The graph representation approach to topological field theory in 2 + 1 dimensions
International Nuclear Information System (INIS)
Martin, S.P.
1991-02-01
An alternative definition of topological quantum field theory in 2+1 dimensions is discussed. The fundamental objects in this approach are not gauge fields as in the usual approach, but non-local observables associated with graphs. The classical theory of graphs is defined by postulating a simple diagrammatic rule for computing the Poisson bracket of any two graphs. The theory is quantized by exhibiting a quantum deformation of the classical Poisson bracket algebra, which is realized as a commutator algebra on a Hilbert space of states. The wavefunctions in this ''graph representation'' approach are functionals on an appropriate set of graphs. This is in contrast to the usual ''connection representation'' approach in which the theory is defined in terms of a gauge field and the wavefunctions are functionals on the space of flat spatial connections modulo gauge transformations
Temporal Representation in Semantic Graphs
Energy Technology Data Exchange (ETDEWEB)
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Dynamic Representations of Sparse Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Directory of Open Access Journals (Sweden)
Hossien Pourghassem
2011-04-01
Full Text Available Relevance feedback approaches is used to improve the performance of content-based image retrieval systems. In this paper, a novel relevance feedback approach based on similarity measure modification in an X-ray image retrieval system based on fuzzy representation using fuzzy attributed relational graph (FARG is presented. In this approach, optimum weight of each feature in feature vector is calculated using similarity rate between query image and relevant and irrelevant images in user feedback. The calculated weight is used to tune fuzzy graph matching algorithm as a modifier parameter in similarity measure. The standard deviation of the retrieved image features is applied to calculate the optimum weight. The proposed image retrieval system uses a FARG for representation of images, a fuzzy matching graph algorithm as similarity measure and a semantic classifier based on merging scheme for determination of the search space in image database. To evaluate relevance feedback approach in the proposed system, a standard X-ray image database consisting of 10000 images in 57 classes is used. The improvement of the evaluation parameters shows proficiency and efficiency of the proposed system.
Thermal operator representation of finite temperature graphs
International Nuclear Information System (INIS)
Brandt, F.T.; Frenkel, J.; Das, Ashok; Espinosa, Olivier; Perez, Silvana
2005-01-01
Using the mixed space representation (t,p→) in the context of scalar field theories, we prove in a simple manner that the Feynman graphs at finite temperature are related to the corresponding zero temperature diagrams through a simple thermal operator, both in the imaginary time as well as in the real time formalisms. This result is generalized to the case when there is a nontrivial chemical potential present. Several interesting properties of the thermal operator are also discussed
Neuro-symbolic representation learning on biological knowledge graphs.
Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert
2017-09-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Neuro-symbolic representation learning on biological knowledge graphs
Alshahrani, Mona
2017-04-21
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge.We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of SemanticWeb based knowledge bases in biology to use in machine learning and data analytics.https://github.com/bio-ontology-research-group/walking-rdf-and-owl.robert.hoehndorf@kaust.edu.sa.Supplementary data are available at Bioinformatics online.
Representation and integration of sociological knowledge using knowledge graphs
Popping, R; Strijker, [No Value
1997-01-01
The representation and integration of sociological knowledge using knowledge graphs, a specific kind of semantic network, is discussed. Knowledge it systematically searched this reveals. inconsistencies, reducing superfluous research and knowledge, and showing gaps in a theory. This representation
Sphere and dot product representations of graphs
R.J. Kang (Ross); T. Müller (Tobias)
2012-01-01
textabstractA graph $G$ is a $k$-sphere graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such that $ij\\in E(G)$ if and only if the distance between $v_i$ and $v_j$ is at most $1$. A graph $G$ is a $k$-dot product graph if there are $k$-dimensional real vectors $v_1,\\dots,v_n$ such
$1$-string $B_2$-VPG representation of planar graphs
Directory of Open Access Journals (Sweden)
Therese Biedl
2016-09-01
Full Text Available In this paper, we prove that every planar graph has a 1-string $B_2$-VPG representation—a string representation using paths in a rectangular grid that contain at most two bends. Furthermore, two paths representing vertices $u,v$ intersect precisely once whenever there is an edge between $u$ and $v$. We also show that only a subset of the possible curve shapes is necessary to represent $4$-connected planar graphs.
Using graph approach for managing connectivity in integrative landscape modelling
Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger
2013-04-01
In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). Open
Graph Regularized Auto-Encoders for Image Representation.
Yiyi Liao; Yue Wang; Yong Liu
2017-06-01
Image representation has been intensively explored in the domain of computer vision for its significant influence on the relative tasks such as image clustering and classification. It is valuable to learn a low-dimensional representation of an image which preserves its inherent information from the original image space. At the perspective of manifold learning, this is implemented with the local invariant idea to capture the intrinsic low-dimensional manifold embedded in the high-dimensional input space. Inspired by the recent successes of deep architectures, we propose a local invariant deep nonlinear mapping algorithm, called graph regularized auto-encoder (GAE). With the graph regularization, the proposed method preserves the local connectivity from the original image space to the representation space, while the stacked auto-encoders provide explicit encoding model for fast inference and powerful expressive capacity for complex modeling. Theoretical analysis shows that the graph regularizer penalizes the weighted Frobenius norm of the Jacobian matrix of the encoder mapping, where the weight matrix captures the local property in the input space. Furthermore, the underlying effects on the hidden representation space are revealed, providing insightful explanation to the advantage of the proposed method. Finally, the experimental results on both clustering and classification tasks demonstrate the effectiveness of our GAE as well as the correctness of the proposed theoretical analysis, and it also suggests that GAE is a superior solution to the current deep representation learning techniques comparing with variant auto-encoders and existing local invariant methods.
Representation Methods in AI. Searching by Graphs
Directory of Open Access Journals (Sweden)
Angel GARRIDO
2012-12-01
Full Text Available The historical origin of the Artificial Intelligence (A I is usually established in the Darmouth Conference, of 1956. But we can find many more arcane origins [1]. Also, we can consider, in more recent times, very great thinkers, as Janos Neumann (then, John von Neumann, arrived in USA, Norbert Wiener, Alan Mathison Turing, or Lofti Zadehfor instance [6, 7]. Frequently A I requires Logic. But its classical version shows too many insufficiencies. So, it was necessary to introduce more sophisticated tools, as fuzzy logic, modal logic, non-monotonic logic and so on [2]. Among the things that A I needs to represent are: categories, objects, properties, relations between objects, situations, states, time, events, causes and effects, knowledge about knowledge, and so on. The problems in A I can be classified in two general types [3, 4]: search problems and representation problems. In this last “mountain”, there exist different ways to reach their summit. So, we have [3]: logics, rules, frames, associative nets, scripts and so on, many times connectedamong them. We attempt, in this paper, a panoramic vision of the scope of application of such Representation Methods in A I. The two more disputable questions of both modern philosophy of mind and A I will be Turing Test and The Chinese Room Argument. To elucidate these very difficult questions, see both final Appendices.
Graph-representation of oxidative folding pathways
Directory of Open Access Journals (Sweden)
Kaján László
2005-01-01
Full Text Available Abstract Background The process of oxidative folding combines the formation of native disulfide bond with conformational folding resulting in the native three-dimensional fold. Oxidative folding pathways can be described in terms of disulfide intermediate species (DIS which can also be isolated and characterized. Each DIS corresponds to a family of folding states (conformations that the given DIS can adopt in three dimensions. Results The oxidative folding space can be represented as a network of DIS states interconnected by disulfide interchange reactions that can either create/abolish or rearrange disulfide bridges. We propose a simple 3D representation wherein the states having the same number of disulfide bridges are placed on separate planes. In this representation, the shuffling transitions are within the planes, and the redox edges connect adjacent planes. In a number of experimentally studied cases (bovine pancreatic trypsin inhibitor, insulin-like growth factor and epidermal growth factor, the observed intermediates appear as part of contiguous oxidative folding pathways. Conclusions Such networks can be used to visualize folding pathways in terms of the experimentally observed intermediates. A simple visualization template written for the Tulip package http://www.tulip-software.org/ can be obtained from V.A.
MultiAspect Graphs: Algebraic Representation and Algorithms
Directory of Open Access Journals (Sweden)
Klaus Wehmuth
2016-12-01
Full Text Available We present the algebraic representation and basic algorithms for MultiAspect Graphs (MAGs. A MAG is a structure capable of representing multilayer and time-varying networks, as well as higher-order networks, while also having the property of being isomorphic to a directed graph. In particular, we show that, as a consequence of the properties associated with the MAG structure, a MAG can be represented in matrix form. Moreover, we also show that any possible MAG function (algorithm can be obtained from this matrix-based representation. This is an important theoretical result since it paves the way for adapting well-known graph algorithms for application in MAGs. We present a set of basic MAG algorithms, constructed from well-known graph algorithms, such as degree computing, Breadth First Search (BFS, and Depth First Search (DFS. These algorithms adapted to the MAG context can be used as primitives for building other more sophisticated MAG algorithms. Therefore, such examples can be seen as guidelines on how to properly derive MAG algorithms from basic algorithms on directed graphs. We also make available Python implementations of all the algorithms presented in this paper.
GOGrapher: A Python library for GO graph representation and analysis.
Muller, Brian; Richards, Adam J; Jin, Bo; Lu, Xinghua
2009-07-07
The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve.
GOGrapher: A Python library for GO graph representation and analysis
Directory of Open Access Journals (Sweden)
Lu Xinghua
2009-07-01
Full Text Available Abstract Background The Gene Ontology is the most commonly used controlled vocabulary for annotating proteins. The concepts in the ontology are organized as a directed acyclic graph, in which a node corresponds to a biological concept and a directed edge denotes the parent-child semantic relationship between a pair of terms. A large number of protein annotations further create links between proteins and their functional annotations, reflecting the contemporary knowledge about proteins and their functional relationships. This leads to a complex graph consisting of interleaved biological concepts and their associated proteins. What is needed is a simple, open source library that provides tools to not only create and view the Gene Ontology graph, but to analyze and manipulate it as well. Here we describe the development and use of GOGrapher, a Python library that can be used for the creation, analysis, manipulation, and visualization of Gene Ontology related graphs. Findings An object-oriented approach was adopted to organize the hierarchy of the graphs types and associated classes. An Application Programming Interface is provided through which different types of graphs can be pragmatically created, manipulated, and visualized. GOGrapher has been successfully utilized in multiple research projects, e.g., a graph-based multi-label text classifier for protein annotation. Conclusion The GOGrapher project provides a reusable programming library designed for the manipulation and analysis of Gene Ontology graphs. The library is freely available for the scientific community to use and improve.
Valued Graphs and the Representation Theory of Lie Algebras
Directory of Open Access Journals (Sweden)
Joel Lemay
2012-07-01
Full Text Available Quivers (directed graphs, species (a generalization of quivers and their representations play a key role in many areas of mathematics including combinatorics, geometry, and algebra. Their importance is especially apparent in their applications to the representation theory of associative algebras, Lie algebras, and quantum groups. In this paper, we discuss the most important results in the representation theory of species, such as Dlab and Ringel’s extension of Gabriel’s theorem, which classifies all species of finite and tame representation type. We also explain the link between species and K-species (where K is a field. Namely, we show that the category of K -species can be viewed as a subcategory of the category of species. Furthermore, we prove two results about the structure of the tensor ring of a species containing no oriented cycles. Specifically, we prove that two such species have isomorphic tensor rings if and only if they are isomorphic as “crushed” species, and we show that if K is a perfect field, then the tensor algebra of a K -species tensored with the algebraic closure of K is isomorphic to, or Morita equivalent to, the path algebra of a quiver.
Graph approach to the gradient expansion of density functionals
International Nuclear Information System (INIS)
Kozlowski, P.M.; Nalewajski, R.F.
1986-01-01
A graph representation of terms in the gradient expansion of the kinetic energy density functional is presented. They briefly discuss the implications of the virial theorem for the graph structure and relations between possible graphs at a given order of expansion
Learning of Multimodal Representations With Random Walks on the Click Graph.
Wu, Fei; Lu, Xinyan; Song, Jun; Yan, Shuicheng; Zhang, Zhongfei Mark; Rui, Yong; Zhuang, Yueting
2016-02-01
In multimedia information retrieval, most classic approaches tend to represent different modalities of media in the same feature space. With the click data collected from the users' searching behavior, existing approaches take either one-to-one paired data (text-image pairs) or ranking examples (text-query-image and/or image-query-text ranking lists) as training examples, which do not make full use of the click data, particularly the implicit connections among the data objects. In this paper, we treat the click data as a large click graph, in which vertices are images/text queries and edges indicate the clicks between an image and a query. We consider learning a multimodal representation from the perspective of encoding the explicit/implicit relevance relationship between the vertices in the click graph. By minimizing both the truncated random walk loss as well as the distance between the learned representation of vertices and their corresponding deep neural network output, the proposed model which is named multimodal random walk neural network (MRW-NN) can be applied to not only learn robust representation of the existing multimodal data in the click graph, but also deal with the unseen queries and images to support cross-modal retrieval. We evaluate the latent representation learned by MRW-NN on a public large-scale click log data set Clickture and further show that MRW-NN achieves much better cross-modal retrieval performance on the unseen queries/images than the other state-of-the-art methods.
Neuro-symbolic representation learning on biological knowledge graphs
AlShahrani, Mona; Khan, Mohammed Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Nú ria; Hoehndorf, Robert
2017-01-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph
Multilinear Graph Embedding: Representation and Regularization for Images.
Chen, Yi-Lei; Hsu, Chiou-Ting
2014-02-01
Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.
Energy Technology Data Exchange (ETDEWEB)
Kucheryavyi, V I
1974-12-31
A parametric alpha -representation of Feynman amplitude for any spinor graph, which is expressed in terms of the Meijer's G functions, is obtained. This representation is valid both for divergent and convergent graphs. The available ChisholmNakanishi-Symanzik alpha -representation for convergent scalar graph turns out to be a special of the formula obtained. Besides that, the expression has a number of useful features. This representation automatically removes the infrared divergencies connected with zero photon mass. The expression has a form in which the scale-invariant terms are explicitly separated from the terms breaking the invariance. It is shown by considering the simplest graphs of quantum electrodynamics that this representation keeps gauge invariance and Ward's identity for renormalized amplitudes. (auth)
Representation of activity in images using geospatial temporal graphs
Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl
2018-05-01
Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.
Back to basics: homogeneous representations of multi-rate synchronous dataflow graphs
de Groote, Robert; Holzenspies, P.K.F.; Kuper, Jan; Broersma, Haitze J.
2013-01-01
Exact temporal analyses of multi-rate synchronous dataflow (MRSDF) graphs, such as computing the maximum achievable throughput, or sufficient buffer sizes required to reach a minimum throughput, require a homogeneous representation called a homogeneous synchronous dataflow (HSDF) graph. The size of
An approach to multiscale modelling with graph grammars.
Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried
2014-09-01
Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.
An Association-Oriented Partitioning Approach for Streaming Graph Query
Directory of Open Access Journals (Sweden)
Yun Hao
2017-01-01
Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.
Survey of Approaches to Generate Realistic Synthetic Graphs
Energy Technology Data Exchange (ETDEWEB)
Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-10-01
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.
On Complexity of Flooding Games on Graphs with Interval Representations
Fukui, Hiroyuki; Otachi, Yota; Uehara, Ryuhei; Uno, Takeaki; Uno, Yushi
2012-01-01
The flooding games, which are called Flood-It, Mad Virus, or HoneyBee, are a kind of coloring games and they have been becoming popular online. In these games, each player colors one specified cell in his/her turn, and all connected neighbor cells of the same color are also colored by the color. This flooding or coloring spreads on the same color cells. It is natural to consider these new coloring games on more general boards, or general graphs. Recently, computational complexities of the var...
An algebraic approach to graph codes
DEFF Research Database (Denmark)
Pinero, Fernando
This thesis consists of six chapters. The first chapter, contains a short introduction to coding theory in which we explain the coding theory concepts we use. In the second chapter, we present the required theory for evaluation codes and also give an example of some fundamental codes in coding...... theory as evaluation codes. Chapter three consists of the introduction to graph based codes, such as Tanner codes and graph codes. In Chapter four, we compute the dimension of some graph based codes with a result combining graph based codes and subfield subcodes. Moreover, some codes in chapter four...
ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach
Directory of Open Access Journals (Sweden)
Abderrahmene Sellami
2018-03-01
Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.
Crichton, Gamal; Guo, Yufan; Pyysalo, Sampo; Korhonen, Anna
2018-05-21
Link prediction in biomedical graphs has several important applications including predicting Drug-Target Interactions (DTI), Protein-Protein Interaction (PPI) prediction and Literature-Based Discovery (LBD). It can be done using a classifier to output the probability of link formation between nodes. Recently several works have used neural networks to create node representations which allow rich inputs to neural classifiers. Preliminary works were done on this and report promising results. However they did not use realistic settings like time-slicing, evaluate performances with comprehensive metrics or explain when or why neural network methods outperform. We investigated how inputs from four node representation algorithms affect performance of a neural link predictor on random- and time-sliced biomedical graphs of real-world sizes (∼ 6 million edges) containing information relevant to DTI, PPI and LBD. We compared the performance of the neural link predictor to those of established baselines and report performance across five metrics. In random- and time-sliced experiments when the neural network methods were able to learn good node representations and there was a negligible amount of disconnected nodes, those approaches outperformed the baselines. In the smallest graph (∼ 15,000 edges) and in larger graphs with approximately 14% disconnected nodes, baselines such as Common Neighbours proved a justifiable choice for link prediction. At low recall levels (∼ 0.3) the approaches were mostly equal, but at higher recall levels across all nodes and average performance at individual nodes, neural network approaches were superior. Analysis showed that neural network methods performed well on links between nodes with no previous common neighbours; potentially the most interesting links. Additionally, while neural network methods benefit from large amounts of data, they require considerable amounts of computational resources to utilise them. Our results indicate
Visibility graph approach to exchange rate series
Yang, Yue; Wang, Jianbo; Yang, Huijie; Mang, Jingshi
2009-10-01
By means of a visibility graph, we investigate six important exchange rate series. It is found that the series convert into scale-free and hierarchically structured networks. The relationship between the scaling exponents of the degree distributions and the Hurst exponents obeys the analytical prediction for fractal Brownian motions. The visibility graph can be used to obtain reliable values of Hurst exponents of the series. The characteristics are explained by using the multifractal structures of the series. The exchange rate of EURO to Japanese Yen is widely used to evaluate risk and to estimate trends in speculative investments. Interestingly, the hierarchies of the visibility graphs for the exchange rate series of these two currencies are significantly weak compared with that of the other series.
Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali
2018-06-01
Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results
Graph-theoretic approach to quantum correlations.
Cabello, Adán; Severini, Simone; Winter, Andreas
2014-01-31
Correlations in Bell and noncontextuality inequalities can be expressed as a positive linear combination of probabilities of events. Exclusive events can be represented as adjacent vertices of a graph, so correlations can be associated to a subgraph. We show that the maximum value of the correlations for classical, quantum, and more general theories is the independence number, the Lovász number, and the fractional packing number of this subgraph, respectively. We also show that, for any graph, there is always a correlation experiment such that the set of quantum probabilities is exactly the Grötschel-Lovász-Schrijver theta body. This identifies these combinatorial notions as fundamental physical objects and provides a method for singling out experiments with quantum correlations on demand.
Wang, Yang; Wu, Lin
2018-07-01
Low-Rank Representation (LRR) is arguably one of the most powerful paradigms for Multi-view spectral clustering, which elegantly encodes the multi-view local graph/manifold structures into an intrinsic low-rank self-expressive data similarity embedded in high-dimensional space, to yield a better graph partition than their single-view counterparts. In this paper we revisit it with a fundamentally different perspective by discovering LRR as essentially a latent clustered orthogonal projection based representation winged with an optimized local graph structure for spectral clustering; each column of the representation is fundamentally a cluster basis orthogonal to others to indicate its members, which intuitively projects the view-specific feature representation to be the one spanned by all orthogonal basis to characterize the cluster structures. Upon this finding, we propose our technique with the following: (1) We decompose LRR into latent clustered orthogonal representation via low-rank matrix factorization, to encode the more flexible cluster structures than LRR over primal data objects; (2) We convert the problem of LRR into that of simultaneously learning orthogonal clustered representation and optimized local graph structure for each view; (3) The learned orthogonal clustered representations and local graph structures enjoy the same magnitude for multi-view, so that the ideal multi-view consensus can be readily achieved. The experiments over multi-view datasets validate its superiority, especially over recent state-of-the-art LRR models. Copyright © 2018 Elsevier Ltd. All rights reserved.
Graph Theory Approach for Studying Food Webs
Longjas, A.; Tejedor, A.; Foufoula-Georgiou, E.
2017-12-01
Food webs are complex networks of feeding interactions among species in ecological communities. Metrics describing food web structure have been proposed to compare and classify food webs ranging from food chain length, connectance, degree distribution, centrality measures, to the presence of motifs (distinct compartments), among others. However, formal methodologies for studying both food web topology and the dynamic processes operating on them are still lacking. Here, we utilize a quantitative framework using graph theory within which a food web is represented by a directed graph, i.e., a collection of vertices (species or trophic species defined as sets of species sharing the same predators and prey) and directed edges (predation links). This framework allows us to identify apex (environmental "source" node) to outlet (top predators) subnetworks and compute the steady-state flux (e.g., carbon, nutrients, energy etc.) in the food web. We use this framework to (1) construct vulnerability maps that quantify the relative change of flux delivery to the top predators in response to perturbations in prey species (2) identify keystone species, whose loss would precipitate further species extinction, and (3) introduce a suite of graph-theoretic metrics to quantify the topologic (imposed by food web connectivity) and dynamic (dictated by the flux partitioning and distribution) components of a food web's complexity. By projecting food webs into a 2D Topodynamic Complexity Space whose coordinates are given by Number of alternative paths (topologic) and Leakage Index (dynamic), we show that this space provides a basis for food web comparison and provide physical insights into their dynamic behavior.
Alternative approach to nuclear data representation
International Nuclear Information System (INIS)
Pruet, J.; Brown, D.; Beck, B.; McNabb, D.P.
2006-01-01
This paper considers an approach for representing nuclear data that is qualitatively different from the approach currently adopted by the nuclear science community. Specifically, we examine a representation in which complicated data is described through collections of distinct and self-contained simple data structures. This structure-based representation is compared with the ENDF and ENDL formats, which can be roughly characterized as dictionary-based representations. A pilot data representation for replacing the format currently used at LLNL is presented. Examples are given as is a discussion of promises and shortcomings associated with moving from traditional dictionary-based formats to a structure-rich or class-like representation
Holten, D.H.R.; Isenberg, P.; Wijk, van J.J.; Fekete, J.D.
2011-01-01
We present the results of a study comparing five directed-edge representations for use in 2D, screen-based node-link diagrams. The goal of this work is to extend the understanding of tradeoffs and best practices for the representation of edges in directed graphs and to help practitioners choose
Sharma, Harshita; Zerbe, Norman; Heim, Daniel; Wienert, Stephan; Lohmann, Sebastian; Hellwich, Olaf; Hufnagl, Peter
2016-03-01
This paper describes a novel graph-based method for efficient representation and subsequent classification in histological whole slide images of gastric cancer. Her2/neu immunohistochemically stained and haematoxylin and eosin stained histological sections of gastric carcinoma are digitized. Immunohistochemical staining is used in practice by pathologists to determine extent of malignancy, however, it is laborious to visually discriminate the corresponding malignancy levels in the more commonly used haematoxylin and eosin stain, and this study attempts to solve this problem using a computer-based method. Cell nuclei are first isolated at high magnification using an automatic cell nuclei segmentation strategy, followed by construction of cell nuclei attributed relational graphs of the tissue regions. These graphs represent tissue architecture comprehensively, as they contain information about cell nuclei morphology as vertex attributes, along with knowledge of neighborhood in the form of edge linking and edge attributes. Global graph characteristics are derived and ensemble learning is used to discriminate between three types of malignancy levels, namely, non-tumor, Her2/neu positive tumor and Her2/neu negative tumor. Performance is compared with state of the art methods including four texture feature groups (Haralick, Gabor, Local Binary Patterns and Varma Zisserman features), color and intensity features, and Voronoi diagram and Delaunay triangulation. Texture, color and intensity information is also combined with graph-based knowledge, followed by correlation analysis. Quantitative assessment is performed using two cross validation strategies. On investigating the experimental results, it can be concluded that the proposed method provides a promising way for computer-based analysis of histopathological images of gastric cancer.
A hierarchical approach to reducing communication in parallel graph algorithms
Harshvardhan,
2015-01-01
Large-scale graph computing has become critical due to the ever-increasing size of data. However, distributed graph computations are limited in their scalability and performance due to the heavy communication inherent in such computations. This is exacerbated in scale-free networks, such as social and web graphs, which contain hub vertices that have large degrees and therefore send a large number of messages over the network. Furthermore, many graph algorithms and computations send the same data to each of the neighbors of a vertex. Our proposed approach recognizes this, and reduces communication performed by the algorithm without change to user-code, through a hierarchical machine model imposed upon the input graph. The hierarchical model takes advantage of locale information of the neighboring vertices to reduce communication, both in message volume and total number of bytes sent. It is also able to better exploit the machine hierarchy to further reduce the communication costs, by aggregating traffic between different levels of the machine hierarchy. Results of an implementation in the STAPL GL shows improved scalability and performance over the traditional level-synchronous approach, with 2.5 × - 8× improvement for a variety of graph algorithms at 12, 000+ cores.
Hewitt, Robin; Gobbi, Alberto; Lee, Man-Ling
2005-01-01
Relational databases are the current standard for storing and retrieving data in the pharmaceutical and biotech industries. However, retrieving data from a relational database requires specialized knowledge of the database schema and of the SQL query language. At Anadys, we have developed an easy-to-use system for searching and reporting data in a relational database to support our drug discovery project teams. This system is fast and flexible and allows users to access all data without having to write SQL queries. This paper presents the hierarchical, graph-based metadata representation and SQL-construction methods that, together, are the basis of this system's capabilities.
State space model extraction of thermohydraulic systems – Part I: A linear graph approach
International Nuclear Information System (INIS)
Uren, K.R.; Schoor, G. van
2013-01-01
Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state
Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu
2018-01-01
Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.
Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue
2016-01-01
We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.
Engineering system dynamics a unified graph-centered approach
Brown, Forbes T
2006-01-01
For today's students, learning to model the dynamics of complex systems is increasingly important across nearly all engineering disciplines. First published in 2001, Forbes T. Brown's Engineering System Dynamics: A Unified Graph-Centered Approach introduced students to a unique and highly successful approach to modeling system dynamics using bond graphs. Updated with nearly one-third new material, this second edition expands this approach to an even broader range of topics. What's New in the Second Edition? In addition to new material, this edition was restructured to build students' competence in traditional linear mathematical methods before they have gone too far into the modeling that still plays a pivotal role. New topics include magnetic circuits and motors including simulation with magnetic hysteresis; extensive new material on the modeling, analysis, and simulation of distributed-parameter systems; kinetic energy in thermodynamic systems; and Lagrangian and Hamiltonian methods. MATLAB(R) figures promi...
A Graph Cut Approach to Artery/Vein Classification in Ultra-Widefield Scanning Laser Ophthalmoscopy.
Pellegrini, Enrico; Robertson, Gavin; MacGillivray, Tom; van Hemert, Jano; Houston, Graeme; Trucco, Emanuele
2018-02-01
The classification of blood vessels into arterioles and venules is a fundamental step in the automatic investigation of retinal biomarkers for systemic diseases. In this paper, we present a novel technique for vessel classification on ultra-wide-field-of-view images of the retinal fundus acquired with a scanning laser ophthalmoscope. To the best of our knowledge, this is the first time that a fully automated artery/vein classification technique for this type of retinal imaging with no manual intervention has been presented. The proposed method exploits hand-crafted features based on local vessel intensity and vascular morphology to formulate a graph representation from which a globally optimal separation between the arterial and venular networks is computed by graph cut approach. The technique was tested on three different data sets (one publicly available and two local) and achieved an average classification accuracy of 0.883 in the largest data set.
Graph-based representation of behavior in detection and prediction of daily living activities.
Augustyniak, Piotr; Ślusarczyk, Grażyna
2018-04-01
Various surveillance systems capture signs of human activities of daily living (ADLs) and store multimodal information as time line behavioral records. In this paper, we present a novel approach to the analysis of a behavioral record used in a surveillance system designed for use in elderly smart homes. The description of a subject's activity is first decomposed into elementary poses - easily detectable by dedicated intelligent sensors - and represented by the share coefficients. Then, the activity is represented in the form of an attributed graph, where nodes correspond to elementary poses. As share coefficients of poses are expressed as attributes assigned to graph nodes, their change corresponding to a subject's action is represented by flow in graph edges. The behavioral record is thus a time series of graphs, which tiny size facilitates storage and management of long-term monitoring results. At the system learning stage, the contribution of elementary poses is accumulated, discretized and probability-ordered leading to a finite list representing the possible transitions between states. Such a list is independently built for each room in the supervised residence, and employed for assessment of the current action in the context of subject's habits and a room purpose. The proposed format of a behavioral record, applied to an adaptive surveillance system, is particularly advantageous for representing new activities not known at the setup stage, for providing a quantitative measure of transitions between poses and for expressing the difference between a predicted and actual action in a numerical way. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Information Retrieval and Graph Analysis Approaches for Book Recommendation.
Benkoussas, Chahinez; Bellot, Patrice
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD) a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval) Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.
Information Retrieval and Graph Analysis Approaches for Book Recommendation
Chahinez Benkoussas; Patrice Bellot
2015-01-01
A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model) and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval ...
Functional classification of protein structures by local structure matching in graph representation.
Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo
2018-03-31
As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Social representations: a theoretical approach in health
Directory of Open Access Journals (Sweden)
Isaiane Santos Bittencourt
2011-03-01
Full Text Available Objective: To present the theory of social representations, placing its epistemology and knowing the basic concepts of its approach as a structural unit of knowledge for health studies. Justification: The use of this theory comes from the need to understand social eventsunder the lens of the meanings constructed by the community. Data Synthesis: This was a descriptive study of literature review, which used as a source of data collection the classical authors of social representations supported by articles from electronic search at Virtual Health Library (VHL. The definition and discussion of collected data enabled to introduce two themes, versed on the history and epistemology of representations and on the structuralapproach of representations in health studies. Conclusion: This review allowed highlight the importance of locating the objects of study with regard to contextual issues of individual and collective histories, valuing the plurality of relations, to come closer to reality that is represented by the subjects.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
Number conserving approach in quasiparticle representation
International Nuclear Information System (INIS)
Oudih, M.R.; Fellah, M.; Allal, N.H.
2003-01-01
An exact number conserving approach is formulated in the quasiparticle representation to show the effect of the particle-number projection on the ground and the first 0+ excited states. It is applied to the two-level pairing model, which allows an exact solution and a comparison to other approaches. The present method has proved to be an advantageous alternative as compared to the BCS and to the usual methods used to restore the particle number symmetry. (author)
A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems
Harshvardhan,; West, Brandon; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2015-01-01
that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM
Information Retrieval and Graph Analysis Approaches for Book Recommendation
Directory of Open Access Journals (Sweden)
Chahinez Benkoussas
2015-01-01
Full Text Available A combination of multiple information retrieval approaches is proposed for the purpose of book recommendation. In this paper, book recommendation is based on complex user's query. We used different theoretical retrieval models: probabilistic as InL2 (Divergence from Randomness model and language model and tested their interpolated combination. Graph analysis algorithms such as PageRank have been successful in Web environments. We consider the application of this algorithm in a new retrieval approach to related document network comprised of social links. We called Directed Graph of Documents (DGD a network constructed with documents and social information provided from each one of them. Specifically, this work tackles the problem of book recommendation in the context of INEX (Initiative for the Evaluation of XML retrieval Social Book Search track. A series of reranking experiments demonstrate that combining retrieval models yields significant improvements in terms of standard ranked retrieval metrics. These results extend the applicability of link analysis algorithms to different environments.
