limited structural defects such as cracks. The F-SAM introduced in the transfer process can also lead to graphene transistors with enhanced field-effect mobility (up to 10,663 cm(2)/Vs) and resistance modulation (up to 12×) on a standard silicon dioxide dielectric. Clean graphene patterns can be realized by transfer of graphene onto only the F-SAM modified surfaces.

  1. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  2. Graphene derivatives/Fe_3O_4/polymer nanocomposite films: Optical and electrical properties

    Hatel, Rhizlane; Goumri, Meryem; Ratier, Bernard; Baitoul, Mimouna

    2017-01-01

    This paper reports a simple solution casting method for the preparation of nanocomposite films in which graphene oxide (GO)/Fe_3O_4 nanocomposites are incorporated into poly (vinyl alcohol) (PVA) matrix. The films obtained with different weight percent of GO/Fe_3O_4 (0.5, 0.7 and 1 wt%) are subjected an in situ chemical and thermal reduction in order to explore the evolution and interactions between these components under different treatments and get an insight into on how this can affects the optical and electrical properties of these nanocomposites. Characterization was carried out using, UV–Vis absorption, Photoluminescence, electrical conductivity measurements, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Strong covalent functionalization occurs between the polymer and graphene derivatives (GD)/Fe_3O_4 hybrids. The experimental results obtained for our nanocomposites films exhibit significant enhancement in properties highlighted the efficiency of the in situ thermal reduction. The high absorption with strong photoluminescence and electrical conductivity achieved might promote these nanocomposites for opto-electronic devices in near future. - Highlights: • Novel inorganic-organic hybrid flexible films were successfully prepared. • Good interfacial interaction between the graphene/Fe_3O_4 and the hydroxyl-rich PVA. • Optical and electrical properties of Graphene Derivatives/Fe_3O_4/PVA were investigated. • Thermally reduced GO/Fe_3O_4/PVA films show high absorption and strong photoluminescence.

  3. Surface structure deduced differences of copper foil and film for graphene CVD growth

    Tian, Junjun [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Hu, Baoshan, E-mail: hubaoshan@cqu.edu.cn [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Wei, Zidong; Jin, Yan [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Luo, Zhengtang [Department of Chemical and Biomolecular Engineering, The Hongkong University of Science and Technology, Kowloon (Hong Kong); Xia, Meirong [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044 (China); Pan, Qingjiang [Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Heilongjiang University, Harbin 150080 (China); Liu, Yunling [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012 (China)

    2014-05-01

    Highlights: • We demonstrate the significant differences between Cu foil and film in the surface morphology and crystal orientation distribution. • The different surface structure leads to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. • Nucleation densities and growth rate differences at the initial growth stages on the Cu foil and film were investigated and discussed. Abstract: Graphene was synthesized on Cu foil and film by atmospheric pressure chemical vapor deposition (CVD) with CH₄ as carbon source. Electron backscattered scattering diffraction (EBSD) characterization demonstrates that the Cu foil surface after the H₂-assisted pre-annealing was almost composed of Cu(1 0 0) crystal facet with larger grain size of ~100 μm; meanwhile, the Cu film surface involved a variety of crystal facets of Cu(1 1 1), Cu(1 0 0), and Cu(1 1 0), with the relatively small grain size of ~10 μm. The different surface structure led to the distinctive influences of the CH₄ and H₂ concentrations on the thickness and quality of as-grown graphene. Further data demonstrate that the Cu foil enabled more nucleation densities and faster growth rates at the initial growth stages than the Cu film. Our results are beneficial for understanding the relationship between the metal surface structure and graphene CVD growth.

  4. Influence of the graphene substrate on morphology of the gold thin film. Spectroscopic ellipsometry study

    Kostruba, A.M.

    2013-01-01

    In metal optics gold assumes a special status because of its practical importance in optoelectronic and nanooptical devices, and its role huge increases when occurs combination of gold with two-dimension materials. We performed spectroscopic ellipsometry measurements on evaporated gold, and gold–graphene nanostructures to determine the optical dielectric function across a broad spectral range from 250 to 1000 nm. It was found that the deposition of gold film on the quartz substrate covered by graphene flake leads to significant changes in structural and dielectric properties of thin gold layer. Such changes can be explained by increasing of the gold cluster size. The model fit of the ellipsometric data demonstrates that the bilayer “graphene-gold” nanostructure can be described as a uniform optically homogeneous layer with modified optical properties. We can suggest that graphene flake creates a matrix for epitaxial alignment of the crystalline structure of the gold film during its growing. Effective doping of the graphene by free electrons of the gold clusters tends to decrease the optical contrast at the graphene-gold interface.

  5. Morphology, thermal, mechanical, and barrier properties of graphene oxide/poly(lactic acid) nanocomposite films

    Kim, Seong Woo; Choi, Hyun Muk

    2016-01-01

    To improve the physical and gas barrier properties of biodegradable poly(lactic acid) (PLA) film, two graphene nanosheets of highly functionalized graphene oxide (0.3 wt% to 0.7 wt%) and low-functionalized graphene oxide (0.5 wt%) were incorporated into PLA resin via solution blending method. Subsequently, we investigated the effects of material parameters such as loading level and degree of functionalization for the graphene nanosheets on the morphology and properties of the resultant nanocomposites. The highly functionalized graphene oxide (GO) caused more exfoliation and homogeneous dispersion in PLA matrix as well as more sustainable suspensions in THF, compared to low-functionalized graphene oxide (LFGO). When loaded with GO from 0.3 wt% to 0.7 wt%, the glass transition temperature, degree of crystallinity, tensile strength and modulus increased steadily. The GO gave rise to more pronounced effect in the thermal and mechanical reinforcement, relative to LFGO. In addition, the preparation of fairly transparent PLA-based nanocomposite film with noticeably improved barrier performance achieved only when incorporated with GO up to 0.7wt%. As a result, GO may be more compatible with hydrophilic PLA resin, compared to LFGO, resulting in more prominent enhancement of nanocomposites properties.

  6. Layer configurations comparison of bilayer-films for EGFET pH sensor application

    Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.

  7. Highly Sensitive and Fast Response Colorimetric Humidity Sensors Based on Graphene Oxides Film.

    Chi, Hong; Liu, Yan Jun; Wang, FuKe; He, Chaobin

    2015-09-16

    Uniform graphene oxide (GO) film for optical humidity sensing was fabricated by dip-coating technique. The resulting GO thin film shows linear optical shifts in the visible range with increase of humidity in the whole relative humidity range (from dry state to 98%). Moreover, GO films exhibit ultrafast sensing to moisture within 250 ms because of the unique atomic thinness and superpermeability of GO sheets. The humidity sensing mechanism was investigated using XRD and computer simulation. The ultrasensitive humidity colorimetric properties of GOs film may enable many potential applications such as disposable humidity sensors for packaging, health, and environmental monitoring.

  8. Preparation of water-soluble graphene nanoplatelets and highly conductive films

    Xu, Xuezhu

    2017-08-11

    This paper tackles the challenge of preparation stable, highly concentrated aqueous graphene dispersions. Despite tremendous recent interest, there has been limited success in developing a method that ensures the total dispersion of non-oxidized, defect-free graphene nanosheets in water. This study successfully demonstrates that few-layer graphene nanoplatelets (GNPs) can form highly concentrated aqueous colloidal solutions after they have been pretreated in a low-concentration inorganic sodium-hypochlorite and sodium-bromide salted aqueous solvent. This method retains the graphitic structure as evidenced by nuclear magnetic resonance spectroscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. Vacuum-filtrated freestanding films demonstrate an electrical conductivity as high as 3000 S m−1. This dispersion technique is believed to be applicable not only for GNPs, but also for dispersing other types of graphitic materials, including fullerenes, single/double/multi-walled carbon nanotubes, graphene nanoribbons and etc.

  9. Fabrication of oxide-free graphene suspension and transparent thin films using amide solvent and thermal treatment

    Oh, Se Young; Kim, Sung Hwan; Chi, Yong Seung; Kang, Tae Jin

    2012-01-01

    Graphical abstract: New methodology for suspended graphene sheets of high-quality (oxide-free), high-yield (high concentration) using amide solvent exfoliation and thermal treatment at 800 °C. We confirmed that the van der Waals force between the graphene layers decreases as increasing thermal treatment temperatures as shown XRD data (b). Highlights: ► Propose of new methodology to prepare oxide-free graphene sheets suspension. ► The graphene suspension concentration is enhanced by thermal treatment. ► Decrease of van der Waals force between the graphene layers by high temperature and pressure. ► This method has the potential as technology for mass production. ► It could be applied in transparent and flexible electronic devices. - Abstract: High quality graphene sheets were produced from graphite by liquid phase exfoliation using N-methyl-2-pyrrolidone (NMP) and a subsequent thermal treatment to enhance the exfoliation. The exfoliation was enhanced by treatment with organic solvent and high thermal expansion producing high yields of the high-quality and defect-free graphene sheets. The graphene was successfully deposited on a flexible and transparent polymer film using the vacuum filtration method. SEM images of thin films of graphene treated at 800 °C showed uniform structure with no defects commonly found in films made of graphene produced by other techniques. Thin films of graphene prepared at higher temperatures showed superior transmittance and conductivity. The sheet-resistance of the graphene film treated at 800 °C was 2.8 × 10 3 kΩ/□ with 80% transmittance.

  10. Fabrication of transparent cellulose acetate/graphene oxide nanocomposite film for UV shielding

    Jahan, Nusrat; Khan, Wasi, E-mail: wasiamu@gmail.com; Azam, Ameer; Naqvi, A. H. [Department of Applied Physics, Z.H. College of Engineering & Technology, Aligarh Muslim University, Aligarh - 202002 (India)

    2016-05-23

    In this work, we have fabricated transparent cellulose acetate/graphene oxide nanocomposite (CAGONC) films for ultraviolet radiations (UVR) shielding. Graphene oxide (GO) was synthesized by modified Hummer’s method and CAGONC films were fabricated by solvent casting method. The films were analyzed using characterization techniques like x-ray diffraction (XRD), energy dispersive x-ray (EDX) equipped scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy and ultra-violet visible (UV-VIS) spectroscopy. Four films were prepared by varying the wt% of GO (0.1wt%, 0.2wt% and 0.3wt%) with respect to cellulose acetate (CA). UV-vis measurements exhibit optical transparency in the range of 76-99% for visible light while ultra-violet radiation was substantially shielded.

  11. Effect of an upstream bulge configuration on film cooling with and without mist injection.

    Wang, Jin; Li, Qianqian; Sundén, Bengt; Ma, Ting; Cui, Pei

    2017-12-01

    To meet the economic requirements of power output, the increased inlet temperature of modern gas turbines is above the melting point of the material. Therefore, high-efficient cooling technology is needed to protect the blades from the hot mainstream. In this study, film cooling was investigated in a simplified channel. A bulge located upstream of the film hole was numerically investigated by analysis of the film cooling effectiveness distribution downstream of the wall. The flow distribution in the plate channel is first presented. Comparing with a case without bulge, different cases with bulge heights of 0.1d, 0.3d and 0.5d were examined with blowing ratios of 0.5 and 1.0. Cases with 1% mist injection were also included in order to obtain better cooling performance. Results show that the bulge configuration located upstream the film hole makes the cooling film more uniform, and enhanceslateral cooling effectiveness. Unlike other cases, the configuration with a 0.3d-height bulge shows a good balance in improving the downstream and lateral cooling effectiveness. Compared with the case without mist at M = 0.5, the 0.3d-height bulge with 1% mist injection increases lateral average effectiveness by 559% at x/d = 55. In addition, a reduction of the thermal stress concentration can be obtained by increasing the height of the bulge configuration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The Impact of Graphene on the Fabrication of Thin Film Solar Cells: Current Status and Future Prospects

    Zhengqi Shi

    2017-12-01

    Full Text Available Commercial solar cells have a power conversion efficiency (PCE in the range of 10–22% with different light absorbers. Graphene, with demonstrated unique structural, physical, and electrical properties, is expected to bring the positive effects on the development of thin film solar cells. Investigations have been carried out to understand whether graphene can be used as a front and back contacts and active interfacial layer in solar cell fabrication. In this review, the current progress of this research is analyzed, starting from the graphene and graphene-based Schottky diode. Also, the discussion was focused on the progress of graphene-incorporated thin film solar cells that were fabricated with different light absorbers, in particular, the synthesis, fabrication, and characterization of devices. The effect of doping and layer thickness of graphene on PCE was also included. Currently, the PCE of graphene-incorporated bulk-heterojunction devices have enhanced in the range of 0.5–3%. However, device durability and cost-effectiveness are also the challenging factors for commercial production of graphene-incorporated solar cells. In addition to the application of graphene, graphene oxides have been also used in perovskite solar cells. The current needs and likely future investigations for graphene-incorporated solar cells are also discussed.

  13. Smooth Growth of Organic Semiconductor Films on Graphene for High-Efficiency Electronics

    Hlawacek, G.; Khokhar, F.S.; van Gastel, Raoul; Poelsema, Bene; Teichert, Christian

    2011-01-01

    High-quality thin films of conjugated molecules with smooth interfaces are important to assist the advent of organic electronics. Here, we report on the layer-by-layer growth of the organic semiconductor molecule p-sexiphenyl (6P) on the transparent electrode material graphene. Low energy electron

  14. Effect of the thin-film limit on the measurable optical properties of graphene

    Holovský, Jakub; Nicolay, S.; De Wolf, S.; Ballif, C.

    2015-01-01

    Roč. 5, Oct (2015), s. 15684 ISSN 2045-2322 R&D Projects: GA ČR(CZ) GA14-05053S Institutional support: RVO:68378271 Keywords : graphene * thin-film limit Subject RIV: BH - Optics, Masers, Lasers Impact factor: 5.228, year: 2015

  15. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition

    D'Arcy, Julio M.; Tran, Henry D.; Stieg, Adam Z.; Gimzewski, James K.; Kaner, Richard B.

    2012-05-01

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated. Electronic supplementary information (ESI) available: Droplet coalescence, catenoid formation, mechanism of film growth, scanning electron micrographs showing carbon nanotube alignment, flexible transparent films of SWCNTs, AFM images of a chemically converted graphene film, and SEM images of SWCNT free-standing thin films. See DOI: 10.1039/c2nr00010e

  16. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene.

    Choi, Jae-Kyung; Kwak, Jinsung; Park, Soon-Dong; Yun, Hyung Duk; Kim, Se-Yang; Jung, Minbok; Kim, Sung Youb; Park, Kibog; Kang, Seoktae; Kim, Sung-Dae; Park, Dong-Yeon; Lee, Dong-Su; Hong, Suk-Kyoung; Shin, Hyung-Joon; Kwon, Soon-Yong

    2015-01-27

    Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

  17. Preparation and Investigation of the Microtribological Properties of Graphene Oxide and Graphene Films via Electrostatic Layer-by-Layer Self-Assembly

    Yongshou Hu

    2015-01-01

    Full Text Available Graphene oxide (GO films with controlled layers, deposited on single-crystal silicon substrates, were prepared by electrostatic self-assembly of negatively charged GO sheets. Afterward, graphene films were prepared by liquid-phase reduction of as-prepared GO films using hydrazine hydrate. The microstructures and microtribological properties of the samples were studied using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, UV-vis absorption spectroscopy, water contact angle measurement, and atomic force microscopy. It is found that, whether GO films or graphene films, the adhesion force and the coefficients of friction both show strong dependence on the number of self-assembled layers, which both allow a downward trend as the number of self-assembled layers increases due to the interlayer sliding and the puckering effect when the tip slipped across the top surface of the films. Moreover, in comparison with the GO films with the same self-assembled layers, the graphene films possess lower adhesion force and coefficient of friction attributed to the difference of surface functional groups.

  18. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.

    Xu, Yuxi; Lin, Zhaoyang; Huang, Xiaoqing; Liu, Yuan; Huang, Yu; Duan, Xiangfeng

    2013-05-28

    Flexible solid-state supercapacitors are of considerable interest as mobile power supply for future flexible electronics. Graphene or carbon nanotubes based thin films have been used to fabricate flexible solid-state supercapacitors with high gravimetric specific capacitances (80-200 F/g), but usually with a rather low overall or areal specific capacitance (3-50 mF/cm(2)) due to the ultrasmall electrode thickness (typically a few micrometers) and ultralow mass loading, which is not desirable for practical applications. Here we report the exploration of a three-dimensional (3D) graphene hydrogel for the fabrication of high-performance solid-state flexible supercapacitors. With a highly interconnected 3D network structure, graphene hydrogel exhibits exceptional electrical conductivity and mechanical robustness to make it an excellent material for flexible energy storage devices. Our studies demonstrate that flexible supercapacitors with a 120 μm thick graphene hydrogel thin film can exhibit excellent capacitive characteristics, including a high gravimetric specific capacitance of 186 F/g (up to 196 F/g for a 42 μm thick electrode), an unprecedented areal specific capacitance of 372 mF/cm(2) (up to 402 mF/cm(2) for a 185 μm thick electrode), low leakage current (10.6 μA), excellent cycling stability, and extraordinary mechanical flexibility. This study demonstrates the exciting potential of 3D graphene macrostructures for high-performance flexible energy storage devices.

  19. Continuous Reduced Graphene Oxide Film Prepared by Stitching of Nanosheets at the Interface of Two Immiscible Solutions

    Sohn, Young Ku; Kim, Seog K.; Min, Bong Ki

    2011-01-01

    RGO sheets dispersed in water are prepared by chemical reduction of GO using ascorbic acid. By mixing and sonication of submicron-size RGO sheets in two immiscible liquids (e. g., chloroform and water) for the first time we have prepared a continuous large-area RGO film at the interface. In other words, we have shown that aggregated RGO sheets could be fully stretched at the interface to form a continuous film. The RGO film has been characterized by SEM, TEM, UV-vis absorption, XPS and Raman. The film exhibits high flexibility, transparency, and very long-term stability without forming aggregations. Without requiring vapor deposition, a special instrument, or a filtration followed by a removing the filter paper one could easily achieve a continuous RGO-film in any laboratories. Our solution-based method is much simpler and cost-effective, and very good for large scale mass production. This finding could boost real applications of graphene in laboratory and industry, and provide a new methodology for the fabrication of large-area continuous graphene films. Graphene, an atom-thick two-dimensional (2D) honeycomb lattice sheet of sp 2 -bonded carbon atoms, has recently been emerged as a new promising material in various fields. Because of its gigantic charge carrier mobility it could be applied to field-effect transistors as a substitute of silicon. Due to its transparency and high electrical conductivity, it could be used as a substitute of ITO electrode in solar cells and light-emitting diodes. Other superior properties include large surface area, flexibility, strength, stiffness, and thermal conductivity. These provides wide applications of graphene including supercapa-citor, battery, sensor, storage and drug delivery. For real applications, large-scale of graphene sheets or films needs to be prepared. Large-area (orders of centimeters) graphene films have recently been fabricated using a chemical vapor deposition (CVD) method on various metal substrates. This

  20. Switching and memory effects in composite films of semiconducting polymers with particles of graphene and graphene oxide

    Krylov, P. S.; Berestennikov, A. S.; Aleshin, A. N.; Komolov, A. S.; Shcherbakov, I. P.; Petrov, V. N.; Trapeznikova, I. N.

    2015-08-01

    The effects of switching were investigated in composite films based on multifunctional polymers. i.e., derivatives of carbazole (PVK) and fluorene (PFD), as well as based on particles of graphene (Gr) and graphene oxide (GO). The concentration of Gr and GO particles in the PVK(PFD) matrix was varied in the range of 2-3 wt %, which corresponded to the percolation threshold in these systems. The atomic composition of the composite films PVK: GO was examined using X-ray photoelectron spectroscopy. It was found that the effect of switching in structures of the form Al/PVK(PFD): GO(Gr)/ITO/PET manifests itself in a sharp change of the electrical resistance of the composite film from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜0.1-0.3 V ( E ˜ 3-5 × 104 V/cm), which is below the threshold switching voltages for similar composites. The mechanism of resistance switching, which is associated with the processes of capture and accumulation of charge carriers by Gr (GO) particles introduced into the matrices of the high-molecular-weight (PVK) and relatively low-molecular-weight (PFD) polymers, was discussed.

  1. Raman Studies on Pre- and Post-Processed CVD Graphene Films Grown under Various Nitrogen Carrier Gas Flows

    Beh, K. P.; Yam, F. K.; Abdalrheem, Raed; Ng, Y. Z.; Suhaimi, F. H. A.; Lim, H. S.; Mat Jafri, M. Z.

    2018-04-01

    In this work, graphene films were grown on copper substrates using chemical vapour deposition method under various N2 carrier flow rate. The samples were characterized using Raman spectroscopy. Three sets of Raman measurements have been performed: graphene/Cu (as-grown samples), pre-annealed graphene/glass, and post-annealed graphene/glass. It was found that the Raman spectra of graphene/Cu samples possessed a hump-shaped baseline, additionally higher signal-to-noise ratio (SNR) that leads to attenuation graphene-related bands. Significant improvement of SNR and flat baseline were observed for graphene films transferred on glass substrate. Further analysis on the remaining sets of Raman spectra highlighted minute traces of polymethyl methacrylate (PMMA) could yield misleading results. Hence, the set of Raman spectra on annealed graphene/glass samples would be suitable in further elucidating the effects of N2 carrier flow towards graphene growth. From there, higher N2 flow implied dilution of methanol/H2 mixture, limiting interactions between reactants and substrate. This leads to smaller crystallite size and lesser graphene layers.

  2. Electrical characterization of reduced graphene oxide (rGO) on organic thin film transistor (OTFT)

    Musa, Nurhazwani; Halim, Nurul Farhanah Ab.; Ahmad, Mohd Noor; Zakaria, Zulkhairi; Hashim, Uda

    2017-03-01

    A green method and eco-friendly solution were used to chemically reduce graphene oxide (GO) to graphene using green reductant. In this study, graphene oxide (GO) were prepared by using Tours method. Then, reduced graphene oxides (rGO) were prepared by using three typical reduction agents: L-ascorbic acid (L-AA), formamidinesulfinic acid (FAS) and sodium sulfite (Na2SO3). The reduced materials were characterized by Fourier transform infrared spectroscopy (FTIR), Thermo gravimetric analysis (TGA) and X-ray diffraction (XRD). Graphene based organic thin film transistor (G-OTFT) was prepared by a spin coating and thermal evaporation technique. The electrical characterization of G-OTFT was analyzed by using semiconductor parameter analyzer (SPA). The G-OTFT devices show p-type semiconducting behaviour. This article focuses on the synthesis and reduction of graphene oxide using three different reductants in order to maximise its electrical conductivity. The rGO product demonstrated a good electrical conductivity performance with highly sensitivity sensor.

  3. Exfoliation of non-oxidized graphene flakes for scalable conductive film.

    Park, Kwang Hyun; Kim, Bo Hyun; Song, Sung Ho; Kwon, Jiyoung; Kong, Byung Seon; Kang, Kisuk; Jeon, Seokwoo

    2012-06-13

    The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (∼930 Ω/□ at ∼75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.

  4. Structural changes in graphene oxide thin film by electron-beam irradiation

    Tyagi, Chetna, E-mail: tchetna91@gmail.com [Materials Science Group, Inter University Accelerator Centre, New Delhi 67 (India); Lakshmi, G.B.V.S.; Kumar, Sunil; Tripathi, Ambuj [Materials Science Group, Inter University Accelerator Centre, New Delhi 67 (India); Avasthi, D.K. [Amity University, Noida 201313, Uttar Pradesh (India)

    2016-07-15

    Although we have a whole class of 2D materials, graphene has drawn much attention for its excellent electronic, optical, thermal and mechanical properties. Recent researches have shown its large scale production by the reduction of graphene oxide either thermally, chemically or electrochemically. Although the structure of graphene oxide is inhomogeneous and hence complicated due to the presence of organic moieties e.g. epoxy, carboxylic acid, hydroxyl groups etc., its properties can be tuned by reduction according to desired application. The aim of this work is to synthesize continuous thin film of graphene oxide using commercially available graphene oxide solution and to study its reduction by 25 keV electron beam irradiation at fluences varying from 2 × 10{sup 11} to 2 × 10{sup 13} e{sup −}/cm{sup 2}. Our studies using X-ray diffraction, Raman microscopy and UV–Vis spectroscopy showed that electron-beam irradiation is an effective tool for reduction of graphene oxide and for tuning its band gap.

  5. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film.

    Murphy, Sean; Huang, Libai

    2013-04-10

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM-AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films.

  6. Transient absorption microscopy studies of energy relaxation in graphene oxide thin film

    Murphy, Sean; Huang, Libai

    2013-01-01

    Spatial mapping of energy relaxation in graphene oxide (GO) thin films has been imaged using transient absorption microscopy (TAM). Correlated AFM images allow us to accurately determine the thickness of the GO films. In contrast to previous studies, correlated TAM–AFM allows determination of the effect of interactions of GO with the substrate and between stacked GO layers on the relaxation dynamics. Our results show that energy relaxation in GO flakes has little dependence on the substrate, number of stacked layers, and excitation intensity. This is in direct contrast to pristine graphene, where these factors have great consequences in energy relaxation. This suggests intrinsic factors rather than extrinsic ones dominate the excited state dynamics of GO films. (paper)

  7. Properties of spray-deposited liquid-phase exfoliated graphene films

    Sales, Maria Gabriela C.; Dela Vega, Ma. Shanlene D. C.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    In this study, we demonstrate the feasibility of spray-depositing exfoliated graphene on flexible polyimide (PI) and rigid (soda lime glass) substrates for optoelectronic applications. The water contact angles of the substrates increased by 13% (for PI) and 49% (for glass) when the surfaces are pretreated with hexamethyldisiloxane, which significantly improved the adhesion of the films. Raman spectral analyses confirmed a minimum of 15 and a maximum of 23 layers of exfoliated graphene deposited on the substrates. After deposition, the films were exposed to 13.56 MHz radio-frequency plasma containing an admixture of argon and nitrogen gases. Plasma treatment modified the electrical properties with a response analogous to that of a rectifier. A 39% increase in transmittance in the visible region was also observed especially for glass substrates after plasma treatment without a significant change in film electrical conductivity.

  8. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing.

    Kang, Junmo; Hwang, Soonhwi; Kim, Jae Hwan; Kim, Min Hyeok; Ryu, Jaechul; Seo, Sang Jae; Hong, Byung Hee; Kim, Moon Ki; Choi, Jae-Boong

    2012-06-26

    Graphene films grown on metal substrates by chemical vapor deposition (CVD) method have to be safely transferred onto desired substrates for further applications. Recently, a roll-to-roll (R2R) method has been developed for large-area transfer, which is particularly efficient for flexible target substrates. However, in the case of rigid substrates such as glass or wafers, the roll-based method is found to induce considerable mechanical damages on graphene films during the transfer process, resulting in the degradation of electrical property. Here we introduce an improved dry transfer technique based on a hot-pressing method that can minimize damage on graphene by neutralizing mechanical stress. Thus, we enhanced the transfer efficiency of the large-area graphene films on a substrate with arbitrary thickness and rigidity, evidenced by scanning electron microscope (SEM) and atomic force microscope (AFM) images, Raman spectra, and various electrical characterizations. We also performed a theoretical multiscale simulation from continuum to atomic level to compare the mechanical stresses caused by the R2R and the hot-pressing methods, which also supports our conclusion. Consequently, we believe that the proposed hot-pressing method will be immediately useful for display and solar cell applications that currently require rigid and large substrates.

  9. Fabrication and application of flexible graphene silk composite film electrodes decorated with spiky Pt nanospheres

    Liang, Bo; Fang, Lu; Hu, Yichuan; Yang, Guang; Zhu, Qin; Ye, Xuesong

    2014-03-01

    A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a sensitivity of 0.56 mA mM-1 cm-2, a linear range of 0-2.5 mM and an ultralow detection limit of 0.2 μM (S/N = 3). A glucose biosensor electrode was further fabricated by enzyme immobilization. The results show a sensitivity of 150.8 μA mM-1 cm-2 and a low detection limit of 1 μM (S/N = 3) for glucose detection. The strategy of coating graphene sheets on a silk fibre surface provides a new approach for developing electrically conductive biomaterials, tissue engineering scaffolds, bendable electrodes, and wearable biomedical devices.A free-standing graphene silk composite (G/S) film was fabricated via vacuum filtration of a mixed suspension of graphene oxide and silk fibres, followed by chemical reduction. Spiky structured Pt nanospheres were grown on the film substrate by cyclic voltammetry electrodeposition. The electrical and mechanical performance of a single graphene coated silk fibre was investigated. The conductivity of a single graphene coated silk fibre is 57.9 S m-1. During 1000 bending measurements, the conductivity was stable and showed negligible variation. The G/S film has a sheet resistivity of 90 Ω □-1 with a porous and hierarchical structure. The spiky Pt nanosphere decorated G/S film was directly used as a H2O2 electrode with a

  10. In situ growth of p and n-type graphene thin films and diodes by pulsed laser deposition

    Sarath Kumar, S. R.; Nayak, Pradipta K.; Hedhili, Mohamed N.; Khan, M. A.; Alshareef, Husam N.

    2013-01-01

    We report the in situ growth of p and n-type graphene thin films by ultraviolet pulsed laser deposition in the presence of argon and nitrogen, respectively. Electron microscopy and Raman studies confirmed the growth, while temperature dependent

  11. Polyaniline-stabilized electromagnetic wave absorption composites of reduced graphene oxide on magnetic carbon nanotube film

    Li, Jinsong; Duan, Yan; Lu, Weibang; Chou, Tsu-Wei

    2018-04-01

    A multi-layered composite with exceptionally high electromagnetic wave-absorbing capacity and performance stability was fabricated via the facile electrophoresis of a reduced graphene oxide network on carbon nanotube (CNT)-Fe3O4-polyaniline (PANI) film. Minimum reflection loss (RL) of -53.2 dB and absorbing bandwidth of 5.87 GHz (graphene-based absorbers. In particular, comparing to the original composites, the minimum RL and bandwidth (< -10 dB) maintains 82.5% and 99.7%, respectively, after 20 h charge/discharge cycling, demonstrating high environmental suitability.

  12. Optical and structural properties of ZnO nanorods grown on graphene oxide and reduced graphene oxide film by hydrothermal method

    Alver, U., E-mail: alver@ksu.edu.tr [Department of Physics, Kahramanmaras Sutcu Imam University, K. Maras 46100 (Turkey); Zhou, W.; Belay, A.B. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Florida Solar Energy Center, Cocoa, FL 32922 (United States); Krueger, R. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Davis, K.O.; Hickman, N.S. [Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816 (United States); Florida Solar Energy Center, Cocoa, FL 32922 (United States)

    2012-01-15

    ZnO nanorods were grown on graphene oxide (GO) and reduced graphene oxide (RGO) films with seed layers by using simple hydrothermal method. The GO films were deposited by spray coating and then annealed at 400 Degree-Sign C in argon atmosphere to obtain RGO films. The optical and structural properties of the ZnO nanorods were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and ultraviolet-visible spectroscopy. The XRD patterns and SEM images show that without a seed layer, no ZnO nanorod deposition occurs on GO or RGO films. Transmittance of ZnO nanorods grown on RGO films was measured to be approximately 83% at 550 nm. Furthermore, while transmittance of RGO films increases with ZnO nanorod deposition, transmittance of GO decreases.

  13. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films

    Campos, João M., E-mail: jmdcampos@ua.pt [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Instituto de Biotecnologia e Bioengenharia (IBB) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ferraria, Ana M.; Botelho do Rego, Ana M. [Centro de Química-Física Molecular and Institute of Nanoscience and Nanotechnology, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Ribeiro, M. Rosário [Centro de Química Estrutural (CQE) and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Barros-Timmons, Ana [CICECO - Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-09-15

    Polylactide (PLA) with a terminal triple bond was synthesized by organocatalyzed ring-opening polymerization and coupled with azide-functionalized graphene oxide (GO) through an azide-alkyne cycloaddition “click” reaction. The functionalized graphenic species involved were analyzed by spectroscopic techniques (FT-IR, solid state {sup 13}C NMR, Raman), which confirmed the coupling of PLA and GO. Additionally, an in depth study of the prepared GO, intermediates and GO-g-PLA hybrid was carried out that sheds light on the mechanisms involved in the functionalization path. The obtained GO-g-PLA hybrid, containing at least 20% of biopolymer, presented an exfoliated graphenic structure, as established by XRD. The conditions used in the grafting of the PLA chains inhibited the crystallization and melting observed for the free polymer. Furthermore, the graphene oxide seems to be reduced during functionalization, which can also be an advantage. Nanocomposites were obtained as solvent-cast films, prepared by dispersion of the GO-g-PLA hybrid in commercial PLA. Preliminary results regarding the performance of these nanocomposites, obtained by DSC and DMA, highlighted the effect of functionalization. Loading values as low as 0.5% suffice to improve the mechanical properties over a broad temperature range due to the high surface area resulting from the good dispersibility of polymer functionalized nanofillers and/or their effect on the polymer chain organization. - Highlights: • A graphene oxide/PLA (GO-g-PLA) hybrid was obtained by a grafting-to method. • Grafting of PLA chains onto the surface of GO inhibited polymer crystallization. • The GO-g-PLA material was used in the reinforcement of PLA, as nanocomposite films. • GO-g-PLA provides more homogeneously reinforced nanocomposite films, than neat GO. • Nanocomposite films with 0.5% loading present high storage modulus even above T{sub g}.

  14. Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films

    Campos, João M.; Ferraria, Ana M.; Botelho do Rego, Ana M.; Ribeiro, M. Rosário; Barros-Timmons, Ana

    2015-01-01

    Polylactide (PLA) with a terminal triple bond was synthesized by organocatalyzed ring-opening polymerization and coupled with azide-functionalized graphene oxide (GO) through an azide-alkyne cycloaddition “click” reaction. The functionalized graphenic species involved were analyzed by spectroscopic techniques (FT-IR, solid state "1"3C NMR, Raman), which confirmed the coupling of PLA and GO. Additionally, an in depth study of the prepared GO, intermediates and GO-g-PLA hybrid was carried out that sheds light on the mechanisms involved in the functionalization path. The obtained GO-g-PLA hybrid, containing at least 20% of biopolymer, presented an exfoliated graphenic structure, as established by XRD. The conditions used in the grafting of the PLA chains inhibited the crystallization and melting observed for the free polymer. Furthermore, the graphene oxide seems to be reduced during functionalization, which can also be an advantage. Nanocomposites were obtained as solvent-cast films, prepared by dispersion of the GO-g-PLA hybrid in commercial PLA. Preliminary results regarding the performance of these nanocomposites, obtained by DSC and DMA, highlighted the effect of functionalization. Loading values as low as 0.5% suffice to improve the mechanical properties over a broad temperature range due to the high surface area resulting from the good dispersibility of polymer functionalized nanofillers and/or their effect on the polymer chain organization. - Highlights: • A graphene oxide/PLA (GO-g-PLA) hybrid was obtained by a grafting-to method. • Grafting of PLA chains onto the surface of GO inhibited polymer crystallization. • The GO-g-PLA material was used in the reinforcement of PLA, as nanocomposite films. • GO-g-PLA provides more homogeneously reinforced nanocomposite films, than neat GO. • Nanocomposite films with 0.5% loading present high storage modulus even above T_g.

  15. Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens.

    Wang, Jie; Liang, Minghui; Fang, Yan; Qiu, Tengfei; Zhang, Jin; Zhi, Linjie

    2012-06-05

    A novel strategy is developed for the large-scale fabrication of reduced graphene oxide films directly on flexible substrates in a controlled manner by the combination of a rod-coating technique and room-temperature reduction of graphene oxide. The as-prepared films display excellent uniformity, good transparency and conductivity, and great flexibility in a touch screen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis, nanostructure and magnetic properties of FeCo-reduced graphene oxide composite films by one-step electrodeposition

    Cao, Derang; Li, Hao; Wang, Zhenkun; Wei, Jinwu; Wang, Jianbo; Liu, Qingfang

    2015-01-01

    FeCo-reduced graphene oxide (FeCo-RGO) composite film was fabricated on indium tin oxide substrate using one-step electrodeposition method. Raman spectroscopy and field emission scanning electron microscope results show that the reduced graphene oxide is coprecipitated with the FeCo film. The energy-dispersive spectrometer results demonstrate that the atomic ratio of Fe/Co in FeCo-RGO composite film is larger than that of the FeCo film under the same fabrication condition. As a result, the FeCo-RGO composite film exhibits good soft magnetic properties and high-frequency properties as well as the FeCo film. The magnetic anisotropy field and saturation magnetization of FeCo-RGO composite film are increased when compared with FeCo film. Furthermore, the ferromagnetic resonance frequency is improved from 2.15 GHz for the FeCo film to 3.9 GHz for the FeCo-RGO composite film. - Highlights: • FeCo-reduced graphene oxide composite film was fabricated on indium tin oxide substrate. • One step electrodeposition method was used. • Good soft magnetic properties were exhibited by the composite films. • Increase of resonance frequency from 2.15 GHz for FeCo film to 3.9 GHz for composite film

  17. Dewetting dynamics of a gold film on graphene: implications for nanoparticle formation.

    Namsani, Sadanandam; Singh, Jayant K

    2016-01-01

    The dynamics of dewetting of gold films on graphene surfaces is investigated using molecular dynamics simulation. The effect of temperature (973-1533 K), film diameter (30-40 nm) and film thickness (0.5-3 nm) on the dewetting mechanism, leading to the formation of nanoparticles, is reported. The dewetting behavior for films ≤5 Å is in contrast to the behavior seen for thicker films. The retraction velocity, in the order of ∼300 m s(-1) for a 1 nm film, decreases with an increase in film thickness, whereas it increases with temperature. However at no point do nanoparticles detach from the surface within the temperature range considered in this work. We further investigated the self-assembly behavior of nanoparticles on graphene at different temperatures (673-1073 K). The process of self-assembly of gold nanoparticles is favorable at lower temperatures than at higher temperatures, based on the free-energy landscape analysis. Furthermore, the shape of an assembled structure is found to change from spherical to hexagonal, with a marked propensity towards an icosahedral structure based on the bond-orientational order parameters.

  18. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    Kim, Ji Hoon; Kong, Byeong Tak [Incheon National University, Incheon (Korea, Republic of); Kim, Ji Min [POSTECH, Pohang (Korea, Republic of); and others

    2016-05-15

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  19. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    Cao, Hailiang; Zhou, Xufeng; Shi, Junli; Liu, Zhaoping

    2016-01-01

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g"−"1, it can reach a specific capacity of 117 mAh g"−"1. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g"−"1, its specific capacity still remains at 147 mAh g"−"1, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  20. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    Cao, Hailiang; Zhou, Xufeng, E-mail: zhouxf@nimte.ac.cn; Shi, Junli; Liu, Zhaoping, E-mail: liuzp@nimte.ac.cn

    2016-11-15

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g{sup −1}, it can reach a specific capacity of 117 mAh g{sup −1}. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g{sup −1}, its specific capacity still remains at 147 mAh g{sup −1}, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  1. Experimental study of the effect of the reduced graphene oxide films on nucleate boiling performances of inclined surfaces

    Kim, Ji Hoon; Kong, Byeong Tak; Kim, Ji Min

    2016-01-01

    For the enhancing the CHF, surface coating techniques are available. Yang et al. performed small scale boiling experiments for the vessel lower head, which was coated by aluminum/copper micro particles. Recently, graphene has received much attention for applications in thermal engineering due to its large thermal conductivity. Ahn et al. used a silicon dioxide substrate, which was coated graphene films, as a heating surface during pool boiling experiments. The graphene films inhibited the formation of hot spots, increasing the CHF. For applying novel material 'Graphene' in nuclear industry, here we investigated the effects of graphene film coatings on boiling performances. The experimental pool boiling facility, copying the geometry of lower head of reactor, was designed for verifying orientation effects. The effects of graphene films coating on varied inclined heater surfaces were investigated. The CHF values were increased at every case, but the increased amounts were decreased for downward heater surfaces. At the downward-facing region, however, coating the RGO films would change the CHF mechanisms and boiling heat transfer performances. Generally, RGO films, made by colloidal fabrication, has defects on each flakes.

  2. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  3. Graphene synthesis from graphite/Ni composite films grown by sputtering

    Shin, Dong Hee; Yang, Seung Bum; Shin, Dong Yeol; Kim, Chang Oh; Kim, Sung; Choi, Suk Ho; Paek, Sang Hyon

    2012-01-01

    Graphite/Ni composite films have been deposited on SiO 2 /Si (100) wafers by varying their graphite concentration (n G ) and thickness (t) from 2 to 12 wt% and 40 to 400 nm, respectively, in a RF sputtering system, subsequently annealed at 900 .deg. C for 4 min, and then slowly cooled to room temperature to form graphene layers on Ni surfaces. Several structural-analysis techniques reveal the optimum nG (∼8 wt%) and t (∼160 nm) of the composite films for the synthesis of fewest-layer, defect-minimized graphene. At the annealing temperature, carbon atoms diffuse out from the composite film, followed by their precipitation as graphene on the Ni layer as the carbon solubility limit in Ni is reached during the cooling period. Based on this mechanism, the optimum conditions are explained. Our approach provides an advantage in that the number of layers can be simply tuned by varying n G and t of the composite films.

