WorldWideScience

Sample records for graph models ergms

  1. Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm

    KAUST Repository

    Jin, Ick Hoon; Liang, Faming

    2013-01-01

    The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing

  2. A comparative analysis on computational methods for fitting an ERGM to biological network data

    Directory of Open Access Journals (Sweden)

    Sudipta Saha

    2015-03-01

    Full Text Available Exponential random graph models (ERGM based on graph theory are useful in studying global biological network structure using its local properties. However, computational methods for fitting such models are sensitive to the type, structure and the number of the local features of a network under study. In this paper, we compared computational methods for fitting an ERGM with local features of different types and structures. Two commonly used methods, such as the Markov Chain Monte Carlo Maximum Likelihood Estimation and the Maximum Pseudo Likelihood Estimation are considered for estimating the coefficients of network attributes. We compared the estimates of observed network to our random simulated network using both methods under ERGM. The motivation was to ascertain the extent to which an observed network would deviate from a randomly simulated network if the physical numbers of attributes were approximately same. Cut-off points of some common attributes of interest for different order of nodes were determined through simulations. We implemented our method to a known regulatory network database of Escherichia coli (E. coli.

  3. CONSISTENCY UNDER SAMPLING OF EXPONENTIAL RANDOM GRAPH MODELS.

    Science.gov (United States)

    Shalizi, Cosma Rohilla; Rinaldo, Alessandro

    2013-04-01

    The growing availability of network data and of scientific interest in distributed systems has led to the rapid development of statistical models of network structure. Typically, however, these are models for the entire network, while the data consists only of a sampled sub-network. Parameters for the whole network, which is what is of interest, are estimated by applying the model to the sub-network. This assumes that the model is consistent under sampling , or, in terms of the theory of stochastic processes, that it defines a projective family. Focusing on the popular class of exponential random graph models (ERGMs), we show that this apparently trivial condition is in fact violated by many popular and scientifically appealing models, and that satisfying it drastically limits ERGM's expressive power. These results are actually special cases of more general results about exponential families of dependent random variables, which we also prove. Using such results, we offer easily checked conditions for the consistency of maximum likelihood estimation in ERGMs, and discuss some possible constructive responses.

  4. Network clustering analysis using mixture exponential-family random graph models and its application in genetic interaction data.

    Science.gov (United States)

    Wang, Yishu; Zhao, Hongyu; Deng, Minghua; Fang, Huaying; Yang, Dejie

    2017-08-24

    Epistatic miniarrary profile (EMAP) studies have enabled the mapping of large-scale genetic interaction networks and generated large amounts of data in model organisms. It provides an incredible set of molecular tools and advanced technologies that should be efficiently understanding the relationship between the genotypes and phenotypes of individuals. However, the network information gained from EMAP cannot be fully exploited using the traditional statistical network models. Because the genetic network is always heterogeneous, for example, the network structure features for one subset of nodes are different from those of the left nodes. Exponentialfamily random graph models (ERGMs) are a family of statistical models, which provide a principled and flexible way to describe the structural features (e.g. the density, centrality and assortativity) of an observed network. However, the single ERGM is not enough to capture this heterogeneity of networks. In this paper, we consider a mixture ERGM (MixtureEGRM) networks, which model a network with several communities, where each community is described by a single EGRM.

  5. Supermarket model on graphs

    NARCIS (Netherlands)

    Budhiraja, A.S.; Mukherjee, D.; Wu, R.

    2017-01-01

    We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson

  6. Topic Model for Graph Mining.

    Science.gov (United States)

    Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng

    2015-12-01

    Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.

  7. Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models

    Directory of Open Access Journals (Sweden)

    Tomasz Kajdanowicz

    2016-09-01

    Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.

  8. Graph modeling systems and methods

    Science.gov (United States)

    Neergaard, Mike

    2015-10-13

    An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.

  9. Graph Model Based Indoor Tracking

    DEFF Research Database (Denmark)

    Jensen, Christian Søndergaard; Lu, Hua; Yang, Bin

    2009-01-01

    The tracking of the locations of moving objects in large indoor spaces is important, as it enables a range of applications related to, e.g., security and indoor navigation and guidance. This paper presents a graph model based approach to indoor tracking that offers a uniform data management...

  10. Bond graph modeling of centrifugal compression systems

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2015-01-01

    A novel approach to model unsteady fluid dynamics in a compressor network by using a bond graph is presented. The model is intended in particular for compressor control system development. First, we develop a bond graph model of a single compression system. Bond graph modeling offers a different perspective to previous work by modeling the compression system based on energy flow instead of fluid dynamics. Analyzing the bond graph model explains the energy flow during compressor surge. Two pri...

  11. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo

    2009-01-01

    In this report we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java

  12. A Type Graph Model for Java Programs

    NARCIS (Netherlands)

    Rensink, Arend; Zambon, Eduardo; Lee, D.; Lopes, A.; Poetzsch-Heffter, A.

    2009-01-01

    In this work we present a type graph that models all executable constructs of the Java programming language. Such a model is useful for any graph-based technique that relies on a representation of Java programs as graphs. The model can be regarded as a common representation to which all Java syntax

  13. Graph-based modelling in engineering

    CERN Document Server

    Rysiński, Jacek

    2017-01-01

    This book presents versatile, modern and creative applications of graph theory in mechanical engineering, robotics and computer networks. Topics related to mechanical engineering include e.g. machine and mechanism science, mechatronics, robotics, gearing and transmissions, design theory and production processes. The graphs treated are simple graphs, weighted and mixed graphs, bond graphs, Petri nets, logical trees etc. The authors represent several countries in Europe and America, and their contributions show how different, elegant, useful and fruitful the utilization of graphs in modelling of engineering systems can be. .

  14. Mechatronic modeling and simulation using bond graphs

    CERN Document Server

    Das, Shuvra

    2009-01-01

    Introduction to Mechatronics and System ModelingWhat Is Mechatronics?What Is a System and Why Model Systems?Mathematical Modeling Techniques Used in PracticeSoftwareBond Graphs: What Are They?Engineering SystemsPortsGeneralized VariablesBond GraphsBasic Components in SystemsA Brief Note about Bond Graph Power DirectionsSummary of Bond Direction RulesDrawing Bond Graphs for Simple Systems: Electrical and MechanicalSimplification Rules for Junction StructureDrawing Bond Graphs for Electrical SystemsDrawing Bond Graphs for Mechanical SystemsCausalityDrawing Bond Graphs for Hydraulic and Electronic Components and SystemsSome Basic Properties and Concepts for FluidsBond Graph Model of Hydraulic SystemsElectronic SystemsDeriving System Equations from Bond GraphsSystem VariablesDeriving System EquationsTackling Differential CausalityAlgebraic LoopsSolution of Model Equations and Their InterpretationZeroth Order SystemsFirst Order SystemsSecond Order SystemTransfer Functions and Frequency ResponsesNumerical Solution ...

  15. Prediction of Pig Trade Movements in Different European Production Systems Using Exponential Random Graph Models.

    Science.gov (United States)

    Relun, Anne; Grosbois, Vladimir; Alexandrov, Tsviatko; Sánchez-Vizcaíno, Jose M; Waret-Szkuta, Agnes; Molia, Sophie; Etter, Eric Marcel Charles; Martínez-López, Beatriz

    2017-01-01

    In most European countries, data regarding movements of live animals are routinely collected and can greatly aid predictive epidemic modeling. However, the use of complete movements' dataset to conduct policy-relevant predictions has been so far limited by the massive amount of data that have to be processed (e.g., in intensive commercial systems) or the restricted availability of timely and updated records on animal movements (e.g., in areas where small-scale or extensive production is predominant). The aim of this study was to use exponential random graph models (ERGMs) to reproduce, understand, and predict pig trade networks in different European production systems. Three trade networks were built by aggregating movements of pig batches among premises (farms and trade operators) over 2011 in Bulgaria, Extremadura (Spain), and Côtes-d'Armor (France), where small-scale, extensive, and intensive pig production are predominant, respectively. Three ERGMs were fitted to each network with various demographic and geographic attributes of the nodes as well as six internal network configurations. Several statistical and graphical diagnostic methods were applied to assess the goodness of fit of the models. For all systems, both exogenous (attribute-based) and endogenous (network-based) processes appeared to govern the structure of pig trade network, and neither alone were capable of capturing all aspects of the network structure. Geographic mixing patterns strongly structured pig trade organization in the small-scale production system, whereas belonging to the same company or keeping pigs in the same housing system appeared to be key drivers of pig trade, in intensive and extensive production systems, respectively. Heterogeneous mixing between types of production also explained a part of network structure, whichever production system considered. Limited information is thus needed to capture most of the global structure of pig trade networks. Such findings will be useful

  16. Fitting Social Network Models Using Varying Truncation Stochastic Approximation MCMC Algorithm

    KAUST Repository

    Jin, Ick Hoon

    2013-10-01

    The exponential random graph model (ERGM) plays a major role in social network analysis. However, parameter estimation for the ERGM is a hard problem due to the intractability of its normalizing constant and the model degeneracy. The existing algorithms, such as Monte Carlo maximum likelihood estimation (MCMLE) and stochastic approximation, often fail for this problem in the presence of model degeneracy. In this article, we introduce the varying truncation stochastic approximation Markov chain Monte Carlo (SAMCMC) algorithm to tackle this problem. The varying truncation mechanism enables the algorithm to choose an appropriate starting point and an appropriate gain factor sequence, and thus to produce a reasonable parameter estimate for the ERGM even in the presence of model degeneracy. The numerical results indicate that the varying truncation SAMCMC algorithm can significantly outperform the MCMLE and stochastic approximation algorithms: for degenerate ERGMs, MCMLE and stochastic approximation often fail to produce any reasonable parameter estimates, while SAMCMC can do; for nondegenerate ERGMs, SAMCMC can work as well as or better than MCMLE and stochastic approximation. The data and source codes used for this article are available online as supplementary materials. © 2013 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America.

  17. A model of language inflection graphs

    Science.gov (United States)

    Fukś, Henryk; Farzad, Babak; Cao, Yi

    2014-01-01

    Inflection graphs are highly complex networks representing relationships between inflectional forms of words in human languages. For so-called synthetic languages, such as Latin or Polish, they have particularly interesting structure due to the abundance of inflectional forms. We construct the simplest form of inflection graphs, namely a bipartite graph in which one group of vertices corresponds to dictionary headwords and the other group to inflected forms encountered in a given text. We, then, study projection of this graph on the set of headwords. The projection decomposes into a large number of connected components, to be called word groups. Distribution of sizes of word group exhibits some remarkable properties, resembling cluster distribution in a lattice percolation near the critical point. We propose a simple model which produces graphs of this type, reproducing the desired component distribution and other topological features.

  18. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...

  19. Motifs in triadic random graphs based on Steiner triple systems

    Science.gov (United States)

    Winkler, Marco; Reichardt, Jörg

    2013-08-01

    Conventionally, pairwise relationships between nodes are considered to be the fundamental building blocks of complex networks. However, over the last decade, the overabundance of certain subnetwork patterns, i.e., the so-called motifs, has attracted much attention. It has been hypothesized that these motifs, instead of links, serve as the building blocks of network structures. Although the relation between a network's topology and the general properties of the system, such as its function, its robustness against perturbations, or its efficiency in spreading information, is the central theme of network science, there is still a lack of sound generative models needed for testing the functional role of subgraph motifs. Our work aims to overcome this limitation. We employ the framework of exponential random graph models (ERGMs) to define models based on triadic substructures. The fact that only a small portion of triads can actually be set independently poses a challenge for the formulation of such models. To overcome this obstacle, we use Steiner triple systems (STSs). These are partitions of sets of nodes into pair-disjoint triads, which thus can be specified independently. Combining the concepts of ERGMs and STSs, we suggest generative models capable of generating ensembles of networks with nontrivial triadic Z-score profiles. Further, we discover inevitable correlations between the abundance of triad patterns, which occur solely for statistical reasons and need to be taken into account when discussing the functional implications of motif statistics. Moreover, we calculate the degree distributions of our triadic random graphs analytically.

  20. Design of reconfigurable antennas using graph models

    CERN Document Server

    Costantine, Joseph; Christodoulou, Christos G; Christodoulou, Christos G

    2013-01-01

    This lecture discusses the use of graph models to represent reconfigurable antennas. The rise of antennas that adapt to their environment and change their operation based on the user's request hasn't been met with clear design guidelines. There is a need to propose some rules for the optimization of any reconfigurable antenna design and performance. Since reconfigurable antennas are seen as a collection of self-organizing parts, graph models can be introduced to relate each possible topology to a corresponding electromagnetic performance in terms of achieving a characteristic frequency of oper

  1. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  2. Bond graph modeling of nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1981-01-01

    A tenth-order linear model of a pressurized water reactor (PWR) is developed using bond graph techniques. The model describes the nuclear heat generation process and the transfer of this heat to the reactor coolant. Comparisons between the calculated model response and test data from a small-scale PWR show the model to be an adequate representation of the actual plant dynamics. Possible application of the model in an advanced plant diagnostic system is discussed

  3. Kuramoto model for infinite graphs with kernels

    KAUST Repository

    Canale, Eduardo

    2015-01-07

    In this paper we study the Kuramoto model of weakly coupled oscillators for the case of non trivial network with large number of nodes. We approximate of such configurations by a McKean-Vlasov stochastic differential equation based on infinite graph. We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker-Planck-Kolmogorov equation are conducted. Finally, we provide numerical examples that illustrate the convergence of our method.

  4. Algorithms and Models for the Web Graph

    NARCIS (Netherlands)

    Gleich, David F.; Komjathy, Julia; Litvak, Nelli

    2015-01-01

    This volume contains the papers presented at WAW2015, the 12th Workshop on Algorithms and Models for the Web-Graph held during December 10–11, 2015, in Eindhoven. There were 24 submissions. Each submission was reviewed by at least one, and on average two, Program Committee members. The committee

  5. Strategic Port Graph Rewriting: An Interactive Modelling and Analysis Framework

    Directory of Open Access Journals (Sweden)

    Maribel Fernández

    2014-07-01

    Full Text Available We present strategic portgraph rewriting as a basis for the implementation of visual modelling and analysis tools. The goal is to facilitate the specification, analysis and simulation of complex systems, using port graphs. A system is represented by an initial graph and a collection of graph rewriting rules, together with a user-defined strategy to control the application of rules. The strategy language includes constructs to deal with graph traversal and management of rewriting positions in the graph. We give a small-step operational semantics for the language, and describe its implementation in the graph transformation and visualisation tool PORGY.

  6. Modeling Software Evolution using Algebraic Graph Rewriting

    NARCIS (Netherlands)

    Ciraci, Selim; van den Broek, Pim

    We show how evolution requests can be formalized using algebraic graph rewriting. In particular, we present a way to convert the UML class diagrams to colored graphs. Since changes in software may effect the relation between the methods of classes, our colored graph representation also employs the

  7. Graphs of groups on surfaces interactions and models

    CERN Document Server

    White, AT

    2001-01-01

    The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English

  8. Procedural Content Graphs for Urban Modeling

    Directory of Open Access Journals (Sweden)

    Pedro Brandão Silva

    2015-01-01

    Full Text Available Massive procedural content creation, for example, for virtual urban environments, is a difficult, yet important challenge. While shape grammars are a popular example of effectiveness in architectural modeling, they have clear limitations regarding readability, manageability, and expressive power when addressing a variety of complex structural designs. Moreover, shape grammars aim at geometry specification and do not facilitate integration with other types of content, such as textures or light sources, which could rather accompany the generation process. We present procedural content graphs, a graph-based solution for procedural generation that addresses all these issues in a visual, flexible, and more expressive manner. Besides integrating handling of diverse types of content, this approach introduces collective entity manipulation as lists, seamlessly providing features such as advanced filtering, grouping, merging, ordering, and aggregation, essentially unavailable in shape grammars. Hereby, separated entities can be easily merged or just analyzed together in order to perform a variety of context-based decisions and operations. The advantages of this approach are illustrated via examples of tasks that are either very cumbersome or simply impossible to express with previous grammar approaches.

  9. A cognitive architecture-based model of graph comprehension

    OpenAIRE

    Peebles, David

    2012-01-01

    I present a model of expert comprehension performance for 2 × 2 "interaction" graphs typically used to present data from two-way factorial research designs. Developed using the ACT-R cognitive architecture, the model simulates the cognitive and perceptual operations involved in interpreting interaction graphs and provides a detailed characterisation of the information extracted from the diagram, the prior knowledge required to interpret interaction graphs, and the knowledge generated during t...

  10. An internet graph model based on trade-off optimization

    Science.gov (United States)

    Alvarez-Hamelin, J. I.; Schabanel, N.

    2004-03-01

    This paper presents a new model for the Internet graph (AS graph) based on the concept of heuristic trade-off optimization, introduced by Fabrikant, Koutsoupias and Papadimitriou in[CITE] to grow a random tree with a heavily tailed degree distribution. We propose here a generalization of this approach to generate a general graph, as a candidate for modeling the Internet. We present the results of our simulations and an analysis of the standard parameters measured in our model, compared with measurements from the physical Internet graph.

  11. Hierarchical graphs for rule-based modeling of biochemical systems

    Directory of Open Access Journals (Sweden)

    Hu Bin

    2011-02-01

    Full Text Available Abstract Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal of an edge represents a class of association (dissociation reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for

  12. A formal definition of data flow graph models

    Science.gov (United States)

    Kavi, Krishna M.; Buckles, Bill P.; Bhat, U. Narayan

    1986-01-01

    In this paper, a new model for parallel computations and parallel computer systems that is based on data flow principles is presented. Uninterpreted data flow graphs can be used to model computer systems including data driven and parallel processors. A data flow graph is defined to be a bipartite graph with actors and links as the two vertex classes. Actors can be considered similar to transitions in Petri nets, and links similar to places. The nondeterministic nature of uninterpreted data flow graphs necessitates the derivation of liveness conditions.

  13. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase

  14. Kuramoto model for infinite graphs with kernels

    KAUST Repository

    Canale, Eduardo; Tembine, Hamidou; Tempone, Raul; Zouraris, Georgios E.

    2015-01-01

    . We focus on circulant graphs which have enough symmetries to make the computations easier. We then focus on the asymptotic regime where an integro-partial differential equation is derived. Numerical analysis and convergence proofs of the Fokker

  15. Generic Graph Grammar: A Simple Grammar for Generic Procedural Modelling

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Bærentzen, Jakob Andreas

    2012-01-01

    in a directed cyclic graph. Furthermore, the basic productions are chosen such that Generic Graph Grammar seamlessly combines the capabilities of L-systems to imitate biological growth (to model trees, animals, etc.) and those of split grammars to design structured objects (chairs, houses, etc.). This results...

  16. Using graph approach for managing connectivity in integrative landscape modelling

    Science.gov (United States)

    Rabotin, Michael; Fabre, Jean-Christophe; Libres, Aline; Lagacherie, Philippe; Crevoisier, David; Moussa, Roger

    2013-04-01

    In cultivated landscapes, a lot of landscape elements such as field boundaries, ditches or banks strongly impact water flows, mass and energy fluxes. At the watershed scale, these impacts are strongly conditionned by the connectivity of these landscape elements. An accurate representation of these elements and of their complex spatial arrangements is therefore of great importance for modelling and predicting these impacts.We developped in the framework of the OpenFLUID platform (Software Environment for Modelling Fluxes in Landscapes) a digital landscape representation that takes into account the spatial variabilities and connectivities of diverse landscape elements through the application of the graph theory concepts. The proposed landscape representation consider spatial units connected together to represent the flux exchanges or any other information exchanges. Each spatial unit of the landscape is represented as a node of a graph and relations between units as graph connections. The connections are of two types - parent-child connection and up/downstream connection - which allows OpenFLUID to handle hierarchical graphs. Connections can also carry informations and graph evolution during simulation is possible (connections or elements modifications). This graph approach allows a better genericity on landscape representation, a management of complex connections and facilitate development of new landscape representation algorithms. Graph management is fully operational in OpenFLUID for developers or modelers ; and several graph tools are available such as graph traversal algorithms or graph displays. Graph representation can be managed i) manually by the user (for example in simple catchments) through XML-based files in easily editable and readable format or ii) by using methods of the OpenFLUID-landr library which is an OpenFLUID library relying on common open-source spatial libraries (ogr vector, geos topologic vector and gdal raster libraries). Open

  17. Dynamic airspace configuration method based on a weighted graph model

    Directory of Open Access Journals (Sweden)

    Chen Yangzhou

    2014-08-01

    Full Text Available This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint.

  18. GSMNet: A Hierarchical Graph Model for Moving Objects in Networks

    Directory of Open Access Journals (Sweden)

    Hengcai Zhang

    2017-03-01

    Full Text Available Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates.

  19. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Science.gov (United States)

    Stobb, Michael; Peterson, Joshua M; Mazzag, Borbala; Gahtan, Ethan

    2012-01-01

    Mapping the detailed connectivity patterns (connectomes) of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron) varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  20. Graph theoretical model of a sensorimotor connectome in zebrafish.

    Directory of Open Access Journals (Sweden)

    Michael Stobb

    Full Text Available Mapping the detailed connectivity patterns (connectomes of neural circuits is a central goal of neuroscience. The best quantitative approach to analyzing connectome data is still unclear but graph theory has been used with success. We present a graph theoretical model of the posterior lateral line sensorimotor pathway in zebrafish. The model includes 2,616 neurons and 167,114 synaptic connections. Model neurons represent known cell types in zebrafish larvae, and connections were set stochastically following rules based on biological literature. Thus, our model is a uniquely detailed computational representation of a vertebrate connectome. The connectome has low overall connection density, with 2.45% of all possible connections, a value within the physiological range. We used graph theoretical tools to compare the zebrafish connectome graph to small-world, random and structured random graphs of the same size. For each type of graph, 100 randomly generated instantiations were considered. Degree distribution (the number of connections per neuron varied more in the zebrafish graph than in same size graphs with less biological detail. There was high local clustering and a short average path length between nodes, implying a small-world structure similar to other neural connectomes and complex networks. The graph was found not to be scale-free, in agreement with some other neural connectomes. An experimental lesion was performed that targeted three model brain neurons, including the Mauthner neuron, known to control fast escape turns. The lesion decreased the number of short paths between sensory and motor neurons analogous to the behavioral effects of the same lesion in zebrafish. This model is expandable and can be used to organize and interpret a growing database of information on the zebrafish connectome.

  1. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  2. Application of Bond Graph Modeling for Photovoltaic Module Simulation

    Directory of Open Access Journals (Sweden)

    Madi S.

    2016-01-01

    Full Text Available In this paper, photovoltaic generator is represented using the bond-graph methodology. Starting from the equivalent circuit the bond graph and the block diagram of the photovoltaic generator have been derived. Upon applying bond graph elements and rules a mathematical model of the photovoltaic generator is obtained. Simulation results of this obtained model using real recorded data (irradiation and temperature at the Renewable Energies Development Centre in Bouzaréah – Algeria are obtained using MATLAB/SMULINK software. The results have compared with datasheet of the photovoltaic generator for validation purposes.

  3. A new intrusion prevention model using planning knowledge graph

    Science.gov (United States)

    Cai, Zengyu; Feng, Yuan; Liu, Shuru; Gan, Yong

    2013-03-01

    Intelligent plan is a very important research in artificial intelligence, which has applied in network security. This paper proposes a new intrusion prevention model base on planning knowledge graph and discuses the system architecture and characteristics of this model. The Intrusion Prevention based on plan knowledge graph is completed by plan recognition based on planning knowledge graph, and the Intrusion response strategies and actions are completed by the hierarchical task network (HTN) planner in this paper. Intrusion prevention system has the advantages of intelligent planning, which has the advantage of the knowledge-sharing, the response focused, learning autonomy and protective ability.

  4. Modeling flow and transport in fracture networks using graphs

    Science.gov (United States)

    Karra, S.; O'Malley, D.; Hyman, J. D.; Viswanathan, H. S.; Srinivasan, G.

    2018-03-01

    Fractures form the main pathways for flow in the subsurface within low-permeability rock. For this reason, accurately predicting flow and transport in fractured systems is vital for improving the performance of subsurface applications. Fracture sizes in these systems can range from millimeters to kilometers. Although modeling flow and transport using the discrete fracture network (DFN) approach is known to be more accurate due to incorporation of the detailed fracture network structure over continuum-based methods, capturing the flow and transport in such a wide range of scales is still computationally intractable. Furthermore, if one has to quantify uncertainty, hundreds of realizations of these DFN models have to be run. To reduce the computational burden, we solve flow and transport on a graph representation of a DFN. We study the accuracy of the graph approach by comparing breakthrough times and tracer particle statistical data between the graph-based and the high-fidelity DFN approaches, for fracture networks with varying number of fractures and degree of heterogeneity. Due to our recent developments in capabilities to perform DFN high-fidelity simulations on fracture networks with large number of fractures, we are in a unique position to perform such a comparison. We show that the graph approach shows a consistent bias with up to an order of magnitude slower breakthrough when compared to the DFN approach. We show that this is due to graph algorithm's underprediction of the pressure gradients across intersections on a given fracture, leading to slower tracer particle speeds between intersections and longer travel times. We present a bias correction methodology to the graph algorithm that reduces the discrepancy between the DFN and graph predictions. We show that with this bias correction, the graph algorithm predictions significantly improve and the results are very accurate. The good accuracy and the low computational cost, with O (104) times lower times than

  5. System dynamics and control with bond graph modeling

    CERN Document Server

    Kypuros, Javier

    2013-01-01

    Part I Dynamic System ModelingIntroduction to System DynamicsIntroductionSystem Decomposition and Model ComplexityMathematical Modeling of Dynamic SystemsAnalysis and Design of Dynamic SystemsControl of Dynamic SystemsDiagrams of Dynamic SystemsA Graph-Centered Approach to ModelingSummaryPracticeExercisesBasic Bond Graph ElementsIntroductionPower and Energy VariablesBasic 1-Port ElementsBasic 2-Ports ElementsJunction ElementsSimple Bond Graph ExamplesSummaryPracticeExercisesBond Graph Synthesis and Equation DerivationIntroductionGeneral GuidelinesMechanical TranslationMechanical RotationElectrical CircuitsHydraulic CircuitsMixed SystemsState Equation DerivationState-Space RepresentationsAlgebraic Loops and Derivative CausalitySummaryPracticeExercisesImpedance Bond GraphsIntroductionLaplace Transform of the State-Space EquationBasic 1-Port ImpedancesImpedance Bond Graph SynthesisJunctions, Transformers, and GyratorsEffort and Flow DividersSign ChangesTransfer Function DerivationAlternative Derivation of Transf...

  6. A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2018-02-01

    Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction

  7. Benchmarking Measures of Network Controllability on Canonical Graph Models

    Science.gov (United States)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical

  8. A sediment graph model based on SCS-CN method

    Science.gov (United States)

    Singh, P. K.; Bhunya, P. K.; Mishra, S. K.; Chaube, U. C.

    2008-01-01

    SummaryThis paper proposes new conceptual sediment graph models based on coupling of popular and extensively used methods, viz., Nash model based instantaneous unit sediment graph (IUSG), soil conservation service curve number (SCS-CN) method, and Power law. These models vary in their complexity and this paper tests their performance using data of the Nagwan watershed (area = 92.46 km 2) (India). The sensitivity of total sediment yield and peak sediment flow rate computations to model parameterisation is analysed. The exponent of the Power law, β, is more sensitive than other model parameters. The models are found to have substantial potential for computing sediment graphs (temporal sediment flow rate distribution) as well as total sediment yield.