A Community-Aware Approach to Minimizing Dissemination in Graphs
Zhang, Chuxu
2017-08-02
Given a graph, can we minimize the spread of an entity (such as a meme or a virus) while maintaining the graph’s community structure (defined as groups of nodes with denser intra-connectivity than inter-connectivity)? At first glance, these two objectives seem at odds with each other. To minimize dissemination, nodes or links are often deleted to reduce the graph’s connectivity. These deletions can (and often do) destroy the graph’s community structure, which is an important construct in real-world settings (e.g., communities promote trust among their members). We utilize rewiring of links to achieve both objectives. Examples of rewiring in real life are prevalent, such as purchasing products from a new farm since the local farm has signs of mad cow disease; getting information from a new source after a disaster since your usual source is no longer available, etc. Our community-aware approach, called constrCRlink (short for Constraint Community Relink), preserves (on average) 98.6% of the efficacy of the best community-agnostic link-deletion approach (namely, NetMelt+), but changes the original community structure of the graph by only 4.5%. In contrast, NetMelt+ changes 13.6% of the original community structure.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Maximal independent set graph partitions for representations of body-centered cubic lattices
DEFF Research Database (Denmark)
Erleben, Kenny
2009-01-01
corresponding to the leaves of a quad-tree thus has a smaller memory foot-print. The adjacency information in the graph relieves one from going up and down the quad-tree when searching for neighbors. This results in constant time complexities for refinement and coarsening operations.......A maximal independent set graph data structure for a body-centered cubic lattice is presented. Refinement and coarsening operations are defined in terms of set-operations resulting in robust and easy implementation compared to a quad-tree-based implementation. The graph only stores information...
Perkins, David Nikolaus; Brost, Randolph; Ray, Lawrence P.
2017-08-08
Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasets relative to moving objects such as vehicles.
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Anderson, Eric C; Ng, Thomas C
2016-02-01
We develop a computational framework for addressing pedigree inference problems using small numbers (80-400) of single nucleotide polymorphisms (SNPs). Our approach relaxes the assumptions, which are commonly made, that sampling is complete with respect to the pedigree and that there is no genotyping error. It relies on representing the inferred pedigree as a factor graph and invoking the Sum-Product algorithm to compute and store quantities that allow the joint probability of the data to be rapidly computed under a large class of rearrangements of the pedigree structure. This allows efficient MCMC sampling over the space of pedigrees, and, hence, Bayesian inference of pedigree structure. In this paper we restrict ourselves to inference of pedigrees without loops using SNPs assumed to be unlinked. We present the methodology in general for multigenerational inference, and we illustrate the method by applying it to the inference of full sibling groups in a large sample (n=1157) of Chinook salmon typed at 95 SNPs. The results show that our method provides a better point estimate and estimate of uncertainty than the currently best-available maximum-likelihood sibling reconstruction method. Extensions of this work to more complex scenarios are briefly discussed. Published by Elsevier Inc.
A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems
Harshvardhan,
2015-05-01
With the advent of big-data, processing large graphs quickly has become increasingly important. Most existing approaches either utilize in-memory processing techniques that can only process graphs that fit completely in RAM, or disk-based techniques that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM and uses a paging-like technique to load sub graphs. We show that without modifying the algorithms, this approach can scale from small memory-constrained systems (such as tablets) to large-scale distributed machines with 16, 000+ cores.
A hierarchical approach to reducing communication in parallel graph algorithms
Harshvardhan,; Amato, Nancy M.; Rauchwerger, Lawrence
2015-01-01
. This is exacerbated in scale-free networks, such as social and web graphs, which contain hub vertices that have large degrees and therefore send a large number of messages over the network. Furthermore, many graph algorithms and computations send the same data to each
A Qualitative Approach to Sketch the Graph of a Function.
Alson, Pedro
1992-01-01
Presents a qualitative and global method of graphing functions that involves transformations of the graph of a known function in the cartesian coordinate system referred to as graphic operators. Explains how the method has been taught to students and some comments about the results obtained. (MDH)
International Nuclear Information System (INIS)
Kent, R.D.; Schlesinger, M.
1987-01-01
For the purpose of computing matrix elements of quantum mechanical operators in complex N-particle systems it is necessary that as much of each irreducible representation be stored in high-speed memory as possible in order to achieve the highest possible rate of computations. A graph theoretic approach to the representation of N-particle systems involving arbitrary single-particle spin is presented. The method involves a generalization of a technique employed by Shavitt in developing the graphical group approach (GUGA) to electronic spin-orbitals. The methods implemented in GENDRT and DRTDIM overcome many deficiencies inherent in other approaches, particularly with respect to utilization of memory resources, computational efficiency in the recognition and evaluation of non-zero matrix elements of certain group theoretic operators and complete labelling of all the basis states of the permutation symmetry (S N ) adapted irreducible representations of SU(n) groups. (orig.)
The Epstein-Glaser approach to perturbative quantum field theory: graphs and Hopf algebras
International Nuclear Information System (INIS)
Lange, Alexander
2005-01-01
The paper aims at investigating perturbative quantum field theory in the approach of Epstein and Glaser (EG) and, in particular, its formulation in the language of graphs and Hopf algebras (HAs). Various HAs are encountered, each one associated with a special combination of physical concepts such as normalization, localization, pseudounitarity, causal regularization, and renormalization. The algebraic structures, representing the perturbative expansion of the S-matrix, are imposed on operator-valued distributions equipped with appropriate graph indices. Translation invariance ensures the algebras to be analytically well defined and graded total symmetry allows to formulate bialgebras. The algebraic results are given embedded in the corresponding physical framework, covering the two EG versions by Fredenhagen and Scharf that differ with respect to the concrete recursive implementation of causality. Besides, the ultraviolet divergences occurring in Feynman's representation are mathematically reasoned. As a final result, the change of the renormalization scheme in the context of EG is modeled via a HA and interpreted as the EG analog of Kreimer's HA
MetricForensics: A Multi-Level Approach for Mining Volatile Graphs
Energy Technology Data Exchange (ETDEWEB)
Henderson, Keith [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Eliassi-Rad, Tina [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Faloutsos, Christos [Carnegie Mellon Univ., Pittsburgh, PA (United States); Akoglu, Leman [Carnegie Mellon Univ., Pittsburgh, PA (United States); Li, Lei [Carnegie Mellon Univ., Pittsburgh, PA (United States); Maruhashi, Koji [Fujitsu Laboratories Ltd., Kanagawa (Japan); Prakash, B. Aditya [Carnegie Mellon Univ., Pittsburgh, PA (United States); Tong, H [Carnegie Mellon Univ., Pittsburgh, PA (United States)
2010-02-08
Advances in data collection and storage capacity have made it increasingly possible to collect highly volatile graph data for analysis. Existing graph analysis techniques are not appropriate for such data, especially in cases where streaming or near-real-time results are required. An example that has drawn significant research interest is the cyber-security domain, where internet communication traces are collected and real-time discovery of events, behaviors, patterns and anomalies is desired. We propose MetricForensics, a scalable framework for analysis of volatile graphs. MetricForensics combines a multi-level “drill down" approach, a collection of user-selected graph metrics and a collection of analysis techniques. At each successive level, more sophisticated metrics are computed and the graph is viewed at a finer temporal resolution. In this way, MetricForensics scales to highly volatile graphs by only allocating resources for computationally expensive analysis when an interesting event is discovered at a coarser resolution first. We test MetricForensics on three real-world graphs: an enterprise IP trace, a trace of legitimate and malicious network traffic from a research institution, and the MIT Reality Mining proximity sensor data. Our largest graph has »3M vertices and »32M edges, spanning 4:5 days. The results demonstrate the scalability and capability of MetricForensics in analyzing volatile graphs; and highlight four novel phenomena in such graphs: elbows, broken correlations, prolonged spikes, and strange stars.
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
Geosites and geoheritage representations - a cartographic approach
Rocha, Joao; Brilha, José
2016-04-01
In recent years, the increasing awareness of the importance of nature conservation, particularly towards the protection, conservation and promotion of geological sites, has resulted in a wide range of scientific studies. In a certain way, the majority of geodiversity studies, geoconservation strategies and geosites inventories and geoheritage assessment projects will use, on a particular stage, a cartographic representation - a map - of the most relevant geological and geomorphological features within the area of analyses. A wide range of geosite maps and geological heritage maps have been produced but, so far, a widely accepted conceptual cartographic framework with a specific symbology for cartographic representation has not been created. In this work we debate the lack of a systematic and conceptual framework to support geoheritage and geosite mapping. It is important to create a widely accepted conceptual cartographic framework with a specific symbology to be used within maps dedicated to geoheritage and geosites. We propose a cartographic approach aiming the conceptualization and the definition of a nomenclature and symbology system to be used on both geosite and geoheritage maps. We define a symbology framework for geosite and geoheritage mapping addressed to general public and to secondary school students, in order to be used as geotouristic and didactic tools, respectively. Three different approaches to support the definition of the symbology framework were developed: i) symbols to correlate geosites with the geological time scale; ii) symbols related to each one of the 27 geological frameworks defined in the Portuguese geoheritage inventory; iii) symbols to represent groups of geosites that share common geological and geomorphological features. The use of these different symbols in a map allows a quick understanding of a set of relevant information, in addition to the usual geographical distribution of geosites in a certain area.
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
Fractional graph theory a rational approach to the theory of graphs
Scheinerman, Edward R
2013-01-01
A unified treatment of the most important results in the study of fractional graph concepts, this volume explores the various ways in which integer-valued concepts can be modified to derive nonintegral values. It begins with the general fractional theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics. Subjects include fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, and fractional isomorphism. The final chapter examines additional topics such as fractional domination, fractional intersection numbers
Directory of Open Access Journals (Sweden)
Eric Vaz
2013-12-01
Full Text Available Urban sprawl and growth has experienced increased concern in geographic and environmental literature. Preceding the existence of robust frameworks found in regional and urban planning, as well as urban geography and economics, the spatial properties of allocation of urban land use are still far from being completely understood. This is largely due to the underlying complexity of the change found at the spatial level of urban land use, merging social, economic and natural drivers. The spatial patterns formed, and the connectivity established among the different subsets of land-use types, becomes a complex network of interactions over time, helping to shape the structure of the city. The possibility to merge the configuration of land-use with complex networks may be assessed elegantly through graph theory. Nodes and edges can become abstract representations of typologies of space and are represented into a topological space of different land use types which traditionally share common spatial boundaries. Within a regional framework, the links between adjacent and neighboring urban land use types become better understood, by means of a KamadaKawai algorithm. This study uses land use in Lisbon over three years, 1990, 2000 and 2006, to develop a Kamada-Kawai graph interpretation of land-use as a result of neighboring power. The rapid change witnessed in Lisbon since the nineties, as well as the availability of CORINE Land Cover data in these three time stamps, permits a reflection on anthropogenic land-use change in urban and semi-urban areas in Portugal’s capital. This paper responds to (1 the structure and connectivity of urban land use over time, demonstrating that most of the agricultural land is stressed to transform to urban, gaining a central role in future. (2 Offer a systemic approach to land-use transitions generating what we call spatial memory, where land use change is often unpredictable over space, but becomes evident in a graph theory
A semantic graph-based approach to biomedical summarisation.
Plaza, Laura; Díaz, Alberto; Gervás, Pablo
2011-09-01
Access to the vast body of research literature that is available in biomedicine and related fields may be improved by automatic summarisation. This paper presents a method for summarising biomedical scientific literature that takes into consideration the characteristics of the domain and the type of documents. To address the problem of identifying salient sentences in biomedical texts, concepts and relations derived from the Unified Medical Language System (UMLS) are arranged to construct a semantic graph that represents the document. A degree-based clustering algorithm is then used to identify different themes or topics within the text. Different heuristics for sentence selection, intended to generate different types of summaries, are tested. A real document case is drawn up to illustrate how the method works. A large-scale evaluation is performed using the recall-oriented understudy for gisting-evaluation (ROUGE) metrics. The results are compared with those achieved by three well-known summarisers (two research prototypes and a commercial application) and two baselines. Our method significantly outperforms all summarisers and baselines. The best of our heuristics achieves an improvement in performance of almost 7.7 percentage units in the ROUGE-1 score over the LexRank summariser (0.7862 versus 0.7302). A qualitative analysis of the summaries also shows that our method succeeds in identifying sentences that cover the main topic of the document and also considers other secondary or "satellite" information that might be relevant to the user. The method proposed is proved to be an efficient approach to biomedical literature summarisation, which confirms that the use of concepts rather than terms can be very useful in automatic summarisation, especially when dealing with highly specialised domains. Copyright © 2011 Elsevier B.V. All rights reserved.
A Practical Approach to Constructing a Knowledge Graph for Cybersecurity
Directory of Open Access Journals (Sweden)
Yan Jia
2018-02-01
Full Text Available Cyberattack forms are complex and varied, and the detection and prediction of dynamic types of attack are always challenging tasks. Research on knowledge graphs is becoming increasingly mature in many fields. At present, it is very significant that certain scholars have combined the concept of the knowledge graph with cybersecurity in order to construct a cybersecurity knowledge base. This paper presents a cybersecurity knowledge base and deduction rules based on a quintuple model. Using machine learning, we extract entities and build ontology to obtain a cybersecurity knowledge base. New rules are then deduced by calculating formulas and using the path-ranking algorithm. The Stanford named entity recognizer (NER is also used to train an extractor to extract useful information. Experimental results show that the Stanford NER provides many features and the useGazettes parameter may be used to train a recognizer in the cybersecurity domain in preparation for future work. Keywords: Cybersecurity, Knowledge graph, Knowledge deduction
A cluster expansion approach to exponential random graph models
International Nuclear Information System (INIS)
Yin, Mei
2012-01-01
The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region
Yoo, Illhoi; Hu, Xiaohua; Song, Il-Yeol
2007-11-27
A huge amount of biomedical textual information has been produced and collected in MEDLINE for decades. In order to easily utilize biomedical information in the free text, document clustering and text summarization together are used as a solution for text information overload problem. In this paper, we introduce a coherent graph-based semantic clustering and summarization approach for biomedical literature. Our extensive experimental results show the approach shows 45% cluster quality improvement and 72% clustering reliability improvement, in terms of misclassification index, over Bisecting K-means as a leading document clustering approach. In addition, our approach provides concise but rich text summary in key concepts and sentences. Our coherent biomedical literature clustering and summarization approach that takes advantage of ontology-enriched graphical representations significantly improves the quality of document clusters and understandability of documents through summaries.
A direct mining approach to efficient constrained graph pattern discovery
DEFF Research Database (Denmark)
Zhu, Feida; Zhang, Zequn; Qu, Qiang
2013-01-01
Despite the wealth of research on frequent graph pattern mining, how to efficiently mine the complete set of those with constraints still poses a huge challenge to the existing algorithms mainly due to the inherent bottleneck in the mining paradigm. In essence, mining requests with explicitly-spe...
A Numerical Approach to Long Cycles in Graphs and Digraphs
Czech Academy of Sciences Publication Activity Database
Fiedler, Miroslav
2001-01-01
Roč. 235, - (2001), s. 233-236 ISSN 0012-365X R&D Projects: GA ČR GA201/98/0222 Institutional research plan: AV0Z1030915 Keywords : graph * diagraph * cycle * Hamilton cycle Subject RIV: BA - General Mathematics Impact factor: 0.301, year: 2001
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
Energy Technology Data Exchange (ETDEWEB)
Girardet, Xavier, E-mail: xavier.girardet@univ-fcomte.fr; Foltête, Jean-Christophe, E-mail: jean-christophe.foltete@univ-fcomte.fr; Clauzel, Céline, E-mail: celine.clauzel@univ-fcomte.fr
2013-09-15
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact.
Designing a graph-based approach to landscape ecological assessment of linear infrastructures
International Nuclear Information System (INIS)
Girardet, Xavier; Foltête, Jean-Christophe; Clauzel, Céline
2013-01-01
The development of major linear infrastructures contributes to landscape fragmentation and impacts natural habitats and biodiversity in various ways. To anticipate and minimize such impacts, landscape planning needs to be capable of effective strategic environmental assessment (SEA) and of supporting environmental impact assessment (EIA) decisions. To this end, species distribution models (SDMs) are an effective way of making predictive maps of the presence of a given species. In this paper, we propose to combine SDMs and graph-based representation of landscape networks to integrate the potential long-distance effect of infrastructures on species distribution. A diachronic approach, comparing distribution before and after the linear infrastructure is constructed, leads to the design of a species distribution assessment (SDA), taking into account population isolation. The SDA makes it possible (1) to estimate the local variation in probability of presence and (2) to characterize the impact of the infrastructure in terms of global variation in presence and of distance of disturbance. The method is illustrated by assessing the impact of the construction of a high-speed railway line on the distribution of several virtual species in Franche-Comté (France). The study shows the capacity of the SDA to characterize the impact of a linear infrastructure either as a research concern or as a spatial planning challenge. SDAs could be helpful in deciding among several scenarios for linear infrastructure routes or for the location of mitigation measures. -- Highlights: • Graph connectivity metrics were integrated into a species distribution model. • SDM was performed before and after the implementation of linear infrastructure. • The local variation of presence provides spatial indicators of the impact
Visibility graph approach to the analysis of ocean tidal records
International Nuclear Information System (INIS)
Telesca, Luciano; Lovallo, Michele; Pierini, Jorge O.
2012-01-01
By using the recent method of the visibility graph, three time series of oceanic tide level in central Argentina were investigated. The degree distributions show a rich structure; in particular the maximum is due to the main periodic oscillations at 24 hours and 12 hours and higher harmonics. The degree distributions of the residuals (obtained removing from the original signals the cyclic components) suggest that the local effects, linked with the particular coastal conditions of the sites, are discernible for the degree k 100. Although a relationship between the spectral exponent α and the exponent of the degree distribution γ of tidal signals can be recognized, this cannot be simply stated due to the very rich and complex structure of time dynamics of tides. The present study, even if still preliminary, show the importance of the visibility graph method in investigating the complex time dynamics of observational and experimental signals.
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Knowledge representation an approach to artificial intelligence
Bench-Capon, TJM
1990-01-01
Although many texts exist offering an introduction to artificial intelligence (AI), this book is unique in that it places an emphasis on knowledge representation (KR) concepts. It includes small-scale implementations in PROLOG to illustrate the major KR paradigms and their developments.****back cover copy:**Knowledge representation is at the heart of the artificial intelligence enterprise: anyone writing a program which seeks to work by encoding and manipulating knowledge needs to pay attention to the scheme whereby he will represent the knowledge, and to be aware of the consequences of the ch
Spectral Approaches to Learning Predictive Representations
2012-09-01
representation and a value function. In practice, we would like to be able to find a good set of features, without prior knowledge of the system model. Kolter ...http://www.cs.ucr.edu/ eamonn/TSDMA/index.html. 7.1 [55] J. Zico Kolter and Andrew Y. Ng. Regularization and feature selection in least-squares temporal
Assessment of tautomer distribution using the condensed reaction graph approach
Gimadiev, T. R.; Madzhidov, T. I.; Nugmanov, R. I.; Baskin, I. I.; Antipin, I. S.; Varnek, A.
2018-03-01
We report the first direct QSPR modeling of equilibrium constants of tautomeric transformations (logK T ) in different solvents and at different temperatures, which do not require intermediate assessment of acidity (basicity) constants for all tautomeric forms. The key step of the modeling consisted in the merging of two tautomers in one sole molecular graph ("condensed reaction graph") which enables to compute molecular descriptors characterizing entire equilibrium. The support vector regression method was used to build the models. The training set consisted of 785 transformations belonging to 11 types of tautomeric reactions with equilibrium constants measured in different solvents and at different temperatures. The models obtained perform well both in cross-validation (Q2 = 0.81 RMSE = 0.7 logK T units) and on two external test sets. Benchmarking studies demonstrate that our models outperform results obtained with DFT B3LYP/6-311 ++ G(d,p) and ChemAxon Tautomerizer applicable only in water at room temperature.
A Parallel Approach for Frequent Subgraph Mining in a Single Large Graph Using Spark
Directory of Open Access Journals (Sweden)
Fengcai Qiao
2018-02-01
Full Text Available Frequent subgraph mining (FSM plays an important role in graph mining, attracting a great deal of attention in many areas, such as bioinformatics, web data mining and social networks. In this paper, we propose SSiGraM (Spark based Single Graph Mining, a Spark based parallel frequent subgraph mining algorithm in a single large graph. Aiming to approach the two computational challenges of FSM, we conduct the subgraph extension and support evaluation parallel across all the distributed cluster worker nodes. In addition, we also employ a heuristic search strategy and three novel optimizations: load balancing, pre-search pruning and top-down pruning in the support evaluation process, which significantly improve the performance. Extensive experiments with four different real-world datasets demonstrate that the proposed algorithm outperforms the existing GraMi (Graph Mining algorithm by an order of magnitude for all datasets and can work with a lower support threshold.
Almasi, Sepideh; Xu, Xiaoyin; Ben-Zvi, Ayal; Lacoste, Baptiste; Gu, Chenghua; Miller, Eric L
2015-02-01
A novel approach to determine the global topological structure of a microvasculature network from noisy and low-resolution fluorescence microscopy data that does not require the detailed segmentation of the vessel structure is proposed here. The method is most appropriate for problems where the tortuosity of the network is relatively low and proceeds by directly computing a piecewise linear approximation to the vasculature skeleton through the construction of a graph in three dimensions whose edges represent the skeletal approximation and vertices are located at Critical Points (CPs) on the microvasculature. The CPs are defined as vessel junctions or locations of relatively large curvature along the centerline of a vessel. Our method consists of two phases. First, we provide a CP detection technique that, for junctions in particular, does not require any a priori geometric information such as direction or degree. Second, connectivity between detected nodes is determined via the solution of a Binary Integer Program (BIP) whose variables determine whether a potential edge between nodes is or is not included in the final graph. The utility function in this problem reflects both intensity-based and structural information along the path connecting the two nodes. Qualitative and quantitative results confirm the usefulness and accuracy of this method. This approach provides a mean of correctly capturing the connectivity patterns in vessels that are missed by more traditional segmentation and binarization schemes because of imperfections in the images which manifest as dim or broken vessels. Copyright © 2014 Elsevier B.V. All rights reserved.
GRAPH THEORY APPROACH TO QUANTIFY UNCERTAINTY OF PERFORMANCE MEASURES
Directory of Open Access Journals (Sweden)
Sérgio D. Sousa
2015-03-01
Full Text Available In this work, the performance measurement process is studied to quantify the uncertainty induced in the resulting performance measure (PM. To that end, the causes of uncertainty are identified, analysing the activities undertaken in the three following stages of the performance measurement process: design and implementation, data collection and record, and determination and analysis. A quantitative methodology based on graph theory and on the sources of uncertainty of the performance measurement process is used to calculate an uncertainty index to evaluate the level of uncertainty of a given PM or (key performance indicator. An application example is presented. The quantification of PM uncertainty could contribute to better represent the risk associated with a given decision and also to improve the PM to increase its precision and reliability.
The Partial Mapping of the Web Graph
Directory of Open Access Journals (Sweden)
Kristina Machova
2009-06-01
Full Text Available The paper presents an approach to partial mapping of a web sub-graph. This sub-graph contains the nearest surroundings of an actual web page. Our work deals with acquiring relevant Hyperlinks of a base web site, generation of adjacency matrix, the nearest distance matrix and matrix of converted distances of Hyperlinks, detection of compactness of web representation, and visualization of its graphical representation. The paper introduces an LWP algorithm – a technique for Hyperlink filtration. This work attempts to help users with the orientation within the web graph.
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
An integrated approach to generation of precedence relations and precedence graphs for assembly sequence planning is presented, which contains more assembly flexibility. The approach involves two stages. Based on the assembly model, the components in the assembly can be divided into partially constrained components and completely constrained components in the first stage, and then geometric precedence relation for every component is generated automatically. According to the result of the first stage, the second stage determines and constructs all precedence graphs. The algorithms of these two stages proposed are verified by two assembly examples.
A signal-flow-graph approach to on-line gradient calculation.
Campolucci, P; Uncini, A; Piazza, F
2000-08-01
A large class of nonlinear dynamic adaptive systems such as dynamic recurrent neural networks can be effectively represented by signal flow graphs (SFGs). By this method, complex systems are described as a general connection of many simple components, each of them implementing a simple one-input, one-output transformation, as in an electrical circuit. Even if graph representations are popular in the neural network community, they are often used for qualitative description rather than for rigorous representation and computational purposes. In this article, a method for both on-line and batch-backward gradient computation of a system output or cost function with respect to system parameters is derived by the SFG representation theory and its known properties. The system can be any causal, in general nonlinear and time-variant, dynamic system represented by an SFG, in particular any feedforward, time-delay, or recurrent neural network. In this work, we use discrete-time notation, but the same theory holds for the continuous-time case. The gradient is obtained in a straightforward way by the analysis of two SFGs, the original one and its adjoint (obtained from the first by simple transformations), without the complex chain rule expansions of derivatives usually employed. This method can be used for sensitivity analysis and for learning both off-line and on-line. On-line learning is particularly important since it is required by many real applications, such as digital signal processing, system identification and control, channel equalization, and predistortion.
Directory of Open Access Journals (Sweden)
Simoens Frederik
2006-01-01
Full Text Available This paper concerns channel tracking in a multiantenna context for correlated flat-fading channels obeying a Gauss-Markov model. It is known that data-aided tracking of fast-fading channels requires a lot of pilot symbols in order to achieve sufficient accuracy, and hence decreases the spectral efficiency. To overcome this problem, we design a code-aided estimation scheme which exploits information from both the pilot symbols and the unknown coded data symbols. The algorithm is derived based on a factor graph representation of the system and application of the sum-product algorithm. The sum-product algorithm reveals how soft information from the decoder should be exploited for the purpose of estimation and how the information bits can be detected. Simulation results illustrate the effectiveness of our approach.
Сlassification of methods of production of computer forensic by usage approach of graph theory
Directory of Open Access Journals (Sweden)
Anna Ravilyevna Smolina
2016-06-01
Full Text Available Сlassification of methods of production of computer forensic by usage approach of graph theory is proposed. If use this classification, it is possible to accelerate and simplify the search of methods of production of computer forensic and this process to automatize.
Сlassification of methods of production of computer forensic by usage approach of graph theory
Anna Ravilyevna Smolina; Alexander Alexandrovich Shelupanov
2016-01-01
Сlassification of methods of production of computer forensic by usage approach of graph theory is proposed. If use this classification, it is possible to accelerate and simplify the search of methods of production of computer forensic and this process to automatize.
A graph-based approach to detect spatiotemporal dynamics in satellite image time series
Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal
2017-08-01
Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.
iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection
Directory of Open Access Journals (Sweden)
Jinlong Hu
2017-01-01
Full Text Available Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of mobile advertising user’s behavior and identify two persistent patterns: power law distribution and pertinence and propose an automatic initial score learning algorithm to formulate both concepts to learn the initial scores of non-seed nodes. We propose a weighted graph propagation algorithm to propagate the scores of all nodes in the user-app bipartite graphs until convergence. To extend our approach for large-scale settings, we decompose the objective function of the initial score learning model into separate one-dimensional problems and parallelize the whole approach on an Apache Spark cluster. iBGP was applied on a large synthetic dataset and a large real-world mobile advertising dataset; experiment results demonstrate that iBGP significantly outperforms other popular graph-based propagation methods.
A Graph-Algorithmic Approach for the Study of Metastability in Markov Chains
Gan, Tingyue; Cameron, Maria
2017-06-01
Large continuous-time Markov chains with exponentially small transition rates arise in modeling complex systems in physics, chemistry, and biology. We propose a constructive graph-algorithmic approach to determine the sequence of critical timescales at which the qualitative behavior of a given Markov chain changes, and give an effective description of the dynamics on each of them. This approach is valid for both time-reversible and time-irreversible Markov processes, with or without symmetry. Central to this approach are two graph algorithms, Algorithm 1 and Algorithm 2, for obtaining the sequences of the critical timescales and the hierarchies of Typical Transition Graphs or T-graphs indicating the most likely transitions in the system without and with symmetry, respectively. The sequence of critical timescales includes the subsequence of the reciprocals of the real parts of eigenvalues. Under a certain assumption, we prove sharp asymptotic estimates for eigenvalues (including pre-factors) and show how one can extract them from the output of Algorithm 1. We discuss the relationship between Algorithms 1 and 2 and explain how one needs to interpret the output of Algorithm 1 if it is applied in the case with symmetry instead of Algorithm 2. Finally, we analyze an example motivated by R. D. Astumian's model of the dynamics of kinesin, a molecular motor, by means of Algorithm 2.
Image-Based Edge Bundles : Simplified Visualization of Large Graphs
Telea, A.; Ersoy, O.
2010-01-01
We present a new approach aimed at understanding the structure of connections in edge-bundling layouts. We combine the advantages of edge bundles with a bundle-centric simplified visual representation of a graph's structure. For this, we first compute a hierarchical edge clustering of a given graph
Graph-based sequence annotation using a data integration approach
Directory of Open Access Journals (Sweden)
Pesch Robert
2008-06-01
Full Text Available The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara- Cyc which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation.
Graph-based sequence annotation using a data integration approach.
Pesch, Robert; Lysenko, Artem; Hindle, Matthew; Hassani-Pak, Keywan; Thiele, Ralf; Rawlings, Christopher; Köhler, Jacob; Taubert, Jan
2008-08-25
The automated annotation of data from high throughput sequencing and genomics experiments is a significant challenge for bioinformatics. Most current approaches rely on sequential pipelines of gene finding and gene function prediction methods that annotate a gene with information from different reference data sources. Each function prediction method contributes evidence supporting a functional assignment. Such approaches generally ignore the links between the information in the reference datasets. These links, however, are valuable for assessing the plausibility of a function assignment and can be used to evaluate the confidence in a prediction. We are working towards a novel annotation system that uses the network of information supporting the function assignment to enrich the annotation process for use by expert curators and predicting the function of previously unannotated genes. In this paper we describe our success in the first stages of this development. We present the data integration steps that are needed to create the core database of integrated reference databases (UniProt, PFAM, PDB, GO and the pathway database Ara-Cyc) which has been established in the ONDEX data integration system. We also present a comparison between different methods for integration of GO terms as part of the function assignment pipeline and discuss the consequences of this analysis for improving the accuracy of gene function annotation. The methods and algorithms presented in this publication are an integral part of the ONDEX system which is freely available from http://ondex.sf.net/.
McGibbney, L. J.; Jiang, Y.; Burgess, A. B.
2017-12-01
Big Earth observation data have been produced, archived and made available online, but discovering the right data in a manner that precisely and efficiently satisfies user needs presents a significant challenge to the Earth Science (ES) community. An emerging trend in information retrieval community is to utilize knowledge graphs to assist users in quickly finding desired information from across knowledge sources. This is particularly prevalent within the fields of social media and complex multimodal information processing to name but a few, however building a domain-specific knowledge graph is labour-intensive and hard to keep up-to-date. In this work, we update our progress on the Earth Science Knowledge Graph (ESKG) project; an ESIP-funded testbed project which provides an automatic approach to building a dynamic knowledge graph for ES to improve interdisciplinary data discovery by leveraging implicit, latent existing knowledge present within across several U.S Federal Agencies e.g. NASA, NOAA and USGS. ESKG strengthens ties between observations and user communities by: 1) developing a knowledge graph derived from various sources e.g. Web pages, Web Services, etc. via natural language processing and knowledge extraction techniques; 2) allowing users to traverse, explore, query, reason and navigate ES data via knowledge graph interaction. ESKG has the potential to revolutionize the way in which ES communities interact with ES data in the open world through the entity, spatial and temporal linkages and characteristics that make it up. This project enables the advancement of ESIP collaboration areas including both Discovery and Semantic Technologies by putting graph information right at our fingertips in an interactive, modern manner and reducing the efforts to constructing ontology. To demonstrate the ESKG concept, we will demonstrate use of our framework across NASA JPL's PO.DAAC, NOAA's Earth Observation Requirements Evaluation System (EORES) and various USGS
Directory of Open Access Journals (Sweden)
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
A Multi-Level Middle-Out Cross-Zooming Approach for Large Graph Analytics
Energy Technology Data Exchange (ETDEWEB)
Wong, Pak C.; Mackey, Patrick S.; Cook, Kristin A.; Rohrer, Randall M.; Foote, Harlan P.; Whiting, Mark A.
2009-10-11
This paper presents a working graph analytics model that embraces the strengths of the traditional top-down and bottom-up approaches with a resilient crossover concept to exploit the vast middle-ground information overlooked by the two extreme analytical approaches. Our graph analytics model is developed in collaboration with researchers and users, who carefully studied the functional requirements that reflect the critical thinking and interaction pattern of a real-life intelligence analyst. To evaluate the model, we implement a system prototype, known as GreenHornet, which allows our analysts to test the theory in practice, identify the technological and usage-related gaps in the model, and then adapt the new technology in their work space. The paper describes the implementation of GreenHornet and compares its strengths and weaknesses against the other prevailing models and tools.
iBGP: A Bipartite Graph Propagation Approach for Mobile Advertising Fraud Detection
Hu, Jinlong; Liang, Junjie; Dong, Shoubin
2017-01-01
Online mobile advertising plays a vital financial role in supporting free mobile apps, but detecting malicious apps publishers who generate fraudulent actions on the advertisements hosted on their apps is difficult, since fraudulent traffic often mimics behaviors of legitimate users and evolves rapidly. In this paper, we propose a novel bipartite graph-based propagation approach, iBGP, for mobile apps advertising fraud detection in large advertising system. We exploit the characteristics of m...