  4. Preparation and supercapacitance performance of manganese oxide nanosheets/graphene/carbon nanotubes ternary composite film

    Tang, Qianqiu; Sun, Minqiang; Yu, Shuangmin; Wang, Gengchao

    2014-01-01

    Graphical abstract: - Highlights: • The MnO 2 nanosheets/graphene/MWCNT composite film with a porous sandwich structure was fabricated through a filtration-directed self-assembly. • The introduction of graphene and MWCNT restricts dense stacking of MnO 2 nanosheets. • Ternary composite film exhibits impressive electrochemical performance compared to pure MnO 2 nanosheets. - Abstract: A novel MnO 2 nanosheets/graphene nanosheets/carboxylic multi-walled carbon nanotubes (MONS/GNS/cMWCNT) ternary composite film was fabricated through a filtration-directed self-assembly method. The Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) images showed the porous sandwiched structure of MONS/GNS/cMWCNT with GNS providing a conductive substrate and cMWCNT functioning as a vertical electron pathway. The X-ray diffraction (XRD) and Raman spectra further confirmed that the introduction of GNS and cMWCNT restricted the serious aggregation of MONS, resulting in a higher specific area (691 m 2 g −1 ). As a result, the MONS/GNS/cMWCNT composite film exhibited higher specific capacitance (248 Fg −1 at 1 Ag −1 in 1 M Na 2 SO 4 ), better rate performance (66.9% capacitance retention from 0.2 to 10 Ag −1 ) and cycling stability (86.5% retention after 3000 cycles) compared with those of pure dried MnO 2 nanosheets

  5. Ultra-thin Glass Film Coated with Graphene: A New Material for Spontaneous Emission Enhancement of Quantum Emitter

    Lu Sun; Chun Jiang

    2015-01-01

    We propose an ultra-thin glass film coated with graphene as a new kind of surrounding material which can greatly enhance spontaneous emission rate(SER) of dipole emitter embedded in it. With properly designed parameters,numerical results show that SER-enhanced factors as high as 1.286 9 106 can be achieved. The influences of glass film thickness and chemical potential/doping level of graphene on spontaneous emission enhancement are also studied in this paper. A comparison is made between graphene and other coating materials such as gold and silver to see their performances in SER enhancement.

  6. Structural and Electrical Properties of Graphene Oxide-Doped PVA/PVP Blend Nanocomposite Polymer Films

    S. K. Shahenoor Basha

    2018-01-01

    Full Text Available Graphene oxide (GO nanoparticles were incorporated in PVA/PVP blend polymers for the preparation of nanocomposite polymer films by the solution cast technique. XRD, FTIR, DSC, SEM, and UV-visible studies were performed on the prepared nanocomposite polymer films. XRD revealed the amorphous nature of the prepared films. Thermal analysis of the nanocomposite polymer films was analyzed by DSC. SEM revealed the morphological features and the degree of roughness of the samples. DC conductivity studies were under taken on the samples, and the conductivity was found to be 6.13 × 10−4 S·cm−1 for the polymer film prepared at room temperature. A solid-state battery has been fabricated with the chemical composition of Mg+/(PVA/PVP  :  GO/(I2 + C + electrolyte, and its cell parameters like power density and current density were calculated.

  7. Evaluating arbitrary strain configurations and doping in graphene with Raman spectroscopy

    Mueller, N. S.; Heeg, S.; Peňa-Álvarez, Miriam; Kusch, P.; Wasserroth, S.; Clark, N.; Schedin, F.; Parthenios, J.; Papagelis, K.; Galiotis, C.; Kalbáč, Martin; Vijayaraghavan, A.; Huebner, U.; Gorbachev, R.; Frank, Otakar; Reich, S.

    2018-01-01

    Roč. 5, č. 1 (2018), č. článku 015016. ISSN 2053-1583 R&D Projects: GA ČR(CZ) GA17-18702S; GA MŠk LL1301 Institutional support: RVO:61388955 Keywords : graphene * Raman * strain * doping * correlation analysis * circular polarization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 6.937, year: 2016

  8. Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels

    Huang, Liang; Li, Chun; Yuan, Wenjing; Shi, Gaoquan

    2013-04-01

    Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets.Composite films of graphene oxide (GO) sheets and silk fibroin (SF) with layered structures have been prepared by facile solution casting of SF-GO hydrogels. The as-prepared composite film containing 15% (by weight, wt%) of SF shows a high tensile strength of 221 +/- 16 MPa and a failure strain of 1.8 +/- 0.4%, which partially surpass those of natural nacre. Particularly, this composite film also has a high modulus of 17.2 +/- 1.9 GPa. The high mechanical properties of this composite film can be attributed to its high content of GO (85 wt%), compact layered structure and the strong hydrogen bonding interaction between SF chains and GO sheets. Electronic supplementary information (ESI) available: XPS spectrum of the SF-GO hybrid film, SEM images of lyophilized GO dispersion and the failure surface of GO film. See DOI: 10.1039/c3nr00196b

  9. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Dinh, D. A.; Hui, K. S.; Hui, K. N.; Cho, Y. R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-04-01

    A green facile chemical approach to control the dimensions of Ag nanoparticles-graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N2/H2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  10. Wrinkle-free graphene electrodes in zinc tin oxide thin-film transistors for large area applications

    Lee, Se-Hee; Kim, Jae-Hee; Park, Byeong-Ju; Park, Jozeph; Kim, Hyun-Suk; Yoon, Soon-Gil

    2017-02-01

    Wrinkle-free graphene was used to form the source-drain electrodes in thin film transistors based on a zinc tin oxide (ZTO) semiconductor. A 10 nm thick titanium adhesion layer was applied prior to transferring a conductive graphene film on top of it by chemical detachment. The formation of an interlayer oxide between titanium and graphene allows the achievement of uniform surface roughness over the entire substrate area. The resulting devices were thermally treated in ambient air, and a substantial decrease in field effect mobility is observed with increasing annealing temperature. The increase in electrical resistivity of the graphene film at higher annealing temperatures may have some influence, however the growth of the oxide interlayer at the ZTO/Ti boundary is suggested to be most influential, thereby inducing relatively high contact resistance.

  11. Evolution of structural and electrical properties of carbon films from amorphous carbon to nanocrystalline graphene on quartz glass by HFCVD.

    Zhai, Zihao; Shen, Honglie; Chen, Jieyi; Li, Xuemei; Jiang, Ye

    2018-04-25

    Direct growth of graphene films on glass is of great importance but has so far met with limited success. The non-catalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphite-like carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 % to over 80 %. Based on systematically structural and chemical characterizations, a schematic process with three steps including sp2 chains aggregation, aromatic rings formation and sp3 bonds etch was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm2/(V·s) and a resistivity of 5.24×10-3 Ω·cm over an area of 1 cm2. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localised and extended states respectively when increasing the temperature from 75 K to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.

  12. Flexible pressure sensor based on graphene aerogel microstructures functionalized with CdS nanocrystalline thin film

    Plesco, Irina; Dragoman, Mircea; Strobel, Julian; Ghimpu, Lidia; Schütt, Fabian; Dinescu, Adrian; Ursaki, Veaceslav; Kienle, Lorenz; Adelung, Rainer; Tiginyanu, Ion

    2018-05-01

    In this paper, we report on functionalization of graphene aerogel with a CdS thin film deposited by magnetron sputtering and on the development of flexible pressure sensors based on ultra-lightweight CdS-aerogel nanocomposite. Analysis by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis disclose the uniform deposition of nanocrystalline CdS films with quasi-stoichiometric composition. The piezoresistive response of the aforementioned nanocomposite in the pressure range from 1 to 5 atm is found to be more than one order of magnitude higher than that inherent to suspended graphene membranes, leading to an average sensitivity as high as 3.2 × 10-4 kPa-1.

  13. Nitrogen-Doped Holey Graphene Film-Based Ultrafast Electrochemical Capacitors.

    Zhou, Qinqin; Zhang, Miao; Chen, Ji; Hong, Jong-Dal; Shi, Gaoquan

    2016-08-17

    The commercialized aluminum electrolytic capacitors (AECs) currently used for alternating current (AC) line-filtering are usually the largest components in the electronic circuits because of their low specific capacitances and bulky sizes. Herein, nitrogen-doped holey graphene (NHG) films were prepared by thermal annealing the composite films of polyvinylpyrrolidone (PVP), graphene oxide (GO), and ferric oxide (Fe2O3) nanorods followed by chemical etching with hydrochloride acid. The typical electrochemical capacitor with NHG electrodes exhibited high areal and volumetric specific capacitances of 478 μF cm(-2) and 1.2 F cm(-3) at 120 Hz, ultrafast frequency response with a phase angle of -81.2° and a resistor-capacitor time constant of 203 μs at 120 Hz, as well as excellent cycling stability. Thus, it is promising to replace conventional AEC for AC line-filtering in miniaturized electronics.

  14. Sandwich-Architectured Poly(lactic acid)-Graphene Composite Food Packaging Films.

    Goh, Kunli; Heising, Jenneke K; Yuan, Yang; Karahan, Huseyin E; Wei, Li; Zhai, Shengli; Koh, Jia-Xuan; Htin, Nanda M; Zhang, Feimo; Wang, Rong; Fane, Anthony G; Dekker, Matthijs; Dehghani, Fariba; Chen, Yuan

    2016-04-20

    Biodegradable food packaging promises a more sustainable future. Among the many different biopolymers used, poly(lactic acid) (PLA) possesses the good mechanical property and cost-effectiveness necessary of a biodegradable food packaging. However, PLA food packaging suffers from poor water vapor and oxygen barrier properties compared to many petroleum-derived ones. A key challenge is, therefore, to simultaneously enhance both the water vapor and oxygen barrier properties of the PLA food packaging. To address this issue, we design a sandwich-architectured PLA-graphene composite film, which utilizes an impermeable reduced graphene oxide (rGO) as the core barrier and commercial PLA films as the outer protective encapsulation. The synergy between the barrier and the protective encapsulation results in a significant 87.6% reduction in the water vapor permeability. At the same time, the oxygen permeability is reduced by two orders of magnitude when evaluated under both dry and humid conditions. The excellent barrier properties can be attributed to the compact lamellar microstructure and the hydrophobicity of the rGO core barrier. Mechanistic analysis shows that the large rGO lateral dimension and the small interlayer spacing between the rGO sheets have created an extensive and tortuous diffusion pathway, which is up to 1450-times the thickness of the rGO barrier. In addition, the sandwiched architecture has imbued the PLA-rGO composite film with good processability, which increases the manageability of the film and its competency to be tailored. Simulations using the PLA-rGO composite food packaging film for edible oil and potato chips also exhibit at least eight-fold extension in the shelf life of these oxygen and moisture sensitive food products. Overall, these qualities have demonstrated the high potential of a sandwich-architectured PLA-graphene composite film for food packaging applications.

  15. Film cooling adiabatic effectiveness measurements of pressure side trailing edge cooling configurations

    R. Becchi

    2015-12-01

    Full Text Available Nowadays total inlet temperature of gas turbine is far above the permissible metal temperature; as a consequence, advanced cooling techniques must be applied to protect from thermal stresses, oxidation and corrosion the components located in the high pressure stages, such as the blade trailing edge. A suitable design of the cooling system for the trailing edge has to cope with geometric constraints and aerodynamic demands; state-of-the-art of cooling concepts often use film cooling on blade pressure side: the air taken from last compressor stages is ejected through discrete holes or slots to provide a cold layer between hot mainstream and the blade surface. With the goal of ensuring a satisfactory lifetime of blades, the design of efficient trailing edge film cooling schemes and, moreover, the possibility to check carefully their behavior, are hence necessary to guarantee an appropriate metal temperature distribution. For this purpose an experimental survey was carried out to investigate the film covering performance of different pressure side trailing edge cooling systems for turbine blades. The experimental test section consists of a scaled-up trailing edge model installed in an open loop suction type test rig. Measurements of adiabatic effectiveness distributions were carried out on three trailing edge cooling system configurations. The baseline geometry is composed by inclined slots separated by elongated pedestals; the second geometry shares the same cutback configuration, with an additional row of circular film cooling holes located upstream; the third model is equipped with three rows of in-line film cooling holes. Experiments have been performed at nearly ambient conditions imposing several blowing ratio values and using carbon dioxide as coolant in order to reproduce a density ratio close to the engine conditions (DR=1.52. To extend the validity of the survey a comparison between adiabatic effectiveness measurements and a prediction by

  16. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  17. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity

    Zhu, Xiaobo; Zhou, Shengguo; Yan, Qingqing

    2018-04-01

    A novel superhydrophobic ternary graphene/amorphous carbon/nickel (G-Ni/a-C:H) carbon-based film was fabricated by a green approach of high-voltage electrochemical deposition without using aqueous solution, which was systematically investigated including the structure and relating applications on self-cleaning and corrosion resistance. Graphene and nickel nano-particle inserts were effective to tailor the feature of nanocrystallite/amorphous microstructure as well as micro-nanoscale hierarchical rose-petal-like surface for G-Ni/a-C:H carbon-based film. Surprisingly, this deposit could present outstanding superhydrophobicity with the contact angle of 158.98 deg and sliding angle of 2.75 deg without any further surface modification meanwhile it could possess fairly well adhesion. Furthermore, the superhydrophobic G-Ni/a-C:H carbon-based film could exhibit excellent corrosion resistance and self-cleaning performances compared to no graphene incorporated deposit. The procedure of fabricating deposit might be simple, scalable, and environmental friendly, indicating a promising prospect for industrial applications in the field of anti-fouling, anti-corrosion and drag resistance.

  18. PANI and Graphene/PANI Nanocomposite Films — Comparative Toluene Gas Sensing Behavior

    Mitesh Parmar

    2013-12-01

    Full Text Available The present work discusses and compares the toluene sensing behavior of polyaniline (PANI and graphene/polyaniline nanocomposite (C-PANI films. The graphene–PANI ratio in the nanocomposite polymer film is optimized at 1:2. For this, N-methyl-2-pyrrolidone (NMP solvent is used to prepare PANI-NMP solution as well as graphene-PANI-NMP solution. The films are later annealed at 230 °C, characterized using scanning electron microscopy (SEM as well Fourier transform infrared spectroscopy (FTIR and tested for their sensing behavior towards toluene. The sensing behaviors of the films are analyzed at different temperatures (30, 50 and 100 °C for 100 ppm toluene in air. The nanocomposite C-PANI films have exhibited better overall toluene sensing behavior in terms of sensor response, response and recovery time as well as repeatability. Although the sensor response of PANI (12.6 at 30 °C, 38.4 at 100 °C is comparatively higher than that of C-PANI (8.4 at 30 °C, 35.5 at 100 °C, response and recovery time of PANI and C-PANI varies with operating temperature. C-PANI at 50 °C seems to have better toluene sensing behavior in terms of response time and recovery time.

  19. Photoelectric conversion properties of electrochemically codeposited graphene oxide–ZnO nanocomposite films

    Li, Yiming; Wang, Dian; Li, Wenyou [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); He, Yunqiu, E-mail: heyunqiu@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai, 201804 (China); Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai, 201804 (China)

    2015-11-05

    Graphene oxide (GO)–ZnO nanocomposite films were synthesized on Fluorine doped Tin Oxide (FTO) coated glasses by electrochemical codeposition. The films have a laminated architecture with GO and ZnO alternate layers arranged basically parallel to the substrate. The structures of the composites were characterized using XRD, FE-SEM, FT-IR, XPS, Raman, UV–visible, and electrochemical cyclic voltammetry analyses. The results showed that by increasing Zn:C ratio of the suspensions, there is a series of structural evolutions of the composites, and the percentages of the C–O bonds of GO in the composites decreased. The decreased C–O bonds of GO indicate an increase in the reduction degree of GO, with which its energy gap varies from 1.99 eV to 0.89 eV. Moreover, the energy levels of GO and ZnO in the composites were determined. The results of photoelectrochemical measurements of the films indicated the feasibility of using GO in photoelectric conversion as photoabsorbers. A preliminary study on the relationship between the changes in the photocurrent and the structure of the films has provided clues for further studies on improving the photoelectric conversion properties. - Highlights: • Graphene Oxide–ZnO nanocomposite films were obtained by electrochemical codeposition. • The structure of GO varies with the Zn:C ratio of the depositing suspensions. • The feasibility of using GO as photoabsorbers for photoelectric conversion was verified.

  20. Multilayer films of cationic graphene-polyelectrolytes and anionic graphene-polyelectrolytes fabricated using layer-by-layer self-assembly

    Rani, Adila; Oh, Kyoung Ah; Koo, Hyeyoung; Lee, Hyung jung; Park, Min

    2011-01-01

    Extremely thin sheets of carbon atoms called graphene have been predicted to possess excellent thermal properties, electrical conductivity, and mechanical stiffness. To harness such properties in composite materials for multifunctional applications, one would require the incorporation of graphene. In this study, new thin film composites were created using layer-by-layer (LBL) assembly of polymer-coated graphitic nanoplatelets. The positive and negative polyelectrolytes used to cover graphene sheets were poly allylamine hydrochloride (PAH) and poly sodium 4-styrenesulfonate (PSS). The synthesized poly allylamine hydrochloride-graphene (PAH-G) and poly sodium 4-styrenesulfonate-gaphene (PSS-G) were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and thermo gravimetric analysis (TGA). The multilayer films created by spontaneous sequential adsorption of PAH-G and PSS-G were characterized by ultra violet spectroscopy (UV-vis), scanning electron microscopy (SEM), and AFM. The electrical conductivity of the graphene/polyelectrolyte multilayer film composites measured by the four-point probe method was 0.2 S cm -1 , which was sufficient for the construction of advanced electro-optical devices and sensors.

  1. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors

    Xiangjun, Lu [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Dou Hui, E-mail: dh_msc@nuaa.edu.cn [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Bo, Gao [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Changzhou, Yuan [School of Materials Science and Engineering, Anhui University of Technology, Maanshan 243002 (China); Yang, Sudong; Liang, Hao; Laifa, Shen [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China); Zhang Xiaogang, E-mail: azhangxg@nuaa.edu.cn [College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, Jiangsu (China)

    2011-05-30

    Highlights: > A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film fabricated by flow-directed assembly and hydrazine to reduce. > The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets. > The freestanding GN/MWCNT film has a potential application in flexible energy storage devices. - Abstract: A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g{sup -1} at 0.1 A g{sup -1} and a good rate capability (49% capacity retention at 50 A g{sup -1}), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.

  2. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors

    Lu Xiangjun; Dou Hui; Gao Bo; Yuan Changzhou; Yang, Sudong; Hao Liang; Shen Laifa; Zhang Xiaogang

    2011-01-01

    Highlights: → A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film fabricated by flow-directed assembly and hydrazine to reduce. → The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets. → The freestanding GN/MWCNT film has a potential application in flexible energy storage devices. - Abstract: A flexible graphene/multiwalled carbon nanotube (GN/MWCNT) film has been fabricated by flow-directed assembly from a complex dispersion of graphite oxide (GO) and pristine MWCNTs followed by the use of gas-based hydrazine to reduce the GO into GN sheets. The GN/MWCNT (16 wt.% MWCNTs) film characterized by Fourier transformation infrared spectra, X-ray diffraction and scanning electron microscope has a layered structure with MWCNTs uniformly sandwiched between the GN sheets. The MWCNTs in the obtained composite film not only efficiently increase the basal spacing but also bridge the defects for electron transfer between GN sheets, increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron into the inner region of electrode. Electrochemical data demonstrate that the GN/MWCNT film possesses a specific capacitance of 265 F g -1 at 0.1 A g -1 and a good rate capability (49% capacity retention at 50 A g -1 ), and displays an excellent specific capacitance retention of 97% after 2000 continuous charge/discharge cycles. The results of electrochemical measurements indicate that the freestanding GN/MWCNT film has a potential application in flexible energy storage devices.

  3. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors

    Ahmed, Mohsin; Khawaja, Mohamad; Notarianni, Marco; Wang, Bei; Goding, Dayle; Gupta, Bharati; Boeckl, John J.; Takshi, Arash; Motta, Nunzio; Saddow, Stephen E.; Iacopi, Francesca

    2015-10-01

    We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square-1 from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g-1. This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications.

  4. A thin film approach for SiC-derived graphene as an on-chip electrode for supercapacitors

    Ahmed, Mohsin; Wang, Bei; Goding, Dayle; Iacopi, Francesca; Khawaja, Mohamad; Notarianni, Marco; Takshi, Arash; Saddow, Stephen E; Gupta, Bharati; Motta, Nunzio; Boeckl, John J

    2015-01-01

    We designed a nickel-assisted process to obtain graphene with sheet resistance as low as 80 Ω square −1 from silicon carbide films on Si wafers with highly enhanced surface area. The silicon carbide film acts as both a template and source of graphitic carbon, while, simultaneously, the nickel induces porosity on the surface of the film by forming silicides during the annealing process which are subsequently removed. As stand-alone electrodes in supercapacitors, these transfer-free graphene-on-chip samples show a typical double-layer supercapacitive behaviour with gravimetric capacitance of up to 65 F g −1 . This work is the first attempt to produce graphene with high surface area from silicon carbide thin films for energy storage at the wafer-level and may open numerous opportunities for on-chip integrated energy storage applications. (paper)

  5. Analysis of ultraviolet exposure effects on the surface properties of epoxy/graphene nanocomposite films on Mylar substrate

    Clausi, Marialaura; Santonicola, M. Gabriella; Schirone, Luigi; Laurenzi, Susanna

    2017-05-01

    In this paper, we present a study of the effects generated by exposure to UV-C radiation on nanocomposite films made of graphene nanoplatelets dispersed in an epoxy matrix. The nanocomposite films, at different nanoparticle size and concentration, were fabricated on Mylar substrate using the spin coating process. The effects of UV-C irradiation on the surface hydrophobicity and on the electrical properties of the epoxy/graphene films were investigated using contact angle measurements and electrical impedance spectroscopy, respectively. According to our results, the UV-C irradiation selectively degrades the polymer matrix of the nanocomposite films, giving rise to more conductive and hydrophobic layers due to exposure of the graphene component of the composite material. The results presented here have important implications in the design of spacecraft components and structures destined for long-term space missions.

  6. N-Doped graphene/PEDOT composite films as counter electrodes in DSSCs: Unveiling the mechanism of electrocatalytic activity enhancement

    Paterakis, Georgios; Raptis, Dimitrios; Ploumistos, Alexandros; Belekoukia, Meltiani; Sygellou, Lamprini; Ramasamy, Madeshwaran Sekkarapatti; Lianos, Panagiotis; Tasis, Dimitrios

    2017-11-01

    A composite film was obtained by layer deposition of N-doped graphene and poly(3,4-ethylenedioxythiophene) (PEDOT) and was used as Pt-free counter electrode for dye-sensitized solar cells. N-doping of graphene was achieved by annealing mixtures of graphene oxide with urea. Various parameters concerning the treatment of graphene oxide-urea mixtures were monitored in order to optimize the electrocatalytic activity in the final solar cell device. These include the mass ratio of components, the annealing temperature, the starting concentration of the mixture in aqueous solution and the spinning rate for film formation. PEDOT was applied by electrodeposition. The homogeneity of PEDOT coverage onto either untreated or thermally annealed graphene oxide-urea film was assessed by imaging (AFM/SEM) and surface techniques (XPS). It was found that PEDOT was deposited in the form of island structures onto untreated graphene oxide-urea film. On the contrary, the annealed film was homogeneously covered by the polymer, acquiring morphology of decreased roughness. An apparent chemical interaction between PEDOT and N-doped graphene flakes was revealed by XPS data, involving potential grafting of PEDOT chains onto graphitic lattice through Csbnd C bonding. In addition, diffusion of nitrogen-containing fragments within the PEDOT layer was found to take place during electrodeposition process, resulting in enhanced interfacial interactions between components. The solar cell with the optimized N-doped graphene/PEDOT composite counter electrode exhibited a power conversion efficiency (η) of 7.1%, comparable within experimental error to that obtained by using a reference Pt counter electrode, which showed a value of 7.0%.

  7. Micro-configuration Observation of Porous Bioceramic for Sliding on Intestinal Mucus Film

    2005-01-01

    The microstructure of the prepared porous bioceramic material, including surface porosity and apparent contact area with the artificial mucus film are computed and analyzed. The surface micro-configurations of the porous material before and after sliding on the mucus ftlm are observed in 2D and 3 D by digital microscopy. We describe how much mucus enters and stays within different pores, and how the porous material with rough/porous surface contacts with the mucus film ( elastic surface/gel). The presented results illustrate that the material with different porous structure can lead to different mucus suction, surface scraping and changes of contact area and condition during sliding, which will be active for high friction of robotic endoscope with the intestinal wall for intestinal locomotion.

  8. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    Milosevic, M.V.; Peeters, F.M

    2004-05-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter {kappa}*.

  9. Commensurate vortex configurations in thin superconducting films nanostructured by square lattice of magnetic dots

    Milosevic, M.V.; Peeters, F.M.

    2004-01-01

    Within the phenomenological Ginzburg-Landau (GL) theory, we investigate the vortex structure of a thin superconducting film (SC) with a regular matrix of ferromagnetic dots (FD) deposited on top of it. The vortex pinning properties of such a magnetic lattice are studied, and the field polarity dependent votex pinning is observed. The exact vortex configuration depends on the size of the magnetic dots, their polarity, periodicity of the FD-rooster and the properties of the SC expressed through the effective Ginzburg-Landau parameter κ*

  10. Enhanced photovoltaic performance of inverted hybrid bulk-heterojunction solar cells using TiO2/reduced graphene oxide films as electron transport layers

    Morais, Andreia; Alves, João Paulo C.; Lima, Francisco Anderson S.; Lira-Cantu, Monica; Nogueira, Ana Flavia

    2015-01-01

    In this study, we investigated inverted hybrid bulk-heterojunction solar cells with the following configuration: fluorine-doped tin oxide (FTO) |TiO2/RGO|P3HT:PC61BM|V2O5 or PEDOT:PSS|Ag. The TiO2/GO dispersions were prepared by sol-gel method, employing titanium isopropoxide and graphene oxide (GO) as starting materials. The GO concentration was varied from 0.1 to 4.0 wt%. The corresponding dispersions were spin-coated onto FTO substrates and a thermal treatment was performed to remove organic materials and to reduce GO to reduced graphene oxide (RGO). The TiO2/RGO films were characterized by x-ray diffraction, Raman spectroscopy, and microscopy techniques. Atomic force microscopy (AFM) images showed that the addition of RGO significantly changes the morphology of the TiO2 films, with loss of uniformity and increase in surface roughness. Independent of the use of V2O5 or PEDOT: PSS films as the hole transport layer, the incorporation of 2.0 wt% of RGO into TiO2 films was the optimal concentration for the best organic photovoltaic performance. The solar cells based on TiO2/RGO (2.0 wt%) electrode exhibited a ˜22.3% and ˜28.9% short circuit current density (Jsc) and a power conversion efficiency enhancement, respectively, if compared with the devices based on pure TiO2 films. Kelvin probe force microscopy images suggest that the incorporation of RGO into TiO2 films can promote the appearance of regions with different charge dissipation capacities.

  11. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Dinh, D.A. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Hui, K.S., E-mail: kshui@hanyang.ac.kr [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea, Republic of); Hui, K.N., E-mail: bizhui@pusan.ac.kr [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Cho, Y.R. [School of Materials Science and Engineering, Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of); Zhou, Wei [Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361005 (China); Hong, Xiaoting [School of Chemistry and Environment, South China Normal University, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006 (China); Chun, Ho-Hwan [Global Core Research Center for Ships and Offshore Plants (GCRC-SOP), Pusan National University, San 30 Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)

    2014-04-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO{sub 3} and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N{sub 2}/H{sub 2} gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips.

  12. Green synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films

    Dinh, D.A.; Hui, K.S.; Hui, K.N.; Cho, Y.R.; Zhou, Wei; Hong, Xiaoting; Chun, Ho-Hwan

    2014-01-01

    Graphical abstract: - Highlights: • A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed at room temperature. • With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. • The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. • The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). - Abstract: A green facile chemical approach to control the dimensions of Ag nanoparticles–graphene oxide (AgNPs/GO) composites was performed by the in situ ultrasonication of a mixture of AgNO 3 and graphene oxide solutions with the assistance of vitamin C acting as an environmentally friendly reducing agent at room temperature. With decreasing ultrasonication time, the size of the Ag nanoparticles decreased and became uniformly distributed over the surface of the GO nanosheets. The as-prepared AgNPs/rGO composite films were then formed using a spin coating method and reduced at 500 °C under N 2 /H 2 gas flow for 1 h. Four-point probe measurements showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistance of 270 Ω/sq was obtained in the film corresponding to 1 min of ultrasonication, which showed a 40 times lower resistivity than the rGO film (10.93 kΩ/sq). The formation mechanisms of the as-prepared AgNPs/rGO films are proposed. This study provides a guide to controlling the dimensions of AgNPs/rGO films, which might hold promise as advanced materials for a range of analytical applications, such as catalysis, sensors and microchips

  13. Plasma assisted fabrication of multi-layer graphene/nickel hybrid film as enhanced micro-supercapacitor electrodes

    Ding, Q.; Li, W. L.; Zhao, W. L.; Wang, J. Y.; Xing, Y. P.; Li, X.; Xue, T.; Qi, W.; Zhang, K. L.; Yang, Z. C.; Zhao, J. S.

    2017-03-01

    A facile synthesis strategy has been developed for fabricating multi-layer graphene/nickel hybrid film as micro-supercapacitor electrodes by using plasma enhanced chemical vapor deposition. The as-presented method is advantageous for rapid graphene growth at relatively low temperature of 650 °C. In addition, after pre-treating for the as-deposited nickel film by using argon plasma bombardment, the surface-to-volume ratio of graphene film on the treated nickel substrate is effectively increased by the increasing of surface roughness. This is demonstrated by the characterization results from transmission electron microscopy, scanning electron microscope and atomic force microscopy. Moreover, the electrochemical performance of the resultant graphene/nickel hybrid film as micro-supercapacitor working electrode was investigated by cyclic voltammetry and galvanostatic charge/discharge measurements. It was found that the increase of the surface-to-volume ratio of graphene/nickel hybrid film improved the specific capacitance of 10 times as the working electrode of micro-supercapacitor. Finally, by using comb columnar shadow mask pattern, the micro-supercapacitor full cell device was fabricated. The electrochemical performance measurements of the micro-supercapacitor devices indicate that the method presented in this study provides an effective way to fabricate micro-supercapacitor device with enhanced energy storage property.

  14. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film.

    Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa

    2018-08-10

    We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

  15. Physical characterization of amorphous In-Ga-Zn-O thin-film transistors with direct-contact asymmetric graphene electrode

    Jaewook Jeong

    2014-09-01

    Full Text Available High performance a-IGZO thin-film transistors (TFTs are fabricated using an asymmetric graphene drain electrode structure. A-IGZO TFTs (channel length = 3 μm were successfully demonstrated with a saturation field-effect mobility of 6.6 cm2/Vs without additional processes between the graphene and a-IGZO layer. The graphene/a-IGZO junction exhibits Schottky characteristics and the contact property is affected not only by the Schottky barrier but also by the parasitic resistance from the depletion region under the graphene electrode. Therefore, to utilize the graphene layer as S/D electrodes for a-IGZO TFTs, an asymmetric electrode is essential, which can be easily applied to the conventional pixel electrode structure.

  16. Thermoelectric properties and performance of flexible reduced graphene oxide films up to 3,000 K

    Li, Tian; Pickel, Andrea D.; Yao, Yonggang; Chen, Yanan; Zeng, Yuqiang; Lacey, Steven D.; Li, Yiju; Wang, Yilin; Dai, Jiaqi; Wang, Yanbin; Yang, Bao; Fuhrer, Michael S.; Marconnet, Amy; Dames, Chris; Drew, Dennis H.; Hu, Liangbing

    2018-02-01

    The development of ultrahigh-temperature thermoelectric materials could enable thermoelectric topping of combustion power cycles as well as extending the range of direct thermoelectric power generation in concentrated solar power. However, thermoelectric operation temperatures have been restricted to under 1,500 K due to the lack of suitable materials. Here, we demonstrate a thermoelectric conversion material based on high-temperature reduced graphene oxide nanosheets that can perform reliably up to 3,000 K. After a reduction treatment at 3,300 K, the nanosheet film exhibits an increased conductivity to 4,000 S cm-1 at 3,000 K and a high power factor S2σ = 54.5 µW cm-1 K-2. We report measurements characterizing the film's thermoelectric properties up to 3,000 K. The reduced graphene oxide film also exhibits a high broadband radiation absorbance and can act as both a radiative receiver and a thermoelectric generator. The printable, lightweight and flexible film is attractive for system integration and scalable manufacturing.

  17. Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application

    Deraman, M.; Sazali, N. E. S.; Hanappi, M. F. Y. M.; Tajuddin, N. S. M.; Hamdan, E.; Suleman, M.; Othman, M. A. R.; Omar, R.; Hashim, M. A.; Basri, N. H.; Nor, N. S. M.; Dolah, B. N. M.; Noor, A. M.; Jasni, M. R. M.

    2016-08-01

    Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ~(1-3%), ~85% and ~30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ~4400 to ~3400 m2/g, corresponding to the specific capacitance between ~500 to ~400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature.

  18. Graphene/semicrystalline-carbon derived from amylose films for supercapacitor application

    Deraman, M; Sazali, N E S; Hanappi, M F Y M; Tajuddin, N S M; Hamdan, E; Suleman, M; Othman, M A R; Omar, R; Basri, N H; Nor, N S M; Dolah, B N M; Jasni, M R M; Hashim, M A; Noor, A M

    2016-01-01

    Graphene/semicrystalline-carbon in the form of carbon flakes is produced by carbonization up to 600, 700, 800, 900 and 1000°C, respectively, of the amylose films prepared by a casting method on copper foil substrate. The carbon flakes are characterized by X-ray diffraction (XRD) method to determine their microcrystallite interlayer spacing, width and stack-height; and Raman spectroscopy (RS) method to obtain structural information from the D-, D2- and G-bands peak-intensities. The XRD results show that increase in carbonization temperature lead to ∼(1-3%), ∼85% and ∼30%increase in the microcrystallites interlayer spacing, width and stack-height, respectively, indicating that a larger growth of microcrytallite of carbon flakes occurs in the direction parallel to (001) plane or film planar surface. The specific surface area of carbon flakes estimated from the XRD results in decreases from ∼4400 to ∼3400 m 2 /g, corresponding to the specific capacitance between ∼500 to ∼400 F/g, which are well within the range of specific capacitance for typical electrodes carbon for supercapacitor application. The RS results show that the multilayer graphene co-exist with semicrystalline- carbon within the carbon flakes, with the multilayer graphene relative quantities increase with increasing carbonization temperature. (paper)

  19. Urea-assisted low temperature green synthesis of graphene nanosheets for transparent conducting film

    Chamoli, Pankaj; Das, Malay K.; Kar, Kamal K.

    2018-02-01

    Present work demonstrates the fabrication of graphene nanosheet (GN) based transparent conducting film (TCF) using spray coating. Green synthesis of GN is carried out by reduction of graphene oxide (GO) using urea as green reducing agent. The reductive ability of urea with varied concentration is studied for GO at low temperature (i.e., 90 °C). As synthesized graphene nanosheets (GNs) are characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscope (AFM), and X-ray Photon spectroscopy (XPS). Raman analysis confirms that the maximum reduction of oxygen species is noticed using 30 mg/ml urea concentration at 90 °C from GO, and found Raman D to G band ratio (ID/IG) of ∼1.30. XPS analysis validates the Raman signature of removal of oxygen functional groups from GO, and obtained C/O ratio of ∼5.28. Further, transparent conducting films (TCFs) are fabricated using synthesized GNs. Thermal graphitization is carried out to enhance the optical and electrical properties of TCFs. TCF shows best performance when it is annealed at 900 °C for 1 h in vacuum, and obtained sheet resistance is ∼1.89 kΩ/□ with transmittance of ∼62.53%.

  20. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-01-01

    Graphical abstract: Nanocomposites by introducing graphene oxide (GO) into chitosan (CS) matrix were prepared and the effect of GO on the crystallization, thermal stability and mechanical properties of the films were investigated. In addition, the electrochemical behavior of the CS/GO modified electrode was comparatively studied with that of the neat CS-modified electrode. - Highlights: • Graphene oxide (GO) with well dispersion in the biopolymer chitosan (CS) matrix. • Detectable interactions do exist between the GO nanosheets and CS segments. • The addition of minor GO can improve the electrochemical activity of the neat CS. - Abstract: A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors

  1. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Samina Zuhra

    2018-03-01

    Full Text Available The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method. The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work. Keywords: Graphene nanoparticles, MHD, Casson and Williamson nanofluids, Stretching sheet, Skin friction coefficient, Nusselt number, Residual errors, Homotopy Analysis Method

  2. Graphene Oxide/Poly(3-hexylthiophene) Nanocomposite Thin-Film Phototransistor for Logic Circuit Applications

    Mansouri, S.; Coskun, B.; El Mir, L.; Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed; Yakuphanoglu, F.

    2018-04-01

    Graphene is a sheet-structured material that lacks a forbidden band, being a good candidate for use in radiofrequency applications. We have elaborated graphene-oxide-doped poly(3-hexylthiophene) nanocomposite to increase the interlayer distance and thereby open a large bandgap for use in the field of logic circuits. Graphene oxide/poly(3-hexylthiophene) (GO/P3HT) nanocomposite thin-film transistors (TFTs) were fabricated on silicon oxide substrate by spin coating method. The current-voltage ( I- V) characteristics of TFTs with various P3HT compositions were studied in the dark and under light illumination. The photocurrent, charge carrier mobility, subthreshold voltage, density of interface states, density of occupied states, and I ON/ I OFF ratio of the devices strongly depended on the P3HT weight ratio in the composite. The effects of white-light illumination on the electrical parameters of the transistors were investigated. The results indicated that GO/P3HT nanocomposite thin-film transistors have high potential for use in radiofrequency applications, and their feasibility for use in digital applications has been demonstrated.

  3. Preparation and characterization of graphene/turbostratic carbon derived from chitosan film for supercapacitor electrodes

    Hanappi, M. F. Y. M.; Deraman, M.; Suleman, M.; Othman, M. A. R.; Basri, N. H.; Nor, N. S. M.; Hamdan, E.; Sazali, N. E. S.; Tajuddin, N. S. M.

    2018-04-01

    Electrochemical capacitors or supercapacitors are the potential energy storage devices which are known for having higher specific capacitance and specific energy than electrolytic capacitors. Electric double-layer capacitors (EDLCs) also referred as ultracapacitors is a class of supercapacitors that employ different forms of carbon like activated carbon, CNT, graphene etc., as electrodes. The performance of the supercapacitors is determined by its components namely electrolyte, electrode, etc. Carbon electrodes with high surface area and desired pore size distribution are always preferred and which can be tailored by varying the precursor and method of preparation. In recent years, owing to their low cost, ease of synthesis, high stability and conductivity, the activated carbons derived from biomass precursors have been investigated as potential electrode material for the EDLCs. In this report, we present the preparation and characterization of graphene/turbostratic carbon monolith (CM) electrodes from the carbon grains (CGs) obtained by carbonization (under the flow of nitrogen, N2 gas and over a temperature range from 600 °C to 1000 °C) of biomass precursor chitosan film. The procedure to prepare the chitosan film is described elsewhere. The carbon grains are characterized using Raman spectroscopy (RS) and X-ray diffraction (XRD). We expect that the CGs would have the similar characteristics as graphene and would be a potential electrode material for EDLCs application.

  4. Energy harvesting efficiency of piezoelectric polymer film with graphene and metal electrodes.

    Park, Sanghoon; Kim, Yura; Jung, Hyosub; Park, Jun-Young; Lee, Naesung; Seo, Yongho

    2017-12-11

    In this study, we investigated an energy harvesting effect of tensile stress using piezoelectric polymers and flexible electrodes. A chemical-vapor-deposition grown graphene film was transferred onto both sides of the PVDF and P(VDF-TrFE) films simultaneously by means of a conventional wet chemical method. Output voltage induced by sound waves was measured and analyzed when a mechanical tension was applied to the device. Another energy harvester was made with a metallic electrode, where Al and Ag were deposited by using an electron-beam evaporator. When acoustic vibrations (105 dB) were applied to the graphene/PVDF/graphene device, an induced voltage of 7.6 V pp was measured with a tensile stress of 1.75 MPa, and this was increased up to 9.1 V pp with a stress of 2.18 MPa for the metal/P(VDF-TrFE)/metal device. The 9 metal/PVDF/metal layers were stacked as an energy harvester, and tension was applied by using springs. Also, we fabricated a full-wave rectifying circuit to store the electrical energy in a 100 μF capacitor, and external vibration generated the electrical charges. As a result, the stored voltage at the capacitor, obtained from the harvester via a bridge diode rectifier, was saturated to ~7.04 V after 180 s charging time.