  9. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai

    2018-01-01

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and

  10. A cluster expansion approach to exponential random graph models

    International Nuclear Information System (INIS)

    Yin, Mei

    2012-01-01

    The exponential family of random graphs are among the most widely studied network models. We show that any exponential random graph model may alternatively be viewed as a lattice gas model with a finite Banach space norm. The system may then be treated using cluster expansion methods from statistical mechanics. In particular, we derive a convergent power series expansion for the limiting free energy in the case of small parameters. Since the free energy is the generating function for the expectations of other random variables, this characterizes the structure and behavior of the limiting network in this parameter region

  11. The hard-core model on random graphs revisited

    International Nuclear Information System (INIS)

    Barbier, Jean; Krzakala, Florent; Zhang, Pan; Zdeborová, Lenka

    2013-01-01

    We revisit the classical hard-core model, also known as independent set and dual to vertex cover problem, where one puts particles with a first-neighbor hard-core repulsion on the vertices of a random graph. Although the case of random graphs with small and very large average degrees respectively are quite well understood, they yield qualitatively different results and our aim here is to reconciliate these two cases. We revisit results that can be obtained using the (heuristic) cavity method and show that it provides a closed-form conjecture for the exact density of the densest packing on random regular graphs with degree K ≥ 20, and that for K > 16 the nature of the phase transition is the same as for large K. This also shows that the hard-code model is the simplest mean-field lattice model for structural glasses and jamming

  12. A note on intrinsic conditional autoregressive models for disconnected graphs

    KAUST Repository

    Freni-Sterrantino, Anna; Ventrucci, Massimo; Rue, Haavard

    2018-01-01

    In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.

  13. A note on intrinsic conditional autoregressive models for disconnected graphs

    KAUST Repository

    Freni-Sterrantino, Anna

    2018-05-23

    In this note we discuss (Gaussian) intrinsic conditional autoregressive (CAR) models for disconnected graphs, with the aim of providing practical guidelines for how these models should be defined, scaled and implemented. We show how these suggestions can be implemented in two examples, on disease mapping.

  14. Bond Graph Modeling and Simulation of Mechatronic Systems

    DEFF Research Database (Denmark)

    Habib, Tufail; Nielsen, Kjeld; Jørgensen, Kaj Asbjørn

    2012-01-01

    One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential characterist......One of the demanding steps in the design and development of Mechatronic systems is to develop the initial model to visualize the response of a system. The Bond Graph (BG) method is a graphical approach for the design of multidomain systems. That is ideal for visualizing the essential...

  15. Using Canonical Forms for Isomorphism Reduction in Graph-based Model Checking

    NARCIS (Netherlands)

    Kant, Gijs

    Graph isomorphism checking can be used in graph-based model checking to achieve symmetry reduction. Instead of one-to-one comparing the graph representations of states, canonical forms of state graphs can be computed. These canonical forms can be used to store and compare states. However, computing

  16. A Bond Graph Approach for the Modeling and Simulation of a Buck Converter

    Directory of Open Access Journals (Sweden)

    Rached Zrafi

    2018-01-01

    Full Text Available This paper deals with the modeling of bond graph buck converter systems. The bond graph formalism, which represents a heterogeneous formalism for physical modeling, is used to design a sub-model of a power MOSFET and PiN diode switchers. These bond graph models are based on the device’s electrical elements. The application of these models to a bond graph buck converter permit us to obtain an invariant causal structure when the switch devices change state. This paper shows the usefulness of the bond graph device’s modeling to simulate an implicit bond graph buck converter.

  17. A Graph Based Framework to Model Virus Integration Sites

    Directory of Open Access Journals (Sweden)

    Raffaele Fronza

    2016-01-01

    Here, we addressed the challenge to: 1 define the notion of CIS on graph models, 2 demonstrate that the structure of CIS enters in the category of scale-free networks and 3 show that our network approach analyzes CIS dynamically in an integrated systems biology framework using the Retroviral Transposon Tagged Cancer Gene Database (RTCGD as a testing dataset.

  18. Extensions of Scott's Graph Model and Kleene's Second Algebra

    NARCIS (Netherlands)

    van Oosten, J.; Voorneveld, Niels

    We use a way to extend partial combinatory algebras (pcas) by forcing them to represent certain functions. In the case of Scott’s Graph Model, equality is computable relative to the complement function. However, the converse is not true. This creates a hierarchy of pcas which relates to similar

  19. An approach to multiscale modelling with graph grammars.

    Science.gov (United States)

    Ong, Yongzhi; Streit, Katarína; Henke, Michael; Kurth, Winfried

    2014-09-01

    Functional-structural plant models (FSPMs) simulate biological processes at different spatial scales. Methods exist for multiscale data representation and modification, but the advantages of using multiple scales in the dynamic aspects of FSPMs remain unclear. Results from multiscale models in various other areas of science that share fundamental modelling issues with FSPMs suggest that potential advantages do exist, and this study therefore aims to introduce an approach to multiscale modelling in FSPMs. A three-part graph data structure and grammar is revisited, and presented with a conceptual framework for multiscale modelling. The framework is used for identifying roles, categorizing and describing scale-to-scale interactions, thus allowing alternative approaches to model development as opposed to correlation-based modelling at a single scale. Reverse information flow (from macro- to micro-scale) is catered for in the framework. The methods are implemented within the programming language XL. Three example models are implemented using the proposed multiscale graph model and framework. The first illustrates the fundamental usage of the graph data structure and grammar, the second uses probabilistic modelling for organs at the fine scale in order to derive crown growth, and the third combines multiscale plant topology with ozone trends and metabolic network simulations in order to model juvenile beech stands under exposure to a toxic trace gas. The graph data structure supports data representation and grammar operations at multiple scales. The results demonstrate that multiscale modelling is a viable method in FSPM and an alternative to correlation-based modelling. Advantages and disadvantages of multiscale modelling are illustrated by comparisons with single-scale implementations, leading to motivations for further research in sensitivity analysis and run-time efficiency for these models.

  20. Neo4j graph data modeling

    CERN Document Server

    Lal, Mahesh

    2015-01-01

    If you are a developer who wants to understand the fundamentals of modeling data in Neo4j and how it can be used to model full-fledged applications, then this book is for you. Some understanding of domain modeling may be advantageous but is not essential.

  1. Multiplicative Attribute Graph Model of Real-World Networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myunghwan [Stanford Univ., CA (United States); Leskovec, Jure [Stanford Univ., CA (United States)

    2010-10-20

    Large scale real-world network data, such as social networks, Internet andWeb graphs, is ubiquitous in a variety of scientific domains. The study of such social and information networks commonly finds patterns and explain their emergence through tractable models. In most networks, especially in social networks, nodes also have a rich set of attributes (e.g., age, gender) associatedwith them. However, most of the existing network models focus only on modeling the network structure while ignoring the features of nodes in the network. Here we present a class of network models that we refer to as the Multiplicative Attribute Graphs (MAG), which naturally captures the interactions between the network structure and node attributes. We consider a model where each node has a vector of categorical features associated with it. The probability of an edge between a pair of nodes then depends on the product of individual attributeattribute similarities. The model yields itself to mathematical analysis as well as fit to real data. We derive thresholds for the connectivity, the emergence of the giant connected component, and show that the model gives rise to graphs with a constant diameter. Moreover, we analyze the degree distribution to show that the model can produce networks with either lognormal or power-law degree distribution depending on certain conditions.

  2. Object recognition in images via a factor graph model

    Science.gov (United States)

    He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu

    2018-04-01

    Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.

  3. Graph and Network for Model Elicitation (GNOME Phase 2)

    Science.gov (United States)

    2013-02-01

    GRAPH AND NETWORK FOR MODEL ELICITATION (GNOME PHASE II) CUBRC FEBRUARY 2013 FINAL TECHNICAL REPORT APPROVED FOR...NUMBER 00 5f. WORK UNIT NUMBER 01 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) CUBRC 4455 Genesee St. Buffalo, NY 14225 8. PERFORMING...Explorer Since the previous version of GNOME was developed as an Eclipse RCP plug-in, it allowed CUBRC to develop the Model Explorer separately without

  4. Investigating Facebook Groups through a Random Graph Model

    OpenAIRE

    Dinithi Pallegedara; Lei Pan

    2014-01-01

    Facebook disseminates messages for billions of users everyday. Though there are log files stored on central servers, law enforcement agencies outside of the U.S. cannot easily acquire server log files from Facebook. This work models Facebook user groups by using a random graph model. Our aim is to facilitate detectives quickly estimating the size of a Facebook group with which a suspect is involved. We estimate this group size according to the number of immediate friends and the number of ext...

  5. Exponential random graph models for networks with community structure.

    Science.gov (United States)

    Fronczak, Piotr; Fronczak, Agata; Bujok, Maksymilian

    2013-09-01

    Although the community structure organization is an important characteristic of real-world networks, most of the traditional network models fail to reproduce the feature. Therefore, the models are useless as benchmark graphs for testing community detection algorithms. They are also inadequate to predict various properties of real networks. With this paper we intend to fill the gap. We develop an exponential random graph approach to networks with community structure. To this end we mainly built upon the idea of blockmodels. We consider both the classical blockmodel and its degree-corrected counterpart and study many of their properties analytically. We show that in the degree-corrected blockmodel, node degrees display an interesting scaling property, which is reminiscent of what is observed in real-world fractal networks. A short description of Monte Carlo simulations of the models is also given in the hope of being useful to others working in the field.

  6. A scalable community detection algorithm for large graphs using stochastic block models

    KAUST Repository

    Peng, Chengbin

    2017-11-24

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of

  7. A scalable community detection algorithm for large graphs using stochastic block models

    KAUST Repository

    Peng, Chengbin; Zhang, Zhihua; Wong, Ka-Chun; Zhang, Xiangliang; Keyes, David E.

    2017-01-01

    Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of

  8. Enhanced Contact Graph Routing (ECGR) MACHETE Simulation Model

    Science.gov (United States)

    Segui, John S.; Jennings, Esther H.; Clare, Loren P.

    2013-01-01

    Contact Graph Routing (CGR) for Delay/Disruption Tolerant Networking (DTN) space-based networks makes use of the predictable nature of node contacts to make real-time routing decisions given unpredictable traffic patterns. The contact graph will have been disseminated to all nodes before the start of route computation. CGR was designed for space-based networking environments where future contact plans are known or are independently computable (e.g., using known orbital dynamics). For each data item (known as a bundle in DTN), a node independently performs route selection by examining possible paths to the destination. Route computation could conceivably run thousands of times a second, so computational load is important. This work refers to the simulation software model of Enhanced Contact Graph Routing (ECGR) for DTN Bundle Protocol in JPL's MACHETE simulation tool. The simulation model was used for performance analysis of CGR and led to several performance enhancements. The simulation model was used to demonstrate the improvements of ECGR over CGR as well as other routing methods in space network scenarios. ECGR moved to using earliest arrival time because it is a global monotonically increasing metric that guarantees the safety properties needed for the solution's correctness since route re-computation occurs at each node to accommodate unpredicted changes (e.g., traffic pattern, link quality). Furthermore, using earliest arrival time enabled the use of the standard Dijkstra algorithm for path selection. The Dijkstra algorithm for path selection has a well-known inexpensive computational cost. These enhancements have been integrated into the open source CGR implementation. The ECGR model is also useful for route metric experimentation and comparisons with other DTN routing protocols particularly when combined with MACHETE's space networking models and Delay Tolerant Link State Routing (DTLSR) model.

  9. Annealed central limit theorems for the ising model on random graphs

    NARCIS (Netherlands)

    Giardinà, C.; Giberti, C.; van der Hofstad, R.W.; Prioriello, M.L.

    2016-01-01

    The aim of this paper is to prove central limit theorems with respect to the annealed measure for the magnetization rescaled by √N of Ising models on random graphs. More precisely, we consider the general rank-1 inhomogeneous random graph (or generalized random graph), the 2-regular configuration

  10. Large Deviations for the Annealed Ising Model on Inhomogeneous Random Graphs: Spins and Degrees

    Science.gov (United States)

    Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; Hofstad, Remco van der

    2018-04-01

    We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.

  11. Towards using the chordal graph polytope in learning decomposable models

    Czech Academy of Sciences Publication Activity Database

    Studený, Milan; Cussens, J.

    2017-01-01

    Roč. 88, č. 1 (2017), s. 259-281 ISSN 0888-613X. [8th International Conference of Probabilistic Graphical Models. Lugano, 06.09.2016-09.09.2016] R&D Projects: GA ČR(CZ) GA16-12010S Institutional support: RVO:67985556 Keywords : learning decomposable models * integer linear programming * characteristic imset * chordal graph polytope * clutter inequalities * separation problem Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 2.845, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/studeny-0475614.pdf

  12. Clone Detection for Graph-Based Model Transformation Languages

    DEFF Research Database (Denmark)

    Strüber, Daniel; Plöger, Jennifer; Acretoaie, Vlad

    2016-01-01

    and analytical quality assurance. From these use cases, we derive a set of key requirements. We describe our customization of existing model clone detection techniques allowing us to address these requirements. Finally, we provide an experimental evaluation, indicating that our customization of ConQAT, one......Cloning is a convenient mechanism to enable reuse across and within software artifacts. On the downside, it is also a practice related to significant long-term maintainability impediments, thus generating a need to identify clones in affected artifacts. A large variety of clone detection techniques...... has been proposed for programming and modeling languages; yet no specific ones have emerged for model transformation languages. In this paper, we explore clone detection for graph-based model transformation languages. We introduce potential use cases for such techniques in the context of constructive...

  13. The Little-Hopfield model on a sparse random graph

    International Nuclear Information System (INIS)

    Castillo, I Perez; Skantzos, N S

    2004-01-01

    We study the Hopfield model on a random graph in scaling regimes where the average number of connections per neuron is a finite number and the spin dynamics is governed by a synchronous execution of the microscopic update rule (Little-Hopfield model). We solve this model within replica symmetry, and by using bifurcation analysis we prove that the spin-glass/paramagnetic and the retrieval/paramagnetic transition lines of our phase diagram are identical to those of sequential dynamics. The first-order retrieval/spin-glass transition line follows by direct evaluation of our observables using population dynamics. Within the accuracy of numerical precision and for sufficiently small values of the connectivity parameter we find that this line coincides with the corresponding sequential one. Comparison with simulation experiments shows excellent agreement

  14. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang

    2017-02-16

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  15. Efficient nonparametric and asymptotic Bayesian model selection methods for attributed graph clustering

    KAUST Repository

    Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke

    2017-01-01

    Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.

  16. Text Summarization Using FrameNet-Based Semantic Graph Model

    Directory of Open Access Journals (Sweden)

    Xu Han

    2016-01-01

    Full Text Available Text summarization is to generate a condensed version of the original document. The major issues for text summarization are eliminating redundant information, identifying important difference among documents, and recovering the informative content. This paper proposes a Semantic Graph Model which exploits the semantic information of sentence using FSGM. FSGM treats sentences as vertexes while the semantic relationship as the edges. It uses FrameNet and word embedding to calculate the similarity of sentences. This method assigns weight to both sentence nodes and edges. After all, it proposes an improved method to rank these sentences, considering both internal and external information. The experimental results show that the applicability of the model to summarize text is feasible and effective.

  17. Critical Behavior of the Annealed Ising Model on Random Regular Graphs

    Science.gov (United States)

    Can, Van Hao

    2017-11-01

    In Giardinà et al. (ALEA Lat Am J Probab Math Stat 13(1):121-161, 2016), the authors have defined an annealed Ising model on random graphs and proved limit theorems for the magnetization of this model on some random graphs including random 2-regular graphs. Then in Can (Annealed limit theorems for the Ising model on random regular graphs, arXiv:1701.08639, 2017), we generalized their results to the class of all random regular graphs. In this paper, we study the critical behavior of this model. In particular, we determine the critical exponents and prove a non standard limit theorem stating that the magnetization scaled by n^{3/4} converges to a specific random variable, with n the number of vertices of random regular graphs.

  18. Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction

    OpenAIRE

    Quan Liang; Jiancheng Weng; Wei Zhou; Selene Baez Santamaria; Jianming Ma; Jian Rong

    2018-01-01

    This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds...

  19. Character expansion methods for matrix models of dually weighted graphs

    International Nuclear Information System (INIS)

    Kazakov, V.A.; Staudacher, M.; Wynter, T.

    1996-01-01

    We consider generalized one-matrix models in which external fields allow control over the coordination numbers on both the original and dual lattices. We rederive in a simple fashion a character expansion formula for these models originally due to Itzykson and Di Francesco, and then demonstrate how to take the large N limit of this expansion. The relationship to the usual matrix model resolvent is elucidated. Our methods give as a by-product an extremely simple derivation of the Migdal integral equation describing the large N limit of the Itzykson-Zuber formula. We illustrate and check our methods by analysing a number of models solvable by traditional means. We then proceed to solve a new model: a sum over planar graphs possessing even coordination numbers on both the original and the dual lattice. We conclude by formulating equations for the case of arbitrary sets of even, self-dual coupling constants. This opens the way for studying the deep problem of phase transitions from random to flat lattices. (orig.). With 4 figs

  20. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model*

    Science.gov (United States)

    Hao, Shao-rui; Geng, Shi-chao; Fan, Lin-xiao; Chen, Jia-jia; Zhang, Qin; Li, Lan-juan

    2017-01-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A “chaining” inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure. PMID:28471111

  1. Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube

    International Nuclear Information System (INIS)

    Mittelmann, Hans; Peng Jiming; Wu Xiaolin

    2009-01-01

    In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs.Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n-1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.

  2. Intelligent diagnosis of jaundice with dynamic uncertain causality graph model.

    Science.gov (United States)

    Hao, Shao-Rui; Geng, Shi-Chao; Fan, Lin-Xiao; Chen, Jia-Jia; Zhang, Qin; Li, Lan-Juan

    2017-05-01

    Jaundice is a common and complex clinical symptom potentially occurring in hepatology, general surgery, pediatrics, infectious diseases, gynecology, and obstetrics, and it is fairly difficult to distinguish the cause of jaundice in clinical practice, especially for general practitioners in less developed regions. With collaboration between physicians and artificial intelligence engineers, a comprehensive knowledge base relevant to jaundice was created based on demographic information, symptoms, physical signs, laboratory tests, imaging diagnosis, medical histories, and risk factors. Then a diagnostic modeling and reasoning system using the dynamic uncertain causality graph was proposed. A modularized modeling scheme was presented to reduce the complexity of model construction, providing multiple perspectives and arbitrary granularity for disease causality representations. A "chaining" inference algorithm and weighted logic operation mechanism were employed to guarantee the exactness and efficiency of diagnostic reasoning under situations of incomplete and uncertain information. Moreover, the causal interactions among diseases and symptoms intuitively demonstrated the reasoning process in a graphical manner. Verification was performed using 203 randomly pooled clinical cases, and the accuracy was 99.01% and 84.73%, respectively, with or without laboratory tests in the model. The solutions were more explicable and convincing than common methods such as Bayesian Networks, further increasing the objectivity of clinical decision-making. The promising results indicated that our model could be potentially used in intelligent diagnosis and help decrease public health expenditure.

  3. Tailored graph ensembles as proxies or null models for real networks II: results on directed graphs

    International Nuclear Information System (INIS)

    Roberts, E S; Coolen, A C C; Schlitt, T

    2011-01-01

    We generate new mathematical tools with which to quantify the macroscopic topological structure of large directed networks. This is achieved via a statistical mechanical analysis of constrained maximum entropy ensembles of directed random graphs with prescribed joint distributions for in- and out-degrees and prescribed degree-degree correlation functions. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies and complexities of these ensembles, and for information-theoretic distances. The results are applied to data on gene regulation networks.

  4. Transformation of UML models to CSP : a case study for graph transformation tools

    NARCIS (Netherlands)

    Varró, D.; Asztalos, M.; Bisztray, D.; Boronat, A.; Dang, D.; Geiß, R.; Greenyer, J.; Van Gorp, P.M.E.; Kniemeyer, O.; Narayanan, A.; Rencis, E.; Weinell, E.; Schürr, A.; Nagl, M.; Zündorf, A.

    2008-01-01

    Graph transformation provides an intuitive mechanism for capturing model transformations. In the current paper, we investigate and compare various graph transformation tools using a compact practical model transformation case study carried out as part of the AGTIVE 2007 Tool Contest [22]. The aim of

  5. Pathfinding in graph-theoretic sabotage models. I. Simultaneous attack by several teams

    International Nuclear Information System (INIS)

    Hulme, B.L.

    1976-07-01

    Graph models are developed for fixed-site safeguards systems. The problem of finding optimal routes for several sabotage teams is cast as a problem of finding shortest paths in a graph. The motivation, rationale, and interpretation of the mathematical models are discussed in detail, and an algorithm for efficiently solving the associated path problem is described

  6. Recent developments in exponential random graph (p*) models for social networks

    NARCIS (Netherlands)

    Robins, Garry; Snijders, Tom; Wang, Peng; Handcock, Mark; Pattison, Philippa

    This article reviews new specifications for exponential random graph models proposed by Snijders et al. [Snijders, T.A.B., Pattison, P., Robins, G.L., Handcock, M., 2006. New specifications for exponential random graph models. Sociological Methodology] and demonstrates their improvement over

  7. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  8. System Response Analysis and Model Order Reduction, Using Conventional Method, Bond Graph Technique and Genetic Programming

    Directory of Open Access Journals (Sweden)

    Lubna Moin

    2009-04-01

    Full Text Available This research paper basically explores and compares the different modeling and analysis techniques and than it also explores the model order reduction approach and significance. The traditional modeling and simulation techniques for dynamic systems are generally adequate for single-domain systems only, but the Bond Graph technique provides new strategies for reliable solutions of multi-domain system. They are also used for analyzing linear and non linear dynamic production system, artificial intelligence, image processing, robotics and industrial automation. This paper describes a unique technique of generating the Genetic design from the tree structured transfer function obtained from Bond Graph. This research work combines bond graphs for model representation with Genetic programming for exploring different ideas on design space tree structured transfer function result from replacing typical bond graph element with their impedance equivalent specifying impedance lows for Bond Graph multiport. This tree structured form thus obtained from Bond Graph is applied for generating the Genetic Tree. Application studies will identify key issues and importance for advancing this approach towards becoming on effective and efficient design tool for synthesizing design for Electrical system. In the first phase, the system is modeled using Bond Graph technique. Its system response and transfer function with conventional and Bond Graph method is analyzed and then a approach towards model order reduction is observed. The suggested algorithm and other known modern model order reduction techniques are applied to a 11th order high pass filter [1], with different approach. The model order reduction technique developed in this paper has least reduction errors and secondly the final model retains structural information. The system response and the stability analysis of the system transfer function taken by conventional and by Bond Graph method is compared and

  9. Graph and model transformation tools for model migration : empirical results from the transformation tool contest

    NARCIS (Netherlands)

    Rose, L.M.; Herrmannsdoerfer, M.; Mazanek, S.; Van Gorp, P.M.E.; Buchwald, S.; Horn, T.; Kalnina, E.; Koch, A.; Lano, K.; Schätz, B.; Wimmer, M.

    2014-01-01

    We describe the results of the Transformation Tool Contest 2010 workshop, in which nine graph and model transformation tools were compared for specifying model migration. The model migration problem—migration of UML activity diagrams from version 1.4 to version 2.2—is non-trivial and practically

  10. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    Science.gov (United States)

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  11. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon; Liang, Faming; Yuan, Ying

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we

  12. The relationship between structural and functional connectivity: graph theoretical analysis of an EEG neural mass model

    NARCIS (Netherlands)

    Ponten, S.C.; Daffertshofer, A.; Hillebrand, A.; Stam, C.J.

    2010-01-01

    We investigated the relationship between structural network properties and both synchronization strength and functional characteristics in a combined neural mass and graph theoretical model of the electroencephalogram (EEG). Thirty-two neural mass models (NMMs), each representing the lump activity

  13. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    Science.gov (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  14. A componential model of human interaction with graphs: 1. Linear regression modeling

    Science.gov (United States)

    Gillan, Douglas J.; Lewis, Robert

    1994-01-01

    Task analyses served as the basis for developing the Mixed Arithmetic-Perceptual (MA-P) model, which proposes (1) that people interacting with common graphs to answer common questions apply a set of component processes-searching for indicators, encoding the value of indicators, performing arithmetic operations on the values, making spatial comparisons among indicators, and repsonding; and (2) that the type of graph and user's task determine the combination and order of the components applied (i.e., the processing steps). Two experiments investigated the prediction that response time will be linearly related to the number of processing steps according to the MA-P model. Subjects used line graphs, scatter plots, and stacked bar graphs to answer comparison questions and questions requiring arithmetic calculations. A one-parameter version of the model (with equal weights for all components) and a two-parameter version (with different weights for arithmetic and nonarithmetic processes) accounted for 76%-85% of individual subjects' variance in response time and 61%-68% of the variance taken across all subjects. The discussion addresses possible modifications in the MA-P model, alternative models, and design implications from the MA-P model.

  15. Bond graphs for modelling, control and fault diagnosis of engineering systems

    CERN Document Server

    2017-01-01

    This book presents theory and latest application work in Bond Graph methodology with a focus on: • Hybrid dynamical system models, • Model-based fault diagnosis, model-based fault tolerant control, fault prognosis • and also addresses • Open thermodynamic systems with compressible fluid flow, • Distributed parameter models of mechanical subsystems. In addition, the book covers various applications of current interest ranging from motorised wheelchairs, in-vivo surgery robots, walking machines to wind-turbines.The up-to-date presentation has been made possible by experts who are active members of the worldwide bond graph modelling community. This book is the completely revised 2nd edition of the 2011 Springer compilation text titled Bond Graph Modelling of Engineering Systems – Theory, Applications and Software Support. It extends the presentation of theory and applications of graph methodology by new developments and latest research results. Like the first edition, this book addresses readers in a...

  16. Modeling of tethered satellite formations using graph theory

    DEFF Research Database (Denmark)

    Larsen, Martin Birkelund; Smith, Roy S; Blanke, Mogens

    2011-01-01

    satellite formation and proposes a method to deduce the equations of motion for the attitude dynamics of the formation in a compact form. The use of graph theory and Lagrange mechanics together allows a broad class of formations to be described using the same framework. A method is stated for finding...

  17. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Shik; Park, Jeon Soo [Busan National Univ. (Korea, Republic of)

    1991-09-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1{sup st}-dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2{sup nd}-dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author).

  18. Bond graph modeling and LQG/LTR controller design of magnetically levitation systems

    International Nuclear Information System (INIS)

    Kim, Jong Shik; Park, Jeon Soo

    1991-01-01

    A logical and systematic procedure to derive a mathematical model for magnetically levitation (MAGLEV) systems with a combined lift and guidance is developed by using bond graph modeling techniques. First, bond graph is contructed for the 1 st -dimensional MAGLEV system in which three subsystems (energy feeding, track and vehicle) are considered. And, the 2 nd -dimensional MAGLEV system in which lift and guidance dynamics are coupled is modeled by using the concept of multi-port field in bond graph languages. Finally, the LQG/LTR control system is designed for a multivariable MAGLEV system with stagger configuration type. In this paper, it has been shown that the bond graph is an excellent effective method for modeling multi-energy domain systems such as MAGLEV systems with uncertainties such as mass variations, track irregularities and wind gusts. (Author)

  19. Automated Modeling and Simulation Using the Bond Graph Method for the Aerospace Industry

    Science.gov (United States)

    Granda, Jose J.; Montgomery, Raymond C.