Zhang, Yongping; Shang, Pengjian; Xiong, Hui; Xia, Jianan
Time irreversibility is an important property of nonequilibrium dynamic systems. A visibility graph approach was recently proposed, and this approach is generally effective to measure time irreversibility of time series. However, its result may be unreliable when dealing with high-dimensional systems. In this work, we consider the joint concept of time irreversibility and adopt the phase-space reconstruction technique to improve this visibility graph approach. Compared with the previous approach, the improved approach gives a more accurate estimate for the irreversibility of time series, and is more effective to distinguish irreversible and reversible stochastic processes. We also use this approach to extract the multiscale irreversibility to account for the multiple inherent dynamics of time series. Finally, we apply the approach to detect the multiscale irreversibility of financial time series, and succeed to distinguish the time of financial crisis and the plateau. In addition, Asian stock indexes away from other indexes are clearly visible in higher time scales. Simulations and real data support the effectiveness of the improved approach when detecting time irreversibility.
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-01-01
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most
An unprecedented multi attribute decision making using graph theory matrix approach
Directory of Open Access Journals (Sweden)
N.K. Geetha
2018-02-01
Full Text Available A frame work for investigating the best combination of functioning parameters on a variable compression ratio diesel engine is proposed in the present study using a multi attribute optimization methodology, Graph Theory Matrix Approach. The functioning parameters, attributes, sub attributes and functioning variables of sub attributes are chosen based on expert’s opinion and literature review. The directed graphs are developed for attributes and sub attributes. The ‘Parameter Index’ was calculated for all trials to choose the best trial. The experimental results are verified with the theoretical data. Functioning parameters with combination of compression ratio of 17, fuel injection pressure of 20 N/mm2 and fuel injection pressure of 21°bTDC was found to be best. The proposed method allows the decision maker to systematically and logically find the best combination of functioning parameters.
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
Knowledge Representation in Patient Safety Reporting: An Ontological Approach
Liang Chen; Yang Gong
2016-01-01
Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our desig...
Mining chemical reactions using neighborhood behavior and condensed graphs of reactions approaches.
de Luca, Aurélie; Horvath, Dragos; Marcou, Gilles; Solov'ev, Vitaly; Varnek, Alexandre
2012-09-24
This work addresses the problem of similarity search and classification of chemical reactions using Neighborhood Behavior (NB) and Condensed Graphs of Reaction (CGR) approaches. The CGR formalism represents chemical reactions as a classical molecular graph with dynamic bonds, enabling descriptor calculations on this graph. Different types of the ISIDA fragment descriptors generated for CGRs in combination with two metrics--Tanimoto and Euclidean--were considered as chemical spaces, to serve for reaction dissimilarity scoring. The NB method has been used to select an optimal combination of descriptors which distinguish different types of chemical reactions in a database containing 8544 reactions of 9 classes. Relevance of NB analysis has been validated in generic (multiclass) similarity search and in clustering with Self-Organizing Maps (SOM). NB-compliant sets of descriptors were shown to display enhanced mapping propensities, allowing the construction of better Self-Organizing Maps and similarity searches (NB and classical similarity search criteria--AUC ROC--correlate at a level of 0.7). The analysis of the SOM clusters proved chemically meaningful CGR substructures representing specific reaction signatures.
Key Concept Identification: A Comprehensive Analysis of Frequency and Topical Graph-Based Approaches
Directory of Open Access Journals (Sweden)
Muhammad Aman
2018-05-01
Full Text Available Automatic key concept extraction from text is the main challenging task in information extraction, information retrieval and digital libraries, ontology learning, and text analysis. The statistical frequency and topical graph-based ranking are the two kinds of potentially powerful and leading unsupervised approaches in this area, devised to address the problem. To utilize the potential of these approaches and improve key concept identification, a comprehensive performance analysis of these approaches on datasets from different domains is needed. The objective of the study presented in this paper is to perform a comprehensive empirical analysis of selected frequency and topical graph-based algorithms for key concept extraction on three different datasets, to identify the major sources of error in these approaches. For experimental analysis, we have selected TF-IDF, KP-Miner and TopicRank. Three major sources of error, i.e., frequency errors, syntactical errors and semantical errors, and the factors that contribute to these errors are identified. Analysis of the results reveals that performance of the selected approaches is significantly degraded by these errors. These findings can help us develop an intelligent solution for key concept extraction in the future.
Directory of Open Access Journals (Sweden)
Prochazka Pavel
2010-01-01
Full Text Available The sum product algorithm on factor graphs (FG/SPA is a widely used tool to solve various problems in a wide area of fields. A representation of generally-shaped continuously valued messages in the FG/SPA is commonly solved by a proper parameterization of the messages. Obtaining such a proper parameterization is, however, a crucial problem in general. The paper introduces a systematic procedure for obtaining a scalar message representation with well-defined fidelity criterion in a general FG/SPA. The procedure utilizes a stochastic nature of the messages as they evolve during the FG/SPA processing. A Karhunen-Loève Transform (KLT is used to find a generic canonical message representation which exploits the message stochastic behavior with mean square error (MSE fidelity criterion. We demonstrate the procedure on a range of scenarios including mixture-messages (a digital modulation in phase parametric channel. The proposed systematic procedure achieves equal results as the Fourier parameterization developed especially for this particular class of scenarios.
A Bond Graph Approach for the Modeling and Simulation of a Buck Converter
Directory of Open Access Journals (Sweden)
Rached Zrafi
2018-01-01
Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter.
A representation theoretic approach to the WZW Verlinde formula
Fuchs, J
1997-01-01
By exploring the description of chiral blocks in terms of co-invariants, a proof of the Verlinde formula for WZW models is obtained which is entirely based on the representation theory of affine Lie algebras. In contrast to other proofs of the Verlinde formula, this approach works for all untwisted affine Lie algebras. As a by-product we obtain a homological interpretation of the Verlinde multiplicities, as Euler characteristics of complexes built from invariant tensors of finite-dimensional simple Lie algebras.
A study of brain networks associated with swallowing using graph-theoretical approaches.
Directory of Open Access Journals (Sweden)
Bo Luan
Full Text Available Functional connectivity between brain regions during swallowing tasks is still not well understood. Understanding these complex interactions is of great interest from both a scientific and a clinical perspective. In this study, functional magnetic resonance imaging (fMRI was utilized to study brain functional networks during voluntary saliva swallowing in twenty-two adult healthy subjects (all females, [Formula: see text] years of age. To construct these functional connections, we computed mean partial correlation matrices over ninety brain regions for each participant. Two regions were determined to be functionally connected if their correlation was above a certain threshold. These correlation matrices were then analyzed using graph-theoretical approaches. In particular, we considered several network measures for the whole brain and for swallowing-related brain regions. The results have shown that significant pairwise functional connections were, mostly, either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we showed that all human brain functional network, although varying in some degree, had typical small-world properties as compared to regular networks and random networks. These properties allow information transfer within the network at a relatively high efficiency. Swallowing-related brain regions also had higher values for some of the network measures in comparison to when these measures were calculated for the whole brain. The current results warrant further investigation of graph-theoretical approaches as a potential tool for understanding the neural basis of dysphagia.
Determining X-chains in graph states
International Nuclear Information System (INIS)
Wu, Jun-Yi; Kampermann, Hermann; Bruß, Dagmar
2016-01-01
The representation of graph states in the X-basis as well as the calculation of graph state overlaps can efficiently be performed by using the concept of X-chains (Wu et al 2015 Phys. Rev. A 92 012322). We present a necessary and sufficient criterion for X-chains and show that they can efficiently be determined by the Bareiss algorithm. An analytical approach for searching X-chain groups of a graph state is proposed. Furthermore we generalize the concept of X-chains to so-called Euler chains, whose induced subgraphs are Eulerian. This approach helps to determine if a given vertex set is an X-chain and we show how Euler chains can be used in the construction of multipartite Bell inequalities for graph states. (paper)
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
Fracture and Fragmentation of Simplicial Finite Elements Meshes using Graphs
Energy Technology Data Exchange (ETDEWEB)
Mota, A; Knap, J; Ortiz, M
2006-10-18
An approach for the topological representation of simplicial finite element meshes as graphs is presented. It is shown that by using a graph, the topological changes induced by fracture reduce to a few, local kernel operations. The performance of the graph representation is demonstrated and analyzed, using as reference the 3D fracture algorithm by Pandolfi and Ortiz [22]. It is shown that the graph representation initializes in O(N{sub E}{sup 1.1}) time and fractures in O(N{sub I}{sup 1.0}) time, while the reference implementation requires O(N{sub E}{sup 2.1}) time to initialize and O(N{sub I}{sup 1.9}) time to fracture, where NE is the number of elements in the mesh and N{sub I} is the number of interfaces to fracture.
Orthogonal polynomials derived from the tridiagonal representation approach
Alhaidari, A. D.
2018-01-01
The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.
National Research Council Canada - National Science Library
Little, Daniel
2006-01-01
...). The reason this is so is due to hierarchies that we take for granted. By hierarchies I mean that there is a layer of representation of us as individuals, as military professional, as members of a military unit and as citizens of an entire nation...
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
Energy Technology Data Exchange (ETDEWEB)
Choudhury, Sutanay; Holder, Larry; Chin, George; Agarwal, Khushbu; Feo, John T.
2015-05-27
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.
Intraplate seismicity in Canada: a graph theoretic approach to data analysis and interpretation
Directory of Open Access Journals (Sweden)
K. Vasudevan
2010-10-01
Full Text Available Intraplate seismicity occurs in central and northern Canada, but the underlying origin and dynamics remain poorly understood. Here, we apply a graph theoretic approach to characterize the statistical structure of spatiotemporal clustering exhibited by intraplate seismicity, a direct consequence of the underlying nonlinear dynamics. Using a recently proposed definition of "recurrences" based on record breaking processes (Davidsen et al., 2006, 2008, we have constructed directed graphs using catalogue data for three selected regions (Region 1: 45°−48° N/74°−80° W; Region 2: 51°−55° N/77°−83° W; and Region 3: 56°−70° N/65°−95° W, with attributes drawn from the location, origin time and the magnitude of the events. Based on comparisons with a null model derived from Poisson distribution or Monte Carlo shuffling of the catalogue data, our results provide strong evidence in support of spatiotemporal correlations of seismicity in all three regions considered. Similar evidence for spatiotemporal clustering has been documented using seismicity catalogues for southern California, suggesting possible similarities in underlying earthquake dynamics of both regions despite huge differences in the variability of seismic activity.
DEFF Research Database (Denmark)
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
A probabilistic approach for representation of interval uncertainty
International Nuclear Information System (INIS)
Zaman, Kais; Rangavajhala, Sirisha; McDonald, Mark P.; Mahadevan, Sankaran
2011-01-01
In this paper, we propose a probabilistic approach to represent interval data for input variables in reliability and uncertainty analysis problems, using flexible families of continuous Johnson distributions. Such a probabilistic representation of interval data facilitates a unified framework for handling aleatory and epistemic uncertainty. For fitting probability distributions, methods such as moment matching are commonly used in the literature. However, unlike point data where single estimates for the moments of data can be calculated, moments of interval data can only be computed in terms of upper and lower bounds. Finding bounds on the moments of interval data has been generally considered an NP-hard problem because it includes a search among the combinations of multiple values of the variables, including interval endpoints. In this paper, we present efficient algorithms based on continuous optimization to find the bounds on second and higher moments of interval data. With numerical examples, we show that the proposed bounding algorithms are scalable in polynomial time with respect to increasing number of intervals. Using the bounds on moments computed using the proposed approach, we fit a family of Johnson distributions to interval data. Furthermore, using an optimization approach based on percentiles, we find the bounding envelopes of the family of distributions, termed as a Johnson p-box. The idea of bounding envelopes for the family of Johnson distributions is analogous to the notion of empirical p-box in the literature. Several sets of interval data with different numbers of intervals and type of overlap are presented to demonstrate the proposed methods. As against the computationally expensive nested analysis that is typically required in the presence of interval variables, the proposed probabilistic representation enables inexpensive optimization-based strategies to estimate bounds on an output quantity of interest.
Knowledge Representation in Patient Safety Reporting: An Ontological Approach
Directory of Open Access Journals (Sweden)
Liang Chen
2016-10-01
Full Text Available Purpose: The current development of patient safety reporting systems is criticized for loss of information and low data quality due to the lack of a uniformed domain knowledge base and text processing functionality. To improve patient safety reporting, the present paper suggests an ontological representation of patient safety knowledge. Design/methodology/approach: We propose a framework for constructing an ontological knowledge base of patient safety. The present paper describes our design, implementation, and evaluation of the ontology at its initial stage. Findings: We describe the design and initial outcomes of the ontology implementation. The evaluation results demonstrate the clinical validity of the ontology by a self-developed survey measurement. Research limitations: The proposed ontology was developed and evaluated using a small number of information sources. Presently, US data are used, but they are not essential for the ultimate structure of the ontology. Practical implications: The goal of improving patient safety can be aided through investigating patient safety reports and providing actionable knowledge to clinical practitioners. As such, constructing a domain specific ontology for patient safety reports serves as a cornerstone in information collection and text mining methods. Originality/value: The use of ontologies provides abstracted representation of semantic information and enables a wealth of applications in a reporting system. Therefore, constructing such a knowledge base is recognized as a high priority in health care.
2006-09-01
two weeks to arrive. Source: http://beergame.mit.edu/ Permission Granted – MIT Supply Chain Forum 2005 Professor Sterman –Sloan School of...Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html Rules of Engagement The MIT Beer Game Simulation 04-04 Slide Number 10 Professor...Sterman –Sloan School of Management - MITSource: http://web.mit.edu/jsterman/www/ SDG /beergame.html What is the Significance of Representation
Technology Focus: Multi-Representational Approaches to Equation Solving
Garofalo, Joe; Trinter, Christine
2009-01-01
Most mathematical functions can be represented in numerous ways. The main representations typically addressed in school, often referred to as "the big three," are graphical, algebraic, and numerical representations, but there are others as well (e.g., diagrams, words, simulations). These different types of representations "often illuminate…
Forecasting Construction Cost Index based on visibility graph: A network approach
Zhang, Rong; Ashuri, Baabak; Shyr, Yu; Deng, Yong
2018-03-01
Engineering News-Record (ENR), a professional magazine in the field of global construction engineering, publishes Construction Cost Index (CCI) every month. Cost estimators and contractors assess projects, arrange budgets and prepare bids by forecasting CCI. However, fluctuations and uncertainties of CCI cause irrational estimations now and then. This paper aims at achieving more accurate predictions of CCI based on a network approach in which time series is firstly converted into a visibility graph and future values are forecasted relied on link prediction. According to the experimental results, the proposed method shows satisfactory performance since the error measures are acceptable. Compared with other methods, the proposed method is easier to implement and is able to forecast CCI with less errors. It is convinced that the proposed method is efficient to provide considerably accurate CCI predictions, which will make contributions to the construction engineering by assisting individuals and organizations in reducing costs and making project schedules.
Time series analysis of S&P 500 index: A horizontal visibility graph approach
Vamvakaris, Michail D.; Pantelous, Athanasios A.; Zuev, Konstantin M.
2018-05-01
The behavior of stock prices has been thoroughly studied throughout the last century, and contradictory results have been reported in the corresponding literature. In this paper, a network theoretical approach is provided to investigate how crises affected the behavior of US stock prices. We analyze high frequency data from S&P500 via the Horizontal Visibility Graph method, and find that all major crises that took place worldwide in the last twenty years, affected significantly the behavior of the price-index. Nevertheless, we observe that each of those crises impacted the index in a different way and magnitude. Interestingly, our results suggest that the predictability of the price-index series increases during the periods of crises.
An original approach to the mathematical concept of graph from braid crafts
Directory of Open Access Journals (Sweden)
Albanese Veronica
2016-01-01
Full Text Available In previous researches we found that a community of Argentinean artisans models its own practices of braiding using graphs. Inspired by these findings, we designed an educational activity to introduce the concept of graphs. The study of graphs helps students to develop combinatorial and systematic thinking as well as skills to model reality and abstract and generalize patterns from particular situations. The tasks proposed aim to construct the concept of graphs, then identify characteristics that allow some graphs to be models of braids and finally use them to invent more graphs for new braids. The activity performed in a secondary school teachers’ educational course, had quite satisfactory results due to the number of braids invented and the small amount of mistakes made by the participants.
Pedestrian detection from thermal images: A sparse representation based approach
Qi, Bin; John, Vijay; Liu, Zheng; Mita, Seiichi
2016-05-01
Pedestrian detection, a key technology in computer vision, plays a paramount role in the applications of advanced driver assistant systems (ADASs) and autonomous vehicles. The objective of pedestrian detection is to identify and locate people in a dynamic environment so that accidents can be avoided. With significant variations introduced by illumination, occlusion, articulated pose, and complex background, pedestrian detection is a challenging task for visual perception. Different from visible images, thermal images are captured and presented with intensity maps based objects' emissivity, and thus have an enhanced spectral range to make human beings perceptible from the cool background. In this study, a sparse representation based approach is proposed for pedestrian detection from thermal images. We first adopted the histogram of sparse code to represent image features and then detect pedestrian with the extracted features in an unimodal and a multimodal framework respectively. In the unimodal framework, two types of dictionaries, i.e. joint dictionary and individual dictionary, are built by learning from prepared training samples. In the multimodal framework, a weighted fusion scheme is proposed to further highlight the contributions from features with higher separability. To validate the proposed approach, experiments were conducted to compare with three widely used features: Haar wavelets (HWs), histogram of oriented gradients (HOG), and histogram of phase congruency (HPC) as well as two classification methods, i.e. AdaBoost and support vector machine (SVM). Experimental results on a publicly available data set demonstrate the superiority of the proposed approach.
CONSPIROLOGICAL APPROACHES TO THE REPRESENTATION OF POLITICAL PROCESSES
Directory of Open Access Journals (Sweden)
Наталья Владимировна Кадурина
2013-08-01
Full Text Available The author of the paper makes an attempt to synthesize the effect of conspirological approaches on ideas of particular social groups of community about the existing political events around the world. Conspirological concepts are proving very popular in postmodern society as most modern political technologists try to treat unexplainable events of political reality through different conspiracy theories. Media actively uses conspirological concepts to attract readers and audiences, and political technologists use them as one of the means to influence the electoral processes.A growing interest to conspiracy theory determines its connection with political science. The general disadvantage of conspirological approach is poor evidences which show, according to some researches, its parascientific basis. A wide spread of conspirological concepts among political technologists and mass-media distorts the representation of political processes. To form a scientific vision of political processes the transparency of political situation is required which enables to decrease the role of conspirological approaches to political process.DOI: http://dx.doi.org/10.12731/2218-7405-2013-6-26
Directory of Open Access Journals (Sweden)
Namhee Kim
Full Text Available Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2 corresponding to the second eigenvalues (λ2 associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides. While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs
Lee, Kyu J.; Kunii, T. L.; Noma, T.
1993-01-01
In this paper, we propose a syntactic pattern recognition method for non-schematic drawings, based on a new attributed graph grammar with flexible embedding. In our graph grammar, the embedding rule permits the nodes of a guest graph to be arbitrarily connected with the nodes of a host graph. The ambiguity caused by this flexible embedding is controlled with the evaluation of synthesized attributes and the check of context sensitivity. To integrate parsing with the synthesized attribute evaluation and the context sensitivity check, we also develop a bottom up parsing algorithm.
AN INTEGRATED RANSAC AND GRAPH BASED MISMATCH ELIMINATION APPROACH FOR WIDE-BASELINE IMAGE MATCHING
Directory of Open Access Journals (Sweden)
M. Hasheminasab
2015-12-01
Full Text Available In this paper we propose an integrated approach in order to increase the precision of feature point matching. Many different algorithms have been developed as to optimizing the short-baseline image matching while because of illumination differences and viewpoints changes, wide-baseline image matching is so difficult to handle. Fortunately, the recent developments in the automatic extraction of local invariant features make wide-baseline image matching possible. The matching algorithms which are based on local feature similarity principle, using feature descriptor as to establish correspondence between feature point sets. To date, the most remarkable descriptor is the scale-invariant feature transform (SIFT descriptor , which is invariant to image rotation and scale, and it remains robust across a substantial range of affine distortion, presence of noise, and changes in illumination. The epipolar constraint based on RANSAC (random sample consensus method is a conventional model for mismatch elimination, particularly in computer vision. Because only the distance from the epipolar line is considered, there are a few false matches in the selected matching results based on epipolar geometry and RANSAC. Aguilariu et al. proposed Graph Transformation Matching (GTM algorithm to remove outliers which has some difficulties when the mismatched points surrounded by the same local neighbor structure. In this study to overcome these limitations, which mentioned above, a new three step matching scheme is presented where the SIFT algorithm is used to obtain initial corresponding point sets. In the second step, in order to reduce the outliers, RANSAC algorithm is applied. Finally, to remove the remained mismatches, based on the adjacent K-NN graph, the GTM is implemented. Four different close range image datasets with changes in viewpoint are utilized to evaluate the performance of the proposed method and the experimental results indicate its robustness and
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo
2009-01-01
In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java
A Type Graph Model for Java Programs
Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.
2009-01-01
In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax
Expert and Novice Approaches to Using Graphs: Evidence from Eye-Track Experiments
Wirth, K. R.; Lindgren, J. M.
2015-12-01
Professionals and students in geology use an array of graphs to study the earth, but relatively little detail is known about how users interact with these graphs. Comprehension of graphical information in the earth sciences is further complicated by the common use of non-traditional formats (e.g., inverted axes, logarithmic scales, normalized plots, ternary diagrams). Many educators consider graph-reading skills an important outcome of general education science curricula, so it is critical that we understand both the development of graph-reading skills and the instructional practices that are most efficacious. Eye-tracking instruments provide quantitative information about eye movements and offer important insights into the development of expertise in graph use. We measured the graph reading skills and eye movements of novices (students with a variety of majors and educational attainment) and experts (faculty and staff from a variety of disciplines) while observing traditional and non-traditional graph formats. Individuals in the expert group consistently demonstrated significantly greater accuracy in responding to questions (e.g., retrieval, interpretation, prediction) about graphs. Among novices, only the number of college math and science courses correlated with response accuracy. Interestingly, novices and experts exhibited similar eye-tracks when they first encountered a new graph; they typically scanned through the title, x and y-axes, and data regions in the first 5-15 seconds. However, experts are readily distinguished from novices by a greater number of eye movements (20-35%) between the data and other graph elements (e.g., title, x-axis, y-axis) both during and after the initial orientation phase. We attribute the greater eye movements between the different graph elements an outcome of the generally better-developed self-regulation skills (goal-setting, monitoring, self-evaluation) that likely characterize individuals in our expert group.
Directory of Open Access Journals (Sweden)
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Hindumathi, V; Kranthi, T; Rao, S B; Manimaran, P
2014-06-01
With rapidly changing technology, prediction of candidate genes has become an indispensable task in recent years mainly in the field of biological research. The empirical methods for candidate gene prioritization that succors to explore the potential pathway between genetic determinants and complex diseases are highly cumbersome and labor intensive. In such a scenario predicting potential targets for a disease state through in silico approaches are of researcher's interest. The prodigious availability of protein interaction data coupled with gene annotation renders an ease in the accurate determination of disease specific candidate genes. In our work we have prioritized the cervix related cancer candidate genes by employing Csaba Ortutay and his co-workers approach of identifying the candidate genes through graph theoretical centrality measures and gene ontology. With the advantage of the human protein interaction data, cervical cancer gene sets and the ontological terms, we were able to predict 15 novel candidates for cervical carcinogenesis. The disease relevance of the anticipated candidate genes was corroborated through a literature survey. Also the presence of the drugs for these candidates was detected through Therapeutic Target Database (TTD) and DrugMap Central (DMC) which affirms that they may be endowed as potential drug targets for cervical cancer.
Kou, Qiang; Wu, Si; Tolic, Nikola; Paša-Tolic, Ljiljana; Liu, Yunlong; Liu, Xiaowen
2017-05-01
Although proteomics has rapidly developed in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteoforms to their biological functions as well as discovering novel proteoforms and new protein functions. Top-down mass spectrometry is the method of choice for identifying complex proteoforms because it provides a 'bird's eye view' of intact proteoforms. The combinatorial explosion of various alterations on a protein may result in billions of possible proteoforms, making proteoform identification a challenging computational problem. We propose a new data structure, called the mass graph, for efficient representation of proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-based software tool for proteoform identification by top-down mass spectrometry. Experiments on top-down mass spectrometry datasets showed that TopMG outperformed existing methods in identifying complex proteoforms. http://proteomics.informatics.iupui.edu/software/topmg/. xwliu@iupui.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Uniform Single Valued Neutrosophic Graphs
Directory of Open Access Journals (Sweden)
S. Broumi
2017-09-01
Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.
Golino, Hudson F; Epskamp, Sacha
2017-01-01
The estimation of the correct number of dimensions is a long-standing problem in psychometrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Guttman's eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the maximum-likelihood approaches that use fit indexes as BIC and EBIC and the less used and studied approach called very simple structure (VSS). In the present paper a new approach to estimate the number of dimensions will be introduced and compared via simulation to the traditional techniques pointed above. The approach proposed in the current paper is called exploratory graph analysis (EGA), since it is based on the graphical lasso with the regularization parameter specified using EBIC. The number of dimensions is verified using the walktrap, a random walk algorithm used to identify communities in networks. In total, 32,000 data sets were simulated to fit known factor structures, with the data sets varying across different criteria: number of factors (2 and 4), number of items (5 and 10), sample size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20, .50 and .70), resulting in 64 different conditions. For each condition, 500 data sets were simulated using lavaan. The result shows that the EGA performs comparable to parallel analysis, EBIC, eBIC and to Kaiser-Guttman rule in a number of situations, especially when the number of factors was two. However, EGA was the only technique able to correctly estimate the number of dimensions in the four-factor structure when the correlation between factors were .7, showing an accuracy of 100% for a sample size of 5,000 observations. Finally, the EGA was used to estimate the number of factors in a real dataset, in order to compare its performance with the other six techniques tested in the simulation study.
Instructional Materials Physics High School with Multi Representation Approach
Directory of Open Access Journals (Sweden)
Yuvita Widi Astuti
2014-06-01
Full Text Available Bahan Ajar Fisika SMA dengan Pendekatan Multi Representasi Abstract: One effort to improve understanding of concepts and problem-solving skills in learning physics is to provide instructional materials in accordance with the characteristics of the students and help students learn. The purpose of this study are: (1 developing a high school physics teaching materials especially materials Rotation Dynamics and Equilibrium Rigid objects using multiple representations approach to improve the understanding of physics concepts, (2 test the effectiveness of instructional materials development results. This research method is the development of research using Dick & Carey model tailored to the needs of research. The research instrument used in the form of feasibility questionnaire. The type of data that is obtained is quantitative data and qualitative data. Experimental results show that the result of the development of teaching materials can be categorized as very feasible. Results of field trials showed that: (1 most of the students in the experimental class above KKM obtain test results, (2 the results of the experimental class postes greater than the control class, so that teaching materials said to be effective, but not significant to improve the understanding of physics concepts. Key Words: teaching materials, multi-representation, the rotational dynamics Abstrak: Salah satu upaya untuk meningkatkan pemahaman konsep dan kemampuan memecahkan masalah dalam pembelajaran fisika adalah dengan menyediakan bahan ajar yang sesuai dengan karakteristik siswa dan memudahkan siswa dalam belajar. Tujuan dari penelitian ini adalah: (1 mengembangkan bahan ajar fisika SMA khususnya materi Dinamika Rotasi dan Kesetimbangan Benda Tegar menggunakan pendekatan multi representasi untuk meningkatkan pemahaman konsep fisika, (2 menguji efektifitas bahan ajar hasil pengembangan. Metode penelitian ini adalah penelitian pengembangan menggunakan model Dick & Carey yang
Analysis of graphical representation among freshmen in undergraduate physics laboratory
Adam, A. S.; Anggrayni, S.; Kholiq, A.; Putri, N. P.; Suprapto, N.
2018-03-01
Physics concept understanding is the importance of the physics laboratory among freshmen in the undergraduate program. These include the ability to interpret the meaning of the graph to make an appropriate conclusion. This particular study analyses the graphical representation among freshmen in an undergraduate physics laboratory. This study uses empirical study with quantitative approach. The graphical representation covers 3 physics topics: velocity of sound, simple pendulum and spring system. The result of this study shows most of the freshmen (90% of the sample) make a graph based on the data from physics laboratory. It means the transferring process of raw data which illustrated in the table to physics graph can be categorised. Most of the Freshmen use the proportional principle of the variable in graph analysis. However, Freshmen can't make the graph in an appropriate variable to gain more information and can't analyse the graph to obtain the useful information from the slope.
Directory of Open Access Journals (Sweden)
Aleks Kissinger
2014-03-01
Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
A quantum annealing approach for fault detection and diagnosis of graph-based systems
Perdomo-Ortiz, A.; Fluegemann, J.; Narasimhan, S.; Biswas, R.; Smelyanskiy, V. N.
2015-02-01
Diagnosing the minimal set of faults capable of explaining a set of given observations, e.g., from sensor readouts, is a hard combinatorial optimization problem usually tackled with artificial intelligence techniques. We present the mapping of this combinatorial problem to quadratic unconstrained binary optimization (QUBO), and the experimental results of instances embedded onto a quantum annealing device with 509 quantum bits. Besides being the first time a quantum approach has been proposed for problems in the advanced diagnostics community, to the best of our knowledge this work is also the first research utilizing the route Problem → QUBO → Direct embedding into quantum hardware, where we are able to implement and tackle problem instances with sizes that go beyond previously reported toy-model proof-of-principle quantum annealing implementations; this is a significant leap in the solution of problems via direct-embedding adiabatic quantum optimization. We discuss some of the programmability challenges in the current generation of the quantum device as well as a few possible ways to extend this work to more complex arbitrary network graphs.
Graph-theoretic techniques for web content mining
Schenker, Adam; Bunke, Horst; Last, Mark
2005-01-01
This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors.
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
International Nuclear Information System (INIS)
Rosicka, M; Ramanathan, R; Gnaciński, P; Horodecki, M; Horodecki, K; Horodecki, P; Severini, S
2016-01-01
We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions. (paper)
Linear game non-contextuality and Bell inequalities—a graph-theoretic approach
Rosicka, M.; Ramanathan, R.; Gnaciński, P.; Horodecki, K.; Horodecki, M.; Horodecki, P.; Severini, S.
2016-04-01
We study the classical and quantum values of a class of one- and two-party unique games, that generalizes the well-known XOR games to the case of non-binary outcomes. In the bipartite case the generalized XOR (XOR-d) games we study are a subclass of the well-known linear games. We introduce a ‘constraint graph’ associated to such a game, with the constraints defining the game represented by an edge-coloring of the graph. We use the graph-theoretic characterization to relate the task of finding equivalent games to the notion of signed graphs and switching equivalence from graph theory. We relate the problem of computing the classical value of single-party anti-correlation XOR games to finding the edge bipartization number of a graph, which is known to be MaxSNP hard, and connect the computation of the classical value of XOR-d games to the identification of specific cycles in the graph. We construct an orthogonality graph of the game from the constraint graph and study its Lovász theta number as a general upper bound on the quantum value even in the case of single-party contextual XOR-d games. XOR-d games possess appealing properties for use in device-independent applications such as randomness of the local correlated outcomes in the optimal quantum strategy. We study the possibility of obtaining quantum algebraic violation of these games, and show that no finite XOR-d game possesses the property of pseudo-telepathy leaving the frequently used chained Bell inequalities as the natural candidates for such applications. We also show this lack of pseudo-telepathy for multi-party XOR-type inequalities involving two-body correlation functions.