  5. Conjugate calculation of a film-cooled blade for improvement of the leading edge cooling configuration

    Norbert Moritz

    2013-03-01

    Full Text Available Great efforts are still put into the design process of advanced film-cooling configurations. In particular, the vanes and blades of turbine front stages have to be cooled extensively for a safe operation. The conjugate calculation technique is used for the three-dimensional thermal load prediction of a film-cooled test blade of a modern gas turbine. Thus, it becomes possible to take into account the interaction of internal flows, external flow, and heat transfer without the prescription of heat transfer coefficients. The focus of the investigation is laid on the leading edge part of the blade. The numerical model consists of all internal flow passages and cooling hole rows at the leading edge. Furthermore, the radial gap flow is also part of the model. The comparison with thermal pyrometer measurements shows that with respect to regions with high thermal load a qualitatively and quantitatively good agreement of the conjugate results and the measurements can be found. In particular, the region in the vicinity of the mid-span section is exposed to a higher thermal load, which requires further improvement of the cooling arrangement. Altogether the achieved results demonstrate that the conjugate calculation technique is applicable for reasonable prediction of three-dimensional thermal load of complex cooling configurations for blades.

  6. HR-EELS study of hydrogen bonding configuration, chemical and thermal stability of detonation nanodiamond films

    Michaelson, Sh.; Akhvlediani, R. [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Petit, T.; Girard, H.A.; Arnault, J.C. [CEA, LIST, Diamond Sensors Laboratory, F-91191 Gif sur Yvette (France); Hoffman, A., E-mail: choffman@tx.technion.ac.il [Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000 (Israel)

    2014-06-01

    Nano-diamond films composed of 3–10 nm grains prepared by the detonation method and deposited onto silicon substrates by drop-casting were examined by high resolution electron energy loss spectroscopy (HR-EELS), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). The impact of (i) ex-situ ambient annealing at 400 °C and (ii) ex-situ hydrogenation on hydrogen bonding and its thermal stability were examined. In order to clarify the changes in hydrogen bonding configuration detected on the different surfaces as a function of thermal annealing, in-situ hydrogenation by thermally activated atomic hydrogen was performed and examined. This study provides direct evidence that the exposure to ambient conditions and medium temperature ambient annealing have a pronounced effect on the hydrogen-carbon bonding configuration onto the nano-diamond surfaces. In-situ 1000 °C annealing results in irreversible changes of the film surface and partial nano-diamond silicidation.

  7. Oleic acid-assisted exfoliated few layer graphene films as counter electrode in dye-sensitized solar cell

    Liu, Jincheng; Wang, Yinjie; Sun, Darren Delai

    2012-01-01

    Highlights: ► Few layer graphene was obtained by liquid exfoliation in oleic acid (OLA). ► The concentration of exfoliated few layer graphene is as high as 1.3 mg/mL. ► OLA-assisted graphite (OLA-G) film has high catalytic activity. ► A power conversion efficiency of 3.56% can be gained by DSSCs with the counter electrode of OLA-G film. - Abstract: We have demonstrated a facile sonication method to exfoliate graphite into few layer graphene with a high concentration of 1.3 mg/mL in oleic acid (OLA). The exfoliations of natural graphite in oleylamine (OA) and trioctylphosphine (TOP) are investigated as a comparison. The few layer graphene dispersion in OLA and the graphite nanoparticles in OA are confirmed by transmission electron microscopy (TEM) observation. The exfoliated graphene dispersion in OLA (OLA-G) and graphite dispersion in OA (OA-G) are fabricated into a film on the FTO substrate by the doctor-blading method. The morphology and catalytic activity in the redox couple regeneration of all the graphite films are examined by field emission scanning electron microscopy and cyclic voltammograms. The OLA-G films on FTO glass with few layer graphene flakes shows better catalytic activity than the OA-G films. The energy conversion efficiency of the cell with the OLA-G film as counter electrode reached 3.56%, which is 70% of dye-sensitized solar cell (DSSC) with the sputtering-Pt counter electrode under the same experimental condition.

  8. Enhanced mechanical properties of hydrothermal carbamated cellulose nanocomposite film reinforced with graphene oxide.

    Gan, Sinyee; Zakaria, Sarani; Syed Jaafar, Sharifah Nabihah

    2017-09-15

    Cellulose carbamate (CC) was synthesized via hydrothermal process and mixed with graphene oxide (GO) to form a homogeneous cellulose matrix nanocomposite films. The properties of CC/GO nanocomposite films fabricated using simple solution-mixing method with different GO loadings were studied. Transmission electron microscope analysis showed the exfoliation of self-synthesized GO nanosheets within the CC matrix. X-ray diffraction results confirmed the crystalline structure of CC/GO films as the CC/GO mass ratio increased from 100/0 to 100/4. The mechanical properties of CC/GO film were significantly improved as compared to neat CC film. From thermogravimetric analysis result, the introduction of GO enhanced the thermal stability and carbon yields. The 3D homogeneous porous structures of the CC/GO films were observed under Field emission scanning electron microscope. These improvements in nanocomposite film properties could be confirmed by Fourier transform infrared spectroscopy due to the strong and good interactions between CC and GO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Preparation and characterization of graphene-based vanadium oxide composite semiconducting films with horizontally aligned nanowire arrays

    Jung, Hye-Mi; Um, Sukkee

    2016-01-01

    Highly oriented crystalline hybrid thin films primarily consisting of Magnéli-phase VO 2 and conductive graphene nanoplatelets are fabricated by a sol–gel process via dipping pyrolysis. A combination of chemical, microstructural, and electrical analyses reveals that graphene oxide (GO)-templated vanadium oxide (VO x ) nanocomposite films exhibit a vertically stacked multi-lamellar nanostructure consisting of horizontally aligned vanadium oxide nanowire (VNW) arrays along the (hk0) set of planes on a GO template, with an average crystallite size of 41.4 Å and a crystallographic tensile strain of 0.83%. In addition, GO-derived VO x composite semiconducting films, which have an sp 3 /sp 2 bonding ratio of 0.862, display thermally induced electrical switching properties in the temperature range of − 20 °C to 140 °C, with a transition temperature of approximately 65 °C. We ascribe these results to the use of GO sheets, which serve as a morphological growth template as well as an electrochemically tunable platform for enhancing the charge-carrier mobility. Moreover, the experimental studies demonstrate that graphene-based Magnéli-phase VO x composite semiconducting films can be used in advanced thermo-sensitive smart sensing/switching applications because of their outstanding thermo-electrodynamic properties and high surface charge density induced by the planar-type VNWs. - Highlights: • VO x -graphene oxide composite (G/VO x ) films were fabricated by sol–gel process. • The G/VO x films mainly consisted of Magnéli-phase VO 2 and reduced graphene sheets. • The G/VO x films exhibited multi-lamellar textures with planar VO x nanowire arrays. • The G/VO x films showed the thermo-sensitive electrical switching properties. • Effects of GOs on the electrical characteristics of the G/VO x films were discussed.

  10. Carbon nanotube transistors with graphene oxide films as gate dielectrics

    2010-01-01

    Carbon nanomaterials,including the one-dimensional(1-D) carbon nanotube(CNT) and two-dimensional(2-D) graphene,are heralded as ideal candidates for next generation nanoelectronics.An essential component for the development of advanced nanoelectronics devices is processing-compatible oxide.Here,in analogy to the widespread use of silicon dioxide(SiO2) in silicon microelectronic industry,we report the proof-of-principle use of graphite oxide(GO) as a gate dielectrics for CNT field-effect transistor(FET) via a fast and simple solution-based processing in the ambient condition.The exceptional transistor characteristics,including low operation voltage(2 V),high carrier mobility(950 cm2/V-1 s-1),and the negligible gate hysteresis,suggest a potential route to the future all-carbon nanoelectronics.

  11. Heterojunction Solar Cells Based on Silicon and Composite Films of Graphene Oxide and Carbon Nanotubes.

    Yu, LePing; Tune, Daniel; Shearer, Cameron; Shapter, Joseph

    2015-09-07

    Graphene oxide (GO) sheets have been used as the surfactant to disperse single-walled carbon nanotubes (CNT) in water to prepare GO/CNT electrodes that are applied to silicon to form a heterojunction that can be used in solar cells. GO/CNT films with different ratios of the two components and with various thicknesses have been used as semitransparent electrodes, and the influence of both factors on the performance of the solar cell has been studied. The degradation rate of the GO/CNT-silicon devices under ambient conditions has also been explored. The influence of the film thickness on the device performance is related to the interplay of two competing factors, namely, sheet resistance and transmittance. CNTs help to improve the conductivity of the GO/CNT film, and GO is able to protect the silicon from oxidation in the atmosphere. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

    Zhao, Yong-chuang; Nie, Zhong-quan; Zhai, Ai-ping; Tian, Yan-ting; Liu, Chao; Shi, Chang-kun; Jia, Bao-hua

    2018-01-01

    In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (˜λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

  13. Direct synthesis of multi-layer graphene film on various substrates by microwave plasma at low temperature

    Park, Hyun Jae [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Ahn, Byung Wook; Kim, Tae Yoo; Lee, Jung Woo [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Jung, Yong Ho; Choi, Yong Sup [Plasma Technology Research Center, 814-2 Osickdo-dong (SGFEZ), Gunsan, Jeollabuk-do 573-540 (Korea, Republic of); Song, Young Il, E-mail: physein01@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Suh, Su Jeong, E-mail: suhsj@skku.edu [School of Advanced Materials Science and Engineering, Advanced Materials and Process Research Center (AMPRC), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-31

    We introduce a possible route for vertically standing multi-layer graphene films (VMGs) on various substrates at low temperature by electron cyclone resonance microwave plasma. VMG films on various substrates, including copper sheet, glass and silicon oxide wafer, were analyzed by studying their structural, electrical, and optical properties. The density and temperature of plasma were measured using Cylindrical Langmuir probe analysis. The morphologies and microstructures of multi-layer graphene were characterized using field emission scattering electron microscope, high resolution transmission electron microscope, and Raman spectra measurement. The VMGs on different substrates at the same experimental conditions synthesized the wrinkled VMGs with different heights. In addition, the transmittance and electrical resistance were measured using ultra-violet visible near-infrared spectroscopy and 4 probe point surface resistance measurement. The VMGs on glass substrate obtained a transmittance of 68.8% and sheet resistance of 796 Ω/square, whereas the VMGs on SiO{sub 2} wafer substrate showed good sheet resistance of 395 Ω/square and 278 Ω/square. The results presented herein demonstrate a simple method of synthesizing of VMGs on various substrates at low temperature for mass production, in which the VMGs can be used in a wide range of application fields for energy storage, catalysis, and field emission due to their unique orientation. - Highlights: • We present for synthesis method of graphene at low temperature on various substrates. • We grow the graphene films at low temperature under of 432 °C. • Structural information of graphene films were studied upon Raman spectroscopy. • Inter-layer spacing of vertically standing graphene relies on synthesis time. • We measured a transmittance and a resistance for graphene films on difference substrate.

  14. A novel flexible capacitive touch pad based on graphene oxide film

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-01-01

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch ``ON'' to ``OFF'' voltage ratio up to ~60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.

  15. A novel flexible capacitive touch pad based on graphene oxide film.

    Tian, He; Yang, Yi; Xie, Dan; Ren, Tian-Ling; Shu, Yi; Zhou, Chang-Jian; Sun, Hui; Liu, Xuan; Zhang, Cang-Hai

    2013-02-07

    Recently, graphene oxide (GO) supercapacitors with ultra-high energy densities have received significant attention. In addition to energy storage, GO capacitors might also have broad applications in renewable energy engineering, such as vibration and sound energy harvesting. Here, we experimentally create a macroscopic flexible capacitive touch pad based on GO film. An obvious touch "ON" to "OFF" voltage ratio up to ∼60 has been observed. Moreover, we tested the capacitor structure on both flat and curved surfaces and it showed high response sensitivity under fast touch rates. Collectively, our results raise the exciting prospect that the realization of macroscopic flexible keyboards with large-area graphene based materials is technologically feasible, which may open up important applications in control and interface design for solar cells, speakers, supercapacitors, batteries and MEMS systems.

  16. Mesoporous polyaniline film on ultra-thin graphene sheets for high performance supercapacitors

    Wang, Qian; Yan, Jun; Fan, Zhuangjun; Wei, Tong; Zhang, Milin; Jing, Xiaoyan

    2014-02-01

    A facile approach has been developed to fabricate mesoporous PANI film on ultra-thin graphene nanosheet (G-mPANI) hybrid by in situ polymerization using graphene-mesoporous silica composite as template. Due to its mesoporous structure, over-all conductive network, G-mPANI electrode displays a specific capacitance of 749 F g-1 at 0.5 A g-1 with excellent rate capability (remains 73% even at 5.0 A g-1), much higher than that of pristine PANI electrode (315 F g-1 at 0.5 A g-1, 39% retention at 5.0 A g-1) in 1 mol L-1 H2SO4 aqueous solution. More interestingly, the G-mPANI hybrid can maintain 88% of its initial capacitance compared to 45% for pristine PANI after 1000 cycles, suggesting a superior electrochemical cyclic stability.

  17. van der Waals epitaxy of SnS film on single crystal graphene buffer layer on amorphous SiO2/Si

    Xiang, Yu; Yang, Yunbo; Guo, Fawen; Sun, Xin; Lu, Zonghuan; Mohanty, Dibyajyoti; Bhat, Ishwara; Washington, Morris; Lu, Toh-Ming; Wang, Gwo-Ching

    2018-03-01

    Conventional hetero-epitaxial films are typically grown on lattice and symmetry matched single crystal substrates. We demonstrated the epitaxial growth of orthorhombic SnS film (∼500 nm thick) on single crystal, monolayer graphene that was transferred on the amorphous SiO2/Si substrate. Using X-ray pole figure analysis we examined the structure, quality and epitaxy relationship of the SnS film grown on the single crystal graphene and compared it with the SnS film grown on commercial polycrystalline graphene. We showed that the SnS films grown on both single crystal and polycrystalline graphene have two sets of orientation domains. However, the crystallinity and grain size of the SnS film improve when grown on the single crystal graphene. Reflection high-energy electron diffraction measurements show that the near surface texture has more phases as compared with that of the entire film. The surface texture of a film will influence the growth and quality of film grown on top of it as well as the interface formed. Our result offers an alternative approach to grow a hetero-epitaxial film on an amorphous substrate through a single crystal graphene buffer layer. This strategy of growing high quality epitaxial thin film has potential applications in optoelectronics.

  18. Self-assembled graphene/azo polyelectrolyte multilayer film and its application in electrochemical energy storage device.

    Wang, Dongrui; Wang, Xiaogong

    2011-03-01

    Graphene/azo polyelectrolyte multilayer films were fabricated through electrostatic layer-by-layer (LbL) self-assembly, and their performance as electrochemical capacitor electrode was investigated. Cationic azo polyelectrolyte (QP4VP-co-PCN) was synthesized through radical polymerization, postpolymerization azo coupling reaction, and quaternization. Negatively charged graphene nanosheets were prepared by a chemically modified method. The LbL films were obtained by alternately dipping a piece of the pretreated substrates in the QP4VP-co-PCN and nanosheet solutions. The processes were repeated until the films with required numbers of bilayers were obtained. The self-assembly and multilayer surface morphology were characterized by UV-vis spectroscopy, AFM, SEM, and TEM. The performance of the LbL films as electrochemical capacitor electrode was estimated using cyclic voltammetry. Results show that the graphene nanosheets are densely packed in the multilayers and form random graphene network. The azo polyelectrolyte cohesively interacts with the nanosheets in the multilayer structure, which prevents agglomeration of graphene nanosheets. The sheet resistance of the LbL films decreases with the increase of the layer numbers and reaches the stationary value of 1.0 × 10(6) Ω/square for the film with 15 bilayers. At a scanning rate of 50 mV/s, the LbL film with 9 bilayers shows a gravimetric specific capacitance of 49 F/g in 1.0 M Na(2)SO(4) solution. The LbL films developed in this work could be a promising type of the electrode materials for electric energy storage devices.

  19. Non-monotonic piezoresistive behaviour of graphene nanoplatelet (GNP-polymer composite flexible films prepared by solvent casting

    S. Makireddi

    2017-07-01

    Full Text Available Graphene-polymer nanocomposite films show good piezoresistive behaviour and it is reported that the sensitivity increases either with the increased sheet resistance or decreased number density of the graphene fillers. A little is known about this behaviour near the percolation region. In this study, graphene nanoplatelet (GNP/poly (methyl methacrylate (PMMA flexible films are fabricated via solution casting process at varying weight percent of GNP. Electrical and piezoresistive behaviour of these films is studied as a function of GNP concentration. Piezoresistive strain sensitivity of the films is measured by affixing the film to an aluminium specimen which is subjected to monotonic uniaxial tensile load. The change in resistance of the film with strain is monitored using a four probe. An electrical percolation threshold at 3 weight percent of GNP is observed. We report non-monotonic piezoresistive behaviour of these films as a function GNP concentration. We observe an increase in gauge factor (GF with unstrained resistance of the films up to a critical resistance corresponding to percolation threshold. Beyond this limit the GF decreases with unstrained resistance.

  20. The Preparation of Graphene Reinforced Poly(vinyl alcohol Antibacterial Nanocomposite Thin Film

    Yuan-Cheng Cao

    2015-01-01

    Full Text Available Methylated melamine grafted polyvinyl benzylchloride (mm-g-PvBCl was prepared which was used as additive in poly(vinyl alcohol (PVA and graphene nanosheets (GNs were used to reinforce the mechanical strength. Using casting method, antimicrobial nanocomposite films were prepared with the polymeric biocide loading lever of 1 wt%, 5 wt%, and 10 wt%. Thermogravimetric analysis (TGA characterization revealed the 2.0 wt% of graphene content in resultant nanocomposites films. XRD showed that the resultant GNs 2 theta was changed from 16.6 degree to 23.3 degree. Using Japanese Industry Standard test methods, the antimicrobial efficiency for the loading lever of 1 wt%, 5 wt%, and 10 wt% was 92.0%, 95.8%, and 97.1%, respectively, against gram negative bacteria E. coli and 92.3%, 99.6%, and 99.7%, respectively, against the gram positive S. aureus. These results indicate the prepared nanocomposite films are the promising materials for the food and drink package applications.

  1. Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates

    Banerjee, Indrani; Mahapatra, Santosh K.; Pal, Chandana; Sharma, Ashwani K.; Ray, Asim K.

    2018-05-01

    Room temperature hydrogen plasma treatment on solution processed 300 nm graphene oxide (GO) films on flexible indium tin oxide (ITO) coated polyethylene terephthalate (PET) substrates has been performed by varying the plasma power between 20 W and 60 W at a constant exposure time of 30 min with a view to examining the effect of plasma power on reduction of GO. X-ray powder diffraction (XRD) and Raman spectroscopic studies show that high energy hydrogen species generated in the plasma assist fast exfoliation of the oxygenated functional groups present in the GO samples. Significant decrease in the optical band gap is observed from 4.1 eV for untreated samples to 0.5 eV for 60 W plasma treated samples. The conductivity of the films treated with 60 W plasma power is estimated to be six orders of magnitude greater than untreated GO films and this enhancement of conductivity on plasma reduction has been interpreted in terms of UV-visible absorption spectra and density functional based first principle computational calculations. Plasma reduction of GO/ITO/PET structures can be used for efficiently tuning the electrical and optical properties of reduced graphene oxide (rGO) for flexible electronics applications.

  2. Electrochemical Biosensor for Nitrite Based on Polyacrylic-Graphene Composite Film with Covalently Immobilized Hemoglobin

    Raja Zaidatul Akhmar Raja Jamaluddin

    2018-04-01

    Full Text Available A new biosensor for the analysis of nitrite in food was developed based on hemoglobin (Hb covalently immobilized on the succinimide functionalized poly(n-butyl acrylate-graphene [poly(nBA-rGO] composite film deposited on a carbon-paste screen-printed electrode (SPE. The immobilized Hb on the poly(nBA-rGO conducting matrix exhibited electrocatalytic ability for the reduction of nitrite with significant enhancement in the reduction peak at −0.6 V versus Ag/AgCl reference electrode. Thus, direct determination of nitrite can be achieved by monitoring the cathodic peak current signal of the proposed polyacrylic-graphene hybrid film-based voltammetric nitrite biosensor. The nitrite biosensor exhibited a reproducible dynamic linear response range from 0.05–5 mg L−1 nitrite and a detection limit of 0.03 mg L−1. No significant interference was observed by potential interfering ions such as Ca2+, Na+, K+, NH4+, Mg2+, and NO3− ions. Analysis of nitrite in both raw and processed edible bird’s nest (EBN samples demonstrated recovery of close to 100%. The covalent immobilization of Hb on poly(nBA-rGO composite film has improved the performance of the electrochemical nitrite biosensor in terms of broader detection range, lower detection limit, and prolonged biosensor stability.

  3. Free-standing 3D graphene/polyaniline composite film electrodes for high-performance supercapacitors

    Wang, Shiyong; Ma, Li; Gan, Mengyu; Fu, Shenna; Dai, Wenqin; Zhou, Tao; Sun, Xiaowu; Wang, Huihui; Wang, Huining

    2015-12-01

    The research paper describes polyaniline (PANI) nanowires array on flexible polystyrene microsphere/reduced graphene (PS/rGN) film is synthesized by dilute polymerization, and then the PS microspheres are removed to form free-standing three-dimensional (3D) rGN/PANI composite film. The chemical and structural properties of the 3D rGN/PANI film are characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET), and the results confirm the 3D rGN/PANI film is synthesized successfully. When the film is used as a supercapacitor electrode, the maximum specific capacitance is as high as 740 F g-1 (or 581 F cm-3 for volumetric capacitance) at a current density of 0.5 A g-1 and the specific capacitance retains 87% of the initial after constant charge-discharge 1000 cycles at current density of 10 A g-1. It is believed that the free-standing 3D rGN/PANI film will have a great potential for application in supercapacitors.

  4. Sol-gel synthesis of Bi2WO6/graphene thin films with enhanced photocatalytic performance for nitric monoxide oxidation under visible light irradiation

    Sun, Chufeng; Wang, Yanbin; Su, Qiong

    2018-06-01

    Bi2WO6 and Bi2WO6/graphene thin films were fabricated by spin coating and post annealing at 600 °C for 2 h. In four different thin film samples, the graphene concentration was controlled as 0, 2, 4 and 6 wt%, respectively. The morphology, grain size and elemental distribution of the thin films were characterized by SEM and TEM. The crystallization and crystal phases were determined by XRD patterns, and the existence of graphene in Bi2WO6/graphene composite thin films were confirmed by Raman spectra. The photocatalytic performance of Bi2WO6 and Bi2WO6/graphene thin films was investigated by oxidizing NO under visible light irradiation. The results showed that Bi2WO6/graphene with 4 wt% of graphene showed the highest photocatalytic performance among all samples. This could be attributed to the increased electron conductivity with the presence of graphene. However, a further increased graphene concentration resulted in a decreased photocatalytic performance.

  5. Role of direct covalent bonding in enhanced heat dissipation property of flexible graphene oxide–carbon nanotube hybrid film

    Hwang, Yongseon; Kim, Myeongjin; Kim, Jooheon

    2013-01-01

    The thermal conductivity of graphene oxide/multiwalled carbon nanotube (GO/MWCNT) hybrid films with and without covalent bonding is examined in this study. To fabricate chemically bonded GO/MWCNT hybrid films, chlorinated GO and amino-functionalized MWCNTs are bonded covalently. The mixtures of surface modified GO and MWCNT were filtered and then subjected to hot pressing to fabricate stacked films. Examination of these chemically bonded hybrid films reveal that chlorine-doped GO exhibits enhanced electrical properties because it creates hole charge carriers by attracting the electrons in GO towards chlorine. Enhanced electrical conductivity and low sheet resistance are observed also with increasing MWCNT loadings. On comparing the through-plane thermal properties, the chemically bonded hybrid films were found to exhibit higher thermal conductivity than do the physically bonded hybrid films because of the synergetic interaction of functional groups in GO and MWCNTs in the former films. However, excess addition of MWCNTs to the films leads to an increasing phonon scattering density and a decreased thermal conductivity. - Highlights: • Graphene oxide/carbon nanotube (GO/CNT) films are bonded covalently. • GO/CNT hybrid films are prepared through filtering and hot-pressing method. • Chemically bonded hybrid films exhibit enhanced electrical and thermal properties. • Enhanced thermal conductivity is explained according to increasing CNT contents

  6. Dielectric property study of poly(4-vinylphenol)-graphene oxide nanocomposite thin film

    Roy, Dhrubojyoti

    2018-05-01

    Thin film capacitor device having a sandwich structure of indium tin oxide (ITO)-coated glass/polymer or polymer nanocomposite /silver has been fabricated and their dielectric and leakage current properties has been studied. The dielectric properties of the capacitors were characterized for frequencies ranging from 1 KHz to 1 MHz. 5 wt% Poly(4-vinylphenol)(PVPh)-Graphene (GO) nanocomposite exhibited an increase in dielectric constant to 5.6 and small rise in dielectric loss to around˜0.05 at 10 KHz w.r.t polymer. The DC conductivity measurements reveal rise of leakage current in nanocomposite.

  7. Physical properties investigation of reduced graphene oxide thin films prepared by material inkjet printing

    Schmiedová, V.; Pospíšil, J.; Kovalenko, A.; Ashcheulov, Petr; Fekete, Ladislav; Cubon, T.; Kotrusz, P.; Zmeškal, O.; Weiter, M.

    2017-01-01

    Roč. 2017, Aug (2017), s. 1-8, č. článku 3501903. ISSN 1687-4110 R&D Projects: GA MŠk LO1409; GA MŠk LM2015088; GA ČR(CZ) GA15-05095S Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132; GA MŠk(CZ) LO1211 Institutional support: RVO:68378271 Keywords : graphene oxide * thin film * transparent electrode * inkjet printing Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.871, year: 2016

  8. Non-destructive electrochemical graphene transfer from reusable thin-film catalysts

    Pizzocchero, Filippo; Jessen, Bjarke Sørensen; Whelan, Patrick Rebsdorf

    2015-01-01

    We demonstrate an electrochemical method - which we term oxidative decoupling transfer (ODT) - for transferring chemical vapor deposited graphene from physically deposited copper catalyst layers. This copper oxidation-based transfer technique is generally applicable to copper surfaces...... - up to 100 mm diameter films are demonstrated here - and exhibit a low Raman D:G peak ratio and a homogenous and continuous distribution of sheet conductance mapped by THz time-domain spectroscopy. By applying a fixed potential of -0.4 V vs. an Ag/AgCl reference electrode - significantly below...

  9. Improvement in Functional Properties of Soy Protein Isolate-Based Film by Cellulose Nanocrystal–Graphene Artificial Nacre Nanocomposite

    Kuang Li

    2017-07-01

    Full Text Available A facile, inexpensive, and green approach for the production of stable graphene dispersion was proposed in this study. We fabricated soy protein isolate (SPI-based nanocomposite films with the combination of 2D negative charged graphene and 1D positive charged polyethyleneimine (PEI-modified cellulose nanocrystals (CNC via a layer-by-layer assembly method. The morphologies and surface charges of graphene sheets and CNC segments were characterized by atomic force microscopy and Zeta potential measurements. The hydrogen bonds and multiple interface interactions between the filler and SPI matrix were analyzed by Attenuated Total Reflectance–Fourier Transform Infrared spectra and X-ray diffraction patterns. Scanning electron microscopy demonstrated the cross-linked and laminated structures in the fracture surface of the films. In comparison with the unmodified SPI film, the tensile strength and surface contact angles of the SPI/graphene/PEI-CNC film were significantly improved, by 99.73% and 37.13% respectively. The UV–visible light barrier ability, water resistance, and thermal stability were also obviously enhanced. With these improved functional properties, this novel bio-nanocomposite film showed considerable potential for application for food packaging materials.

  10. Preparation of Graphene Sheets by Electrochemical Exfoliation of Graphite in Confined Space and Their Application in Transparent Conductive Films.

    Wang, Hui; Wei, Can; Zhu, Kaiyi; Zhang, Yu; Gong, Chunhong; Guo, Jianhui; Zhang, Jiwei; Yu, Laigui; Zhang, Jingwei

    2017-10-04

    A novel electrochemical exfoliation mode was established to prepare graphene sheets efficiently with potential applications in transparent conductive films. The graphite electrode was coated with paraffin to keep the electrochemical exfoliation in confined space in the presence of concentrated sodium hydroxide as the electrolyte, yielding ∼100% low-defect (the D band to G band intensity ratio, I D /I G = 0.26) graphene sheets. Furthermore, ozone was first detected with ozone test strips, and the effect of ozone on the exfoliation of graphite foil and the microstructure of the as-prepared graphene sheets was investigated. Findings indicate that upon applying a low voltage (3 V) on the graphite foil partially coated with paraffin wax that the coating can prevent the insufficiently intercalated graphite sheets from prematurely peeling off from the graphite electrode thereby affording few-layer (graphene sheets in a yield of as much as 60%. Besides, the ozone generated during the electrochemical exfoliation process plays a crucial role in the exfoliation of graphite, and the amount of defect in the as-prepared graphene sheets is dependent on electrolytic potential and electrode distance. Moreover, the graphene-based transparent conductive films prepared by simple modified vacuum filtration exhibit an excellent transparency and a low sheet resistance after being treated with NH 4 NO 3 and annealing (∼1.21 kΩ/□ at ∼72.4% transmittance).

  11. Uniform hexagonal graphene flakes and films grown on liquid copper surface.

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-05-22

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.

  12. Plasmonic thin film InP/graphene-based Schottky-junction solar cell using nanorods

    Abedin Nematpour

    2018-03-01

    Full Text Available Herein, the design and simulation of graphene/InP thin film solar cells with a novel periodic array of nanorods and plasmonic back-reflectors of the nano-semi sphere was proposed. In this structure, a single-layer of the graphene sheet was placed on the vertical nanorods of InP to form a Schottky junction. The electromagnetic field was determined using solving three-dimensional Maxwell's equations discretized by the finite difference method (FDM. The enhancement of light trapping in the absorbing layer was illustrated, thereby increasing the short circuit current to a maximum value of 31.57 mA/cm2 with nanorods having a radius of 400 nm, height of 1250 nm, and nano-semi sphere radius of 50 nm, under a solar irradiation of AM1.5G. The maximum ultimate efficiency was determined to be 45.8% for an angle of incidence of 60°. This structure has shown a very good light trapping ability when graphene and ITO layers were used at the top and as a back-reflector in the proposed photonic crystal structure of the InP nanorods. Thence, this structure improves the short-circuit current density and the ultimate efficiency of 12% and 2.7%, respectively, in comparison with the InP-nanowire solar cells.

  13. High Performances of Artificial Nacre-Like Graphene Oxide-Carrageenan Bio-Nanocomposite Films.

    Zhu, Wenkun; Chen, Tao; Li, Yi; Lei, Jia; Chen, Xin; Yao, Weitang; Duan, Tao

    2017-05-16

    This study was inspired by the unique multi-scale and multi-level 'brick-and-mortar' (B&M) structure of nacre layers. We prepared the B&M, environmentally-friendly graphene oxide-carrageenan (GO-Car) nanocomposite films using the following steps. A natural polyhydroxy polymer, carrageenan, was absorbed on the surface of monolayer GO nanosheets through hydrogen-bond interactions. Following this, a GO-Car hybridized film was produced through a natural drying process. We conducted structural characterization in addition to analyzing mechanical properties and cytotoxicity of the films. Scanning electron microscope (SEM) and X-ray diffraction (XRD) analyses showed that the nanocomposite films had a similar morphology and structure to nacre. Furthermore, the results from Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Thermogravimetric (TG/DTG) were used to explain the GO-Car interaction. Analysis from static mechanical testers showed that GO-Car had enhanced Young's modulus, maximum tensile strength and breaking elongation compared to pure GO. The GO-Car nanocomposite films, containing 5% wt. of Car, was able to reach a tensile strength of 117 MPa. The biocompatibility was demonstrated using a RAW264.7 cell test, with no significant alteration found in cellular morphology and cytotoxicity. The preparation process for GO-Car films is simple and requires little time, with GO-Car films also having favorable biocompatibility and mechanical properties. These advantages make GO-Car nanocomposite films promising materials in replacing traditional petroleum-based plastics and tissue engineering-oriented support materials.

  14. High Performances of Artificial Nacre-Like Graphene Oxide-Carrageenan Bio-Nanocomposite Films

    Wenkun Zhu

    2017-05-01

    Full Text Available This study was inspired by the unique multi-scale and multi-level ‘brick-and-mortar’ (B&M structure of nacre layers. We prepared the B&M, environmentally-friendly graphene oxide-carrageenan (GO-Car nanocomposite films using the following steps. A natural polyhydroxy polymer, carrageenan, was absorbed on the surface of monolayer GO nanosheets through hydrogen-bond interactions. Following this, a GO-Car hybridized film was produced through a natural drying process. We conducted structural characterization in addition to analyzing mechanical properties and cytotoxicity of the films. Scanning electron microscope (SEM and X-ray diffraction (XRD analyses showed that the nanocomposite films had a similar morphology and structure to nacre. Furthermore, the results from Fourier transform infrared spectroscopy (FT-IR, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS and Thermogravimetric (TG/DTG were used to explain the GO-Car interaction. Analysis from static mechanical testers showed that GO-Car had enhanced Young’s modulus, maximum tensile strength and breaking elongation compared to pure GO. The GO-Car nanocomposite films, containing 5% wt. of Car, was able to reach a tensile strength of 117 MPa. The biocompatibility was demonstrated using a RAW264.7 cell test, with no significant alteration found in cellular morphology and cytotoxicity. The preparation process for GO-Car films is simple and requires little time, with GO-Car films also having favorable biocompatibility and mechanical properties. These advantages make GO-Car nanocomposite films promising materials in replacing traditional petroleum-based plastics and tissue engineering-oriented support materials.

  15. Direct Growth of Graphene Films on 3D Grating Structural Quartz Substrates for High-Performance Pressure-Sensitive Sensors.

    Song, Xuefen; Sun, Tai; Yang, Jun; Yu, Leyong; Wei, Dacheng; Fang, Liang; Lu, Bin; Du, Chunlei; Wei, Dapeng

    2016-07-06

    Conformal graphene films have directly been synthesized on the surface of grating microstructured quartz substrates by a simple chemical vapor deposition process. The wonderful conformality and relatively high quality of the as-prepared graphene on the three-dimensional substrate have been verified by scanning electron microscopy and Raman spectra. This conformal graphene film possesses excellent electrical and optical properties with a sheet resistance of 80% (at 550 nm), which can be attached with a flat graphene film on a poly(dimethylsiloxane) substrate, and then could work as a pressure-sensitive sensor. This device possesses a high-pressure sensitivity of -6.524 kPa(-1) in a low-pressure range of 0-200 Pa. Meanwhile, this pressure-sensitive sensor exhibits super-reliability (≥5000 cycles) and an ultrafast response time (≤4 ms). Owing to these features, this pressure-sensitive sensor based on 3D conformal graphene is adequately introduced to test wind pressure, expressing higher accuracy and a lower background noise level than a market anemometer.

  16. Fabrication of bi-layer graphene and theoretical simulation for its possible application in thin film solar cell.

    Behura, Sanjay K; Mahala, Pramila; Nayak, Sasmita; Yang, Qiaoqin; Mukhopadhyay, Indrajit; Janil, Omkar

    2014-04-01

    High quality graphene film is fabricated using mechanical exfoliation of highly-oriented pyrolytic graphite. The graphene films on glass substrates are characterized using field-emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV-vis spectroscopy and Fourier transform infrared spectroscopy. A very high intensity ratio of 2D to G-band (to approximately 1.67) and narrow 2D-band full-width at half maximum (to approximately 40 cm(-1)) correspond to the bi-layer graphene formation. The bi-layer graphene/p-GaN/n-InGaN/n-GaN/GaN/sAl2O3 system is studied theoretically using TCAD Silvaco software, in which the properties of exfoliated bi-layer graphene are used as transparent and conductive film, and the device exhibits an efficiency of 15.24% compared to 13.63% for ITO/p-GaN/n-InGaN/n-GaN/GaN/Al2O3 system.

  17. Assessment of morphology and property of graphene oxide-hydroxypropylmethylcellulose nanocomposite films.

    Ghosh, Tapas Kumar; Gope, Shirshendu; Mondal, Dibyendu; Bhowmik, Biplab; Mollick, Md Masud Rahaman; Maity, Dipanwita; Roy, Indranil; Sarkar, Gunjan; Sadhukhan, Sourav; Rana, Dipak; Chakraborty, Mukut; Chattopadhyay, Dipankar

    2014-05-01

    Graphene oxide (GO) was synthesized by Hummer's method and characterized by using Fourier transform infrared spectroscopy and Raman spectroscopy. The as synthesized GO was used to make GO/hydroxypropylmethylcellulose (HPMC) nanocomposite films by the solution mixing method using different concentrations of GO. The nanocomposite films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and thermo-gravimetric analysis. Mechanical properties, water absorption property and water vapor transmission rate were also measured. XRD analysis showed the formation of exfoliated HPMC/GO nanocomposites films. The FESEM results revealed high interfacial adhesion between the GO and HPMC matrix. The tensile strength and Young's modulus of the nanocomposite films containing the highest weight percentage of GO increased sharply. The thermal stability of HPMC/GO nanocomposites was slightly better than pure HPMC. The water absorption and water vapor transmission rate of HPMC film was reduced with the addition of up to 1 wt% GO. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Plasma-treated Langmuir-Blodgett reduced graphene oxide thin film for applications in biophotovoltaics

    Ibrahim, Siti Aisyah; Jaafar, Muhammad Musoddiq; Ng, Fong-Lee; Phang, Siew-Moi; Kumar, G. Ghana; Majid, Wan Haliza Abd; Periasamy, Vengadesh

    2018-01-01

    The surface optimization and structural characteristics of Langmuir-Blodgett (LB) reduced graphene oxide thin (rGO) film treated by argon plasma treatment were studied. In this work, six times deposition of rGO was deposited on a clean glass substrate using the LB method. Plasma technique involving a variation of plasma power, i.e., 20, 60, 100 and 140 W was exposed to the LB-rGO thin films under argon ambience. The plasma treatment generally improves the wettability or hydrophilicity of the film surface compared to without treatment. Maximum wettability was observed at a plasma power of 20 W, while also increasing the adhesion of the rGO film with the glass substrate. The multilayer films fabricated were characterized by means of spectroscopic, structural and electrical studies. The treatment of rGO with argon plasma was found to have improved its biocompatibility, and thus its performance as an electrode for biophotovoltaic devices has been shown to be enhanced considerably.

  19. Electromagnetic Properties of Graphene-like Films in Ka-Band

    Sofia Voronovich

    2014-05-01

    Full Text Available We studied electromagnetic properties of pyrolytic carbon (PyC films with thicknesses from 9 nm to 110 nm. The PyC films consisted of randomly oriented and intertwined graphene flakes with a typical size of a few nanometers were synthesized by chemical vapor deposition (CVD at 1100 °C on a quartz substrate. The reflectance and transmittance of these films in Ka-band, 26–37 GHz, were studied both experimentally and theoretically. The discovered remarkably high absorption loss of up to 50% of incident power, along with chemical stability, makes PyC films attractive for electromagnetic (EM interference shielding in space and airspace communication systems, as well as in portable electronic devices occupying this frequency slot. Since, in practical applications, the PyC film should be employed for coating of dielectric surfaces, two important issues to be addressed are: (i which side (front or back of the substrate should be covered to ensure maximum absorption losses; and (ii the frequency dependence of absorbance/transmittance/reflectance of binary PyC/quartz structures in the Ka-band.

  20. Detachment of CVD-grown graphene from single crystalline Ni films by a pure gas phase reaction

    Zeller, Patrick; Henß, Ann-Kathrin; Weinl, Michael; Diehl, Leo; Keefer, Daniel; Lippmann, Judith; Schulz, Anne; Kraus, Jürgen; Schreck, Matthias; Wintterlin, Joost

    2016-11-01

    Despite great previous efforts there is still a high need for a simple, clean, and upscalable method for detaching epitaxial graphene from the metal support on which it was grown. We present a method based on a pure gas phase reaction that is free of solvents and polymer supports and avoids mechanical transfer steps. The graphene was grown on 150 nm thick, single crystalline Ni(111) films on Si(111) wafers with YSZ buffer layers. Its quality was monitored by using low energy electron diffraction and scanning tunneling microscopy. The gas phase etching uses a chemical transport reaction, the so-called Mond process, based on the formation of gaseous nickel tetracarbonyl in 1 bar of CO at 75 °C and by adding small amounts of sulfide catalysts. X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy were used to characterize the detached graphene. It was found that the method successfully removes the nickel from underneath the graphene layer, so that the graphene lies on the insulating oxide buffer layer. Small residual particles of nickel sulfide and cracks in the obtained graphene layer were identified. The defect concentrations were comparable to graphene samples obtained by wet chemical etching and by the bubbling transfer.

  1. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Karthikeyan, B., E-mail: bkarthik@nitt.edu; Hariharan, S. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Udayabhaskar, R. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 015 (India); Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, University of Concepcion, Concepcion 4070386 (Chile)

    2016-07-11

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  2. Tuning optical and three photon absorption properties in graphene oxide-polyvinyl alcohol free standing films

    Karthikeyan, B.; Hariharan, S.; Udayabhaskar, R.