    2003-01-01

    Bond graph modeling was originally developed in the late 1950s by the late Prof. Henry M. Paynter of M.I.T. Prof. Paynter acted well before his time as the main advantage of his creation, other than the modeling insight that it provides and the ability of effectively dealing with Mechatronics, came into fruition only with the recent advent of modern computer technology and the tools derived as a result of it, including symbolic manipulation, MATLAB, and SIMULINK and the Computer Aided Modeling Program (CAMPG). Thus, only recently have these tools been available allowing one to fully utilize the advantages that the bond graph method has to offer. The purpose of this paper is to help fill the knowledge void concerning its use of bond graphs in the aerospace industry. The paper first presents simple examples to serve as a tutorial on bond graphs for those not familiar with the technique. The reader is given the basic understanding needed to appreciate the applications that follow. After that, several aerospace applications are developed such as modeling of an arresting system for aircraft carrier landings, suspension models used for landing gears and multibody dynamics. The paper presents also an update on NASA's progress in modeling the International Space Station (ISS) using bond graph techniques, and an advanced actuation system utilizing shape memory alloys. The later covers the Mechatronics advantages of the bond graph method, applications that simultaneously involves mechanical, hydraulic, thermal, and electrical subsystem modeling.

  20. Individual Travel Behavior Modeling of Public Transport Passenger Based on Graph Construction

    Directory of Open Access Journals (Sweden)

    Quan Liang

    2018-01-01

    Full Text Available This paper presents a novel method for mining the individual travel behavior regularity of different public transport passengers through constructing travel behavior graph based model. The individual travel behavior graph is developed to represent spatial positions, time distributions, and travel routes and further forecasts the public transport passenger’s behavior choice. The proposed travel behavior graph is composed of macronodes, arcs, and transfer probability. Each macronode corresponds to a travel association map and represents a travel behavior. A travel association map also contains its own nodes. The nodes of a travel association map are created when the processed travel chain data shows significant change. Thus, each node of three layers represents a significant change of spatial travel positions, travel time, and routes, respectively. Since a travel association map represents a travel behavior, the graph can be considered a sequence of travel behaviors. Through integrating travel association map and calculating the probabilities of the arcs, it is possible to construct a unique travel behavior graph for each passenger. The data used in this study are multimode data matched by certain rules based on the data of public transport smart card transactions and network features. The case study results show that graph based method to model the individual travel behavior of public transport passengers is effective and feasible. Travel behavior graphs support customized public transport travel characteristics analysis and demand prediction.

  1. A Comparison of Video Modeling, Text-Based Instruction, and No Instruction for Creating Multiple Baseline Graphs in Microsoft Excel

    Science.gov (United States)

    Tyner, Bryan C.; Fienup, Daniel M.

    2015-01-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance.…

  2. A lossy graph model for delay reduction in generalized instantly decodable network coding

    KAUST Repository

    Douik, Ahmed S.

    2014-06-01

    The problem of minimizing the decoding delay in Generalized instantly decodable network coding (G-IDNC) for both perfect and lossy feedback scenarios is formulated as a maximum weight clique problem over the G-IDNC graph in. In this letter, we introduce a new lossy G-IDNC graph (LG-IDNC) model to further minimize the decoding delay in lossy feedback scenarios. Whereas the G-IDNC graph represents only doubtless combinable packets, the LG-IDNC graph represents also uncertain packet combinations, arising from lossy feedback events, when the expected decoding delay of XORing them among themselves or with other certain packets is lower than that expected when sending these packets separately. We compare the decoding delay performance of LG-IDNC and G-IDNC graphs through extensive simulations. Numerical results show that our new LG-IDNC graph formulation outperforms the G-IDNC graph formulation in all lossy feedback situations and achieves significant improvement in the decoding delay especially when the feedback erasure probability is higher than the packet erasure probability. © 2012 IEEE.

  3. A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    International Nuclear Information System (INIS)

    Bedini, Andrea; Jacobsen, Jesper Lykke

    2010-01-01

    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N = 100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ∼ exp(1.516√N), a substantial improvement over the exponential running time ∼exp (0.245N) provided by the hitherto best-known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.

  4. GDM:A New Graph Based Data Model Using Functional Abstractionx

    Institute of Scientific and Technical Information of China (English)

    Sankhayan Choudhury; Nabendu Chaki; Swapan Bhattacharya

    2006-01-01

    In this paper, a Graph-based semantic Data Model (GDM) is proposed with the primary objective of bridging the gap between the human perception of an enterprise and the needs of computing infrastructure to organize information in some particular manner for efficient storage and retrieval. The Graph Data Model (GDM) has been proposed as an alternative data model to combine the advantages of the relational model with the positive features of semantic data models.The proposed GDM offers a structural representation for interacting to the designer, making it always easy to comprehend the complex relations amongst basic data items. GDM allows an entire database to be viewed as a Graph (V, E) in a layered organization. Here, a graph is created in a bottom up fashion where V represents the basic instances of data or a functionally abstracted module, called primary semantic group (PSG) and secondary semantic group (SSG). An edge in the model implies the relationship among the secondary semantic groups. The contents of the lowest layer are the semantically grouped data values in the form of primary semantic groups. The SSGs are nothing but the higher-level abstraction and are created by the method of encapsulation of various PSGs, SSGs and basic data elements. This encapsulation methodology to provide a higher-level abstraction continues generating various secondary semantic groups until the designer thinks that it is sufficient to declare the actual problem domain. GDM, thus, uses standard abstractions available in a semantic data model with a structural representation in terms of a graph. The operations on the data model are formalized in the proposed graph algebra. A Graph Query Language (GQL) is also developed, maintaining similaritywith the widely accepted user-friendly SQL. Finally, the paper also presents the methodology to make this GDM compatible with the distributed environment,and a corresponding query processing technique for distributed environment is also

  5. Bond Graph Model of Cerebral Circulation: Toward Clinically Feasible Systemic Blood Flow Simulations

    Science.gov (United States)

    Safaei, Soroush; Blanco, Pablo J.; Müller, Lucas O.; Hellevik, Leif R.; Hunter, Peter J.

    2018-01-01

    We propose a detailed CellML model of the human cerebral circulation that runs faster than real time on a desktop computer and is designed for use in clinical settings when the speed of response is important. A lumped parameter mathematical model, which is based on a one-dimensional formulation of the flow of an incompressible fluid in distensible vessels, is constructed using a bond graph formulation to ensure mass conservation and energy conservation. The model includes arterial vessels with geometric and anatomical data based on the ADAN circulation model. The peripheral beds are represented by lumped parameter compartments. We compare the hemodynamics predicted by the bond graph formulation of the cerebral circulation with that given by a classical one-dimensional Navier-Stokes model working on top of the whole-body ADAN model. Outputs from the bond graph model, including the pressure and flow signatures and blood volumes, are compared with physiological data. PMID:29551979

  6. A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS Problem

    Directory of Open Access Journals (Sweden)

    Zhan Peng

    2017-08-01

    Full Text Available Searching for the Multiple Longest Common Subsequences (MLCS of multiple sequences is a classical NP-hard problem, which has been used in many applications. One of the most effective exact approaches for the MLCS problem is based on dominant point graph, which is a kind of directed acyclic graph (DAG. However, the time and space efficiency of the leading dominant point graph based approaches is still unsatisfactory: constructing the dominated point graph used by these approaches requires a huge amount of time and space, which hinders the applications of these approaches to large-scale and long sequences. To address this issue, in this paper, we propose a new time and space efficient graph model called the Leveled-DAG for the MLCS problem. The Leveled-DAG can timely eliminate all the nodes in the graph that cannot contribute to the construction of MLCS during constructing. At any moment, only the current level and some previously generated nodes in the graph need to be kept in memory, which can greatly reduce the memory consumption. Also, the final graph contains only one node in which all of the wanted MLCS are saved, thus, no additional operations for searching the MLCS are needed. The experiments are conducted on real biological sequences with different numbers and lengths respectively, and the proposed algorithm is compared with three state-of-the-art algorithms. The experimental results show that the time and space needed for the Leveled-DAG approach are smaller than those for the compared algorithms especially on large-scale and long sequences.

  7. Redes académicas al interior de las escuelas chilenas: Un estudio exploratorio utilizando Modelos Exponenciales de Grafos Aleatorios (ERGM)

    OpenAIRE

    Diego Palacios; Cristóbal Villalobos

    2016-01-01

    El artículo analiza las redes académicas que se producen al interior de aulas chilenas entre estudiantes de Tercer Año Medio (K-11) en distintos tipos de establecimientos, a través de Modelos Exponenciales de Grafos Aleatorios (ERGM). A partir de un modelo analítico que incorpora variables endógenas (reciprocidad, conectividad simple, popularidad, actividad, triangulación) y variables exógenas (género del estudiante, nivel socioeconómico, capital cultural, capital social), se observa que el e...

  8. An Interactive Teaching System for Bond Graph Modeling and Simulation in Bioengineering

    Science.gov (United States)

    Roman, Monica; Popescu, Dorin; Selisteanu, Dan

    2013-01-01

    The objective of the present work was to implement a teaching system useful in modeling and simulation of biotechnological processes. The interactive system is based on applications developed using 20-sim modeling and simulation software environment. A procedure for the simulation of bioprocesses modeled by bond graphs is proposed and simulators…

  9. Modeling and Simulation of a Wind Turbine Driven Induction Generator Using Bond Graph

    Directory of Open Access Journals (Sweden)

    Lachouri Abderrazak

    2015-12-01

    Full Text Available The objective of this paper is to investigate the modelling and simulation of wind turbine applied on induction generator with bond graph methodology as   a graphical and multi domain approach. They provide a precise and unambiguous modelling tool, which allows for the specification of hierarchical physical structures. The paper begins with an introduction to the bond graphs technique, followed by an implementation of the wind turbine model. Simulation results illustrate the simplified system response obtained using the 20-sim software.

  10. Transformation Strategies between Block-Oriented and Graph-Oriented Process Modelling Languages

    DEFF Research Database (Denmark)

    Mendling, Jan; Lassen, Kristian Bisgaard; Zdun, Uwe

    2006-01-01

    Much recent research work discusses the transformation between different process modelling languages. This work, however, is mainly focussed on specific process modelling languages, and thus the general reusability of the applied transformation concepts is rather limited. In this paper, we aim...... to abstract from concrete transformation strategies by distinguishing two major paradigms for representing control flow in process modelling languages: block-oriented languages (such as BPEL and BPML) and graph-oriented languages (such as EPCs and YAWL). The contribution of this paper are generic strategies...... for transforming from block-oriented process languages to graph-oriented languages, and vice versa....

  11. State space model extraction of thermohydraulic systems – Part I: A linear graph approach

    International Nuclear Information System (INIS)

    Uren, K.R.; Schoor, G. van

    2013-01-01

    Thermohydraulic simulation codes are increasingly making use of graphical design interfaces. The user can quickly and easily design a thermohydraulic system by placing symbols on the screen resembling system components. These components can then be connected to form a system representation. Such system models may then be used to obtain detailed simulations of the physical system. Usually this kind of simulation models are too complex and not ideal for control system design. Therefore, a need exists for automated techniques to extract lumped parameter models useful for control system design. The goal of this first paper, in a two part series, is to propose a method that utilises a graphical representation of a thermohydraulic system, and a lumped parameter modelling approach, to extract state space models. In this methodology each physical domain of the thermohydraulic system is represented by a linear graph. These linear graphs capture the interaction between all components within and across energy domains – hydraulic, thermal and mechanical. These linear graphs are analysed using a graph-theoretic approach to derive reduced order state space models. These models capture the dominant dynamics of the thermohydraulic system and are ideal for control system design purposes. The proposed state space model extraction method is demonstrated by considering a U-tube system. A non-linear state space model is extracted representing both the hydraulic and thermal domain dynamics of the system. The simulated state space model is compared with a Flownex ® model of the U-tube. Flownex ® is a validated systems thermal-fluid simulation software package. - Highlights: • A state space model extraction methodology based on graph-theoretic concepts. • An energy-based approach to consider multi-domain systems in a common framework. • Allow extraction of transparent (white-box) state space models automatically. • Reduced order models containing only independent state

  12. Modeling, Control and Analyze of Multi-Machine Drive Systems using Bond Graph Technique

    Directory of Open Access Journals (Sweden)

    J. Belhadj

    2006-03-01

    Full Text Available In this paper, a system viewpoint method has been investigated to study and analyze complex systems using Bond Graph technique. These systems are multimachine multi-inverter based on Induction Machine (IM, well used in industries like rolling mills, textile, and railway traction. These systems are multi-domains, multi-scales time and present very strong internal and external couplings, with non-linearity characterized by a high model order. The classical study with analytic model is difficult to manipulate and it is limited to some performances. In this study, a “systemic approach” is presented to design these kinds of systems, using an energetic representation based on Bond Graph formalism. Three types of multimachine are studied with their control strategies. The modeling is carried out by Bond Graph and results are discussed to show the performances of this methodology

  13. A nonlinear q-voter model with deadlocks on the Watts-Strogatz graph

    Science.gov (United States)

    Sznajd-Weron, Katarzyna; Michal Suszczynski, Karol

    2014-07-01

    We study the nonlinear $q$-voter model with deadlocks on a Watts-Strogats graph. Using Monte Carlo simulations, we obtain so called exit probability and exit time. We determine how network properties, such as randomness or density of links influence exit properties of a model.

  14. P2 : A random effects model with covariates for directed graphs

    NARCIS (Netherlands)

    van Duijn, M.A.J.; Snijders, T.A.B.; Zijlstra, B.J.H.

    A random effects model is proposed for the analysis of binary dyadic data that represent a social network or directed graph, using nodal and/or dyadic attributes as covariates. The network structure is reflected by modeling the dependence between the relations to and from the same actor or node.

  15. Connections between the Sznajd model with general confidence rules and graph theory

    Science.gov (United States)

    Timpanaro, André M.; Prado, Carmen P. C.

    2012-10-01

    The Sznajd model is a sociophysics model that is used to model opinion propagation and consensus formation in societies. Its main feature is that its rules favor bigger groups of agreeing people. In a previous work, we generalized the bounded confidence rule in order to model biases and prejudices in discrete opinion models. In that work, we applied this modification to the Sznajd model and presented some preliminary results. The present work extends what we did in that paper. We present results linking many of the properties of the mean-field fixed points, with only a few qualitative aspects of the confidence rule (the biases and prejudices modeled), finding an interesting connection with graph theory problems. More precisely, we link the existence of fixed points with the notion of strongly connected graphs and the stability of fixed points with the problem of finding the maximal independent sets of a graph. We state these results and present comparisons between the mean field and simulations in Barabási-Albert networks, followed by the main mathematical ideas and appendices with the rigorous proofs of our claims and some graph theory concepts, together with examples. We also show that there is no qualitative difference in the mean-field results if we require that a group of size q>2, instead of a pair, of agreeing agents be formed before they attempt to convince other sites (for the mean field, this would coincide with the q-voter model).

  16. Pseudo-Bond Graph model for the analysis of the thermal behavior of buildings

    Directory of Open Access Journals (Sweden)

    Merabtine Abdelatif

    2013-01-01

    Full Text Available In this work, a simplified graphical modeling tool, which in some extent can be considered in halfway between detailed physical and Data driven dynamic models, has been developed. This model is based on Bond Graphs approach. This approach has the potential to display explicitly the nature of power in a building system, such as a phenomenon of storage, processing and dissipating energy such as Heating, Ventilation and Air-Conditioning (HVAC systems. This paper represents the developed models of the two transient heat conduction problems corresponding to the most practical cases in building envelope, such as the heat transfer through vertical walls, roofs and slabs. The validation procedure consists of comparing the results obtained with this model with analytical solution. It has shown very good agreement between measured data and Bond Graphs model simulation. The Bond Graphs technique is then used to model the building dynamic thermal behavior over a single zone building structure and compared with a set of experimental data. An evaluation of indoor temperature was carried out in order to check our Bond Graphs model.

  17. Transformation Strategies between Block-Oriented and Graph-Oriented Process Modelling Languages

    DEFF Research Database (Denmark)

    Mendling, Jan; Lassen, Kristian Bisgaard; Zdun, Uwe

    to abstract from concrete transformationstrategies by distinguishing two major paradigms for process modelling languages:block-oriented languages (such as BPEL and BPML) and graph-oriented languages(such as EPCs and YAWL). The contribution of this paper are generic strategiesfor transforming from block......Much recent research work discusses the transformation between differentprocess modelling languages. This work, however, is mainly focussed on specific processmodelling languages, and thus the general reusability of the applied transformationconcepts is rather limited. In this paper, we aim......-oriented process languages to graph-oriented languages,and vice versa. We also present two case studies of applying our strategies....

  18. Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2015-10-01

    Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.

  19. Accessing Data Bases Through Interface Views Using a Unified Graph-Oriented Entity-Relationship Model

    DEFF Research Database (Denmark)

    Kraft, Peter; Sørensen, Jens Otto

    Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely. By the ......Interface Abstract: The paper describes an Entity Relationship (ER) model with a diagrammed schema and extensions modeled into a graph. The semantics of schema symbols are fundamentally simple implying a unified model where given conceptualizations of environments are diagrammed uniquely...... with a unified graphic model is more efficient and less error-prone than working with more complex ER models and models based on lexical description. Key terms: Entity-relationship model, path expressions, entity-relationship language, derived interface view, view updates, graphical models....

  20. GraphCrunch 2: Software tool for network modeling, alignment and clustering.

    Science.gov (United States)

    Kuchaiev, Oleksii; Stevanović, Aleksandar; Hayes, Wayne; Pržulj, Nataša

    2011-01-19

    Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI) data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL") for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other existing tool. Finally, GraphCruch 2 implements an

  1. GraphCrunch 2: Software tool for network modeling, alignment and clustering

    Directory of Open Access Journals (Sweden)

    Hayes Wayne

    2011-01-01

    Full Text Available Abstract Background Recent advancements in experimental biotechnology have produced large amounts of protein-protein interaction (PPI data. The topology of PPI networks is believed to have a strong link to their function. Hence, the abundance of PPI data for many organisms stimulates the development of computational techniques for the modeling, comparison, alignment, and clustering of networks. In addition, finding representative models for PPI networks will improve our understanding of the cell just as a model of gravity has helped us understand planetary motion. To decide if a model is representative, we need quantitative comparisons of model networks to real ones. However, exact network comparison is computationally intractable and therefore several heuristics have been used instead. Some of these heuristics are easily computable "network properties," such as the degree distribution, or the clustering coefficient. An important special case of network comparison is the network alignment problem. Analogous to sequence alignment, this problem asks to find the "best" mapping between regions in two networks. It is expected that network alignment might have as strong an impact on our understanding of biology as sequence alignment has had. Topology-based clustering of nodes in PPI networks is another example of an important network analysis problem that can uncover relationships between interaction patterns and phenotype. Results We introduce the GraphCrunch 2 software tool, which addresses these problems. It is a significant extension of GraphCrunch which implements the most popular random network models and compares them with the data networks with respect to many network properties. Also, GraphCrunch 2 implements the GRAph ALigner algorithm ("GRAAL" for purely topological network alignment. GRAAL can align any pair of networks and exposes large, dense, contiguous regions of topological and functional similarities far larger than any other

  2. Interaction graphs

    DEFF Research Database (Denmark)

    Seiller, Thomas

    2016-01-01

    Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...

  3. Quantum graphs: a simple model for chaotic scattering

    International Nuclear Information System (INIS)

    Kottos, Tsampikos; Smilansky, Uzy

    2003-01-01

    We connect quantum graphs with infinite leads, and turn them into scattering systems. We show that they display all the features which characterize quantum scattering systems with an underlying classical chaotic dynamics: typical poles, delay time and conductance distributions, Ericson fluctuations, and when considered statistically, the ensemble of scattering matrices reproduces quite well the predictions of the appropriately defined random matrix ensembles. The underlying classical dynamics can be defined, and it provides important parameters which are needed for the quantum theory. In particular, we derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. We use this in order to investigate the origin of the connection between random matrix theory and the underlying classical chaotic dynamics. Being an exact theory, and due to its relative simplicity, it offers new insights into this problem which is at the forefront of the research in chaotic scattering and related fields

  4. Price competition on graphs

    NARCIS (Netherlands)

    Soetevent, A.R.

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial

  5. Screw-vector bond graphs for kinetic-static modelling and analysis of mechanisms

    International Nuclear Information System (INIS)

    Bidard, Catherine

    1994-01-01

    This dissertation deals with the kinetic-static modelling and analysis of spatial mechanisms used in robotics systems. A framework is proposed, which embodies a geometrical and a network approach for kinetic-static modelling. For this purpose we use screw theory and bond graphs. A new form of bond graphs is introduced: the screw-vector bond graph, whose power variables are defined to be wrenches and twists expressed as intrinsic screw-vectors. The mechanism is then identified as a network, whose components are kinematic pairs and whose topology is described by a directed graph. A screw-vector Simple Junction Structure represents the topological constraints. Kinematic pairs are represented by one-port elements, defined by two reciprocal screw-vector spaces. Using dual bases of screw-vectors, a generic decomposition of kinematic pair elements is given. The reduction of kinetic-static models of series and parallel kinematic chains is used in order to derive kinetic-static functional models in geometric form. Thereupon, the computational causality assignment is adapted for the graphical analysis of the mobility and the functioning of spatial mechanisms, based on completely or incompletely specified models. (author) [fr

  6. Graph theory applied to noise and vibration control in statistical energy analysis models.

    Science.gov (United States)

    Guasch, Oriol; Cortés, Lluís

    2009-06-01

    A fundamental aspect of noise and vibration control in statistical energy analysis (SEA) models consists in first identifying and then reducing the energy flow paths between subsystems. In this work, it is proposed to make use of some results from graph theory to address both issues. On the one hand, linear and path algebras applied to adjacency matrices of SEA graphs are used to determine the existence of any order paths between subsystems, counting and labeling them, finding extremal paths, or determining the power flow contributions from groups of paths. On the other hand, a strategy is presented that makes use of graph cut algorithms to reduce the energy flow from a source subsystem to a receiver one, modifying as few internal and coupling loss factors as possible.

  7. Use of Graph-Theoretic Models in Technological Preparation of Assembly Plant

    Directory of Open Access Journals (Sweden)

    Peter Franzevich Yurchik

    2015-05-01

    Full Text Available The article examines the existing ways of describing the structural and technological properties of the product in the process of building and repair. It turned out that the main body of work on the preparation process of assembling production uses graph-theoretic model of the product. It is shown that, in general, the structural integrity of many-form connections and relations on the set of components that can not be adequately described by binary structures, such as graphs, networks or trees.

  8. Model-Based Requirements Management in Gear Systems Design Based On Graph-Based Design Languages

    Directory of Open Access Journals (Sweden)

    Kevin Holder

    2017-10-01

    Full Text Available For several decades, a wide-spread consensus concerning the enormous importance of an in-depth clarification of the specifications of a product has been observed. A weak clarification of specifications is repeatedly listed as a main cause for the failure of product development projects. Requirements, which can be defined as the purpose, goals, constraints, and criteria associated with a product development project, play a central role in the clarification of specifications. The collection of activities which ensure that requirements are identified, documented, maintained, communicated, and traced throughout the life cycle of a system, product, or service can be referred to as “requirements engineering”. These activities can be supported by a collection and combination of strategies, methods, and tools which are appropriate for the clarification of specifications. Numerous publications describe the strategy and the components of requirements management. Furthermore, recent research investigates its industrial application. Simultaneously, promising developments of graph-based design languages for a holistic digital representation of the product life cycle are presented. Current developments realize graph-based languages by the diagrams of the Unified Modelling Language (UML, and allow the automatic generation and evaluation of multiple product variants. The research presented in this paper seeks to present a method in order to combine the advantages of a conscious requirements management process and graph-based design languages. Consequently, the main objective of this paper is the investigation of a model-based integration of requirements in a product development process by means of graph-based design languages. The research method is based on an in-depth analysis of an exemplary industrial product development, a gear system for so-called “Electrical Multiple Units” (EMU. Important requirements were abstracted from a gear system

  9. Performance analysis of chi models using discrete-time probabilistic reward graphs

    NARCIS (Netherlands)

    Trcka, N.; Georgievska, S.; Markovski, J.; Andova, S.; Vink, de E.P.

    2008-01-01

    We propose the model of discrete-time probabilistic reward graphs (DTPRGs) for performance analysis of systems exhibiting discrete deterministic time delays and probabilistic behavior, via their interpretation as discrete-time Markov reward chains, full-fledged platform for qualitative and

  10. Comparing relational model transformation technologies: implementing Query/View/Transformation with Triple Graph Grammars

    DEFF Research Database (Denmark)

    Greenyer, Joel; Kindler, Ekkart

    2010-01-01

    and for model-based software engineering approaches in general. QVT (Query/View/Transformation) is the transformation technology recently proposed for this purpose by the OMG. TGGs (Triple Graph Grammars) are another transformation technology proposed in the mid-nineties, used for example in the FUJABA CASE...

  11. Bridging Weighted Rules and Graph Random Walks for Statistical Relational Models

    Directory of Open Access Journals (Sweden)

    Seyed Mehran Kazemi

    2018-02-01

    Full Text Available The aim of statistical relational learning is to learn statistical models from relational or graph-structured data. Three main statistical relational learning paradigms include weighted rule learning, random walks on graphs, and tensor factorization. These paradigms have been mostly developed and studied in isolation for many years, with few works attempting at understanding the relationship among them or combining them. In this article, we study the relationship between the path ranking algorithm (PRA, one of the most well-known relational learning methods in the graph random walk paradigm, and relational logistic regression (RLR, one of the recent developments in weighted rule learning. We provide a simple way to normalize relations and prove that relational logistic regression using normalized relations generalizes the path ranking algorithm. This result provides a better understanding of relational learning, especially for the weighted rule learning and graph random walk paradigms. It opens up the possibility of using the more flexible RLR rules within PRA models and even generalizing both by including normalized and unnormalized relations in the same model.

  12. A comparison of video modeling, text-based instruction, and no instruction for creating multiple baseline graphs in Microsoft Excel.

    Science.gov (United States)

    Tyner, Bryan C; Fienup, Daniel M

    2015-09-01

    Graphing is socially significant for behavior analysts; however, graphing can be difficult to learn. Video modeling (VM) may be a useful instructional method but lacks evidence for effective teaching of computer skills. A between-groups design compared the effects of VM, text-based instruction, and no instruction on graphing performance. Participants who used VM constructed graphs significantly faster and with fewer errors than those who used text-based instruction or no instruction. Implications for instruction are discussed. © Society for the Experimental Analysis of Behavior.

  13. Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.

    Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference

  14. Entropy and Graph Based Modelling of Document Coherence using Discourse Entities

    DEFF Research Database (Denmark)

    Petersen, Casper; Lioma, Christina; Simonsen, Jakob Grue

    2015-01-01

    We present two novel models of document coherence and their application to information retrieval (IR). Both models approximate document coherence using discourse entities, e.g. the subject or object of a sentence. Our first model views text as a Markov process generating sequences of discourse...... entities (entity n-grams); we use the entropy of these entity n-grams to approximate the rate at which new information appears in text, reasoning that as more new words appear, the topic increasingly drifts and text coherence decreases. Our second model extends the work of Guinaudeau & Strube [28......] that represents text as a graph of discourse entities, linked by different relations, such as their distance or adjacency in text. We use several graph topology metrics to approximate different aspects of the discourse flow that can indicate coherence, such as the average clustering or betweenness of discourse...