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
The cavity approach to parallel dynamics of Ising spins on a graph
International Nuclear Information System (INIS)
Neri, I; Bollé, D
2009-01-01
We use the cavity method to study the parallel dynamics of disordered Ising models on a graph. In particular, we derive a set of recursive equations in single-site probabilities of paths propagating along the edges of the graph. These equations are analogous to the cavity equations for equilibrium models and are exact on a tree. On graphs with exclusively directed edges we find an exact expression for the stationary distribution. We present the phase diagrams for an Ising model on an asymmetric Bethe lattice and for a neural network with Hebbian interactions on an asymmetric scale-free graph. For graphs with a nonzero fraction of symmetric edges the equations can be solved for a finite number of time steps. Theoretical predictions are confirmed by simulations. Using a heuristic method the cavity equations are extended to a set of equations that determine the marginals of the stationary distribution of Ising models on graphs with a nonzero fraction of symmetric edges. The results from this method are discussed and compared with simulations
Directory of Open Access Journals (Sweden)
Ferruccio ePanzica
2013-11-01
Full Text Available In the context of focal drug-resistant epilepsies, the surgical resection of the epileptogenic zone (EZ, the cortical region responsible for the onset, early seizures organization and propagation, may be the only therapeutic option for reducing or suppressing seizures. The rather high rate of failure in epilepsy surgery of extra-temporal epilepsies highlights that the precise identification of the EZ, mandatory objective to achieve seizure freedom, is still an unsolved problem that requires more sophisticated methods of investigation.Despite the wide range of non-invasive investigations, intracranial stereo-EEG (SEEG recordings still represent, in many patients, the gold standard for the EZ identification. In this contest, the EZ localization is still based on visual analysis of SEEG, inevitably affected by the drawback of subjectivity and strongly time-consuming. Over the last years, considerable efforts have been made to develop advanced signal analysis techniques able to improve the identification of the EZ. Particular attention has been paid to those methods aimed at quantifying and characterising the interactions and causal relationships between neuronal populations, since is nowadays well assumed that epileptic phenomena are associated with abnormal changes in brain synchronisation mechanisms, and initial evidence has shown the suitability of this approach for the EZ localisation. The aim of this review is to provide an overview of the different EEG signal processing methods applied to study connectivity between distinct brain cortical regions, namely in focal epilepsies. In addition, with the aim of localizing the EZ, the approach based on graph theory will be described, since the study of the topological properties of the networks has strongly improved the study of brain connectivity mechanisms.
Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.
2006-01-01
The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.
de Mol, M.J.; Rensink, Arend; Hunt, James J.
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class
VT Digital Line Graph Miscellaneous Transmission Lines
Vermont Center for Geographic Information — (Link to Metadata) This datalayer is comprised of Miscellaineous Transmission Lines. Digital line graph (DLG) data are digital representations of cartographic...
A Graph-Based Approach for 3D Building Model Reconstruction from Airborne LiDAR Point Clouds
Directory of Open Access Journals (Sweden)
Bin Wu
2017-01-01
Full Text Available 3D building model reconstruction is of great importance for environmental and urban applications. Airborne light detection and ranging (LiDAR is a very useful data source for acquiring detailed geometric and topological information of building objects. In this study, we employed a graph-based method based on hierarchical structure analysis of building contours derived from LiDAR data to reconstruct urban building models. The proposed approach first uses a graph theory-based localized contour tree method to represent the topological structure of buildings, then separates the buildings into different parts by analyzing their topological relationships, and finally reconstructs the building model by integrating all the individual models established through the bipartite graph matching process. Our approach provides a more complete topological and geometrical description of building contours than existing approaches. We evaluated the proposed method by applying it to the Lujiazui region in Shanghai, China, a complex and large urban scene with various types of buildings. The results revealed that complex buildings could be reconstructed successfully with a mean modeling error of 0.32 m. Our proposed method offers a promising solution for 3D building model reconstruction from airborne LiDAR point clouds.
Product shipping information using graceful labeling on undirected tree graph approach
Kuan, Yoong Kooi; Ghani, Ahmad Termimi Ab
2017-08-01
Product shipping information is the related information of an ordered product that ready to be shipped to the foreign customer's company, where the information represents as an irrefutable proof in black and white to the local manufacturer by E-mails. This messy and unordered list of information is stored in E-mail folders by the people incharge, which do not function in collating the information properly. So, in this paper, an algorithm is proposed on how to rearrange the messy information from the sequence of a path graph structure into a concise version of a caterpillar graph with achieving the concept of graceful labeling. The final graceful caterpillar graph consists of the full listed information together with the numbering, which able to assist people get the information fleetly for shipping arrangement procedure.
Strongly and weakly directed approaches to teaching multiple representation use in physics
Directory of Open Access Journals (Sweden)
Patrick B. Kohl
2007-06-01
Full Text Available Good use of multiple representations is considered key to learning physics, and so there is considerable motivation both to learn how students use multiple representations when solving problems and to learn how best to teach problem solving using multiple representations. In this study of two large-lecture algebra-based physics courses at the University of Colorado (CU and Rutgers, the State University of New Jersey, we address both issues. Students in each of the two courses solved five common electrostatics problems of varying difficulty, and we examine their solutions to clarify the relationship between multiple representation use and performance on problems involving free-body diagrams. We also compare our data across the courses, since the two physics-education-research-based courses take substantially different approaches to teaching the use of multiple representations. The course at Rutgers takes a strongly directed approach, emphasizing specific heuristics and problem-solving strategies. The course at CU takes a weakly directed approach, modeling good problem solving without teaching a specific strategy. We find that, in both courses, students make extensive use of multiple representations, and that this use (when both complete and correct is associated with significantly increased performance. Some minor differences in representation use exist, and are consistent with the types of instruction given. Most significant are the strong and broad similarities in the results, suggesting that either instructional approach or a combination thereof can be useful for helping students learn to use multiple representations for problem solving and concept development.
Representational Approach: A Conceptual Framework to Guide Patient Education Research and Practice.
Arida, Janet A; Sherwood, Paula R; Flannery, Marie; Donovan, Heidi S
2016-11-01
Illness representations are cognitive structures that individuals rely on to understand and explain their illnesses and associated symptoms. The Representational Approach (RA) to patient education offers a theoretically based, clinically useful model that can support oncology nurses to develop a shared understanding of patients' illness representations to collaboratively develop highly personalized plans for symptom management and other important self-management behaviors. This article discusses theoretical underpinnings, practical applications, challenges, and future directions for incorporating illness representations and the RA in clinical and research endeavors.
Mal-Netminer: Malware Classification Approach Based on Social Network Analysis of System Call Graph
Directory of Open Access Journals (Sweden)
Jae-wook Jang
2015-01-01
Full Text Available As the security landscape evolves over time, where thousands of species of malicious codes are seen every day, antivirus vendors strive to detect and classify malware families for efficient and effective responses against malware campaigns. To enrich this effort and by capitalizing on ideas from the social network analysis domain, we build a tool that can help classify malware families using features driven from the graph structure of their system calls. To achieve that, we first construct a system call graph that consists of system calls found in the execution of the individual malware families. To explore distinguishing features of various malware species, we study social network properties as applied to the call graph, including the degree distribution, degree centrality, average distance, clustering coefficient, network density, and component ratio. We utilize features driven from those properties to build a classifier for malware families. Our experimental results show that “influence-based” graph metrics such as the degree centrality are effective for classifying malware, whereas the general structural metrics of malware are less effective for classifying malware. Our experiments demonstrate that the proposed system performs well in detecting and classifying malware families within each malware class with accuracy greater than 96%.
Row—column visibility graph approach to two-dimensional landscapes
International Nuclear Information System (INIS)
Xiao Qin; Pan Xue; Li Xin-Li; Stephen Mutua; Yang Hui-Jie; Jiang Yan; Wang Jian-Yong; Zhang Qing-Jun
2014-01-01
A new concept, called the row—column visibility graph, is proposed to map two-dimensional landscapes to complex networks. A cluster coverage is introduced to describe the extensive property of node clusters on a Euclidean lattice. Graphs mapped from fractals generated with the probability redistribution model behave scale-free. They have pattern-induced hierarchical organizations and comparatively much more extensive structures. The scale-free exponent has a negative correlation with the Hurst exponent, however, there is no deterministic relation between them. Graphs for fractals generated with the midpoint displacement model are exponential networks. When the Hurst exponent is large enough (e.g., H > 0.5), the degree distribution decays much more slowly, the average coverage becomes significant large, and the initially hierarchical structure at H < 0.5 is destroyed completely. Hence, the row—column visibility graph can be used to detect the pattern-related new characteristics of two-dimensional landscapes. (interdisciplinary physics and related areas of science and technology)
A Graph-Based Approach to Action Scheduling in a Parallel Database System
Grefen, P.W.P.J.; Apers, Peter M.G.
Parallel database machines are meant to obtain high performance in transaction processing, both in terms of response time adn throughput. To obtain high performance, a good scheduling of the execution of the various actions in transactions is crucial. This paper describes a graph-based technique for
Li, Rui; Zhang, Xiaodong; Li, Hanzhe; Zhang, Liming; Lu, Zhufeng; Chen, Jiangcheng
2018-08-01
Brain control technology can restore communication between the brain and a prosthesis, and choosing a Brain-Computer Interface (BCI) paradigm to evoke electroencephalogram (EEG) signals is an essential step for developing this technology. In this paper, the Scene Graph paradigm used for controlling prostheses was proposed; this paradigm is based on Steady-State Visual Evoked Potentials (SSVEPs) regarding the Scene Graph of a subject's intention. A mathematic model was built to predict SSVEPs evoked by the proposed paradigm and a sinusoidal stimulation method was used to present the Scene Graph stimulus to elicit SSVEPs from subjects. Then, a 2-degree of freedom (2-DOF) brain-controlled prosthesis system was constructed to validate the performance of the Scene Graph-SSVEP (SG-SSVEP)-based BCI. The classification of SG-SSVEPs was detected via the Canonical Correlation Analysis (CCA) approach. To assess the efficiency of proposed BCI system, the performances of traditional SSVEP-BCI system were compared. Experimental results from six subjects suggested that the proposed system effectively enhanced the SSVEP responses, decreased the degradation of SSVEP strength and reduced the visual fatigue in comparison with the traditional SSVEP-BCI system. The average signal to noise ratio (SNR) of SG-SSVEP was 6.31 ± 2.64 dB, versus 3.38 ± 0.78 dB of traditional-SSVEP. In addition, the proposed system achieved good performances in prosthesis control. The average accuracy was 94.58% ± 7.05%, and the corresponding high information transfer rate (IRT) was 19.55 ± 3.07 bit/min. The experimental results revealed that the SG-SSVEP based BCI system achieves the good performance and improved the stability relative to the conventional approach. Copyright © 2018 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Andoulsi, R.
2001-12-01
We present in this thesis a study of a class of photovoltaic system by a bond graph approach. This study concerns the modelling, the analysis and the control of some configurations including PV generator, DC/DC converters and DC motor-pumps. The modelling of the different elements of a photovoltaic system is an indispensable stage that must precede all application of sizing, identification or simulation. However, theses PV systems are of hybrid type and their modelling is complex. It is why we use a unified modelling approach based on the bond graph technique. This methodology is completely systematic and has a sufficient flexibility for allowing the introduction of different components in the system. In the first chapter, we recall the principle of functioning of a photovoltaic generator and we treat mainly the MPPT (Maximum Power Point Tracking) working. In the second chapter, we elaborate bond graph models of various photovoltaic system configurations. For the PV source, we elaborate, in a first stage, a complete model taking into account the various physical phenomena influencing the quality of the PV source. In a second stage, we deduce a reduced bond graph model more easy to use for analysis and control purposes. For the DC/DC converters, we recall the bond graph modelling of switching elements and the average bond graph of the DC/DC converters developed in the literature. Thus, we deduce the bond graphs models of the various DC/DC converters to be used. The third chapter presents a dynamic study of some configurations stability in linear procedure. In the fourth chapter, we study the feasibility of non linear controllers by input/output linearization for some configurations of PV systems. In this study, we use the concept of inverse bond graph to determine, by a bond graph approach, the expression of the control input and the nature of the stability of the internal dynamics (dynamics of zeros). The fifth chapter is dedicated for the presentation of some
Proxy Graph: Visual Quality Metrics of Big Graph Sampling.
Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra
2017-06-01
Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Directory of Open Access Journals (Sweden)
Goker Erdogan
2015-11-01
Full Text Available People learn modality-independent, conceptual representations from modality-specific sensory signals. Here, we hypothesize that any system that accomplishes this feat will include three components: a representational language for characterizing modality-independent representations, a set of sensory-specific forward models for mapping from modality-independent representations to sensory signals, and an inference algorithm for inverting forward models-that is, an algorithm for using sensory signals to infer modality-independent representations. To evaluate this hypothesis, we instantiate it in the form of a computational model that learns object shape representations from visual and/or haptic signals. The model uses a probabilistic grammar to characterize modality-independent representations of object shape, uses a computer graphics toolkit and a human hand simulator to map from object representations to visual and haptic features, respectively, and uses a Bayesian inference algorithm to infer modality-independent object representations from visual and/or haptic signals. Simulation results show that the model infers identical object representations when an object is viewed, grasped, or both. That is, the model's percepts are modality invariant. We also report the results of an experiment in which different subjects rated the similarity of pairs of objects in different sensory conditions, and show that the model provides a very accurate account of subjects' ratings. Conceptually, this research significantly contributes to our understanding of modality invariance, an important type of perceptual constancy, by demonstrating how modality-independent representations can be acquired and used. Methodologically, it provides an important contribution to cognitive modeling, particularly an emerging probabilistic language-of-thought approach, by showing how symbolic and statistical approaches can be combined in order to understand aspects of human perception.
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
Modeling Software Evolution using Algebraic Graph Rewriting
Ciraci, Selim; van den Broek, Pim
We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the
Observing representational practices in art and anthropology - a transdisciplinary approach
Directory of Open Access Journals (Sweden)
R Preiser
2010-04-01
Full Text Available It has been suggested that anthropology operates in “liminal spaces” which can be defined as “spaces between disciplines”. This study will explore the space where the fields of art and anthropology meet in order to discover the epistemological and representational challenges that arise from this encounter. The common ground on which art and anthropology engage can be defined in terms of their observational and knowledge producing practices. Both art and anthropology rely on observational skills and varying forms of visual literacy to collect and represent data. Anthropologists represent their data mostly in written form by means of ethnographic accounts, and artists represent their findings by means of imaginative artistic mediums such as painting, sculpture, filmmaking and music. Departing from a paradigm that acknowledges the importance of transdisciplinary enquiry, the paper proposes a position suggesting that by combining observational and knowledge producing practices, both anthropology and art can overcome the limits that are inherent in their representational practices. The paper will explore how insights from complexity theory offer the necessary conceptual tools with which anthropology and art can work together in offering solutions to problems of presentation that emerge when dealing with complex issues.
Agha-mohammadi, Ali-akbar
2013-06-01
This paper is concerned with the problem of stochastic optimal control (possibly with imperfect measurements) in the presence of constraints. We propose a computationally tractable framework to address this problem. The method lends itself to sampling-based methods where we construct a graph in the state space of the problem, on which a Dynamic Programming (DP) is solved and a closed-loop feedback policy is computed. The constraints are seamlessly incorporated to the control policy selection by including their effect on the transition probabilities of the graph edges. We present a unified framework that is applicable both in the state space (with perfect measurements) and in the information space (with imperfect measurements).
Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph
Abofathi, Yousef; Zarei, Bager; Parsa, Saeed
Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Directory of Open Access Journals (Sweden)
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko
2016-09-01
Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling flow and transport in fracture networks using graphs
Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.
2018-03-01
Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than
Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.
Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas
2017-04-15
We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.
Supplantation of Mental Operations on Graphs
Vogel, Markus; Girwidz, Raimund; Engel, Joachim
2007-01-01
Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Social representations: a theoretical approach in health - doi:10.5020/18061230.2011.p80
Directory of Open Access Journals (Sweden)
Isaiane Santos Bittencourt
2012-01-01
Full Text Available Objective: To present the theory of social representations, placing its epistemology and knowing the basic concepts of its approach as a structural unit of knowledge for health studies. Justification: The use of this theory comes from the need to understand social events under the lens of the meanings constructed by the community. Data Synthesis: This was a descriptive study of literature review, which used as a source of data collection the classical authors of social representations supported by articles from electronic search at Virtual Health Library (VHL. The definition and discussion of collected data enabled to introduce two themes, versed on the history and epistemology of representations and on the structural approach of representations in health studies. Conclusion: This review allowed highlight the importance of locating the objects of study with regard to contextual issues of individual and collective histories, valuing the plurality of relations, to come closer to reality that is represented by the subjects.
Dayal, Amit; Brock, David
2018-01-01
Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...
On the design of a hierarchical SS7 network: A graph theoretical approach
Krauss, Lutz; Rufa, Gerhard
1994-04-01
This contribution is concerned with the design of Signaling System No. 7 networks based on graph theoretical methods. A hierarchical network topology is derived by combining the advantage of the hierarchical network structure with the realization of node disjoint routes between nodes of the network. By using specific features of this topology, we develop an algorithm to construct circle-free routing data and to assure bidirectionality also in case of failure situations. The methods described are based on the requirements that the network topology, as well as the routing data, may be easily changed.
Hyperbolicity in median graphs
Indian Academy of Sciences (India)
mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.
Monitoring Effective Connectivity in the Preterm Brain: A Graph Approach to Study Maturation
Directory of Open Access Journals (Sweden)
M. Lavanga
2017-01-01
Full Text Available In recent years, functional connectivity in the developmental science received increasing attention. Although it has been reported that the anatomical connectivity in the preterm brain develops dramatically during the last months of pregnancy, little is known about how functional and effective connectivity change with maturation. The present study investigated how effective connectivity in premature infants evolves. To assess it, we use EEG measurements and graph-theory methodologies. We recorded data from 25 preterm babies, who underwent long-EEG monitoring at least twice during their stay in the NICU. The recordings took place from 27 weeks postmenstrual age (PMA until 42 weeks PMA. Results showed that the EEG-connectivity, assessed using graph-theory indices, moved from a small-world network to a random one, since the clustering coefficient increases and the path length decreases. This shift can be due to the development of the thalamocortical connections and long-range cortical connections. Based on the network indices, we developed different age-prediction models. The best result showed that it is possible to predict the age of the infant with a root mean-squared error (MSE equal to 2.11 weeks. These results are similar to the ones reported in the literature for age prediction in preterm babies.
Foodsheds in Virtual Water Flow Networks: A Spectral Graph Theory Approach
Directory of Open Access Journals (Sweden)
Nina Kshetry
2017-06-01
Full Text Available A foodshed is a geographic area from which a population derives its food supply, but a method to determine boundaries of foodsheds has not been formalized. Drawing on the food–water–energy nexus, we propose a formal network science definition of foodsheds by using data from virtual water flows, i.e., water that is virtually embedded in food. In particular, we use spectral graph partitioning for directed graphs. If foodsheds turn out to be geographically compact, it suggests the food system is local and therefore reduces energy and externality costs of food transport. Using our proposed method we compute foodshed boundaries at the global-scale, and at the national-scale in the case of two of the largest agricultural countries: India and the United States. Based on our determination of foodshed boundaries, we are able to better understand commodity flows and whether foodsheds are contiguous and compact, and other factors that impact environmental sustainability. The formal method we propose may be used more broadly to study commodity flows and their impact on environmental sustainability.
Bounding the HL-index of a graph: a majorization approach.
Clemente, Gian Paolo; Cornaro, Alessandra
2016-01-01
In mathematical chemistry, the median eigenvalues of the adjacency matrix of a molecular graph are strictly related to orbital energies and molecular orbitals. In this regard, the difference between the occupied orbital of highest energy (HOMO) and the unoccupied orbital of lowest energy (LUMO) has been investigated (see Fowler and Pisansky in Acta Chim. Slov. 57:513-517, 2010). Motivated by the HOMO-LUMO separation problem, Jaklič et al. in (Ars Math. Contemp. 5:99-115, 2012) proposed the notion of HL -index that measures how large in absolute value are the median eigenvalues of the adjacency matrix. Several bounds for this index have been provided in the literature. The aim of the paper is to derive alternative inequalities to bound the HL -index. By applying majorization techniques and making use of some known relations, we derive new and sharper upper bounds for this index. Analytical and numerical results show the performance of these bounds on different classes of graphs.
On the Recognition of Fuzzy Circular Interval Graphs
Oriolo, Gianpaolo; Pietropaoli, Ugo; Stauffer, Gautier
2011-01-01
Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.
Scheduling of Conditional Process Graphs for the Synthesis of Embedded Systems
DEFF Research Database (Denmark)
Eles, Petru; Kuchcinski, Krzysztof; Peng, Zebo
1998-01-01
We present an approach to process scheduling based on an abstract graph representation which captures both dataflow and the flow of control. Target architectures consist of several processors, ASICs and shared busses. We have developed a heuristic which generates a schedule table so that the worst...... case delay is minimized. Several experiments demonstrate the efficiency of the approach....
The Weyl approach to the representation theory of reflection equation algebra
International Nuclear Information System (INIS)
Saponov, P A
2004-01-01
The present paper deals with the representation theory of reflection equation algebra, connected to a Hecke type R-matrix. Up to some reasonable additional conditions, the R-matrix is arbitrary (not necessary originating from quantum groups). We suggest a universal method for constructing finite dimensional irreducible representations in the framework of the Weyl approach well known in the representation theory of classical Lie groups and algebras. With this method a series of irreducible modules is constructed. The modules are parametrized by Young diagrams. The spectrum of central elements s k Tr q L k is calculated in the single-row and single-column representations. A rule for the decomposition of the tensor product of modules into a direct sum of irreducible components is also suggested
Kumar, Abhishek; Clement, Shibu; Agrawal, V P
2010-07-15
An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.
Abnormalities of functional brain networks in pathological gambling: a graph-theoretical approach
Tschernegg, Melanie; Crone, Julia S.; Eigenberger, Tina; Schwartenbeck, Philipp; Fauth-Bühler, Mira; Lemènager, Tagrid; Mann, Karl; Thon, Natasha; Wurst, Friedrich M.; Kronbichler, Martin
2013-01-01
Functional neuroimaging studies of pathological gambling (PG) demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in PG. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional magnetic resonance imaging data in PG. We compared 19 patients with PG to 19 healthy controls (HCs) using the Graph Analysis Toolbox (GAT). None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (supplementary motor area, SMA), reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients. These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that PG is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in PG cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders. PMID:24098282
Abnormalities of Functional Brain Networks in Pathological Gambling: A Graph-Theoretical Approach
Directory of Open Access Journals (Sweden)
Melanie eTschernegg
2013-09-01
Full Text Available Functional neuroimaging studies of pathological gambling demonstrate alterations in frontal and subcortical regions of the mesolimbic reward system. However, most investigations were performed using tasks involving reward processing or executive functions. Little is known about brain network abnormalities during task-free resting state in pathological gambling. In the present study, graph-theoretical methods were used to investigate network properties of resting state functional MRI data in pathological gambling. We compared 19 patients with pathological gambling to 19 healthy controls using the Graph Analysis Toolbox (GAT. None of the examined global metrics differed between groups. At the nodal level, pathological gambler showed a reduced clustering coefficient in the left paracingulate cortex and the left juxtapositional lobe (SMA, reduced local efficiency in the left SMA, as well as an increased node betweenness for the left and right paracingulate cortex and the left SMA. At an uncorrected threshold level, the node betweenness in the left inferior frontal gyrus was decreased and increased in the caudate. Additionally, increased functional connectivity between fronto-striatal regions and within frontal regions has also been found for the gambling patients.These findings suggest that regions associated with the reward system demonstrate reduced segregation but enhanced integration while regions associated with executive functions demonstrate reduced integration. The present study makes evident that pathological gambling is also associated with abnormalities in the topological network structure of the brain during rest. Since alterations in pathological gambling cannot be explained by direct effects of abused substances on the brain, these findings will be of relevance for understanding functional connectivity in other addictive disorders.
Direct Visual Editing of Node Attributes in Graphs
Directory of Open Access Journals (Sweden)
Christian Eichner
2016-10-01
Full Text Available There are many expressive visualization techniques for analyzing graphs. Yet, there is only little research on how existing visual representations can be employed to support data editing. An increasingly relevant task when working with graphs is the editing of node attributes. We propose an integrated visualize-and-edit approach to editing attribute values via direct interaction with the visual representation. The visualize part is based on node-link diagrams paired with attribute-dependent layouts. The edit part is as easy as moving nodes via drag-and-drop gestures. We present dedicated interaction techniques for editing quantitative as well as qualitative attribute data values. The benefit of our novel integrated approach is that one can directly edit the data while the visualization constantly provides feedback on the implications of the data modifications. Preliminary user feedback indicates that our integrated approach can be a useful complement to standard non-visual editing via external tools.
DEFF Research Database (Denmark)
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract
A graph-based approach to construct target-focused libraries for virtual screening.
Naderi, Misagh; Alvin, Chris; Ding, Yun; Mukhopadhyay, Supratik; Brylinski, Michal
2016-01-01
Due to exorbitant costs of high-throughput screening, many drug discovery projects commonly employ inexpensive virtual screening to support experimental efforts. However, the vast majority of compounds in widely used screening libraries, such as the ZINC database, will have a very low probability to exhibit the desired bioactivity for a given protein. Although combinatorial chemistry methods can be used to augment existing compound libraries with novel drug-like compounds, the broad chemical space is often too large to be explored. Consequently, the trend in library design has shifted to produce screening collections specifically tailored to modulate the function of a particular target or a protein family. Assuming that organic compounds are composed of sets of rigid fragments connected by flexible linkers, a molecule can be decomposed into its building blocks tracking their atomic connectivity. On this account, we developed eSynth, an exhaustive graph-based search algorithm to computationally synthesize new compounds by reconnecting these building blocks following their connectivity patterns. We conducted a series of benchmarking calculations against the Directory of Useful Decoys, Enhanced database. First, in a self-benchmarking test, the correctness of the algorithm is validated with the objective to recover a molecule from its building blocks. Encouragingly, eSynth can efficiently rebuild more than 80 % of active molecules from their fragment components. Next, the capability to discover novel scaffolds is assessed in a cross-benchmarking test, where eSynth successfully reconstructed 40 % of the target molecules using fragments extracted from chemically distinct compounds. Despite an enormous chemical space to be explored, eSynth is computationally efficient; half of the molecules are rebuilt in less than a second, whereas 90 % take only about a minute to be generated. eSynth can successfully reconstruct chemically feasible molecules from molecular fragments
Dataflow Interchange Format and a Framework for Processing Dataflow Graphs
National Research Council Canada - National Science Library
Keceli, Fuat
2004-01-01
Digital Signal Processing (DSP) applications are often designed with tools based on dataflow graphs and the increasing number of such tools shows the need for a common intermediate graph representation for exchanging dataflow information...
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar
2017-04-25
In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.
Modelling of Non-Linear Pilot Disinfection Water System: A Bond Graph Approach
Directory of Open Access Journals (Sweden)
Naoufel ZITOUNI
2012-08-01
Full Text Available The ultraviolet (UV irradiations are used to solve the bacteriological problem of the drinking water quality. A discharge-gas lamp is used to produce this type of irradiation. The UV lamp is fed by photovoltaic (PV energy via electronic ballast composed by an inverter, a transformer and resonant circuit (RLC. The aim of this work is to give a useful global model of the system. In particular, we introduce the complicated UV lamp model and the water disinfection kinetics, where the radiant energy flux emitted by the discharge-gas lamp and the arc voltage are a complex functions of the current and time. This system is intended to be mainly used in rural zones, the photovoltaic modules as source of energy is an adequate solution. To optimise the power transfer from the PV array to ballast and UV lamp, a Maximum Power Point Tracking (MPPT device may be located between PV array and the loads. In this paper, we developed a bond-graph model which gives the water quality from UV flow, gas type, pressure, lamp current and geometrical characteristic. Finally reliable simulations are established and compared with experimental tests.
Directory of Open Access Journals (Sweden)
Michel Feidt
2012-03-01
Full Text Available In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature and a heat sink (at temperature . The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for modeling endoreversible heat engines. This approach makes it possible for example to find in a simple way the characteristics of the optimal operating point at which the maximum mechanical power of the endoreversible heat engine is obtained with entropy flow rate as control variable. Furthermore it provides the analytical expressions of the optimal operating point of an irreversible heat engine where the energy conversion is accompanied by irreversibilities related to internal heat transfer and heat dissipation phenomena. This original approach, applied to an analysis of the performance of a thermoelectric generator, will be the object of a future publication.
Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha
2016-11-01
In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Visualization of Morse connection graphs for topologically rich 2D vector fields.
Szymczak, Andrzej; Sipeki, Levente
2013-12-01
Recent advances in vector field topologymake it possible to compute its multi-scale graph representations for autonomous 2D vector fields in a robust and efficient manner. One of these representations is a Morse Connection Graph (MCG), a directed graph whose nodes correspond to Morse sets, generalizing stationary points and periodic trajectories, and arcs - to trajectories connecting them. While being useful for simple vector fields, the MCG can be hard to comprehend for topologically rich vector fields, containing a large number of features. This paper describes a visual representation of the MCG, inspired by previous work on graph visualization. Our approach aims to preserve the spatial relationships between the MCG arcs and nodes and highlight the coherent behavior of connecting trajectories. Using simulations of ocean flow, we show that it can provide useful information on the flow structure. This paper focuses specifically on MCGs computed for piecewise constant (PC) vector fields. In particular, we describe extensions of the PC framework that make it more flexible and better suited for analysis of data on complex shaped domains with a boundary. We also describe a topology simplification scheme that makes our MCG visualizations less ambiguous. Despite the focus on the PC framework, our approach could also be applied to graph representations or topological skeletons computed using different methods.
Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan
2014-01-01
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...
Graph theoretical model of a sensorimotor connectome in zebrafish.
Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan
2012-01-01
Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Graph theoretical model of a sensorimotor connectome in zebrafish.
Directory of Open Access Journals (Sweden)
Michael Stobb
Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.
Semantic graphs and associative memories
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
Anticipation-related brain connectivity in bipolar and unipolar depression: a graph theory approach.
Manelis, Anna; Almeida, Jorge R C; Stiffler, Richelle; Lockovich, Jeanette C; Aslam, Haris A; Phillips, Mary L
2016-09-01
Bipolar disorder is often misdiagnosed as major depressive disorder, which leads to inadequate treatment. Depressed individuals versus healthy control subjects, show increased expectation of negative outcomes. Due to increased impulsivity and risk for mania, however, depressed individuals with bipolar disorder may differ from those with major depressive disorder in neural mechanisms underlying anticipation processes. Graph theory methods for neuroimaging data analysis allow the identification of connectivity between multiple brain regions without prior model specification, and may help to identify neurobiological markers differentiating these disorders, thereby facilitating development of better therapeutic interventions. This study aimed to compare brain connectivity among regions involved in win/loss anticipation in depressed individuals with bipolar disorder (BDD) versus depressed individuals with major depressive disorder (MDD) versus healthy control subjects using graph theory methods. The study was conducted at the University of Pittsburgh Medical Center and included 31 BDD, 39 MDD, and 36 healthy control subjects. Participants were scanned while performing a number guessing reward task that included the periods of win and loss anticipation. We first identified the anticipatory network across all 106 participants by contrasting brain activation during all anticipation periods (win anticipation + loss anticipation) versus baseline, and win anticipation versus loss anticipation. Brain connectivity within the identified network was determined using the Independent Multiple sample Greedy Equivalence Search (IMaGES) and Linear non-Gaussian Orientation, Fixed Structure (LOFS) algorithms. Density of connections (the number of connections in the network), path length, and the global connectivity direction ('top-down' versus 'bottom-up') were compared across groups (BDD/MDD/healthy control subjects) and conditions (win/loss anticipation). These analyses showed that
Korovin, Iakov S.; Tkachenko, Maxim G.
2018-03-01
In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.
2012-10-01
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science. © 2012 IEEE.
Cruz-Roa, Angel; Arevalo, John; Basavanhally, Ajay; Madabhushi, Anant; González, Fabio
2015-01-01
Learning data representations directly from the data itself is an approach that has shown great success in different pattern recognition problems, outperforming state-of-the-art feature extraction schemes for different tasks in computer vision, speech recognition and natural language processing. Representation learning applies unsupervised and supervised machine learning methods to large amounts of data to find building-blocks that better represent the information in it. Digitized histopathology images represents a very good testbed for representation learning since it involves large amounts of high complex, visual data. This paper presents a comparative evaluation of different supervised and unsupervised representation learning architectures to specifically address open questions on what type of learning architectures (deep or shallow), type of learning (unsupervised or supervised) is optimal. In this paper we limit ourselves to addressing these questions in the context of distinguishing between anaplastic and non-anaplastic medulloblastomas from routine haematoxylin and eosin stained images. The unsupervised approaches evaluated were sparse autoencoders and topographic reconstruct independent component analysis, and the supervised approach was convolutional neural networks. Experimental results show that shallow architectures with more neurons are better than deeper architectures without taking into account local space invariances and that topographic constraints provide useful invariant features in scale and rotations for efficient tumor differentiation.