    2016-01-01

    We report the optical and nonlinear optical properties of graphene oxide (GO)-polyvinyl alcohol (PVA) free standing films. The composite polymer films were prepared in ex-situ method. The variation in optical absorption spectra and optical constants with the amount of GO loading was noteworthy from the optical absorption spectroscopic studies. Nonlinear optical studies done at 532 nm using 5 ns laser pulses show three photon absorption like behaviour. Both steady state and time resolved fluorescence studies reveal that the GO was functioning as a pathway for the decay of fluorescence from PVA. This is attributed to the energy level modifications of GO through hydroxyl groups with PVA. Raman spectroscopy also supports the interaction between GO and PVA ions through OH radicals.

  3. The Field Emission Properties of Graphene Aggregates Films Deposited on Fe-Cr-Ni alloy Substrates

    Zhanling Lu

    2010-01-01

    Full Text Available The graphene aggregates films were fabricated directly on Fe-Cr-Ni alloy substrates by microwave plasma chemical vapor deposition system (MPCVD. The source gas was a mixture of H2 and CH4 with flow rates of 100 sccm and 12 sccm, respectively. The micro- and nanostructures of the samples were characterized by Raman scattering spectroscopy, field emission scanning electron microscopy (SEM, and transparent electron microscopy (TEM. The field emission properties of the films were measured using a diode structure in a vacuum chamber. The turn-on field was about 1.0 V/m. The current density of 2.1 mA/cm2 at electric field of 2.4 V/m was obtained.

  4. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Chen, C.-T.; Gajek, M.; Raoux, S. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Casu, E. A. [IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Politecnico di Torino, Turin 10129 (Italy)

    2013-07-15

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  5. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Chen, C.-T.; Gajek, M.; Raoux, S.; Casu, E. A.

    2013-01-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications

  6. Low-damage high-throughput grazing-angle sputter deposition on graphene

    Chen, C.-T.; Casu, E. A.; Gajek, M.; Raoux, S.

    2013-07-01

    Despite the prevalence of sputter deposition in the microelectronics industry, it has seen very limited applications for graphene electronics. In this letter, we report systematic investigation of the sputtering induced damages in graphene and identify the energetic sputtering gas neutrals as the primary cause of graphene disorder. We further demonstrate a grazing-incidence sputtering configuration that strongly suppresses fast neutral bombardment and retains graphene structure integrity, creating considerably lower damage than electron-beam evaporation. Such sputtering technique yields fully covered, smooth thin dielectric films, highlighting its potential for contact metals, gate oxides, and tunnel barriers fabrication in graphene device applications.

  7. Nitrogen-doped graphene films from simple photochemical doping for n-type field-effect transistors

    Li, Xinyu [College of Science, Guilin University of Technology, Guilin 541004 (China); Department of Physics and Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Tang, Tao; Li, Ming, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [College of Science, Guilin University of Technology, Guilin 541004 (China); He, Xiancong, E-mail: liming928@163.com, E-mail: lixinyu5260@163.com [School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167 (China)

    2015-01-05

    Highly nitrogen-doped GO (NGO) and n-type graphene field effect transistor (FET) have been achieved by simple irradiation of graphene oxide (GO) thin films in NH{sub 3} atmosphere. The electrical properties of the NGO film were performed on electric field effect measurements, and it displays an n-type FET behavior with a charge neutral point (Dirac point) located at around −8 V. It is suggested that the amino-like nitrogen (N-A) mainly contributes to the n-type behavior. Furthermore, compared to the GO film irradiated in Ar atmosphere, the NGO film is much more capable to improve the electrical conductivity. It may attribute to nitrogen doping and oxygen reduction, both of which can effectively enhance the electrical conductivity.

  8. Fabrication of reduced graphene oxide nanosheets doped PVA composite films for tailoring their opto-mechanical properties

    Aslam, Muhammad; Kalyar, Mazhar Ali; Raza, Zulfiqar Ali

    2017-06-01

    Laminar graphene nanosheets have raised passionate attention due to their incredible physico-chemical properties. Its wide-scale, high-yield production at low-cost has made it possible to produce top class promising versatile polymer nanocomposites. Reduced graphene oxide (RGO) nanosheets were incorporated to prepare optically tunable and high mechanical strength polymer nanocomposite films. RGO-doped poly(vinyl alcohol) (PVA) nanocomposite films were prepared via solution casting. Low level RGO doping significantly altered the structural, optical and mechanical properties of pure PVA films. Most of the band structure parameters like direct/indirect band gap, band tail, refractive index, dielectric constant, optical conductivity and dispersion parameters were investigated in detail for the first time. Tauc's, Wemple-DiDomenico, Helpin-Tsai and mixture rule models were employed to investigate optical and mechanical parameters. The applied models reinforced the experimental results in the present study. Advanced analytical techniques were engaged to characterize the nanocomposites films.

  9. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  10. Fabrication and electrochemical capacitance of hierarchical graphene/polyaniline/carbon nanotube ternary composite film

    Lu Xiangjun; Dou Hui; Yang Sudong; Hao Liang; Zhang Luojiang; Shen Laifa; Zhang Fang; Zhang Xiaogang

    2011-01-01

    Graphical abstract: A hierarchical film with coaxial polyaniline/carbon nanotube (PANI/CNT) nanocables uniformly sandwiched between graphene (GN) sheets was prepared by filtration of the complex dispersion of graphite oxide (GO) and PANI/CNT. Highlights: → A film composed of GN sheets, PANI and CNTs was fabricated. → The coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. → The unique structure facilitates contact between electrolyte and electrode materials. → Each component provides unique function to achieve superior electrochemical properties. - Abstract: A film composed of graphene (GN) sheets, polyaniline (PANI) and carbon nanotubes (CNTs) has been fabricated by reducing a graphite oxide (GO)/PANI/CNT precursor prepared by flow-directed assembly from a complex dispersion of GO and PANI/CNT, followed by reoxidation and redoping of the reduced PANI in the composite to restore the conducting PANI structure. Scanning electron microscope images indicate that the ternary composite film is a layered structure with coaxial PANI/CNT nanocables uniformly sandwiched between the GN sheets. Such novel hierarchical structure with high electrical conductivity perfectly facilitates contact between electrolyte ions and PANI for faradaic energy storage and efficiently utilizes the double-layer capacitance at the electrode-electrolyte interfaces. The specific capacitance of the GN/PANI/CNT estimated by galvanostatic charge/discharge measurement is 569 F g -1 (or 188 F cm -3 for volumetric capacitance) at a current density of 0.1 A g -1 . In addition, the GN/PANI/CNT exhibits good rate capability (60% capacity retention at 10 A g -1 ) and superior cycling stability (4% fade after 5000 continuous charge/discharge cycles).

  11. Graphene: from functionalization to devices

    Tejeda, Antonio; Soukiassian, Patrick G.

    2014-03-01

    The year 2014 marks the first decade of the rise of graphene. Graphene, a single atomic layer of carbon atoms in sp2 bonding configuration having a honeycomb structure, has now become a well-known and well-established material. Among some of its many outstanding fundamental properties, one can mention a very high carrier mobility, a very large spin diffusion length, unsurpassed mechanical properties as graphene is the strongest material ever measured and an exceptional thermal conductivity scaling more than one order of magnitude above that of copper. After the first years of the graphene rush, graphene growth is now well controlled using various methods like epitaxial growth on silicon carbide substrate, chemical vapour deposition (CVD) or plasma techniques on metal, insulator or semiconductor substrates. More applied research is now taking over the initial studies on graphene production. Indeed, graphene is a promising material for many advanced applications such as, but not limited to, electronic, spintronics, sensors, photonics, micro/nano-electromechanical (MEMS/NEMS) systems, super-capacitors or touch-screen technologies. In this context, this Special Issue of the Journal of Physics D: Applied Physics on graphene reviews some of the recent achievements, progress and prospects in this field. It includes a collection of seventeen invited articles covering the current status and future prospects of some selected topics of strong current interest. This Special Issue is organized in four sections. The first section is dedicated to graphene devices, and opens with an article by de Heer et al on an investigation of integrating graphene devices with silicon complementary metal-oxide-semiconductor (CMOS) technology. Then, a study by Svintsov et al proposes a lateral all-graphene tunnel field-effect transistor (FET) with a high on/off current switching ratio. Next, Tsukagoshi et al present how a band-gap opening occurs in a graphene bilayer by using a perpendicular

  12. Flexible and Transparent Plastic Electrodes Composed of Reduced Graphene Oxide/Polyaniline Films for Supercapacitor Application

    Sarker, Ashis K.; Hong, Jongdal

    2014-01-01

    In this article, we described about the preparation and electrochemical properties of a flexible energy storage system based on a plastic polyethylene terephthalate (PET) substrate. The PET treated with UV/ozone was fabricated with multilayer films composed of 30 polyaniline (PANi)/graphene oxide (GO) bilayers using layerby-layer assembly of positively charged PANi and negatively charged GO. The conversion of GO to the reduced graphene oxide (RGO) in the multilayer film was achieved using hydroiodic acid vapor at 100 .deg. C, whereby PANi structure remained nearly unchanged except a little reduction of doping state. Cyclic voltammetry and charge/discharge curves of 30 PANi/RGO bilayers on PET substrate (shorten to PANi-RGO 30 /PET) exhibited an excellent volumetric capacitance, good cycling stability, and rapid charge/discharge rates despite no use of any metal current collectors. The specific capacitance from charge/discharge curve of the PANi-RGO 30 /PET electrode was found to be 529 F/cm 3 at a current density of 3 A/cm 3 , which is one of the best values yet achieved among carbon-based materials including conducting polymers. Furthermore, the intrinsic electrical resistance of the PANi-RGO 30 /PET electrodes varied within 20% range during 200 bending cycles at a fixed bend radius of 2.2 mm, indicating the increase in their flexibility by a factor of 225 compared with the ITO/PET electrode

  13. Flow and heat transfer in water based liquid film fluids dispensed with graphene nanoparticles

    Zuhra, Samina; Khan, Noor Saeed; Khan, Muhammad Altaf; Islam, Saeed; Khan, Waris; Bonyah, Ebenezer

    2018-03-01

    The unsteady flow and heat transfer characteristics of electrically conducting water based thin liquid film non-Newtonian (Casson and Williamson) nanofluids dispensed with graphene nanoparticles past a stretching sheet are considered in the presence of transverse magnetic field and non-uniform heat source/sink. Embedding the graphene nanoparticles effectively amplifies the thermal conductivity of Casson and Williamson nanofluids. Ordinary differential equations together with the boundary conditions are obtained through similarity variables from the governing equations of the problem, which are solved by the HAM (Homotopy Analysis Method). The solution is expressed through graphs and illustrated which show the influences of all the parameters. The convergence of the HAM solution for the linear operators is obtained. Favorable comparison with previously published research paper is performed to show the correlation for the present work. Skin friction coefficient and Nusselt number are presented through Tables and graphs which show the validation for the achieved results demonstrating that the thin liquid films results from this study are in close agreement with the results reported in the literature. Results achieved by HAM and residual errors are evaluated numerically, given in Tables and also depicted graphically which show the accuracy of the present work.

  14. Significant efficiency enhancement in thin film solar cells using laser beam-induced graphene transparent conductive electrodes

    Thekkekara, L. V.; Cai, Bouyan

    2018-01-01

    Thin film solar cells have been attractive for decades in advanced green technology platforms due to its possibilities to be integrated with buildings and on-chip applications. However, the bottleneck issues involved to consider the current solar cells as a major electricity source includes the lower efficiencies and cost-effectiveness. We numerically demonstrate the concept of the absorption enhancement in thin-film amorphous silicon solar cells using the laser beam-induced graphene material...

  15. Bioinspired effective prevention of restacking in multilayered graphene films: towards the next generation of high-performance supercapacitors

    Yang, Xiaowei; Zhu, Junwu; Qiu, Ling; Li, Dan [Department of Materials Engineering, ARC Centre of Excellence for Electromaterials Science, Monash University, VIC 3800 (Australia)

    2011-07-05

    A simple, bioinspired approach to effectively prevent the restacking of chemically converted graphene sheets in multilayered films is presented. The method enables the creation of a new generation of supercapacitors that combine high energy density, high power density, and high operation rates. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. A photoelectrochemical (PEC) study on graphene oxide based hematite thin films heterojunction (R-GO/Fe2O3)

    Sharma, Poonam; Zachariah, Michael; Ehrman, Sheryl; Shrivastava, Rohit; Dass, Sahab; Satsangi, Vibha; Michael Zachariah, Sheryl Ehrman Collaboration; Rohit Shrivastava, Sahab Dass Collaboration; Vibha R Satsangi, Poonam Sharma Team

    2013-03-01

    Graphene has an excellent electronic conductivity, a high theoretical surface area of 2630 m2/g and excellent mechanical properties and, thus, is a promising component for high-performance electrode materials. Following this, GO has been used to modify the PEC response of photoactive material hematite thin films in PEC cell. A reduced graphene oxide/iron oxide (R-GO/Fe2O3) thin film structure has been successfully prepared on ITO by directly growing iron oxide particles on the thermally reduced graphene oxide sheets prepared from suspension of exfoliated graphene oxide. R-GO/Fe2O3 thin films were tested in PEC cell and offered ten times higher photocurrent density than pristine Fe2O3 thin film sample. XRD, SEM, EDS, UV-Vis, Mott-Schottky and Raman studies were carried out to study spectro-electrochemical properties. Enhanced PEC performance of these photoelectrodes was attributed to its porous morphology, improved conductivity upon favorable carrier transfer across the oxides interface.

  17. A simple route to Develop Highly porous Nano Polypyrrole/Reduced Graphene Oxide Composite film for Selective Determination of Dopamine

    Daniel Arulraj, Abraham; Arunkumar, Arumugam; Vijayan, Muthunanthevar; Balaji Viswanath, Kamatchirajan; Vasantha, Vairathevar Sivasamy

    2016-01-01

    A highly selective sensor was developed for dopamine with electrochemically treated sodium dodecyl benzene sulfonate doped nano polypyrrole (ET-SDBS-NPPy)/reduced graphene oxide (RGO) film. First, graphene oxide (GO) was reduced on the electrode surface electrochemically and then, SDBS-NPPy film was polymerized electrochemically on the ERGO coated GCE and bare GCE also. The SDBS-NPPy/ERGO and SDBS-NPPy films were treated electrochemically in phosphate buffer solution to replace macro SDBS- anions by smaller phosphate anions. Then, the physical properties of the above composite films were characterized by scanning electron microscope (SEM) and water wettability test. The replacement of SDBS- anions by phosphate anions leaves porous structure in the polymer films and also increases the hydrophobicity in the films. Then, these composite films were applied for the determination of dopamine in the presence of ascorbic acid and uric acid. Under the optimal conditions, the linear range for dopamine detection is 0.1 μM-100.0 μM with the detection limit of 20 nM at S/N = 3. Generally, conducting polypyrrole film could sense ascorbic acid and dopamine simultaneously. However, we have proposed a simple route to synthesis a porous and hydrophobic polypyrrole composite film for selective determination of dopamine in the presence of higher concentration (five orders) of ascorbic acid and uric acid.

  18. Synthesis of high quality graphene on capped (1 1 1) Cu thin films obtained by high temperature secondary grain growth on c-plane sapphire substrates

    Kim, Youngwoo; Moyen, Eric; Yi, Hemian; Avila, José; Chen, Chaoyu; Asensio, Maria C.; Lee, Young Hee; Pribat, Didier

    2018-07-01

    We propose a novel growth technique, in which graphene is synthesized on capped Cu thin films deposited on c-plane sapphire. The cap is another sapphire plate which is just laid upon the Cu thin film, in direct contact with it. Thanks to this ‘contact cap’, Cu evaporation can be suppressed at high temperature and the 400 nm-thick Cu films can be annealed above 1000 °C, resulting in (1 1 1)-oriented grains of millimeter size. Following this high temperature annealing, graphene is grown by chemical vapor deposition during the same pump-down operation, without removing the contact cap. The orientation and doping type of the as-grown graphene were first studied, using low energy electron diffraction, as well as high resolution angle-resolved photoemission spectroscopy. In particular, the orientation relationships between the graphene and copper thin film with respect to the sapphire substrate were precisely determined. We find that the graphene sheets exhibit a minimal rotational disorder, with ~90% of the grains aligned along the copper high symmetry direction. Detailed transport measurements were also performed using field-effect transistor structures. Carrier mobility values as high as 8460 cm2 V‑1 s‑1 have been measured on top gate transistors fabricated directly on the sapphire substrate, by etching the Cu film from underneath the graphene sheets. This is by far the best carrier mobility value obtained to date for graphene sheets synthesized on a thin film-type metal substrate.

  19. High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.

    Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon

    2017-08-31

    We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

  20. Graphene Oxide-TiO2 Nanocomposite Films for Electron Transport Applications

    Saleem, Abida; Ullah, Naveed; Khursheed, Kamran; Iqbal, Tahir; Shah, Saqlain A.; Asjad, Muhammad; Sarwar, Nazim; Saleem, Murtaza; Arshad, Muhammad

    2018-03-01

    Graphene oxide-titanium dioxide (GO-TiO2) nanocomposite thin films were prepared for application as the window layer of perovskite solar cells. Graphene oxide (GO) was prepared by a modified Hummer's method, and titanium dioxide (TiO2) nanoparticles were synthesized by hydrothermal solution method. Thin films of GO-TiO2 nanocomposite were prepared with different wt.% of GO by spin coating on indium tin oxide (ITO) substrate followed by annealing at 150°C. X-ray diffraction analysis revealed rutile phase of TiO2 nanostructures. The bandgap of the pure TiO2 thin film was found to be 3.5 eV, reducing to 2.9 eV for the GO-TiO2 nanocomposites with a red-shift towards higher wavelength. Furthermore, thermal postannealing at 400°C improved the transparency in the visible region and decreased the sheet resistance. Morphological and elemental analysis was performed by scanning electron microscopy and energy-dispersive x-ray spectroscopy, respectively. The current-voltage characteristic of the GO-TiO2 nanocomposites indicated Ohmic contact with the ITO substrate. The chemical composition of the as-synthesized GO-TiO2 nanocomposites was investigated by x-ray photoelectron spectroscopy (XPS). The results presented herein demonstrate a new, low-temperature solution-processing approach to obtain rGO-TiO2 composite material for use as the electron transport layer of perovskite solar cells.

  1. Large-scale and patternable graphene: direct transformation of amorphous carbon film into graphene/graphite on insulators via Cu mediation engineering and its application to all-carbon based devices

    Chen, Yu-Ze; Medina, Henry; Lin, Hung-Chiao; Tsai, Hung-Wei; Su, Teng-Yu; Chueh, Yu-Lun

    2015-01-01

    Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a-C) film surprisingly undergoes a noticeable transformation to crystalline graphene. Furthermore, the thickness of graphene could be controlled, depending on the thickness of the pre-deposited a-C film. The transformation mechanism was investigated and explained in detail. This approach enables development of a one-step process to fabricate electrical devices made of all carbon material, highlighting the uniqueness of the novel approach for developing graphene electronic devices. Interestingly, the carbon electrodes made directly on the graphene layer by our approach offer a good ohmic contact compared with the Schottky barriers usually observed on graphene devices using metals as electrodes.Chemical vapour deposition of graphene was the preferred way to synthesize graphene for multiple applications. However, several problems related to transfer processes, such as wrinkles, cleanness and scratches, have limited its application at the industrial scale. Intense research was triggered into developing alternative synthesis methods to directly deposit graphene on insulators at low cost with high uniformity and large area. In this work, we demonstrate a new concept to directly achieve growth of graphene on non-metal substrates. By exposing an amorphous carbon (a-C) film in Cu gaseous molecules after annealing at 850 °C, the carbon (a

  2. Growth and characterization of Al{sub 2}O{sub 3} films on fluorine functionalized epitaxial graphene

    Robinson, Zachary R., E-mail: ZRobinso@Brockport.edu [Department of Physics, The College at Brockport, Brockport, New York 14420 (United States); Jernigan, Glenn G.; Wheeler, Virginia D.; Hernández, Sandra C.; Eddy, Charles R. [U.S. Naval Research Laboratory, Washington, DC 20375 (United States); Mowll, Tyler R.; Ong, Eng Wen [College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany, New York 12203 (United States); Ventrice, Carl A. [College of Nanoscale Science, SUNY Polytechnic Institute, Albany, New York 12203 (United States); Geisler, Heike [Department of Chemistry and Biochemistry, SUNY Oneonta, Oneonta, New York 13820 (United States); Pletikosic, Ivo; Yang, Hongbo; Valla, Tonica [Brookhaven National Laboratory, Brookhaven, New York 11973 (United States)

    2016-08-21

    Intelligent engineering of graphene-based electronic devices on SiC(0001) requires a better understanding of processes used to deposit gate-dielectric materials on graphene. Recently, Al{sub 2}O{sub 3} dielectrics have been shown to form conformal, pinhole-free thin films by functionalizing the top surface of the graphene with fluorine prior to atomic layer deposition (ALD) of the Al{sub 2}O{sub 3} using a trimethylaluminum (TMA) precursor. In this work, the functionalization and ALD-precursor adsorption processes have been studied with angle-resolved photoelectron spectroscopy, low energy electron diffraction, and X-ray photoelectron spectroscopy. It has been found that the functionalization process has a negligible effect on the electronic structure of the graphene, and that it results in a twofold increase in the adsorption of the ALD-precursor. In situ TMA-dosing and XPS studies were also performed on three different Si(100) substrates that were terminated with H, OH, or dangling Si-bonds. This dosing experiment revealed that OH is required for TMA adsorption. Based on those data along with supportive in situ measurements that showed F-functionalization increases the amount of oxygen (in the form of adsorbed H{sub 2}O) on the surface of the graphene, a model for TMA-adsorption on graphene is proposed that is based on a reaction of a TMA molecule with OH.

  3. Main principles of passive devices based on graphene and carbon films in microwave-THz frequency range

    Kuzhir, Polina P.; Paddubskaya, Alesia G.; Volynets, Nadezhda I.; Batrakov, Konstantin G.; Kaplas, Tommi; Lamberti, Patrizia; Kotsilkova, Rumiana; Lambin, Philippe

    2017-07-01

    The ability of thin conductive films, including graphene, pyrolytic carbon (PyC), graphitic PyC (GrPyC), graphene with graphitic islands (GrI), glassy carbon (GC), and sandwich structures made of all these materials separated by polymer slabs to absorb electromagnetic radiation in microwave-THz frequency range, is discussed. The main physical principles making a basis for high absorption ability of these heterostructures are explained both in the language of electromagnetic theory and using representation of equivalent electrical circuits. The idea of using carbonaceous thin films as the main working elements of passive radiofrequency (RF) devices, such as shields, filters, polarizers, collimators, is proposed theoretically and proved experimentally. The important advantage of PyC, GrI, GrPyC, and GC is that, in contrast to graphene, they either can be easily deposited onto a dielectric substrate or are strong enough to allow their transfer from the catalytic substrate without a shuttle polymer layer. This opens a new avenue toward the development of a scalable protocol for cost-efficient production of ultralight electromagnetic shields that can be transferred to commercial applications. A robust design via finite-element method and design of experiment for RF devices based on carbon/graphene films and sandwiches is also discussed in the context of virtual prototyping.

  4. Liquid-phase exfoliated graphene self-assembled films: Low-frequency noise and thermal-electric characterization

    Tubon Usca, G.; Hernandez-Ambato, J.; Pace, C.; Caputi, L.S.; Tavolaro, A.

    2016-01-01

    Highlights: • Graphene was exfoliated in liquid phase also in the presence of zeolite 4A. • Films were obtained by drop-casting. • SEM, Raman, low-frequency noise and thermal electric measurements show that the presence of zeolite improves the quality of the FLG films. - Abstract: In few years, graphene has become a revolutionary material, leading not only to applications in various fields such as electronics, medicine and environment, but also to the production of new types of 2D materials. In this work, Liquid Phase Exfoliation (LPE) was applied to natural graphite by brief sonication or mixer treatment in suitable solvents, in order to produce Few Layers Graphene (FLG) suspensions. Additionally, zeolite 4A (Z4A) was added during the production of FLG flakes-based inks, with the aim of aiding the exfoliation process. Conductive films were obtained by drop casting three types of suspensions over Al 2 O 3 substrates with interdigitated electrodes, with total channel surface of 1.39 mm 2 . The morphology characterization resulted in the verification of the presence of thin self-assembled flakes. Raman studies gave evidence of 4 to 10 layers graphene flakes. Electrical measurements were performed to state the Low-Frequency Noise and Thermal-Electric characteristics of the samples. We observe interesting relations between sample preparation procedures and electrical properties.

  5. Design and optimization of the plasmonic graphene/InP thin-film solar-cell structure

    Nematpour, Abedin; Nikoufard, Mahmoud; Mehragha, Rouholla

    2018-06-01

    In this paper, a graphene/InP thin-film Schottky-junction solar cell with a periodic array of plasmonic back-reflector is proposed. In this structure, a single-layer graphene sheet is deposited on the surface of the InP to form a Schottky junction. Then, the layer stack of the proposed solar-cell is optimized to have a maximum optical absorption of 〈A W〉  =  0.985 (98.5%) and short-circuit current density of J sc  =  33.01 mA cm‑2.

  6. Characteristics of Reduced Graphene Oxide Quantum Dots for a Flexible Memory Thin Film Transistor.

    Kim, Yo-Han; Lee, Eun Yeol; Lee, Hyun Ho; Seo, Tae Seok

    2017-05-17

    Reduced graphene oxide quantum dot (rGOQD) devices in formats of capacitor and thin film transistor (TFT) were demonstrated and examined as the first trial to achieve nonambipolar channel property. In addition, through a gold nanoparticle (Au NP) layer embedded between the rGOQD active channel and dielectric layer, memory capacitor and TFT performances were realized by capacitance-voltage (C-V) hysteresis and gate program, erase, and reprogram biases. First, capacitor structure of the rGOQD memory device was constructed to examine memory charging effect featured in hysteretic C-V behavior with a 30 nm dielectric layer of cross-linked poly(vinyl alcohol). For the intervening Au NP charging layer, self-assembled monolayer (SAM) formation of the Au NP was executed to utilize electrostatic interaction by a dip-coating process under ambient environments with a conformal fabrication uniformity. Second, the rGOQD memory TFT device was also constructed in the same format of the Au NPs SAMs on a flexible substrate. Characteristics of the rGOQD TFT output showed novel saturation curves unlike typical graphene-based TFTs. However, The rGOQD TFT device reveals relatively low on/off ratio of 10 1 and mobility of 5.005 cm 2 /V·s. For the memory capacitor, the flat-band voltage shift (ΔV FB ) was measured as 3.74 V for ±10 V sweep, and for the memory TFT, the threshold voltage shift (ΔV th ) by the Au NP charging was detected as 7.84 V. In summary, it was concluded that the rGOQD memory device could accomplish an ideal graphene-based memory performance, which could have provided a wide memory window and saturated output characteristics.

  7. An Optoelectronic Sensor Configuration Using ZnO Thick Film for Detection of Methanol

    Shobhna DIXIT

    2007-08-01

    Full Text Available In the present paper sensitivity of a nanocrystalline ZnO thick film to methanol vapors is reported. The sensing mechanism is the modulation in the intensity of light reflected from glass film interface. Modulation occurs due to the change in refractive index of ZnO film upon adsorption of vapor molecules. The film has been characterized by XRD, SEM, and optical transmission studies. XRD pattern reveals polycrystalline structure of the film with grain size 33.5 nm.

  8. SnO{sub 2}/reduced graphene oxide composite films for electrochemical applications

    Bondarenko, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Mazanik, A.V., E-mail: mazanikalexander@gmail.com [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Streltsov, E.A. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus); Kulak, A.I., E-mail: kulak@igic.bas-net.by [Institute of General and Inorganic Chemistry, National Academy of Sciences of Belarus, Surganova str., 9/1, Minsk 220072 (Belarus); Korolik, O.V. [Belarusian State University, Nezalezhnastsi Av. 4, Minsk 220030 (Belarus)

    2015-12-15

    Highlights: • SnO{sub 2}/GO composites with mass fraction of carbon phase 0.01% ≤ w{sub C} ≤ 80% have been formed. • 400 °C annealing was applied for GO reduction in the composites. • SnO{sub 2}/rGO composites demonstrate a high electrocatalytic activity in anodic processes. • Exchange current density grows linearly with carbon phase concentration at w{sub C} ≤ 10%. - Abstract: SnO{sub 2}/GO (GO is graphene oxide) composite films with GO mass fraction w{sub C} ranging from 0.01 to 80% have been prepared using colloidal solutions. Heat treatment of SnO{sub 2}/GO films in Ar atmosphere at 400 °C leads to GO reduction accompanied by partial exfoliation and decreasing of the particle thickness. SnO{sub 2}/rGO (rGO is reduced GO) film electrodes demonstrate a high electrocatalytic activity in the anodic oxidation of inorganic (iodide-, chloride-, sulfite-anions) and organic (ascorbic acid) substances. The increase of the anodic current in these reactions is characterized by overpotential inherent to the individual rGO films and exchange current density grows linearly with rGO concentration at w{sub C} ≤ 10% indicating that the rGO particles in composites act as sites of electrochemical process. The SnO{sub 2}/rGO composite films, in which the chemically stable oxide matrix encapsulates the rGO inclusions, can be considered as a promising material for applied electrochemistry.

  9. Electrochemistry and electrocatalysis of myoglobin immobilized in sulfonated graphene oxide and Nafion films.

    Chen, Guiying; Sun, Hong; Hou, Shifeng

    2016-06-01

    In this study, sulfonated graphene oxide (SGO) was synthesized and characterized by Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). It was used to make Mb-SGO-Nafion composite films by coating myoglobin (Mb) on the glassy carbon electrodes (GCE). Positions of the Soret absorption bands suggested that Mb retained its native conformation in the films. Mb-SGO-Nafion film modified electrode showed a pair of well-defined and nearly reversible cyclic voltammetry peaks at around -0.39 V versus saturated calomel electrode (SCE) in pH 7.0 buffers, characteristic of heme Fe(III)/Fe(II) redox couples. Electrochemical parameters such as electron transfer rate constant (ks) and formal potential (E(o')) were estimated by fitting the data of square-wave voltammetry with nonlinear regression analysis. Experimental data demonstrated that the electron transfer between Mb and electrode was greatly facilitated and showed good electrocatalytic properties toward various substrates, such as H2O2 and NaNO2, with significant lowering of reduction overpotential. Copyright © 2016. Published by Elsevier Inc.

  10. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  11. Alcohol Recognition by Flexible, Transparent and Highly Sensitive Graphene-Based Thin-Film Sensors

    Xu, Xuezhu

    2017-06-22

    Chemical sensors detect a variety of chemicals across numerous fields, such as automobile, aerospace, safety, indoor air quality, environmental control, food, industrial production and medicine. We successfully assemble an alcohol-sensing device comprising a thin-film sensor made of graphene nanosheets (GNs) and bacterial cellulose nanofibers (BCNs). We show that the GN/BCN sensor has a high selectivity to ethanol by distinguishing liquid-phase or vapor-phase ethanol (C2H6O) from water (H2O) intelligently with accurate transformation into electrical signals in devices. The BCN component of the film amplifies the ethanol sensitivity of the film, whereby the GN/BCN sensor has 12400% sensitivity for vapor-phase ethanol compared to the pure GN sensor, which has only 21% sensitivity. Finally, GN/BCN sensors demonstrate fast response/recovery times and a wide range of alcohol detection (10-100%). The superior sensing ability of GN/BCN compared to GNs alone is due to the improved wettability of BCNs and the ionization of liquids. We prove a facile, green, low-cost route for the assembly of ethanol-sensing devices with potential for vast application.

  12. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  13. Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices

    Zanin, H., E-mail: hudsonzanin@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Saito, E., E-mail: esaito135@gmail.com [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil); Ceragioli, H.J., E-mail: helderjc@gmail.com [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Baranauskas, V., E-mail: vitor@dsif.fee.unicamp.br [Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e Computação, Universidade Estadual de Campinas, UNICAMP, Campinas 13083-970 (Brazil); Corat, E.J., E-mail: corat@las.inpe.br [Associated Laboratory of Sensors and Materials of the National Institute for Space Research, Av. dos Astronautas 1758, Sao Jose dos Campos CEP 12227-010, SP (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Graphene nanosheets were produced onto wire rods. • RGO and VACNT-O were evaluated and compared as supercapacitor electrode. • RGO and VACNT-O have structural and electrochemical properties quite similars. • The materials present good specific capacitance, energy storage and power delivery. - Abstract: Reduced graphene oxide (RGO) and vertically aligned carbon nanotubes (VACNT) superhydrophilic films were prepared by chemical vapor deposition techniques for electrical energy storage investigations. These electrodes were characterized in terms of their material and electrochemical properties by scanning electron microscopy (SEM), surface wettability, Fourier transform infrared spectroscopy (FTIR), energy dispersive and Raman spectroscopies, cyclic voltammetry (CV) and galvanostatic charge–discharge. We observed several physical structural and electrochemical similarities between these carbon-based materials with particular attention to very good specific capacitance, ultra-high energy storage and fast power delivery. Our results showed that the main difference between specific capacitance values is attributed to pseudocapacitive contribution and high density of multiwall nanotubes tips. In this work we have tested a supercapacitor device using the VACNT electrodes.

  14. Preparation of graphene-enhanced nickel-phosphorus composite films by ultrasonic-assisted electroless plating

    Yu, Qian; Zhou, Tianfeng; Jiang, Yonggang; Yan, Xing; An, Zhonglie; Wang, Xibin; Zhang, Deyuan; Ono, Takahito

    2018-03-01

    To improve the mechanical properties of nickel-phosphorus (Ni-P) mold material for glass molding, an ultrasonic-assisted electroless plating method is proposed for the synthesis of graphene-enhanced nickel-phosphorus (G-Ni-P) composite films on heat-resistant stainless steel (06Cr25Ni20). Graphene flakes are prepared by an electrochemical exfoliation method. The surface roughness of the as-plated G-Ni-P composite plating is Ra 2.84 μm, which is higher than that of the Ni-P plating deposited using the same method. After annealing at 400 ºC for 2 h, the main phase of the G-Ni-P composite is transformed to crystalline Ni3P with an average grain size of 32.8 nm. The Vickers hardness and Young's modulus of the G-Ni-P composite are increased by 8.0% and 8.2% compared with the values of Ni-P, respectively. The detailed plating process is of great significance for the fabrication of G-Ni-P mold materials with enhanced mechanical properties.

  15. An Amperometric Immunosensor Based on Graphene Composite Film and Protein a for Chlorpyrifos Detection

    Xiangyou Wang

    2014-09-01

    Full Text Available In this paper, an immunosensor was designed for chlorpyrifos detection, which was based on graphene-multi-walled carbon nanotubes-gold nanoparticle-chitosan (GR-MWCNTs-AuNPs- CHIT nanocomposite film. Protein A (SPA can combine with gold nanoparticles, which made anti- chlorpyrifos antibody immobilized orientedly, eventually the modified immunosensor was developed for the detection of chlorpyrifos residues. Under the optimized conditions, a regression equation: y=9.5676 lgC (ng/mL +18.164 (R2=0.9976 was obtained with a detection limit as low as 0.037 ng/mL. The proposed chlorpyrifos immunosensor exhibited high reproducibility, stability, and good selectivity and regeneration, it has the potential of real sample detection.

  16. Moisture barrier properties of single-layer graphene deposited on Cu films for Cu metallization

    Gomasang, Ploybussara; Abe, Takumi; Kawahara, Kenji; Wasai, Yoko; Nabatova-Gabain, Nataliya; Thanh Cuong, Nguyen; Ago, Hiroki; Okada, Susumu; Ueno, Kazuyoshi

    2018-04-01

    The moisture barrier properties of large-grain single-layer graphene (SLG) deposited on a Cu(111)/sapphire substrate are demonstrated by comparing with the bare Cu(111) surface under an accelerated degradation test (ADT) at 85 °C and 85% relative humidity (RH) for various durations. The change in surface color and the formation of Cu oxide are investigated by optical microscopy (OM) and X-ray photoelectron spectroscopy (XPS), respectively. First-principle simulation is performed to understand the mechanisms underlying the barrier properties of SLG against O diffusion. The correlation between Cu oxide thickness and SLG quality are also analyzed by spectroscopic ellipsometry (SE) measured on a non-uniform SLG film. SLG with large grains shows high performance in preventing the Cu oxidation due to moisture during ADT.

  17. Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing

    Veronika Schmiedova

    2017-01-01

    Full Text Available The article is focused on the study of the optical properties of inkjet-printed graphene oxide (GO layers by spectroscopic ellipsometry. Due to its unique optical and electrical properties, GO can be used as, for example, a transparent and flexible electrode material in organic and printed electronics. Spectroscopic ellipsometry was used to characterize the optical response of the GO layer and its reduced form (rGO, obtainable, for example, by reduction of prepared layers by either annealing, UV radiation, or chemical reduction in the visible range. The thicknesses of the layers were determined by a mechanical profilometer and used as an input parameter for optical modeling. Ellipsometric spectra were analyzed according to the dispersion model and the influence of the reduction of GO on optical constants is discussed. Thus, detailed analysis of the ellipsometric data provides a unique tool for qualitative and also quantitative description of the optical properties of GO thin films for electronic applications.

  18. Piezoresistive Pressure Sensor Based on Synergistical Innerconnect Polyvinyl Alcohol Nanowires/Wrinkled Graphene Film.

    Liu, Weijie; Liu, Nishuang; Yue, Yang; Rao, Jiangyu; Cheng, Feng; Su, Jun; Liu, Zhitian; Gao, Yihua

    2018-04-01

    Piezoresistive sensor is a promising pressure sensor due to its attractive advantages including uncomplicated signal collection, simple manufacture, economical and practical characteristics. Here, a flexible and highly sensitive pressure sensor based on wrinkled graphene film (WGF)/innerconnected polyvinyl alcohol (PVA) nanowires/interdigital electrodes is fabricated. Due to the synergistic effect between WGF and innerconnected PVA nanowires, the as-prepared pressure sensor realizes a high sensitivity of 28.34 kPa -1 . In addition, the device is able to discern lightweight rice about 22.4 mg (≈2.24 Pa) and shows excellent durability and reliability after 6000 repeated loading and unloading cycles. What is more, the device can detect subtle pulse beat and monitor various human movement behaviors in real-time. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of the incorporation of titanium dioxide (TiO{sub 2}) on the morphological, structural and electrical properties of Graphene oxide (GO) thin films

    Viana Junior, Emilson Ribeiro; Wegher, Gustavo; Deus, Jeferson Ferreira de, E-mail: emilsonjunior@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UFTPR), Curitiba (Brazil)

    2016-07-01

    Full text: Carbon based nanostructures, as Carbon Nanotubes (CNT), Graphene (G) and Graphene Oxide (GO) have been extensively studied in the last years due to their unique electrical and optical properties. Recent research show that graphene can be used to improve the dispersion and stabilization of metal and metal-oxide nanostructures. Titanium dioxide (TiO{sub 2}) has been studied due to its non-toxicity, chemical stability and optoelectronic properties. However, the recombination of photoinduced electrons and holes limits its use on optoelectronic devices. To improve the charge separation efficiency of TiO{sub 2}, much effort has been focused on TiO{sub 2} nanocomposites. In this work, thin films devices of GO and Graphene Oxide with TiO{sub 2} (GO-TiO{sub 2}) were prepared using an alternative chemical route based on the Hummer’s method. The morphology and crystalline structure of the GO and GO with TiO{sub 2} thin films was investigated by X-ray power diffraction (XRD) and scanning electron microscopy (SEM). Was found that the anatase TiO{sub 2} TF were incorporated on the GO structure. Ultraviolet-visible spectroscopy (UV-vis) and Fourier transform infrared spectroscopy (FTIR) were also performed in order to corroborate with the results of XRD and SEM obtained. The electrical characterization of the GO and GO-TiO{sub 2} TF were performed using the four-probe van der Pauw method. The resistivity, density and the mobility of the carriers in the TFs were determined as a function of temperature. It was found that the electrical resistivity, the concentration of the free-carriers, the activation energy, and the capacitance of the device decrease due to the incorporation of TiO{sub 2} on GO, but the mobility increases. Due to low values of the activation energy the density of carriers thermally induced was high enough that lead to a metal-to insulator transition near room temperature. The ratio TiO{sub 2}:GO will be studied, in order to provide the best

  20. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  1. Plasmonic metamaterial-based chemical converted graphene/TiO2/Ag thin films by a simple spray pyrolysis technique

    Kumar, Promod; Swart, H. C.