  15. Symbolic Dependency Graphs for PCTL Model-Checking

    DEFF Research Database (Denmark)

    Mariegaard, Anders; Larsen, Kim Guldstrand

    2017-01-01

    We consider the problem of model-checking a subset of probabilistic CTL, interpreted over (discrete-time) Markov reward models, allowing the specification of lower bounds on the probability of the set of paths satisfying a cost-bounded path formula. We first consider a reduction to fixed-point co......We consider the problem of model-checking a subset of probabilistic CTL, interpreted over (discrete-time) Markov reward models, allowing the specification of lower bounds on the probability of the set of paths satisfying a cost-bounded path formula. We first consider a reduction to fixed...

  16. Graph Modelling Approach: Application to a Distillation Column

    DEFF Research Database (Denmark)

    Hovelaque, V.; Commault, C.; Bahar, Mehrdad

    1997-01-01

    Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks.......Introduction, structured systems and digraphs, distillation column model, generic input-output decoupling problem, generic disturbance rejection problem, concluding remarks....

  17. Around power law for PageRank components in Buckley-Osthus model of web graph

    OpenAIRE

    Gasnikov, Alexander; Zhukovskii, Maxim; Kim, Sergey; Noskov, Fedor; Plaunov, Stepan; Smirnov, Daniil

    2017-01-01

    In the paper we investigate power law for PageRank components for the Buckley-Osthus model for web graph. We compare different numerical methods for PageRank calculation. With the best method we do a lot of numerical experiments. These experiments confirm the hypothesis about power law. At the end we discuss real model of web-ranking based on the classical PageRank approach.

  18. Formal Analysis of Functional Behaviour for Model Transformations Based on Triple Graph Grammars - Extended Version

    OpenAIRE

    Hermann, Frank; Ehrig, Hartmut; Orejas, Fernando; Ulrike, Golas

    2010-01-01

    Triple Graph Grammars (TGGs) are a well-established concept for the specification of model transformations. In previous work we have formalized and analyzed already crucial properties of model transformations like termination, correctness and completeness, but functional behaviour - especially local confluence - is missing up to now. In order to close this gap we generate forward translation rules, which extend standard forward rules by translation attributes keeping track of the elements whi...

  19. Using a High-Dimensional Graph of Semantic Space to Model Relationships among Words

    Directory of Open Access Journals (Sweden)

    Alice F Jackson

    2014-05-01

    Full Text Available The GOLD model (Graph Of Language Distribution is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA. The superior performance of the GOLD models (big and small suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition.

  20. Using a high-dimensional graph of semantic space to model relationships among words.

    Science.gov (United States)

    Jackson, Alice F; Bolger, Donald J

    2014-01-01

    The GOLD model (Graph Of Language Distribution) is a network model constructed based on co-occurrence in a large corpus of natural language that may be used to explore what information may be present in a graph-structured model of language, and what information may be extracted through theoretically-driven algorithms as well as standard graph analysis methods. The present study will employ GOLD to examine two types of relationship between words: semantic similarity and associative relatedness. Semantic similarity refers to the degree of overlap in meaning between words, while associative relatedness refers to the degree to which two words occur in the same schematic context. It is expected that a graph structured model of language constructed based on co-occurrence should easily capture associative relatedness, because this type of relationship is thought to be present directly in lexical co-occurrence. However, it is hypothesized that semantic similarity may be extracted from the intersection of the set of first-order connections, because two words that are semantically similar may occupy similar thematic or syntactic roles across contexts and thus would co-occur lexically with the same set of nodes. Two versions the GOLD model that differed in terms of the co-occurence window, bigGOLD at the paragraph level and smallGOLD at the adjacent word level, were directly compared to the performance of a well-established distributional model, Latent Semantic Analysis (LSA). The superior performance of the GOLD models (big and small) suggest that a single acquisition and storage mechanism, namely co-occurrence, can account for associative and conceptual relationships between words and is more psychologically plausible than models using singular value decomposition (SVD).

  1. Bayesian analysis for exponential random graph models using the adaptive exchange sampler

    KAUST Repository

    Jin, Ick Hoon

    2013-01-01

    Exponential random graph models have been widely used in social network analysis. However, these models are extremely difficult to handle from a statistical viewpoint, because of the existence of intractable normalizing constants. In this paper, we consider a fully Bayesian analysis for exponential random graph models using the adaptive exchange sampler, which solves the issue of intractable normalizing constants encountered in Markov chain Monte Carlo (MCMC) simulations. The adaptive exchange sampler can be viewed as a MCMC extension of the exchange algorithm, and it generates auxiliary networks via an importance sampling procedure from an auxiliary Markov chain running in parallel. The convergence of this algorithm is established under mild conditions. The adaptive exchange sampler is illustrated using a few social networks, including the Florentine business network, molecule synthetic network, and dolphins network. The results indicate that the adaptive exchange algorithm can produce more accurate estimates than approximate exchange algorithms, while maintaining the same computational efficiency.

  2. Effect of disorder on condensation in the lattice gas model on a random graph.

    Science.gov (United States)

    Handford, Thomas P; Dear, Alexander; Pérez-Reche, Francisco J; Taraskin, Sergei N

    2014-07-01

    The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells, is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range. Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite treating the pore space loops in a simplified manner, the random-graph model provides a good description of condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a structural model of mesoporous silica SBA-15.

  3. Graph-based Models for Data and Decision Making

    Science.gov (United States)

    2016-02-16

    most softwru-e) do not allow extemal synchronization. This is a generalized version of the MATB developed to assess multitasking in pilot -like... Multitasking …………………………...2 1.7 ACT-R and LBA Model Mimicry Reveals Similarity Across Levels of Analysis……..2 1.8 Exploring Individual Differences via...Netherlands, April 9-11, 39-44.) 1.6 Modeling the Workload of Capacity of Visual Multitasking We are extending the application of the capacity

  4. A topo-graph model for indistinct target boundary definition from anatomical images.

    Science.gov (United States)

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Gaussian covariance graph models accounting for correlated marker effects in genome-wide prediction.

    Science.gov (United States)

    Martínez, C A; Khare, K; Rahman, S; Elzo, M A

    2017-10-01

    Several statistical models used in genome-wide prediction assume uncorrelated marker allele substitution effects, but it is known that these effects may be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high-dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph models (GCovGM), the joint distribution of a set of random variables is assumed to be Gaussian and the pattern of zeros of the covariance matrix is encoded in terms of an undirected graph G. In this study, methods adapting the theory of GCovGM to genome-wide prediction were developed (Bayes GCov, Bayes GCov-KR and Bayes GCov-H). In simulated data sets, improvements in correlation between phenotypes and predicted breeding values and accuracies of predicted breeding values were found. Our models account for correlation of marker effects and permit to accommodate general structures as opposed to models proposed in previous studies, which consider spatial correlation only. In addition, they allow incorporation of biological information in the prediction process through its use when constructing graph G, and their extension to the multi-allelic loci case is straightforward. © 2017 Blackwell Verlag GmbH.

  6. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  7. Graph configuration model based evaluation of the education-occupation match.

    Science.gov (United States)

    Gadar, Laszlo; Abonyi, Janos

    2018-01-01

    To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.

  8. Design of Graph Analysis Model to support Decision Making

    International Nuclear Information System (INIS)

    An, Sang Ha; Lee, Sung Jin; Chang, Soon Heung; Kim, Sung Ho; Kim, Tae Woon

    2005-01-01

    Korea is meeting the growing electric power needs by using nuclear, fissile, hydro energy and so on. But we can not use fissile energy forever, and the people's consideration about nature has been changed. So we have to prepare appropriate energy by the conditions before people need more energy. And we should prepare dynamic response because people's need would be changed as the time goes on. So we designed graphic analysis model (GAM) for the dynamic analysis of decision on the energy sources. It can support Analytic Hierarchy Process (AHP) analysis based on Graphic User Interface

  9. Modelling and analysis of distributed simulation protocols with distributed graph transformation

    OpenAIRE

    Lara, Juan de; Taentzer, Gabriele

    2005-01-01

    Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. J. de Lara, and G. Taentzer, "Modelling and analysis of distributed simulation protocols with distributed graph transformation...

  10. Hadronic equation of state in the statistical bootstrap model and linear graph theory

    International Nuclear Information System (INIS)

    Fre, P.; Page, R.

    1976-01-01

    Taking a statistical mechanical point og view, the statistical bootstrap model is discussed and, from a critical analysis of the bootstrap volume comcept, it is reached a physical ipothesis, which leads immediately to the hadronic equation of state provided by the bootstrap integral equation. In this context also the connection between the statistical bootstrap and the linear graph theory approach to interacting gases is analyzed

  11. Hybrid Model For Reverberant Indoor Radio Channels Using Rays and Graphs

    DEFF Research Database (Denmark)

    Steinböck, Gerhard; Gan, Mingming; Meissner, Paul

    2016-01-01

    efficient calculation of the channel transfer function considering infinitely many components. We use ray-tracing and the theory of room electromagnetics to obtain the parameter settings for the propagation graph. Thus the proposed hybrid model does not require new or additional parameters in comparison...... to ray-tracing. Simulation results show good agreement with measurements with respect to the inclusion of the diffuse tail in both the delay power spectrum and the azimuth delay power spectrum....

  12. Knowledge Graphs as Context Models: Improving the Detection of Cross-Language Plagiarism with Paraphrasing

    OpenAIRE

    Franco-Salvador, Marc; Gupta, Parth; Rosso, Paolo

    2013-01-01

    Cross-language plagiarism detection attempts to identify and extract automatically plagiarism among documents in different languages. Plagiarized fragments can be translated verbatim copies or may alter their structure to hide the copying, which is known as paraphrasing and is more difficult to detect. In order to improve the paraphrasing detection, we use a knowledge graph-based approach to obtain and compare context models of document fragments in different languages. Experimental results i...

  13. Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory

    Science.gov (United States)

    Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael

    2016-01-01

    into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.

  14. Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.

    Science.gov (United States)

    Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo

    2017-07-01

    Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.

  15. Spatio-Semantic Comparison of Large 3d City Models in Citygml Using a Graph Database

    Science.gov (United States)

    Nguyen, S. H.; Yao, Z.; Kolbe, T. H.

    2017-10-01

    A city may have multiple CityGML documents recorded at different times or surveyed by different users. To analyse the city's evolution over a given period of time, as well as to update or edit the city model without negating modifications made by other users, it is of utmost importance to first compare, detect and locate spatio-semantic changes between CityGML datasets. This is however difficult due to the fact that CityGML elements belong to a complex hierarchical structure containing multi-level deep associations, which can basically be considered as a graph. Moreover, CityGML allows multiple syntactic ways to define an object leading to syntactic ambiguities in the exchange format. Furthermore, CityGML is capable of including not only 3D urban objects' graphical appearances but also their semantic properties. Since to date, no known algorithm is capable of detecting spatio-semantic changes in CityGML documents, a frequent approach is to replace the older models completely with the newer ones, which not only costs computational resources, but also loses track of collaborative and chronological changes. Thus, this research proposes an approach capable of comparing two arbitrarily large-sized CityGML documents on both semantic and geometric level. Detected deviations are then attached to their respective sources and can easily be retrieved on demand. As a result, updating a 3D city model using this approach is much more efficient as only real changes are committed. To achieve this, the research employs a graph database as the main data structure for storing and processing CityGML datasets in three major steps: mapping, matching and updating. The mapping process transforms input CityGML documents into respective graph representations. The matching process compares these graphs and attaches edit operations on the fly. Found changes can then be executed using the Web Feature Service (WFS), the standard interface for updating geographical features across the web.

  16. Graph sampling

    OpenAIRE

    Zhang, L.-C.; Patone, M.

    2017-01-01

    We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.

  17. Introduction to quantum graphs

    CERN Document Server

    Berkolaiko, Gregory

    2012-01-01

    A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...

  18. Using the graphs models for evaluating in-core monitoring systems reliability by the method of imiting simulaton

    International Nuclear Information System (INIS)

    Golovanov, M.N.; Zyuzin, N.N.; Levin, G.L.; Chesnokov, A.N.

    1987-01-01

    An approach for estimation of reliability factors of complex reserved systems at early stages of development using the method of imitating simulation is considered. Different types of models, their merits and lacks are given. Features of in-core monitoring systems and advosability of graph model and graph theory element application for estimating reliability of such systems are shown. The results of investigation of the reliability factors of the reactor monitoring, control and core local protection subsystem are shown

  19. Central Limit Theorem for Exponentially Quasi-local Statistics of Spin Models on Cayley Graphs

    Science.gov (United States)

    Reddy, Tulasi Ram; Vadlamani, Sreekar; Yogeshwaran, D.

    2018-04-01

    Central limit theorems for linear statistics of lattice random fields (including spin models) are usually proven under suitable mixing conditions or quasi-associativity. Many interesting examples of spin models do not satisfy mixing conditions, and on the other hand, it does not seem easy to show central limit theorem for local statistics via quasi-associativity. In this work, we prove general central limit theorems for local statistics and exponentially quasi-local statistics of spin models on discrete Cayley graphs with polynomial growth. Further, we supplement these results by proving similar central limit theorems for random fields on discrete Cayley graphs taking values in a countable space, but under the stronger assumptions of α -mixing (for local statistics) and exponential α -mixing (for exponentially quasi-local statistics). All our central limit theorems assume a suitable variance lower bound like many others in the literature. We illustrate our general central limit theorem with specific examples of lattice spin models and statistics arising in computational topology, statistical physics and random networks. Examples of clustering spin models include quasi-associated spin models with fast decaying covariances like the off-critical Ising model, level sets of Gaussian random fields with fast decaying covariances like the massive Gaussian free field and determinantal point processes with fast decaying kernels. Examples of local statistics include intrinsic volumes, face counts, component counts of random cubical complexes while exponentially quasi-local statistics include nearest neighbour distances in spin models and Betti numbers of sub-critical random cubical complexes.

  20. Guidelines for a graph-theoretic implementation of structural equation modeling

    Science.gov (United States)

    Grace, James B.; Schoolmaster, Donald R.; Guntenspergen, Glenn R.; Little, Amanda M.; Mitchell, Brian R.; Miller, Kathryn M.; Schweiger, E. William

    2012-01-01

    Structural equation modeling (SEM) is increasingly being chosen by researchers as a framework for gaining scientific insights from the quantitative analyses of data. New ideas and methods emerging from the study of causality, influences from the field of graphical modeling, and advances in statistics are expanding the rigor, capability, and even purpose of SEM. Guidelines for implementing the expanded capabilities of SEM are currently lacking. In this paper we describe new developments in SEM that we believe constitute a third-generation of the methodology. Most characteristic of this new approach is the generalization of the structural equation model as a causal graph. In this generalization, analyses are based on graph theoretic principles rather than analyses of matrices. Also, new devices such as metamodels and causal diagrams, as well as an increased emphasis on queries and probabilistic reasoning, are now included. Estimation under a graph theory framework permits the use of Bayesian or likelihood methods. The guidelines presented start from a declaration of the goals of the analysis. We then discuss how theory frames the modeling process, requirements for causal interpretation, model specification choices, selection of estimation method, model evaluation options, and use of queries, both to summarize retrospective results and for prospective analyses. The illustrative example presented involves monitoring data from wetlands on Mount Desert Island, home of Acadia National Park. Our presentation walks through the decision process involved in developing and evaluating models, as well as drawing inferences from the resulting prediction equations. In addition to evaluating hypotheses about the connections between human activities and biotic responses, we illustrate how the structural equation (SE) model can be queried to understand how interventions might take advantage of an environmental threshold to limit Typha invasions. The guidelines presented provide for

  1. Analysis of a planetary gear modelled with a contour graph considering the decision making complexity of game-tree structures

    Directory of Open Access Journals (Sweden)

    Deptuła Adam

    2017-01-01

    Full Text Available Analysis and synthesis of mechanisms is one of the fundamental tasks of engineering. Mechanisms can suffer from errors due to versatile reasons. Graph-based methods of analysis and synthesis of planetary gears constitute an alternative method for checking their correctness. Previous applications of the graph theory concerned modelling gears for dynamic analysis, kinematic analysis, synthesis, structural analysis, gearshift optimization and automatic design based on so-called graph grammars. Some tasks may be performed only with the methods resulting from the graph theory, e.g. enumeration of structural solutions. The contour plot method consists in distinguishing a series of consecutive rigid units of the analysed mechanism, forming a closed loop (so-called contour. At a later stage, it is possible to analyze the obtained contour graph as a directed graph of dependence. This work presents an example of the application of game-tree structures in describing the contour graph of a planetary gear. In addition, complex parametric tree structures are included.

  2. Price Competition on Graphs

    OpenAIRE

    Adriaan R. Soetevent

    2010-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...

  3. Price Competition on Graphs

    OpenAIRE

    Pim Heijnen; Adriaan Soetevent

    2014-01-01

    This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...

  4. Fundamentals of algebraic graph transformation

    CERN Document Server

    Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele

    2006-01-01

    Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...

  5. Graphing trillions of triangles.

    Science.gov (United States)

    Burkhardt, Paul

    2017-07-01

    The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.

  6. Structural modeling and analysis of an effluent treatment process for electroplating--a graph theoretic approach.

    Science.gov (United States)

    Kumar, Abhishek; Clement, Shibu; Agrawal, V P

    2010-07-15

    An attempt is made to address a few ecological and environment issues by developing different structural models for effluent treatment system for electroplating. The effluent treatment system is defined with the help of different subsystems contributing to waste minimization. Hierarchical tree and block diagram showing all possible interactions among subsystems are proposed. These non-mathematical diagrams are converted into mathematical models for design improvement, analysis, comparison, storage retrieval and commercially off-the-shelf purchases of different subsystems. This is achieved by developing graph theoretic model, matrix models and variable permanent function model. Analysis is carried out by permanent function, hierarchical tree and block diagram methods. Storage and retrieval is done using matrix models. The methodology is illustrated with the help of an example. Benefits to the electroplaters/end user are identified. 2010 Elsevier B.V. All rights reserved.

  7. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  8. Graph spectrum

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.

  9. Phase-locked patterns of the Kuramoto model on 3-regular graphs

    Science.gov (United States)

    DeVille, Lee; Ermentrout, Bard

    2016-09-01

    We consider the existence of non-synchronized fixed points to the Kuramoto model defined on sparse networks: specifically, networks where each vertex has degree exactly three. We show that "most" such networks support multiple attracting phase-locked solutions that are not synchronized and study the depth and width of the basins of attraction of these phase-locked solutions. We also show that it is common in "large enough" graphs to find phase-locked solutions where one or more of the links have angle difference greater than π/2.

  10. Vertex labeling and routing in self-similar outerplanar unclustered graphs modeling complex networks

    International Nuclear Information System (INIS)

    Comellas, Francesc; Miralles, Alicia

    2009-01-01

    This paper introduces a labeling and optimal routing algorithm for a family of modular, self-similar, small-world graphs with clustering zero. Many properties of this family are comparable to those of networks associated with technological and biological systems with low clustering, such as the power grid, some electronic circuits and protein networks. For these systems, the existence of models with an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization) and also to understand the underlying mechanisms that have shaped their particular structure.

  11. Model of twelve properties of a set of organic solvents with graph-theoretical and/or experimental parameters.

    Science.gov (United States)

    Pogliani, Lionello

    2010-01-30

    Twelve properties of a highly heterogeneous class of organic solvents have been modeled with a graph-theoretical molecular connectivity modified (MC) method, which allows to encode the core electrons and the hydrogen atoms. The graph-theoretical method uses the concepts of simple, general, and complete graphs, where these last types of graphs are used to encode the core electrons. The hydrogen atoms have been encoded by the aid of a graph-theoretical perturbation parameter, which contributes to the definition of the valence delta, delta(v), a key parameter in molecular connectivity studies. The model of the twelve properties done with a stepwise search algorithm is always satisfactory, and it allows to check the influence of the hydrogen content of the solvent molecules on the choice of the type of descriptor. A similar argument holds for the influence of the halogen atoms on the type of core electron representation. In some cases the molar mass, and in a minor way, special "ad hoc" parameters have been used to improve the model. A very good model of the surface tension could be obtained by the aid of five experimental parameters. A mixed model method based on experimental parameters plus molecular connectivity indices achieved, instead, to consistently improve the model quality of five properties. To underline is the importance of the boiling point temperatures as descriptors in these last two model methodologies. Copyright 2009 Wiley Periodicals, Inc.

  12. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    Science.gov (United States)

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  13. The effects of node exclusion on the centrality measures in graph models of interacting economic agents

    Science.gov (United States)

    Caetano, Marco Antonio Leonel; Yoneyama, Takashi

    2015-07-01

    This work concerns the study of the effects felt by a network as a whole when a specific node is perturbed. Many real world systems can be described by network models in which the interactions of the various agents can be represented as an edge of a graph. With a graph model in hand, it is possible to evaluate the effect of deleting some of its edges on the architecture and values of nodes of the network. Eventually a node may end up isolated from the rest of the network and an interesting problem is to have a quantitative measure of the impact of such an event. For instance, in the field of finance, the network models are very popular and the proposed methodology allows to carry out "what if" tests in terms of weakening the links between the economic agents, represented as nodes. The two main concepts employed in the proposed methodology are (i) the vibrational IC-Information Centrality, which can provide a measure of the relative importance of a particular node in a network and (ii) autocatalytic networks that can indicate the evolutionary trends of the network. Although these concepts were originally proposed in the context of other fields of knowledge, they were also found to be useful in analyzing financial networks. In order to illustrate the applicability of the proposed methodology, a case of study using the actual data comprising stock market indices of 12 countries is presented.

  14. Bond Graph Modelling for Fault Detection and Isolation of an Ultrasonic Linear Motor

    Directory of Open Access Journals (Sweden)

    Mabrouk KHEMLICHE

    2010-12-01

    Full Text Available In this paper Bond Graph modeling, simulation and monitoring of ultrasonic linear motors are presented. Only the vibration of piezoelectric ceramics and stator will be taken into account. Contact problems between stator and rotor are not treated here. So, standing and travelling waves will be briefly presented since the majority of the motors use another wave type to generate the stator vibration and thus obtain the elliptic trajectory of the points on the surface of the stator in the first time. Then, electric equivalent circuit will be presented with the aim for giving a general idea of another way of graphical modelling of the vibrator introduced and developed. The simulations of an ultrasonic linear motor are then performed and experimental results on a prototype built at the laboratory are presented. Finally, validation of the Bond Graph method for modelling is carried out, comparing both simulation and experiment results. This paper describes the application of the FDI approach to an electrical system. We demonstrate the FDI effectiveness with real data collected from our automotive test. We introduce the analysis of the problem involved in the faults localization in this process. We propose a method of fault detection applied to the diagnosis and to determine the gravity of a detected fault. We show the possibilities of application of the new approaches to the complex system control.

  15. Redes académicas al interior de las escuelas chilenas: Un estudio exploratorio utilizando Modelos Exponenciales de Grafos Aleatorios (ERGM

    Directory of Open Access Journals (Sweden)

    Diego Palacios

    2016-12-01

    Full Text Available El artículo analiza las redes académicas que se producen al interior de aulas chilenas entre estudiantes de Tercer Año Medio (K-11 en distintos tipos de establecimientos, a través de Modelos Exponenciales de Grafos Aleatorios (ERGM. A partir de un modelo analítico que incorpora variables endógenas (reciprocidad, conectividad simple, popularidad, actividad, triangulación y variables exógenas (género del estudiante, nivel socioeconómico, capital cultural, capital social, se observa que el efecto más importante para explicar las redes académicas se produce por variables endógenas (especialmente por la reciprocidad y triangulación por sobre el componente exógeno, lo que podría indicar que las relaciones microsociales académicas se configuran, a lo menos en parte, independientemente de las características de los estudiantes. Asimismo, los resultados indican la existencia de relaciones complejas al interior del aula, y algunas diferencias interesantes entre los cursos respecto del efecto de las variables sociales y culturales, lo que podría indicar que algunos patrones de distinción social son relevantes en las interacciones académicas al interior del aula

  16. Method of modelization assistance with bond graphs and application to qualitative diagnosis of physical systems

    International Nuclear Information System (INIS)

    Lucas, B.

    1994-05-01

    After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm

  17. Bond graph modeling and simulation of impact dynamics of an automotive crash

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.

    2007-01-01

    With increase in the speeds of automotives, safety has become more and more important aspect of designers to care for. Thus, it is necessary to design the automobile body structure keeping in view all the safety requirements. As a result of the above-mentioned facts, in the recent years, the designers in making automotives more safe, more collision resistant and crash worthy have focused increased attention on designing automotives, which provides greater protection for the drivers and the passengers in case of an accident. Before a new model is launched into the market, a complete collision analysis is carried out to check the damage reduction capabilities and impact protection of automotives in case of an accident. Research in the field of automotive collision and impact analysis is a continuing activity and dedicated groups of engineers are devoting their full time and efforts for this. In this research work, the main attention is focused to provide a detailed knowledge about automotive collision analysis. The objective of this research paper is to develop an understanding of the automotive collision response. For this, we have done a simulation experiment in which, on a railroad, a train car is separated from a train and is moving towards two stationary train cars. By using a bond graph model of the system its state-space equations are found. Then by using software, the simulation is carried out. The bond graph method is a graphical presentation of the power flow using bonds. (author)

  18. Graph Cellular Automata with Relation-Based Neighbourhoods of Cells for Complex Systems Modelling: A Case of Traffic Simulation

    Directory of Open Access Journals (Sweden)

    Krzysztof Małecki

    2017-12-01

    Full Text Available A complex system is a set of mutually interacting elements for which it is possible to construct a mathematical model. This article focuses on the cellular automata theory and the graph theory in order to compare various types of cellular automata and to analyse applications of graph structures together with cellular automata. It proposes a graph cellular automaton with a variable configuration of cells and relation-based neighbourhoods (r–GCA. The developed mechanism enables modelling of phenomena found in complex systems (e.g., transport networks, urban logistics, social networks taking into account the interaction between the existing objects. As an implementation example, modelling of moving vehicles has been made and r–GCA was compared to the other cellular automata models simulating the road traffic and used in the computer simulation process.

  19. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems

  20. Graph Colouring Algorithms

    DEFF Research Database (Denmark)

    Husfeldt, Thore

    2015-01-01

    This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...

  1. Menopause and big data: Word Adjacency Graph modeling of menopause-related ChaCha data.

    Science.gov (United States)

    Carpenter, Janet S; Groves, Doyle; Chen, Chen X; Otte, Julie L; Miller, Wendy R

    2017-07-01

    To detect and visualize salient queries about menopause using Big Data from ChaCha. We used Word Adjacency Graph (WAG) modeling to detect clusters and visualize the range of menopause-related topics and their mutual proximity. The subset of relevant queries was fully modeled. We split each query into token words (ie, meaningful words and phrases) and removed stopwords (ie, not meaningful functional words). The remaining words were considered in sequence to build summary tables of words and two and three-word phrases. Phrases occurring at least 10 times were used to build a network graph model that was iteratively refined by observing and removing clusters of unrelated content. We identified two menopause-related subsets of queries by searching for questions containing menopause and menopause-related terms (eg, climacteric, hot flashes, night sweats, hormone replacement). The first contained 263,363 queries from individuals aged 13 and older and the second contained 5,892 queries from women aged 40 to 62 years. In the first set, we identified 12 topic clusters: 6 relevant to menopause and 6 less relevant. In the second set, we identified 15 topic clusters: 11 relevant to menopause and 4 less relevant. Queries about hormones were pervasive within both WAG models. Many of the queries reflected low literacy levels and/or feelings of embarrassment. We modeled menopause-related queries posed by ChaCha users between 2009 and 2012. ChaCha data may be used on its own or in combination with other Big Data sources to identify patient-driven educational needs and create patient-centered interventions.