Planar articulated mechanism design by graph theoretical enumeration
DEFF Research Database (Denmark)
Kawamoto, A; Bendsøe, Martin P.; Sigmund, Ole
2004-01-01
This paper deals with design of articulated mechanisms using a truss-based ground-structure representation. By applying a graph theoretical enumeration approach we can perform an exhaustive analysis of all possible topologies for a test example for which we seek a symmetric mechanism. This guaran....... This guarantees that one can identify the global optimum solution. The result underlines the importance of mechanism topology and gives insight into the issues specific to articulated mechanism designs compared to compliant mechanism designs....
System dynamics and control with bond graph modeling
Kypuros, Javier
2013-01-01
Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
Directory of Open Access Journals (Sweden)
Jairo A Navarrete
2017-08-01
Full Text Available Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.
Navarrete, Jairo A; Dartnell, Pablo
2017-08-01
Category Theory, a branch of mathematics, has shown promise as a modeling framework for higher-level cognition. We introduce an algebraic model for analogy that uses the language of category theory to explore analogy-related cognitive phenomena. To illustrate the potential of this approach, we use this model to explore three objects of study in cognitive literature. First, (a) we use commutative diagrams to analyze an effect of playing particular educational board games on the learning of numbers. Second, (b) we employ a notion called coequalizer as a formal model of re-representation that explains a property of computational models of analogy called "flexibility" whereby non-similar representational elements are considered matches and placed in structural correspondence. Finally, (c) we build a formal learning model which shows that re-representation, language processing and analogy making can explain the acquisition of knowledge of rational numbers. These objects of study provide a picture of acquisition of numerical knowledge that is compatible with empirical evidence and offers insights on possible connections between notions such as relational knowledge, analogy, learning, conceptual knowledge, re-representation and procedural knowledge. This suggests that the approach presented here facilitates mathematical modeling of cognition and provides novel ways to think about analogy-related cognitive phenomena.
Mechatronics by bond graphs an object-oriented approach to modelling and simulation
Damić, Vjekoslav
2015-01-01
This book presents a computer-aided approach to the design of mechatronic systems. Its subject is an integrated modeling and simulation in a visual computer environment. Since the first edition, the simulation software changed enormously, became more user-friendly and easier to use. Therefore, a second edition became necessary taking these improvements into account. The modeling is based on system top-down and bottom-up approach. The mathematical models are generated in a form of differential-algebraic equations and solved using numerical and symbolic algebra methods. The integrated approach developed is applied to mechanical, electrical and control systems, multibody dynamics, and continuous systems. .
An Efficient Monte Carlo Approach to Compute PageRank for Large Graphs on a Single PC
Directory of Open Access Journals (Sweden)
Sonobe Tomohiro
2016-03-01
Full Text Available This paper describes a novel Monte Carlo based random walk to compute PageRanks of nodes in a large graph on a single PC. The target graphs of this paper are ones whose size is larger than the physical memory. In such an environment, memory management is a difficult task for simulating the random walk among the nodes. We propose a novel method that partitions the graph into subgraphs in order to make them fit into the physical memory, and conducts the random walk for each subgraph. By evaluating the walks lazily, we can conduct the walks only in a subgraph and approximate the random walk by rotating the subgraphs. In computational experiments, the proposed method exhibits good performance for existing large graphs with several passes of the graph data.
A comparison of approaches for finding minimum identifying codes on graphs
Horan, Victoria; Adachi, Steve; Bak, Stanley
2016-05-01
In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a typical computer. One sample problem explored is that of finding a minimum identifying code. To work around the computational issues, a variety of methods are explored and consist of a parallel computing approach using MATLAB, an adiabatic quantum optimization approach using a D-Wave quantum annealing processor, and lastly using satisfiability modulo theory (SMT) and corresponding SMT solvers. Each of these methods requires the problem to be formulated in a unique manner. In this paper, we address the challenges of computing solutions to this NP-hard problem with respect to each of these methods.
A Comparison of Approaches for Solving Hard Graph-Theoretic Problems
2015-04-29
and Search”, in Discrete Mathematics and Its Applications, Book 7, CRC Press (1998): Boca Raton. [6] A. Lucas, “Ising Formulations of Many NP Problems...owner. 14. ABSTRACT In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many... combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a
Directory of Open Access Journals (Sweden)
Lubna Moin
2009-04-01
Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and
International Nuclear Information System (INIS)
Vincze, Arpad; Nemeth, Andras
2013-01-01
According to a recent statement, the IAEA seeks to develop a more effective safeguards system to achieve greater deterrence, because deterrence of proliferation is much more effective than detection. To achieve this goal, a less predictive safeguards system is being developed based on the advanced state-level approach that is driven by all available safeguards-relevant information. The 'directed graph analysis' is recommended as a possible methodology to implement acquisition path analysis by the IAEA to support the State evaluation process. The basic methodology is simple, well established, powerful, and its adaptation to the modelling of the nuclear profile of a State requires minimum software development. Based on this methodology the material flow network model has been developed under the Hungarian Support Programme to the IAEA, which is described in detail. In the proposed model, materials in different chemical and physical form can flow through pipes representing declared processes, material transports, diversions or undeclared processes. The nodes of the network are the material types, while the edges of the network are the pipes. A state parameter (p) is assigned to each node and edge representing the probability of their existence in the State. The possible application of this model in the State-level analytical approach will be discussed and outlook for further work will be given. The paper is followed by the slides of the presentation
Multiple Kernel Learning for adaptive graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan; AbdulJabbar, Mustafa Abdulmajeed
2012-01-01
Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of non-negative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation, which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.
Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...
Digital Line Graphs (DLG) 100K
Kansas Data Access and Support Center — Digital line graph (DLG) data are digital representations of cartographic information. DLG's of map features are converted to digital form from maps and related...
Features based approach for indexation and representation of unstructured Arabic documents
Directory of Open Access Journals (Sweden)
Mohamed Salim El Bazzi
2017-06-01
Full Text Available The increase of textual information published in Arabic language on the internet, public libraries and administrations requires implementing effective techniques for the extraction of relevant information contained in large corpus of texts. The purpose of indexing is to create a document representation that easily find and identify the relevant information in a set of documents. However, mining textual data is becoming a complicated task, especially when taking semantic into consideration. In this paper, we will present an indexation system based on contextual representation that will take the advantage of semantic links given in a document. Our approach is based on the extraction of keyphrases. Then, each document is represented by its relevant keyphrases instead of its simple keywords. The experimental results confirms the effectiveness of our approach.
International Nuclear Information System (INIS)
Rand, C.P. du; Schoor, G. van
2012-01-01
Highlights: ► Different uncorrelated fault signatures are derived for HTGR component faults. ► A multiple classifier ensemble increases confidence in classification accuracy. ► Detailed simulation model of system is not required for fault diagnosis. - Abstract: The second paper in a two part series presents the area error method for generation of representative enthalpy–entropy (h–s) fault signatures to classify malfunctions in generation IV nuclear high temperature gas-cooled reactor (HTGR) components. The second classifier is devised to ultimately address the fault diagnosis (FD) problem via the proposed methods in a multiple classifier (MC) ensemble. FD is realized by way of different input feature sets to the classification algorithm based on the area and trajectory of the residual shift between the fault-free and the actual operating h–s graph models. The application of the proposed technique is specifically demonstrated for 24 single fault transients considered in the main power system (MPS) of the Pebble Bed Modular Reactor (PBMR). The results show that the area error technique produces different fault signatures with low correlation for all the examined component faults. A brief evaluation of the two fault signature generation techniques is presented and the performance of the area error method is documented using the fault classification index (FCI) presented in Part I of the series. The final part of this work reports the application of the proposed approach for classification of an emulated fault transient in data from the prototype Pebble Bed Micro Model (PBMM) plant. Reference data values are calculated for the plant via a thermo-hydraulic simulation model of the MPS. The results show that the correspondence between the fault signatures, generated via experimental plant data and simulated reference values, are generally good. The work presented in the two part series, related to the classification of component faults in the MPS of different
Golino, H.F.; Epskamp, S.
2017-01-01
The estimation of the correct number of dimensions is a long-standing problem in psychometrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Guttman’s eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the maximum-likelihood approaches that use
Compression-based inference on graph data
Bloem, P.; van den Bosch, A.; Heskes, T.; van Leeuwen, D.
2013-01-01
We investigate the use of compression-based learning on graph data. General purpose compressors operate on bitstrings or other sequential representations. A single graph can be represented sequentially in many ways, which may in uence the performance of sequential compressors. Using Normalized
Coulomb-Fourier representation approach to three-body scattering with charged particles
International Nuclear Information System (INIS)
Alt, E.O.; Levin, S.B.; Yakovlev, S.L.
2004-01-01
We present a novel approach for calculating charged-composite particle scattering. It consists in eliminating by means of a suitably chosen representation that part of the interaction which is of longest range and, hence, gives rise to all the troublesome features which plague charged particle scattering theories. In this paper only the simplest case is considered, namely that of two charged and one neutral particles which interact via pairwise strong potentials, and a repulsive Coulomb potential between the charged particles
Directory of Open Access Journals (Sweden)
Allah Bux Sargano
2017-01-01
Full Text Available Human activity recognition (HAR is an important research area in the fields of human perception and computer vision due to its wide range of applications. These applications include: intelligent video surveillance, ambient assisted living, human computer interaction, human-robot interaction, entertainment, and intelligent driving. Recently, with the emergence and successful deployment of deep learning techniques for image classification, researchers have migrated from traditional handcrafting to deep learning techniques for HAR. However, handcrafted representation-based approaches are still widely used due to some bottlenecks such as computational complexity of deep learning techniques for activity recognition. However, approaches based on handcrafted representation are not able to handle complex scenarios due to their limitations and incapability; therefore, resorting to deep learning-based techniques is a natural option. This review paper presents a comprehensive survey of both handcrafted and learning-based action representations, offering comparison, analysis, and discussions on these approaches. In addition to this, the well-known public datasets available for experimentations and important applications of HAR are also presented to provide further insight into the field. This is the first review paper of its kind which presents all these aspects of HAR in a single review article with comprehensive coverage of each part. Finally, the paper is concluded with important discussions and research directions in the domain of HAR.
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Neural overlap of L1 and L2 semantic representations in speech: A decoding approach.
Van de Putte, Eowyn; De Baene, Wouter; Brass, Marcel; Duyck, Wouter
2017-11-15
Although research has now converged towards a consensus that both languages of a bilingual are represented in at least partly shared systems for language comprehension, it remains unclear whether both languages are represented in the same neural populations for production. We investigated the neural overlap between L1 and L2 semantic representations of translation equivalents using a production task in which the participants had to name pictures in L1 and L2. Using a decoding approach, we tested whether brain activity during the production of individual nouns in one language allowed predicting the production of the same concepts in the other language. Because both languages only share the underlying semantic representation (sensory and lexical overlap was maximally avoided), this would offer very strong evidence for neural overlap in semantic representations of bilinguals. Based on the brain activation for the individual concepts in one language in the bilateral occipito-temporal cortex and the inferior and the middle temporal gyrus, we could accurately predict the equivalent individual concepts in the other language. This indicates that these regions share semantic representations across L1 and L2 word production. Copyright © 2017 Elsevier Inc. All rights reserved.
Cooperation or Localization in European Capacity Markets? A Coalitional Game over Graph Approach
Directory of Open Access Journals (Sweden)
Giorgos Stamtsis
2018-06-01
Full Text Available Capacity markets, as a means to address the capacity adequacy issue, are constantly becoming an important part of the European internal electricity market. The debate focuses on how the capacity markets will be smoothly integrated in one Pan-European power market, without resulting in multiple national fragmentations and consequently in economic efficiency losses. Cross-border participation and regional cooperation are considered as two sine qua non conditions in this respect. The present paper provides a coalitional game theoretical approach aiming to facilitate the cooperation of neighboring countries, when it comes to the security of electricity supply and the necessity of establishing a capacity market. Such an approach can support respective decisions about capacity markets cooperation as well as stress-test the benefits considering all cooperation possibilities.
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-11-12
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.
Directory of Open Access Journals (Sweden)
Zabiniako Vitaly
2014-12-01
Full Text Available In this article, the authors perform an analysis in order to assess adaptation of magnetic force-directed algorithms for context-based information extraction from multi-attributed graphs during visualization sessions. Theoretic standings behind magnetic force-directed approach are stated together with review on how particular features of respective algorithms in combination with appropriate visual techniques are especially suitable for improved processing and presenting of knowledge that is captured in form of graphs. The complexity of retrieving multi-attributed information within the proposed approach is handled with dedicated tools, such as selective attraction of nodes to MFE (Magnetic Force Emitter based on search criteria, localization of POI (Point of Interest regions, graph node anchoring, etc. Implicit compatibility of aforementioned tools with interactive nature of data exploration is distinguished. Description of case study, based on bibliometric network analysis is given, which is followed by the review of existing related works in this field. Conclusions are made and further studies in the field of visualization of multi-attributed graphs are defined.
[A retrieval method of drug molecules based on graph collapsing].
Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z
2018-04-18
.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.
Tian, Shu; Zhang, Ye; Yan, Yiming; Su, Nan
2016-10-01
Segmentation of real-world remote sensing images is a challenge due to the complex texture information with high heterogeneity. Thus, graph-based image segmentation methods have been attracting great attention in the field of remote sensing. However, most of the traditional graph-based approaches fail to capture the intrinsic structure of the feature space and are sensitive to noises. A ℓ-norm regularization-based graph segmentation method is proposed to segment remote sensing images. First, we use the occlusion of the random texture model (ORTM) to extract the local histogram features. Then, a ℓ-norm regularized low-rank and sparse representation (LNNLRS) is implemented to construct a ℓ-regularized nonnegative low-rank and sparse graph (LNNLRS-graph), by the union of feature subspaces. Moreover, the LNNLRS-graph has a high ability to discriminate the manifold intrinsic structure of highly homogeneous texture information. Meanwhile, the LNNLRS representation takes advantage of the low-rank and sparse characteristics to remove the noises and corrupted data. Last, we introduce the LNNLRS-graph into the graph regularization nonnegative matrix factorization to enhance the segmentation accuracy. The experimental results using remote sensing images show that when compared to five state-of-the-art image segmentation methods, the proposed method achieves more accurate segmentation results.
Identifying Threats Using Graph-based Anomaly Detection
Eberle, William; Holder, Lawrence; Cook, Diane
Much of the data collected during the monitoring of cyber and other infrastructures is structural in nature, consisting of various types of entities and relationships between them. The detection of threatening anomalies in such data is crucial to protecting these infrastructures. We present an approach to detecting anomalies in a graph-based representation of such data that explicitly represents these entities and relationships. The approach consists of first finding normative patterns in the data using graph-based data mining and then searching for small, unexpected deviations to these normative patterns, assuming illicit behavior tries to mimic legitimate, normative behavior. The approach is evaluated using several synthetic and real-world datasets. Results show that the approach has high truepositive rates, low false-positive rates, and is capable of detecting complex structural anomalies in real-world domains including email communications, cellphone calls and network traffic.
An Experiment on Graph Analysis Methodologies for Scenarios
Energy Technology Data Exchange (ETDEWEB)
Brothers, Alan J.; Whitney, Paul D.; Wolf, Katherine E.; Kuchar, Olga A.; Chin, George
2005-09-30
Visual graph representations are increasingly used to represent, display, and explore scenarios and the structure of organizations. The graph representations of scenarios are readily understood, and commercial software is available to create and manage these representations. The purpose of the research presented in this paper is to explore whether these graph representations support quantitative assessments of the underlying scenarios. The underlying structure of the scenarios is the information that is being targeted in the experiment and the extent to which the scenarios are similar in content. An experiment was designed that incorporated both the contents of the scenarios and analysts’ graph representations of the scenarios. The scenarios’ content was represented graphically by analysts, and both the structure and the semantics of the graph representation were attempted to be used to understand the content. The structure information was not found to be discriminating for the content of the scenarios in this experiment; but, the semantic information was discriminating.
Hierarchy of modular graph identities
International Nuclear Information System (INIS)
D’Hoker, Eric; Kaidi, Justin
2016-01-01
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Hierarchy of modular graph identities
Energy Technology Data Exchange (ETDEWEB)
D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)
2016-11-09
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Energy Technology Data Exchange (ETDEWEB)
Prausa, Mario [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2017-09-15
In this paper, we present a new approach to the construction of Mellin-Barnes representations for Feynman integrals inspired by the Method of Brackets. The novel technique is helpful to lower the dimensionality of Mellin-Barnes representations in complicated cases, some examples are given. (orig.)
KnowLife: a versatile approach for constructing a large knowledge graph for biomedical sciences.
Ernst, Patrick; Siu, Amy; Weikum, Gerhard
2015-05-14
Biomedical knowledge bases (KB's) have become important assets in life sciences. Prior work on KB construction has three major limitations. First, most biomedical KBs are manually built and curated, and cannot keep up with the rate at which new findings are published. Second, for automatic information extraction (IE), the text genre of choice has been scientific publications, neglecting sources like health portals and online communities. Third, most prior work on IE has focused on the molecular level or chemogenomics only, like protein-protein interactions or gene-drug relationships, or solely address highly specific topics such as drug effects. We address these three limitations by a versatile and scalable approach to automatic KB construction. Using a small number of seed facts for distant supervision of pattern-based extraction, we harvest a huge number of facts in an automated manner without requiring any explicit training. We extend previous techniques for pattern-based IE with confidence statistics, and we combine this recall-oriented stage with logical reasoning for consistency constraint checking to achieve high precision. To our knowledge, this is the first method that uses consistency checking for biomedical relations. Our approach can be easily extended to incorporate additional relations and constraints. We ran extensive experiments not only for scientific publications, but also for encyclopedic health portals and online communities, creating different KB's based on different configurations. We assess the size and quality of each KB, in terms of number of facts and precision. The best configured KB, KnowLife, contains more than 500,000 facts at a precision of 93% for 13 relations covering genes, organs, diseases, symptoms, treatments, as well as environmental and lifestyle risk factors. KnowLife is a large knowledge base for health and life sciences, automatically constructed from different Web sources. As a unique feature, KnowLife is harvested from
Belief propagation and loop series on planar graphs
International Nuclear Information System (INIS)
Chertkov, Michael; Teodorescu, Razvan; Chernyak, Vladimir Y
2008-01-01
We discuss a generic model of Bayesian inference with binary variables defined on edges of a planar graph. The Loop Calculus approach of Chertkov and Chernyak (2006 Phys. Rev. E 73 065102(R) [cond-mat/0601487]; 2006 J. Stat. Mech. P06009 [cond-mat/0603189]) is used to evaluate the resulting series expansion for the partition function. We show that, for planar graphs, truncating the series at single-connected loops reduces, via a map reminiscent of the Fisher transformation (Fisher 1961 Phys. Rev. 124 1664), to evaluating the partition function of the dimer-matching model on an auxiliary planar graph. Thus, the truncated series can be easily re-summed, using the Pfaffian formula of Kasteleyn (1961 Physics 27 1209). This allows us to identify a big class of computationally tractable planar models reducible to a dimer model via the Belief Propagation (gauge) transformation. The Pfaffian representation can also be extended to the full Loop Series, in which case the expansion becomes a sum of Pfaffian contributions, each associated with dimer matchings on an extension to a subgraph of the original graph. Algorithmic consequences of the Pfaffian representation, as well as relations to quantum and non-planar models, are discussed
Meyrignac, Lucile; Bouati, Noureddine; Sagne, Alain; Gavazzi, Gaëtan; Zipper, Anne-Claire
2017-09-01
The sexuality of the elderly is rarely mentioned in general medicine although it holds an important place in many old people's life, and sexual well-being is a part of the global well-being according to the World Health Organization. To explore the representations of their own sexuality and aging body by the elderly. Qualitative study using semi-structured interviews in 15 healthy elderly people over 65 years of age, living at home. In-depth interviews were transcribed and submitted to qualitative content using a phenomenological and a psychodynamic analysis. The phenomenological approach allows to explore the meaning and significance of the sexuality of older people (their representations and individual experience). The psychodynamic approach allows an analysis of defense mechanisms in verbal and nonverbal behavior. Some elderly maintain a view of their sexuality in accordance with the societal standards existing before the sexual liberalization following the events of May 68 in France. For these people, sexuality is tabooed and only linked to procreation, no longer part of the aging body, and perceived as degraded, then difficult to be approached by general practitioners in relation with defense mechanisms. Other elderly people have managed to free themselves from those previous societal standards. The notion of pleasure is still present in these people and their aging body is perceived as an altered body, difficult to be accepted on account of the pressure for conformity due to actual societal standards. These standards reserve sexuality to young people and convey a picture of a sexuality that would be improper for the elderly. Understanding the representations of their sexuality by the elderly allows GPs a better approach for helping older patients to improve their sexual well-being.
ARCRANGE AND ARCSEER: PRESENTING A NEW APPROACH TO ARCHAEOLOGICAL DATA MANAGEMENT AND REPRESENTATION
Directory of Open Access Journals (Sweden)
F. Lynam
2012-09-01
Full Text Available This paper presents a new approach to archaeological data management and representation. The archaeological discipline has struggled to come to terms with the representational demands imposed by the adoption of post-processualist theoretical methodologies. The traditional canon of representational device that has served the positivist frameworks so well in the past has been found wanting when used to present post-processualism's doubt, multivocality, multisensory experience and general reflexivity. This paper presents a new set of data management and visualisation digital tools that seek to address these shortcomings. ArcRange is a backend data management solution that provides easy and powerful manipulation of the varied forms that make up modern archaeological datasets. ArcSeer is a data visualisation tool which uses 3D technology to represent datasets in a more naturalistic or phenomenological way. ArcSeer accesses its data by interfacing with ArcRange. This paper will present an overview of the combined operation of both of these new systems using the test datasets of the Cretan sites of Petsofa and Priniatikos Pyrgos by way of illustration.
A MULTISCALE APPROACH TO THE REPRESENTATION OF 3D IMAGES, WITH APPLICATION TO POLYMER SOLAR CELLS
Directory of Open Access Journals (Sweden)
Ralf Thiedmann
2011-03-01
Full Text Available A multiscale approach to the description of geometrically complex 3D image data is proposed which distinguishes between morphological features on a ‘macro-scale’ and a ‘micro-scale’. Since our method is mainly tailored to nanostructures observed in composite materials consisting of two different phases, an appropriate binarization of grayscale images is required first. Then, a morphological smoothing is applied to extract the structural information from binarized image data on the ‘macro-scale’. A stochastic algorithm is developed for the morphologically smoothed images whose goal is to find a suitable representation of the macro-scale structure by unions of overlapping spheres. Such representations can be interpreted as marked point patterns. They lead to an enormous reduction of data and allow the application of well-known tools from point-process theory for their analysis and structural modeling. All those voxels which have been ‘misspecified’ by the morphological smoothing and subsequent representation by unions of overlapping spheres are interpreted as ‘micro-scale’ structure. The exemplary data sets considered in this paper are 3D grayscale images of photoactive layers in hybrid solar cells gained by electron tomography. These composite materials consist of two phases: a polymer phase and a zinc oxide phase. The macro-scale structure of the latter is represented by unions of overlapping spheres.
AGM: A DSL for mobile cloud computing based on directed graph
Tanković, Nikola; Grbac, Tihana Galinac
2016-06-01
This paper summarizes a novel approach for consuming a domain specific language (DSL) by transforming it to a directed graph representation persisted by a graph database. Using such specialized database enables advanced navigation trough the stored model exposing only relevant subsets of meta-data to different involved services and components. We applied this approach in a mobile cloud computing system and used it to model several mobile applications in retail, supply chain management and merchandising domain. These application are distributed in a Software-as-a-Service (SaaS) fashion and used by thousands of customers in Croatia. We report on lessons learned and propose further research on this topic.
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
Bond graph modeling of centrifugal compression systems
Uddin, Nur; Gravdahl, Jan Tommy
2015-01-01
A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...
Deniz, Hasan; Dulger, Mehmet F.
2012-01-01
This study examined to what extent inquiry-based instruction supported with real-time graphing technology improves fourth grader's ability to interpret graphs as representations of physical science concepts such as motion and temperature. This study also examined whether there is any difference between inquiry-based instruction supported with…
Some Results on the Graph Theory for Complex Neutrosophic Sets
Directory of Open Access Journals (Sweden)
Shio Gai Quek
2018-05-01
Full Text Available Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1. We then present a matrix representation for it and study some properties of this new concept. The concept of CNG1 is an extension of the generalized fuzzy graphs of type 1 (GFG1 and generalized single-valued neutrosophic graphs of type 1 (GSVNG1. The utility of the CNG1 introduced here are applied to a multi-attribute decision making problem related to Internet server selection.
Cyclic graphs and Apery's theorem
International Nuclear Information System (INIS)
Sorokin, V N
2002-01-01
This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found
DEFF Research Database (Denmark)
Blanke, Mogens
2005-01-01
This paper addresses the design process of diagnosis and fault-tolerant control when a system should operate despite multiple failures in sensors or actuators. Graph-theory based analysis of system's structure is demonstrated to be a unique design methodology that can cope with the diagnosis desi...
Martin, Chris J; Haji, Mohammed H; Jimack, Peter K; Pilling, Michael J; Dew, Peter M
2009-07-13
We present a novel user-orientated approach to provenance capture and representation for in silico experiments, contrasted against the more systems-orientated approaches that have been typical within the e-Science domain. In our approach, we seek to capture the scientist's reasoning in the form of annotations as an experiment evolves, while using the scientist's terminology in the representation of process provenance. Our user-orientated approach is applied in a case study within the atmospheric chemistry domain: we consider the design, development and evaluation of an electronic laboratory notebook, a provenance capture and storage tool, for iterative model development.
Directory of Open Access Journals (Sweden)
Philippe eDe Timary
2011-04-01
Full Text Available This paper compares the cognitive-behavioural and psychoanalytical approaches with respect to the way in which each of them conceives of representation and deals with the issues that this involves. In both of them conscious and latent (unconscious representations play a crucial role. Highlighting similarities and differences facilitate communication on a theoretical level but also prove helpful to the clinical practitioners involved. We try to put forward an attempt at comparison, with the idea of going beyond the -- obviously important -- differences in vocabulary. In this attempt at comparison, we have successively compared the definitions of representation and the respective therapeutic interventions proposed by each approach. There are no doubt many overlapping elements in the way in which the workings of the mind are conceived of in these approaches, particularly as regards their links with affects. We next developed the implications of representation deficits in pathology, suggesting the important role played by elements that are avoided, suppressed from memory or repressed, and with respect to the need to treat such material in a specific manner so as to ensure some progress as to the symptoms presented. We finally summarized common and distinct aspects of the two perspectives. The very fact that two approaches that follow very distinct methodologies reach the same conclusion concerning the importance of distortions and failures of representation in generating mental distress strengthens, in our view, the epistemological reliability of the role of representation in psychopathology.
Graphic Symbol Recognition using Graph Based Signature and Bayesian Network Classifier
Luqman, Muhammad Muzzamil; Brouard, Thierry; Ramel, Jean-Yves
2010-01-01
We present a new approach for recognition of complex graphic symbols in technical documents. Graphic symbol recognition is a well known challenge in the field of document image analysis and is at heart of most graphic recognition systems. Our method uses structural approach for symbol representation and statistical classifier for symbol recognition. In our system we represent symbols by their graph based signatures: a graphic symbol is vectorized and is converted to an attributed relational g...
Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking
Kant, Gijs
Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing
Taher, M.; Hamidah, I.; Suwarma, I. R.
2017-09-01
This paper outlined the results of an experimental study on the effects of multi-representation approach in learning Archimedes Law on students’ mental model improvement. The multi-representation techniques implemented in the study were verbal, pictorial, mathematical, and graphical representations. Students’ mental model was classified into three levels, i.e. scientific, synthetic, and initial levels, based on the students’ level of understanding. The present study employed the pre-experimental methodology, using one group pretest-posttest design. The subject of the study was 32 eleventh grade students in a Public Senior High School in Riau Province. The research instrument included model mental test on hydrostatic pressure concept, in the form of essay test judged by experts. The findings showed that there was positive change in students’ mental model, indicating that multi-representation approach was effective to improve students’ mental model.
A coarse-to-fine approach for medical hyperspectral image classification with sparse representation
Chang, Lan; Zhang, Mengmeng; Li, Wei
2017-10-01
A coarse-to-fine approach with sparse representation is proposed for medical hyperspectral image classification in this work. Segmentation technique with different scales is employed to exploit edges of the input image, where coarse super-pixel patches provide global classification information while fine ones further provide detail information. Different from common RGB image, hyperspectral image has multi bands to adjust the cluster center with more high precision. After segmentation, each super pixel is classified by recently-developed sparse representation-based classification (SRC), which assigns label for testing samples in one local patch by means of sparse linear combination of all the training samples. Furthermore, segmentation with multiple scales is employed because single scale is not suitable for complicate distribution of medical hyperspectral imagery. Finally, classification results for different sizes of super pixel are fused by some fusion strategy, offering at least two benefits: (1) the final result is obviously superior to that of segmentation with single scale, and (2) the fusion process significantly simplifies the choice of scales. Experimental results using real medical hyperspectral images demonstrate that the proposed method outperforms the state-of-the-art SRC.
On characterizing terrain visibility graphs
Directory of Open Access Journals (Sweden)
William Evans
2015-06-01
Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.
The Time Diagram Control Approach for the Dynamic Representation of Time-Oriented Data
Directory of Open Access Journals (Sweden)
Rolf Dornberger
2016-04-01
Full Text Available The dynamic representation of time-oriented data on small screen devices is of increasing importance. Most solution approaches use issue-specific requirements based on established desktop technologies. Applied to mobile devices with small multi-touch displays such approaches often lead to a limited usability. Particularly, the time-dependent data can only be fragmentarily visualized due to limited screen sizes. Instead of reducing the complexity by visualizing the data, the interpretation of the data is getting more complex. This paper proposes a Time Diagram Control (TDC approach, a new way of representing time-based diagrams on small screen devices. The TDC uses a principle of cybernetics to integrate the user in the visualization process and thus reduce complexity. TDC focuses on simplicity of design by only providing 2D temporal line diagrams with a dynamic zooming function that works via standard multi-touch controls. Involving the user into a continuous loop of refining the visualization, TDC allows to compare data of different temporal granularities without losing the overall context of the presented data. The TDC approach ensures constant information reliability on small screen devices.
International Nuclear Information System (INIS)
Lacasa, Lucas
2014-01-01
Dynamical processes can be transformed into graphs through a family of mappings called visibility algorithms, enabling the possibility of (i) making empirical time series analysis and signal processing and (ii) characterizing classes of dynamical systems and stochastic processes using the tools of graph theory. Recent works show that the degree distribution of these graphs encapsulates much information on the signals' variability, and therefore constitutes a fundamental feature for statistical learning purposes. However, exact solutions for the degree distributions are only known in a few cases, such as for uncorrelated random processes. Here we analytically explore these distributions in a list of situations. We present a diagrammatic formalism which computes for all degrees their corresponding probability as a series expansion in a coupling constant which is the number of hidden variables. We offer a constructive solution for general Markovian stochastic processes and deterministic maps. As case tests we focus on Ornstein–Uhlenbeck processes, fully chaotic and quasiperiodic maps. Whereas only for certain degree probabilities can all diagrams be summed exactly, in the general case we show that the perturbation theory converges. In a second part, we make use of a variational technique to predict the complete degree distribution for special classes of Markovian dynamics with fast-decaying correlations. In every case we compare the theory with numerical experiments. (paper)
Olayan, Rawan S.
2017-11-23
Motivation Finding computationally drug-target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Results We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using five repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 34% when the drugs are new, by 23% when targets are new, and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam
2014-12-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Quick Mining of Isomorphic Exact Large Patterns from Large Graphs
Almasri, Islam; Gao, Xin; Fedoroff, Nina V.
2014-01-01
The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.
Shahnazian, Danesh; Holroyd, Clay B
2018-02-01
Anterior cingulate cortex (ACC) has been the subject of intense debate over the past 2 decades, but its specific computational function remains controversial. Here we present a simple computational model of ACC that incorporates distributed representations across a network of interconnected processing units. Based on the proposal that ACC is concerned with the execution of extended, goal-directed action sequences, we trained a recurrent neural network to predict each successive step of several sequences associated with multiple tasks. In keeping with neurophysiological observations from nonhuman animals, the network yields distributed patterns of activity across ACC neurons that track the progression of each sequence, and in keeping with human neuroimaging data, the network produces discrepancy signals when any step of the sequence deviates from the predicted step. These simulations illustrate a novel approach for investigating ACC function.
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
Graph theory and its applications
Gross, Jonathan L
2006-01-01
Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
Directory of Open Access Journals (Sweden)
Andreas P. Braun
2016-04-01
Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.
Hierarchical organisation of causal graphs
International Nuclear Information System (INIS)
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Bakri, F.; Muliyati, D.