    2018-04-01

    Graphene based hybrid nanostructures have received special attention in both the scientific and technological development due to their unique physicochemical behavior, which make them attractive in various applications such as, batteries, supercapacitors, fuel cells, solar cells, photovoltaic devices and bio-sensors. In the present study, the role of plasmonic metamaterials in light trapping photovoltaics for inorganic semiconducting materials by a simple and low cost spray pyrolysis technique has been studied. The plasmonic metamaterials thin film has been fabricated by depositing chemically converted graphene (CCG) onto TiO2-Ag nanoparticles which has a low resistivity and a low electron-hole recombination probability. The localized surface plasmon resonance at the metal-dielectric interface for the Ag nanoparticles has been observed at 403 nm after depositing chemical converted graphene (CCG) on the TiO2-Ag thin film. The results suggest that the stacking order of the CCG/TiO2/Ag plasmonic metamaterials samples did not change the band gap of TiO2 while it changed the conductivity of the film. Thus the diffusion of the noble metals in the glass and TiO2 matrices based thin films can trap the light of a particular wavelength by mean of plasmonic resonance and may be useful for superior photovoltaic and optoelectronic applications.

  2. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Sun, Bolu; Gou, Xiaodan; Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping; Hu, Fangdi

    2017-01-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s −1 , respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10 −7 to 1.0 × 10 −4 mol/L with detection limit (S/N = 3)of 4.3 × 10 −8 mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM. • The proposed

  3. Direct electrochemistry and electrocatalysis of lobetyolin via magnetic functionalized reduced graphene oxide film fabricated electrochemical sensor

    Sun, Bolu [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Gou, Xiaodan [School of Chemistry and Chemical Engineering, Nanjing University, 210046 (China); Bai, Ruibin; Abdelmoaty, Ahmed Attia Ahmed; Ma, Yuling; Zheng, Xiaoping [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China); Hu, Fangdi, E-mail: hufd@lzu.edu.cn [School of Pharmacy, Lanzhou University, Lanzhou 730000 (China)

    2017-05-01

    A novel lobetyolin electrochemical sensor based on a magnetic functionalized reduced graphene oxide/Nafion nanohybrid film has been introduced in this work. The magnetic functionalized reduced graphene oxide was characterized by fourier transform infrared spectroscopy, atomic force microscope, X-ray diffraction, transmission electron microscopy and thermogravimetric analysis. The scanning electron microscopy characterized the morphology and microstructure of the prepared sensors, and the electrochemical effective surface areas of the prepared sensors were also calculated by chronocoulometry method. The electrochemical behavior of lobetyolin on the magnetic functionalized reduced graphene oxide/Nafion nanohybrid modified glassy carbon electrode was investigated by cyclic voltammetry and differential pulse voltammetry in a phosphate buffer solution of pH 6.0. The electron-transfer coefficient (α), electron transfer number (n), and electrode reaction rate constant (Κs) were calculated as 0.78, 0.73, and 4.63 s{sup −1}, respectively. Under the optimized conditions, the sensor based on magnetic functionalized reduced graphene oxide/Nafion showed a linear voltammetric response to the lobetyolin concentration at 1.0 × 10{sup −7} to 1.0 × 10{sup −4} mol/L with detection limit (S/N = 3)of 4.3 × 10{sup −8} mol/L. The proposed sensor also displayed acceptable reproducibility, long-term stability, and high selectivity, and performs well for analysis of lobetyolin in real samples. The voltammetric sensor was successfully applied to detect lobetyolin in Codonopsis pilosula with recovery values in the range of 96.12% –102.66%. - Graphical abstract: Schematic diagram of the synthesis of MrGO hybrid and the fabrication process of the MrGO/Nafion/GCE for determination of lobetyolin. Display Omitted - Highlights: • The MrGO/Nafion@GCE electrochemical sensor was successfully fabricated. • The prepared MrGO was characterized by AFM, XRD, FTIR, VSM, TEM and SEM.

  4. Graphene derivatives/Fe{sub 3}O{sub 4}/polymer nanocomposite films: Optical and electrical properties

    Hatel, Rhizlane [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco); Goumri, Meryem [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco); XLIM UMR 7252- University of Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Ratier, Bernard [XLIM UMR 7252- University of Limoges/CNRS, 123 Avenue Albert Thomas, 87060 Limoges Cedex (France); Baitoul, Mimouna, E-mail: baitoul@yahoo.fr [University Sidi Mohammed Ben Abdellah, Faculty of Sciences Dhar El Mahraz, Laboratory of Solid State Physics, Group of Polymers and Nanomaterials, PO Box 1796, Atlas, Fez 30000 (Morocco)

    2017-06-01

    This paper reports a simple solution casting method for the preparation of nanocomposite films in which graphene oxide (GO)/Fe{sub 3}O{sub 4} nanocomposites are incorporated into poly (vinyl alcohol) (PVA) matrix. The films obtained with different weight percent of GO/Fe{sub 3}O{sub 4} (0.5, 0.7 and 1 wt%) are subjected an in situ chemical and thermal reduction in order to explore the evolution and interactions between these components under different treatments and get an insight into on how this can affects the optical and electrical properties of these nanocomposites. Characterization was carried out using, UV–Vis absorption, Photoluminescence, electrical conductivity measurements, Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy. Strong covalent functionalization occurs between the polymer and graphene derivatives (GD)/Fe{sub 3}O{sub 4} hybrids. The experimental results obtained for our nanocomposites films exhibit significant enhancement in properties highlighted the efficiency of the in situ thermal reduction. The high absorption with strong photoluminescence and electrical conductivity achieved might promote these nanocomposites for opto-electronic devices in near future. - Highlights: • Novel inorganic-organic hybrid flexible films were successfully prepared. • Good interfacial interaction between the graphene/Fe{sub 3}O{sub 4} and the hydroxyl-rich PVA. • Optical and electrical properties of Graphene Derivatives/Fe{sub 3}O{sub 4}/PVA were investigated. • Thermally reduced GO/Fe{sub 3}O{sub 4}/PVA films show high absorption and strong photoluminescence.

  5. Incorporation of surface plasmon resonance with novel valinomycin doped chitosan-graphene oxide thin film for sensing potassium ion

    Zainudin, Afiq Azri; Fen, Yap Wing; Yusof, Nor Azah; Al-Rekabi, Sura Hmoud; Mahdi, Mohd Adzir; Omar, Nur Alia Sheh

    2018-02-01

    In this study, the combination of novel valinomycin doped chitosan-graphene oxide (C-GO-V) thin film and surface plasmon resonance (SPR) system for potassium ion (K+) detection has been developed. The novel C-GO-V thin film was deposited on the gold surface using spin coating technique. The system was used to monitor SPR signal for K+ in solution with and without C-GO-V thin film. The K+ can be detected by measuring the SPR signal when C-GO-V thin film is exposed to K+ in solution. The sensor produces a linear response for K+ ion up to 100 ppm with sensitivity and detection limit of 0.00948° ppm- 1 and 0.001 ppm, respectively. These results indicate that the C-GO-V film is high potential as a sensor element for K+ that has been proved by the SPR measurement.

  6. Low temperature synthesis and field emission characteristics of single to few layered graphene grown using PECVD

    Kumar, Avshish; Khan, Sunny; Zulfequar, M.; Harsh; Husain, Mushahid, E-mail: mush_reslab@rediffmail.com

    2017-04-30

    Highlights: • Graphene was synthesized by PECVD system at a low temperature of 600 °C. • From different characterization techniques, the presence of single and few layered graphene was confirmed. • X-ray diffraction pattern of the graphene showed single crystalline nature of the film. • The as-grown graphene films were observed extremely good field emitters with long term emission current stability. - Abstract: In this work, high-quality graphene has successfully been synthesized on copper (Cu) coated Silicon (Si) substrate at very large-area by plasma enhanced chemical vapor deposition system. This method is low cost and highly effective for synthesizing graphene relatively at low temperature of 600 °C. Electron microscopy images have shown that surface morphology of the grown samples is quite uniform consisting of single layered graphene (SLG) to few layered graphene (FLG). Raman spectra reveal that graphene has been grown with high-quality having negligible defects and the observation of G and G' peaks is also an indicative of stokes phonon energy shift caused due to laser excitation. Scanning probe microscopy image also depicts the synthesis of single to few layered graphene. The field emission characteristics of as-grown graphene samples were studied in a planar diode configuration at room temperature. The graphene samples were observed to be a good field emitter having low turn-on field, higher field amplification factor and long term emission current stability.

  7. Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe

    Buron, Jonas Christian Due; Pizzocchero, Filippo; Jessen, Bjarke Sørensen

    2014-01-01

    noninvasive conductance characterization methods: ultrabroadband terahertz time-domain spectroscopy and micro four-point probe, which probe the electrical properties of the graphene film on different length scales, 100 nm and 10 μm, respectively. Ultrabroadband terahertz time-domain spectroscopy allows......- and microscale electrical continuity of single layer graphene grown on centimeter-sized single crystal copper with that of previously studied graphene films, grown on commercially available copper foil, after transfer to SiO2 surfaces. The electrical continuity of the graphene films is analyzed using two....... Micro four-point probe resistance values measured on graphene grown on single crystalline copper in two different voltage-current configurations show close agreement with the expected distributions for a continuous 2D conductor, in contrast with previous observations on graphene grown on commercial...

  8. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  9. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  10. Polyaniline-Modified Oriented Graphene Hydrogel Film as the Free-Standing Electrode for Flexible Solid-State Supercapacitors.

    Du, Pengcheng; Liu, Huckleberry C; Yi, Chao; Wang, Kai; Gong, Xiong

    2015-11-04

    In this study, we report polyaniline (PANI)-modified oriented graphene hydrogel (OGH) films as the free-standing electrode for flexible solid-state supercapacitors (SCs). The OGH films are prepared by a facile filtration method using chemically converted graphene sheets and then introduced to PANI on the surface of OGH films by in situ chemical polymerization. The PANI-modified OGH films possess high flexibility, high electrical conductivity, and mechanical robustness. The flexible solid-state SCs based on the PANI-modified OGH films exhibit a specific capacitance of 530 F/g, keeping 80% of its original value up to 10 000 charge-discharge cycles at the current density of 10 A/g. Remarkably, the flexible solid-state SCs maintain ∼100% capacitance retention bent at 180° for 250 cycles. Moreover, the flexible solid-state SCs are further demonstrated to be able to light up a red-light-emitting diode. These results indicate that the flexible solid-state SCs based on PANI-modified OGH films as the free-standing electrode have potential applications as energy-storage devices.

  11. Radiation preparation of graphene/carbon nanotubes hybrid fillers for mechanical reinforcement of poly(vinyl alcohol) films

    Ma, Hui-Ling; Zhang, Long; Zhang, Youwei; Wang, Shuojue; Sun, Chao; Yu, Hongyan; Zeng, Xinmiao; Zhai, Maolin

    2016-01-01

    Graphene/carbon nanotubes (G/CNTs) hybrid fillers were synthesized by γ-ray radiation reduction of graphene oxide (GO) in presence of CNTs. The obtained hybrid fillers with three-dimensional (3D) interconnected network structure were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Poly(vinyl alcohol) (PVA) composite films with enhanced mechanical properties and thermal stability were subsequently prepared by solution blending of G/CNTs with PVA matrix. The tensile strength and Young's modulus of PVA composite films containing 1 wt% G/CNTs were measured to be 81.9 MPa and 3.9 GPa respectively, which were 56% and 33.6% higher than those of pure PVA. These substantial improvements could be attributed to the interconnected 3D structure of G/CNTs, homogeneous dispersion as well as the strong hydrogen-bonding interaction between G/CNTs and PVA macromolecular chains.

  12. Superstretchable Nacre-Mimetic Graphene/Poly(vinyl alcohol) Composite Film Based on Interfacial Architectural Engineering.

    Zhao, Nifang; Yang, Miao; Zhao, Qian; Gao, Weiwei; Xie, Tao; Bai, Hao

    2017-05-23

    Through designing hierarchical structures, particularly optimizing the chemical and architectural interactions at its inorganic/organic interface, nacre has achieved an excellent combination of contradictory mechanical properties such as strength and toughness, which is highly demanded yet difficult to achieve by most synthetic materials. Most techniques applied to develop nacre-mimetic composites have been focused on mimicking the "brick-and-mortar" structure, but the interfacial architectural features, especially the asperities and mineral bridges of "bricks", have been rarely concerned, which are of equal importance for enhancing mechanical properties of nacre. Here, we used a modified bidirectional freezing method followed by uniaxial pressing and chemical reduction to assemble a nacre-mimetic graphene/poly(vinyl alcohol) composite film, with both asperities and bridges introduced in addition to the lamellar layers to mimic the interfacial architectural interactions found in nacre. As such, we have developed a composite film that is not only strong (up to ∼150.9 MPa), but also tough (up to ∼8.50 MJ/m 3 ), and highly stretchable (up to ∼10.44%), difficult to obtain by other methods. This was all achieved by only interfacial architectural engineering within the traditional "brick-and-mortar" structure, without introducing a third component or employing chemical cross-linker as in some other nacre-mimetic systems. More importantly, we believe that the design principles and processing strategies reported here can also be applied to other material systems to develop strong and stretchable materials.

  13. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors

    Lu, Xiangjun; Dou, Hui; Yuan, Changzhou; Yang, Sudong; Hao, Liang; Zhang, Fang; Shen, Laifa; Zhang, Luojiang; Zhang, Xiaogang

    2012-01-01

    The flexible electrodes have important potential applications in energy storage of portable electronic devices for their powerful structural properties. In this work, unique flexible films with polypyrrole/carbon nanotube (PPy/CNT) composite homogeneously distributed between graphene (GN) sheets are successfully prepared by flow-assembly of the mixture dispersion of GN and PPy/CNT. In such layered structure, the coaxial PPy/CNT nanocables can not only enlarge the space between GN sheets but also provide pseudo-capacitance to enhance the total capacitance of electrodes. According to the galvanostatic charge/discharge analysis, the mass and volume specific capacitances of GN-PPy/CNT (52 wt% PPy/CNT) are 211 F g-1 and 122 F cm-3 at a current density of 0.2 A g-1, higher than those of the GN film (73 F g-1 and 79 F cm-3) and PPy/CNT (164 F g-1 and 67 F cm-3). Significantly, the GN-PPy/CNT electrode shows excellent cycling stability (5% capacity loss after 5000 cycles) due to the flexible GN layer and the rigid CNT core synergistical releasing the intrinsic differential strain of PPy chains during long-term charge/discharge cycles.

  14. Composite structure of ZnO films coated with reduced graphene oxide: structural, electrical and electrochemical properties

    Shuai, Weiqiang; Hu, Yuehui; Chen, Yichuan; Hu, Keyan; Zhang, Xiaohua; Zhu, Wenjun; Tong, Fan; Lao, Zixuan

    2018-02-01

    ZnO films coated with reduced graphene oxide (RGO-ZnO) were prepared by a simple chemical approach. The graphene oxide (GO) films transferred onto ZnO films by spin coating were reduced to RGO films by two steps (exposed to hydrazine vapor for 12 h and annealed at 600 °C). The crystal structures, electrical and photoluminescence properties of RGO-ZnO films on quartz substrates were systematically studied. The SEM images illustrated that RGO layers have successfully been coated on the ZnO films very tightly. The PL properties of RGO-ZnO were studied. PL spectra show two sharp peaks at 390 nm and a broad visible emission around 490 nm. The resistivity of RGO-ZnO films was measured by a Hall measurement system, RGO as nanofiller considerably decrease the resistivity of ZnO films. An electrode was fabricated, using RGO-ZnO films deposited on Si substrate as active materials, for super capacitor application. By comparison of different results, we conclude that the RGO-ZnO composite material couples possess the properties of super capacitor. Project supported by the National Natural Science Foundation of China (Nos. 61464005, 51562015), the Natural Science Foundation of Jiangxi Province (Nos. 20143ACB21004, 20151BAB212008, 20171BAB216015), the Jiangxi Province Foreign Cooperation Projects, China (No. 20151BDH80031), the Leader Training Object Project of Major Disciplines Academic and Technical of Jiangxi Province (No. 20123BCB22002), and the Key Technology R & D Program of the Jiangxi Provine of Science and Technology (No. 20171BBE50053).

  15. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.

    Singkammo, Suparat; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-02-11

    In this work, flame-spray-made SnO2 nanoparticles are systematically studied by doping with 0.1-2 wt % nickel (Ni) and loading with 0.1-5 wt % electrolytically exfoliated graphene for acetone-sensing applications. The sensing films (∼12-18 μm in thickness) were prepared by a spin-coating technique on Au/Al2O3 substrates and evaluated for acetone-sensing performances at operating temperatures ranging from 150 to 350 °C in dry air. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy and Raman spectroscopy demonstrated that Ni-doped SnO2 nanostructures had a spheriodal morphology with a polycrystalline tetragonal SnO2 phase, and Ni was confirmed to form a solid solution with SnO2 lattice while graphene in the sensing film after annealing and testing still retained its high-quality nonoxidized form. Gas-sensing results showed that SnO2 sensing film with 0.1 wt % Ni-doping concentration exhibited an optimal response of 54.2 and a short response time of ∼13 s toward 200 ppm acetone at an optimal operating temperature of 350 °C. The additional loading of graphene at 5 wt % into 0.1 wt % Ni-doped SnO2 led to a drastic response enhancement to 169.7 with a very short response time of ∼5.4 s at 200 ppm acetone and 350 °C. The superior gas sensing performances of Ni-doped SnO2 nanoparticles loaded with graphene may be attributed to the large specific surface area of the composite structure, specifically the high interaction rate between acetone vapor and graphene-Ni-doped SnO2 nanoparticles interfaces and high electronic conductivity of graphene. Therefore, the 5 wt % graphene loaded 0.1 wt % Ni-doped SnO2 sensor is a promising candidate for fast, sensitive and selective detection of acetone.

  16. Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection

    Loan, Phan Thi Kim; Wu, Dongqin; Ye, Chen; Li, Xiaoqing; Tra, Vu Thanh; Wei, Qiuping; Fu, Li; Yu, Aimin; Li, Lain-Jong; Lin, Cheng-Te

    2017-01-01

    The quality of graphene strongly affects the performance of graphene-based biosensors which are highly demanded for the sensitive and selective detection of biomolecules, such as DNA. This work reported a novel transfer process for preparing a

  17. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications

    Zhu, Jiayi; He, Junhui

    2012-05-01

    We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on PET showed a significant decrease in electrical conductivity. In addition, the graphene thin film had a smooth surface with tunable wettability.We report a new approach for the fabrication of flexible and transparent conducting thin films via the layer-by-layer (LbL) assembly of oppositely charged reduced graphene oxide (RGO) and the benign step-by-step post-treatment on substrates with a low glass-transition temperature, such as glass and poly(ethylene terephthalate) (PET). The RGO dispersions and films were characterized by means of atomic force microscopy, UV-visible absorption spectrophotometery, Raman spectroscopy, transmission electron microscopy, contact angle/interface systems and a four-point probe. It was found that the graphene thin films exhibited a significant increase in electrical conductivity after the step-by-step post-treatments. The graphene thin film on the PET substrate had a good conductivity retainability after multiple cycles (30 cycles) of excessively bending (bending angle: 180°), while tin-doped indium oxide (ITO) thin films on

  18. Preparation and properties of in situ amino-functionalized graphene oxide/polyimide composite films

    Lu, Yunhua; Hao, Jican; Xiao, Guoyong; Chen, Lin; Wang, Tonghua; Hu, Zhizhi

    2017-11-01

    The pure light-colored and transparent polyimide (PI) film was prepared from aromatic dianhydride 4,4‧-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and diamine 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (6FAPB) in the solvent of DMAc via two-step method. Graphene oxide (GO) was in situ grafted with 6FAPB and directly used as a functional inorganic nanofiller to further synthesize poly(amic acid) (PAA)/GO solution. Then, PI/GO composite films with different loadings of GO were prepared by the thermal imidization. The mechanical, thermal, optical, electrical, surface properties, and electrochemical behavior were characterized. The FTIR and XPS results indicate that amino groups can be successfully grafted on the surface of GO. The tensile strength and Young's modulus of the PI-1.0%GO composite film were increased to 118.4 MPa and 2.91 GPa, respectively, which was an approximate improvement of 30.8% and 39.9% compared with pure PI film. These PI/GO composites showed around 256 °C for the glass transition temperature, and around 535 °C for the 5% thermal decomposition temperature, respectively. However, the optical transmittance was significantly decreased from 81.5% (pure PI) to 0.8% (PI-1.0%GO). Besides, the electrical conductivity increased from 1.6 × 10-13 S/m (pure PI) to 2.5 × 10-9 S/m (PI-1.0%GO). Furthermore, when the incorporation of GO was 1.0 wt%, an obvious reduction from 1.08% (pure PI) to 0.65% in the water uptake was observed for the PI/GO composite films, and the water surface contact angle raised from 72.5° (pure PI) to 83.5°. The electrochemical behavior showed that the ability of oxygen atom on the imide ring to gain and loss electron was increased due to incorporation of GO. These results indicated that the strong interfacial interaction between GO and PAA as well as uniform dispersion of GO in PI matrix were benefit to improve the mechanical, thermal, electrical properties and so on. The in situ amino-functionalized approach

  19. ZnO Nanoparticles/Reduced Graphene Oxide Bilayer Thin Films for Improved NH3-Sensing Performances at Room Temperature

    Tai, Huiling; Yuan, Zhen; Zheng, Weijian; Ye, Zongbiao; Liu, Chunhua; Du, Xiaosong

    2016-03-01

    ZnO nanoparticles and graphene oxide (GO) thin film were deposited on gold interdigital electrodes (IDEs) in sequence via simple spraying process, which was further restored to ZnO/reduced graphene oxide (rGO) bilayer thin film by the thermal reduction treatment and employed for ammonia (NH3) detection at room temperature. rGO was identified by UV-vis absorption spectra and X-ray photoelectron spectroscope (XPS) analyses, and the adhesion between ZnO nanoparticles and rGO nanosheets might also be formed. The NH3-sensing performances of pure rGO film and ZnO/rGO bilayer films with different sprayed GO amounts were compared. The results showed that ZnO/rGO film sensors exhibited enhanced response properties, and the optimal GO amount of 1.5 ml was achieved. Furthermore, the optimal ZnO/rGO film sensor showed an excellent reversibility and fast response/recovery rate within the detection range of 10-50 ppm. Meanwhile, the sensor also displayed good repeatability and selectivity to NH3. However, the interference of water molecules on the prepared sensor is non-ignorable; some techniques should be researched to eliminate the effect of moisture in the further work. The remarkably enhanced NH3-sensing characteristics were speculated to be attributed to both the supporting role of ZnO nanoparticles film and accumulation heterojunction at the interface between ZnO and rGO. Thus, the proposed ZnO/rGO bilayer thin film sensor might give a promise for high-performance NH3-sensing applications.

  20. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    Ren, H.M.; Ding, Y.H.; Chang, F.H.; He, X.; Feng, J.Q.; Wang, C.F.; Jiang, Y.; Zhang, P.

    2012-01-01

    Highlights: ► Flexible TiO 2 /graphene electrode was prepared by a solvent evaporation technique. ► PVdF was used as substance to support the TiO 2 /graphene active materials. ► The flexible films can be employed as anode materials for Li-ion battery. - Abstract: Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO 2 ) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO 2 /graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  1. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Sanju Gupta

    2015-10-01

    Full Text Available Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO1, (PPy/ErGO1, (PAni/GO1 and (PPy/GO1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g−1 as compared with constituents (∼70 F g−1 at discharge current density of 0.3 A g−1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting and conducting polymers (semiconducting backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (reactivity of surface ion

  2. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Gupta, Sanju, E-mail: sanju.gupta@wku.edu; Price, Carson [Department of Physics and Astronomy, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101-3576 (United States)

    2015-10-15

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO){sub 1}, (PPy/ErGO){sub 1}, (PAni/GO){sub 1} and (PPy/GO){sub 1}. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, C{sub s}, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent C{sub s} of ≥350 F g{sup −1} as compared with constituents (∼70 F g{sup −1}) at discharge current density of 0.3 A g{sup −1} that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine

  3. Scanning electrochemical microscopy of graphene/polymer hybrid thin films as supercapacitors: Physical-chemical interfacial processes

    Gupta, Sanju; Price, Carson

    2015-10-01

    Hybrid electrode comprising an electric double-layer capacitor of graphene nanosheets and a pseudocapacitor of the electrically conducting polymers namely, polyaniline; PAni and polypyrrole; PPy are constructed that exhibited synergistic effect with excellent electrochemical performance as thin film supercapacitors for alternative energy. The hybrid supercapacitors were prepared by layer-by-layer (LbL) assembly based on controlled electrochemical polymerization followed by reduction of graphene oxide electrochemically producing ErGO, for establishing intimate electronic contact through nanoscale architecture and chemical stability, producing a single bilayer of (PAni/ErGO)1, (PPy/ErGO)1, (PAni/GO)1 and (PPy/GO)1. The rationale design is to create thin films that possess interconnected graphene nanosheets (GNS) with polymer nanostructures forming well-defined tailored interfaces allowing sufficient surface adsorption and faster ion transport due to short diffusion distances. We investigated their electrochemical properties and performance in terms of gravimetric specific capacitance, Cs, from cyclic voltammograms. The LbL-assembled bilayer films exhibited an excellent Cs of ≥350 F g-1 as compared with constituents (˜70 F g-1) at discharge current density of 0.3 A g-1 that outperformed many other hybrid supercapacitors. To gain deeper insights into the physical-chemical interfacial processes occurring at the electrode/electrolyte interface that govern their operation, we have used scanning electrochemical microscopy (SECM) technique in feedback and probe approach modes. We present our findings from viewpoint of reinforcing the role played by heterogeneous electrode surface composed of nanoscale graphene sheets (conducting) and conducting polymers (semiconducting) backbone with ordered polymer chains via higher/lower probe current distribution maps. Also targeted is SECM imaging that allowed to determine electrochemical (re)activity of surface ion adsorption sites

  4. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions.

    Meng, Xin; Pan, Hui; Zhu, Chengling; Chen, Zhixin; Lu, Tao; Xu, Da; Li, Yao; Zhu, Shenmin

    2018-06-21

    The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m -1 K -1 ) and through-plane (4.596 W m -1 K -1 ) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm -1 . The strategy reported here may open a new avenue to the development of high-performance thermal management films.

  5. Configuring Epistemic Authority: The Significance of Film Style in Documentaries about Science.

    Mellor, Felicity

    2018-03-01

    Argument Among the many limitations of the deficit model of science communication is its inability to account for the qualities of communication products that arise from creative decisions about form and style. This paper examines two documentaries about the nature of time - Patricio Guzmán's Nostalgia for the Light and the first episode of the BBC's Wonders of the Universe series - in order to consider how film style inflects science with different meanings. The analysis pays particular attention to the ways in which authority is assigned between film author, narrator, and depicted subjects and the degree to which different film styles promote epistemological certainty or hesitancy.

  6. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  7. High-transparency and low-resistivity poly (methylmethacrylate) films containing silver nanowires and graphene-oxide nanoplatelets

    Bang, Yo Han; Choo, Dong Chul; Kim, Tae Whan

    2016-01-01

    Highlights: • PMMA films containing both Ag-NWs and GONPs were formed by using a transfer method. • Scanning electron microscopy images showed that the Ag-NWs on the PMMA film were partially covered with the GONPs. • Transmittance and the sheet resistance of the PMMA films were approximately 90% at 550 nm and 24 Ω/sq, respectively. • Uniformity of the sheet resistance was significantly improved due to the GONP treatment. • XPS spectra showed that the enhancement in the sheet resistance originated from the quaternary nitrogen in the GONPs. - Abstract: Nanocomposite films containing silver nanowires (Ag NWs) and graphene-oxide nanoplatelets (GONPs) were formed on glass, and the nanocomposite films were then transferred to poly(methylmethacrylate) (PMMA) films. Scanning electron microscopy images showed that Ag NWs with a length of 20 μm and a width of 80 nm, together with GONPs with a size of 15 μm, had been formed on the PMMA film and that the Ag NWs on the PMMA film were partially covered with the GONPs. While the transmittance of the PMMA film with the Ag NWs and the GONPs was almost the same as that of the PMMA film with the Ag NWs alone, the corresponding sheet resistance was decreased due to the generation of quaternary nitrogen in the GONPs, which the results of X-ray photoelectron spectroscopy and Raman spectroscopy confirmed. The transmittance and the sheet resistance of the PMMA film containing Ag NWs and GONPs were approximately 90% at 550 nm and 24 Ohm/sq, respectively.

  8. Negative differential resistance in nickel octabutoxy phthalocyanine and nickel octabutoxy phthalocyanine/graphene oxide ultrathin films

    Sarkar, Arup; Suresh, K. A.

    2018-04-01

    We find negative differential resistance (NDR) at room temperature in ultrathin films of nickel (II) 1,4,8,11,15,18,22,25-octabutoxy-29H,31H-phthalocyanine [NiPc(OBu)8] deposited on highly ordered pyrolytic graphite (HOPG) substrate [NiPc(OBu)8/HOPG] and NiPc(OBu)8 on graphene oxide (GO) deposited on HOPG [NiPc(OBu)8/GO/HOPG]. For the NiPc(OBu)8/HOPG system, NiPc(OBu)8 was transferred four times onto HOPG by the Langmuir-Blodgett (LB) technique. We have prepared a stable Langmuir monolayer of amphiphilic GO at the air-water interface and transferred it onto HOPG by the LB technique. Further, the monolayer of NiPc(OBu)8 was transferred four times for good coverage on GO to obtain the NiPc(OBu)8/GO/HOPG system. The current-voltage characteristics were carried out using a current sensing atomic force microscope (CSAFM) with a platinum (Pt) tip that forms Pt/NiPc(OBu)8/HOPG and Pt/NiPc(OBu)8/GO/HOPG junctions. The CSAFM, UV-visible spectroscopy, and cyclic voltammetry studies show that the NDR effect occurs due to molecular resonant tunneling. In the Pt/NiPc(OBu)8/GO/HOPG junction, we find that due to the presence of GO, the features of NDR become more prominent. Also, GO causes a shift in NDR voltage towards a lower value in the negative bias direction. We attribute this behavior to the role of GO in injecting holes into the NiPc(OBu)8 film.

  9. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Wu, Xiaoxiao; Li, Fushan, E-mail: fushanli@hotmail.com; Wu, Wei; Guo, Tailiang, E-mail: gtl_fzu@hotmail.com

    2014-03-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy){sub 3}) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm.

  10. Flexible white phosphorescent organic light emitting diodes based on multilayered graphene/PEDOT:PSS transparent conducting film

    Wu, Xiaoxiao; Li, Fushan; Wu, Wei; Guo, Tailiang

    2014-01-01

    Highlights: • A double-layered graphene/PEDOT:PSS film was fabricated by spray-coating. • A white flexible phosphorescent OLED was fabricated based on this film. • The white flexible OLED presented pure white light emission. • The flexible OLEDs showed a stable white emission during bending test. - Abstract: A double-layered graphene/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) conductive film was prepared, in which the PEDOT:PSS layer was obtained by using spray-coating technique. A flexible white phosphorescent organic light-emitting devices based on the graphene/PEDOT:PSS conductive film was fabricated. Phosphorescent material tris(2-phenylpyridine) iridium (Ir(ppy) 3 ) and the fluorescent dye 5,6,11,12-tetraphenylnapthacene (Rubrene) were co-doped into 4,4′-N,N′-dicarbazole-biphenyl (CBP) host. N,N′-diphenyl-N,N′-bis(1-naphthyl)-(1,1′-biphenyl)-4,4′-diamine (NPB) and 4,7-diphenyl-1,10-phenanthroline (Bphen) were used as hole-transporting and electron-transporting layer, respectively, and 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl (DPVBi) was used as blue light-emitting layer. The device presented pure white light emission with a Commission Internationale De I’Eclairage coordinates of (0.31, 0.33) and exhibited an excellent light-emitting stability during the bending cycle test with a radius of curvature of 10 mm

  11. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in graphene oxide–Nafion nanocomposite film

    Zhang Lili; Cheng Huhu; Zhang Huimin; Qu Liangti

    2012-01-01

    Direct electron transfer of horseradish peroxidase (HRP) immobilized in graphene oxide (GO)–Nafion nanocomposite film and its application as a new biosensor was investigated with electrochemical methods. Immobilized HRP shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity for the reduction of H 2 O 2 and O 2 . As a new sensor with excellent electrocatalytic response to the reduction of H 2 O 2 and O 2 , calibrations with good linear relationships were obtained from 1.0 μmol L −1 to 1.0 mmol L −1 for H 2 O 2 and from 0.5 μmol L −1 to 18.6 μmol L −1 for O 2 with the detection limits of 4.0 × 10 −7 mol L −1 for H 2 O 2 and 1.0 × 10 −7 mol L −1 for O 2 at a signal-to-noise ratio of 3. Additionally, the responses showed Michaelis–Menten behavior with K m app values of 0.684 mmol L −1 for H 2 O 2 and 0.0160 mmol L −1 for O 2 . Moreover, the cathodic peak current of an HRP/GO/Nafion/GCE biosensor decreases by less than 5% after 4 weeks. These results reveal that GO can be conveniently incorporated into a polymer nanocomposite for fabrication of new GO-based biosensors.

  12. Transparent Conducting Films with Multilayered Structures Formed by Carbon Nanotubes and Reduced Graphene Oxides

    Kang, Jie Hun; Jang, Hyun Chul; Choi, Jung Mi; Hyeon, Jae Young; Sok, Jung Hyun

    2014-01-01

    The replacement for indium tin oxide (ITO) in electronic displays should have comparable optical transmittance and electrical conductivity while being easy to source and manufacture. However, novel materials such as single walled carbon nanotubes (SWCNTs) and reduced graphene oxides (RGOs) are incapable of addressing these challenges. We demonstrate a simple method to fabricate good transparent conductive films (TCFs) by combining and leveraging the superior optical transparency of RGOs and the excellent electrical conductivity of SWCNTs. This method affords thin multilayers of SWCNTs and RGOs with excellent optical and electrical properties because these properties are correlated with spraying time and the amount of SWCNTs or RGOs. In general, transmittance is advantageous to RGO as conductance is to CNTs. With a view to finding good TCFs with reduced sheet resistance, but with little sacrifice of transmittance, it is natural to explore the combination of CNT and RGO. The sandwiched multilayer of SWCNTs and RGOs exhibited a low sheet resistance of 214.2 Ω/sq, which was comparable to that of SWCNTs, and a transmittance of 60% at a wavelength of 550 nm. To further reduce the sheet resistance and improve the transparency of the multilayer TCFs, Au doping was carried out. The doping, in combination with controlled spraying of the amount of SWCNTs and RGOs, led to multilayers with resistance/transmittance combinations of 141.3 Ω/sq and 70% and 371.5 Ω/sq and 83%. These properties meet the requisite criteria for an ITO replacement.

  13. Manganese dioxide-graphene nanocomposite film modified electrode as a sensitive voltammetric sensor of indomethacin detection

    Liu, Yuxia; Zhang, Zhenfa; Zhang, Cuizong; Huang, Wei; Liang, Caiyun; Peng, Jinyun [Guangxi Normal University for Nationalities, Chongzuo (China)

    2016-08-15

    Excess amount of analgesic and anti-inflammatory drug, such as indomethacin, often leads to serious gastrointestinal complications; therefore, amount of such active compound should be regulated in commercial drugs. This study proposes an efficient analytical technique to detect indomethacin selectively. We prepared and investigated electrochemical properties of a manganese dioxide-graphene nanocomposite film modified glassy carbon electrode (MnO{sub 2}-Gr/GCE). The behavior of the modified electrode as electrocatalyst towards indomethacin oxidation was also examined. The cyclic voltammetric results reveal that the electrocatalytic activity for the oxidation of indomethacin can significantly be enhanced on the MnO{sub 2}-Gr/GCE. Indomethacin exhibited a sensitive anodic peak at about 0.90 V at MnO{sub 2}-Gr/GCE. The data obtained from differential pulse voltammetry showed that the anodic peak currents were linearly dependent on the indomethacin concentrations in the range of 1.0 X 10{sup -7} to 2.5 X 10{sup -5} mol/L with a detection limit of 3.2 X 10{sup -8} mol/L (S/N = 3). Most importantly, the proposed method shows efficient and selective sensing of indomethacin in commercial harmaceutical formulations. This is the first report of a voltammetric sensor for indomethacin using MnO{sub 2}-Gr/GCE. We believe that this new method can be commercialized for routine applications in laboratories.

  14. Study and Electrochemical Determination of Tyrosine at Graphene Nanosheets Composite Film Modified Glassy Carbon Electrode

    M. Behpour

    2013-06-01

    Full Text Available A graphene nanosheets (GNS film coated glassy carbon electrode (GCE was fabricated for sensitive determination of tyrosine (Tyr. The GNS-based sensor was characterized by scanning electron microscope and electrochemical impedance spectroscopy. The voltammetric techniques were employed to study electro-oxidation of Tyr. The results revealed that the modified electrode showed an electrocatalytic activity toward the anodic oxidation of Tyr by a marked enhancement in the current intensity and the shift in the oxidation potential to lower values (50 mV in comparison with the bare GCE. Some kinetic parameters such as the electron transfer coefficient (α were also determined for the Tyr oxidation. The detection limit  for Tyr was found to be 2.0×10-8 M (n=9, and the peak current increases linearly with the Tyr concentration within the molar concentration ranges of 5.0 ×10-6 to 1.2 ×10-4 M. The modified electrode shows good sensitivity, selectivity and stability. The prepared electrode was applied for the determination of Tyr in real sample.

  15. Fiber-Based, Double-Sided, Reduced Graphene Oxide Films for Efficient Solar Vapor Generation.

    Guo, Ankang; Ming, Xin; Fu, Yang; Wang, Gang; Wang, Xianbao

    2017-09-06

    Solar vapor generation is a promising and whole new branch of photothermal conversion for harvesting solar energy. Various materials and devices for solar thermal conversion were successively produced and reported for higher solar energy utilization in the past few years. Herein, a compact device of reduced graphene oxides (rGO) and paper fibers was designed and assembled for efficient solar steam generation under light illumination, and it consists of water supply pipelines (WSP), a thermal insulator (TI) and a double-sided absorbing film (DSF). Heat localization is enabled by the black DSF due to its broad absorption of sunlight. More importantly, the heat transfer, from the hot DSF to the cold base fluid (water), was suppressed by TI with a low thermal conductivity. Meanwhile, bulk water was continuously transported to the DSF by WSP through TI, which was driven by the surface energy and surface tension based on the capillary effect. The effects of reduction degrees of rGO on the photothermal conversion were explored, and the evaporation efficiency reached 89.2% under one sun with 60 mg rGO. This new microdevice provided a basic technical support for distillation, desalination, sewage treatment, and related technologies.

  16. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.

    Xiao, Lin; Ma, He; Liu, Junku; Zhao, Wei; Jia, Yi; Zhao, Qiang; Liu, Kai; Wu, Yang; Wei, Yang; Fan, Shoushan; Jiang, Kaili

    2015-12-09

    Adaptive camouflage in thermal imaging, a form of cloaking technology capable of blending naturally into the surrounding environment, has been a great challenge in the past decades. Emissivity engineering for thermal camouflage is regarded as a more promising way compared to merely temperature controlling that has to dissipate a large amount of excessive heat. However, practical devices with an active modulation of emissivity have yet to be well explored. In this letter we demonstrate an active cloaking device capable of efficient thermal radiance control, which consists of a vanadium dioxide (VO2) layer, with a negative differential thermal emissivity, coated on a graphene/carbon nanotube (CNT) thin film. A slight joule heating drastically changes the emissivity of the device, achieving rapid switchable thermal camouflage with a low power consumption and excellent reliability. It is believed that this device will find wide applications not only in artificial systems for infrared camouflage or cloaking but also in energy-saving smart windows and thermo-optical modulators.

  17. Broadband and wide angle near-unity absorption in graphene-insulator-metal thin film stacks

    Zhang, H. J.; Zheng, G. G.; Chen, Y. Y.; Xu, L. H.

    2018-05-01

    Broadband unity absorption in graphene-insulator-metal (GIM) structures is demonstrated in the visible (VIS) and near-infrared (NIR) spectra. The spectral characteristics possess broadband absorption peaks, by simply choosing a stack of GIM, while no nanofabrication steps and patterning are required, and thus can be easily fabricated to cover a large area. The electromagnetic (EM) waves can be entirely trapped and the absorption can be greatly enhanced are verified with the finite-difference time-domain (FDTD) and rigorous coupled wave analysis (RCWA) methods. The position and the number of the absorption peak can be totally controlled by adjusting the thickness of the insulator layer. The proposed absorber maintains high absorption (above 90%) for both transverse electric (TE) and transverse magnetic (TM) polarizations, and for angles of incidence up to 80°. This work opens up a promising approach to realize perfect absorption (PA) with ultra-thin film, which could implicate many potential applications in optical detection and optoelectronic devices.

  18. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  19. NIR-Vis-UV Light-Responsive Actuator Films of Polymer-Dispersed Liquid Crystal/Graphene Oxide Nanocomposites.