  2. EXISTENCE THEOREM FOR THE PRICES FIXED POINT PROBLEM OF THE OVERLAPPING GENERATIONS MODEL, VIA METRIC SPACES ENDOWED WITH A GRAPH

    Directory of Open Access Journals (Sweden)

    Magnolia Tilca

    2014-10-01

    Full Text Available The aim of this paper is to study the existence of the solution for the overlapping generations model, using fixed point theorems in metric spaces endowed with a graph. The overlapping generations model has been introduced and developed by Maurice Allais (1947, Paul Samuelson (1958, Peter Diamond (1965 and so on. The present paper treats the case presented by Edmond (2008 in (Edmond, 2008 for a continuous time. The theorem of existence of the solution for the prices fixed point problem derived from the overlapping generations model gives an approximation of the solution via the graph theory. The tools employed in this study are based on applications of the Jachymski fixed point theorem on metric spaces endowed with a graph (Jachymski, 2008

  3. A nonlinear q-voter model with deadlocks on the Watts–Strogatz graph

    International Nuclear Information System (INIS)

    Sznajd-Weron, Katarzyna; Suszczynski, Karol Michal

    2014-01-01

    We study the nonlinear q-voter model with deadlocks on a Watts–Strogatz graph characterized by two parameters k and β. Using Monte Carlo simulations, we obtain a so-called exit probability and an exit time. We determine how network properties, such as randomness or density of links, influence the exit properties of a model. In particular we show that the exit probability, which is the probability that the system ends up with all spins up, starting with the p fraction of up-spins, has the general form E(p) = p α /(p α  + (1 − p) α ). Moreover, using the finite-size scaling technique we show that the exit probability exponent α depends both on the parameter q as well as the network structure, i.e. k and β. (paper)

  4. Error-Rate Estimation Based on Multi-Signal Flow Graph Model and Accelerated Radiation Tests.

    Directory of Open Access Journals (Sweden)

    Wei He

    Full Text Available A method of evaluating the single-event effect soft-error vulnerability of space instruments before launched has been an active research topic in recent years. In this paper, a multi-signal flow graph model is introduced to analyze the fault diagnosis and meantime to failure (MTTF for space instruments. A model for the system functional error rate (SFER is proposed. In addition, an experimental method and accelerated radiation testing system for a signal processing platform based on the field programmable gate array (FPGA is presented. Based on experimental results of different ions (O, Si, Cl, Ti under the HI-13 Tandem Accelerator, the SFER of the signal processing platform is approximately 10-3(error/particle/cm2, while the MTTF is approximately 110.7 h.

  5. Handbook of graph grammars and computing by graph transformation

    CERN Document Server

    Engels, G; Kreowski, H J; Rozenberg, G

    1999-01-01

    Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran

  6. An Xdata Architecture for Federated Graph Models and Multi-tier Asymmetric Computing

    Science.gov (United States)

    2014-01-01

    Wikipedia, a scale-free random graph (kron), Akamai trace route data, Bitcoin transaction data, and a Twitter follower network. We present results for...3x (SSSP on a random graph) and nearly 300x (Akamai and Bitcoin ) over the CPU performance of a well-known and widely deployed CPU-based graph...provided better throughput for smaller frontiers such as roadmaps or the Bitcoin data set. In our work, we have focused on two-phase kernels, but it

  7. Groupies in multitype random graphs

    OpenAIRE

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  8. Groupies in multitype random graphs.

    Science.gov (United States)

    Shang, Yilun

    2016-01-01

    A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.

  9. Temporal Representation in Semantic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Levandoski, J J; Abdulla, G M

    2007-08-07

    A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.

  10. XML and Graphs for Modeling, Integration and Interoperability:a CMS Perspective

    CERN Document Server

    van Lingen, Frank

    2004-01-01

    This thesis reports on a designer's Ph.D. project called “XML and Graphs for Modeling, Integration and Interoperability: a CMS perspective”. The project has been performed at CERN, the European laboratory for particle physics, in collaboration with the Eindhoven University of Technology and the University of the West of England in Bristol. CMS (Compact Muon Solenoid) is a next-generation high energy physics experiment at CERN, which will start running in 2007. The complexity of such a detector used in the experiment and the autonomous groups that are part of the CMS experiment, result in disparate data sources (different in format, type and structure). Users need to access and exchange data located in multiple heterogeneous sources in a domain-specific manner and may want to access a simple unit of information without having to understand details of the underlying schema. Users want to access the same information from several different heterogeneous sources. It is neither desirable nor fea...

  11. Generalized connectivity of graphs

    CERN Document Server

    Li, Xueliang

    2016-01-01

    Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.

  12. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    Directory of Open Access Journals (Sweden)

    T. K. Das

    2014-01-01

    Full Text Available With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model or global dynamics (e.g., the Ising model have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions.

  13. Equipackable graphs

    DEFF Research Database (Denmark)

    Vestergaard, Preben Dahl; Hartnell, Bert L.

    2006-01-01

    There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...

  14. Neurally and ocularly informed graph-based models for searching 3D environments

    Science.gov (United States)

    Jangraw, David C.; Wang, Jun; Lance, Brent J.; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    Objective. As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions—our implicit ‘labeling’ of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. Approach. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the ‘similar’ objects it identifies. Main results. We show that by exploiting the subjects’ implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers’ inference of subjects’ implicit labeling. Significance. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user’s interests.

  15. Neurally and ocularly informed graph-based models for searching 3D environments.

    Science.gov (United States)

    Jangraw, David C; Wang, Jun; Lance, Brent J; Chang, Shih-Fu; Sajda, Paul

    2014-08-01

    As we move through an environment, we are constantly making assessments, judgments and decisions about the things we encounter. Some are acted upon immediately, but many more become mental notes or fleeting impressions-our implicit 'labeling' of the world. In this paper, we use physiological correlates of this labeling to construct a hybrid brain-computer interface (hBCI) system for efficient navigation of a 3D environment. First, we record electroencephalographic (EEG), saccadic and pupillary data from subjects as they move through a small part of a 3D virtual city under free-viewing conditions. Using machine learning, we integrate the neural and ocular signals evoked by the objects they encounter to infer which ones are of subjective interest to them. These inferred labels are propagated through a large computer vision graph of objects in the city, using semi-supervised learning to identify other, unseen objects that are visually similar to the labeled ones. Finally, the system plots an efficient route to help the subjects visit the 'similar' objects it identifies. We show that by exploiting the subjects' implicit labeling to find objects of interest instead of exploring naively, the median search precision is increased from 25% to 97%, and the median subject need only travel 40% of the distance to see 84% of the objects of interest. We also find that the neural and ocular signals contribute in a complementary fashion to the classifiers' inference of subjects' implicit labeling. In summary, we show that neural and ocular signals reflecting subjective assessment of objects in a 3D environment can be used to inform a graph-based learning model of that environment, resulting in an hBCI system that improves navigation and information delivery specific to the user's interests.

  16. A systematic composite service design modeling method using graph-based theory.

    Science.gov (United States)

    Elhag, Arafat Abdulgader Mohammed; Mohamad, Radziah; Aziz, Muhammad Waqar; Zeshan, Furkh

    2015-01-01

    The composite service design modeling is an essential process of the service-oriented software development life cycle, where the candidate services, composite services, operations and their dependencies are required to be identified and specified before their design. However, a systematic service-oriented design modeling method for composite services is still in its infancy as most of the existing approaches provide the modeling of atomic services only. For these reasons, a new method (ComSDM) is proposed in this work for modeling the concept of service-oriented design to increase the reusability and decrease the complexity of system while keeping the service composition considerations in mind. Furthermore, the ComSDM method provides the mathematical representation of the components of service-oriented design using the graph-based theoryto facilitate the design quality measurement. To demonstrate that the ComSDM method is also suitable for composite service design modeling of distributed embedded real-time systems along with enterprise software development, it is implemented in the case study of a smart home. The results of the case study not only check the applicability of ComSDM, but can also be used to validate the complexity and reusability of ComSDM. This also guides the future research towards the design quality measurement such as using the ComSDM method to measure the quality of composite service design in service-oriented software system.

  17. Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing

    Science.gov (United States)

    Fan, Lei

    ., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.

  18. A mathematical model for generating bipartite graphs and its application to protein networks

    Science.gov (United States)

    Nacher, J. C.; Ochiai, T.; Hayashida, M.; Akutsu, T.

    2009-12-01

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  19. A mathematical model for generating bipartite graphs and its application to protein networks

    Energy Technology Data Exchange (ETDEWEB)

    Nacher, J C [Department of Complex Systems, Future University-Hakodate (Japan); Ochiai, T [Faculty of Engineering, Toyama Prefectural University (Japan); Hayashida, M; Akutsu, T [Bioinformatics Center, Institute for Chemical Research, Kyoto University (Japan)

    2009-12-04

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  20. A mathematical model for generating bipartite graphs and its application to protein networks

    International Nuclear Information System (INIS)

    Nacher, J C; Ochiai, T; Hayashida, M; Akutsu, T

    2009-01-01

    Complex systems arise in many different contexts from large communication systems and transportation infrastructures to molecular biology. Most of these systems can be organized into networks composed of nodes and interacting edges. Here, we present a theoretical model that constructs bipartite networks with the particular feature that the degree distribution can be tuned depending on the probability rate of fundamental processes. We then use this model to investigate protein-domain networks. A protein can be composed of up to hundreds of domains. Each domain represents a conserved sequence segment with specific functional tasks. We analyze the distribution of domains in Homo sapiens and Arabidopsis thaliana organisms and the statistical analysis shows that while (a) the number of domain types shared by k proteins exhibits a power-law distribution, (b) the number of proteins composed of k types of domains decays as an exponential distribution. The proposed mathematical model generates bipartite graphs and predicts the emergence of this mixing of (a) power-law and (b) exponential distributions. Our theoretical and computational results show that this model requires (1) growth process and (2) copy mechanism.

  1. Study of a class of photovoltaic systems using a bond graph approach. Modeling, analysis and control; Etude d'une classe de systemes photovoltaiques par une approche bond graph. Modelisation, analyse et commande

    Energy Technology Data Exchange (ETDEWEB)

    Andoulsi, R.

    2001-12-01

    We present in this thesis a study of a class of photovoltaic system by a bond graph approach. This study concerns the modelling, the analysis and the control of some configurations including PV generator, DC/DC converters and DC motor-pumps. The modelling of the different elements of a photovoltaic system is an indispensable stage that must precede all application of sizing, identification or simulation. However, theses PV systems are of hybrid type and their modelling is complex. It is why we use a unified modelling approach based on the bond graph technique. This methodology is completely systematic and has a sufficient flexibility for allowing the introduction of different components in the system. In the first chapter, we recall the principle of functioning of a photovoltaic generator and we treat mainly the MPPT (Maximum Power Point Tracking) working. In the second chapter, we elaborate bond graph models of various photovoltaic system configurations. For the PV source, we elaborate, in a first stage, a complete model taking into account the various physical phenomena influencing the quality of the PV source. In a second stage, we deduce a reduced bond graph model more easy to use for analysis and control purposes. For the DC/DC converters, we recall the bond graph modelling of switching elements and the average bond graph of the DC/DC converters developed in the literature. Thus, we deduce the bond graphs models of the various DC/DC converters to be used. The third chapter presents a dynamic study of some configurations stability in linear procedure. In the fourth chapter, we study the feasibility of non linear controllers by input/output linearization for some configurations of PV systems. In this study, we use the concept of inverse bond graph to determine, by a bond graph approach, the expression of the control input and the nature of the stability of the internal dynamics (dynamics of zeros). The fifth chapter is dedicated for the presentation of some

  2. A phase plane graph based model of the ovulatory cycle lacking the "positive feedback" phenomenon

    Directory of Open Access Journals (Sweden)

    Kurbel Sven

    2012-08-01

    Full Text Available Abstract When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning “&" symbol, while LH and progesterone (Pg values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883–887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. in several estrogen target tissue progesterone receptor (PgR expression depends on previous estrogen binding to functional estrogen receptors (ER, while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge. A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic

  3. Modelling of Non-Linear Pilot Disinfection Water System: A Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Naoufel ZITOUNI

    2012-08-01

    Full Text Available The ultraviolet (UV irradiations are used to solve the bacteriological problem of the drinking water quality. A discharge-gas lamp is used to produce this type of irradiation. The UV lamp is fed by photovoltaic (PV energy via electronic ballast composed by an inverter, a transformer and resonant circuit (RLC. The aim of this work is to give a useful global model of the system. In particular, we introduce the complicated UV lamp model and the water disinfection kinetics, where the radiant energy flux emitted by the discharge-gas lamp and the arc voltage are a complex functions of the current and time. This system is intended to be mainly used in rural zones, the photovoltaic modules as source of energy is an adequate solution. To optimise the power transfer from the PV array to ballast and UV lamp, a Maximum Power Point Tracking (MPPT device may be located between PV array and the loads. In this paper, we developed a bond-graph model which gives the water quality from UV flow, gas type, pressure, lamp current and geometrical characteristic. Finally reliable simulations are established and compared with experimental tests.

  4. GRAPH-ORIENTED MODEL FOR NEO4J. A FREE ALTERNATIVE TO DECREASE TEMPORAL COMPLEXITY

    Directory of Open Access Journals (Sweden)

    Cleger, Eliober

    2017-06-01

    Full Text Available The University of Informatics Science uses the system of software project management (XedroGESPRO for monitoring and control the activities related to the production of software. The reports are based on a series of indicators to measure the progress of projects managed, among which those related to performance human resources. This system uses the relational model as the basis for storing information and indicators calculated by the technique of artificial intelligence "fuzzy logic" and stored procedures in the database manager PostgreSQL. All this meant a breakthrough and has produced satisfactory results in the last three years of operation, however significant delays are beginning to appear in the retrieval of information in those tables whose growth increases exponentially compared to the rest. This led to the creation of an oriented-graph model using the tool Neo4J, which reduces response times of queries needed to respond to each indicator. This paper presents the results of applying the model in a scenario closer to reality, which shows the decrease in temporal complexity.

  5. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) wordpress.com/research/. PMID:22311862

  6. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-04-25

    In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.

  7. Domination criticality in product graphs

    Directory of Open Access Journals (Sweden)

    M.R. Chithra

    2015-07-01

    Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.

  8. Graph Creation, Visualisation and Transformation

    Directory of Open Access Journals (Sweden)

    Maribel Fernández

    2010-03-01

    Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.

  9. Bond graph modelling of engineering systems: theory, applications and software support

    National Research Council Canada - National Science Library

    Borutzky, Wolfgang; Margolis, Donald L

    2011-01-01

    ... way such that analytical or computer response predictions can be straightforwardly carried out. Bond graphs are a concise pictorial representation of all types of interacting energetic systems. In my experience working with engineers on the development of complex systems it is obvious that these systems suffer from thermal problems, structural problems, vibration and noise problems, and control and stability issues that do not fit into a single discipline. Bond graphs provide the link by which all these different ...

  10. A Graph-Based Approach for 3D Building Model Reconstruction from Airborne LiDAR Point Clouds

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2017-01-01

    Full Text Available 3D building model reconstruction is of great importance for environmental and urban applications. Airborne light detection and ranging (LiDAR is a very useful data source for acquiring detailed geometric and topological information of building objects. In this study, we employed a graph-based method based on hierarchical structure analysis of building contours derived from LiDAR data to reconstruct urban building models. The proposed approach first uses a graph theory-based localized contour tree method to represent the topological structure of buildings, then separates the buildings into different parts by analyzing their topological relationships, and finally reconstructs the building model by integrating all the individual models established through the bipartite graph matching process. Our approach provides a more complete topological and geometrical description of building contours than existing approaches. We evaluated the proposed method by applying it to the Lujiazui region in Shanghai, China, a complex and large urban scene with various types of buildings. The results revealed that complex buildings could be reconstructed successfully with a mean modeling error of 0.32 m. Our proposed method offers a promising solution for 3D building model reconstruction from airborne LiDAR point clouds.

  11. The role of the autonomic nervous system in hypertension: a bond graph model study

    International Nuclear Information System (INIS)

    Chen, Shuzhen; Gong, Yuexian; Dai, Kaiyong; Sui, Meirong; Yu, Yi; Ning, Gangmin; Zhang, Shaowen

    2008-01-01

    A bond graph model of the cardiovascular system with embedded autonomic nervous regulation was developed for a better understanding of the role of the autonomic nervous system (ANS) in hypertension. The model is described by a pump model of the heart and a detailed representation of the head and neck, pulmonary, coronary, abdomen and extremity circulation. It responds to sympathetic and parasympathetic activities by modifying systemic peripheral vascular resistance, heart rate, ventricular end-systolic elastance and venous unstressed volumes. The impairment of ANS is represented by an elevation of the baroreflex set point. The simulation results show that, compared with normotensive, in hypertension the systolic and diastolic blood pressure (SBP/DBP) rose from 112/77 mmHg to 144/94 mmHg and the left ventricular wall thickness (LVWT) increased from 10 mm to 12.74 mm. In the case that ANS regulation was absent, both the SBP and DBP further increased by 8 mmHg and the LVWT increased to 13.22 mm. The results also demonstrate that when ANS regulation is not severely damaged, e.g. the baroreflex set point is 97 mmHg, it still has an effect in preventing the rapid rise of blood pressure in hypertension; however, with the worsening of ANS regulation, its protective role weakens. The results agree with human physiological and pathological features in hemodynamic parameters and carotid baroreflex function curves, and indicate the role of ANS in blood pressure regulation and heart protection. In conclusion, the present model may provide a valid approach to study the pathophysiological conditions of the cardiovascular system and the mechanism of ANS regulation

  12. A Study towards Building An Optimal Graph Theory Based Model For The Design of Tourism Website

    Science.gov (United States)

    Panigrahi, Goutam; Das, Anirban; Basu, Kajla

    2010-10-01

    Effective tourism website is a key to attract tourists from different parts of the world. Here we identify the factors of improving the effectiveness of website by considering it as a graph, where web pages including homepage are the nodes and hyperlinks are the edges between the nodes. In this model, the design constraints for building a tourism website are taken into consideration. Our objectives are to build a framework of an effective tourism website providing adequate level of information, service and also to enable the users to reach to the desired page by spending minimal loading time. In this paper an information hierarchy specifying the upper limit of outgoing link of a page has also been proposed. Following the hierarchy, the web developer can prepare an effective tourism website. Here loading time depends on page size and network traffic. We have assumed network traffic as uniform and the loading time is directly proportional with page size. This approach is done by quantifying the link structure of a tourism website. In this approach we also propose a page size distribution pattern of a tourism website.

  13. Graph-based unsupervised segmentation algorithm for cultured neuronal networks' structure characterization and modeling.

    Science.gov (United States)

    de Santos-Sierra, Daniel; Sendiña-Nadal, Irene; Leyva, Inmaculada; Almendral, Juan A; Ayali, Amir; Anava, Sarit; Sánchez-Ávila, Carmen; Boccaletti, Stefano

    2015-06-01

    Large scale phase-contrast images taken at high resolution through the life of a cultured neuronal network are analyzed by a graph-based unsupervised segmentation algorithm with a very low computational cost, scaling linearly with the image size. The processing automatically retrieves the whole network structure, an object whose mathematical representation is a matrix in which nodes are identified neurons or neurons' clusters, and links are the reconstructed connections between them. The algorithm is also able to extract any other relevant morphological information characterizing neurons and neurites. More importantly, and at variance with other segmentation methods that require fluorescence imaging from immunocytochemistry techniques, our non invasive measures entitle us to perform a longitudinal analysis during the maturation of a single culture. Such an analysis furnishes the way of individuating the main physical processes underlying the self-organization of the neurons' ensemble into a complex network, and drives the formulation of a phenomenological model yet able to describe qualitatively the overall scenario observed during the culture growth. © 2014 International Society for Advancement of Cytometry.

  14. Fixation Probability in a Two-Locus Model by the Ancestral Recombination–Selection Graph

    Science.gov (United States)

    Lessard, Sabin; Kermany, Amir R.

    2012-01-01

    We use the ancestral influence graph (AIG) for a two-locus, two-allele selection model in the limit of a large population size to obtain an analytic approximation for the probability of ultimate fixation of a single mutant allele A. We assume that this new mutant is introduced at a given locus into a finite population in which a previous mutant allele B is already segregating with a wild type at another linked locus. We deduce that the fixation probability increases as the recombination rate increases if allele A is either in positive epistatic interaction with B and allele B is beneficial or in no epistatic interaction with B and then allele A itself is beneficial. This holds at least as long as the recombination fraction and the selection intensity are small enough and the population size is large enough. In particular this confirms the Hill–Robertson effect, which predicts that recombination renders more likely the ultimate fixation of beneficial mutants at different loci in a population in the presence of random genetic drift even in the absence of epistasis. More importantly, we show that this is true from weak negative epistasis to positive epistasis, at least under weak selection. In the case of deleterious mutants, the fixation probability decreases as the recombination rate increases. This supports Muller’s ratchet mechanism to explain the accumulation of deleterious mutants in a population lacking recombination. PMID:22095080

  15. Medical image segmentation by combining graph cuts and oriented active appearance models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Bagci, Ulas; Zhuge, Ying; Yao, Jianhua

    2012-04-01

    In this paper, we propose a novel method based on a strategic combination of the active appearance model (AAM), live wire (LW), and graph cuts (GCs) for abdominal 3-D organ segmentation. The proposed method consists of three main parts: model building, object recognition, and delineation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the recognition part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW methods, resulting in the oriented AAM (OAAM). A multiobject strategy is utilized to help in object initialization. We employ a pseudo-3-D initialization strategy and segment the organs slice by slice via a multiobject OAAM method. For the object delineation part, a 3-D shape-constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT data set and also on the MICCAI 2007 Grand Challenge liver data set. The results show the following: 1) The overall segmentation accuracy of true positive volume fraction TPVF > 94.3% and false positive volume fraction can be achieved; 2) the initialization performance can be improved by combining the AAM and LW; 3) the multiobject strategy greatly facilitates initialization; 4) compared with the traditional 3-D AAM method, the pseudo-3-D OAAM method achieves comparable performance while running 12 times faster; and 5) the performance of the proposed method is comparable to state-of-the-art liver segmentation algorithm. The executable version of the 3-D shape-constrained GC method with a user interface can be downloaded from http://xinjianchen.wordpress.com/research/.

  16. A family of small-world network models built by complete graph and iteration-function

    Science.gov (United States)

    Ma, Fei; Yao, Bing

    2018-02-01

    Small-world networks are popular in real-life complex systems. In the past few decades, researchers presented amounts of small-world models, in which some are stochastic and the rest are deterministic. In comparison with random models, it is not only convenient but also interesting to study the topological properties of deterministic models in some fields, such as graph theory, theorem computer sciences and so on. As another concerned darling in current researches, community structure (modular topology) is referred to as an useful statistical parameter to uncover the operating functions of network. So, building and studying such models with community structure and small-world character will be a demanded task. Hence, in this article, we build a family of sparse network space N(t) which is different from those previous deterministic models. Even though, our models are established in the same way as them, iterative generation. By randomly connecting manner in each time step, every resulting member in N(t) has no absolutely self-similar feature widely shared in a large number of previous models. This makes our insight not into discussing a class certain model, but into investigating a group various ones spanning a network space. Somewhat surprisingly, our results prove all members of N(t) to possess some similar characters: (a) sparsity, (b) exponential-scale feature P(k) ∼α-k, and (c) small-world property. Here, we must stress a very screming, but intriguing, phenomenon that the difference of average path length (APL) between any two members in N(t) is quite small, which indicates this random connecting way among members has no great effect on APL. At the end of this article, as a new topological parameter correlated to reliability, synchronization capability and diffusion properties of networks, the number of spanning trees on a representative member NB(t) of N(t) is studied in detail, then an exact analytical solution for its spanning trees entropy is also

  17. Buck-Boost DC-DC Converter Control by Using the Extracted Model from Signal Flow Graph Method

    OpenAIRE

    Mohammadian, Leila; Babaei, Ebrahim; Bannae Sharifian, Mohammad Bagher

    2015-01-01

    In this paper, the signal flow graph technique and Mason gain formula are applied for extracting the model and transfer functions from control to output and from input to output of a buck-boost converter. In order to investigate a controller necessity for the converter of assumed parameters, the frequency and time domain analysis are done and the open loop system characteristics are verified and the needed closed loop controlled system specifications are determined. Finally designing a contro...

  18. Introduction to graph theory

    CERN Document Server

    Trudeau, Richard J

    1994-01-01

    Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or

  19. Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph

    Science.gov (United States)

    Xue, Xiaofeng

    2017-11-01

    In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.

  20. Tailored graph ensembles as proxies or null models for real networks I: tools for quantifying structure

    International Nuclear Information System (INIS)

    Annibale, A; Coolen, A C C; Fernandes, L P; Fraternali, F; Kleinjung, J

    2009-01-01

    We study the tailoring of structured random graph ensembles to real networks, with the objective of generating precise and practical mathematical tools for quantifying and comparing network topologies macroscopically, beyond the level of degree statistics. Our family of ensembles can produce graphs with any prescribed degree distribution and any degree-degree correlation function; its control parameters can be calculated fully analytically, and as a result we can calculate (asymptotically) formulae for entropies and complexities and for information-theoretic distances between networks, expressed directly and explicitly in terms of their measured degree distribution and degree correlations.

  1. Augmented marked graphs

    CERN Document Server

    Cheung, King Sing

    2014-01-01

    Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume

  2. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A.

    2016-01-01

    There are several applications in computational biophysics which require the optimization of discrete interacting states; e.g., amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial-time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of “maximum flow-minimum cut” graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein, and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial-time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered. PMID:27089174

  3. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    Science.gov (United States)

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  4. Graph theory

    CERN Document Server

    Diestel, Reinhard

    2017-01-01

    This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...

  5. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    Science.gov (United States)

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  6. The use of graph theory in the sensitivity analysis of the model output: a second order screening method

    International Nuclear Information System (INIS)

    Campolongo, Francesca; Braddock, Roger

    1999-01-01

    Sensitivity analysis screening methods aim to isolate the most important factors in experiments involving a large number of significant factors and interactions. This paper extends the one-factor-at-a-time screening method proposed by Morris. The new method, in addition to the 'overall' sensitivity measures already provided by the traditional Morris method, offers estimates of the two-factor interaction effects. The number of model evaluations required is O(k 2 ), where k is the number of model input factors. The efficient sampling strategy in the parameter space is based on concepts of graph theory and on the solution of the 'handcuffed prisoner problem'

  7. Graph theory

    CERN Document Server

    Gould, Ronald

    2012-01-01

    This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S

  8. Graphs & digraphs

    CERN Document Server

    Chartrand, Gary; Zhang, Ping

    2010-01-01

    Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...

  9. Graph Transformation Semantics for a QVT Language

    NARCIS (Netherlands)

    Rensink, Arend; Nederpel, Ronald; Bruni, Roberto; Varró, Dániel

    It has been claimed by many in the graph transformation community that model transformation, as understood in the context of Model Driven Architecture, can be seen as an application of graph transformation. In this paper we substantiate this claim by giving a graph transformation-based semantics to

  10. Nested Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs

    2012-01-01

    We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...