2018-05-01
This research aims to design e-learning resources with multiple representations based on a contextual approach for the Basic Physics Course. The research uses the research and development methods accordance Dick & Carey strategy. The development carried out in the digital laboratory of Physics Education Department, Mathematics and Science Faculty, Universitas Negeri Jakarta. The result of the process of product development with Dick & Carey strategy, have produced e-learning design of the Basic Physics Course is presented in multiple representations in contextual learning syntax. The appropriate of representation used in the design of learning basic physics include: concept map, video, figures, data tables of experiment results, charts of data tables, the verbal explanations, mathematical equations, problem and solutions example, and exercise. Multiple representations are presented in the form of contextual learning by stages: relating, experiencing, applying, transferring, and cooperating.
Graph-based clustering and data visualization algorithms
Vathy-Fogarassy, Ágnes
2013-01-01
This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on
Directory of Open Access Journals (Sweden)
Florian Lesaint
2014-02-01
Full Text Available Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US, some rats (sign-trackers come to approach and engage the conditioned stimulus (CS itself - a lever - more and more avidly, whereas other rats (goal-trackers learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B.; Robinson, Terry E.; Khamassi, Mehdi
2014-01-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself – a lever – more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in
Lesaint, Florian; Sigaud, Olivier; Flagel, Shelly B; Robinson, Terry E; Khamassi, Mehdi
2014-02-01
Reinforcement Learning has greatly influenced models of conditioning, providing powerful explanations of acquired behaviour and underlying physiological observations. However, in recent autoshaping experiments in rats, variation in the form of Pavlovian conditioned responses (CRs) and associated dopamine activity, have questioned the classical hypothesis that phasic dopamine activity corresponds to a reward prediction error-like signal arising from a classical Model-Free system, necessary for Pavlovian conditioning. Over the course of Pavlovian conditioning using food as the unconditioned stimulus (US), some rats (sign-trackers) come to approach and engage the conditioned stimulus (CS) itself - a lever - more and more avidly, whereas other rats (goal-trackers) learn to approach the location of food delivery upon CS presentation. Importantly, although both sign-trackers and goal-trackers learn the CS-US association equally well, only in sign-trackers does phasic dopamine activity show classical reward prediction error-like bursts. Furthermore, neither the acquisition nor the expression of a goal-tracking CR is dopamine-dependent. Here we present a computational model that can account for such individual variations. We show that a combination of a Model-Based system and a revised Model-Free system can account for the development of distinct CRs in rats. Moreover, we show that revising a classical Model-Free system to individually process stimuli by using factored representations can explain why classical dopaminergic patterns may be observed for some rats and not for others depending on the CR they develop. In addition, the model can account for other behavioural and pharmacological results obtained using the same, or similar, autoshaping procedures. Finally, the model makes it possible to draw a set of experimental predictions that may be verified in a modified experimental protocol. We suggest that further investigation of factored representations in computational
Graph Mining Meets the Semantic Web
Energy Technology Data Exchange (ETDEWEB)
Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Lim, Seung-Hwan [ORNL
2015-01-01
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.
Algorithms and Data Structures for Graphs
DEFF Research Database (Denmark)
Rotenberg, Eva
are planar graphs, which are those that can be drawn on a piece of paper without any pair of edges crossing. For planar graphs where each edge can only be traversed in one direction, a fundamental question is whether there is a route from vertex A to vertex B in the graph. We show how such a graph can...... of the form: "Is there an edge such that all paths between A and B go via that edge?" and which can quickly be updated when edges are inserted or deleted. We further show how to represent a planar graph such that we can quickly update our representation when an edge is deleted, and such that questions...
Disease management research using event graphs.
Allore, H G; Schruben, L W
2000-08-01
Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.
Software for Graph Analysis and Visualization
Directory of Open Access Journals (Sweden)
M. I. Kolomeychenko
2014-01-01
Full Text Available This paper describes the software for graph storage, analysis and visualization. The article presents a comparative analysis of existing software for analysis and visualization of graphs, describes the overall architecture of application and basic principles of construction and operation of the main modules. Furthermore, a description of the developed graph storage oriented to storage and processing of large-scale graphs is presented. The developed algorithm for finding communities and implemented algorithms of autolayouts of graphs are the main functionality of the product. The main advantage of the developed software is high speed processing of large size networks (up to millions of nodes and links. Moreover, the proposed graph storage architecture is unique and has no analogues. The developed approaches and algorithms are optimized for operating with big graphs and have high productivity.
Conceptual graph grammar--a simple formalism for sublanguage.
Johnson, S B
1998-11-01
There are a wide variety of computer applications that deal with various aspects of medical language: concept representation, controlled vocabulary, natural language processing, and information retrieval. While technical and theoretical methods appear to differ, all approaches investigate different aspects of the same phenomenon: medical sublanguage. This paper surveys the properties of medical sublanguage from a formal perspective, based on detailed analyses cited in the literature. A review of several computer systems based on sublanguage approaches shows some of the difficulties in addressing the interaction between the syntactic and semantic aspects of sublanguage. A formalism called Conceptual Graph Grammar is presented that attempts to combine both syntax and semantics into a single notation by extending standard Conceptual Graph notation. Examples from the domain of pathology diagnoses are provided to illustrate the use of this formalism in medical language analysis. The strengths and weaknesses of the approach are then considered. Conceptual Graph Grammar is an attempt to synthesize the common properties of different approaches to sublanguage into a single formalism, and to begin to define a common foundation for language-related research in medical informatics.
On a conjecture concerning helly circle graphs
Directory of Open Access Journals (Sweden)
Durán Guillermo
2003-01-01
Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.
Low-Rank Matrix Factorization With Adaptive Graph Regularizer.
Lu, Gui-Fu; Wang, Yong; Zou, Jian
2016-05-01
In this paper, we present a novel low-rank matrix factorization algorithm with adaptive graph regularizer (LMFAGR). We extend the recently proposed low-rank matrix with manifold regularization (MMF) method with an adaptive regularizer. Different from MMF, which constructs an affinity graph in advance, LMFAGR can simultaneously seek graph weight matrix and low-dimensional representations of data. That is, graph construction and low-rank matrix factorization are incorporated into a unified framework, which results in an automatically updated graph rather than a predefined one. The experimental results on some data sets demonstrate that the proposed algorithm outperforms the state-of-the-art low-rank matrix factorization methods.
Grms or graphical representation of model spaces. Vol. I Basics
International Nuclear Information System (INIS)
Duch, W.
1986-01-01
This book presents a novel approach to the many-body problem in quantum chemistry, nuclear shell-theory and solid-state theory. Many-particle model spaces are visualized using graphs, each path of a graph labeling a single basis function or a subspace of functions. Spaces of a very high dimension are represented by small graphs. Model spaces have structure that is reflected in the architecture of the corresponding graphs, that in turn is reflected in the structure of the matrices corresponding to operators acting in these spaces. Insight into this structure leads to formulation of very efficient computer algorithms. Calculation of matrix elements is reduced to comparison of paths in a graph, without ever looking at the functions themselves. Using only very rudimentary mathematical tools graphical rules of matrix element calculation in abelian cases are derived, in particular segmentation rules obtained in the unitary group approached are rederived. The graphs are solutions of Diophantine equations of the type appearing in different branches of applied mathematics. Graphical representation of model spaces should find as many applications as has been found for diagramatical methods in perturbation theory
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Energy Technology Data Exchange (ETDEWEB)
Orlowski, Piotr; Noble, Alison [University of Oxford, Institute of Biomedical Engineering, Department of Engineering Science, Oxford (United Kingdom); Mahmud, Imran; Kamran, Mudassar; Byrne, James V. [University of Oxford, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, Oxford (United Kingdom); Summers, Paul [University of Oxford, John Radcliffe Hospital, Nuffield Department of Surgical Sciences, Oxford (United Kingdom); University of Modena and Reggio Emilia, Department of Biomedical, Metabolic and Neural Sciences, Modena (Italy); Ventikos, Yiannis [University College London, Department of Mechanical Engineering, London (United Kingdom)
2014-03-15
There is currently no standardised approach to arteriovenous malformation (AVM) reporting. Existing AVM classification systems focuses on angioarchitectural features and omit haemodynamic, anatomical and topological parameters intuitively used by therapists. We introduce a symbolic vocabulary to represent the state of an AVM of the brain at different stages of treatment. The vocabulary encompasses the main anatomic and haemodynamic features of interest in treatment planning and provides shorthand symbols to represent the interventions themselves in a schematic representation. The method was presented to 50 neuroradiologists from14 countries during a workshop and graded 7.34 ± 1.92 out of ten for its usefulness as means of standardising and facilitating communication between clinicians and allowing comparisons between AVM cases. Feedback from the survey was used to revise the method and improve its completeness. For an AVM test case, participants were asked to produce a conventional written report and subsequently a diagrammatic report. The two required, on average, 6.19 ± 2.05 and 5.09 ± 3.01 min, respectively. Eighteen participants said that producing the diagram changed the way they thought about the AVM test case. Introduced into routine practice, the diagrams would represent a step towards a standardised approach to AVM reporting with consequent benefits for comparative analysis and communication as well as for identifying best treatment strategies. (orig.)
Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.
Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N
2014-07-01
Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Orlowski, Piotr; Noble, Alison; Mahmud, Imran; Kamran, Mudassar; Byrne, James V.; Summers, Paul; Ventikos, Yiannis
2014-01-01
There is currently no standardised approach to arteriovenous malformation (AVM) reporting. Existing AVM classification systems focuses on angioarchitectural features and omit haemodynamic, anatomical and topological parameters intuitively used by therapists. We introduce a symbolic vocabulary to represent the state of an AVM of the brain at different stages of treatment. The vocabulary encompasses the main anatomic and haemodynamic features of interest in treatment planning and provides shorthand symbols to represent the interventions themselves in a schematic representation. The method was presented to 50 neuroradiologists from14 countries during a workshop and graded 7.34 ± 1.92 out of ten for its usefulness as means of standardising and facilitating communication between clinicians and allowing comparisons between AVM cases. Feedback from the survey was used to revise the method and improve its completeness. For an AVM test case, participants were asked to produce a conventional written report and subsequently a diagrammatic report. The two required, on average, 6.19 ± 2.05 and 5.09 ± 3.01 min, respectively. Eighteen participants said that producing the diagram changed the way they thought about the AVM test case. Introduced into routine practice, the diagrams would represent a step towards a standardised approach to AVM reporting with consequent benefits for comparative analysis and communication as well as for identifying best treatment strategies. (orig.)
Reverse engineering of a railcar prototype via energetic macroscopic representation approach
International Nuclear Information System (INIS)
Agbli, Kréhi Serge; Hissel, Daniel; Sorrentino, Marco; Chauvet, Frédéric; Pouget, Julien
2016-01-01
Highlights: • A complex EMR model of a new railcar range has been developed. • A satisfactory assessment of the fuel consumption of the railcar. • The significant potential benefits are attainable by hybridizing the original railcar. • The regenerative braking can provide up to 240 kW h saving. - Abstract: Energetic Macroscopic Representation (EMR) modelling approach is proposed to perform model-based reverse-engineering of a new railcar range, having six propulsion units, each consisting of a diesel engine and a traction motor. Particularly, EMR intrinsic features were exploited to perform phenomenological structuration of power flows, thus allowing proper and comprehensive modelling of complex systems, such as the under-study railcar. Based on some prospective real trips, selected in such a way as to enable realistic evaluation of effective railcar effort, EMR-based prediction of railcar energy consumption is performed. Furthermore, physical consistency of each powertrain component operation was carefully verified. The suitability of EMR approach was thus proven effective to perform reverse-engineering of known specifications and available experimental data, with the final aim of reconstructing a high fidelity computational tool that meets computational burden requirements for subsequent model-based tasks deployment. Finally, specific simulation analyses were performed to evaluate the potential benefits attainable through electric hybridization of the original powertrain.
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
Arosio, Marcello; Martina, Mario L. V.
2017-04-01
The emergent behaviour of the contemporary complex, socio-technical and interconnected society makes the collective risk greater than the sum of the parts and this requires a holistic, systematic and integrated approach. Although there have been major improvements in recent years, there are still some limitation in term of a holistic approach that is able to include the emergent value hidden in the connections between exposed elements and the interactions between the different spheres of the multi-hazards, vulnerability, exposure and resilience. To deal with these challenges it is necessary to consider the connections between the exposed elements (e.g. populations, schools, hospital, etc.) and to quantify the relative importance of the elements and their interconnections (e.g. the need of injured people to go to hospital or children to school). In a system (e.g. road, hospital and ecological network, etc.), or in a System of System (e.g. socio-technical urban service), there are critical elements that, beyond the intrinsic vulnerability, can be characterized by greater or lower vulnerability because of their physical, geographical, cyber or logical connections. To this aim, we propose in this study a comparative analysis between traditional reductionist approach and a new holistic approach to vulnerability assessment to natural hazards. The analysis considers a study case of a socio-economic complex system through an innovative approach based on the properties of graph G=(N,L). A graph consists of two sets N (nodes) and L (links): the nodes represent the single exposed elements (physical, social, environmental, etc.) to a hazard, while the links (or connections) represent the interaction between the elements. The final goal is to illustrate an application of this innovative approach of integrated collective vulnerability assessment.
Directory of Open Access Journals (Sweden)
David ePeebles
2015-10-01
Full Text Available The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987 has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 x 2 'interaction' bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices - and contrary to the assumptions of several graph comprehension models - experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension.
International Nuclear Information System (INIS)
Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.
2016-01-01
A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.
Generalized graph manifolds and their effective recognition
International Nuclear Information System (INIS)
Matveev, S V
1998-01-01
A generalized graph manifold is a three-dimensional manifold obtained by gluing together elementary blocks, each of which is either a Seifert manifold or contains no essential tori or annuli. By a well-known result on torus decomposition each compact three-dimensional manifold with boundary that is either empty or consists of tori has a canonical representation as a generalized graph manifold. A short simple proof of the existence of a canonical representation is presented and a (partial) algorithm for its construction is described. A simple hyperbolicity test for blocks that are not Seifert manifolds is also presented
Kahn, Jason
This dissertation concerns kindergarteners' and second graders' invented representations of motion, their interactions with conventional representations of motion built from the child's movement in front of a motion detector and using real-time graphing tools, and any changes in the invented representations that this interaction brings about. We have known for several decades that advanced learners (high school aged and beyond) struggle with physics concepts of motion and sometimes Cartesian graph-based representations of motion. Little has been known about how younger students approach the same concepts. In this study, eighteen children (10 kindergarteners and eight second graders) completed a three-hour clinical interview spread out evenly over three weeks. In the first and last interviews, the child was asked to produce external representations of movement and interpret conventional distance and time graphs of motion. In the second interview the children interacted with a motion detector and real-time graphing tools in a semi-self-directed format. Qualitative and quantitative results are presented and discussed. Qualitative data shows that children are adroit at representing motion and their productions are systematic and purposeful. Children produce drawings that both give context to the physical environment around them and also redescribe the drawn environment, meaning that they provide a potential audience with information otherwise imperceptible, by making certain implicit aspects more explicit. Second graders quickly appropriate the Cartesian graph during the intervention, though at times misinterpret the meaning associated with slope. Children correctly associate slope with direction, but at times misattribute sign of slope (positive or negative) and its corresponding direction (i.e. some children do not ascribe positive slope with motion away from a point of reference, but toward it). Kindergarteners showed a range of experiences during the intervention
Directory of Open Access Journals (Sweden)
Inger Edfors
2015-05-01
Full Text Available Genetics and organic chemistry are areas of science that students regard as difficult to learn. Part of this difficulty is derived from the disciplines having representations as part of their discourses. In order to optimally support students’ meaning-making, teachers need to use representations to structure the meaning-making experience in thoughtful ways that consider the variation in students’ prior knowledge. Using a focus group setting, we explored 43 university students’ reasoning on representations in introductory chemistry and genetics courses. Our analysis of eight focus group discussions revealed how students can construct somewhat bewildered relations with disciplinary-specific representations. The students stated that they preferred familiar representations, but without asserting the meaning-making affordances of those representations. Also, the students were highly aware of the affordances of certain representations, but nonetheless chose not to use those representations in their problem solving. We suggest that an effective representation is one that, to some degree, is familiar to the students, but at the same time is challenging and not too closely related to “the usual one”. The focus group discussions led the students to become more aware of their own and others ways of interpreting different representations. Furthermore, feedback from the students’ focus group discussions enhanced the teachers’ awareness of the students’ prior knowledge and limitations in students’ representational literacy. Consequently, we posit that a focus group setting can be used in a university context to promote both student meaning-making and teacher professional development in a fruitful way.
Abdullah, Nasarudin; Halim, Lilia; Zakaria, Effandi
2014-01-01
This study aimed to determine the impact of strategic thinking and visual representation approaches (VStops) on the achievement, conceptual knowledge, metacognitive awareness, awareness of problem-solving strategies, and student attitudes toward mathematical word problem solving among primary school students. The experimental group (N = 96)…
Chemical Graph Transformation with Stereo-Information
DEFF Research Database (Denmark)
Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel
2017-01-01
Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Quantum information processing with graph states
International Nuclear Information System (INIS)
Schlingemann, Dirk-Michael
2005-04-01
Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)
The representation of nurses in 1950s melodrama: a cross-cultural approach.
Babini, Elisabetta
2012-01-01
Melodrama is identified as one of the most prolific cinematic genres in terms of the representation of nurses. Its contribution to the overall media depiction of the professional category has therefore been significant. This paper explores melodramatic portrayals of nurses with a specific focus on cinema of the 1950s, the golden age of Western melodrama, and concentrates on two representative case studies: Anna (ITA, 1951), and The Nun's Story (USA, 1959). These films enable a fruitful comparison, sharing several narrative elements, featuring religious nurses as protagonists, and yet eventually conferring on the nursing vocation different values. Such similar nurses' images are examined through a multidisciplinary approach, spanning feminist film theory, gender and cultural studies, cultural history and the social history of nursing. Among the goals of this study is to consider whether different national origins--in these films, Italy and America--have also been influential in the depiction of the respective nurse-character. Copyright © 2012 Elsevier Inc. All rights reserved.
Solution of the nonrelativistic wave equation using the tridiagonal representation approach
Alhaidari, A. D.
2017-07-01
We choose a complete set of square integrable functions as a basis for the expansion of the wavefunction in configuration space such that the matrix representation of the nonrelativistic time-independent linear wave operator is tridiagonal and symmetric. Consequently, the matrix wave equation becomes a symmetric three-term recursion relation for the expansion coefficients of the wavefunction. The recursion relation is then solved exactly in terms of orthogonal polynomials in the energy. Some of these polynomials are not found in the mathematics literature. The asymptotics of these polynomials give the phase shift for the continuous energy scattering states and the spectrum for the discrete energy bound states. Depending on the space and boundary conditions, the basis functions are written in terms of either the Laguerre or Jacobi polynomials. The tridiagonal requirement limits the number of potential functions that yield exact solutions of the wave equation. Nonetheless, the class of exactly solvable problems in this approach is larger than the conventional class (see, for example, Table XII in the text). We also give very accurate results for cases where the wave operator matrix is not tridiagonal but its elements could be evaluated either exactly or numerically with high precision.
Böhm, Karl-Heinz; Auer, Alexander A; Espig, Mike
2016-06-28
In this proof-of-principle study, we apply tensor decomposition techniques to the Full Configuration Interaction (FCI) wavefunction in order to approximate the wavefunction parameters efficiently and to reduce the overall computational effort. For this purpose, the wavefunction ansatz is formulated in an occupation number vector representation that ensures antisymmetry. If the canonical product format tensor decomposition is then applied, the Hamiltonian and the wavefunction can be cast into a multilinear product form. As a consequence, the number of wavefunction parameters does not scale to the power of the number of particles (or orbitals) but depends on the rank of the approximation and linearly on the number of particles. The degree of approximation can be controlled by a single threshold for the rank reduction procedure required in the algorithm. We demonstrate that using this approximation, the FCI Hamiltonian matrix can be stored with N(5) scaling. The error of the approximation that is introduced is below Millihartree for a threshold of ϵ = 10(-4) and no convergence problems are observed solving the FCI equations iteratively in the new format. While promising conceptually, all effort of the algorithm is shifted to the required rank reduction procedure after the contraction of the Hamiltonian with the coefficient tensor. At the current state, this crucial step is the bottleneck of our approach and even for an optimistic estimate, the algorithm scales beyond N(10) and future work has to be directed towards reduction-free algorithms.
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Attack Graph Construction for Security Events Analysis
Directory of Open Access Journals (Sweden)
Andrey Alexeevich Chechulin
2014-09-01
Full Text Available The paper is devoted to investigation of the attack graphs construction and analysis task for a network security evaluation and real-time security event processing. Main object of this research is the attack modeling process. The paper contains the description of attack graphs building, modifying and analysis technique as well as overview of implemented prototype for network security analysis based on attack graph approach.
Poincaré Embeddings for Learning Hierarchical Representations
CERN. Geneva
2018-01-01
Abstracts: Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically do not account for this property. In this talk, I will discuss a new approach for learning hierarchical representations of symbolic data by embedding them into hyperbolic space -- or more precisely into an n-dimensional Poincaré ball. Due to the underlying hyperbolic geometry, this allows us to learn parsimonious representations of symbolic data by simultaneously capturing hierarchy and similarity. We introduce an efficient algorithm to learn the embeddings based on Riemannian optimization and show experimentally that Poincaré embeddings outperform Euclidean embeddings significantly on data with latent hierarchies, both in terms of representation capacity and in terms of generalization ability. &...
Text categorization of biomedical data sets using graph kernels and a controlled vocabulary.
Bleik, Said; Mishra, Meenakshi; Huan, Jun; Song, Min
2013-01-01
Recently, graph representations of text have been showing improved performance over conventional bag-of-words representations in text categorization applications. In this paper, we present a graph-based representation for biomedical articles and use graph kernels to classify those articles into high-level categories. In our representation, common biomedical concepts and semantic relationships are identified with the help of an existing ontology and are used to build a rich graph structure that provides a consistent feature set and preserves additional semantic information that could improve a classifier's performance. We attempt to classify the graphs using both a set-based graph kernel that is capable of dealing with the disconnected nature of the graphs and a simple linear kernel. Finally, we report the results comparing the classification performance of the kernel classifiers to common text-based classifiers.
Graph Processing in Main-Memory Column Stores
Paradies, Marcus
2017-01-01
Evermore, novel and traditional business applications leverage the advantages of a graph data model, such as the offered schema flexibility and an explicit representation of relationships between entities. As a consequence, companies are confronted with the challenge of storing, manipulating, and querying terabytes of graph data for enterprise-critical applications. Although these business applications operate on graph-structured data, they still require direct access to the relational data a...
Contextual Weisfeiler-Lehman Graph Kernel For Malware Detection
Narayanan, Annamalai; Meng, Guozhu; Yang, Liu; Liu, Jinliang; Chen, Lihui
2016-01-01
In this paper, we propose a novel graph kernel specifically to address a challenging problem in the field of cyber-security, namely, malware detection. Previous research has revealed the following: (1) Graph representations of programs are ideally suited for malware detection as they are robust against several attacks, (2) Besides capturing topological neighbourhoods (i.e., structural information) from these graphs it is important to capture the context under which the neighbourhoods are reac...
Parameterized Verification of Graph Transformation Systems with Whole Neighbourhood Operations
Delzanno, Giorgio; Stückrath, Jan
2014-01-01
We introduce a new class of graph transformation systems in which rewrite rules can be guarded by universally quantified conditions on the neighbourhood of nodes. These conditions are defined via special graph patterns which may be transformed by the rule as well. For the new class for graph rewrite rules, we provide a symbolic procedure working on minimal representations of upward closed sets of configurations. We prove correctness and effectiveness of the procedure by a categorical presenta...
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Generating loop graphs via Hopf algebra in quantum field theory
International Nuclear Information System (INIS)
Mestre, Angela; Oeckl, Robert
2006-01-01
We use the Hopf algebra structure of the time-ordered algebra of field operators to generate all connected weighted Feynman graphs in a recursive and efficient manner. The algebraic representation of the graphs is such that they can be evaluated directly as contributions to the connected n-point functions. The recursion proceeds by loop order and vertex number
Multiple graph regularized nonnegative matrix factorization
Wang, Jim Jing-Yan
2013-10-01
Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.
Graph Transformation for Consolidation of Creativity Sessions Results
DEFF Research Database (Denmark)
Dolog, Peter
2010-01-01
Graph transformation approach for consolidation of creativity sessions results is part of the FP7 EU/IST project idSpace: Tooling of and training for collaborative, distributed product innovation. The goal of graph transformation approach is to provide a tool for merging results of various sessions...... (such as brainstorming sessions), which are represented as graphs, when the session participants- are physically distributed....
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Incremental Frequent Subgraph Mining on Large Evolving Graphs
Abdelhamid, Ehab; Canim, Mustafa; Sadoghi, Mohammad; Bhatta, Bishwaranjan; Chang, Yuan-Chi; Kalnis, Panos
2017-01-01
, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem
On the mixed symmetry irreducible representations of the Poincare group in the BRST approach
International Nuclear Information System (INIS)
Burdik, C.; Pashnev, A.; Tsulaya, M.
2001-01-01
The Lagrangian description of irreducible massless representations of the Poincare group with the corresponding Young tableaux having two rows along with some explicit examples including the notoph and Weyl tensor is given. For this purpose the method of the BRST constructions is used adopted to the systems of the second class constraints by the construction of auxiliary representations of the algebras of constraints in terms of Verma modules
Dynamic graph system for a semantic database
Mizell, David
2015-01-27
A method and system in a computer system for dynamically providing a graphical representation of a data store of entries via a matrix interface is disclosed. A dynamic graph system provides a matrix interface that exposes to an application program a graphical representation of data stored in a data store such as a semantic database storing triples. To the application program, the matrix interface represents the graph as a sparse adjacency matrix that is stored in compressed form. Each entry of the data store is considered to represent a link between nodes of the graph. Each entry has a first field and a second field identifying the nodes connected by the link and a third field with a value for the link that connects the identified nodes. The first, second, and third fields represent the rows, column, and elements of the adjacency matrix.
Dynamic Matchings in Convex Bipartite Graphs
DEFF Research Database (Denmark)
Brodal, Gerth Stølting; Georgiadis, Loukas; Hansen, Kristoffer Arnsfelt
2007-01-01
We consider the problem of maintaining a maximum matching in a convex bipartite graph G = (V,E) under a set of update operations which includes insertions and deletions of vertices and edges. It is not hard to show that it is impossible to maintain an explicit representation of a maximum matching...
Graphing Powers and Roots of Complex Numbers.
Embse, Charles Vonder
1993-01-01
Using De Moivre's theorem and a parametric graphing utility, examines powers and roots of complex numbers and allows students to establish connections between the visual and numerical representations of complex numbers. Provides a program to numerically verify the roots of complex numbers. (MDH)
Inferring ontology graph structures using OWL reasoning
Rodriguez-Garcia, Miguel Angel
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies\\' semantic content remains a challenge.We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies\\' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph .Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
Inferring ontology graph structures using OWL reasoning.
Rodríguez-García, Miguel Ángel; Hoehndorf, Robert
2018-01-05
Ontologies are representations of a conceptualization of a domain. Traditionally, ontologies in biology were represented as directed acyclic graphs (DAG) which represent the backbone taxonomy and additional relations between classes. These graphs are widely exploited for data analysis in the form of ontology enrichment or computation of semantic similarity. More recently, ontologies are developed in a formal language such as the Web Ontology Language (OWL) and consist of a set of axioms through which classes are defined or constrained. While the taxonomy of an ontology can be inferred directly from the axioms of an ontology as one of the standard OWL reasoning tasks, creating general graph structures from OWL ontologies that exploit the ontologies' semantic content remains a challenge. We developed a method to transform ontologies into graphs using an automated reasoner while taking into account all relations between classes. Searching for (existential) patterns in the deductive closure of ontologies, we can identify relations between classes that are implied but not asserted and generate graph structures that encode for a large part of the ontologies' semantic content. We demonstrate the advantages of our method by applying it to inference of protein-protein interactions through semantic similarity over the Gene Ontology and demonstrate that performance is increased when graph structures are inferred using deductive inference according to our method. Our software and experiment results are available at http://github.com/bio-ontology-research-group/Onto2Graph . Onto2Graph is a method to generate graph structures from OWL ontologies using automated reasoning. The resulting graphs can be used for improved ontology visualization and ontology-based data analysis.
The signed permutation group on Feynman graphs
Energy Technology Data Exchange (ETDEWEB)
Purkart, Julian, E-mail: purkart@physik.hu-berlin.de [Institute of Physics, Humboldt University, D-12489 Berlin (Germany)
2016-08-15
The Feynman rules assign to every graph an integral which can be written as a function of a scaling parameter L. Assuming L for the process under consideration is very small, so that contributions to the renormalization group are small, we can expand the integral and only consider the lowest orders in the scaling. The aim of this article is to determine specific combinations of graphs in a scalar quantum field theory that lead to a remarkable simplification of the first non-trivial term in the perturbation series. It will be seen that the result is independent of the renormalization scheme and the scattering angles. To achieve that goal we will utilize the parametric representation of scalar Feynman integrals as well as the Hopf algebraic structure of the Feynman graphs under consideration. Moreover, we will present a formula which reduces the effort of determining the first-order term in the perturbation series for the specific combination of graphs to a minimum.
Use of Attack Graphs in Security Systems
Directory of Open Access Journals (Sweden)
Vivek Shandilya
2014-01-01
Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.
PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION
Directory of Open Access Journals (Sweden)
W. Dorner
2016-06-01
Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.
An 00 visual language definition approach supporting multiple views
Akehurst, David H.; I.E.E.E. Computer Society
2000-01-01
The formal approach to visual language definition is to use graph grammars and/or graph transformation techniques. These techniques focus on specifying the syntax and manipulation rules of the concrete representation. This paper presents a constraint and object-oriented approach to defining visual languages that uses UML and OCL as a definition language. Visual language definitions specify a mapping between concrete and abstract models of possible visual sentences, which carl subsequently be ...
Schiffler, Ralf
2014-01-01
This book is intended to serve as a textbook for a course in Representation Theory of Algebras at the beginning graduate level. The text has two parts. In Part I, the theory is studied in an elementary way using quivers and their representations. This is a very hands-on approach and requires only basic knowledge of linear algebra. The main tool for describing the representation theory of a finite-dimensional algebra is its Auslander-Reiten quiver, and the text introduces these quivers as early as possible. Part II then uses the language of algebras and modules to build on the material developed before. The equivalence of the two approaches is proved in the text. The last chapter gives a proof of Gabriel’s Theorem. The language of category theory is developed along the way as needed.
Graph Model Based Indoor Tracking
DEFF Research Database (Denmark)
Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin
2009-01-01
The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
Patriot, E. A.; Suhandi, A.; Chandra, D. T.
2018-05-01
The ultimate goal of learning in the curriculum 2013 is that learning must improve and balance between soft skills and hard skills of learners. In addition to the knowledge aspect, one of the other skills to be trained in the learning process using a scientific approach is communication skills. This study aims to get an overview of the implementation of interactive conceptual instruction with multi representation to optimize the achievement of students’ scientific communication skills on work and energy concept. The scientific communication skills contains the sub-skills were searching the information, scientific writing, group discussion and knowledge presentation. This study was descriptive research with observation method. Subjects in this study were 35 students of class X in Senior High School at Sumedang. The results indicate an achievement of optimal scientific communication skills. The greatest achievement of KKI based on observation is at fourth meeting of KKI-3, which is a sub-skill of resume writing of 89%. Allmost students responded positively to the implication of interactive conceptual instruction with multi representation approach. It can be concluded that the implication of interactive conceptual instruction with multi representation approach can optimize the achievement of students’ scientific communication skill on work and energy concept.
Multi-Label Classiﬁcation Based on Low Rank Representation for Image Annotation
Directory of Open Access Journals (Sweden)
Qiaoyu Tan
2017-01-01
Full Text Available Annotating remote sensing images is a challenging task for its labor demanding annotation process and requirement of expert knowledge, especially when images can be annotated with multiple semantic concepts (or labels. To automatically annotate these multi-label images, we introduce an approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR. MLC-LRR firstly utilizes low rank representation in the feature space of images to compute the low rank constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph and to capture the global relationships between images. Next, it utilizes low rank representation in the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other related graph-based multi-label methods in annotating images, we conduct experiments on a public available multi-label remote sensing images (Land Cover. We perform additional experiments on five real-world multi-label image datasets to further investigate the performance of MLC-LRR. Empirical study demonstrates that MLC-LRR achieves better performance on annotating images than these comparing methods across various evaluation criteria; it also can effectively exploit global structure and label correlations of multi-label images.