    Cheng, Zhangxiang; Wang, Tianjie; Li, Xiao; Zhang, Yihe; Yu, Haifeng

    2015-12-16

    To take full advantage of sunlight for photomechanical materials, NIR-vis-UV light-responsive actuator films of polymer-dispersed liquid crystal (PDLC)/graphene oxide (GO) nanocomposites were fabricated. The strategy is based on phase transition of LCs from nematic to isotropic phase induced by combination of photochemical and photothermal processes in the PDLC/GO nanocomposites. Upon mechanical stretching of the film, both topological shape change and mesogenic alignment occurred in the separated LC domains, enabling the film to respond to NIR-vis-UV light. The homodispersed GO flakes act as photoabsorbent and nanoscale heat source to transfer NIR or VIS light into thermal energy, heating the film and photothermally inducing phase transition of LC microdomains. By utilizing photochemical phase transition of LCs upon UV-light irradiation, one azobenzene dye was incorporated into the LC domains, endowing the nanocomposite films with UV-responsive property. Moreover, the light-responsive behaviors can be well-controlled by adjusting the elongation ratio upon mechanical treatment. The NIR-vis-UV light-responsive PDLC/GO nanocomposite films exhibit excellent properties of easy fabrication, low-cost, and good film-forming and mechanical features, promising their numerous applications in the field of soft actuators and optomechanical systems driven directly by sunlight.

  20. Nacre-mimic Reinforced Ag@reduced Graphene Oxide-Sodium Alginate Composite Film for Wound Healing.

    Yan, Xu; Li, Fei; Hu, Kang-Di; Xue, Jingzhe; Pan, Xiao-Feng; He, Tao; Dong, Liang; Wang, Xiang-Ying; Wu, Ya-Dong; Song, Yong-Hong; Xu, Wei-Ping; Lu, Yang

    2017-10-23

    With the emerging of drug-resistant bacterial and fungal pathogens, there raise the interest of utilizing versatile antimicrobial biomaterials to treat the acute wound. Herein, we report the spraying mediated assembly of a bio-inspired Ag@reduced graphene-sodium alginate (AGSA) composite film for effective wound healing. The obtained film displayed lamellar microstructures similar to the typical "brick-and-mortar" structure in nacre. In this nacre-mimic structure, there are abundant interfacial interactions between nanosheets and polymeric matrix, leading to remarkable reinforcement. As a result, the tensile strength, toughness and Young's modulus have been improved 2.8, 2.3 and 2.7 times compared with pure sodium alginate film, respectively. In the wound healing study, the AGSA film showed effective antimicrobial activities towards Pseudomonas aeruginosa, Escherichia coli and Candida albicans, demonstrating the ability of protecting wound from pathogenic microbial infections. Furthermore, in vivo experiments on rats suggested the effect of AGSA film in promoting the recovery of wound sites. According to MTT assays, heamolysis evaluation and in vivo toxicity assessment, the composite film could be applied as a bio-compatible material in vitro and in vivo. Results from this work indicated such AGSA film has promising performance for wound healing and suggested great potential for nacre-mimic biomaterials in tissue engineering applications.

  1. Sandwiched Thin-Film Anode of Chemically Bonded Black Phosphorus/Graphene Hybrid for Lithium-Ion Battery.

    Liu, Hanwen; Zou, Yuqin; Tao, Li; Ma, Zhaoling; Liu, Dongdong; Zhou, Peng; Liu, Hongbo; Wang, Shuangyin

    2017-09-01

    A facile vacuum filtration method is applied for the first time to construct sandwich-structure anode. Two layers of graphene stacks sandwich a composite of black phosphorus (BP), which not only protect BP from quickly degenerating but also serve as current collector instead of copper foil. The BP composite, reduced graphene oxide coated on BP via chemical bonding, is simply synthesized by solvothermal reaction at 140 °C. The sandwiched film anode used for lithium-ion battery exhibits reversible capacities of 1401 mAh g -1 during the 200th cycle at current density of 100 mA g -1 indicating superior cycle performance. Besides, this facile vacuum filtration method may also be available for other anode material with well dispersion in N-methyl pyrrolidone (NMP). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Photovoltammetric behavior and photoelectrochemical determination of p-phenylenediamine on CdS quantum dots and graphene hybrid film

    Zhu, Yuhan; Yan, Kai; Liu, Yong; Zhang, Jingdong, E-mail: zhangjd@mail.hust.edu.cn

    2015-07-16

    Highlights: • Photovoltammetric behavior of PPD on CdS–GS hybrid film was studied. • GS doped in CdS greatly improved the photoelectrochemical response of PPD. • CV of PPD on CdS–GS film became a sigmoidal shape under photoirradiation. • Novel photoelectrochemical strategy for PPD determination was developed. - Abstract: A photoelectroactive film composed of CdS quantum dots and graphene sheets (GS) was coated on F-doped SnO{sub 2} (FTO) conducting glass for studying the electrochemical response of p-phenylenediamine (PPD) under photoirradiation. The result indicated that the cyclic voltammogram of PPD on CdS–GS hybrid film became sigmoidal in shape after exposed under visible light, due to the photoelectrocatalytic reaction. Such a photovoltammetric response was used to rapidly optimize the photoelectrocatalytic activity of hybrid films composed of different ratios of CdS to GS toward PPD. The influences of scan rate and pH on the photovoltammetric behavior of PPD on CdS–GS film revealed that although the controlled step for electrochemical process was not changed under photoirradiation, more electrons than protons might participate the photoelectrocatalytic process. Furthermore, the photoelectroactive CdS–GS hybrid film was explored for PPD determination based on the photocurrent response of film toward PPD. Under optimal conditions, the photocurrent signal on CdS–GS film was linearly proportional to the concentration of PPD ranging from 1.0 × 10{sup −7} to 3.0 × 10{sup −6} mol L{sup −1}, with a detection limit (3S/N) of 4.3 × 10{sup −8} mol L{sup −1}. Our work based on CdS–GS hybrid film not only demonstrated a new facile photovoltammetric way to study the photoinduced electron transfer process of PPD, but also developed a sensitive photoelectrochemical strategy for PPD determination.

  3. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors.

    Niu, Zhiqiang; Du, Jianjun; Cao, Xuebo; Sun, Yinghui; Zhou, Weiya; Hng, Huey Hoon; Ma, Jan; Chen, Xiaodong; Xie, Sishen

    2012-10-22

    Graphene nanosheets and metal nanoparticles (NPs) have been used as nano-building-blocks for assembly into macroscale hybrid structures with promising performance in electrical devices. However, in most graphene and metal NP hybrid structures, the graphene sheets and metal NPs (e.g., AuNPs) do not enable control of the reaction process, orientation of building blocks, and organization at the nanoscale. Here, an electrophoretic layer-by-layer assembly for constructing multilayered reduced graphene oxide (RGO)/AuNP films and lateral micropatterns is presented. This assembly method allows easy control of the nano-architecture of building blocks along the normal direction of the film, including the number and thickness of RGO and AuNP layers, in addition to control of the lateral orientation of the resultant multilayered structures. Conductivity of multilayered RGO/AuNP hybrid nano-architecture shows great improvement caused by a bridging effect of the AuNPs along the out-of-plane direction between the upper and lower RGO layers. The results clearly show the potential of electrophoretic build-up in the fabrication of graphene-based alternately multilayered films and patterns. Finally, flexible supercapacitors based on multilayered RGO/AuNP hybrid films are fabricated, and excellent performance, such as high energy and power densities, are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Integrating porphyrin nanoparticles into a 2D graphene matrix for free-standing nanohybrid films with enhanced visible-light photocatalytic activity.

    Chen, Yingzhi; Huang, Zheng-Hong; Yue, Mengbin; Kang, Feiyu

    2014-01-21

    Organic nanostructures in terms of porphyrin building blocks have shown great potential in visible-light photocatalytic applications because of their optical, electrical, and catalytic properties. Graphenes are known to provide a high-quality two-dimensional (2D) support for inorganic semiconductor nanostructures to increase the adsorption capability of the photocatalysts and an electron-transfer medium with attractive potential to enhance photogenerated charge separation. A combination of porphyrin nanostructures with graphene sheets, particularly in the form of free-standing films, is highly desirable due to its photocatalysing feasibility and convenience. Toward this aim, we demonstrate a facile method to integrate porphyrin (meso-tetra(p-hydroxyphenyl)porphyrin, p-THPP) nanoparticles (NPs) into macroscopic graphene (reduced graphene oxide, rGO) films through vacuum filtration of the co-colloids of graphene oxide (GO) and p-THPP nanoparticles (NPs) followed by gaseous reduction. The obtained p-THPP/rGO nanohybrid film exhibits enhanced visible-light photocatalytic activity compared to each moiety of the hybrid, and this photocatalyst can be easily separated and recycled for successive use with excellent stability. The results show that this facile fabrication of the p-THPP/rGO nanohybrid film makes it available for high-performance optoelectronic applications, as well as for device integration.

  5. TiN thin film deposition by cathodic cage discharge: effect of cage configuration and active species

    De Freitas Daudt, N; Cavalcante Braz, D; Alves Junior, C; Pereira Barbosa, J C; Barbalho Pereira, M

    2012-01-01

    Plasma cathodic cage technique was developed recently in order to eliminate phenomena such as edge effects and overheating, which occur during conventional nitriding processes. In this work, the effect of plasma active species and cage configurations during thin film deposition of TiN were studied. This compound was chosen because its properties are very sensitive to slight variations in chemical composition and film thickness, becoming a good monitoring tool in fabrication process control. In order to verify the effect of cage geometry on the discharge and characteristics of the grown film, a cage made of titanium was used with different numbers and distribution of holes. Furthermore, different amounts of hydrogen were added to the Ar + N2 plasma atmosphere. Flow rates of Ar and N2 gas were fixed at 4 and 3 sccm, respectively and flow rates of H 2 gas was 0, 1 and 2 sccm. Plasma species, electrical discharge and physical characteristics of the grown film were analyzed by Optical Emission Spectroscopy (OES), Atomic Force Microscopy (AFM), X-Ray Diffraction. It was observed by OES that the luminous intensity associated to Hα species is not proportional to flow rate of H 2 gas. Electrical efficiency of the system, crystal structure and topography of the TiN film are strongly influenced by this behavior. For constant flow rate of H 2 gas, it was found that with more holes at the top of the cage, deposition rate, crystallinity and roughness are higher, if compared to cages with a small number of holes at the top of cage. On the other hand, the opposite behavior was observed when more holes were located at the sidewall of cage.

  6. Graphene Oxide Monolayer as a Compatibilizer at the Polymer-Polymer Interface for Stabilizing Polymer Bilayer Films against Dewetting.

    Kim, Tae-Ho; Kim, Hyeri; Choi, Ki-In; Yoo, Jeseung; Seo, Young-Soo; Lee, Jeong-Soo; Koo, Jaseung

    2016-12-06

    We investigate the effect of adding graphene oxide (GO) sheets at the polymer-polymer interface on the dewetting dynamics and compatibility of immiscible polymer bilayer films. GO monolayers are deposited at the poly(methyl methacrylate) (PMMA)-polystyrene (PS) interface by the Langmuir-Schaefer technique. GO monolayers are found to significantly inhibit the dewetting behavior of both PMMA films (on PS substrates) and PS films (on PMMA substrates). This can be interpreted in terms of an interfacial interaction between the GO sheets and these polymers, which is evidenced by the reduced contact angle of the dewet droplets. The favorable interaction of GO with both PS and PMMA facilitates compatibilization of the immiscible polymer bilayer films, thereby stabilizing their bilayer films against dewetting. This compatibilization effect is verified by neutron reflectivity measurements, which reveal that the addition of GO monolayers broadens the interface between PS and the deuterated PMMA films by 2.2 times over that of the bilayer in the absence of GO.

  7. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  8. Effect of deposition temperature on the bonding configurations and properties of fluorine doped silicon oxide film

    Lu, Wei-Lun; Kuo, Ting-Wei; Huang, Chun-Hsien; Wang, Na-Fu; Tsai, Yu-Zen; Wang, Ming-Wei; Hung, Chen-I.; Houng, Mau-Phon

    2011-01-01

    In our study, fluorine-doped silicon oxide (SiOF) films were prepared using a mixture of SiH 4 , N 2 O, and CF 4 in a conventional plasma enhanced chemical vapor deposition system at various deposition temperatures. Deposition behaviors are determined by the deposition temperature. Our results show that for temperatures below 300 deg. C the process is surface-reaction-limited controlled, but becomes diffusion-limited when the deposition temperature exceeds 300 deg. C. The surface topography images obtained using an atomic force microscope show that a large amount of free volume space was created in the film with a low temperature deposition. The optical microscope and secondary ion mass spectrometer analyses show that precipitates were produced at the near-surface at the deposition temperature of 150 deg. C with a higher fluorine concentration of 2.97 at.%. Our results show that the properties of the SiOF film are controlled not only by the free volume space but also by the fluorine concentration. An optimal SiOF film prepared at a temperature of 200 deg. C shows a low dielectric constant of 3.55, a leakage current of 1.21 x 10 -8 A/cm 2 at 1 MV/cm, and a fluorine concentration of 2.5 at.%.

  9. Binder-free activated graphene compact films for all-solid-state micro-supercapacitors with high areal and volumetric capacitances

    Wu, Zhong Shuai; Yang, Sheng; Zhang, Lili

    2015-01-01

    Micro-supercapacitors (MSCs) hold great promise as highly competitive miniaturized power sources satisfying the increased demand in microelectronics; however, simultaneously achieving high areal and volumetric capacitances is still a great challenge. Here we demonstrated the designed construction...... of binder-free, electrically conductive, nanoporous activated graphene (AG) compact films for high-performance MSCs. The binder-free AG films are fabricated by alternating deposition of electrochemically exfoliated graphene (EG) and nanoporous AG with a high specific surface area of 2920 m2/g, and then dry...

  10. One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation

    Liu, Gang; Wang, Yujia; Pu, Xianjuan; Jiang, Yong; Cheng, Lingli, E-mail: chenglingli@shu.edu.cn; Jiao, Zheng, E-mail: zjiao@shu.edu.cn

    2015-09-15

    Graphical abstract: - Highlights: • Both graphene oxide and silver ion were reduced simultaneously by electron beam-based method. • The size of AgNPs can be controlled by changing the irradiation dose of electron beam. • The AgNPs/rGO nanocomposite exhibits much lower sheet resistivity (0.06 Ω m). - Abstract: A rapid, eco-friendly, one-step electron beam (EB)-based method for both the reduction of graphene oxide and loading of Ag nanoparticles (AgNPs) were achieved. Further, the effects of irradiation dose on the morphology of AgNPs and the sheet resistance of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) were studied. The results reveal that when the irradiation dose increased from 70 kGy to 350 kGy, the size of the AgNPs decreased and became uniformly distributed over the surface of the rGO nanosheets. However the size of the AgNPs increased when the irradiation dose reached 500 kGy. Four-point probe measurement showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistivity of 0.06 Ω m was obtained in the film corresponding to 350 kGy irradiation dose, which showed a much lower resistivity than the GO film (5.04 × 10{sup 5} Ω m). The formation mechanisms of the as-prepared AgNPs/rGO nanocomposites were proposed. This study provides a fast and eco-friendly EB irradiation induced method to controlling the dimensions of AgNPs/rGO nanocomposites, which can strongly support the mass production of AgNPs/rGO nanocomposites for practical applications.

  11. One-step synthesis of high conductivity silver nanoparticle-reduced graphene oxide composite films by electron beam irradiation

    Liu, Gang; Wang, Yujia; Pu, Xianjuan; Jiang, Yong; Cheng, Lingli; Jiao, Zheng

    2015-01-01

    Graphical abstract: - Highlights: • Both graphene oxide and silver ion were reduced simultaneously by electron beam-based method. • The size of AgNPs can be controlled by changing the irradiation dose of electron beam. • The AgNPs/rGO nanocomposite exhibits much lower sheet resistivity (0.06 Ω m). - Abstract: A rapid, eco-friendly, one-step electron beam (EB)-based method for both the reduction of graphene oxide and loading of Ag nanoparticles (AgNPs) were achieved. Further, the effects of irradiation dose on the morphology of AgNPs and the sheet resistance of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) were studied. The results reveal that when the irradiation dose increased from 70 kGy to 350 kGy, the size of the AgNPs decreased and became uniformly distributed over the surface of the rGO nanosheets. However the size of the AgNPs increased when the irradiation dose reached 500 kGy. Four-point probe measurement showed that the sheet resistance of the AgNPs/rGO films decreased with decreasing AgNPs size. The lowest sheet resistivity of 0.06 Ω m was obtained in the film corresponding to 350 kGy irradiation dose, which showed a much lower resistivity than the GO film (5.04 × 10 5 Ω m). The formation mechanisms of the as-prepared AgNPs/rGO nanocomposites were proposed. This study provides a fast and eco-friendly EB irradiation induced method to controlling the dimensions of AgNPs/rGO nanocomposites, which can strongly support the mass production of AgNPs/rGO nanocomposites for practical applications

  12. Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes

    Kunook Chung

    2014-09-01

    Full Text Available We report the growth of GaN micro-rods and coaxial quantum-well heterostructures on graphene films, together with structural and optical characterization, for applications in flexible optical devices. Graphene films were grown on Cu foil by means of chemical vapor deposition, and used as the substrates for the growth of the GaN micro-rods, which were subsequently transferred onto SiO2/Si substrates. Highly Si-doped, n-type GaN micro-rods were grown on the graphene films using metal–organic chemical vapor deposition. The growth and vertical alignment of the GaN micro-rods, which is a critical factor for the fabrication of high-performance light-emitting diodes (LEDs, were characterized using electron microscopy and X-ray diffraction. The GaN micro-rods exhibited promising photoluminescence characteristics for optoelectronic device applications, including room-temperature stimulated emission. To fabricate flexible LEDs, InxGa1–xN/GaN multiple quantum wells and a p-type GaN layer were deposited coaxially on the GaN micro-rods, and transferred onto Ag-coated polymer substrates using lift-off. Ti/Au and Ni/Au metal layers were formed to provide electrical contacts to the n-type and p-type GaN regions, respectively. The micro-rod LEDs exhibited intense emission of visible light, even after transfer onto the flexible polymer substrate, and reliable operation was achieved following numerous cycles of mechanical deformation.

  13. The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration

    Behroozi, F [Department of Physics, University of Northern Iowa, Cedar Falls, IA 50614 (United States); Behroozi, P S, E-mail: behroozi@uni.edu [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2011-09-15

    A chain assumes the well-known shape known as a catenary when it hangs loosely from two points in a gravitational field. The correct solution of the catenary was one of the early triumphs of the newly invented calculus of variations at the end of the 17th century. Here we revisit the catenary and show that, for a chain hanging from a horizontal rod, three new and distinct configurations are possible if a soap film covers the area bounded by the chain and the rod. We first review the general problem and discuss the conditions under which the chain assumes a concave, triangular or convex configuration. The deciding factor is the strength of surface tension relative to the gravitational force per unit length of the chain. The conditions under which the chain assumes the shape of a perfect triangle are discussed in greater detail and analysed to obtain the tension along the chain. The triangular configuration is especially intriguing to undergraduates and may be used as a simple experiment to obtain the surface tension of the soap solution by measuring just one angle of the triangle.

  14. The effect of a soap film on a catenary: measurement of surface tension from the triangular configuration

    Behroozi, F; Behroozi, P S

    2011-01-01

    A chain assumes the well-known shape known as a catenary when it hangs loosely from two points in a gravitational field. The correct solution of the catenary was one of the early triumphs of the newly invented calculus of variations at the end of the 17th century. Here we revisit the catenary and show that, for a chain hanging from a horizontal rod, three new and distinct configurations are possible if a soap film covers the area bounded by the chain and the rod. We first review the general problem and discuss the conditions under which the chain assumes a concave, triangular or convex configuration. The deciding factor is the strength of surface tension relative to the gravitational force per unit length of the chain. The conditions under which the chain assumes the shape of a perfect triangle are discussed in greater detail and analysed to obtain the tension along the chain. The triangular configuration is especially intriguing to undergraduates and may be used as a simple experiment to obtain the surface tension of the soap solution by measuring just one angle of the triangle.

  15. EDITORIAL: Epitaxial graphene Epitaxial graphene

    de Heer, Walt A.; Berger, Claire

    2012-04-01

    Graphene is widely regarded as an important new electronic material with interesting two-dimensional electron gas properties. Not only that, but graphene is widely considered to be an important new material for large-scale integrated electronic devices that may eventually even succeed silicon. In fact, there are countless publications that demonstrate the amazing applications potential of graphene. In order to realize graphene electronics, a platform is required that is compatible with large-scale electronics processing methods. It was clear from the outset that graphene grown epitaxially on silicon carbide substrates was exceptionally well suited as a platform for graphene-based electronics, not only because the graphene sheets are grown directly on electronics-grade silicon carbide (an important semiconductor in its own right), but also because these sheets are oriented with respect to the semiconductor. Moreover, the extremely high temperatures involved in production assure essentially defect-free and contamination-free materials with well-defined interfaces. Epitaxial graphene on silicon carbide is not a unique material, but actually a class of materials. It is a complex structure consisting of a reconstructed silicon carbide surface, which, for planar hexagonal silicon carbide, is either the silicon- or the carbon-terminated face, an interfacial carbon rich layer, followed by one or more graphene layers. Consequently, the structure of graphene films on silicon carbide turns out to be a rich surface-science puzzle that has been intensively studied and systematically unravelled with a wide variety of surface science probes. Moreover, the graphene films produced on the carbon-terminated face turn out to be rotationally stacked, resulting in unique and important structural and electronic properties. Finally, in contrast to essentially all other graphene production methods, epitaxial graphene can be grown on structured silicon carbide surfaces to produce graphene

  16. Versatile Polymer-Free Graphene Transfer Method and Applications.

    Zhang, Guohui; Güell, Aleix G; Kirkman, Paul M; Lazenby, Robert A; Miller, Thomas S; Unwin, Patrick R

    2016-03-01

    A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior.

  17. Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.

    Filik, Hayati; Çetintaş, Gamze; Avan, Asiye Aslıhan; Aydar, Sevda; Koç, Serkan Naci; Boz, İsmail

    2013-11-15

    An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Fabrication of highly conductive graphene/ITO transparent bi-film through CVD and organic additives-free sol-gel techniques.

    Hemasiri, Bastian Waduge Naveen Harindu; Kim, Jae-Kwan; Lee, Ji-Myon

    2017-12-19

    Indium tin oxide (ITO) still remains as the main candidate for high-performance optoelectronic devices, but there is a vital requirement in the development of sol-gel based synthesizing techniques with regards to green environment and higher conductivity. Graphene/ITO transparent bi-film was synthesized by a two-step process: 10 wt. % tin-doped ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO 3 ) 3 .H 2 O and SnCl 4 , without using organic additives, on surface free energy enhanced (from 53.826 to 97.698 mJm -2 ) glass substrate by oxygen plasma treatment, which facilitated void-free continuous ITO film due to high surface wetting. The chemical vapor deposited monolayer graphene was transferred onto the synthesized ITO to enhance its electrical properties and it was capable of reducing sheet resistance over 12% while preserving the bi-film surface smoother. The ITO films contain the In 2 O 3 phase only and exhibit the polycrystalline nature of cubic structure with 14.35 ± 0.5 nm crystallite size. The graphene/ITO bi-film exhibits reproducible optical transparency with 88.66% transmittance at 550 nm wavelength, and electrical conductivity with sheet resistance of 117 Ω/sq which is much lower than that of individual sol-gel derived ITO film.

  19. Improvement of thermoelectric properties of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} films grown on graphene substrate

    Lee, Chang Wan [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Gun Hwan; Choi, Ji Woon; An, Ki-Seok; Lee, Young Kuk [Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Kim, Jin-Sang [Center for Electronic Materials, Korea Institute of Science and Technology, Seoul (Korea, Republic of); Kim, Hyungjun [School of Electrical and Electronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2017-06-15

    A study of substrate effect on the thermoelectric (TE) properties of Bi{sub 2}Te{sub 3} (BT) and Sb{sub 2}Te{sub 3} (ST) thin films grown by plasma-enhanced chemical vapor deposition (PECVD) was performed. Graphene substrates which have small lattice mismatch with BT and ST were used for the preparation of highly oriented BT and ST thin films. Carrier mobility of the epitaxial BT and ST films grown on the graphene substrates increased as the deposition temperature increased, which was not observed in that of SiO{sub 2}/Si substrates. Seebeck coefficients of the as-grown BT and ST films were observed to be maintained even though carrier concentration increased in the epitaxial BT and ST films on graphene substrate. Although Seebeck coefficient was not improved, power factor of the as-grown BT and ST films was considerably enhanced due to the increase of electrical conductivity resulting from the high carrier mobility and moderate carrier concentration in the epitaxial BT and ST films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Ultrasonic-assisted preparation of graphene oxide carboxylic acid polyvinyl alcohol polymer film and studies of thermal stability and surface resistivity.

    Li, Yongshen; Li, Jihui; Li, Yuehai; Li, Yali; Song, Yunan; Niu, Shuai; Li, Ning

    2018-01-01

    In this paper, flake graphite, nitric acid and acetic anhydride are used to prepare graphene oxide carboxylic acid (GO-COOH) via an ultrasonic-assisted method, and GO-COOH and polyvinyl alcohol polymer (PVA) are used to synthesize graphene oxide carboxylic acid polyvinyl alcohol polymer (GO-COOPVA) via the ultrasonic-assisted method, and GO-COOPVA is used to manufacture graphene oxide carboxylic acid polyvinyl alcohol polymer film (GO-COOPVA film) via a solidification method, and the structure and morphology of GO-COOH, GO-COOPVA and GO-COOPVA film are characterized, and the thermal stability and surface resistivity are measured in the case of the different amount of GO-COOH. Based on the characterization and measurement, it has been successively confirmed and attested that carboxyl groups implant on 2D lattice of GO to form GO-COOH, and GO-COOH and PVA have the esterification reaction to produce GO-COOPVA, and GO-COOPVA consists of 2D lattice of GO-COOH and the chain of PVA connected in the form of carboxylic ester, and GO-COOPVA film is composed of GO-COOPVA, and the thermal stability of GO-COOPVA film obviously improves in comparison with PVA film, and the surface resistivity of GO-COOPVA film clearly decreases. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Graphene Electrodes

    Pizzocchero, Filippo

    The production of graphene and the other 2D materials is presented in the beginning of this thesis. Micromechanical exfoliation is the best method for obtaining relatively small and top quality samples. The invention of Graphene Finder simplifies the procedure of finding the exfoliated flakes...... in copper thin films is studied and found to be detrimental for the growth of graphene. The modified synthesis of rGO is introduced, as rGO represents a cheap alternative to CVD for large scale production of graphene. The transfer of flakes is performed by several methods, such as with PVA/PMMA support, CAB...... wedging and the pick-up technique with hBN. Several important improvements of the pick-up technique are introduced. These allowed us to transfer any 2D crystals and patterned graphene flakes with PMMA residues. We also developed the drop-down technique, which is used to release any crystal on the surface...

  2. Effect of combining cellulose nanocrystals and graphene nanoplatelets on the properties of poly(lactic acid based films

    S. Montes

    2018-06-01

    Full Text Available In the present work, cellulose nanocrystals (CNC and graphene nanoplatelets (GR were combined in two different ratios and incorporated into polylactic acid (PLA by melt blending technique, at a total loading level of 1 wt%. The obtained PLA-CNC/GR nanocomposites were further processed by hot pressing for manufacturing films. For comparison purposes, PLA-CNC, PLA-GR and PLA-T (PLA blended with the organic surfactant Triton X-100 compositions were also prepared following the same procedure. The produced materials were characterized by several techniques, including Field-Emission Scanning Electron Microscopy (FE-SEM. The mechanical properties assessment showed an increase of 8 and 11% in the Young’s modulus and tensile strength respectively for PLA- CNC/GR (ratio 50/50 film compared to PLA-T. The thermal properties were also positively influenced by the incorporation of both nanofillers. Similarly, the gas barrier properties were improved by 23% in Oxygen Transmission Rate (OTR for films containing simultaneously CNC and GR. Finally, the antifungal properties were evaluated against Aspergillus Niger finding a superior antifungal activity in the CNC/GR hybrid films. The incorporation of CNC and GR in PLA showed a favourable impact in the overall properties of the obtained materials with only 1 wt% of nanofiller content. These results suggest that CNC/GR hybrid nanocomposites have a considerable potential in agricultural films or in food packaging trays applications.

  3. Enhanced resistive switching in forming-free graphene oxide films embedded with gold nanoparticles deposited by electrophoresis

    Khurana, Geetika; Kumar, Nitu; Katiyar, Ram S; Misra, Pankaj; Kooriyattil, Sudheendran; Scott, James F

    2016-01-01

    Forming-free resistive random access memory (ReRAM) devices having low switching voltages are a prerequisite for their commercial applications. In this study, the forming-free resistive switching characteristics of graphene oxide (GO) films embedded with gold nanoparticles (Au Nps), having an enhanced on/off ratio at very low switching voltages, were investigated for non-volatile memories. The GOAu films were deposited by the electrophoresis method and as-grown films were found to be in the low resistance state; therefore no forming voltage was required to activate the devices for switching. The devices having an enlarged on/off ratio window of ∼10"6 between two resistance states at low voltages (<1 V) for repetitive dc voltage sweeps showed excellent properties of endurance and retention. In these films Au Nps were uniformly dispersed over a large area that provided charge traps, which resulted in improved switching characteristics. Capacitance was also found to increase by a factor of ∼10, when comparing high and low resistance states in GOAu and pristine GO devices. Charge trapping and de-trapping by Au Nps was the mechanism responsible for the improved switching characteristics in the films. (paper)

  4. Study on photocatalytic performance of cerium-graphene oxide-titanium dioxide composite film for formaldehyde removal

    Li, Jia; Zhang, Quan; Lai, Alvin C.K.; Zeng, Liping

    2016-01-01

    In order to degrade in-car formaldehyde gas, graphene oxide (GO), cerium (Ce), and TiO_2 were organically combined by one-step sol-gel method. Then the mixed collosol was coated onto the surface of inorganic glass substrates to form Ce-GO-TiO_2 composite film by way of immersion, coating, and calcinations. The morphology and crystal structure of as-prepared Ce-GO-TiO_2 film were studied by a series of detection techniques. The photocatalytic performance of this film was analyzed by the degradation effect of formaldehyde under simulated sunlight. The results showed that the Ce-GO-TiO_2 film had the inbuilt mesoporous structure in the lamellar stacking with particles. When the doping amount of Ce and GO were 0.4 and 0.2% (mass ratio), the composite film can improve effectively the response to the visible light and its degradation rate for low concentration of formaldehyde was up to 83.8% in simulated sunlight for 7 h, which could be attributed to the co-function of Ce and GO. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Enhanced electrocatalytic activity of reduced graphene oxide-Os nanoparticle hybrid films obtained at a liquid/liquid interface

    Bramhaiah, K.; Pandey, Indu; Singh, Vidya N.; Kavitha, C.; John, Neena S.

    2018-03-01

    Hybrid films of reduced graphene oxide-osmium nanoparticles (rGO-Os NPs) synthesized at a liquid/liquid interface are explored for their electrocatalytic activity towards the oxidation of rhodamine B (RhB), a popular colourant found in textile industry effluents and a non-permitted food colour. The free-standing nature of the films enables them to be lifted directly on to electrodes without the aid of any binders. The films consist of aggregates of ultra-small Os NPs interspersed with rGO layers. The hybrid film exhibits enhanced RhB oxidation when compared to its constituents arising from the synergic effect between rGO and Os NPs, Os contributing to electrocatalysis and rGO contributing to high surface area and conductance as well as stabilization of Os nanoparticles. The electrochemical sensor based on rGO-Os NP hybrid film on pencil graphite electrode shows a remarkable performance for the quantitative detection of RhB with a linear variation in a wide range of concentrations, 4-1300 ppb (8.3 nM-2.71 μM). The modified electrode presents good stability over more than 6 months, reproducibility and anti-interference capability. The use of developed sensor for adequate detection of RhB in real samples such as food samples and pen markers is also demonstrated.

  6. Free-standing, flexible β-Ni(OH)2/electrochemically-exfoliated graphene film electrode for efficient oxygen evolution

    Wang, Lanlan; Zhang, Jian; Jiang, Weitao; Zhao, Hong; Liu, Hongzhong

    2018-03-01

    The oxidation of water into molecular oxygen (oxygen evolution reaction, OER) is a pivotal reaction in many energy conversion devices. The high cost of IrO2, however, seriously hinder its large-scale applications in water oxidation. Here, we have at first reported a free-standing and flexible film electrode consisting of 2D β-Ni(OH)2/electrochemically-exfoliated graphene hybrid nanosheets (NiG-2), which is synthesized by a solvothermal reaction and an assembly process. The as-obtained NiG-2 film electrode exhibited an excellent electrocatalytic OER activity with an extremely low OER onset overpotential of ∼250 mV in a 1 M KOH aqueous solution, which is lower than these of the commercial Ir/C (370 mV at 10 mA cm-2) catalyst.

  7. Simultaneous determination of dopamine and uric acid using layer-by-layer graphene and chitosan assembled multilayer films.

    Weng, Xuexiang; Cao, Qingxue; Liang, Lixin; Chen, Jianrong; You, Chunping; Ruan, Yongmin; Lin, Hongjun; Wu, Lanju

    2013-12-15

    Multilayer films containing graphene (Gr) and chitosan (CS) were prepared on glassy carbon electrodes with layer-by-layer (LBL) assembly technique. After being characterized with cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM), the electrochemical sensor based on the resulted films was developed to simultaneously determine dopamine (DA) and uric acid (UA). The LBL assembled electrode showed excellent electrocatalytic activity towards the oxidation of DA and UA. In addition, the self-assembly electrode possessed an excellent sensing performance for detection of DA and UA with a linear range from 0.1 μM to 140 µM and from 1.0 µM to 125 µM with the detection limit as low as 0.05 µM and 0.1 µM based on S/N=3, respectively. © 2013 Elsevier B.V. All rights reserved.

  8. Domain configurations and hysteresis behaviors of ultrathin cobalt film deposited on copper surface

    Chan, Y.-L.; Jih, N.-Y.; Peng, C.-W.; Chuang, C.-H.; Lee, T.H.; Huang, J.C.A.; Hsu, Y.J.; Wei, D.H.

    2007-01-01

    Depositing additional Cu layer on top of a Co thin film changes the magnetic properties of buried layer significantly. Employing in situ magneto-optical Kerr effect (MOKE) to assess the magnetization behavior of uncovered and covered Co layer grown on Cu (0 0 1), the hysteresis loops give averaged, macroscopic response of the layered system. The microscopic information was examined through element-specific domain images acquired by the X-ray photoemission electron microscope (PEEM). Based on the image analysis, evidence of magnetization switching in some regions of the as-deposited Co layer upon capping 1 ML of Cu was found

  9. Effects of TiO2 film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    Zhang, Haiyan; Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming; Wang, Zhiwei

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO 2 film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO 2 films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO 2 , the photoelectric conversion efficiency of the DSSC based on graphene/TiO 2 composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency

  10. Effects of TiO{sub 2} film thickness on photovoltaic properties of dye-sensitized solar cell and its enhanced performance by graphene combination

    Zhang, Haiyan, E-mail: hyzhang@gdut.edu.cn [School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006 (China); Wang, Wenguang; Liu, Hui; Wang, Rong; Chen, Yiming [School of Materials and Energy, Guangdong University of Technology, Guangzhou Higher Education Mega Center 100#, Guangzhou 510006 (China); Wang, Zhiwei [Anhui Key Laboratory of Nanomaterials and Nanostructures Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2014-01-01

    Graphical abstract: - Highlights: • DSSC based on TiO{sub 2} film with 8 printing layers showed the highest efficiency. • The photoelectric conversion efficiency of the DSSC increased from 5.52% to 6.49% by graphene combination. • A mechanism for the enhanced performance of the DSSC was proposed. - Abstract: Dye-sensitized solar cells based on TiO{sub 2} films with different printing layers (6-10) were fabricated by screen printing method. The prepared samples were characterized by scanning electron microscopy, X-ray diffraction and UV–vis absorption spectroscopy. The effects of thickness on the photoelectric conversion performance of the as-fabricated DSSCs were investigated. An optimum photoelectric conversion efficiency of 5.52% was obtained in a DSSC with 8 printing layers. Furthermore, after a moderate amount of graphene was combined with TiO{sub 2}, the photoelectric conversion efficiency of the DSSC based on graphene/TiO{sub 2} composite film rose from 5.52% to 6.49%, with an increase of η by 17.6%. The results indicated that graphene not only enhances the transport of electrons from the film to the fluorine doped tin oxide substrates and reduces the charge recombination rate, but also reduces the electrolyte–electrode interfacial resistance, clearly increasing the photoelectric conversion efficiency.

  11. Preparation of water-soluble graphene nanoplatelets and highly conductive films

    Xu, Xuezhu; Zhou, Jian; Jestin, Jacques; Colombo, Veronica; Lubineau, Gilles

    2017-01-01

    This paper tackles the challenge of preparation stable, highly concentrated aqueous graphene dispersions. Despite tremendous recent interest, there has been limited success in developing a method that ensures the total dispersion of non

  12. Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration

    Gretener, C.; Perrenoud, J.; Kranz, L.; Baechler, C.; Yoon, S.; Romanyuk, Y.E.; Buecheler, S.; Tiwari, A.N.

    2013-01-01

    Molybdenum oxide compounds exhibit unique electrical and optical properties depending on oxygen vacancy concentration and composition and therefore, have recently attracted a lot of attention as a hole transport layer in various devices. In this work CdTe solar cells in substrate configuration were grown with evaporated MoO x back contact buffer layers and efficiencies of up to 10% could be achieved without using Cu in the back contact processing. The buffer layer – at the CdTe/back contact interface – in the finished cell was found to consist of MoO 2 phase instead of the expected MoO 3 phase as observed in as-deposited or annealed MoO x layers without CdTe deposition. In order to obtain MoO x buffer layers with desired stoichiometry, MoO x thin films were deposited by radio-frequency sputtering under different growth conditions. The chemical phase, composition, microstructure and optical properties of such layers were studied for their possible use in CdTe solar cells. - Highlights: ► MoO x is used as a back contact buffer in CdTe solar cells in substrate configuration. ► Efficiency of 10.0% was achieved without the addition of Cu. ► The back contact buffer in the finished device consists only of MoO 2 . ► Phases and microstructure of MoO x can be controlled by sputtering conditions

  13. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  14. Remarkable reduction in the threshold voltage of pentacene-based thin film transistors with pentacene/CuPc sandwich configuration

    Yi Li

    2014-06-01

    Full Text Available This study investigates the remarkable reduction in the threshold voltage (VT of pentacene-based thin film transistors with pentacene/copper phthalocyanine (CuPc sandwich configuration. This reduction is accompanied by increased mobility and lowered sub-threshold slope (S. Sandwich devices coated with a 5 nm layer of CuPc layer are compared with conventional top-contact devices, and results indicate that VT decreased significantly from −20.4 V to −0.2 V, that mobility increased from 0.18 cm2/Vs to 0.51 cm2/Vs, and that S was reduced from 4.1 V/dec to 2.9 V/dec. However, the on/off current ratio remains at 105. This enhanced performance could be attributed to the reduction in charge trap density by the incorporated CuPc layer. Results suggest that this method is simple and effectively generates pentacene-based organic thin film transistors with high mobility and low VT.

  15. Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films.

    Usman, Adil; Hussain, Zakir; Riaz, Asim; Khan, Ahmad Nawaz

    2016-11-20

    In the present work, synthesis of poly(vinyl alcohol)/graphene oxide/starch/silver (PVA/GO/Starch/Ag) nanocomposites films is reported. Such films have been characterized and investigated for their mechanical, thermal and antimicrobial properties. The exfoliation of GO in the PVA matrix occurs owing to the non-covalent interactions of the polymer chains of PVA and hydrophilic surface of the GO layers. Presence of GO in PVA and PVA/starch blends were found to enhance the tensile strength of the nanocomposites system. It was found that the thermal stability of PVA as well as PVA/starch blend systems increased by the incorporation of GO where strong physical bonding between GO layers and PVA/starch blends is assumed to cause thermal barrier effects. Antimicrobial properties of the prepared films were investigated against Escherichia coli and Staphylococcus aureus. Our results show enhanced antimicrobial properties of the prepared films where PVA-GO, PVA-Ag, PVA-GO-Ag and PVA-GO-Ag-Starch showed antimicrobial activity in ascending order. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Novel layered polyaniline-poly(hydroquinone)/graphene film as supercapacitor electrode with enhanced rate performance and cycling stability.

    Ren, Lijun; Zhang, Gaini; Lei, Ji; Wang, Yan; Hu, Dengwei

    2018-02-15

    It is a challenge to fabricate polyaniline (PANI) materials with high rate performance and excellent stability. Herein a new special supercapacitor electrode material of polyaniline-poly(hydroquinone)/graphene (PANI-PHQ/RGO) film with layered structure was prepared by chemical oxidative polymerization of aniline and hydroquinone (H 2 Q) in the presence of RGO hydrogel film. The synergistic effect and loose layered structure of the composite film facilitate fast diffusion and transportation of electrolyte ions through unimpeded channels during rapid charge-discharge process, resulting in high rate capability and stable cycling performance. As a result, the PANI-PHQ/RGO-61 film electrode exhibited 356 F g -1 at a current density of 0.5 A g -1 and high capacitance retention of 83% from 0.5 to 30 A g -1 . Moreover, it presented an excellent cycling stability with 94% of capacitance retention in comparison with 60% of pure PANI electrode and an outstanding Coulombic efficiency of 99% after 1000 cycles of galvanostatic charge-discharge. These superior electrocapacitive properties make it one of promising candidates for electrochemical energy storage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors.