  11. A graph edit dictionary for correcting errors in roof topology graphs reconstructed from point clouds

    Science.gov (United States)

    Xiong, B.; Oude Elberink, S.; Vosselman, G.

    2014-07-01

    In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.

  12. Dynamic modelling of the expansion cylinder of an open Joule cycle Ericsson engine: A bond graph approach

    International Nuclear Information System (INIS)

    Creyx, M.; Delacourt, E.; Morin, C.; Desmet, B.

    2016-01-01

    A dynamic model using the bond graph formalism of the expansion cylinder of an open Joule cycle Ericsson engine intended for a biomass-fuelled micro-CHP system is presented. Dynamic phenomena, such as the thermodynamic evolution of air, the instantaneous air mass flow rates linked to pressure drops crossing the valves, the heat transferred through the expansion cylinder wall and the mechanical friction losses, are included in the model. The influence on the Ericsson engine performances of the main operating conditions (intake air pressure and temperature, timing of intake and exhaust valve closing, rotational speed, mechanical friction losses and heat transfer at expansion cylinder wall) is studied. The operating conditions maximizing the performances of the Ericsson engine used in the a biomass-fuelled micro-CHP unit are an intake air pressure between 6 and 8 bar, a maximized intake air temperature, an adjustment of the intake and exhaust valve closing corresponding to an expansion cycle close to the theoretical Joule cycle, a rotational speed close to 800 rpm. The heat transfer at the expansion cylinder wall reduces the engine performances. - Highlights: • A bond graph dynamic model of the Ericsson engine expansion cylinder is presented. • Dynamic aspects are modelled: pressure drops, friction losses, wall heat transfer. • Influent factors and phenomena on the engine performances are investigated. • Expansion cycles close to the theoretical Joule cycle maximize the performances. • The heat transfer at the expansion chamber wall reduces the performances.

  13. Basin Hopping Graph

    DEFF Research Database (Denmark)

    Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter

    2014-01-01

    of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...

  14. Geographic information modeling of Econet of Northwestern Federal District territory on graph theory basis

    Science.gov (United States)

    Kopylova, N. S.; Bykova, A. A.; Beregovoy, D. N.

    2018-05-01

    Based on the landscape-geographical approach, a structural and logical scheme for the Northwestern Federal District Econet has been developed, which can be integrated into the federal and world ecological network in order to improve the environmental infrastructure of the region. The method of Northwestern Federal District Econet organization on the basis of graph theory by means of the Quantum GIS geographic information system is proposed as an effective mean of preserving and recreating the unique biodiversity of landscapes, regulation of the sphere of environmental protection.

  15. Classification of forensic autopsy reports through conceptual graph-based document representation model.

    Science.gov (United States)

    Mujtaba, Ghulam; Shuib, Liyana; Raj, Ram Gopal; Rajandram, Retnagowri; Shaikh, Khairunisa; Al-Garadi, Mohammed Ali

    2018-06-01

    Text categorization has been used extensively in recent years to classify plain-text clinical reports. This study employs text categorization techniques for the classification of open narrative forensic autopsy reports. One of the key steps in text classification is document representation. In document representation, a clinical report is transformed into a format that is suitable for classification. The traditional document representation technique for text categorization is the bag-of-words (BoW) technique. In this study, the traditional BoW technique is ineffective in classifying forensic autopsy reports because it merely extracts frequent but discriminative features from clinical reports. Moreover, this technique fails to capture word inversion, as well as word-level synonymy and polysemy, when classifying autopsy reports. Hence, the BoW technique suffers from low accuracy and low robustness unless it is improved with contextual and application-specific information. To overcome the aforementioned limitations of the BoW technique, this research aims to develop an effective conceptual graph-based document representation (CGDR) technique to classify 1500 forensic autopsy reports from four (4) manners of death (MoD) and sixteen (16) causes of death (CoD). Term-based and Systematized Nomenclature of Medicine-Clinical Terms (SNOMED CT) based conceptual features were extracted and represented through graphs. These features were then used to train a two-level text classifier. The first level classifier was responsible for predicting MoD. In addition, the second level classifier was responsible for predicting CoD using the proposed conceptual graph-based document representation technique. To demonstrate the significance of the proposed technique, its results were compared with those of six (6) state-of-the-art document representation techniques. Lastly, this study compared the effects of one-level classification and two-level classification on the experimental results

  16. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  17. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  18. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  19. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  20. Coloring geographical threshold graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH

    2008-01-01

    We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.

  1. A Clustering Graph Generator

    Energy Technology Data Exchange (ETDEWEB)

    Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  2. Mechatronic modeling of a 750kW fixed-speed wind energy conversion system using the Bond Graph Approach.

    Science.gov (United States)

    Khaouch, Zakaria; Zekraoui, Mustapha; Bengourram, Jamaa; Kouider, Nourreeddine; Mabrouki, Mustapha

    2016-11-01

    In this paper, we would like to focus on modeling main parts of the wind turbines (blades, gearbox, tower, generator and pitching system) from a mechatronics viewpoint using the Bond-Graph Approach (BGA). Then, these parts are combined together in order to simulate the complete system. Moreover, the real dynamic behavior of the wind turbine is taken into account and with the new model; final load simulation is more realistic offering benefits and reliable system performance. This model can be used to develop control algorithms to reduce fatigue loads and enhance power production. Different simulations are carried-out in order to validate the proposed wind turbine model, using real data provided in the open literature (blade profile and gearbox parameters for a 750 kW wind turbine). Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Quantum chaos on discrete graphs

    International Nuclear Information System (INIS)

    Smilansky, Uzy

    2007-01-01

    Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)

  4. Semantic graphs and associative memories

    Science.gov (United States)

    Pomi, Andrés; Mizraji, Eduardo

    2004-12-01

    Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.

  5. Models construction for acetone-butanol-ethanol fermentations with acetate/butyrate consecutively feeding by graph theory.

    Science.gov (United States)

    Li, Zhigang; Shi, Zhongping; Li, Xin

    2014-05-01

    Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  7. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    Directory of Open Access Journals (Sweden)

    Cuihong Wen

    Full Text Available Optical Music Recognition (OMR has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM. The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM, which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs and Neural Networks (NNs.

  8. A Directed Acyclic Graph-Large Margin Distribution Machine Model for Music Symbol Classification.

    Science.gov (United States)

    Wen, Cuihong; Zhang, Jing; Rebelo, Ana; Cheng, Fanyong

    2016-01-01

    Optical Music Recognition (OMR) has received increasing attention in recent years. In this paper, we propose a classifier based on a new method named Directed Acyclic Graph-Large margin Distribution Machine (DAG-LDM). The DAG-LDM is an improvement of the Large margin Distribution Machine (LDM), which is a binary classifier that optimizes the margin distribution by maximizing the margin mean and minimizing the margin variance simultaneously. We modify the LDM to the DAG-LDM to solve the multi-class music symbol classification problem. Tests are conducted on more than 10000 music symbol images, obtained from handwritten and printed images of music scores. The proposed method provides superior classification capability and achieves much higher classification accuracy than the state-of-the-art algorithms such as Support Vector Machines (SVMs) and Neural Networks (NNs).

  9. On an emotional node: modeling sentiment in graphs of action verbs

    DEFF Research Database (Denmark)

    Petersen, Michael Kai; Hansen, Lars Kai

    2012-01-01

    Neuroimaging studies have over the past decades established that language is grounded in sensorimotor areas of the brain. Not only action verbs related to face and hand motion but also emotional expressions activate premotor systems in the brain. Hypothesizing that patterns of neural activation...... might be reflected in the latent semantics of words, we apply hierarchical clustering and network graph analysis to quantify the interaction of emotion and motion related action verbs based on two large-scale text corpora. Comparing the word topologies to neural networks we suggest that the co......-activation of associated word forms in the brain resemble the latent semantics of action verbs, which may in turn reflect parameters of force and spatial differentiation underlying action based language....

  10. Chromatic graph theory

    CERN Document Server

    Chartrand, Gary; Rosen, Kenneth H

    2008-01-01

    Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...

  11. Chemical Graph Transformation with Stereo-Information

    DEFF Research Database (Denmark)

    Andersen, Jakob Lykke; Flamm, Christoph; Merkle, Daniel

    2017-01-01

    Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms and their neighbo......Double Pushout graph transformation naturally facilitates the modelling of chemical reactions: labelled undirected graphs model molecules and direct derivations model chemical reactions. However, the most straightforward modelling approach ignores the relative placement of atoms...... and their neighbours in space. Stereoisomers of chemical compounds thus cannot be distinguished, even though their chemical activity may differ substantially. In this contribution we propose an extended chemical graph transformation system with attributes that encode information about local geometry. The modelling...... of graph transformation, but we here propose a framework that also allows for partially specified stereoinformation. While there are several stereochemical configurations to be considered, we focus here on the tetrahedral molecular shape, and suggest general principles for how to treat all other chemically...

  12. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    Science.gov (United States)

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  13. Graphing the order of the sexes: constructing, recalling, interpreting, and putting the self in gender difference graphs.

    Science.gov (United States)

    Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant

    2010-03-01

    Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.

  14. Discrete probability models and methods probability on graphs and trees, Markov chains and random fields, entropy and coding

    CERN Document Server

    Brémaud, Pierre

    2017-01-01

    The emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book. .

  15. Graph anomalies in cyber communications

    Energy Technology Data Exchange (ETDEWEB)

    Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  16. Open Graphs and Computational Reasoning

    Directory of Open Access Journals (Sweden)

    Lucas Dixon

    2010-06-01

    Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.

  17. Generating random networks and graphs

    CERN Document Server

    Coolen, Ton; Roberts, Ekaterina

    2017-01-01

    This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...

  18. Left-ventricle segmentation in real-time 3D echocardiography using a hybrid active shape model and optimal graph search approach

    Science.gov (United States)

    Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas

    2010-03-01

    Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.

  19. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam

    2014-12-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  20. Quick Mining of Isomorphic Exact Large Patterns from Large Graphs

    KAUST Repository

    Almasri, Islam; Gao, Xin; Fedoroff, Nina V.

    2014-01-01

    The applications of the sub graph isomorphism search are growing with the growing number of areas that model their systems using graphs or networks. Specifically, many biological systems, such as protein interaction networks, molecular structures and protein contact maps, are modeled as graphs. The sub graph isomorphism search is concerned with finding all sub graphs that are isomorphic to a relevant query graph, the existence of such sub graphs can reflect on the characteristics of the modeled system. The most computationally expensive step in the search for isomorphic sub graphs is the backtracking algorithm that traverses the nodes of the target graph. In this paper, we propose a pruning approach that is inspired by the minimum remaining value heuristic that achieves greater scalability over large query and target graphs. Our testing on various biological networks shows that performance enhancement of our approach over existing state-of-the-art approaches varies between 6x and 53x. © 2014 IEEE.

  1. Graph theory and its applications

    CERN Document Server

    Gross, Jonathan L

    2006-01-01

    Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.

  2. Graph visualization (Invited talk)

    NARCIS (Netherlands)

    Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.

    2012-01-01

    Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.

  3. On a conjecture concerning helly circle graphs

    Directory of Open Access Journals (Sweden)

    Durán Guillermo

    2003-01-01

    Full Text Available We say that G is an e-circle graph if there is a bijection between its vertices and straight lines on the cartesian plane such that two vertices are adjacent in G if and only if the corresponding lines intersect inside the circle of radius one. This definition suggests a method for deciding whether a given graph G is an e-circle graph, by constructing a convenient system S of equations and inequations which represents the structure of G, in such a way that G is an e-circle graph if and only if S has a solution. In fact, e-circle graphs are exactly the circle graphs (intersection graphs of chords in a circle, and thus this method provides an analytic way for recognizing circle graphs. A graph G is a Helly circle graph if G is a circle graph and there exists a model of G by chords such that every three pairwise intersecting chords intersect at the same point. A conjecture by Durán (2000 states that G is a Helly circle graph if and only if G is a circle graph and contains no induced diamonds (a diamond is a graph formed by four vertices and five edges. Many unsuccessful efforts - mainly based on combinatorial and geometrical approaches - have been done in order to validate this conjecture. In this work, we utilize the ideas behind the definition of e-circle graphs and restate this conjecture in terms of an equivalence between two systems of equations and inequations, providing a new, analytic tool to deal with it.

  4. Using a CBL Unit, a Temperature Sensor, and a Graphing Calculator to Model the Kinetics of Consecutive First-Order Reactions as Safe In-Class Demonstrations

    Science.gov (United States)

    Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.

    2006-01-01

    The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…

  5. Pragmatic Graph Rewriting Modifications

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    1999-01-01

    We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...

  6. Method of modelization assistance with bond graphs and application to qualitative diagnosis of physical systems; Methode d'aide a la modelisation par graphes de liaison et utilisation pour le diagnostic qualitatif de systemes physiques

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, B.

    1994-05-15

    After having recalled the usual diagnosis techniques (failure index, decision tree) and those based on an artificial intelligence approach, the author reports a research aimed at exploring the knowledge and model generation technique. He focuses on the design of an aid to model generation tool and aid-to-diagnosis tool. The bond graph technique is shown to be adapted to the aid to model generation, and is then adapted to the aid to diagnosis. The developed tool is applied to three projects: DIADEME (a diagnosis system based on physical model), the improvement of the SEXTANT diagnosis system (an expert system for transient analysis), and the investigation on an Ariane 5 launcher component. Notably, the author uses the Reiter and Greiner algorithm

  7. Fault diagnosis of locomotive electro-pneumatic brake through uncertain bond graph modeling and robust online monitoring

    Science.gov (United States)

    Niu, Gang; Zhao, Yajun; Defoort, Michael; Pecht, Michael

    2015-01-01

    To improve reliability, safety and efficiency, advanced methods of fault detection and diagnosis become increasingly important for many technical fields, especially for safety related complex systems like aircraft, trains, automobiles, power plants and chemical plants. This paper presents a robust fault detection and diagnostic scheme for a multi-energy domain system that integrates a model-based strategy for system fault modeling and a data-driven approach for online anomaly monitoring. The developed scheme uses LFT (linear fractional transformations)-based bond graph for physical parameter uncertainty modeling and fault simulation, and employs AAKR (auto-associative kernel regression)-based empirical estimation followed by SPRT (sequential probability ratio test)-based threshold monitoring to improve the accuracy of fault detection. Moreover, pre- and post-denoising processes are applied to eliminate the cumulative influence of parameter uncertainty and measurement uncertainty. The scheme is demonstrated on the main unit of a locomotive electro-pneumatic brake in a simulated experiment. The results show robust fault detection and diagnostic performance.

  8. Assistance to neurosurgical planning: using a fuzzy spatial graph model of the brain for locating anatomical targets in MRI

    Science.gov (United States)

    Villéger, Alice; Ouchchane, Lemlih; Lemaire, Jean-Jacques; Boire, Jean-Yves

    2007-03-01

    Symptoms of neurodegenerative pathologies such as Parkinson's disease can be relieved through Deep Brain Stimulation. This neurosurgical technique relies on high precision positioning of electrodes in specific areas of the basal ganglia and the thalamus. These subcortical anatomical targets must be located at pre-operative stage, from a set of MRI acquired under stereotactic conditions. In order to assist surgical planning, we designed a semi-automated image analysis process for extracting anatomical areas of interest. Complementary information, provided by both patient's data and expert knowledge, is represented as fuzzy membership maps, which are then fused by means of suitable possibilistic operators in order to achieve the segmentation of targets. More specifically, theoretical prior knowledge on brain anatomy is modelled within a 'virtual atlas' organised as a spatial graph: a list of vertices linked by edges, where each vertex represents an anatomical structure of interest and contains relevant information such as tissue composition, whereas each edge represents a spatial relationship between two structures, such as their relative directions. The model is built using heterogeneous sources of information such as qualitative descriptions from the expert, or quantitative information from prelabelled images. For each patient, tissue membership maps are extracted from MR data through a classification step. Prior model and patient's data are then matched by using a research algorithm (or 'strategy') which simultaneously computes an estimation of the location of every structures. The method was tested on 10 clinical images, with promising results. Location and segmentation results were statistically assessed, opening perspectives for enhancements.

  9. Quantum information processing with graph states

    International Nuclear Information System (INIS)

    Schlingemann, Dirk-Michael

    2005-04-01

    Graph states are multiparticle states which are associated with graphs. Each vertex of the graph corresponds to a single system or particle. The links describe quantum correlations (entanglement) between pairs of connected particles. Graph states were initiated independently by two research groups: On the one hand, graph states were introduced by Briegel and Raussendorf as a resource for a new model of one-way quantum computing, where algorithms are implemented by a sequence of measurements at single particles. On the other hand, graph states were developed by the author of this thesis and ReinhardWerner in Braunschweig, as a tool to build quantum error correcting codes, called graph codes. The connection between the two approaches was fully realized in close cooperation of both research groups. This habilitation thesis provides a survey of the theory of graph codes, focussing mainly, but not exclusively on the author's own research work. We present the theoretical and mathematical background for the analysis of graph codes. The concept of one-way quantum computing for general graph states is discussed. We explicitly show how to realize the encoding and decoding device of a graph code on a one-way quantum computer. This kind of implementation is to be seen as a mathematical description of a quantum memory device. In addition to that, we investigate interaction processes, which enable the creation of graph states on very large systems. Particular graph states can be created, for instance, by an Ising type interaction between next neighbor particles which sits at the points of an infinitely extended cubic lattice. Based on the theory of quantum cellular automata, we give a constructive characterization of general interactions which create a translationally invariant graph state. (orig.)

  10. Graphs and matrices

    CERN Document Server

    Bapat, Ravindra B

    2014-01-01

    This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...

  11. Adaptive Graph Convolutional Neural Networks

    OpenAIRE

    Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou

    2018-01-01

    Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...

  12. Eigenfunction statistics on quantum graphs

    International Nuclear Information System (INIS)

    Gnutzmann, S.; Keating, J.P.; Piotet, F.

    2010-01-01

    We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.

  13. On middle cube graphs

    Directory of Open Access Journals (Sweden)

    C. Dalfo

    2015-10-01

    Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.

  14. GC-ASM: Synergistic Integration of Graph-Cut and Active Shape Model Strategies for Medical Image Segmentation.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2013-05-01

    Image segmentation methods may be classified into two categories: purely image based and model based. Each of these two classes has its own advantages and disadvantages. In this paper, we propose a novel synergistic combination of the image based graph-cut (GC) method with the model based ASM method to arrive at the GC-ASM method for medical image segmentation. A multi-object GC cost function is proposed which effectively integrates the ASM shape information into the GC framework. The proposed method consists of two phases: model building and segmentation. In the model building phase, the ASM model is built and the parameters of the GC are estimated. The segmentation phase consists of two main steps: initialization (recognition) and delineation. For initialization, an automatic method is proposed which estimates the pose (translation, orientation, and scale) of the model, and obtains a rough segmentation result which also provides the shape information for the GC method. For delineation, an iterative GC-ASM algorithm is proposed which performs finer delineation based on the initialization results. The proposed methods are implemented to operate on 2D images and evaluated on clinical chest CT, abdominal CT, and foot MRI data sets. The results show the following: (a) An overall delineation accuracy of TPVF > 96%, FPVF ASM for different objects, modalities, and body regions. (b) GC-ASM improves over ASM in its accuracy and precision to search region. (c) GC-ASM requires far fewer landmarks (about 1/3 of ASM) than ASM. (d) GC-ASM achieves full automation in the segmentation step compared to GC which requires seed specification and improves on the accuracy of GC. (e) One disadvantage of GC-ASM is its increased computational expense owing to the iterative nature of the algorithm.

  15. Non-parametric Bayesian graph models reveal community structure in resting state fMRI

    DEFF Research Database (Denmark)

    Andersen, Kasper Winther; Madsen, Kristoffer H.; Siebner, Hartwig Roman

    2014-01-01

    Modeling of resting state functional magnetic resonance imaging (rs-fMRI) data using network models is of increasing interest. It is often desirable to group nodes into clusters to interpret the communication patterns between nodes. In this study we consider three different nonparametric Bayesian...... models for node clustering in complex networks. In particular, we test their ability to predict unseen data and their ability to reproduce clustering across datasets. The three generative models considered are the Infinite Relational Model (IRM), Bayesian Community Detection (BCD), and the Infinite...... between clusters. BCD restricts the between-cluster link probabilities to be strictly lower than within-cluster link probabilities to conform to the community structure typically seen in social networks. IDM only models a single between-cluster link probability, which can be interpreted as a background...

  16. Attack Graph Construction for Security Events Analysis

    Directory of Open Access Journals (Sweden)

    Andrey Alexeevich Chechulin

    2014-09-01

    Full Text Available The paper is devoted to investigation of the attack graphs construction and analysis task for a network security evaluation and real-time security event processing. Main object of this research is the attack modeling process. The paper contains the description of attack graphs building, modifying and analysis technique as well as overview of implemented prototype for network security analysis based on attack graph approach.

  17. Mechatronics by bond graphs an object-oriented approach to modelling and simulation

    CERN Document Server

    Damić, Vjekoslav

    2015-01-01

    This book presents a computer-aided approach to the design of mechatronic systems. Its subject is an integrated modeling and simulation in a visual computer environment. Since the first edition, the simulation software changed enormously, became more user-friendly and easier to use. Therefore, a second edition became necessary taking these improvements into account. The modeling is based on system top-down and bottom-up approach. The mathematical models are generated in a form of differential-algebraic equations and solved using numerical and symbolic algebra methods. The integrated approach developed is applied to mechanical, electrical and control systems, multibody dynamics, and continuous systems. .

  18. Joint Bayesian variable and graph selection for regression models with network-structured predictors

    Science.gov (United States)

    Peterson, C. B.; Stingo, F. C.; Vannucci, M.

    2015-01-01

    In this work, we develop a Bayesian approach to perform selection of predictors that are linked within a network. We achieve this by combining a sparse regression model relating the predictors to a response variable with a graphical model describing conditional dependencies among the predictors. The proposed method is well-suited for genomic applications since it allows the identification of pathways of functionally related genes or proteins which impact an outcome of interest. In contrast to previous approaches for network-guided variable selection, we infer the network among predictors using a Gaussian graphical model and do not assume that network information is available a priori. We demonstrate that our method outperforms existing methods in identifying network-structured predictors in simulation settings, and illustrate our proposed model with an application to inference of proteins relevant to glioblastoma survival. PMID:26514925

  19. About the Big Graphs Arising when Forming the Diagnostic Models in a Reconfigurable Computing Field of Functional Monitoring and Diagnostics System of the Spacecraft Onboard Control Complex

    Directory of Open Access Journals (Sweden)

    L. V. Savkin

    2015-01-01

    Full Text Available One of the problems in implementation of the multipurpose complete systems based on the reconfigurable computing fields (RCF is the problem of optimum redistribution of logicalarithmetic resources in growing scope of functional tasks. Irrespective of complexity, all of them are transformed into an orgraph, which functional and topological structure is appropriately imposed on the RCF based, as a rule, on the field programmable gate array (FPGA.Due to limitation of the hardware configurations and functions realized by means of the switched logical blocks (SLB, the abovementioned problem becomes even more critical when there is a need, within the strictly allocated RCF fragment, to realize even more complex challenge in comparison with the problem which was solved during the previous computing step. In such cases it is possible to speak about graphs of big dimensions with respect to allocated RCF fragment.The article considers this problem through development of diagnostic algorithms to implement diagnostics and control of an onboard control complex of the spacecraft using RCF. It gives examples of big graphs arising with respect to allocated RCF fragment when forming the hardware levels of a diagnostic model, which, in this case, is any hardware-based algorithm of diagnostics in RCF.The article reviews examples of arising big graphs when forming the complicated diagnostic models due to drastic difference in formation of hardware levels on closely located RCF fragments. It also pays attention to big graphs emerging when the multichannel diagnostic models are formed.Three main ways to solve the problem of big graphs with respect to allocated RCF fragment are given. These are: splitting the graph into fragments, use of pop-up windows with relocating and memorizing intermediate values of functions of high hardware levels of diagnostic models, and deep adaptive update of diagnostic model.It is shown that the last of three ways is the most efficient

  20. GRAPH MODELING OF THE GRAIN PROCESSING ENTERPRISE FOR SECONDARY EXPLOSION ESTIMATIONS

    Directory of Open Access Journals (Sweden)

    A. S. Popov

    2016-08-01

    Full Text Available Mathematical model for the possible development of the primary explosion at the grain processing enterprise is created. It is proved that only instability is possible for the combustion process. This model enables to estimate possibility of the secondary explosion at any object of the enterprise and forms the base for mathematical support of the decision support system for explosion-proof. Such decision support system can be included in the control system of the processing enterprise.

  1. Declarative Process Mining for DCR Graphs

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas T.; Laursen, Paw Høvsgaard

    2017-01-01

    We investigate process mining for the declarative Dynamic Condition Response (DCR) graphs process modelling language. We contribute (a) a process mining algorithm for DCR graphs, (b) a proposal for a set of metrics quantifying output model quality, and (c) a preliminary example-based comparison...

  2. Association of Finite-Time Thermodynamics and a Bond-Graph Approach for Modeling an Endoreversible Heat Engine

    Directory of Open Access Journals (Sweden)

    Michel Feidt

    2012-03-01

    Full Text Available In recent decades, the approach known as Finite-Time Thermodynamics has provided a fruitful theoretical framework for the optimization of heat engines operating between a heat source (at temperature and a heat sink (at temperature . The aim of this paper is to propose a more complete approach based on the association of Finite-Time Thermodynamics and the Bond-Graph approach for modeling endoreversible heat engines. This approach makes it possible for example to find in a simple way the characteristics of the optimal operating point at which the maximum mechanical power of the endoreversible heat engine is obtained with entropy flow rate as control variable. Furthermore it provides the analytical expressions of the optimal operating point of an irreversible heat engine where the energy conversion is accompanied by irreversibilities related to internal heat transfer and heat dissipation phenomena. This original approach, applied to an analysis of the performance of a thermoelectric generator, will be the object of a future publication.

  3. Graphing Inequalities, Connecting Meaning

    Science.gov (United States)

    Switzer, J. Matt

    2014-01-01

    Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…

  4. Similarity Measure of Graphs

    Directory of Open Access Journals (Sweden)

    Amine Labriji

    2017-07-01

    Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and  offers a contribution to solving the problem mentioned above.

  5. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  6. Fuzzy Graph Language Recognizability

    OpenAIRE

    Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros

    2012-01-01

    Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.

  7. Spectra of Graphs

    NARCIS (Netherlands)

    Brouwer, A.E.; Haemers, W.H.

    2012-01-01

    This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association

  8. Conditional estimation of exponential random graph models from snowball sampling designs

    NARCIS (Netherlands)

    Pattison, Philippa E.; Robins, Garry L.; Snijders, Tom A. B.; Wang, Peng

    2013-01-01

    A complete survey of a network in a large population may be prohibitively difficult and costly. So it is important to estimate models for networks using data from various network sampling designs, such as link-tracing designs. We focus here on snowball sampling designs, designs in which the members

  9. Cooperative Search by UAV Teams: A Model Predictive Approach Using Dynamic Graphs

    Science.gov (United States)

    2011-10-01

    Consequently , target estimation is a challenging problem and a rich field of study in itself. We refer the reader to [1] and [11] for a deeper analysis of...decentralized processing and control architecture. SLAMEM asset models accurately represent the Unicorn UAV platforms and other standard military platforms in...IMPLEMENTATION The CGBMPS algorithm has been successfully field-tested using both Unicorn [27] and Raven [20] UAV platforms. This section describes

  10. Bayesian exponential random graph modeling of whole-brain structural networks across lifespan

    OpenAIRE

    Sinke, Michel R T; Dijkhuizen, Rick M; Caimo, Alberto; Stam, Cornelis J; Otte, Wim

    2016-01-01

    Descriptive neural network analyses have provided important insights into the organization of structural and functional networks in the human brain. However, these analyses have limitations for inter-subject or between-group comparisons in which network sizes and edge densities may differ, such as in studies on neurodevelopment or brain diseases. Furthermore, descriptive neural network analyses lack an appropriate generic null model and a unifying framework. These issues may be solved with an...