Searches over graphs representing geospatial-temporal remote sensing data
Brost, Randolph; Perkins, David Nikolaus
2018-03-06
Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
Using resource graphs to represent conceptual change
Directory of Open Access Journals (Sweden)
Michael C. Wittmann
2006-08-01
Full Text Available We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of coordination classes and resources. It represents mesoscopic scales that are neither knowledge-in-pieces nor large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we analyze another form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.
Unwinding the hairball graph: Pruning algorithms for weighted complex networks
Dianati, Navid
2016-01-01
Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.
Chrysafiadi, Konstantina; Virvou, Maria
2013-12-01
In this paper a knowledge representation approach of an adaptive and/or personalized tutoring system is presented. The domain knowledge should be represented in a more realistic way in order to allow the adaptive and/or personalized tutoring system to deliver the learning material to each individual learner dynamically taking into account her/his learning needs and her/his different learning pace. To succeed this, the domain knowledge representation has to depict the possible increase or decrease of the learner's knowledge. Considering that the domain concepts that constitute the learning material are not independent from each other, the knowledge representation approach has to allow the system to recognize either the domain concepts that are already partly or completely known for a learner, or the domain concepts that s/he has forgotten, taking into account the learner's knowledge level of the related concepts. In other words, the system should be informed about the knowledge dependencies that exist among the domain concepts of the learning material, as well as the strength on impact of each domain concept on others. Fuzzy Cognitive Maps (FCMs) seem to be an ideal way for representing graphically this kind of information. The suggested knowledge representation approach has been implemented in an e-learning adaptive system for teaching computer programming. The particular system was used by the students of a postgraduate program in the field of Informatics in the University of Piraeus and was compared with a corresponding system, in which the domain knowledge was represented using the most common used technique of network of concepts. The results of the evaluation were very encouraging.
Spectral Approach to Derive the Representation Formulae for Solutions of the Wave Equation
Directory of Open Access Journals (Sweden)
Gusein Sh. Guseinov
2012-01-01
Full Text Available Using spectral properties of the Laplace operator and some structural formula for rapidly decreasing functions of the Laplace operator, we offer a novel method to derive explicit formulae for solutions to the Cauchy problem for classical wave equation in arbitrary dimensions. Among them are the well-known d'Alembert, Poisson, and Kirchhoff representation formulae in low space dimensions.
P.P. Wakker (Peter)
1991-01-01
textabstractIn Wakker (1989, "Additive Representations of Preferences, A New Foundation of Decision Analysis"), a new foundation of decision analysis was given. The main tool was a way to derive comparisons of "tradeoffs" from ordinal preferences, with comparisons of tradeoffs revealing orderings of
Hell, Pavol
2004-01-01
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an
HaVec: An Efficient de Bruijn Graph Construction Algorithm for Genome Assembly
Directory of Open Access Journals (Sweden)
Md Mahfuzer Rahman
2017-01-01
Full Text Available Background. The rapid advancement of sequencing technologies has made it possible to regularly produce millions of high-quality reads from the DNA samples in the sequencing laboratories. To this end, the de Bruijn graph is a popular data structure in the genome assembly literature for efficient representation and processing of data. Due to the number of nodes in a de Bruijn graph, the main barrier here is the memory and runtime. Therefore, this area has received significant attention in contemporary literature. Results. In this paper, we present an approach called HaVec that attempts to achieve a balance between the memory consumption and the running time. HaVec uses a hash table along with an auxiliary vector data structure to store the de Bruijn graph thereby improving the total memory usage and the running time. A critical and noteworthy feature of HaVec is that it exhibits no false positive error. Conclusions. In general, the graph construction procedure takes the major share of the time involved in an assembly process. HaVec can be seen as a significant advancement in this aspect. We anticipate that HaVec will be extremely useful in the de Bruijn graph-based genome assembly.
Joint Graph Layouts for Visualizing Collections of Segmented Meshes
Ren, Jing; Schneider, Jens; Ovsjanikov, Maks; Wonka, Peter
2017-01-01
We present a novel and efficient approach for computing joint graph layouts and then use it to visualize collections of segmented meshes. Our joint graph layout algorithm takes as input the adjacency matrices for a set of graphs along with partial, possibly soft, correspondences between nodes of different graphs. We then use a two stage procedure, where in the first step, we extend spectral graph drawing to include a consistency term so that a collection of graphs can be handled jointly. Our second step extends metric multi-dimensional scaling with stress majorization to the joint layout setting, while using the output of the spectral approach as initialization. Further, we discuss a user interface for exploring a collection of graphs. Finally, we show multiple example visualizations of graphs stemming from collections of segmented meshes and we present qualitative and quantitative comparisons with previous work.
Joint Graph Layouts for Visualizing Collections of Segmented Meshes
Ren, Jing
2017-09-12
We present a novel and efficient approach for computing joint graph layouts and then use it to visualize collections of segmented meshes. Our joint graph layout algorithm takes as input the adjacency matrices for a set of graphs along with partial, possibly soft, correspondences between nodes of different graphs. We then use a two stage procedure, where in the first step, we extend spectral graph drawing to include a consistency term so that a collection of graphs can be handled jointly. Our second step extends metric multi-dimensional scaling with stress majorization to the joint layout setting, while using the output of the spectral approach as initialization. Further, we discuss a user interface for exploring a collection of graphs. Finally, we show multiple example visualizations of graphs stemming from collections of segmented meshes and we present qualitative and quantitative comparisons with previous work.
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
DEFF Research Database (Denmark)
Rasmussen, Majken Kirkegaard; Petersen, Marianne Graves
2011-01-01
Stereotypic presumptions about gender affect the design process, both in relation to how users are understood and how products are designed. As a way to decrease the influence of stereotypic presumptions in design process, we propose not to disregard the aspect of gender in the design process......, as the perspective brings valuable insights on different approaches to technology, but instead to view gender through a value lens. Contributing to this perspective, we have developed Value Representations as a design-oriented instrument for staging a reflective dialogue with users. Value Representations...
Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf
2013-07-01
State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Supplementary data are available at Bioinformatics online.
Kundu, Kousik; Costa, Fabrizio; Backofen, Rolf
2013-01-01
Motivation: State-of-the-art experimental data for determining binding specificities of peptide recognition modules (PRMs) is obtained by high-throughput approaches like peptide arrays. Most prediction tools applicable to this kind of data are based on an initial multiple alignment of the peptide ligands. Building an initial alignment can be error-prone, especially in the case of the proline-rich peptides bound by the SH3 domains. Results: Here, we present a machine-learning approach based on an efficient graph-kernel technique to predict the specificity of a large set of 70 human SH3 domains, which are an important class of PRMs. The graph-kernel strategy allows us to (i) integrate several types of physico-chemical information for each amino acid, (ii) consider high-order correlations between these features and (iii) eliminate the need for an initial peptide alignment. We build specialized models for each human SH3 domain and achieve competitive predictive performance of 0.73 area under precision-recall curve, compared with 0.27 area under precision-recall curve for state-of-the-art methods based on position weight matrices. We show that better models can be obtained when we use information on the noninteracting peptides (negative examples), which is currently not used by the state-of-the art approaches based on position weight matrices. To this end, we analyze two strategies to identify subsets of high confidence negative data. The techniques introduced here are more general and hence can also be used for any other protein domains, which interact with short peptides (i.e. other PRMs). Availability: The program with the predictive models can be found at http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/SH3PepInt.tar.gz. We also provide a genome-wide prediction for all 70 human SH3 domains, which can be found under http://www.bioinf.uni-freiburg.de/Software/SH3PepInt/Genome-Wide-Predictions.tar.gz. Contact: backofen@informatik.uni-freiburg.de Supplementary
DEFF Research Database (Denmark)
Chen, Xiaoshuang; Lin, Jin; Wan, Can
2016-01-01
State estimation (SE) in distribution networks is not as accurate as that in transmission networks. Traditionally, distribution networks (DNs) are lack of direct measurements due to the limitations of investments and the difficulties of maintenance. Therefore, it is critical to improve the accuracy...... of SE in distribution networks by placing additional physical meters. For state-of-the-art SE models, it is difficult to clearly quantify measurements' influences on SE errors, so the problems of optimal meter placement for reducing SE errors are mostly solved by heuristic or suboptimal algorithms....... Under this background, this paper proposes a circuit representation model to represent SE errors. Based on the matrix formulation of the circuit representation model, the problem of optimal meter placement can be transformed to a mixed integer linear programming problem (MILP) via the disjunctive model...
Induced representations of the affine group and intertwining operators: I. Analytical approach
International Nuclear Information System (INIS)
Elmabrok, Abdelhamid S; Hutník, Ondrej
2012-01-01
We analyze the construction and origin of unitary operators describing the structure of the space of continuous wavelet transforms inside the space L 2 (G,dν L ) of all square-integrable functions on the affine group G with respect to the left-invariant Haar measure from the viewpoint of induced representations of G. We show that these operators are, in fact, intertwining operators among pairs of induced representations of the affine group G. A characterization of the space of wavelet transforms using the Cauchy–Riemann-type equations is given. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Coherent states: mathematical and physical aspects’. (paper)
A Non-Cognitive Formal Approach to Knowledge Representation in Artificial Intelligence.
1986-06-01
example, Duda and others translated production rules into a partitioned semantic network (73). Representations were also translated into production...153. Berlin: Springer-Verlag, 1982. 38. Blikle, Andrzej . "Equational Languages," Information and Control, 21: 134-147 (September 1972). 285 39. Ezawa...Conference on Artificial Intelligence, IJCAI-75. 115-121. William Kaufmann, Inc., Los Altos CA, 1975. 73. Duda , Richard 0. and others. "Semantic
A representation-theoretic approach to the calculation of evolutionary distance in bacteria
Sumner, Jeremy G.; Jarvis, Peter D.; Francis, Andrew R.
2017-08-01
In the context of bacteria and models of their evolution under genome rearrangement, we explore a novel application of group representation theory to the inference of evolutionary history. Our contribution is to show, in a very general maximum likelihood setting, how to use elementary matrix algebra to sidestep intractable combinatorial computations and convert the problem into one of eigenvalue estimation amenable to standard numerical approximation techniques.
Integer Flows and Circuit Covers of Graphs and Signed Graphs
Cheng, Jian
The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it
Directory of Open Access Journals (Sweden)
Aurélie Harf
Full Text Available Approximately 30 000 children are adopted across national borders each year. A review of the literature on the cultural belonging of these internationally adopted children shows substantial differences between the literature from English-speaking countries and that from France and Europe in general. The objective of this study is to start from the discourse of French adoptive parents to explore their representations of their child's cultural belonging and their positions (their thoughts and representations concerning connections with the child's country of birth and its culture. The study includes 51 French parents who adopted one or more children internationally. Each parent participated in a semi-structured interview, focused on the adoption procedure and their current associations with the child's birth country. The interviews were analyzed according to a qualitative phenomenological method, Interpretative Phenomenological Analysis. The principal themes that emerged from our analysis of the interviews made it possible to classify the parents into three different groups. The first group maintained no association with the child's country of birth and refused any multiplicity of cultural identities. The second group actively maintained regular associations with the child's country of birth and culture and affirmed that their family was multicultural. Finally, the third group adapted their associations with the child's birth country and its culture according to the child's questions and interests. Exploring parental representations of the adopted child enables professionals involved in adoption to provide better support to these families and to do preventive work at the level of family interactions.
Harf, Aurélie; Skandrani, Sara; Sibeoni, Jordan; Pontvert, Caroline; Revah-Levy, Anne; Moro, Marie Rose
2015-01-01
Approximately 30 000 children are adopted across national borders each year. A review of the literature on the cultural belonging of these internationally adopted children shows substantial differences between the literature from English-speaking countries and that from France and Europe in general. The objective of this study is to start from the discourse of French adoptive parents to explore their representations of their child's cultural belonging and their positions (their thoughts and representations) concerning connections with the child's country of birth and its culture. The study includes 51 French parents who adopted one or more children internationally. Each parent participated in a semi-structured interview, focused on the adoption procedure and their current associations with the child's birth country. The interviews were analyzed according to a qualitative phenomenological method, Interpretative Phenomenological Analysis. The principal themes that emerged from our analysis of the interviews made it possible to classify the parents into three different groups. The first group maintained no association with the child's country of birth and refused any multiplicity of cultural identities. The second group actively maintained regular associations with the child's country of birth and culture and affirmed that their family was multicultural. Finally, the third group adapted their associations with the child's birth country and its culture according to the child's questions and interests. Exploring parental representations of the adopted child enables professionals involved in adoption to provide better support to these families and to do preventive work at the level of family interactions.
Harf, Aurélie; Skandrani, Sara; Sibeoni, Jordan; Pontvert, Caroline; Revah-Levy, Anne; Moro, Marie Rose
2015-01-01
Approximately 30 000 children are adopted across national borders each year. A review of the literature on the cultural belonging of these internationally adopted children shows substantial differences between the literature from English-speaking countries and that from France and Europe in general. The objective of this study is to start from the discourse of French adoptive parents to explore their representations of their child's cultural belonging and their positions (their thoughts and representations) concerning connections with the child's country of birth and its culture. The study includes 51 French parents who adopted one or more children internationally. Each parent participated in a semi-structured interview, focused on the adoption procedure and their current associations with the child's birth country. The interviews were analyzed according to a qualitative phenomenological method, Interpretative Phenomenological Analysis. The principal themes that emerged from our analysis of the interviews made it possible to classify the parents into three different groups. The first group maintained no association with the child's country of birth and refused any multiplicity of cultural identities. The second group actively maintained regular associations with the child's country of birth and culture and affirmed that their family was multicultural. Finally, the third group adapted their associations with the child's birth country and its culture according to the child's questions and interests. Exploring parental representations of the adopted child enables professionals involved in adoption to provide better support to these families and to do preventive work at the level of family interactions. PMID:25775255
Query Optimizations over Decentralized RDF Graphs
Abdelaziz, Ibrahim; Mansour, Essam; Ouzzani, Mourad; Aboulnaga, Ashraf; Kalnis, Panos
2017-01-01
Applications in life sciences, decentralized social networks, Internet of Things, and statistical linked dataspaces integrate data from multiple decentralized RDF graphs via SPARQL queries. Several approaches have been proposed to optimize query
Mapping Between Semantic Graphs and Sentences in Grammar Induction System
Directory of Open Access Journals (Sweden)
Laszlo Kovacs
2010-06-01
Full Text Available The proposed transformation module performs mapping be-
tween two di®erent knowledge representation forms used in grammar induction systems. The kernel knowledge representation form is a special predicate centered conceptual graph called ECG. The ECG provides a semantic-based, language independent description of the environment. The other base representation form is some kind of language. The sentences of the language should meet the corresponding grammatical rules. The pilot project demonstrates the functionality of a translator module using this transformation engine between the ECG graph and the Hungarian language.
Enabling Graph Appliance for Genome Assembly
Energy Technology Data Exchange (ETDEWEB)
Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.
Directory of Open Access Journals (Sweden)
Markéta Riebová
2016-12-01
Full Text Available Using three mutually interwoven theoretical approaches, the article analyses the complexity of the borderlands space in the literary representation of Los Angeles in the novel Their dogs came with them by Helena Maria Viramontes.
Energy Technology Data Exchange (ETDEWEB)
Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Marchis, Carlotta, E-mail: carla.marchis@uni-graz.at
2017-03-15
We propose a new approach to strong coupling series and dual representations for non-abelian lattice gauge theories using the SU(2) case as an example. The Wilson gauge action is written as a sum over “abelian color cycles” (ACC) which correspond to loops in color space around plaquettes. The ACCs are complex numbers which can be commuted freely such that the strong coupling series and the dual representation can be obtained as in the abelian case. Using a suitable representation of the SU(2) gauge variables we integrate out all original gauge links and identify the constraints for the dual variables in the SU(2) case. We show that the construction can be generalized to the case of SU(2) gauge fields with staggered fermions. The result is a strong coupling series where all gauge integrals are known in closed form and we discuss its applicability for possible dual simulations. The abelian color cycle concept can be generalized to other non-abelian gauge groups such as SU(3).
Directory of Open Access Journals (Sweden)
Zhi-Xin Yang
2016-05-01
Full Text Available Reliable and quick response fault diagnosis is crucial for the wind turbine generator system (WTGS to avoid unplanned interruption and to reduce the maintenance cost. However, the conditional data generated from WTGS operating in a tough environment is always dynamical and high-dimensional. To address these challenges, we propose a new fault diagnosis scheme which is composed of multiple extreme learning machines (ELM in a hierarchical structure, where a forwarding list of ELM layers is concatenated and each of them is processed independently for its corresponding role. The framework enables both representational feature learning and fault classification. The multi-layered ELM based representational learning covers functions including data preprocessing, feature extraction and dimension reduction. An ELM based autoencoder is trained to generate a hidden layer output weight matrix, which is then used to transform the input dataset into a new feature representation. Compared with the traditional feature extraction methods which may empirically wipe off some “insignificant’ feature information that in fact conveys certain undiscovered important knowledge, the introduced representational learning method could overcome the loss of information content. The computed output weight matrix projects the high dimensional input vector into a compressed and orthogonally weighted distribution. The last single layer of ELM is applied for fault classification. Unlike the greedy layer wise learning method adopted in back propagation based deep learning (DL, the proposed framework does not need iterative fine-tuning of parameters. To evaluate its experimental performance, comparison tests are carried out on a wind turbine generator simulator. The results show that the proposed diagnostic framework achieves the best performance among the compared approaches in terms of accuracy and efficiency in multiple faults detection of wind turbines.
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Label Information Guided Graph Construction for Semi-Supervised Learning.
Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi
2017-09-01
In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.
Incremental View Maintenance for Deductive Graph Databases Using Generalized Discrimination Networks
Directory of Open Access Journals (Sweden)
Thomas Beyhl
2016-12-01
Full Text Available Nowadays, graph databases are employed when relationships between entities are in the scope of database queries to avoid performance-critical join operations of relational databases. Graph queries are used to query and modify graphs stored in graph databases. Graph queries employ graph pattern matching that is NP-complete for subgraph isomorphism. Graph database views can be employed that keep ready answers in terms of precalculated graph pattern matches for often stated and complex graph queries to increase query performance. However, such graph database views must be kept consistent with the graphs stored in the graph database. In this paper, we describe how to use incremental graph pattern matching as technique for maintaining graph database views. We present an incremental maintenance algorithm for graph database views, which works for imperatively and declaratively specified graph queries. The evaluation shows that our maintenance algorithm scales when the number of nodes and edges stored in the graph database increases. Furthermore, our evaluation shows that our approach can outperform existing approaches for the incremental maintenance of graph query results.
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Gelfand, I M; Shnol, E E
1969-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Energy Technology Data Exchange (ETDEWEB)
Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
DEFF Research Database (Denmark)
Mansutti, Alessio; Miculan, Marino; Peressotti, Marco
2017-01-01
We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...
Directory of Open Access Journals (Sweden)
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
Li, Qing; Liang, Steven Y
2018-04-20
Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method.
Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S
2012-01-01
The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation. PMID:23304382
Zhang, Guo-Qiang; Luo, Lingyun; Ogbuji, Chime; Joslyn, Cliff; Mejino, Jose; Sahoo, Satya S
2012-01-01
The interaction of multiple types of relationships among anatomical classes in the Foundational Model of Anatomy (FMA) can provide inferred information valuable for quality assurance. This paper introduces a method called Motif Checking (MOCH) to study the effects of such multi-relation type interactions for detecting logical inconsistencies as well as other anomalies represented by the motifs. MOCH represents patterns of multi-type interaction as small labeled (with multiple types of edges) sub-graph motifs, whose nodes represent class variables, and labeled edges represent relational types. By representing FMA as an RDF graph and motifs as SPARQL queries, fragments of FMA are automatically obtained as auditing candidates. Leveraging the scalability and reconfigurability of Semantic Web Technology, we performed exhaustive analyses of a variety of labeled sub-graph motifs. The quality assurance feature of MOCH comes from the distinct use of a subset of the edges of the graph motifs as constraints for disjointness, whereby bringing in rule-based flavor to the approach as well. With possible disjointness implied by antonyms, we performed manual inspection of the resulting FMA fragments and tracked down sources of abnormal inferred conclusions (logical inconsistencies), which are amendable for programmatic revision of the FMA. Our results demonstrate that MOCH provides a unique source of valuable information for quality assurance. Since our approach is general, it is applicable to any ontological system with an OWL representation.
Fault diagnosis of air conditioning systems based on qualitative bond graph
International Nuclear Information System (INIS)
Ghiaus, C.
1999-01-01
The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)
Graph Theory. 1. Fragmentation of Structural Graphs
Directory of Open Access Journals (Sweden)
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
Optical generation of matter qubit graph states
International Nuclear Information System (INIS)
Benjamin, S C; Eisert, J; Stace, T M
2005-01-01
We present a scheme for rapidly entangling matter qubits in order to create graph states for one-way quantum computing. The qubits can be simple three-level systems in separate cavities. Coupling involves only local fields and a static (unswitched) linear optics network. Fusion of graph-state sections occurs with, in principle, zero probability of damaging the nascent graph state. We avoid the finite thresholds of other schemes by operating on two entangled pairs, so that each generates exactly one photon. We do not require the relatively slow single qubit local flips to be applied during the growth phase: growth of the graph state can then become a purely optical process. The scheme naturally generates graph states with vertices of high degree and so is easily able to construct minimal graph states, with consequent resource savings. The most efficient approach will be to create new graph-state edges even as qubits elsewhere are measured, in a 'just in time' approach. An error analysis indicates that the scheme is relatively robust against imperfections in the apparatus
A Walk-based Semantically Enriched Tree Kernel Over Distributed Word Representations
DEFF Research Database (Denmark)
Srivastava, Shashank; Hovy, Dirk
2013-01-01
We propose a walk-based graph kernel that generalizes the notion of tree-kernels to continuous spaces. Our proposed approach subsumes a general framework for word-similarity, and in particular, provides a flexible way to incorporate distributed representations. Using vector representations......, such an approach captures both distributional semantic similarities among words as well as the structural relations between them (encoded as the structure of the parse tree). We show an efficient formulation to compute this kernel using simple matrix multiplication operations. We present our results on three...
High Dimensional Spectral Graph Theory and Non-backtracking Random Walks on Graphs
Kempton, Mark
This thesis has two primary areas of focus. First we study connection graphs, which are weighted graphs in which each edge is associated with a d-dimensional rotation matrix for some fixed dimension d, in addition to a scalar weight. Second, we study non-backtracking random walks on graphs, which are random walks with the additional constraint that they cannot return to the immediately previous state at any given step. Our work in connection graphs is centered on the notion of consistency, that is, the product of rotations moving from one vertex to another is independent of the path taken, and a generalization called epsilon-consistency. We present higher dimensional versions of the combinatorial Laplacian matrix and normalized Laplacian matrix from spectral graph theory, and give results characterizing the consistency of a connection graph in terms of the spectra of these matrices. We generalize several tools from classical spectral graph theory, such as PageRank and effective resistance, to apply to connection graphs. We use these tools to give algorithms for sparsification, clustering, and noise reduction on connection graphs. In non-backtracking random walks, we address the question raised by Alon et. al. concerning how the mixing rate of a non-backtracking random walk to its stationary distribution compares to the mixing rate for an ordinary random walk. Alon et. al. address this question for regular graphs. We take a different approach, and use a generalization of Ihara's Theorem to give a new proof of Alon's result for regular graphs, and to extend the result to biregular graphs. Finally, we give a non-backtracking version of Polya's Random Walk Theorem for 2-dimensional grids.
Costa, Tadeu Lessa da; Oliveira, Denize Cristina de; Formozo, Gláucia Alexandre
2015-02-01
This descriptive qualitative study had the following objectives: identify the content and structure of social representations of quality of life and AIDS for persons living with the disease and analyze the structural relations between such representations. The sample included 103 persons with HIV in a municipality (county) in northern Rio de Janeiro State, Brazil. The methodology used free and hierarchical recall of words for the inductive terms "AIDS" and "quality of life for persons with AIDS", with analysis by the EVOC software. The probable core representation of AIDS was identified as: prejudice, treatment, family, and medications, with the same components identified for quality of life, plus healthy diet and work. We thus elaborated the hypothesis of joint, coordinated representational interaction, fitting the representations together, with implications for the symbolic grasp and quality of life for persons living with HIV. The findings provide backing for collective and individual health approaches to improve quality of life in this group.
A first course in graph theory
Chartrand, Gary
2012-01-01
This comprehensive text offers undergraduates a remarkably student-friendly introduction to graph theory. Written by two of the field's most prominent experts, it takes an engaging approach that emphasizes graph theory's history. Unique examples and lucid proofs provide a sound yet accessible treatment that stimulates interest in an evolving subject and its many applications.Optional sections designated as ""excursion"" and ""exploration"" present interesting sidelights of graph theory and touch upon topics that allow students the opportunity to experiment and use their imaginations. Three app
How the public engages with global warming: A social representations approach.
Smith, Nicholas; Joffe, Helene
2013-01-01
The present study utilises social representations theory to explore common sense conceptualisations of global warming risk using an in-depth, qualitative methodology. Fifty-six members of a British, London-based 2008 public were initially asked to draw or write four spontaneous "first thoughts or feelings" about global warming. These were then explored via an open-ended, exploratory interview. The analysis revealed that first thoughts, either drawn or written, often mirrored the images used by the British press to depict global warming visually. Thus in terms of media framings, it was their visual rather than their textual content that was spontaneously available for their audiences. Furthermore, an in-depth exploration of interview data revealed that global warming was structured around three themata: self/other, natural/unnatural and certainty/uncertainty, reflecting the complex and often contradictory nature of common sense thinking in relation to risk issues.
A graph rewriting programming language for graph drawing
Rodgers, Peter
1998-01-01
This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...
The partition dimension of cycle books graph
Santoso, Jaya; Darmaji
2018-03-01
Let G be a nontrivial and connected graph with vertex set V(G), edge set E(G) and S ⊆ V(G) with v ∈ V(G), the distance between v and S is d(v,S) = min{d(v,x)|x ∈ S}. For an ordered partition ∏ = {S 1, S 2, S 3,…, Sk } of V(G), the representation of v with respect to ∏ is defined by r(v|∏) = (d(v, S 1), d(v, S 2),…, d(v, Sk )). The partition ∏ is called a resolving partition of G if all representations of vertices are distinct. The partition dimension pd(G) is the smallest integer k such that G has a resolving partition set with k members. In this research, we will determine the partition dimension of Cycle Books {B}{Cr,m}. Cycle books graph {B}{Cr,m} is a graph consisting of m copies cycle Cr with the common path P 2. It is shown that the partition dimension of cycle books graph, pd({B}{C3,m}) is 3 for m = 2, 3, and m for m ≥ 4. pd({B}{C4,m}) is 3 + 2k for m = 3k + 2, 4 + 2(k ‑ 1) for m = 3k + 1, and 3 + 2(k ‑ 1) for m = 3k. pd({B}{C5,m}) is m + 1.
Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.
2004-01-01
In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
DEFF Research Database (Denmark)
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Packing Degenerate Graphs Greedily
Czech Academy of Sciences Publication Activity Database
Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana
2017-01-01
Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
Improved Conflict Detection for Graph Transformation with Attributes
Directory of Open Access Journals (Sweden)
Géza Kulcsár
2015-04-01
Full Text Available In graph transformation, a conflict describes a situation where two alternative transformations cannot be arbitrarily serialized. When enriching graphs with attributes, existing conflict detection techniques typically report a conflict whenever at least one of two transformations manipulates a shared attribute. In this paper, we propose an improved, less conservative condition for static conflict detection of graph transformation with attributes by explicitly taking the semantics of the attribute operations into account. The proposed technique is based on symbolic graphs, which extend the traditional notion of graphs by logic formulas used for attribute handling. The approach is proven complete, i.e., any potential conflict is guaranteed to be detected.
Cheng, Peter C.-H.; Shipstone, David M.
2003-02-01
A new approach to the teaching of electricity is described that uses box and AVOW diagrams, novel representations of the properties of the electric circuit which portray current, voltage, resistance and power. The diagrams have been developed as aids to learning, understanding and problem solving. They also have the potential to promote conceptual change by challenging a number of commonly held misconceptions. The diagrams have been incorporated into A-level teaching materials on d.c. circuit theory and the rationale for this approach is contrasted with a number of strategies that have previously been reported. Part 2 of this paper (Cheng and Shipstone, International Journal of Science Education, in press) will present the results of preliminary school-based trials.
Bond graph modeling of nuclear reactor dynamics
International Nuclear Information System (INIS)
Tylee, J.L.
1981-01-01
A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Towards a multilevel cognitive probabilistic representation of space
Tapus, Adriana; Vasudevan, Shrihari; Siegwart, Roland
2005-03-01
This paper addresses the problem of perception and representation of space for a mobile agent. A probabilistic hierarchical framework is suggested as a solution to this problem. The method proposed is a combination of probabilistic belief with "Object Graph Models" (OGM). The world is viewed from a topological optic, in terms of objects and relationships between them. The hierarchical representation that we propose permits an efficient and reliable modeling of the information that the mobile agent would perceive from its environment. The integration of both navigational and interactional capabilities through efficient representation is also addressed. Experiments on a set of images taken from the real world that validate the approach are reported. This framework draws on the general understanding of human cognition and perception and contributes towards the overall efforts to build cognitive robot companions.
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1
Energy Technology Data Exchange (ETDEWEB)
Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor
2014-08-25
Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.
A graph model for opportunistic network coding
Sorour, Sameh
2015-08-12
© 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Graph-Based Analysis of Nuclear Smuggling Data
International Nuclear Information System (INIS)
Cook, Diane; Holder, Larry; Thompson, Sandra E.; Whitney, Paul D.; Chilton, Lawrence
2009-01-01
Much of the data that is collected and analyzed today is structural, consisting not only of entities but also of relationships between the entities. As a result, analysis applications rely upon automated structural data mining approaches to find patterns and concepts of interest. This ability to analyze structural data has become a particular challenge in many security-related domains. In these domains, focusing on the relationships between entities in the data is critical to detect important underlying patterns. In this study we apply structural data mining techniques to automate analysis of nuclear smuggling data. In particular, we choose to model the data as a graph and use graph-based relational learning to identify patterns and concepts of interest in the data. In this paper, we identify the analysis questions that are of importance to security analysts and describe the knowledge representation and data mining approach that we adopt for this challenge. We analyze the results using the Russian nuclear smuggling event database.
Stephens, Ana; Fonger, Nicole L.; Blanton, Maria; Knuth, Eric
2016-01-01
In this paper, we describe our learning progressions approach to early algebra research that involves the coordination of a curricular framework, an instructional sequence, written assessments, and levels of sophistication describing the development of students' thinking. We focus in particular on what we have learning through this approach about…
Graphs for information security control in software defined networks
Grusho, Alexander A.; Abaev, Pavel O.; Shorgin, Sergey Ya.; Timonina, Elena E.
2017-07-01
Information security control in software defined networks (SDN) is connected with execution of the security policy rules regulating information accesses and protection against distribution of the malicious code and harmful influences. The paper offers a representation of a security policy in the form of hierarchical structure which in case of distribution of resources for the solution of tasks defines graphs of admissible interactions in a networks. These graphs define commutation tables of switches via the SDN controller.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Detecting Activation in fMRI Data: An Approach Based on Sparse Representation of BOLD Signal
Directory of Open Access Journals (Sweden)
Blanca Guillen
2018-01-01
Full Text Available This paper proposes a simple yet effective approach for detecting activated voxels in fMRI data by exploiting the inherent sparsity property of the BOLD signal in temporal and spatial domains. In the time domain, the approach combines the General Linear Model (GLM with a Least Absolute Deviation (LAD based regression method regularized by the pseudonorm l0 to promote sparsity in the parameter vector of the model. In the spatial domain, detection of activated regions is based on thresholding the spatial map of estimated parameters associated with a particular stimulus. The threshold is calculated by exploiting the sparseness of the BOLD signal in the spatial domain assuming a Laplacian distribution model. The proposed approach is validated using synthetic and real fMRI data. For synthetic data, results show that the proposed approach is able to detect most activated voxels without any false activation. For real data, the method is evaluated through comparison with the SPM software. Results indicate that this approach can effectively find activated regions that are similar to those found by SPM, but using a much simpler approach. This study may lead to the development of robust spatial approaches to further simplifying the complexity of classical schemes.
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
Kitanine, N.; Maillet, J. M.; Niccoli, G.; Terras, V.