    Yang, Jiang; Kwak, Tae-Joon; Zhang, Xiaodong; McClain, Robert; Chang, Woo-Jin; Gunasekaran, Sundaram

    2016-11-22

    A facile, controllable, inexpensive and green electrochemical synthesis of IrO2-graphene nanohybrid thin films is developed to fabricate an easy-to-use integrated paper microfluidic electrochemical pH sensor for resource-limited settings. Taking advantages from both pH meters and strips, the pH sensing platform is composed of hydrophobic barrier-patterned paper micropad (µPAD) using polydimethylsiloxane (PDMS), screen-printed electrode (SPE) modified with IrO2-graphene films and molded acrylonitrile butadiene styrene (ABS) plastic holder. Repetitive cathodic potential cycling was employed for graphene oxide (GO) reduction which can completely remove electrochemically unstable oxygenated groups and generate a 2D defect-free homogeneous graphene thin film with excellent stability and electronic properties. A uniform and smooth IrO2 film in nanoscale grain size is anodically electrodeposited onto the graphene film, without any observable cracks. The resulting IrO2-RGO electrode showed slightly super-Nernstian responses from pH 2-12 in Britton-Robinson (B-R) buffers with good linearity, small hysteresis, low response time and reproducibility in different buffers, as well as low sensitivities to different interfering ionic species and dissolved oxygen. A simple portable digital pH meter is fabricated, whose signal is measured with a multimeter, using high input-impedance operational amplifier and consumer batteries. The pH values measured with the portable electrochemical paper-microfluidic pH sensors were consistent with those measured using a commercial laboratory pH meter with a glass electrode.

  18. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    Werner, Craig M.; Katuri, Krishna; Rao, Hari Ananda; Chen, Wei; Lai, Zhiping; Logan, Bruce E.; Amy, Gary L.; Saikaly, Pascal

    2015-01-01

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  19. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors – Effect of configuration and applied voltage on performance and membrane fouling

    Werner, Craig M.

    2015-12-22

    Electrically conductive, graphene-coated hollow-fiber porous membranes were used as cathodes in anaerobic electrochemical membrane bioreactors (AnEMBRs) operated at different applied voltages (0.7 V and 0.9 V) using a new rectangular reactor configuration, compared to a previous tubular design (0.7 V). The onset of biofouling was delayed and minimized in rectangular reactors operated at 0.9 V, compared to those at 0.7 V due to higher rates of hydrogen production. Maximum transmembrane pressures for the rectangular reactor were only 0.10 bar (0.7 V) or 0.05 bar (0.9 V) after 56 days of operation, compared to 0.46 bar (0.7 V) for the tubular reactor after 52 days. The thickness of the membrane biofouling layer was approximately 0.4 µm for rectangular reactors and 4 µm for the tubular reactor. Higher permeate quality (TSS = 0.05 mg/L) was achieved in the rectangular AnEMBR than the tubular AnEMBR (TSS = 17 mg/L), likely due to higher current densities that minimized the accumulation of cells in suspension. These results show that the new rectangular reactor design, which had increased rates of hydrogen production, successfully delayed the onset of cathode biofouling and improved reactor performance.

  20. Graphene/Gold Nano composites-Based Thin Films as an Enhanced Sensing Platform for Voltammetric Detection of Cr(VI) Ions

    Santhosh, Ch.; Saranya, M.; Ramachandran, R.; Felix, S.; Velmurugan, V.; Grace, A.N.

    2014-01-01

    A highly sensitive and selective Cr(VI) sensor with graphene-based nano composites film as an enhanced sensing platform is reported. The detection of chromium species is a challenging task because of the different possible oxidation states in which the element can occur. The sensing film was developed by homogeneously distributing Au nanoparticles (AuNPs) onto the two-dimensional (2D) graphene nano sheet matrix by electrochemical method. Such nano structured composite film platforms combine the advantages of AuNPs and graph ene nano sheets because of the synergistic effect between them. This effect greatly facilitates the electron-transfer processes and the sensing behavior for Cr(VI) detection, leading to a remarkably improved sensitivity and selectivity. The interference from other heavy metal ions is studied in detail. Such sensing elements are very promising for practical environmental monitoring applications.

  1. In-situ sequential laser transfer and laser reduction of graphene oxide films

    Papazoglou, S.; Petridis, C.; Kymakis, E.; Kennou, S.; Raptis, Y. S.; Chatzandroulis, S.; Zergioti, I.

    2018-04-01

    Achieving high quality transfer of graphene on selected substrates is a priority in device fabrication, especially where drop-on-demand applications are involved. In this work, we report an in-situ, fast, simple, and one step process that resulted in the reduction, transfer, and fabrication of reduced graphene oxide-based humidity sensors, using picosecond laser pulses. By tuning the laser illumination parameters, we managed to implement the sequential printing and reduction of graphene oxide flakes. The overall process lasted only a few seconds compared to a few hours that our group has previously published. DC current measurements, X-Ray Photoelectron Spectroscopy, X-Ray Diffraction, and Raman Spectroscopy were employed in order to assess the efficiency of our approach. To demonstrate the applicability and the potential of the technique, laser printed reduced graphene oxide humidity sensors with a limit of detection of 1700 ppm are presented. The results demonstrated in this work provide a selective, rapid, and low-cost approach for sequential transfer and photochemical reduction of graphene oxide micro-patterns onto various substrates for flexible electronics and sensor applications.

  2. Ceramic Composite Thin Films

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  3. Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode

    Wang, Zhiqiang; Wang, Hui; Zhang, Zhihao; Yang, Xiaojing; Liu, Gang

    2014-01-01

    In this study, a novel stannum film/poly(p-aminobenzene sulfonic acid)/graphene composite modified glassy carbon electrode (GCE) was prepared by using electrodeposition of exfoliated graphene oxide, electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and in situ plating stannum fim methods, successively. This sensor was further used for sensitive determination of trace cadmium ions by square wave anodic stripping voltammetry (SWASV). The morphologies and electrochemistry properties of the modified electrode were characterized by scanning electron microscopy, Raman spectroscopy, cyclic voltammetry, electrochemical impedance spectroscopy and linear sweep voltammetry. It was found that the formed graphene layer on the top of GCE could remarkably facilitate the electron transfer and enlarge the specific surface area of the electrode. While the poly(p-ABSA) film could effectively increase the adhesion and stability of graphene layer, enhance ion-exchange capacity and prevent the macromolecule in real samples absorbing on the surface of electrode. By combining co-deposits ability with heavy metals of stannum film, the obtained electrode exhibited a good stripping performance for the analysis of Cd(II). Under the optimum conditions, a linear response was observed in the range from 1.0 to 70.0 μgL −1 with a detection limit of 0.05 μgL −1 (S/N = 3). The sensor was further applied to the determination of cadmium ions in real water samples with satisfactory results

  4. Layer-by-layer construction of graphene/cobalt phthalocyanine composite film on activated GCE for application as a nitrite sensor

    Cui, Lili; Pu, Tao; Liu, Ying; He, Xingquan

    2013-01-01

    Graphical abstract: A novel nitrite sensor was prepared by using LBL technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The nitrite sensor shows super stability for consecutive CV testing and rather low detection limit. -- Abstract: In this paper, a novel graphene/cobalt phthalocyanine composite film was prepared by layer-by-layer (LBL) technique which for the first time used the activated positively charged glassy carbon electrode (A-GCE) as the substrate. The surface morphology of graphene/cobalt phthalocyanine composite film was characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM). It is found that graphene/cobalt phthalocyanine composite film modified GCE exhibits good catalytic activity toward the oxidation of nitrite. The oxidation current barely decreases in consecutive CV test. Furthermore, the modified GCE shows long-term stability after 70 days. The super good stability can be attributed to the immobilization and dispersion of electroactive cobalt phthalocyanine by graphene, and using A-GCE as substrate which can enhance the interaction force between GCE and electroactive cobalt phthalocyanine. The nitrite sensor shows rather low detection limit of 0.084 μM at a signal-to-noise ratio = 3 (S/N = 3)

  5. Gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors with an asymmetric graphene electrode

    Joonwoo Kim

    2015-09-01

    Full Text Available The gate voltage and drain current stress instabilities in amorphous In–Ga–Zn–O thin-film transistors (a-IGZO TFTs having an asymmetric graphene electrode structure are studied. A large positive shift in the threshold voltage, which is well fitted to a stretched-exponential equation, and an increase in the subthreshold slope are observed when drain current stress is applied. This is due to an increase in temperature caused by power dissipation in the graphene/a-IGZO contact region, in addition to the channel region, which is different from the behavior in a-IGZO TFTs with a conventional transparent electrode.

  6. Fabrication of graphene-nanoflake/poly(4-vinylphenol) polymer nanocomposite thin film by electrohydrodynamic atomization and its application as flexible resistive switching device

    Choi, Kyung Hyun; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Na, Kyoung-Hoan, E-mail: khna@dankook.ac.kr [College of Engineering, Dankook University, Yongin-si, Gyeonggi-do 448-701 (Korea, Republic of)

    2015-10-15

    This paper describes synthesis of graphene/poly(4-vinylphenol) (PVP) nanocomposite and deposition of thin film by electrohydrodynamic atomization (EHDA) for fabrication flexible resistive switching device. EHDA technique proved its viability for thin film deposition after surface morphology analyses by field emission scanning electron microscope (FESEM) and non-destructive 3D Nano-profilometry, as the deposited films were, devoid of abnormalities. The commercially available graphene micro-flakes were exfoliated and broken down to ultra-small (20 nm–200 nm) nano-flakes by ultra-sonication in presence of N-methyl-pyrrolidone (NMP). These graphene nanoflakes with PVP nanocomposite, were successfully deposited as thin films (thickness ~140±7 nm, R{sub a}=2.59 nm) on indium–tin-oxide (ITO) coated polyethylene terephthalate (PET) substrate. Transmittance data revealed that thin films are up to ~87% transparent in visible and NIR region. Resistive switching behaviour of graphene/PVP nanocomposite thin film was studied by using the nanocomposite as active layer in Ag/active layer/ITO sandwich structure. The resistive switching devices thus fabricated, showed characteristic OFF to ON (high resistance to low resistance) transition at low voltages, when operated between ±3 V, characterized at 10 nA compliance currents. The devices fabricated by this approach exhibited a stable room temperature, low power current–voltage hysteresis and well over 1 h retentivity, and R{sub OFF}/R{sub ON}≈35:1. The device showed stable flexibility up to a minimum bending diameter of 1.8 cm.

  7. Different defect levels configurations between double layers of nanorods and film in ZnO grown on c-Al2O3 by MOCVD

    Wu, Bin; Zhang, Yuantao; Shi, Zhifeng; Li, Xiang; Cui, Xijun; Zhuang, Shiwei; Zhang, Baolin; Du, Guotong

    2014-01-01

    Epitaxial ZnO structures with inherent two layers of nanorods layer on film layer were fabricated on c-Al 2 O 3 by metal-organic chemical vapor deposition (MOCVD) and studied by photoluminescence. Specially, photoluminescence spectra for the film layer were obtained by rendering the excitation from the substrate side. Different defect levels configurations between nanorods and film were revealed. Zinc vacancies tend to form in top nanorods layer, whereas abundant zinc–oxygen divacancies accumulate in bottom film layer. An acceptor state with activation energy of ∼200 meV is exclusive to the film layer. The stacking fault related acceptor and Al introduced donor are present in both layers. Besides, two other defect related donors contained in the nanorods layer perhaps also exist within the film layer. - Highlights: • Inherent double layer ZnO of nanorods on film layer were studied by PL. • V Zn tend to form in the nanorods layer, and V ZnO accumulate in the film layer. • An acceptor with activation energy of ∼200 meV is exclusive to the film layer. • Pure NBE emission without DLE in RT PL spectrum does not mean good crystallinity

  8. Plasmons in N-doped graphene nanostructures tuned by Au/Ag films: a time-dependent density functional theory study.

    Shu, Xiaoqin; Cheng, Xinlu; Zhang, Hong

    2018-04-18

    The energy resonance point of the prominent peak of the absorption spectrum of nitrogen-doped graphene is in the ultraviolet region. This limits its application as a co-catalyst in renewable hydrogen evolution through photocatalytic water splitting in the visible light region. It is well known that noble metal films show active absorption in the visible region due to the existence of the unique feature known as surface plasmon resonance. Here we report tunable plasmons in nitrogen-doped graphene nanostructures using noble metal (Au/Ag) films. The energy resonance point of the prominent peak of the composite nanostructure is altered by changing the separation space of two-layered nanostructures. We found the strength of the absorption spectrum of the composite nanostructure is much stronger than the isolated N-doped graphene monolayer. When the separation space is decreased, the prominent peak of the absorption spectrum is red-shifted to the visible light region. Moreover, currents of several microamperes exist above the surface of the N-doped graphene and Au film composite nanostructure. In addition, the field enhancement exceeds 1000 when an impulse excitation polarized in the armchair-edge direction (X-axis) when the separation space is decreased to 3 Å and is close to 100 when an impulse excitation polarized in the zigzag-edge direction (Y-axis). The N-doped graphene and noble metal film composite nanostructure is a good candidate material as a co-catalyst in renewable hydrogen production by photocatalytic water splitting in the visible light region.

  9. Mechanisms of charge transport and resistive switching in composite films of semiconducting polymers with nanoparticles of graphene and graphene oxide

    Berestennikov, A. S.; Aleshin, A. N.

    2017-11-01

    We have investigated the effect of the resistive switching in the composite films based on polyfunctional polymers - PVK, PFD and PVC mixed with particles of Gr and GO with the concentration of ˜ 1 - 3 wt.%. We have developed the solution processed hybrid memory structures based on PVK and GO particles composite films. The effect of the resistive switching in Al/PVK(PFD; PVC):Gr(GO)/ITO/PET structures manifests itself as a sharp change of the electrical resistance from a low-conducting state to a relatively high-conducting state when applying a bias to Al-ITO electrodes of ˜ 0.2-0.4 V. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK(PFD; PVC):Gr(GO)/ITO/PET structures, with the switching time in the range from 1 to 30 μs. The mechanism of resistive switching associated with the processes of capture and accumulation of charge carriers by Gr(GO) particles introduced into the matrixes of the PVK polymer due to the reduction/oxidation processes. The possible mechanisms of energy transfer between organic and inorganic components in PVK(PFD; PVC):GO(Gr) films causes increase mobility are discussed. Incorporating of Gr (GO) particles into the polymer matrix is a promising route to enhance the performance of hybrid memory structures, as well as it is an effective medium for memory cells.

  10. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.

    Tsai, Mei-Hui; Tseng, I-Hsiang; Chiang, Jen-Chi; Li, Jheng-Jia

    2014-06-11

    Coupling agent-functionalized boron nitride (f-BN) and glycidyl methacrylate-grafted graphene (g-TrG) are simultaneously blended with polyimide (PI) to fabricate a flexible, electrically insulating and thermally conductive PI composite film. The silk-like g-TrG successfully fills in the gap between PI and f-BN to complete the thermal conduction network. In addition, the strong interaction between surface functional groups on f-BN and g-TrG contributes to the effective phonon transfer in the PI matrix. The thermal conductivity (TC) of the PI/f-BN composite films containing additional 1 wt % of g-TrG is at least doubled to the value of PI/f-BN and as high as 16 times to that of the pure PI. The hybrid film PI/f-BN-50/g-TrG-1 exhibits excellent flexibility, sufficient insulating property, the highest TC of 2.11 W/mK, and ultralow coefficient of thermal expansion of 11 ppm/K, which are perfect conditions for future flexible substrate materials requiring efficient heat dissipation.

  11. An Electrochemical pH Sensor Based on the Amino-Functionalized Graphene and Polyaniline Composite Film.

    Su, W; Xu, J; Ding, Xianting

    2016-12-01

    Conventional glass-based pH sensors are usually fragile and space consuming. Herein, a miniature electrochemical pH sensor based on amino-functionalized graphene fragments and polyaniline (NH 2 -G/PANI) composite film is developed via simply one-pot electrochemical polymerization on the ITO-coated glass substrates. Cyclic Voltammetry (CV), Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), and Raman Spectra are involved to confirm the successful synthesis and to characterize the properties of the NH 2 -G/PANI composite film. The developed electrochemical pH sensor presents fast response, high sensitivity (51.1 mV/pH) and wide detection range when applied to PBS solutions of pH values from 1 to 11. The robust reproducibility and good stability of the developed pH sensors are investigated as well. Compared to the conventional glass-based pH meters, the NH 2 -G/PANI composite film-based pH sensor could be a promising contender for the flexible and miniaturized pH-sensing devices.

  12. Difference in chemical reactions in bulk plasma and sheath regions during surface modification of graphene oxide film using capacitively coupled NH{sub 3} plasma

    Lee, Sung-Youp; Kim, Chan; Kim, Hong Tak, E-mail: zam89blue@gmail.com [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2015-09-14

    Reduced graphene oxide (r-GO) films were obtained from capacitively coupled NH{sub 3} plasma treatment of spin-coated graphene oxide (GO) films at room temperature. Variations were evaluated according to the two plasma treatment regions: the bulk plasma region (R{sub bulk}) and the sheath region (R{sub sheath}). Reduction and nitridation of the GO films began as soon as the NH{sub 3} plasma was exposed to both regions. However, with the increase in treatment time, the reduction and nitridation reactions differed in each region. In the R{sub bulk}, NH{sub 3} plasma ions reacted chemically with oxygen functional groups on the GO films, which was highly effective for reduction and nitridation. While in the R{sub sheath}, physical reactions by ion bombardment were dominant because plasma ions were accelerated by the strong electrical field. The accelerated plasma ions reacted not only with the oxygen functional groups but also with the broken carbon chains, which caused the removal of the GO films by the formation of hydrocarbon gas species. These results showed that reduction and nitridation in the R{sub bulk} using capacitively coupled NH{sub 3} plasma were very effective for modifying the properties of r-GO films for application as transparent conductive films.

  13. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.

    Yang, Yi; Wen, Juan; Guo, Liqiang; Wan, Xiang; Du, Peifu; Feng, Ping; Shi, Yi; Wan, Qing

    2016-11-09

    Emulating neural behaviors at the synaptic level is of great significance for building neuromorphic computational systems and realizing artificial intelligence. Here, oxide-based electric double-layer (EDL) thin-film transistors were fabricated using 3-triethoxysilylpropylamine modified graphene oxide (KH550-GO) electrolyte as the gate dielectrics. Resulting from the EDL effect and electrochemical doping between mobile protons and the indium-zinc-oxide channel layer, long-term synaptic plasticity was emulated in our devices. Synaptic functions including long-term memory, synaptic temporal integration, and dynamic filters were successfully reproduced. In particular, spike rate-dependent plasticity (SRDP), one of the basic learning rules of long-term plasticity in the neural network where the synaptic weight changes according to the rate of presynaptic spikes, was emulated in our devices. Our results may facilitate the development of neuromorphic computational systems.

  14. Effects of concentration of reduced graphene oxide on properties of sol–gel prepared Al-doped zinc oxide thin films

    Chou, Ching-Tian; Wang, Fang-Hsing, E-mail: fansen@dragon.nchu.edu.tw; Chen, Wei-Chun

    2016-04-30

    Reduced-graphene-oxide-incorporated aluminum-doped zinc oxide (AZO:rGO) composite thin films were synthesized on glass substrates by using the sol–gel method. The effect of the rGO concentration (0–3 wt%) on structural, electrical, and optical properties of the composite film was investigated by X-ray diffraction, scanning electron microscopy, atomic force microscopy, Hall-effect measurement, and ultraviolet–visible spectrometry. All of the composite films showed a typical hexagonal wurtzite structure, and the films incorporated with 1 wt% rGO showed the highest (0 0 2) peak intensity. The sheet resistance of the films was effectively reduced by a factor of more than two as the rGO ratio increased from 0 to 1 wt%. However, the sheet resistance increased with a further increase in the rGO ratio. The optical transmittance of the composite film monotonically decreased with increasing the rGO ratio from 0 to 3 wt%. The average optical transmittance (400–700 nm) of the AZO:rGO thin film within 1 wt% rGO was above 81%. - Highlights: • Reduced-graphene-oxide-doped ZnO:Al composite films are synthesized by sol–gel. • All AZO:rGO thin films show a typical hexagonal wurtzite structure. • Sheet resistance of AZO:rGO(1 wt%) film decreases by a factor of more than two. • The average visible transmittance of the AZO:rGO(1 wt%) film was 81%.

  15. Sensitive detection of rutin based on {beta}-cyclodextrin-chemically reduced graphene/Nafion composite film

    Liu Kunping; Wei Jinping [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [School of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China)

    2011-05-30

    Highlights: > {beta}-CD-graphene composite obtained via a simple sonication-induced assembly. > Accelerating electron transfer on electrode to amplify the electrochemical signal. > A highly sensitive electrochemical sensor for rutin detection. > Good selectivity and reproducibility for the detection of rutin in real samples. - Abstract: An electrochemical sensor based on chemically reduced graphene (CRG) was developed for the sensitive detection of rutin. To construct the base of the sensor, a novel composite was initially fabricated and used as the substrate material by combining CRG and {beta}-cyclodextrin ({beta}-CD) via a simple sonication-induced assembly. Due to the high rutin-loading capacity on the electrode surface and the upstanding electric conductivity of graphene, the electrochemical response of the fabricated sensor was greatly enhanced and displayed excellent analytical performance for rutin detection from 6.0 x 10{sup -9} to 1.0 x 10{sup -5} mol L{sup -1} with a low detection limit of 2.0 x 10{sup -9} mol L{sup -1} at 3{sigma}. Moreover, the proposed electrochemical sensor also exhibited good selectivity and acceptable reproducibility and could be used for the detection of rutin in real samples. Therefore, the present work offers a new way to broaden the analytical applications of graphene in pharmaceutical analysis.

  16. Pseudocapacitive Transparent/Flexible Supercapacitor based on Graphene wrapped Ni(OH)2 Nanosheet Transparent Film Produced using Scalable Bio-inspired Methods

    Li, Na; Huang, Xuankai; Li, Ruijian; Chen, Yiming; Li, Yunyong; Shi, Zhicong; Zhang, Haiyan

    2016-01-01

    High specific-capacity pseudocapacitive transition-metal-hydroxide (TMH) materials are desirable for future high performance transparent supercapacitors, but have been rarely reported previously. The successful synthesis of TMH materials with desired nanostructures is a key factor for their transparency. Here, Ni(OH) 2 nanosheet transparent film (NNS-TF) was developed simply through a gas-liquid diffusion method. The nanostructures were enwrapped in graphene shells (NNS@Gr-TF) for using as transparent electrodes. The unique encapsulation structures build up rapid three-dimensional electron and ion transport pathways together with the underlying ITO layer. The specific areal capacitance (18.9 mF/cm 2 at 0.1 mA/cm 2 ) was greatly improved, at least a thousand times higher than the reported value for transparent devices based on planer CVD graphene, and ten times as that for 3D micro-structured graphene membrane.

  17. Electrochemical Deposition of CdTe Semiconductor Thin Films for Solar Cell Application Using Two-Electrode and Three-Electrode Configurations: A Comparative Study

    O. K. Echendu

    2016-01-01

    Full Text Available Thin films of CdTe semiconductor were electrochemically deposited using two-electrode and three-electrode configurations in potentiostatic mode for comparison. Cadmium sulphate and tellurium dioxide were used as cadmium and tellurium sources, respectively. The layers obtained using both configurations exhibit similar structural, optical, and electrical properties with no specific dependence on any particular electrode configuration used. These results indicate that electrochemical deposition (electrodeposition of CdTe and semiconductors in general can equally be carried out using two-electrode system as well as the conventional three-electrode system without compromising the essential qualities of the materials produced. The results also highlight the advantages of the two-electrode configuration in process simplification, cost reduction, and removal of a possible impurity source in the growth system, especially as the reference electrode ages.

  18. Mirror Buckling Transitions in Freestanding Graphene Membranes Induced through Scanning Tunneling Microscopy

    Schoelz, James K.

    Graphene has the ability to provide for a technological revolution. First isolated and characterized in 2004, this material shows promise in the field of flexible electronics. The electronic properties of graphene can be tuned by controlling the shape of the membrane. Of particular interest in this endeavor are the thermal ripples in graphene membranes. Years of theoretical work by such luminaries as Lev Landau, Rudolf Peierls, David Mermin and Herbert Wagner have established that 2D crystals should not be thermodynamically stable. Experimental research on thin films has supported this finding. Yet graphene exists, and freestanding graphene films have been grown on large scales. It turns out that coupling between the bending and stretching phonons can stabilize the graphene in a flat, albeit rippled phase. These ripples have attracted much attention, and recent work has shown how to arrange these ripples in a variety of configurations. In this thesis, I will present work done using a scanning tunneling microscope (STM) to interact with freestanding graphene membranes. First I will present STM images of freestanding graphene and show how these images show signs of distortion under the electrostatic influence of the STM tip. This electrostatic attraction between the STM tip and the graphene sample can be used to pull on the graphene sample. At the same time, by employing Joule heating in order to heat graphene using the tunneling current, and exploiting the negative coefficient of thermal expansion, a repulsive thermal load can be generated. By repeatedly pulling on the graphene using the electrostatic potential, while sequentially increasing the setpoint current we can generate a thermal mirror buckling event. Slowly heating the graphene using the tunneling current, prepares a small convex region of graphene under the tip. By increasing thermal stress, as well as pulling using the out of plane electrostatic force, the graphene suddenly and irreversibly switches the

  19. One-step electrochemical composite polymerization of polypyrrole integrated with functionalized graphene/carbon nanotubes nanostructured composite film for electrochemical capacitors

    Ding Bing; Lu Xiangjun; Yuan Changzhou; Yang Sudong; Han Yongqin; Zhang Xiaogang; Che Qian

    2012-01-01

    Graphical abstract: A novel one-step electrochemical co-deposition strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Highlights: ► Isolated, water-soluble graphene was obtained through benzenesulfonic functionalization. ► PPy/F-RGO/CNTs ternary composite film was prepared via one-step electrochemical co-deposition route. ► PPy/F-RGO/CNTs film shows 3-D highly porous nanostructure and high electrical conductivity. ► PPy/F-RGO/CNTs film exhibits high capacitance, good high-rate performance with a remarkable cycling stability. - Abstract: A novel one-step electrochemical composite polymerization strategy was first proposed to prepare unique polypyrrole/reduced graphene oxide/carbon nanotubes (PPy/F-RGO/CNTs) ternary composites, where F-RGO, CNTs, and PPy were electrodeposited simultaneously to construct a three-dimensional (3-D) highly porous film electrode. Such ternary composite film electrode exhibits a high specific capacitance of 300 F g −1 at 1 A g −1 as well as a remarkable cycling stability at high rates, which is related to its unique nanostructure and high electrical conductivity. F-RGO and CNTs act as an electron-transporting backbone of a 3-D porous nanostructure, leaving adequate working space for facile electrolyte penetration and better faradaic utilization of the electro-active PPy. Furthermore, the straightforward approach proposed here can be readily extended to prepare other composite film electrodes with good electrochemical performance for energy storage.

  20. Organic solar cells using CVD-grown graphene electrodes

    Kim, Hobeom; Han, Tae-Hee; Lim, Kyung-Geun; Lee, Tae-Woo; Bae, Sang-Hoon; Ahn, Jong-Hyun

    2014-01-01

    We report on the development of flexible organic solar cells (OSCs) incorporating graphene sheets synthesized by chemical vapor deposition (CVD) as transparent conducting electrodes on polyethylene terephthalate (PET) substrates. A key barrier that must be overcome for the successful fabrication of OSCs with graphene electrodes is the poor-film properties of water-based poly(3,4-ethylenedioxythiphene):poly(styrenesulfonate) (PEDOT:PSS) when coated onto hydrophobic graphene surfaces. To form a uniform PEDOT:PSS film on a graphene surface, we added perfluorinated ionomers (PFI) to pristine PEDOT:PSS to create ‘GraHEL’, which we then successfully spin coated onto the graphene surface. We systematically investigated the effect of number of layers in layer-by-layer stacked graphene anode of an OSC on the performance parameters including the open-circuit voltage (V oc ), short-circuit current (J sc ), and fill factor (FF). As the number of graphene layers increased, the FF tended to increase owing to lower sheet resistance, while J sc tended to decrease owing to the lower light absorption. In light of this trade-off between sheet resistance and transmittance, we determined that three-layer graphene (3LG) represents the best configuration for obtaining the optimal power conversion efficiency (PCE) in OSC anodes, even at suboptimal sheet resistances. We finally developed efficient, flexible OSCs with a PCE of 4.33%, which is the highest efficiency attained so far by an OSC with CVD-grown graphene electrodes to the best of our knowledge. (paper)

  1. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene–graphene composite layers for flexible thin film transistors with a polymer gate dielectric

    Basu, Sarbani; Adriyanto, Feri; Wang, Yeong-Her

    2014-01-01

    Solution processible poly(4-vinylphenol) is employed as a transistor dielectric material for low cost processing on flexible substrates at low temperatures. A 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene–graphene hybrid semiconductor is drop cast to fabricate bottom-gate and bottom-contact field-effect transistor devices on flexible and glass substrates under an ambient air environment. A few layers of graphene flakes increase the area in the conduction channel, and form bridge connections between the crystalline regions of the semiconductor layer which can change the surface morphology of TIPS pentacene films. The TIPS pentacene–graphene hybrid semiconductor-based organic thin film transistors (OTFTs) cross-linked with a poly(4-vinylphenol) gate dielectric exhibit an effective field-effect mobility of 0.076 cm 2  V −1  s −1 and a threshold voltage of −0.7 V at V gs = −40 V. By contrast, typical TIPS pentacene shows four times lower mobility of 0.019 cm 2  V −1  s −1 and a threshold voltage of 5 V. The graphene/TIPS pentacene hybrids presented in this paper can enhance the electrical characteristics of OTFTs due to their high crystallinity, uniform large-grain distribution, and effective reduction of crystal misorientation of the organic semiconductor layer, as confirmed by x-ray diffraction spectroscopy, atomic force microscopy, and optical microscopy studies. (paper)

  2. Blending effect of 6,13-bis(triisopropylsilylethynyl) pentacene-graphene composite layers for flexible thin film transistors with a polymer gate dielectric.

    Basu, Sarbani; Adriyanto, Feri; Wang, Yeong-Her

    2014-02-28

    Solution processible poly(4-vinylphenol) is employed as a transistor dielectric material for low cost processing on flexible substrates at low temperatures. A 6,13-bis (triisopropylsilylethynyl) (TIPS) pentacene-graphene hybrid semiconductor is drop cast to fabricate bottom-gate and bottom-contact field-effect transistor devices on flexible and glass substrates under an ambient air environment. A few layers of graphene flakes increase the area in the conduction channel, and form bridge connections between the crystalline regions of the semiconductor layer which can change the surface morphology of TIPS pentacene films. The TIPS pentacene-graphene hybrid semiconductor-based organic thin film transistors (OTFTs) cross-linked with a poly(4-vinylphenol) gate dielectric exhibit an effective field-effect mobility of 0.076 cm(2) V(-1) s(-1) and a threshold voltage of -0.7 V at V(gs) = -40 V. By contrast, typical TIPS pentacene shows four times lower mobility of 0.019 cm(2) V(-1) s(-1) and a threshold voltage of 5 V. The graphene/TIPS pentacene hybrids presented in this paper can enhance the electrical characteristics of OTFTs due to their high crystallinity, uniform large-grain distribution, and effective reduction of crystal misorientation of the organic semiconductor layer, as confirmed by x-ray diffraction spectroscopy, atomic force microscopy, and optical microscopy studies.

  3. 3D Graphene Functionalized by Covalent Organic Framework Thin Film as Capacitive Electrode in Alkaline Media.

    Zha, Zeqi; Xu, Lirong; Wang, Zhikui; Li, Xiaoguang; Pan, Qinmin; Hu, Pingan; Lei, Shengbin

    2015-08-19

    To harness the electroactivity of anthraquinone as an electrode material, a great recent effort have been invested to composite anthraquinone with carbon materials to improve the conductivity. Here we report on a noncovalent way to modify three-dimensional graphene with anthraquinone moieties through on-surface synthesis of two-dimensional covalent organic frameworks. We incorporate 2,6-diamino-anthraquinone moieties into COF through Schiff-base reaction with benzene-1,3,5-tricarbaldehyde. The synthesized COF -graphene composite exhibits large specific capacitance of 31.7 mF/cm(2). Long-term galvanostatic charge/discharge cycling experiments revealed a decrease of capacitance, which was attributed to the loss of COF materials and electrostatic repulsion accumulated during charge-discharge circles which result in the poor electrical conductivity between 2D COF layers.

  4. Label-free electrochemical immunoassay for neuron specific enolase based on 3D macroporous reduced graphene oxide/polyaniline film.

    Zhang, Qi; Li, Xiaoyan; Qian, Chunhua; Dou, Li; Cui, Feng; Chen, Xiaojun

    2018-01-01

    The content of neuron specific enolase (NSE) in serum is considered to be an essential indicator of small cell lung cancer (SCLC). Here, a novel label-free electrochemical immunoassay for the detection of NSE based on the three dimensionally macroporous reduced graphene oxide/polyaniline (3DM rGO/PANI) film has been proposed. The 3DM rGO/PANI film was constructed by electrochemical co-deposition of GO and aniline into the interspaces of a sacrificial silica opal template modified Au slice. During the co-deposition, GO was successfully reduced by aniline and PANI could be deposited on the surfaces of rGO sheets. The ratio of rGO and PANI in the composite was also optimized to achieve the maximum electrochemical performance. The 3DM rGO/PANI composite provided larger specific surface area for the antibody immobilization, exhibited enhanced conductivity for electron transfer, and more important was that PANI acted as the electroactive probe for indicating the NSE concentration. Under the optimal conditions, a linear current response of PANI to NSE concentration was obtained over 0.5 pg mL -1 -10.0 ng mL -1 with a detection limit of 0.1 pg mL -1 . Moreover, the immunosensor showed excellent selectivity, good stability, satisfactory reproducibility and regeneration, and was employed to detect NSE in clinical serum specimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. High-performance SERS substrate based on hybrid structure of graphene oxide/AgNPs/Cu film@pyramid Si

    Li, Zhe; Xu, Shi Cai; Zhang, Chao; Liu, Xiao Yun; Gao, Sai Sai; Hu, Li Tao; Guo, Jia; Ma, Yong; Jiang, Shou Zhen; Si, Hai Peng

    2016-12-01

    We present a novel surface-enhanced Raman scattering (SERS) substrate based on graphene oxide/silver nanoparticles/copper film covered silicon pyramid arrays (GO/AgNPs/PCu@Si) by a low-cost and simple method. The GO/AgNPs/PCu@Si substrate presents high sensitivity, good homogeneity and well stability with R6G molecules as a probe. The detected concentration of Rhodamine 6 G (R6G) is as low as 10-15 M. These sensitive SERS behaviors are also confirmed in theory via a commercial COMSOL software, the electric field enhancement is not only formed between the AgNPs, but also formed between the AgNPs and Cu film. And the GO/AgNPs/PCu@Si substrates also present good property on practical application for the detection of methylene blue (MB) and crystal violet (CV). This work may offer a novel and practical method to facilitate the SERS applications in areas of medicine, food safety and biotechnology.

  6. Synthesis of graphene-like transparent conductive films on dielectric substrates using a modified filtered vacuum arc system

    Lux, Helge, E-mail: lux@th-wildau.de; Schrader, Sigurd [Technical University of Applied Sciences Wildau, Hochschulring 1, Wildau 15745 (Germany); Siemroth, Peter [Arc Precision GmbH, Schwartzkopffstraße 2, Wildau 15745 (Germany); Sgarlata, Anna [Department of Physics, University of Roma - Tor Vergata, Via della Ricerca Scientifica 1, Roma 00133 (Italy); Prosposito, Paolo; Casalboni, Mauro [Department of Industrial Engineering, University of Roma - Tor Vergata, and Italian Interuniversity Consortium on Materials Science and Technology (INSTM), Research Unit Roma Tor Vergata Via del Politecnico 1, Roma 00133 (Italy); Schubert, Markus Andreas [IHP Innovations for High Performance Microelectronics, Im Technologiepark 25, Frankfurt (Oder) 15236 (Germany)

    2015-05-21

    Here, we present a reliable process to deposit transparent conductive films on silicon oxide, quartz, and sapphire using a solid carbon source. This layer consists of partially ordered graphene flakes with a lateral dimension of about 5 nm. The process does not require any catalytic metal and exploits a high current arc evaporation (Φ-HCA) to homogeneously deposit a layer of carbon on heated substrates. A gas atmosphere consisting of Argon or Argon/Hydrogen blend acting as a buffer influences the morphology of the growing film. scanning tunneling microscopy, transmission electron microscopy, and Raman spectra were used for a thorough characterization of the samples in order to optimize the growth parameters. The best carbon layers have a surface resistance of 5.7 × 10{sup 3} Ω{sub ◻} whereas the optical transparency of the coatings is 88% with an excellent homogeneity over areas of several cm{sup 2}. Such results are compatible with most semiconductor fabrication processes and make this method very promising for various industrial applications.

  7. Layer-by-layer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors.

    Wu, Zhong-Shuai; Parvez, Khaled; Winter, Andreas; Vieker, Henning; Liu, Xianjie; Han, Sheng; Turchanin, Andrey; Feng, Xinliang; Müllen, Klaus

    2014-07-09

    Highly uniform, ultrathin, layer-by-layer heteroatom (N, B) co-doped graphene films are fabricated for high-performance on-chip planar micro-supercapacitors with an ultrahigh volumetric capacitance of ∼488 F cm(-3) and excellent rate capability due to the synergistic effect of nitrogen and boron co-doping. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Influence of polymer swelling and dissolution into food simulants on the release of graphene nanoplates and carbon nanotubes from poly(lactic) acid and polypropylene composite films

    Velichkova, Hristiana; Petrova, Ivanka; Kotsilkov, Stanislav; Ivanov, Evgeni; Vitanov, Nikolay K.; Kotsilkova, Rumiana

    2017-01-01

    The study compared the effects of swelling and dissolution of a matrix polymer by food simulants on the release of graphene nanoplates (GNPs) and multiwall carbon nanotubes (MWCNTs) from poly(lactic) acid (PLA) and polypropylene (PP) composite films. The total migration was determined gravimetrically in the ethanol and acetic acid food simulants at different time and temperature conditions, while migrants were detected by laser diffraction analysis and transmission electron microscopy. Swelli...

  9. Paper-like N-doped graphene films prepared by hydroxylamine diffusion induced assembly and their ultrahigh-rate capacitive properties

    Chang, Yunzhen; Han, Gaoyi; Fu, Dongying; Liu, Feifei; Li, Miaoyu; Li, Yanping; Liu, Cuixian

    2014-01-01

    An approach as “hydroxylamine diffusion induced assembly” has been developed to fabricate N-doped graphene paper-like films (NG-P) and composite films containing multiwalled carbon nanotubes (NG-MWCNT-P). The obtained films have been characterized by using X-ray photoelectron spectroscopy, X-ray diffraction spectroscopy and scanning electron microscopy. The results indicate that the N atoms have doped into the graphene sheets and the interplanar distance between the graphene sheets decreases with the increment of the thermally treated temperature. The films of NG-P prepared at 100 °C are flexible and exhibit a maximum tensile stress of about 70.5 MPa and a Young's modulus of about 17.7 GPa, and the films of NG-P thermally treated at 300 °C (NG-P300) have high thermal conductivity of about 3403 W m -1 K −1 . However, the NG-MWCNT-P film exhibits a relatively weaker tensile stress compared with NG-P. The electrochemical measurements show that the NG-P300 possesses excellent ultrahigh-rate capacitive properties, and that the specific capacitance and the impedance phase angle of the capacitor can reach to about 318 μF cm −2 and -77.1° respectively at frequency of 120 Hz. Simple measurements on NG-MWCNT-P show that it has specific capacitance of about 90 F g −1 based on one electrode and the capacitor possesses the high-rate capability

  10. Enabling graphene nanoelectronics.

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  11. Probing graphene defects and estimating graphene quality with optical microscopy

    Lai, Shen; Kyu Jang, Sung; Jae Song, Young; Lee, Sungjoo

    2014-01-01

    We report a simple and accurate method for detecting graphene defects that utilizes the mild, dry annealing of graphene/Cu films in air. In contrast to previously reported techniques, our simple approach with optical microscopy can determine the density and degree of dislocation of defects in a graphene film without inducing water-related damage or functionalization. Scanning electron microscopy, confocal Raman and atomic force microscopy, and X-ray photoelectron spectroscopy analysis were performed to demonstrate that our nondestructive approach to characterizing graphene defects with optimized thermal annealing provides rapid and comprehensive determinations of graphene quality

  12. Electrografting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt forming electrocatalytic organic films on gold or graphene oxide gold hybrid electrodes

    Gómez-Anquela, C.; Revenga-Parra, M.; Abad, J.M.; Marín, A. García; Pau, J.L.; Pariente, F.; Piqueras, J.; Lorenzo, E.