  11. Graph Based Models for Unsupervised High Dimensional Data Clustering and Network Analysis

    Science.gov (United States)

    2015-01-01

    A. Porter and my advisor. The text is primarily written by me. Chapter 5 is a version of [46] where my contribution is all of the analytical ...inn Euclidean space, a variational method refers to using calculus of variation techniques to find the minimizer (or maximizer) of a functional (energy... geometric inter- pretation of modularity optimization contrasts with existing interpretations (e.g., probabilistic ones or in terms of the Potts model

  12. Box graphs and resolutions I

    Directory of Open Access Journals (Sweden)

    Andreas P. Braun

    2016-04-01

    Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.

  13. Hierarchical organisation of causal graphs

    International Nuclear Information System (INIS)

    Dziopa, P.

    1993-01-01

    This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs

  14. Graph theoretical models for calculating the reliablility of power plants. Pt. 4

    International Nuclear Information System (INIS)

    Vetterkind, D.W.

    1978-01-01

    With the aid of mathematical formalisms from the theory of stochastical networks, approximation equations are derived for the expectation value as well as for the scattering of period-related availability of series systems consisting of deteriorating and/or non-deteriorating components. In this context, successive operating times of deteriorating components are described by the time-dependent Poisson process while successive operating times of non-deteriorating components are described by the time-independent Poisson process. In addition provision is made in the model to include in the calculation an existing trend of the expectation value of components successive failure times. (orig./RW) [de

  15. Graphs and Homomorphisms

    CERN Document Server

    Hell, Pavol

    2004-01-01

    This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an

  16. Simplicial complexes of graphs

    CERN Document Server

    Jonsson, Jakob

    2008-01-01

    A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.

  17. Graph-theoretic techniques for web content mining

    CERN Document Server

    Schenker, Adam; Bunke, Horst; Last, Mark

    2005-01-01

    This book describes exciting new opportunities for utilizing robust graph representations of data with common machine learning algorithms. Graphs can model additional information which is often not present in commonly used data representations, such as vectors.

  18. Survey of Approaches to Generate Realistic Synthetic Graphs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lee, Sangkeun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shankar, Mallikarjun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Imam, Neena [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broad set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.

  19. Degree-based graph construction

    International Nuclear Information System (INIS)

    Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A

    2009-01-01

    Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)

  20. Modeling Temporal Variation in Social Network: An Evolutionary Web Graph Approach

    Science.gov (United States)

    Mitra, Susanta; Bagchi, Aditya

    A social network is a social structure between actors (individuals, organization or other social entities) and indicates the ways in which they are connected through various social relationships like friendships, kinships, professional, academic etc. Usually, a social network represents a social community, like a club and its members or a city and its citizens etc. or a research group communicating over Internet. In seventies Leinhardt [1] first proposed the idea of representing a social community by a digraph. Later, this idea became popular among other research workers like, network designers, web-service application developers and e-learning modelers. It gave rise to a rapid proliferation of research work in the area of social network analysis. Some of the notable structural properties of a social network are connectedness between actors, reachability between a source and a target actor, reciprocity or pair-wise connection between actors with bi-directional links, centrality of actors or the important actors having high degree or more connections and finally the division of actors into sub-structures or cliques or strongly-connected components. The cycles present in a social network may even be nested [2, 3]. The formal definition of these structural properties will be provided in Sect. 8.2.1. The division of actors into cliques or sub-groups can be a very important factor for understanding a social structure, particularly the degree of cohesiveness in a community. The number, size, and connections among the sub-groups in a network are useful in understanding how the network, as a whole, is likely to behave.

  1. On the exterior structure of graphs

    International Nuclear Information System (INIS)

    Kastler, Daniel

    2004-01-01

    After a detailed ab initio description of the exterior structure of graphs as handled by Connes and Kreimer in their work on renormalization (illustrated by the example of the φ 3 model in six dimensions) we spell out in detail their study of the Lie algebra of infinitesimal characters and of the group of characters of the Hopf algebra of Feynman graphs

  2. Supplantation of Mental Operations on Graphs

    Science.gov (United States)

    Vogel, Markus; Girwidz, Raimund; Engel, Joachim

    2007-01-01

    Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…

  3. Equitable Colorings Of Corona Multiproducts Of Graphs

    Directory of Open Access Journals (Sweden)

    Furmánczyk Hanna

    2017-11-01

    Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].

  4. Carbon Nanotubes’ Effect on Mitochondrial Oxygen Flux Dynamics: Polarography Experimental Study and Machine Learning Models using Star Graph Trace Invariants of Raman Spectra

    Directory of Open Access Journals (Sweden)

    Michael González-Durruthy

    2017-11-01

    Full Text Available This study presents the impact of carbon nanotubes (CNTs on mitochondrial oxygen mass flux (Jm under three experimental conditions. New experimental results and a new methodology are reported for the first time and they are based on CNT Raman spectra star graph transform (spectral moments and perturbation theory. The experimental measures of Jm showed that no tested CNT family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared (R2 of 0.863 and test root-mean-square error (RMSE of 0.0461. The results demonstrate the capability of encoding CNT information into spectral moments of the Raman star graphs (SG transform with a potential applicability as predictive tools in nanotechnology and material risk assessments.

  5. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Ruggero Gramatica

    Full Text Available We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  6. Graph theory enables drug repurposing--how a mathematical model can drive the discovery of hidden mechanisms of action.

    Science.gov (United States)

    Gramatica, Ruggero; Di Matteo, T; Giorgetti, Stefano; Barbiani, Massimo; Bevec, Dorian; Aste, Tomaso

    2014-01-01

    We introduce a methodology to efficiently exploit natural-language expressed biomedical knowledge for repurposing existing drugs towards diseases for which they were not initially intended. Leveraging on developments in Computational Linguistics and Graph Theory, a methodology is defined to build a graph representation of knowledge, which is automatically analysed to discover hidden relations between any drug and any disease: these relations are specific paths among the biomedical entities of the graph, representing possible Modes of Action for any given pharmacological compound. We propose a measure for the likeliness of these paths based on a stochastic process on the graph. This measure depends on the abundance of indirect paths between a peptide and a disease, rather than solely on the strength of the shortest path connecting them. We provide real-world examples, showing how the method successfully retrieves known pathophysiological Mode of Action and finds new ones by meaningfully selecting and aggregating contributions from known bio-molecular interactions. Applications of this methodology are presented, and prove the efficacy of the method for selecting drugs as treatment options for rare diseases.

  7. Data transformations in custom digital workflows : Property graphs as a data model for user-defined mappings

    NARCIS (Netherlands)

    Janssen, P.; Stouffs, R.M.F.; Chaszar, A.T.; Boeykens, S.; Toth, B.

    2012-01-01

    This paper describes the use of property graphs for mapping data between AEC software tools, which are not linked by common data formats and/or other interoperability measures. The intention of introducing this in practice, education and research is to facilitate the use of diverse, non-integrated

  8. Prediction of microbe-disease association from the integration of neighbor and graph with collaborative recommendation model.

    Science.gov (United States)

    Huang, Yu-An; You, Zhu-Hong; Chen, Xing; Huang, Zhi-An; Zhang, Shanwen; Yan, Gui-Ying

    2017-10-16

    Accumulating clinical researches have shown that specific microbes with abnormal levels are closely associated with the development of various human diseases. Knowledge of microbe-disease associations can provide valuable insights for complex disease mechanism understanding as well as the prevention, diagnosis and treatment of various diseases. However, little effort has been made to predict microbial candidates for human complex diseases on a large scale. In this work, we developed a new computational model for predicting microbe-disease associations by combining two single recommendation methods. Based on the assumption that functionally similar microbes tend to get involved in the mechanism of similar disease, we adopted neighbor-based collaborative filtering and a graph-based scoring method to compute association possibility of microbe-disease pairs. The promising prediction performance could be attributed to the use of hybrid approach based on two single recommendation methods as well as the introduction of Gaussian kernel-based similarity and symptom-based disease similarity. To evaluate the performance of the proposed model, we implemented leave-one-out and fivefold cross validations on the HMDAD database, which is recently built as the first database collecting experimentally-confirmed microbe-disease associations. As a result, NGRHMDA achieved reliable results with AUCs of 0.9023 ± 0.0031 and 0.9111 in the validation frameworks of fivefold CV and LOOCV. In addition, 78.2% microbe samples and 66.7% disease samples are found to be consistent with the basic assumption of our work that microbes tend to get involved in the similar disease clusters, and vice versa. Compared with other methods, the prediction results yielded by NGRHMDA demonstrate its effective prediction performance for microbe-disease associations. It is anticipated that NGRHMDA can be used as a useful tool to search the most potential microbial candidates for various diseases, and therefore

  9. Pattern graph rewrite systems

    Directory of Open Access Journals (Sweden)

    Aleks Kissinger

    2014-03-01

    Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.

  10. Functions and graphs

    CERN Document Server

    Gelfand, I M; Shnol, E E

    1969-01-01

    The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu

  11. Creating more effective graphs

    CERN Document Server

    Robbins, Naomi B

    2012-01-01

    A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr

  12. Graph Generator Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-10-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.

  13. Loose Graph Simulations

    DEFF Research Database (Denmark)

    Mansutti, Alessio; Miculan, Marino; Peressotti, Marco

    2017-01-01

    We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...

  14. Graph Compression by BFS

    Directory of Open Access Journals (Sweden)

    Alberto Apostolico

    2009-08-01

    Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.

  15. Towards Trustworthy Adaptive Case Management with Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Mukkamala, Raghava Rao; Hildebrandt, Thomas; Slaats, Tijs

    2013-01-01

    We describe how the declarative Dynamic Condition Response (DCR) Graphs process model can be used for trustworthy adaptive case management by leveraging the flexible execution, dynamic composition and adaptation supported by DCR Graphs. The dynamically composed and adapted graphs are verified for...

  16. Graph-theoretical concepts and physicochemical data

    Directory of Open Access Journals (Sweden)

    Lionello Pogliani

    2003-02-01

    Full Text Available Graph theoretical concepts have been used to model the molecular polarizabilities of fifty-four organic derivatives, and the induced dipole moment of a set of fifty-seven organic compounds divided into three subsets. The starting point of these modeling strategies is the hydrogen-suppressed chemical graph and pseudograph of a molecule, which works very well for second row atoms. From these types of graphs a set of graph-theoretical basis indices, the molecular connectivity indices, can be derived and used to model properties and activities of molecules. With the aid of the molecular connectivity basis indices it is then possible to build higher-order descriptors. The problem of 'graph' encoding the contribution of the inner-core electrons of heteroatoms can here be solved with the aid of odd complete graphs, Kp-(p-odd. The use of these graph tools allow to draw an optimal modeling of the molecular polarizabilities and a satisfactory modeling of the induced dipole moment of a wide set of organic derivatives.

  17. Expert interpretation of bar and line graphs: The role of graphicacy in reducing the effect of graph format.

    Directory of Open Access Journals (Sweden)

    David ePeebles

    2015-10-01

    Full Text Available The distinction between informational and computational equivalence of representations, first articulated by Larkin and Simon (1987 has been a fundamental principle in the analysis of diagrammatic reasoning which has been supported empirically on numerous occasions. We present an experiment that investigates this principle in relation to the performance of expert graph users of 2 x 2 'interaction' bar and line graphs. The study sought to determine whether expert interpretation is affected by graph format in the same way that novice interpretations are. The findings revealed that, unlike novices - and contrary to the assumptions of several graph comprehension models - experts' performance was the same for both graph formats, with their interpretation of bar graphs being no worse than that for line graphs. We discuss the implications of the study for guidelines for presenting such data and for models of expert graph comprehension.

  18. Disease management research using event graphs.

    Science.gov (United States)

    Allore, H G; Schruben, L W

    2000-08-01

    Event Graphs, conditional representations of stochastic relationships between discrete events, simulate disease dynamics. In this paper, we demonstrate how Event Graphs, at an appropriate abstraction level, also extend and organize scientific knowledge about diseases. They can identify promising treatment strategies and directions for further research and provide enough detail for testing combinations of new medicines and interventions. Event Graphs can be enriched to incorporate and validate data and test new theories to reflect an expanding dynamic scientific knowledge base and establish performance criteria for the economic viability of new treatments. To illustrate, an Event Graph is developed for mastitis, a costly dairy cattle disease, for which extensive scientific literature exists. With only a modest amount of imagination, the methodology presented here can be seen to apply modeling to any disease, human, plant, or animal. The Event Graph simulation presented here is currently being used in research and in a new veterinary epidemiology course. Copyright 2000 Academic Press.

  19. Graph Theory. 1. Fragmentation of Structural Graphs

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.

  20. Trajectories entropy in dynamical graphs with memory

    Directory of Open Access Journals (Sweden)

    Francesco eCaravelli

    2016-04-01

    Full Text Available In this paper we investigate the application of non-local graph entropy to evolving and dynamical graphs. The measure is based upon the notion of Markov diffusion on a graph, and relies on the entropy applied to trajectories originating at a specific node. In particular, we study the model of reinforcement-decay graph dynamics, which leads to scale free graphs. We find that the node entropy characterizes the structure of the network in the two parameter phase-space describing the dynamical evolution of the weighted graph. We then apply an adapted version of the entropy measure to purely memristive circuits. We provide evidence that meanwhile in the case of DC voltage the entropy based on the forward probability is enough to characterize the graph properties, in the case of AC voltage generators one needs to consider both forward and backward based transition probabilities. We provide also evidence that the entropy highlights the self-organizing properties of memristive circuits, which re-organizes itself to satisfy the symmetries of the underlying graph.

  1. A graph rewriting programming language for graph drawing

    OpenAIRE

    Rodgers, Peter

    1998-01-01

    This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...

  2. Graph Transforming Java Data

    NARCIS (Netherlands)

    de Mol, M.J.; Rensink, Arend; Hunt, James J.

    This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class

  3. Distance-transitive graphs

    NARCIS (Netherlands)

    Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.

    2004-01-01

    In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite

  4. Adventures in graph theory

    CERN Document Server

    Joyner, W David

    2017-01-01

    This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...

  5. Packing Degenerate Graphs Greedily

    Czech Academy of Sciences Publication Activity Database

    Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana

    2017-01-01

    Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics

  6. Parallel External Memory Graph Algorithms

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari

    2010-01-01

    In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of ¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....

  7. Autoregressive Moving Average Graph Filtering

    OpenAIRE

    Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert

    2016-01-01

    One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...

  8. Flux networks in metabolic graphs

    International Nuclear Information System (INIS)

    Warren, P B; Queiros, S M Duarte; Jones, J L

    2009-01-01

    A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms

  9. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar

    2017-03-06

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  10. Subgraph detection using graph signals

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.

  11. Distributed Large Independent Sets in One Round On Bounded-independence Graphs

    OpenAIRE

    Halldorsson , Magnus M.; Konrad , Christian

    2015-01-01

    International audience; We present a randomized one-round, single-bit messages, distributed algorithm for the maximum independent set problem in polynomially bounded-independence graphs with poly-logarithmic approximation factor. Bounded-independence graphs capture various models of wireless networks such as the unit disc graphs model and the quasi unit disc graphs model. For instance, on unit disc graphs, our achieved approximation ratio is O((log(n)/log(log(n)))^2).A starting point of our w...

  12. GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1

    Energy Technology Data Exchange (ETDEWEB)

    Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor

    2014-08-25

    Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.

  13. ARTICLE Robust Diagnosis of Mechatronics System by Bond Graph Approach

    Directory of Open Access Journals (Sweden)

    Abderrahmene Sellami

    2018-03-01

    Full Text Available This article presents design of a robust diagnostic system based on bond graph model for a mechatronic system. Mechatronics is the synergistic and systemic combination of mechanics, electronics and computer science. The design of a mechatronic system modeled by the bond graph model becomes easier and more generous. The bond graph tool is a unified graphical language for all areas of engineering sciences and confirmed as a structured approach to modeling and simulation of multidisciplinary systems.

  14. Extremal graph theory

    CERN Document Server

    Bollobas, Bela

    2004-01-01

    The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A

  15. Significance evaluation in factor graphs

    DEFF Research Database (Denmark)

    Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet

    2017-01-01

    in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...

  16. Particle transport in breathing quantum graph

    International Nuclear Information System (INIS)

    Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.

    2012-01-01

    Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)

  17. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif

    2017-01-07

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  18. Large-Scale Graph Processing Using Apache Giraph

    KAUST Repository

    Sakr, Sherif; Orakzai, Faisal Moeen; Abdelaziz, Ibrahim; Khayyat, Zuhair

    2017-01-01

    This book takes its reader on a journey through Apache Giraph, a popular distributed graph processing platform designed to bring the power of big data processing to graph data. Designed as a step-by-step self-study guide for everyone interested in large-scale graph processing, it describes the fundamental abstractions of the system, its programming models and various techniques for using the system to process graph data at scale, including the implementation of several popular and advanced graph analytics algorithms.

  19. Simplifying Scalable Graph Processing with a Domain-Specific Language

    KAUST Repository

    Hong, Sungpack; Salihoglu, Semih; Widom, Jennifer; Olukotun, Kunle

    2014-01-01

    Large-scale graph processing, with its massive data sets, requires distributed processing. However, conventional frameworks for distributed graph processing, such as Pregel, use non-traditional programming models that are well-suited for parallelism and scalability but inconvenient for implementing non-trivial graph algorithms. In this paper, we use Green-Marl, a Domain-Specific Language for graph analysis, to intuitively describe graph algorithms and extend its compiler to generate equivalent Pregel implementations. Using the semantic information captured by Green-Marl, the compiler applies a set of transformation rules that convert imperative graph algorithms into Pregel's programming model. Our experiments show that the Pregel programs generated by the Green-Marl compiler perform similarly to manually coded Pregel implementations of the same algorithms. The compiler is even able to generate a Pregel implementation of a complicated graph algorithm for which a manual Pregel implementation is very challenging.

  20. Simplifying Scalable Graph Processing with a Domain-Specific Language

    KAUST Repository

    Hong, Sungpack

    2014-01-01

    Large-scale graph processing, with its massive data sets, requires distributed processing. However, conventional frameworks for distributed graph processing, such as Pregel, use non-traditional programming models that are well-suited for parallelism and scalability but inconvenient for implementing non-trivial graph algorithms. In this paper, we use Green-Marl, a Domain-Specific Language for graph analysis, to intuitively describe graph algorithms and extend its compiler to generate equivalent Pregel implementations. Using the semantic information captured by Green-Marl, the compiler applies a set of transformation rules that convert imperative graph algorithms into Pregel\\'s programming model. Our experiments show that the Pregel programs generated by the Green-Marl compiler perform similarly to manually coded Pregel implementations of the same algorithms. The compiler is even able to generate a Pregel implementation of a complicated graph algorithm for which a manual Pregel implementation is very challenging.

  1. Using Exponential Random Graph Models to Analyze the Character of Peer Relationship Networks and Their Effects on the Subjective Well-being of Adolescents.

    Science.gov (United States)

    Jiao, Can; Wang, Ting; Liu, Jianxin; Wu, Huanjie; Cui, Fang; Peng, Xiaozhe

    2017-01-01

    The influences of peer relationships on adolescent subjective well-being were investigated within the framework of social network analysis, using exponential random graph models as a methodological tool. The participants in the study were 1,279 students (678 boys and 601 girls) from nine junior middle schools in Shenzhen, China. The initial stage of the research used a peer nomination questionnaire and a subjective well-being scale (used in previous studies) to collect data on the peer relationship networks and the subjective well-being of the students. Exponential random graph models were then used to explore the relationships between students with the aim of clarifying the character of the peer relationship networks and the influence of peer relationships on subjective well being. The results showed that all the adolescent peer relationship networks in our investigation had positive reciprocal effects, positive transitivity effects and negative expansiveness effects. However, none of the relationship networks had obvious receiver effects or leaders. The adolescents in partial peer relationship networks presented similar levels of subjective well-being on three dimensions (satisfaction with life, positive affects and negative affects) though not all network friends presented these similarities. The study shows that peer networks can affect an individual's subjective well-being. However, whether similarities among adolescents are the result of social influences or social choices needs further exploration, including longitudinal studies that investigate the potential processes of subjective well-being similarities among adolescents.

  2. Use of Attack Graphs in Security Systems

    Directory of Open Access Journals (Sweden)

    Vivek Shandilya

    2014-01-01

    Full Text Available Attack graphs have been used to model the vulnerabilities of the systems and their potential exploits. The successful exploits leading to the partial/total failure of the systems are subject of keen security interest. Considerable effort has been expended in exhaustive modeling, analyses, detection, and mitigation of attacks. One prominent methodology involves constructing attack graphs of the pertinent system for analysis and response strategies. This not only gives the simplified representation of the system, but also allows prioritizing the security properties whose violations are of greater concern, for both detection and repair. We present a survey and critical study of state-of-the-art technologies in attack graph generation and use in security system. Based on our research, we identify the potential, challenges, and direction of the current research in using attack graphs.

  3. Downhill Domination in Graphs

    Directory of Open Access Journals (Sweden)

    Haynes Teresa W.

    2014-08-01

    Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds

  4. Tailored Random Graph Ensembles

    International Nuclear Information System (INIS)

    Roberts, E S; Annibale, A; Coolen, A C C

    2013-01-01

    Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.

  5. Cycles in graphs

    CERN Document Server

    Alspach, BR

    1985-01-01

    This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.

  6. Introduction to graph theory

    CERN Document Server

    Wilson, Robin J

    1985-01-01

    Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.

  7. Hyperbolicity in median graphs

    Indian Academy of Sciences (India)

    mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.

  8. Uniform Single Valued Neutrosophic Graphs

    Directory of Open Access Journals (Sweden)

    S. Broumi

    2017-09-01

    Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.

  9. Collective Rationality in Graph Aggregation

    NARCIS (Netherlands)

    Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.

    2014-01-01

    Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the

  10. Classical dynamics on graphs

    International Nuclear Information System (INIS)

    Barra, F.; Gaspard, P.

    2001-01-01

    We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes

  11. Modern graph theory

    CERN Document Server

    Bollobás, Béla

    1998-01-01

    The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...

  12. Topological structure of dictionary graphs

    International Nuclear Information System (INIS)

    Fuks, Henryk; Krzeminski, Mark

    2009-01-01

    We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers-that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 10 3 and 10 4 . A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.

  13. The many faces of graph dynamics

    Science.gov (United States)

    Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles

    2017-06-01

    The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.

  14. Evolutionary games on graphs

    Science.gov (United States)

    Szabó, György; Fáth, Gábor

    2007-07-01

    Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.

  15. Quantum Graphs And Their Resonance Properties

    International Nuclear Information System (INIS)

    Lipovsky, J.

    2016-01-01

    In the current review, we study the model of quantum graphs. We focus mainly on the resonance properties of quantum graphs. We define resolvent and scattering resonances and show their equivalence. We present various results on the asymptotics of the number of resolvent resonances in both non-magnetic and magnetic quantum graphs and find bounds on the coefficient by the leading term of the asymptotics. We explain methods how to find the spectral and resonance condition. Most of the notions and theorems are illustrated in examples. We show how to find resonances numerically and, in a simple example, we find trajectories of resonances in the complex plane. We discuss Fermi’s golden rule for quantum graphs and distribution of the mean intensity for the topological resonances. (author)

  16. Graph processing platforms at scale: practices and experiences

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Seung-Hwan [ORNL; Lee, Sangkeun (Matt) [ORNL; Brown, Tyler C [ORNL; Sukumar, Sreenivas R [ORNL; Ganesh, Gautam [ORNL

    2015-01-01

    Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution, connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.

  17. Proxy Graph: Visual Quality Metrics of Big Graph Sampling.

    Science.gov (United States)

    Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra

    2017-06-01

    Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.

  18. Multiple graph regularized nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2013-10-01

    Non-negative matrix factorization (NMF) has been widely used as a data representation method based on components. To overcome the disadvantage of NMF in failing to consider the manifold structure of a data set, graph regularized NMF (GrNMF) has been proposed by Cai et al. by constructing an affinity graph and searching for a matrix factorization that respects graph structure. Selecting a graph model and its corresponding parameters is critical for this strategy. This process is usually carried out by cross-validation or discrete grid search, which are time consuming and prone to overfitting. In this paper, we propose a GrNMF, called MultiGrNMF, in which the intrinsic manifold is approximated by a linear combination of several graphs with different models and parameters inspired by ensemble manifold regularization. Factorization metrics and linear combination coefficients of graphs are determined simultaneously within a unified object function. They are alternately optimized in an iterative algorithm, thus resulting in a novel data representation algorithm. Extensive experiments on a protein subcellular localization task and an Alzheimer\\'s disease diagnosis task demonstrate the effectiveness of the proposed algorithm. © 2013 Elsevier Ltd. All rights reserved.

  19. On some covering graphs of a graph

    Directory of Open Access Journals (Sweden)

    Shariefuddin Pirzada

    2016-10-01

    Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\

  20. TrajGraph: A Graph-Based Visual Analytics Approach to Studying Urban Network Centralities Using Taxi Trajectory Data.

    Science.gov (United States)

    Huang, Xiaoke; Zhao, Ye; Yang, Jing; Zhang, Chong; Ma, Chao; Ye, Xinyue

    2016-01-01

    We propose TrajGraph, a new visual analytics method, for studying urban mobility patterns by integrating graph modeling and visual analysis with taxi trajectory data. A special graph is created to store and manifest real traffic information recorded by taxi trajectories over city streets. It conveys urban transportation dynamics which can be discovered by applying graph analysis algorithms. To support interactive, multiscale visual analytics, a graph partitioning algorithm is applied to create region-level graphs which have smaller size than the original street-level graph. Graph centralities, including Pagerank and betweenness, are computed to characterize the time-varying importance of different urban regions. The centralities are visualized by three coordinated views including a node-link graph view, a map view and a temporal information view. Users can interactively examine the importance of streets to discover and assess city traffic patterns. We have implemented a fully working prototype of this approach and evaluated it using massive taxi trajectories of Shenzhen, China. TrajGraph's capability in revealing the importance of city streets was evaluated by comparing the calculated centralities with the subjective evaluations from a group of drivers in Shenzhen. Feedback from a domain expert was collected. The effectiveness of the visual interface was evaluated through a formal user study. We also present several examples and a case study to demonstrate the usefulness of TrajGraph in urban transportation analysis.

  1. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.

  2. Optimization of the graph model of the water conduit network, based on the approach of search space reducing

    Science.gov (United States)

    Korovin, Iakov S.; Tkachenko, Maxim G.