2016-03-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
International Nuclear Information System (INIS)
Kitanine, N; Maillet, J M; Niccoli, G; Terras, V
2016-01-01
In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoVs) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework. (paper)
Accurate genotyping across variant classes and lengths using variant graphs
DEFF Research Database (Denmark)
Sibbesen, Jonas Andreas; Maretty, Lasse; Jensen, Jacob Malte
2018-01-01
of read k-mers to a graph representation of the reference and variants to efficiently perform unbiased, probabilistic genotyping across the variation spectrum. We demonstrate that BayesTyper generally provides superior variant sensitivity and genotyping accuracy relative to existing methods when used...... collecting a set of candidate variants across discovery methods, individuals and databases, and then realigning the reads to the variants and reference simultaneously. However, this realignment problem has proved computationally difficult. Here, we present a new method (BayesTyper) that uses exact alignment...... to integrate variants across discovery approaches and individuals. Finally, we demonstrate that including a ‘variation-prior’ database containing already known variants significantly improves sensitivity....
Probabilistic graphs as a conceptual and computational tool in hydrology and water management
Schoups, Gerrit
2014-05-01
Originally developed in the fields of machine learning and artificial intelligence, probabilistic graphs constitute a general framework for modeling complex systems in the presence of uncertainty. The framework consists of three components: 1. Representation of the model as a graph (or network), with nodes depicting random variables in the model (e.g. parameters, states, etc), which are joined together by factors. Factors are local probabilistic or deterministic relations between subsets of variables, which, when multiplied together, yield the joint distribution over all variables. 2. Consistent use of probability theory for quantifying uncertainty, relying on basic rules of probability for assimilating data into the model and expressing unknown variables as a function of observations (via the posterior distribution). 3. Efficient, distributed approximation of the posterior distribution using general-purpose algorithms that exploit model structure encoded in the graph. These attributes make probabilistic graphs potentially useful as a conceptual and computational tool in hydrology and water management (and beyond). Conceptually, they can provide a common framework for existing and new probabilistic modeling approaches (e.g. by drawing inspiration from other fields of application), while computationally they can make probabilistic inference feasible in larger hydrological models. The presentation explores, via examples, some of these benefits.
Hierarchical graphs for rule-based modeling of biochemical systems
Directory of Open Access Journals (Sweden)
Hu Bin
2011-02-01
Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Directory of Open Access Journals (Sweden)
Florian Lesaint
Full Text Available Animals, including Humans, are prone to develop persistent maladaptive and suboptimal behaviours. Some of these behaviours have been suggested to arise from interactions between brain systems of Pavlovian conditioning, the acquisition of responses to initially neutral stimuli previously paired with rewards, and instrumental conditioning, the acquisition of active behaviours leading to rewards. However the mechanics of these systems and their interactions are still unclear. While extensively studied independently, few models have been developed to account for these interactions. On some experiment, pigeons have been observed to display a maladaptive behaviour that some suggest to involve conflicts between Pavlovian and instrumental conditioning. In a procedure referred as negative automaintenance, a key light is paired with the subsequent delivery of food, however any peck towards the key light results in the omission of the reward. Studies showed that in such procedure some pigeons persisted in pecking to a substantial level despite its negative consequence, while others learned to refrain from pecking and maximized their cumulative rewards. Furthermore, the pigeons that were unable to refrain from pecking could nevertheless shift their pecks towards a harmless alternative key light. We confronted a computational model that combines dual-learning systems and factored representations, recently developed to account for sign-tracking and goal-tracking behaviours in rats, to these negative automaintenance experimental data. We show that it can explain the variability of the observed behaviours and the capacity of alternative key lights to distract pigeons from their detrimental behaviours. These results confirm the proposed model as an interesting tool to reproduce experiments that could involve interactions between Pavlovian and instrumental conditioning. The model allows us to draw predictions that may be experimentally verified, which could help
Probabilistic Graph Layout for Uncertain Network Visualization.
Schulz, Christoph; Nocaj, Arlind; Goertler, Jochen; Deussen, Oliver; Brandes, Ulrik; Weiskopf, Daniel
2017-01-01
We present a novel uncertain network visualization technique based on node-link diagrams. Nodes expand spatially in our probabilistic graph layout, depending on the underlying probability distributions of edges. The visualization is created by computing a two-dimensional graph embedding that combines samples from the probabilistic graph. A Monte Carlo process is used to decompose a probabilistic graph into its possible instances and to continue with our graph layout technique. Splatting and edge bundling are used to visualize point clouds and network topology. The results provide insights into probability distributions for the entire network-not only for individual nodes and edges. We validate our approach using three data sets that represent a wide range of network types: synthetic data, protein-protein interactions from the STRING database, and travel times extracted from Google Maps. Our approach reveals general limitations of the force-directed layout and allows the user to recognize that some nodes of the graph are at a specific position just by chance.
An Object-Oriented Approach to Knowledge Representation in a Biomedical Domain
Ensing, M.; Paton, R.; Speel, P.H.W.M.; Speel, P.H.W.M.; Rada, R.
1994-01-01
An object-oriented approach has been applied to the different stages involved in developing a knowledge base about insulin metabolism. At an early stage the separation of terminological and assertional knowledge was made. The terminological component was developed by medical experts and represented
van der Deijl, Lucas; Pieterse, S.A.; Prinse, Marion; Smeets, Roel
2016-01-01
The lack of ethnic and gender diversity in the Dutch literary domain has recently been subject to discussions in the public debate. In the academic context, questions regarding diversity are studied either on a literary-sociological level (institutional approaches) or on the level of the individual
Directory of Open Access Journals (Sweden)
Haynes Teresa W.
2014-08-01
Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds
Tailored Random Graph Ensembles
International Nuclear Information System (INIS)
Roberts, E S; Annibale, A; Coolen, A C C
2013-01-01
Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.
Alspach, BR
1985-01-01
This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.
Wilson, Robin J
1985-01-01
Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.
Directory of Open Access Journals (Sweden)
Nicolas Pinto
2009-11-01
Full Text Available While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor. In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.
Pinto, Nicolas; Doukhan, David; DiCarlo, James J; Cox, David D
2009-11-01
While many models of biological object recognition share a common set of "broad-stroke" properties, the performance of any one model depends strongly on the choice of parameters in a particular instantiation of that model--e.g., the number of units per layer, the size of pooling kernels, exponents in normalization operations, etc. Since the number of such parameters (explicit or implicit) is typically large and the computational cost of evaluating one particular parameter set is high, the space of possible model instantiations goes largely unexplored. Thus, when a model fails to approach the abilities of biological visual systems, we are left uncertain whether this failure is because we are missing a fundamental idea or because the correct "parts" have not been tuned correctly, assembled at sufficient scale, or provided with enough training. Here, we present a high-throughput approach to the exploration of such parameter sets, leveraging recent advances in stream processing hardware (high-end NVIDIA graphic cards and the PlayStation 3's IBM Cell Processor). In analogy to high-throughput screening approaches in molecular biology and genetics, we explored thousands of potential network architectures and parameter instantiations, screening those that show promising object recognition performance for further analysis. We show that this approach can yield significant, reproducible gains in performance across an array of basic object recognition tasks, consistently outperforming a variety of state-of-the-art purpose-built vision systems from the literature. As the scale of available computational power continues to expand, we argue that this approach has the potential to greatly accelerate progress in both artificial vision and our understanding of the computational underpinning of biological vision.
The many faces of graph dynamics
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Group-sparse representation with dictionary learning for medical image denoising and fusion.
Li, Shutao; Yin, Haitao; Fang, Leyuan
2012-12-01
Recently, sparse representation has attracted a lot of interest in various areas. However, the standard sparse representation does not consider the intrinsic structure, i.e., the nonzero elements occur in clusters, called group sparsity. Furthermore, there is no dictionary learning method for group sparse representation considering the geometrical structure of space spanned by atoms. In this paper, we propose a novel dictionary learning method, called Dictionary Learning with Group Sparsity and Graph Regularization (DL-GSGR). First, the geometrical structure of atoms is modeled as the graph regularization. Then, combining group sparsity and graph regularization, the DL-GSGR is presented, which is solved by alternating the group sparse coding and dictionary updating. In this way, the group coherence of learned dictionary can be enforced small enough such that any signal can be group sparse coded effectively. Finally, group sparse representation with DL-GSGR is applied to 3-D medical image denoising and image fusion. Specifically, in 3-D medical image denoising, a 3-D processing mechanism (using the similarity among nearby slices) and temporal regularization (to perverse the correlations across nearby slices) are exploited. The experimental results on 3-D image denoising and image fusion demonstrate the superiority of our proposed denoising and fusion approaches.
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman; Yokota, Rio; Ahmadia, Aron
2012-01-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach
Collective Rationality in Graph Aggregation
Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.
2014-01-01
Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the
International Nuclear Information System (INIS)
Barra, F.; Gaspard, P.
2001-01-01
We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Ethics and exclusion: representations of sovereignty in Australia’s approach to asylum-seekers
Gelber, Katherine; McDonald, Matt
2006-01-01
From 2001, the Australian government has justified a hard-line approach to asylum-seekers on the basis of the need to preserve its sovereignty. This article critically evaluates this justification, arguing that the conception of sovereignty as the ‘right to exclude’ involves a denial of responsibility to the most vulnerable in global politics. We particularly focus here on the ways in which the Australian government has attempted to create support for this conception of sovereignty and ethica...
1997-12-01
that I’ll turn my attention to that computer game we’ve talked so much about... Dave Van Veldhuizen and Scott Brown (soon-to-be Drs. Van Veldhuizen and...Industry Training Systems Conference. 1988. 37. Van Veldhuizen , D. A. and L. J Hutson. "A Design Methodology for Domain Inde- pendent Computer...proposed by Van Veld- huizen and Hutson (37), extends the general architecture to support both a domain- independent approach to implementing CGFs and
Representation and Metrics Extraction from Feature Basis: An Object Oriented Approach
Directory of Open Access Journals (Sweden)
Fausto Neri da Silva Vanin
2010-10-01
Full Text Available This tutorial presents an object oriented approach to data reading and metrics extraction from feature basis. Structural issues about basis are discussed first, then the Object Oriented Programming (OOP is aplied to modeling the main elements in this context. The model implementation is then discussed using C++ as programing language. To validate the proposed model, we apply on some feature basis from the University of Carolina, Irvine Machine Learning Database.
Flexibility in data interpretation: effects of representational format.
Braithwaite, David W; Goldstone, Robert L
2013-01-01
Graphs and tables differentially support performance on specific tasks. For tasks requiring reading off single data points, tables are as good as or better than graphs, while for tasks involving relationships among data points, graphs often yield better performance. However, the degree to which graphs and tables support flexibility across a range of tasks is not well-understood. In two experiments, participants detected main and interaction effects in line graphs and tables of bivariate data. Graphs led to more efficient performance, but also lower flexibility, as indicated by a larger discrepancy in performance across tasks. In particular, detection of main effects of variables represented in the graph legend was facilitated relative to detection of main effects of variables represented in the x-axis. Graphs may be a preferable representational format when the desired task or analytical perspective is known in advance, but may also induce greater interpretive bias than tables, necessitating greater care in their use and design.
Local adjacency metric dimension of sun graph and stacked book graph
Yulisda Badri, Alifiah; Darmaji
2018-03-01
A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.
Directory of Open Access Journals (Sweden)
Yailet Albernas-Carvajal
2015-10-01
Full Text Available The biorefineries concept from renewable sources has gained much attention in recent years because they improve sustainability with regard to fossil fuel refineries that are limited by the depletion of petroleum reserves. In this perspective, the production of ethanol from sugar cane bagasse is highly attractive because it reduces the fossil fuels consumption, the energy costs and the greenhouse gases emission. In this context, this paper aims to develop an optimal model design of an ethanol plant, considering bagasse pretreatment stages for subsequent simultaneous saccharification and fermentation (SSF. SSF variant, as its name suggests, has the advantage that enzymatic hydrolysis and fermentation stages are simultaneously carried out on the same equipment, obtaining directly the ethanol as a main product. The proposed approach is based on a mixed integer linear programming model which is optimized by GAMS-CPLEX package.
A Physics-Based Deep Learning Approach to Shadow Invariant Representations of Hyperspectral Images.
Windrim, Lloyd; Ramakrishnan, Rishi; Melkumyan, Arman; Murphy, Richard J
2018-02-01
This paper proposes the Relit Spectral Angle-Stacked Autoencoder, a novel unsupervised feature learning approach for mapping pixel reflectances to illumination invariant encodings. This work extends the Spectral Angle-Stacked Autoencoder so that it can learn a shadow-invariant mapping. The method is inspired by a deep learning technique, Denoising Autoencoders, with the incorporation of a physics-based model for illumination such that the algorithm learns a shadow invariant mapping without the need for any labelled training data, additional sensors, a priori knowledge of the scene or the assumption of Planckian illumination. The method is evaluated using datasets captured from several different cameras, with experiments to demonstrate the illumination invariance of the features and how they can be used practically to improve the performance of high-level perception algorithms that operate on images acquired outdoors.
Langston, Anne L; McCallum, Marilyn; Campbell, Marion K; Robertson, Clare; Ralston, Stuart H
2005-01-01
Although, consumer involvement in individual studies is often limited, their involvement in guiding health research is generally considered to be beneficial. This paper outlines our experiences of an integrated relationship between the organisers of a clinical trial and a consumer organisation. The PRISM trial is a UK multicentre, randomized controlled trial comparing treatment strategies for Paget's disease of the bone. The National Association for the Relief of Paget's Disease (NARPD) is the only UK support group for sufferers of Paget's disease and has worked closely with the PRISM team from the outset. NARPD involvement is integral to the conduct of the trial and specific roles have included: peer-review; trial steering committee membership; provision of advice to participants, and promotion of the trial amongst Paget's disease patients. The integrated relationship has yielded benefits to both the trial and the consumer organisation. The benefits for the trial have included: recruitment of participants via NARPD contacts; well-informed participants; unsolicited patient advocacy of the trial; and interested and pro-active collaborators. For the NARPD and Paget's disease sufferers, benefits have included: increased awareness of Paget's disease; increased access to relevant health research; increased awareness of the NARPD services; and wider transfer of diagnosis and management knowledge to/from health care professionals. Our experience has shown that an integrated approach between a trial team and a consumer organisation is worthwhile. Adoption of such an approach in other trials may yield significant improvements in recruitment and quality of participant information flow. There are, however, resource implications for both parties.
Directory of Open Access Journals (Sweden)
Jian Ou
2017-03-01
Full Text Available The extensive applications of multi-function radars (MFRs have presented a great challenge to the technologies of radar countermeasures (RCMs and electronic intelligence (ELINT. The recently proposed cognitive electronic warfare (CEW provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR. With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.
Ou, Jian; Chen, Yongguang; Zhao, Feng; Liu, Jin; Xiao, Shunping
2017-03-19
The extensive applications of multi-function radars (MFRs) have presented a great challenge to the technologies of radar countermeasures (RCMs) and electronic intelligence (ELINT). The recently proposed cognitive electronic warfare (CEW) provides a good solution, whose crux is to perceive present and future MFR behaviours, including the operating modes, waveform parameters, scheduling schemes, etc. Due to the variety and complexity of MFR waveforms, the existing approaches have the drawbacks of inefficiency and weak practicability in prediction. A novel method for MFR behaviour recognition and prediction is proposed based on predictive state representation (PSR). With the proposed approach, operating modes of MFR are recognized by accumulating the predictive states, instead of using fixed transition probabilities that are unavailable in the battlefield. It helps to reduce the dependence of MFR on prior information. And MFR signals can be quickly predicted by iteratively using the predicted observation, avoiding the very large computation brought by the uncertainty of future observations. Simulations with a hypothetical MFR signal sequence in a typical scenario are presented, showing that the proposed methods perform well and efficiently, which attests to their validity.
Zhao, Chao; Jiang, Jingchi; Guan, Yi; Guo, Xitong; He, Bin
2018-05-01
Electronic medical records (EMRs) contain medical knowledge that can be used for clinical decision support (CDS). Our objective is to develop a general system that can extract and represent knowledge contained in EMRs to support three CDS tasks-test recommendation, initial diagnosis, and treatment plan recommendation-given the condition of a patient. We extracted four kinds of medical entities from records and constructed an EMR-based medical knowledge network (EMKN), in which nodes are entities and edges reflect their co-occurrence in a record. Three bipartite subgraphs (bigraphs) were extracted from the EMKN, one to support each task. One part of the bigraph was the given condition (e.g., symptoms), and the other was the condition to be inferred (e.g., diseases). Each bigraph was regarded as a Markov random field (MRF) to support the inference. We proposed three graph-based energy functions and three likelihood-based energy functions. Two of these functions are based on knowledge representation learning and can provide distributed representations of medical entities. Two EMR datasets and three metrics were utilized to evaluate the performance. As a whole, the evaluation results indicate that the proposed system outperformed the baseline methods. The distributed representation of medical entities does reflect similarity relationships with respect to knowledge level. Combining EMKN and MRF is an effective approach for general medical knowledge representation and inference. Different tasks, however, require individually designed energy functions. Copyright © 2018 Elsevier B.V. All rights reserved.
Representation Discovery using Harmonic Analysis
Mahadevan, Sridhar
2008-01-01
Representations are at the heart of artificial intelligence (AI). This book is devoted to the problem of representation discovery: how can an intelligent system construct representations from its experience? Representation discovery re-parameterizes the state space - prior to the application of information retrieval, machine learning, or optimization techniques - facilitating later inference processes by constructing new task-specific bases adapted to the state space geometry. This book presents a general approach to representation discovery using the framework of harmonic analysis, in particu
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Generating Realistic Labelled, Weighted Random Graphs
Directory of Open Access Journals (Sweden)
Michael Charles Davis
2015-12-01
Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
On some covering graphs of a graph
Directory of Open Access Journals (Sweden)
Shariefuddin Pirzada
2016-10-01
Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\
Czech Academy of Sciences Publication Activity Database
Exner, Pavel; Lipovský, J.
2017-01-01
Roč. 58, č. 4 (2017), č. článku 042101. ISSN 0022-2488 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : self-adjoint coupling * high-energy regime * resonances in quantum graphs Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics ( physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 1.077, year: 2016
Kwak, Kichang; Yoon, Uicheul; Lee, Dong-Kyun; Kim, Geon Ha; Seo, Sang Won; Na, Duk L; Shim, Hack-Joon; Lee, Jong-Min
2013-09-01
The hippocampus has been known to be an important structure as a biomarker for Alzheimer's disease (AD) and other neurological and psychiatric diseases. However, it requires accurate, robust and reproducible delineation of hippocampal structures. In this study, an automated hippocampal segmentation method based on a graph-cuts algorithm combined with atlas-based segmentation and morphological opening was proposed. First of all, the atlas-based segmentation was applied to define initial hippocampal region for a priori information on graph-cuts. The definition of initial seeds was further elaborated by incorporating estimation of partial volume probabilities at each voxel. Finally, morphological opening was applied to reduce false positive of the result processed by graph-cuts. In the experiments with twenty-seven healthy normal subjects, the proposed method showed more reliable results (similarity index=0.81±0.03) than the conventional atlas-based segmentation method (0.72±0.04). Also as for segmentation accuracy which is measured in terms of the ratios of false positive and false negative, the proposed method (precision=0.76±0.04, recall=0.86±0.05) produced lower ratios than the conventional methods (0.73±0.05, 0.72±0.06) demonstrating its plausibility for accurate, robust and reliable segmentation of hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
Tree-type values for cycle-free directed graph games
Khmelnitskaya, Anna Borisovna; Talman, Dolf
2010-01-01
For arbitrary cycle-free directed graph games tree-type values are introduced axiomatically and their explicit formula representation is provided. These values may be considered as natural extensions of the tree and sink values as has been defined correspondingly for rooted and sink forest graph
Probabilistic Decision Graphs - Combining Verification and AI Techniques for Probabilistic Inference
DEFF Research Database (Denmark)
Jaeger, Manfred
2004-01-01
We adopt probabilistic decision graphs developed in the field of automated verification as a tool for probabilistic model representation and inference. We show that probabilistic inference has linear time complexity in the size of the probabilistic decision graph, that the smallest probabilistic ...
Extraction of Graph Information Based on Image Contents and the Use of Ontology
Kanjanawattana, Sarunya; Kimura, Masaomi
2016-01-01
A graph is an effective form of data representation used to summarize complex information. Explicit information such as the relationship between the X- and Y-axes can be easily extracted from a graph by applying human intelligence. However, implicit knowledge such as information obtained from other related concepts in an ontology also resides in…
Parallel Algorithm for Incremental Betweenness Centrality on Large Graphs
Jamour, Fuad Tarek
2017-10-17
Betweenness centrality quantifies the importance of nodes in a graph in many applications, including network analysis, community detection and identification of influential users. Typically, graphs in such applications evolve over time. Thus, the computation of betweenness centrality should be performed incrementally. This is challenging because updating even a single edge may trigger the computation of all-pairs shortest paths in the entire graph. Existing approaches cannot scale to large graphs: they either require excessive memory (i.e., quadratic to the size of the input graph) or perform unnecessary computations rendering them prohibitively slow. We propose iCentral; a novel incremental algorithm for computing betweenness centrality in evolving graphs. We decompose the graph into biconnected components and prove that processing can be localized within the affected components. iCentral is the first algorithm to support incremental betweeness centrality computation within a graph component. This is done efficiently, in linear space; consequently, iCentral scales to large graphs. We demonstrate with real datasets that the serial implementation of iCentral is up to 3.7 times faster than existing serial methods. Our parallel implementation that scales to large graphs, is an order of magnitude faster than the state-of-the-art parallel algorithm, while using an order of magnitude less computational resources.
White, AT
1985-01-01
The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.
Ribes, Luis
2017-01-01
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...
Subdominant pseudoultrametric on graphs
Energy Technology Data Exchange (ETDEWEB)
Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-08-31
Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Mahayni, Malek A.
2011-01-01
developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from
Learning molecular energies using localized graph kernels
Ferré, Grégoire; Haut, Terry; Barros, Kipton
2017-03-01
Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
An internet graph model based on trade-off optimization
Alvarez-Hamelin, J. I.; Schabanel, N.
2004-03-01
This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.
Fingerprint recognition system by use of graph matching
Shen, Wei; Shen, Jun; Zheng, Huicheng
2001-09-01
Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.
Dataflow Interchange Format and a Framework for Processing Dataflow Graphs
National Research Council Canada - National Science Library
Keceli, Fuat
2004-01-01
..., and recognizing useful subclasses of dataflow models. This thesis also develops the framework for a Java-based software repository that provides dataflow analysis and optimization algorithms for DIF representations. The featured framework is accompanied by toolboxes for hierarchical design support and visualization of graphs.
Directory of Open Access Journals (Sweden)
Stefan eHuber
2014-04-01
Full Text Available Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel.To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
Topics in graph theory graphs and their Cartesian product
Imrich, Wilfried; Rall, Douglas F
2008-01-01
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.
Zagouras, Athanassios; Argiriou, Athanassios A.; Flocas, Helena A.; Economou, George; Fotopoulos, Spiros
2012-11-01
Classification of weather maps at various isobaric levels as a methodological tool is used in several problems related to meteorology, climatology, atmospheric pollution and to other fields for many years. Initially the classification was performed manually. The criteria used by the person performing the classification are features of isobars or isopleths of geopotential height, depending on the type of maps to be classified. Although manual classifications integrate the perceptual experience and other unquantifiable qualities of the meteorology specialists involved, these are typically subjective and time consuming. Furthermore, during the last years different approaches of automated methods for atmospheric circulation classification have been proposed, which present automated and so-called objective classifications. In this paper a new method of atmospheric circulation classification of isobaric maps is presented. The method is based on graph theory. It starts with an intelligent prototype selection using an over-partitioning mode of fuzzy c-means (FCM) algorithm, proceeds to a graph formulation for the entire dataset and produces the clusters based on the contemporary dominant sets clustering method. Graph theory is a novel mathematical approach, allowing a more efficient representation of spatially correlated data, compared to the classical Euclidian space representation approaches, used in conventional classification methods. The method has been applied to the classification of 850 hPa atmospheric circulation over the Eastern Mediterranean. The evaluation of the automated methods is performed by statistical indexes; results indicate that the classification is adequately comparable with other state-of-the-art automated map classification methods, for a variable number of clusters.
Graphing and Percentage Applications Using the Personal Computer.
Innes, Jay
1985-01-01
The paper describes how "IBM Graphing Assistant" and "Apple Softgraph" can foster a multifaceted approach to application of mathematical concepts and how a survey can be undertaken using the computer as word processor, data bank, and source of visual displays. Mathematical skills reinforced include estimating, rounding, graphing, and solving…
Spatio-Semantic Comparison of Large 3d City Models in Citygml Using a Graph Database
Nguyen, S. H.; Yao, Z.; Kolbe, T. H.
2017-10-01
A city may have multiple CityGML documents recorded at different times or surveyed by different users. To analyse the city's evolution over a given period of time, as well as to update or edit the city model without negating modifications made by other users, it is of utmost importance to first compare, detect and locate spatio-semantic changes between CityGML datasets. This is however difficult due to the fact that CityGML elements belong to a complex hierarchical structure containing multi-level deep associations, which can basically be considered as a graph. Moreover, CityGML allows multiple syntactic ways to define an object leading to syntactic ambiguities in the exchange format. Furthermore, CityGML is capable of including not only 3D urban objects' graphical appearances but also their semantic properties. Since to date, no known algorithm is capable of detecting spatio-semantic changes in CityGML documents, a frequent approach is to replace the older models completely with the newer ones, which not only costs computational resources, but also loses track of collaborative and chronological changes. Thus, this research proposes an approach capable of comparing two arbitrarily large-sized CityGML documents on both semantic and geometric level. Detected deviations are then attached to their respective sources and can easily be retrieved on demand. As a result, updating a 3D city model using this approach is much more efficient as only real changes are committed. To achieve this, the research employs a graph database as the main data structure for storing and processing CityGML datasets in three major steps: mapping, matching and updating. The mapping process transforms input CityGML documents into respective graph representations. The matching process compares these graphs and attaches edit operations on the fly. Found changes can then be executed using the Web Feature Service (WFS), the standard interface for updating geographical features across the web.
Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.
2006-01-01
Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to
Coloring geographical threshold graphs
Energy Technology Data Exchange (ETDEWEB)
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Budhiraja, A.S.; Mukherjee, D.; Wu, R.
2017-01-01
We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson
DEFF Research Database (Denmark)
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
Energy Technology Data Exchange (ETDEWEB)
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Groupies in multitype random graphs
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Quantum walks on quotient graphs
International Nuclear Information System (INIS)
Krovi, Hari; Brun, Todd A.
2007-01-01
A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup
Learning Probabilistic Decision Graphs
DEFF Research Database (Denmark)
Jaeger, Manfred; Dalgaard, Jens; Silander, Tomi
2004-01-01
efficient representations than Bayesian networks. In this paper we present an algorithm for learning PDGs from data. First experiments show that the algorithm is capable of learning optimal PDG representations in some cases, and that the computational efficiency of PDG models learned from real-life data...
A generalization of total graphs
Indian Academy of Sciences (India)
M Afkhami
2018-04-12
Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.
Graph transformation tool contest 2008
Rensink, Arend; van Gorp, Pieter
This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case
On dominator colorings in graphs
Indian Academy of Sciences (India)
colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
An introduction to grids, graphs, and networks
Pozrikidis, C
2014-01-01
An Introduction to Grids, Graphs, and Networks aims to provide a concise introduction to graphs and networks at a level that is accessible to scientists, engineers, and students. In a practical approach, the book presents only the necessary theoretical concepts from mathematics and considers a variety of physical and conceptual configurations as prototypes or examples. The subject is timely, as the performance of networks is recognized as an important topic in the study of complex systems with applications in energy, material, and information grid transport (epitomized by the internet). The bo
Algorithms for Planar Graphs and Graphs in Metric Spaces
DEFF Research Database (Denmark)
Wulff-Nilsen, Christian
structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...
Incremental Frequent Subgraph Mining on Large Evolving Graphs
Abdelhamid, Ehab
2017-08-22
Frequent subgraph mining is a core graph operation used in many domains, such as graph data management and knowledge exploration, bioinformatics and security. Most existing techniques target static graphs. However, modern applications, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem on a single large evolving graph. We adapt the notion of “fringe” to the graph context, that is the set of subgraphs on the border between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and exploits them to prune the search space. To boost the efficiency, we propose an efficient index structure to maintain selected embeddings with minimal memory overhead. These embeddings are utilized to avoid redundant expensive subgraph isomorphism operations. Moreover, the proposed system supports batch updates. Using large real-world graphs, we experimentally verify that IncGM+ outperforms existing methods by up to three orders of magnitude, scales to much larger graphs and consumes less memory.
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
GRAMI: Generalized Frequent Subgraph Mining in Large Graphs
El Saeedy, Mohammed El Sayed
2011-07-24
Mining frequent subgraphs is an important operation on graphs. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs or protein-protein interaction in bioinformatics, are modeled as a single large graph. Interesting interactions in such applications may be transitive (e.g., friend of a friend). Existing methods, however, search for frequent isomorphic (i.e., exact match) subgraphs and cannot discover many useful patterns. In this paper we propose GRAMI, a framework that generalizes frequent subgraph mining in a large single graph. GRAMI discovers frequent patterns. A pattern is a graph where edges are generalized to distance-constrained paths. Depending on the definition of the distance function, many instantiations of the framework are possible. Both directed and undirected graphs, as well as multiple labels per vertex, are supported. We developed an efficient implementation of the framework that models the frequency resolution phase as a constraint satisfaction problem, in order to avoid the costly enumeration of all instances of each pattern in the graph. We also implemented CGRAMI, a version that supports structural and semantic constraints; and AGRAMI, an approximate version that supports very large graphs. Our experiments on real data demonstrate that our framework is up to 3 orders of magnitude faster and discovers more interesting patterns than existing approaches.
Transduction on Directed Graphs via Absorbing Random Walks.
De, Jaydeep; Zhang, Xiaowei; Lin, Feng; Cheng, Li
2017-08-11
In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications.Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.
A New Graph Drawing Scheme for Social Network
Directory of Open Access Journals (Sweden)
Eric Ke Wang
2014-01-01
visualization is employed to extract the potential information from the large scale of social network data and present the information briefly as visualized graphs. In the process of information visualization, graph drawing is a crucial part. In this paper, we study the graph layout algorithms and propose a new graph drawing scheme combining multilevel and single-level drawing approaches, including the graph division method based on communities and refining approach based on partitioning strategy. Besides, we compare the effectiveness of our scheme and FM3 in experiments. The experiment results show that our scheme can achieve a clearer diagram and effectively extract the community structure of the social network to be applied to drawing schemes.
Using graph theory for automated electric circuit solving
International Nuclear Information System (INIS)
Toscano, L; Stella, S; Milotti, E
2015-01-01
Graph theory plays many important roles in modern physics and in many different contexts, spanning diverse topics such as the description of scale-free networks and the structure of the universe as a complex directed graph in causal set theory. Graph theory is also ideally suited to describe many concepts in computer science. Therefore it is increasingly important for physics students to master the basic concepts of graph theory. Here we describe a student project where we develop a computational approach to electric circuit solving which is based on graph theoretic concepts. This highly multidisciplinary approach combines abstract mathematics, linear algebra, the physics of circuits, and computer programming to reach the ambitious goal of implementing automated circuit solving. (paper)
Alshehhi, Rasha; Marpu, Prashanth Reddy
2017-04-01
Extraction of road networks in urban areas from remotely sensed imagery plays an important role in many urban applications (e.g. road navigation, geometric correction of urban remote sensing images, updating geographic information systems, etc.). It is normally difficult to accurately differentiate road from its background due to the complex geometry of the buildings and the acquisition geometry of the sensor. In this paper, we present a new method for extracting roads from high-resolution imagery based on hierarchical graph-based image segmentation. The proposed method consists of: 1. Extracting features (e.g., using Gabor and morphological filtering) to enhance the contrast between road and non-road pixels, 2. Graph-based segmentation consisting of (i) Constructing a graph representation of the image based on initial segmentation and (ii) Hierarchical merging and splitting of image segments based on color and shape features, and 3. Post-processing to remove irregularities in the extracted road segments. Experiments are conducted on three challenging datasets of high-resolution images to demonstrate the proposed method and compare with other similar approaches. The results demonstrate the validity and superior performance of the proposed method for road extraction in urban areas.
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Spectral fluctuations of quantum graphs
International Nuclear Information System (INIS)
Pluhař, Z.; Weidenmüller, H. A.
2014-01-01
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry
Domination criticality in product graphs
Directory of Open Access Journals (Sweden)
M.R. Chithra
2015-07-01
Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.
Graph Creation, Visualisation and Transformation
Directory of Open Access Journals (Sweden)
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
Canonical Labelling of Site Graphs
Directory of Open Access Journals (Sweden)
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.