    2014-01-01

    Electroactive films containing redox active phenothiazine moieties are covalently bound onto gold and graphene oxide gold hybrid electrodes, using reductive redox grafting of N’,N’-dimethylphenothiazin-5-ium-3,7-diamine (Azure A) diazonium salt. The grafting procedure is based on continuous voltammetric potential sweep of solutions containing the phenothiazine diazonium salt previously generated in situ. Control of the film thickness, electroactivity and stability can easily be exerted through appropriate choice of the concentration and number of potential scans performed. Cyclic Voltammetry, Electrochemical Quartz Crystal Microbalance (EQCM) and Spectroscopic Ellipsometry are used to characterize the growth process as well as the viscoelastic properties of the resulting stable electrografted films. The electron transfer reactions through the films are mediated by the presence of the Azure A redox moieties, which show a quasi-reversible electrochemical response and exhibit a potent electrocatalytic effect toward the oxidation of NADH. This electrocatalytic model has been used to compare the properties of Azure A electrografted films generated on gold electrodes with those obtained on hybrid electrodes composed by graphene oxide modified gold electrodes

  13. Flexible Graphene Composites for Human Space Flight Applications

    Sosa, Edward D.

    2013-01-01

    Graphene oxide allows for better dispersion stability in aqueous and organic solvents. Stabilizers provide dispersion of pristine graphene. Roll coating provide the best coverage of polyurethane sheets. Graphene and GO coated polyurethane used to fabricate flexible laminate composite. Permeation testing indicates that pristine graphene acts as a better gas barrier material. Continuous graphene films are expected to provide even better gas barrier properties.

  14. Graphene field-effect devices

    Echtermeyer, T. J.; Lemme, M. C.; Bolten, J.; Baus, M.; Ramsteiner, M.; Kurz, H.

    2007-09-01

    In this article, graphene is investigated with respect to its electronic properties when introduced into field effect devices (FED). With the exception of manual graphene deposition, conventional top-down CMOS-compatible processes are applied. Few and monolayer graphene sheets are characterized by scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The electrical properties of monolayer graphene sandwiched between two silicon dioxide films are studied. Carrier mobilities in graphene pseudo-MOS structures are compared to those obtained from double-gated Graphene-FEDs and silicon metal-oxide-semiconductor field-effect-transistors (MOSFETs).

  15. Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes.

    Eissa, Shimaa; Tlili, Chaker; L'Hocine, Lamia; Zourob, Mohammed

    2012-01-01

    A novel label-free voltammetric immunosensor for sensitive detection of β-lactoglobulin using graphene modified screen printed electrodes has been developed. The derivatization of the graphene electrode surface was achieved by electrochemical reduction of in situ generated 4-nitrophenyl diazonium cations in aqueous acidic solution, followed by electrochemical reduction of the terminal nitro groups to amines. The electrochemical modification protocol was optimized in order to generate monolayer of nitrophenyl groups on the graphene surface without complete passivation of the electrode. Unlike the reported method for graphene functionalization, we demonstrated here the ability of the electrografting of aryl diazonium salt to attach an organic film to the graphene surface in a controlled manner by choosing the suitable grafting protocol. Next, the amine groups on the graphene surface were activated using glutaraldehyde and used for the covalent immobilization of β-lactoglobulin antibodies. Cyclic and differential pulse voltammetry carried out in an aqueous solution containing [Fe(CN)(6)](3-/4-) redox pair have been used for the immunosensor characterization. The results demonstrated that the DPV reduction peak current of [Fe(CN)(6)](3-/4-) decreased linearly with increasing the concentration of β-lactoglobulin due to the formation of antibody-antigen complex on the modified electrode surface. The immunosensor obtained using this novel approach enabled a detection limit of 0.85 pg mL(-1) and a dynamic range from 1 pg mL(-1) to 100 ng mL(-1) of β-lactoglobulin in PBS buffer. In addition, the immunosensor evaluated in different samples including cake, cheese snacks, a sweet biscuit, showing excellent correlation with the results obtained from commercially enzyme-linked immunosorbent assay (ELISA) method. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors

    Min, Shudi; Zhao, Chongjun; Chen, Guorong; Qian, Xiuzhen

    2014-01-01

    Reduced graphene oxide (RGO) on nickel hydroxide (Ni(OH) 2 ) film was synthesized via a green and facile hydrothermal approach. In this process, graphene oxide (GO) was reduced by nickel foam (NF) while the nickel metal was oxidized to Ni(OH) 2 film simultaneously, which resulted in RGO on Ni(OH) 2 structure. The RGO/Ni(OH) 2 composite film was characterized using by X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscope (FESEM). The electrochemical performances of the supercapacitor with the as-synthesized RGO/Ni(OH) 2 composite films as electrodes were evaluated using cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), electrochemical impedance spectrometry (EIS) in 1 M KOH aqueous solution. Results indicated that the RGO/Ni(OH) 2 /NF composite electrodes exhibited superior capacitive performance with high capability (2500 mF cm −2 at a current density of 5 mA cm −2 , or 1667 F g −1 at 3.3 A g −1 ), compared with pure Ni(OH) 2 /NF (450 mF cm −2 at 5 mA cm −2 , 409 F g −1 at 3.3 A g −1 ) prepared under the identical conditions. Our study highlights the importance of anchoring RGO films on Ni(OH) 2 surface for maximizing the optimized utilization of electrochemically active Ni(OH) 2 and graphene for energy storage application in supercapacitors

  17. Pulsed Photoinitiated Fabrication of Inkjet Printed Titanium Dioxide/Reduced Graphene Oxide Nanocomposite Thin Films.

    Bourgeois, Briley; Luo, Sijun; Riggs, Brian; Ji, Yaping; Adireddy, Shiva; Schroder, Kurt; Farnsworth, Stan; Chrisey, Douglas B; Escarra, Matthew

    2018-05-08

    This work reports a new technique for scalable and low temperature processing of nanostructured-TiO2 thin films, allowing for practical manufacturing of TiO2 based devices such as perovskite solar cells at low temperature or on flexible substrates. Dual layers of dense and mesoporous TiO2/graphitic oxide nanocomposite films are synthesized simultaneously using inkjet printing and pulsed photonic irradiation. Investigation of process parameters including precursor concentration (10-20 wt%) and exposure fluence (4.5-8.5 J/cm2) reveals control over crystalline quality, graphitic oxide phase, film thickness, dendrite density, and optical properties. Raman spectroscopy shows the E¬g peak, characteristic of anatase phase titania, increases in intensity with higher photonic irradiation fluence, suggesting increased crystallinity through higher fluence processing. Film thickness and dendrite density is shown to increase with precursor concentration in the printed ink. The dense base layer thickness was controlled between 20 nm to 80 nm. The refractive index of the films is determined by ellipsometry to be 1.92 +/- 0.08 at 650 nm. Films exhibit an energy weighted optical transparency of 91.1%, in comparison to 91.3% of a thermally processed film, when in situ carbon materials were removed. Transmission and diffuse reflectance are used to determine optical band gaps of the films ranging from 2.98 eV to 3.38 eV in accordance with the photonic irradiation fluence and suggests tunability of TiO2 phase composition. The sheet resistance of the synthesized films is measured to be 14.54 +/- 1.11 Ω/□ and 28.90 +/- 2.24 Ω/□ for films as-processed and after carbon removal, respectively, which is comparable to high temperature processed TiO2 thin films. The studied electrical and optical properties of the light processed films show comparable results to traditionally processed TiO2 while offering the distinct advantages of scalable manufacturing, low-temperature processing

  18. Van der Waals epitaxy of GaN-based light-emitting diodes on wet-transferred multilayer graphene film

    Li, Yang; Zhao, Yun; Wei, Tongbo; Liu, Zhiqiang; Duan, Ruifei; Wang, Yunyu; Zhang, Xiang; Wu, QingQing; Yan, Jianchang; Yi, Xiaoyao; Yuan, Guodong; Wang, Junxi; Li, Jimin

    2017-08-01

    We experimentally investigated the possibility of using multilayer graphene to solve large mismatch problems between sapphire and nitride and further studied the effects of a multilayer graphene interlayer on the optical and electrical properties of LEDs. For the subsequent growth of 3-µm-thick GaN on AlN, multilayer graphene helps release stress and effectively removes cracks. In addition, multilayer graphene increases the diffraction of the substrate surface as determined from the increase in optical transmittance spectra in the wavelength range of 400-900 nm. Although the crystalline quality of GaN with multilayer graphene is slightly decreased, LEDs grown on multilayer graphene still show a higher output power than those grown on conventional sapphire. The present findings showed that the multilayer graphene layer is attractive as a potential substrate for the epitaxial growth of III-nitride to reduce stress and it could improve back light extraction as a rough layer to increase external quantum efficiency.

  19. Fabrication and electrical characterizations of graphene nanocomposite thin film based heterojunction diode

    Rahim, Ishrat; Shah, Mutabar; Iqbal, Mahmood; Wahab, Fazal; Khan, Afzal; Khan, Shah Haider

    2017-11-01

    The use of graphene in electronic devices is becoming attractive due to its inherent scalability and is thus well suited for flexible electronic devices. Here we present the electrical characterization of heterojunction diode, based on the nanocomposite of graphene (G) with silver nanoparticles (Ag NPs), at room temperature. The diode was fabricated by depositing nanocomposite on the n-Si substrate. The current - voltage (I - V) characteristic of the fabricated junction shows rectifying behavior similar to a Schottky junction. The junction parameters such as ideality factor (n), series resistance (Rs), and barrier height (ϕb) has been extracted, using various methods, from the experimentally obtained I - V data. The measured values of n, Rs and ϕb are 3.86, 45 Ω and 0.367 eV, respectively, as calculated from the I - V curve. The numerical values of these parameters calculated by different methods are in good agreement with each other showing the consistency of the applied calculating techniques. The conduction mechanism of the fabricated diode seems to have been dominated by the Trap Charge Limited Conduction (TCLC) behavior. The energy distribution of interface states density determined from forward bias I - V characteristic shows an exponential decrease with bias from 27 × 1013 cm-2 eV-1 at (Ec - 0.345) eV to 3 × 1013 cm-2 eV-1at (Ec - 0.398) eV.

  20. Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing.

    Sadasivuni, Kishor Kumar; Kafy, Abdullahil; Zhai, Lindong; Ko, Hyun-U; Mun, Seongcheol; Kim, Jaehwan

    2015-02-25

    The rapid development of touch screens as well as photoelectric sensors has stimulated the fabrication of reliable, convenient, and human-friendly devices. Other than sensors that detect physical touch or are based on pressure sensing, proximity sensors offer controlled sensibility without physical contact. In this work we present a transparent and eco-friendly sensor made through layer-by-layer spraying of modified graphene oxide filled cellulose nanocrystals on lithographic patterns of interdigitated electrodes on polymer substrates, which help to realize the precise location of approaching objects. Stable and reproducible signals generated by keeping the finger in close proximity to the sensor can be controlled by humidity, temperature, and the distance and number of sprayed layers. The chemical modification and reduction of the graphene oxide/cellulose crystal composite and its excellent nanostructure enable the development of proximity sensors with faster response and higher sensitivity, the integration of which resolves nearly all of the technological issues imposed on optoelectronic sensing devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Flexible MXene/Graphene Films for Ultrafast Supercapacitors with Outstanding Volumetric Capacitance

    Yan, Jun [Drexel Univ., Philadelphia, PA (United States); Harbin Engineering Univ., Harbin (China); Ren, Chang E. [Drexel Univ., Philadelphia, PA (United States); Maleski, Kathleen [Drexel Univ., Philadelphia, PA (United States); Hatter, Christine B. [Drexel Univ., Philadelphia, PA (United States); Anasori, Babak [Drexel Univ., Philadelphia, PA (United States); Urbankowski, Patrick [Drexel Univ., Philadelphia, PA (United States); Sarycheva, Asya [Drexel Univ., Philadelphia, PA (United States); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-06-30

    A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self-assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in-between MXene layers. As a result, the self-restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO-5 wt% electrode displays a volumetric capacitance of 1040 F cm–3 at a scan rate of 2 mV s–1, an impressive rate capability with 61% capacitance retention at 1 V s–1 and long cycle life. Moreover, the fabricated binder-free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L–1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. Furthermore, this work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next-generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.

  2. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  3. Multiple-stimuli responsive bioelectrocatalysis based on reduced graphene oxide/poly(N-isopropylacrylamide) composite films and its application in the fabrication of logic gates.

    Wang, Lei; Lian, Wenjing; Yao, Huiqin; Liu, Hongyun

    2015-03-11

    In the present work, reduced graphene oxide (rGO)/poly(N-isopropylacrylamide) (PNIPAA) composite films were electrodeposited onto the surface of Au electrodes in a fast and one-step manner from an aqueous mixture of a graphene oxide (GO) dispersion and N-isopropylacrylamide (NIPAA) monomer solutions. Reflection-absorption infrared (IR) and Raman spectroscopies were employed to characterize the successful construction of the rGO/PNIPAA composite films. The rGO/PNIPAA composite films exhibited reversible potential-, pH-, temperature-, and sulfate-sensitive cyclic voltammetric (CV) on-off behavior to the electroactive probe ferrocenedicarboxylic acid (Fc(COOH)2). For instance, after the composite films were treated at -0.7 V for 7 min, the CV responses of Fc(COOH)2 at the rGO/PNIPAA electrodes were quite large at pH 8.0, exhibiting the on state. However, after the films were treated at 0 V for 30 min, the CV peak currents became much smaller, demonstrating the off state. The mechanism of the multiple-stimuli switchable behaviors for the system was investigated not only by electrochemical methods but also by scanning electron microscopy and X-ray photoelectron spectroscopy. The potential-responsive behavior for this system was mainly attributed to the transformation between rGO and GO in the films at different potentials. The film system was further used to realize multiple-stimuli responsive bioelectrocatalysis of glucose catalyzed by the enzyme of glucose oxidase and mediated by the electroactive probe of Fc(COOH)2 in solution. On the basis of this, a four-input enabled OR (EnOR) logic gate network was established.

  4. The Optical Properties of Thin Film Reduced Graphene Oxide/Poly (3,4 Ethylenedioxtriophene):Poly (Styrene Sulfonate)(PEDOT:PSS) Fabricated by Spin Coating

    Rokmana, Arinta W.; Asriani, A.; Suhendar, H.; Triyana, K.; Kusumaatmaja, A.; Santoso, I.

    2018-04-01

    Reduced Graphene Oxide (rGO) has been successfully synthesized from Graphite powder through chemical process using modified Hummers method by removing NaNO3 from reaction formula. Hydrazine hydrate 80 wt% has been chosen as reductor to eliminate the epoxy group in GO. FTIR and Uv-Vis spectroscopy result showed that Graphene Oxide (GO) and rGO were formed. Our produced rGO then used to fabricated the composite thin film rGO/PEDOT:PSS by spin coating at room temperature. The optical constant of thin film rGO/PEDOT:PSS were calculated from the absorbance spectrum of Uv-Visible spectra. The result showed that the value of coefficient absorbance of rGO dropped from 4.7×106 m-1 to 1.3×106 m-1 after doped with 0.02 mL PEDOT:PSS, then increase with the addition volume concentration of PEDOT:PSS. The value of extinction coefficient decrease from 0.31 to 0.08 after rGO doped with 0.02 ml PEDOT:PSS and then increase with the addition concentration of PEDOT:PSS. Our result show that thin film rGO/PEDOT:PSS was more transparent than that of thin film rGO.

  5. Facile fabrication of a novel 3D graphene framework/Bi nanoparticle film for ultrasensitive electrochemical assays of heavy metal ions

    Shi, Lei [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Yangyang; Rong, Xiaojiao [School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Wang, Yan [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China); Ding, Shiming, E-mail: smding@niglas.ac.cn [State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008 (China)

    2017-05-22

    In this work, a novel 3D graphene framework/Bi nanoparticle (GF/BiNP) film was fabricated with a facile preparation route. 3D graphene framework with porous structures was electrochemically reduced and in situ assembled on the electrode, and BiNPs with tunable morphologies were highly dispersed on the framework by a chemical reduction. Newly-designed 3D GF/BiNP film possessed a significantly large active area, fast electron transfer ability, high mass transfer efficiency, and excellent structure stability and binding strength on electrode. To demonstrate its superior ability, electrochemical sensors for the assay of heavy metal ions were constructed. As a result, a simultaneous assay of Pb{sup 2+} and Cd{sup 2+} with ultralow detection limits (0.02 μg L{sup −1} of Pb{sup 2+} and 0.05 μg L{sup −1} of Cd{sup 2+}, S/N = 3) and a wide linear range from 1 to 120 μg L{sup −1} was achieved. Meanwhile, a separate analysis of Zn{sup 2+} was performed to get optimum responses, in which a low detection limit of 4.0 μg L{sup −1} (S/N = 3) with a linear range from 40 to 300 μg L{sup −1} was observed, confirming the versatility of the GF/BiNP film in the detection of heavy metal ions. Moreover, excellent repeatability, reproducibility and stability, and reliable assays in real water samples were realized with constructed sensors. Due to its convenient preparation, favorable structures and excellent properties, prepared 3D GF/BiNP film will find great potential for advanced applications in environment, biomedicine and energy systems. - Highlights: • A novel 3D graphene framework/Bi nanoparticle (GF/BiNP) film is prepared. • Porous graphene framework is in situ assembled on the electrode. • BiNPs with tunable morphologies are highly dispersed on the framework. • Newly-designed 3D GF/BiNP film possesses excellent properties. • Sensitive electrochemical sensors for Pb{sup 2+}, Cd{sup 2+} and Zn{sup 2+} are constructed.

  6. Facile preparation of molecularly imprinted polypyrrole-graphene-multiwalled carbon nanotubes composite film modified electrode for rutin sensing.

    Yang, Lite; Yang, Juan; Xu, Bingjie; Zhao, Faqiong; Zeng, Baizhao

    2016-12-01

    In this paper, a novel molecularly imprinted composite film modified electrode was presented for rutin (RT) detection. The modified electrode was fabricated by electropolymerization of pyrrole on a graphene-multiwalled carbon nanotubes composite (G-MWCNTs) coated glassy carbon electrode in the presence of RT. The netlike G-MWCNTs composite, prepared by in situ hydrothermal process, had high conductivity and electrocatalytic activity. At the resulting MIP/G-MWCNTs/GCE electrode RT could produce a sensitive anodic peak in pH 1.87 Britton-Robinson buffer solution. The factors affecting the electrochemical behavior and response of RT on the modified electrode were carefully investigated and optimized. Under the selected conditions, the linear response range of RT was 0.01-1.0μmolL -1 and the detection limit (S/N=3) was 5.0nmolL -1 . The electrode was successfully applied to the determination of RT in buckwheat tea and orange juice samples, and the recoveries for standards added were 93.4-105%. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  8. Preparation and characteristics of TFMB functionalized graphene oxide/polyimide nanocomposite films

    Liu, Lin; Wang, Yiyao; Gao, Yixin

    2018-04-01

    Polyimide(PI), with its great thermal and mechanical properties, has been widely used in various fields, such as aerospace and microelectronics. However, with the development of high technology, common PI materials can not satisfy the demands, due to its high resistance. In this work, we used 2,2'- Bis(trifluoromethyl) benzidine(TFMB) to functionalize GO and further form GO-TFMB/PI nanocomposite film. In the end, we got GO-TFMB/PI nanocomposite films with excellent thermal stability, better toughness and better electrical conductivity. As shown in results, the incorporation of GO-TFMB maintained excellent thermal stability. With the addition of GO-TFMB, the resistivity of the composite film decreased continuously. And when the content of GO-TFMB was 0.8 wt%, the resistivity could achieve the excellent antistatic material standard.

  9. Sensitive determination of bisphenol A base on arginine functionalized nanocomposite graphene film

    Zhang Yan; Wang Letao; Lu Daban; Shi Xuezhao; Wang Chunming; Duan Xiaojuan

    2012-01-01

    Highlights: ► The water-soluble arginine functionalized graphene was produced successfully by an environment-friendly method. ► Electrochemical behaviors and some kinetic parameters of bisphenol A on the Arg-G/GCE were investigated. ► The proposed sensor showed more outstanding sensitivity properties toward the bisphenol A than the reported sensors. ► The proposed method opened a new simply way to detection of bisphenol A in the environmental protection. - Abstract: Arginine (Arg) functionalized graphene (Arg-G) nanocomposite was produced successfully by an environment-friendly method, and the morphology of the nanocomposite was characterized by transmission electron microscopy (TEM), Raman spectra, etc. Based on Arg-G nanocomposite, an electrochemical sensor was fabricated for sensitive detection of bisphenol A (BPA). The electrochemical behaviors of BPA on Arg-G modified glassy carbon electrode (GCE) were investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Experimental parameters, such as the accumulation potential and time, scan rate, and the pH value of buffer solution were optimized. Under the optimized conditions, the oxidation peak current was proportional to BPA concentration in the range between 5.0 nmol/L and 40.0 μmol/L with the correlation coefficient of 0.9986 and the limit of detection of 1.1 nmol/L (S/N = 3). Moreover, the fabricated electrode also exhibited good reproducibility and stability. The proposed sensor was successfully employed to determine BPA in real plastic products and the recoveries were satisfactory.

  10. Using graphene/styrene-isoprene-styrene copolymer composite thin film as a flexible microstrip antenna for the detection of heptane vapors

    Olejnik, Robert; Matyas, Jiri; Slobodian, Petr; Riha, Pavel

    2018-03-01

    Most portable devices, such as mobile phones or tablets, use antennas made of copper. This paper demonstrates the possible use of antenna constructed from electrically conductive polymer composite materials for use in those applications. The method of preparation and the properties of the graphene/styrene-isoprene-styrene copolymer as flexible microstrip antenna are described in this contribution. Graphene/styrene-isoprene-styrene copolymer toluene solution was prepared by means of ultrasound and the PET substrate was dip coated to reach a fine thin film. The main advantages of using PET as a substrate are low weight and flexibility. The final size of the flexible microstrip antenna was 10 × 25 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with a weight of 0.110 g. The resulting antenna operates at a frequency of 1.8 GHz and gain ‑40.02 dB.

  11. Single 3d transition metal atoms on multi-layer graphene systems: electronic configurations, bonding mechanisms and role of the substrate

    Sessi, V.; Stepanow, S.; Rudenko, A.N.; Krotzky, S.; Kern, K.; Hiebel, F.; Mallet, P.; Veuillen, J.-Y.; Šipr, Ondřej; Honolka, Jan; Brookes, N.B.

    2014-01-01

    Roč. 16, Jun (2014), 1-11 ISSN 1367-2630 R&D Projects: GA ČR(CZ) GAP108/11/0853 Institutional support: RVO:68378271 Keywords : graphene * magnetic adsorbates * x-ray absorption spectroscopy * surface magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.558, year: 2014

  12. Graphene: corrosion-inhibiting coating.

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  13. Stoichiometry and local bond configuration of In{sub 2}S{sub 3}:Cl thin films by Rutherford backscattering spectrometry

    Juma, Albert O., E-mail: jumaa@biust.ac.bw

    2016-10-15

    In{sub 2}S{sub 3} thin films deposited using chemical methods always contain residual elements from the precursors, which modify their properties. As buffer layers in solar cells, the residual elements in the In{sub 2}S{sub 3} layer affect the performance of these devices. The stoichiometry of In{sub 2}S{sub 3} thin films deposited by spray ion layer gas reaction (ILGAR) was studied as a function of the residual Cl from InCl{sub 3} precursor by varying the deposition parameters. The chemical formula was deduced from the elemental composition determined using Rutherford backscattering (RBS). Incomplete sulfurization of the precursor implies that residual Cl{sup −} remains bonded to the In{sup 3+} ions while some occupy interstitial and/or antisite positions in the In{sub 2}S{sub 3} matrix. This results in thin films with different stoichiometry, described by the formula In{sub 4}S{sub 6−x}Cl{sub 2x+2y}. This changes the local bond configuration and geometry and underpins the influence of residual Cl on the physical properties of In{sub 2}S{sub 3} thin films.

  14. Application of graphene oxide in water treatment

    Liu, Yongchen

    2017-11-01

    Graphene oxide has good hydrophilicity and has been tried to use it into thin films for water treatment in recent years. In this paper, the preparation methods of graphene oxide membrane are reviewed, including vacuum suction filtration, spray coating, spin coating, dip coating and the layer by layer method. Secondly, the mechanism of mass transfer of graphene membrane is introduced in detail. The application of the graphene oxide membrane, modified graphene oxide membrane and graphene hybrid membranes were discussed in RO, vaporization, nanofiltration and other aspects. Finally, the development and application of graphene membrane in water treatment were discussed.

  15. Direct Electrochemistry of Hemoglobin at a Graphene Gold Nanoparticle Composite Film for Nitric Oxide Biosensing

    Guang-Chao Zhao

    2013-06-01

    Full Text Available A simple two-step method was employed for preparing nano-sized gold nanoparticles-graphene composite to construct a GNPs-GR-SDS modified electrode. Hemoglobin (Hb was successfully immobilized on the surface of a basal plane graphite (BPG electrode through a simple dropping technique. Direct electrochemistry and electrocatalysis of the hemoglobin-modified electrode was investigated. The as-prepared composites showed an obvious promotion of the direct electro-transfer between hemoglobin and the electrode. A couple of well-defined and quasi-reversible Hb CV peaks can be observed in a phosphate buffer solution (pH 7.0. The separation of anodic and cathodic peak potentials is 81 mV, indicating a fast electron transfer reaction. The experimental results also clarified that the immobilized Hb retained its biological activity for the catalysis toward NO. The biosensor showed high sensitivity and fast response upon the addition of NO, under the conditions of pH 7.0, potential ‒0.82 V. The time to reach the stable-state current was less than 3 s, and the linear response range of NO was 0.72–7.92 μM, with a correlation coefficient of 0.9991.

  16. Structural properties of perovskite films on zinc oxide nanoparticles-reduced graphene oxide (ZnO-NPs/rGO) prepared by electrophoretic deposition technique

    Bahtiar, Ayi; Nurazizah, Euis Siti; Latiffah, Efa; Risdiana, Furukawa, Yukio

    2018-02-01

    Perovskite solar cells highly believed as next generation solar cells to replace currently available inorganic silicon solar cells due to their high power conversion efficiency and easy processing to thin films using solution processing techniques. Performance and stability, however still need to be improved for mass production and widely used for public electricity generation. Perovskite solar cells are commonly deposited on Titanium Dioxide (TiO2) film as an effective electron transport layer (ETL). We used Zinc Oxide nanoparticles (ZnO-NPs) as ETL in perovskite solar cells due to the low temperature required for crystallization and can be formed into different shapes of nanostructures. However, perovskite film can easily degrade into insulating lead iodide due to deprotonation of the methylammoniumcation at the surface of ZnO-NPs, in particular when it stored in ambient air with high relative humidity. The degradation of perovskite layer is therefore needed to be overcome. Here, we capped ZnO-NPs with reduced graphene oxide (rGO) to overcome the degradation of perovskite film where ZnO-NPs is synthesized by sol-gel method. The average nanoparticle size of ZnO is 15 nm. ZnO-NPs and ZnO-NPs-rGO films are prepared using electrophoretic deposition technique, which can produce large area with good homogeneity and high reproducibility. The stability of perovskite layer can significantly be improved by capping ZnO with rGO, which is indicated by absence of color change of perovskite after storage for 5 (five) days in ambient air with relative humidity above 95%. Moreover, the X-Ray Diffaction peaks of perovskite film are more preserved when deposited on ZnO/rGO film than using only ZnO film. We strongly believe, by capping ZnO film with rGO, both the performance and stability of perovskite solar cells can be improved significantly.

  17. Femtosecond all-optical parallel logic gates based on tunable saturable to reverse saturable absorption in graphene-oxide thin films

    Roy, Sukhdev; Yadav, Chandresh

    2013-01-01

    A detailed theoretical analysis of ultrafast transition from saturable absorption (SA) to reverse saturable absorption (RSA) has been presented in graphene-oxide thin films with femtosecond laser pulses at 800 nm. Increase in pulse intensity leads to switching from SA to RSA with increased contrast due to two-photon absorption induced excited-state absorption. Theoretical results are in good agreement with reported experimental results. Interestingly, it is also shown that increase in concentration results in RSA to SA transition. The switching has been optimized to design parallel all-optical femtosecond NOT, AND, OR, XOR, and the universal NAND and NOR logic gates

  18. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    Jiang, Chuanxing; Zhang, Dongzhi; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan

    2017-01-01

    This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. A...

  19. Electrodeposition of composite films of reduced graphene oxide/polyaniline in neutral aqueous solution on inert and oxidizable metal

    Harfouche, N.; Gospodinova, Natalia; Nessark, B.; Perrin, F. X.

    2017-01-01

    Roč. 786, 1 February (2017), s. 135-144 ISSN 1572-6657 Institutional support: RVO:61389013 Keywords : polyaniline * graphene oxide * reduced graphene oxide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.012, year: 2016

  20. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors.

    Sarker, Ashis K; Hong, Jong-Dal

    2012-08-28

    Multilayer assemblies of uniform ultrathin film electrodes with good electrical conductivity and very large surface areas were prepared for use as electrochemical capacitors. A layer-by-layer self-assembly approach was employed in an effort to improve the processability of highly conducting polyaniline (PANi) and chemically modified graphene. The electrochemical properties of the multilayer film (MF-) electrodes, including the sheet resistance, volumetric capacitance, and charge/discharge ratio, were determined by the morphological modification and the method used to reduce the graphene oxide (GO) to reduced graphene oxide (RGO) in the multilayer films. The PANi and GO concentrations could be modulated to control the morphology of the GO monolayer film in the multilayer assemblies. Optical ellipsometry was used to determine the thickness of the GO film in a single layer (1.32 nm), which agreed well with the literature value (~1.3 nm). Hydroiodic acid (HI), hydrazine, or pyrolysis were tested for the reduction of GO to RGO. HI was found to be the most efficient technique for reducing the GO to RGO in the multilayer assemblies while minimizing damage to the virgin state of the acid-doped PANi. Ultimately, the MF-electrode, which could be optimized by fine-tuning the nanostructure and selecting a suitable reduction method, exhibited an excellent volumetric capacitance, good cycling stability, and a rapid charge/discharge rate, which are required for supercapacitors. A MF-electrode composed of 15 PANi/RGO bilayers yielded a volumetric capacitance of 584 F/cm(3) at a current density of 3.0 A/cm(3). Although this value decreased exponentially as the current density increased, approaching a value of 170 F/cm(3) at 100 A/cm(3), this volumetric capacitance is one of the best yet reported for the other carbon-based materials. The intriguing features of the MF-electrodes composed of PANi/RGO multilayer films offer a new microdimensional design for high energy storage devices

  1. Enzyme-free electrochemical immunosensor configured with Au-Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP.

    Zhao, Lifang; Li, Songjun; He, Jing; Tian, Guihong; Wei, Qin; Li, He

    2013-11-15

    A novel electrochemical immunosensor capable of enzyme-free detection of alpha fetoprotein (AFP) is reported. This immunosensor was fabricated in a sandwich-like format where catalytic Au-Pd nanocrystals and highly conductive N-doped graphene sheets were incorporated. The significant catalysis by Au-Pd nanocrystals toward hydrogen peroxide, along with the increased electron transfer by graphene sheets, caused signal generation and increased sensitivity, which enables the enzyme-free detection of AFP. With a low detection limit at 0.005 ng mL(-1), this novel immunosensor worked well over the broad linear range of 0.05-30 ng mL(-1). Unlike previously reported enzyme-based electrochemical immunosensors, which often involve the complicated steps for enzyme loading and necessary treatments to keep the activity of enzyme, this novel immunosensor is simple in nature and employed catalytic Au-Pd nanoparticles and highly conductive graphene, which thus enables reliable and sensitive detection for clinic usage. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Graphene-carbon nanotube hybrid materials and use as electrodes

    Tour, James M.; Zhu, Yu; Li, Lei; Yan, Zheng; Lin, Jian

    2016-09-27

    Provided are methods of making graphene-carbon nanotube hybrid materials. Such methods generally include: (1) associating a graphene film with a substrate; (2) applying a catalyst and a carbon source to the graphene film; and (3) growing carbon nanotubes on the graphene film. The grown carbon nanotubes become covalently linked to the graphene film through carbon-carbon bonds that are located at one or more junctions between the carbon nanotubes and the graphene film. In addition, the grown carbon nanotubes are in ohmic contact with the graphene film through the carbon-carbon bonds at the one or more junctions. The one or more junctions may include seven-membered carbon rings. Also provided are the formed graphene-carbon nanotube hybrid materials.

  3. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  4. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth

    2016-02-01

    of each sample after annealing . Transene brand APS-100 etchant is used to completely wet etch away the unmasked portion of the Cu-Ni alloy, and...morphological changes in the metal surfaces such as roughness, grain size, and crystal orientation due to the effects of annealing temperature, hydrogen...post- annealed at 1000 °C for 30 min, 40% H2, 15 Torr.............5 Fig. 6 AFM imaging of Cu:Ni alloyed films with ratios of a) 6:1 , b) 4:1, and c) 3

  5. Promising applications of graphene and graphene-based nanostructures

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-06-01

    The present article is a review of research works on promising applications of graphene and graphene-based nanostructures. It contains five main scientific subjects. The first one is the research on graphene-based transparent and flexible conductive films for displays and electrodes: efficient method ensuring uniform and controllable deposition of reduced graphene oxide thin films over large areas, large-scale pattern growth of graphene films for stretchble transparent electrodes, utilization of graphene-based transparent conducting films and graphene oxide-based ones in many photonic and optoelectronic devices and equipments such as the window electrodes of inorganic, organic and dye-sensitized solar cells, organic light-emitting diodes, light-emitting electrochemical cells, touch screens, flexible smart windows, graphene-based saturated absorbers in laser cavities for ultrafast generations, graphene-based flexible, transparent heaters in automobile defogging/deicing systems, heatable smart windows, graphene electrodes for high-performance organic field-effect transistors, flexible and transparent acoustic actuators and nanogenerators etc. The second scientific subject is the research on conductive inks for printed electronics to revolutionize the electronic industry by producing cost-effective electronic circuits and sensors in very large quantities: preparing high mobility printable semiconductors, low sintering temperature conducting inks, graphene-based ink by liquid phase exfoliation of graphite in organic solutions, and developing inkjet printing technique for mass production of high-quality graphene patterns with high resolution and for fabricating a variety of good-performance electronic devices, including transparent conductors, embedded resistors, thin-film transistors and micro supercapacitors. The third scientific subject is the research on graphene-based separation membranes: molecular dynamics simulation study on the mechanisms of the transport of

  6. Ultrathin Planar Graphene Supercapacitors

    Huang, Jingsong [ORNL; Meunier, Vincent [ORNL; Sumpter, Bobby G [ORNL; Ajayan, Pullikel M [Rice University; Yoo, Jung Joon [KAIST, Daejeon, Republic of Korea; Balakrishnan, Kaushik [Rice University; Srivastava, Anchal [Rice University; Conway, Michelle [Rice University; Reddy, Arava Leela Mohan [Rice University; Yu, Jin [Rice University; Vajtai, Robert [Rice University

    2011-01-01

    With the advent of atomically thin and flat layers of conducting materials such as graphene, new designs for thin film energy storage devices with good performance have become possible. Here, we report an in-plane fabrication approach for ultrathin supercapacitors based on electrodes comprised of pristine graphene and multi-layer reduced graphene oxide. The in-plane design is straightforward to implement and exploits efficiently the surface of each graphene layer for energy storage. The open architecture and the effect of graphene edges enable even the thinnest of devices, made from as grown 1-2 graphene layers, to reach specific capacities up to 80 Fcm-2. While, much higher (394 Fcm-2) specific capacities are observed in case of multi-layered graphene oxide electrodes, owing to the better utilization of the available electrochemical surface area. The performances of devices with pristine as well as thicker graphene based structures are examined using a combination of experiments and model calculations. The demonstrated all solid-state supercapacitors provide a prototype for a broad range of thin-film based energy storage devices.

  7. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Films Using Various p-Type Dopants and Their Application to GaN-Based Light-Emitting Diodes.

    Lee, Byeong Ryong; Kim, Tae Geun

    2017-01-01

    This article reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWCNT) films using various p-type dopants and their application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWCNT films on the light-emitting diodes (LEDs), we increased the work function (Φ) of the films using chemical doping with AuCl₃, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) (PEDOT:PSS) and MoO₃; thereby reduced the Schottky barrier height between the RGO/SWCNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWCNT film doped with MoO₃ exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  8. Reduced Graphene Oxide/Single-Walled Carbon Nanotube Hybrid Film Using Various p-Type Dopants and Its Application to GaN-Based Light-Emitting Diodes.

    Lee, Byeong Ryong; Kim, Tae Geun

    2016-06-01

    This paper reports the electrical and optical properties of the reduced graphene oxide (RGO)/single-walled carbon nanotube (SWNT) films using various p-type dopants and its application to GaN-based light-emitting diodes. To enhance the current injection and spreading of the RGO/SWNT films on the light-emitting diodes (LEDs), we increased the work function (φ) of the films using chemical doping with AuCl3, poly(3,4-ethylenedioxythiophene) oxidized with poly(4-styrenesulfonate) ( PSS) and MoO3; thereby reduced the Schottky barrier height between the RGO/SWNT films and p-GaN. By comparison, LEDs fabricated with work-function-tuned RGO/SWNT film doped with MoO3 exhibited the decrease of the forward voltage from 5.3 V to 5.02 V at 20 mA and the increase of the output power up to 1.26 times. We also analyzed the current injection mechanism using ultraviolet photoelectron spectroscopy and X-ray photoelectron spectroscopy.

  9. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanostructure of highly aromatic graphene nanosheets -- From optoelectronics to electrochemical energy storage applications

    Biswas, Sanjib

    The exceptional electrical properties along with intriguing physical and chemical aspects of graphene nanosheets can only be realized by nanostructuring these materials through the homogeneous and orderly distribution of these nanosheets without compromising the aromaticity of the native basal plane. Graphene nanosheets prepared by direct exfoliation as opposed to the graphene oxide route are necessary in order to preserve the native chemical properties of graphene basal planes. This research has been directed at optimally combining the diverse physical and chemical aspects of graphene nanosheets such as particle size, surface area and edge chemistry to fabricate nanostructured architectures for optoelectronics and high power electrochemical energy storage applications. In the first nanostructuring effort, a monolayer of these ultrathin, highly hydrophobic graphene nanosheets was prepared on a large area substrate via self-assembly at the liquid-liquid interface. Driven by the minimization of interfacial energy these planar graphene nanosheets produce a close packed monolayer structure at the liquid-liquid interface. The resulting monolayer film exhibits high electrical conductivity of more than 1000 S/cm and an optical transmission of more than 70-80% between wavelengths of 550 nm and 2000 nm making it an ideal candidate for optoelectronic applications. In the second part of this research, nanostructuring was used to create a configuration suitable for supercapacitor applications. A free standing, 100% binder free multilayer, flexible film consisting of monolayers of graphene nanosheets was prepared by utilizing the van der Waals forces of attraction between the basal plans of the graphene nanosheets coupled with capillary driven and drying-induced collapse. A major benefit in this approach is that the graphene nanosheet's attractive physical and chemical characteristics can be synthesized into an architecture consisting of large and small nanosheets to create an

  11. Self-assembly silicon/porous reduced graphene oxide composite film as a binder-free and flexible anode for lithium-ion batteries

    Tang, H.; Zhang, Y.J.; Xiong, Q.Q.; Cheng, J.D.; Zhang, Q.; Wang, X.L.; Gu, C.D.; Tu, J.P.

    2015-01-01

    A Si/porous reduced graphene oxide (rGO) composite film synthesized by evaporation and leavening method are developed as a high-performance anode material for lithium ion batteries. The porous structure as buffer base can effectively release the volume expansion of the silicon particles, increase the electrical conductivity and reduce the transfer resistance of Li ions. The Si/porous rGO composite film presents high specific capacity and good cycling stability (1261 mA h g −1 at 50 mA g −1 up to 70 cycles), as well as enhanced rate capability. This approach to prepare such a unique structure is a low-cost and facile route for the silicon-based anode materials

  12. Influence of Zr/Ti ratio and preferred orientation on polarization switching and domain configuration of Pb(Zr1-xTix)O3 thin films

    Lee, Young Hyun; Lee, Jung Kun; Hong, Kug Sun

    2003-01-01

    The (100) and (111) oriented Pb(Zr 1-x Ti x )O 3 (PZT) thins films were prepared on Pt/TiO 2 /SiO 2 /Si(100) substrate using sol-gel process. The ferroelectric and dielectric properties were evaluated as a function of Zr/Ti ratio and the origin of their changes were discussed in terms of domain engineering. With increasing Zr/Ti ratio, the remnant polarization of the polar axis decreased from 23.87 to 10.66 μC/cm 2 and the diffe