    2018-03-01

    In this paper we present a heuristic approach, improving the efficiency of methods, used for creation of efficient architecture of water distribution networks. The essence of the approach is a procedure of search space reduction the by limiting the range of available pipe diameters that can be used for each edge of the network graph. In order to proceed the reduction, two opposite boundary scenarios for the distribution of flows are analysed, after which the resulting range is further narrowed by applying a flow rate limitation for each edge of the network. The first boundary scenario provides the most uniform distribution of the flow in the network, the opposite scenario created the net with the highest possible flow level. The parameters of both distributions are calculated by optimizing systems of quadratic functions in a confined space, which can be effectively performed with small time costs. This approach was used to modify the genetic algorithm (GA). The proposed GA provides a variable number of variants of each gene, according to the number of diameters in list, taking into account flow restrictions. The proposed approach was implemented to the evaluation of a well-known test network - the Hanoi water distribution network [1], the results of research were compared with a classical GA with an unlimited search space. On the test data, the proposed trip significantly reduced the search space and provided faster and more obvious convergence in comparison with the classical version of GA.

  3. Graphs, groups and surfaces

    CERN Document Server

    White, AT

    1985-01-01

    The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.

  4. Profinite graphs and groups

    CERN Document Server

    Ribes, Luis

    2017-01-01

    This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...

  5. Subdominant pseudoultrametric on graphs

    Energy Technology Data Exchange (ETDEWEB)

    Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)

    2013-08-31

    Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.

  6. Quantitative graph theory mathematical foundations and applications

    CERN Document Server

    Dehmer, Matthias

    2014-01-01

    The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat

  7. Graph Query Portal

    OpenAIRE

    Dayal, Amit; Brock, David

    2018-01-01

    Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...

  8. Spectral radius of graphs

    CERN Document Server

    Stevanovic, Dragan

    2015-01-01

    Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the

  9. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-01-01

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most

  10. A distributed query execution engine of big attributed graphs.

    Science.gov (United States)

    Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif

    2016-01-01

    A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.

  11. AN EFFECTIVE RECOMMENDATIONS BY DIFFUSION ALGORITHM FOR WEB GRAPH MINING

    Directory of Open Access Journals (Sweden)

    S. Vasukipriya

    2013-04-01

    Full Text Available The information on the World Wide Web grows in an explosive rate. Societies are relying more on the Web for their miscellaneous needs of information. Recommendation systems are active information filtering systems that attempt to present the information items like movies, music, images, books recommendations, tags recommendations, query suggestions, etc., to the users. Various kinds of data bases are used for the recommendations; fundamentally these data bases can be molded in the form of many types of graphs. Aiming at provided that a general framework on effective DR (Recommendations by Diffusion algorithm for web graphs mining. First introduce a novel graph diffusion model based on heat diffusion. This method can be applied to both undirected graphs and directed graphs. Then it shows how to convert different Web data sources into correct graphs in our models.

  12. Generating Realistic Labelled, Weighted Random Graphs

    Directory of Open Access Journals (Sweden)

    Michael Charles Davis

    2015-12-01

    Full Text Available Generative algorithms for random graphs have yielded insights into the structure and evolution of real-world networks. Most networks exhibit a well-known set of properties, such as heavy-tailed degree distributions, clustering and community formation. Usually, random graph models consider only structural information, but many real-world networks also have labelled vertices and weighted edges. In this paper, we present a generative model for random graphs with discrete vertex labels and numeric edge weights. The weights are represented as a set of Beta Mixture Models (BMMs with an arbitrary number of mixtures, which are learned from real-world networks. We propose a Bayesian Variational Inference (VI approach, which yields an accurate estimation while keeping computation times tractable. We compare our approach to state-of-the-art random labelled graph generators and an earlier approach based on Gaussian Mixture Models (GMMs. Our results allow us to draw conclusions about the contribution of vertex labels and edge weights to graph structure.

  13. Topics in graph theory graphs and their Cartesian product

    CERN Document Server

    Imrich, Wilfried; Rall, Douglas F

    2008-01-01

    From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.

  14. Graph mining for next generation sequencing: leveraging the assembly graph for biological insights.

    Science.gov (United States)

    Warnke-Sommer, Julia; Ali, Hesham

    2016-05-06

    The assembly of Next Generation Sequencing (NGS) reads remains a challenging task. This is especially true for the assembly of metagenomics data that originate from environmental samples potentially containing hundreds to thousands of unique species. The principle objective of current assembly tools is to assemble NGS reads into contiguous stretches of sequence called contigs while maximizing for both accuracy and contig length. The end goal of this process is to produce longer contigs with the major focus being on assembly only. Sequence read assembly is an aggregative process, during which read overlap relationship information is lost as reads are merged into longer sequences or contigs. The assembly graph is information rich and capable of capturing the genomic architecture of an input read data set. We have developed a novel hybrid graph in which nodes represent sequence regions at different levels of granularity. This model, utilized in the assembly and analysis pipeline Focus, presents a concise yet feature rich view of a given input data set, allowing for the extraction of biologically relevant graph structures for graph mining purposes. Focus was used to create hybrid graphs to model metagenomics data sets obtained from the gut microbiomes of five individuals with Crohn's disease and eight healthy individuals. Repetitive and mobile genetic elements are found to be associated with hybrid graph structure. Using graph mining techniques, a comparative study of the Crohn's disease and healthy data sets was conducted with focus on antibiotics resistance genes associated with transposase genes. Results demonstrated significant differences in the phylogenetic distribution of categories of antibiotics resistance genes in the healthy and diseased patients. Focus was also evaluated as a pure assembly tool and produced excellent results when compared against the Meta-velvet, Omega, and UD-IDBA assemblers. Mining the hybrid graph can reveal biological phenomena captured

  15. Graph Processing in Main-Memory Column Stores

    OpenAIRE

    Paradies, Marcus

    2017-01-01

    Evermore, novel and traditional business applications leverage the advantages of a graph data model, such as the offered schema flexibility and an explicit representation of relationships between entities. As a consequence, companies are confronted with the challenge of storing, manipulating, and querying terabytes of graph data for enterprise-critical applications. Although these business applications operate on graph-structured data, they still require direct access to the relational data a...

  16. Partitioning a call graph

    NARCIS (Netherlands)

    Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.

    2006-01-01

    Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to

  17. The STAPL Parallel Graph Library

    KAUST Repository

    Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence

    2013-01-01

    This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable

  18. Quantum walks on quotient graphs

    International Nuclear Information System (INIS)

    Krovi, Hari; Brun, Todd A.

    2007-01-01

    A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup

  19. Probability on graphs random processes on graphs and lattices

    CERN Document Server

    Grimmett, Geoffrey

    2018-01-01

    This introduction to some of the principal models in the theory of disordered systems leads the reader through the basics, to the very edge of contemporary research, with the minimum of technical fuss. Topics covered include random walk, percolation, self-avoiding walk, interacting particle systems, uniform spanning tree, random graphs, as well as the Ising, Potts, and random-cluster models for ferromagnetism, and the Lorentz model for motion in a random medium. This new edition features accounts of major recent progress, including the exact value of the connective constant of the hexagonal lattice, and the critical point of the random-cluster model on the square lattice. The choice of topics is strongly motivated by modern applications, and focuses on areas that merit further research. Accessible to a wide audience of mathematicians and physicists, this book can be used as a graduate course text. Each chapter ends with a range of exercises.

  20. A generalization of total graphs

    Indian Academy of Sciences (India)

    M Afkhami

    2018-04-12

    Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.

  1. Graph transformation tool contest 2008

    NARCIS (Netherlands)

    Rensink, Arend; van Gorp, Pieter

    This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case

  2. On dominator colorings in graphs

    Indian Academy of Sciences (India)

    colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.

  3. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    Full Text Available Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  4. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Science.gov (United States)

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  5. Declarative Event-Based Workflow as Distributed Dynamic Condition Response Graphs

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    2010-01-01

    We present Dynamic Condition Response Graphs (DCR Graphs) as a declarative, event-based process model inspired by the workflow language employed by our industrial partner and conservatively generalizing prime event structures. A dynamic condition response graph is a directed graph with nodes repr...... exemplify the use of distributed DCR Graphs on a simple workflow taken from a field study at a Danish hospital, pointing out their flexibility compared to imperative workflow models. Finally we provide a mapping from DCR Graphs to Buchi-automata....

  6. Algebraic Graph Theory Morphisms, Monoids and Matrices

    CERN Document Server

    Knauer, Ulrich

    2011-01-01

    This is a highly self-contained book about algebraic graph theory which iswritten with a view to keep the lively and unconventional atmosphere of a spoken text to communicate the enthusiasm the author feels about this subject. The focus is on homomorphisms and endomorphisms, matrices and eigenvalues. Graph models are extremely useful for almost all applications and applicators as they play an important role as structuring tools. They allow to model net structures -like roads, computers, telephones -instances of abstract data structures -likelists, stacks, trees -and functional or object orient

  7. Distributed graph coloring fundamentals and recent developments

    CERN Document Server

    Barenboim, Leonid

    2013-01-01

    The focus of this monograph is on symmetry breaking problems in the message-passing model of distributed computing. In this model a communication network is represented by a n-vertex graph G = (V,E), whose vertices host autonomous processors. The processors communicate over the edges of G in discrete rounds. The goal is to devise algorithms that use as few rounds as possible.A typical symmetry-breaking problem is the problem of graph coloring. Denote by ? the maximum degree of G. While coloring G with ? + 1 colors is trivial in the centralized setting, the problem becomes much more challenging

  8. Representation of activity in images using geospatial temporal graphs

    Science.gov (United States)

    Brost, Randolph; McLendon, III, William C.; Parekh, Ojas D.; Rintoul, Mark Daniel; Watson, Jean-Paul; Strip, David R.; Diegert, Carl

    2018-05-01

    Various technologies pertaining to modeling patterns of activity observed in remote sensing images using geospatial-temporal graphs are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Activity patterns may be discerned from the graphs by coding nodes representing persistent objects like buildings differently from nodes representing ephemeral objects like vehicles, and examining the geospatial-temporal relationships of ephemeral nodes within the graph.

  9. A first course in graph theory and combinatorics

    CERN Document Server

    Cioabă, Sebastian M

    2009-01-01

    The concept of a graph is fundamental in mathematics since it conveniently encodes diverse relations and facilitates combinatorial analysis of many complicated counting problems. In this book, the authors have traced the origins of graph theory from its humble beginnings of recreational mathematics to its modern setting for modeling communication networks as is evidenced by the World Wide Web graph used by many Internet search engines. This book is an introduction to graph theory and combinatorial analysis. It is based on courses given by the second author at Queen's University at Kingston, Ontario, Canada between 2002 and 2008. The courses were aimed at students in their final year of their undergraduate program.

  10. Algorithms for Planar Graphs and Graphs in Metric Spaces

    DEFF Research Database (Denmark)

    Wulff-Nilsen, Christian

    structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...

  11. Graph-Theoretic Properties of Networks Based on Word Association Norms: Implications for Models of Lexical Semantic Memory

    Science.gov (United States)

    Gruenenfelder, Thomas M.; Recchia, Gabriel; Rubin, Tim; Jones, Michael N.

    2016-01-01

    We compared the ability of three different contextual models of lexical semantic memory (BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model (POC) to predict the properties of semantic networks derived from word association norms. None of the semantic models were able to accurately predict all of the network…

  12. Learning molecular energies using localized graph kernels

    Science.gov (United States)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  13. GRAMI: Generalized Frequent Subgraph Mining in Large Graphs

    KAUST Repository

    El Saeedy, Mohammed El Sayed

    2011-07-24

    Mining frequent subgraphs is an important operation on graphs. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs or protein-protein interaction in bioinformatics, are modeled as a single large graph. Interesting interactions in such applications may be transitive (e.g., friend of a friend). Existing methods, however, search for frequent isomorphic (i.e., exact match) subgraphs and cannot discover many useful patterns. In this paper we propose GRAMI, a framework that generalizes frequent subgraph mining in a large single graph. GRAMI discovers frequent patterns. A pattern is a graph where edges are generalized to distance-constrained paths. Depending on the definition of the distance function, many instantiations of the framework are possible. Both directed and undirected graphs, as well as multiple labels per vertex, are supported. We developed an efficient implementation of the framework that models the frequency resolution phase as a constraint satisfaction problem, in order to avoid the costly enumeration of all instances of each pattern in the graph. We also implemented CGRAMI, a version that supports structural and semantic constraints; and AGRAMI, an approximate version that supports very large graphs. Our experiments on real data demonstrate that our framework is up to 3 orders of magnitude faster and discovers more interesting patterns than existing approaches.

  14. A seminar on graph theory

    CERN Document Server

    Harary, Frank

    2015-01-01

    Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc

  15. Spectral fluctuations of quantum graphs

    International Nuclear Information System (INIS)

    Pluhař, Z.; Weidenmüller, H. A.

    2014-01-01

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry

  16. Dynamic Representations of Sparse Graphs

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Fagerberg, Rolf

    1999-01-01

    We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....

  17. Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph

    Science.gov (United States)

    Nagarathinam, R.; Parvathi, N.

    2018-04-01

    Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat

  18. Practical graph mining with R

    CERN Document Server

    Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan

    2014-01-01

    Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...

  19. Canonical Labelling of Site Graphs

    Directory of Open Access Journals (Sweden)

    Nicolas Oury

    2013-06-01

    Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.

  20. Learning heat diffusion graphs

    OpenAIRE

    Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal

    2016-01-01

    Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...

  1. An Unusual Exponential Graph

    Science.gov (United States)

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  2. Understanding Charts and Graphs.

    Science.gov (United States)

    1987-07-28

    Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected

  3. AN EDUCATIONAL THEORY MODEL--(SIGGS), AN INTEGRATION OF SET THEORY, INFORMATION THEORY, AND GRAPH THEORY WITH GENERAL SYSTEMS THEORY.

    Science.gov (United States)

    MACCIA, ELIZABETH S.; AND OTHERS

    AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…

  4. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks.

    Science.gov (United States)

    González-Díaz, Humberto; Herrera-Ibatá, Diana María; Duardo-Sánchez, Aliuska; Munteanu, Cristian R; Orbegozo-Medina, Ricardo Alfredo; Pazos, Alejandro

    2014-03-24

    This work is aimed at describing the workflow for a methodology that combines chemoinformatics and pharmacoepidemiology methods and at reporting the first predictive model developed with this methodology. The new model is able to predict complex networks of AIDS prevalence in the US counties, taking into consideration the social determinants and activity/structure of anti-HIV drugs in preclinical assays. We trained different Artificial Neural Networks (ANNs) using as input information indices of social networks and molecular graphs. We used a Shannon information index based on the Gini coefficient to quantify the effect of income inequality in the social network. We obtained the data on AIDS prevalence and the Gini coefficient from the AIDSVu database of Emory University. We also used the Balaban information indices to quantify changes in the chemical structure of anti-HIV drugs. We obtained the data on anti-HIV drug activity and structure (SMILE codes) from the ChEMBL database. Last, we used Box-Jenkins moving average operators to quantify information about the deviations of drugs with respect to data subsets of reference (targets, organisms, experimental parameters, protocols). The best model found was a Linear Neural Network (LNN) with values of Accuracy, Specificity, and Sensitivity above 0.76 and AUROC > 0.80 in training and external validation series. This model generates a complex network of AIDS prevalence in the US at county level with respect to the preclinical activity of anti-HIV drugs in preclinical assays. To train/validate the model and predict the complex network we needed to analyze 43,249 data points including values of AIDS prevalence in 2,310 counties in the US vs ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4,856 protocols, and 10 possible experimental measures.

  5. Graphs cospectral with a friendship graph or its complement

    Directory of Open Access Journals (Sweden)

    Alireza Abdollahi

    2013-12-01

    Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.

  6. Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs

    DEFF Research Database (Denmark)

    Bensmail, Julien; Renault, Gabriel

    2016-01-01

    An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...

  7. X-Graphs: Language and Algorithms for Heterogeneous Graph Streams

    Science.gov (United States)

    2017-09-01

    are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph

  8. Applying Graph Theory to Problems in Air Traffic Management

    Science.gov (United States)

    Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo

    2017-01-01

    Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.

  9. Endomorphisms of graph algebras

    DEFF Research Database (Denmark)

    Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech

    2012-01-01

    We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...

  10. Total colourings of graphs

    CERN Document Server

    Yap, Hian-Poh

    1996-01-01

    This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.

  11. Graph Algorithm Animation with Grrr

    OpenAIRE

    Rodgers, Peter; Vidal, Natalia

    2000-01-01

    We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...

  12. Optimization Problems on Threshold Graphs

    Directory of Open Access Journals (Sweden)

    Elena Nechita

    2010-06-01

    Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.

  13. Eulerian Graphs and Related Topics

    CERN Document Server

    Fleischner, Herbert

    1990-01-01

    The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a

  14. Quantum Graph Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.

  15. Dynamic MLD analysis with flow graphs

    International Nuclear Information System (INIS)

    Jenab, K.; Sarfaraz, A.; Dhillon, B.S.; Seyed Hosseini, S.M.

    2012-01-01

    Master Logic Diagram (MLD) depicts the interrelationships among the independent functions and dependent support functions. Using MLD, the manner in which all functions, sub-functions interact to achieve the overall system objective can be investigated. This paper reports a probabilistic model to analyze an MLD by translating the interrelationships to a graph model. The proposed model uses the flow-graph concept and Moment Generating Function (MGF) to analyze the dependency matrix representing the MLD with embedded self-healing function/sub-functions. The functions/sub-functions are featured by failure detection and recovery mechanisms. The newly developed model provides the probability of the system failure, and system mean and standard deviation time to failure in the MLD. An illustrative example is demonstrated to present the application of the model.

  16. Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?

    Directory of Open Access Journals (Sweden)

    Mehmet Fatih Öçal

    2017-01-01

    Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.

  17. ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS

    OpenAIRE

    Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache

    2016-01-01

    In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.

  18. Graph Theory. 2. Vertex Descriptors and Graph Coloring

    Directory of Open Access Journals (Sweden)

    Lorentz JÄNTSCHI

    2002-12-01

    Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.

  19. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  20. ``Models'' CAVEAT EMPTOR!!!: ``Toy Models Too-Often Yield Toy-Results''!!!: Statistics, Polls, Politics, Economics, Elections!!!: GRAPH/Network-Physics: ``Equal-Distribution for All'' TRUMP-ED BEC ``Winner-Take-All'' ``Doctor Livingston I Presume?''

    Science.gov (United States)

    Preibus-Norquist, R. N. C.-Grover; Bush-Romney, G. W.-Willard-Mitt; Dimon, J. P.; Adelson-Koch, Sheldon-Charles-David-Sheldon; Krugman-Axelrod, Paul-David; Siegel, Edward Carl-Ludwig; D. N. C./O. F. P./''47''%/50% Collaboration; R. N. C./G. O. P./''53''%/49% Collaboration; Nyt/Wp/Cnn/Msnbc/Pbs/Npr/Ft Collaboration; Ftn/Fnc/Fox/Wsj/Fbn Collaboration; Lb/Jpmc/Bs/Boa/Ml/Wamu/S&P/Fitch/Moodys/Nmis Collaboration

    2013-03-01

    ``Models''? CAVEAT EMPTOR!!!: ``Toy Models Too-Often Yield Toy-Results''!!!: Goldenfeld[``The Role of Models in Physics'', in Lects.on Phase-Transitions & R.-G.(92)-p.32-33!!!]: statistics(Silver{[NYTimes; Bensinger, ``Math-Geerks Clearly-Defeated Pundits'', LATimes, (11/9/12)])}, polls, politics, economics, elections!!!: GRAPH/network/net/...-PHYSICS Barabasi-Albert[RMP (02)] (r,t)-space VERSUS(???) [Where's the Inverse/ Dual/Integral-Transform???] (Benjamin)Franklin(1795)-Fourier(1795; 1897;1822)-Laplace(1850)-Mellin (1902) Brillouin(1922)-...(k,)-space, {Hubbard [The World According to Wavelets,Peters (96)-p.14!!!/p.246: refs.-F2!!!]},and then (2) Albert-Barabasi[]Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) versus Bianconi[pvt.-comm.; arXiv:cond-mat/0204506; ...] -Barabasi [???] Fermi-Dirac

  1. On an edge partition and root graphs of some classes of line graphs

    Directory of Open Access Journals (Sweden)

    K Pravas

    2017-04-01

    Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.

  2. Decentralized formation of random regular graphs for robust multi-agent networks

    KAUST Repository

    Yazicioglu, A. Yasin

    2014-12-15

    Multi-agent networks are often modeled via interaction graphs, where the nodes represent the agents and the edges denote direct interactions between the corresponding agents. Interaction graphs have significant impact on the robustness of networked systems. One family of robust graphs is the random regular graphs. In this paper, we present a locally applicable reconfiguration scheme to build random regular graphs through self-organization. For any connected initial graph, the proposed scheme maintains connectivity and the average degree while minimizing the degree differences and randomizing the links. As such, if the average degree of the initial graph is an integer, then connected regular graphs are realized uniformly at random as time goes to infinity.

  3. The planar cubic Cayley graphs

    CERN Document Server

    Georgakopoulos, Agelos

    2018-01-01

    The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.

  4. Groupies in random bipartite graphs

    OpenAIRE

    Yilun Shang

    2010-01-01

    A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.

  5. Bell inequalities for graph states

    International Nuclear Information System (INIS)

    Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.

    2005-01-01

    Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)

  6. Graph Sampling for Covariance Estimation

    KAUST Repository

    Chepuri, Sundeep Prabhakar; Leus, Geert

    2017-01-01

    specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non

  7. Network reconstruction via graph blending

    Science.gov (United States)

    Estrada, Rolando

    2016-05-01

    Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.

  8. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  9. Planar graphs theory and algorithms

    CERN Document Server

    Nishizeki, T

    1988-01-01

    Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.

  10. RJSplot: Interactive Graphs with R.

    Science.gov (United States)

    Barrios, David; Prieto, Carlos

    2018-03-01

    Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The investigation of social networks based on multi-component random graphs

    Science.gov (United States)

    Zadorozhnyi, V. N.; Yudin, E. B.

    2018-01-01

    The methods of non-homogeneous random graphs calibration are developed for social networks simulation. The graphs are calibrated by the degree distributions of the vertices and the edges. The mathematical foundation of the methods is formed by the theory of random graphs with the nonlinear preferential attachment rule and the theory of Erdôs-Rényi random graphs. In fact, well-calibrated network graph models and computer experiments with these models would help developers (owners) of the networks to predict their development correctly and to choose effective strategies for controlling network projects.

  12. On characterizing terrain visibility graphs

    Directory of Open Access Journals (Sweden)

    William Evans

    2015-06-01

    Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.

  13. Graph embedding with rich information through heterogeneous graph

    KAUST Repository

    Sun, Guolei

    2017-11-12

    Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.

  14. CORECLUSTER: A Degeneracy Based Graph Clustering Framework

    OpenAIRE

    Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis

    2014-01-01

    International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...

  15. BootGraph: probabilistic fiber tractography using bootstrap algorithms and graph theory.

    Science.gov (United States)

    Vorburger, Robert S; Reischauer, Carolin; Boesiger, Peter

    2013-02-01

    Bootstrap methods have recently been introduced to diffusion-weighted magnetic resonance imaging to estimate the measurement uncertainty of ensuing diffusion parameters directly from the acquired data without the necessity to assume a noise model. These methods have been previously combined with deterministic streamline tractography algorithms to allow for the assessment of connection probabilities in the human brain. Thereby, the local noise induced disturbance in the diffusion data is accumulated additively due to the incremental progression of streamline tractography algorithms. Graph based approaches have been proposed to overcome this drawback of streamline techniques. For this reason, the bootstrap method is in the present work incorporated into a graph setup to derive a new probabilistic fiber tractography method, called BootGraph. The acquired data set is thereby converted into a weighted, undirected graph by defining a vertex in each voxel and edges between adjacent vertices. By means of the cone of uncertainty, which is derived using the wild bootstrap, a weight is thereafter assigned to each edge. Two path finding algorithms are subsequently applied to derive connection probabilities. While the first algorithm is based on the shortest path approach, the second algorithm takes all existing paths between two vertices into consideration. Tracking results are compared to an established algorithm based on the bootstrap method in combination with streamline fiber tractography and to another graph based algorithm. The BootGraph shows a very good performance in crossing situations with respect to false negatives and permits incorporating additional constraints, such as a curvature threshold. By inheriting the advantages of the bootstrap method and graph theory, the BootGraph method provides a computationally efficient and flexible probabilistic tractography setup to compute connection probability maps and virtual fiber pathways without the drawbacks of

  16. Hierarchy of modular graph identities

    International Nuclear Information System (INIS)

    D’Hoker, Eric; Kaidi, Justin

    2016-01-01

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  17. Hierarchy of modular graph identities

    Energy Technology Data Exchange (ETDEWEB)

    D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)

    2016-11-09

    The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.

  18. On the number of subgraphs of the Barabasi-Albert random graph

    Energy Technology Data Exchange (ETDEWEB)

    Ryabchenko, Aleksandr A; Samosvat, Egor A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region, Russian Frderation (Russian Federation)

    2012-06-30

    We study a model of a random graph of the type of the Barabasi-Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.

  19. On the number of subgraphs of the Barabási-Albert random graph

    International Nuclear Information System (INIS)

    Ryabchenko, Aleksandr A; Samosvat, Egor A

    2012-01-01

    We study a model of a random graph of the type of the Barabási-Albert preferential attachment model. We develop a technique that makes it possible to estimate the mathematical expectation for a fairly wide class of random variables in the model under consideration. We use this technique to prove a theorem on the asymptotics of the mathematical expectation of the number of subgraphs isomorphic to a certain fixed graph in the random graphs of this model.

  20. Counting the number of Feynman graphs in QCD

    Science.gov (United States)

    Kaneko, T.

    2018-05-01

    Information about the number of Feynman graphs for a given physical process in a given field theory is especially useful for confirming the result of a Feynman graph generator used in an automatic system of perturbative calculations. A method of counting the number of Feynman graphs with weight of symmetry factor was established based on zero-dimensional field theory, and was used in scalar theories and QED. In this article this method is generalized to more complicated models by direct calculation of generating functions on a computer algebra system. This method is applied to QCD with and without counter terms, where many higher order are being calculated automatically.

  1. Parallel algorithms for finding cliques in a graph

    International Nuclear Information System (INIS)

    Szabo, S

    2011-01-01

    A clique is a subgraph in a graph that is complete in the sense that each two of its nodes are connected by an edge. Finding cliques in a given graph is an important procedure in discrete mathematical modeling. The paper will show how concepts such as splitting partitions, quasi coloring, node and edge dominance are related to clique search problems. In particular we will discuss the connection with parallel clique search algorithms. These concepts also suggest practical guide lines to inspect a given graph before starting a large scale search.

  2. GraphStore: A Distributed Graph Storage System for Big Data Networks

    Science.gov (United States)

    Martha, VenkataSwamy

    2013-01-01

    Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…

  3. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael I.

    2011-01-01

    of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar......XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...

  4. Coloring and The Lonely Graph

    OpenAIRE

    Rabern, Landon

    2007-01-01

    We improve upper bounds on the chromatic number proven independently in \\cite{reedNote} and \\cite{ingo}. Our main lemma gives a sufficient condition for two paths in graph to be completely joined. Using this, we prove that if a graph has an optimal coloring with more than $\\frac{\\omega}{2}$ singleton color classes, then it satisfies $\\chi \\leq \\frac{\\omega + \\Delta + 1}{2}$. It follows that a graph satisfying $n - \\Delta < \\alpha + \\frac{\\omega - 1}{2}$ must also satisfy $\\chi \\leq \\frac{\\ome...

  5. Graphs with Eulerian unit spheres

    OpenAIRE

    Knill, Oliver

    2015-01-01

    d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...

  6. Skin Segmentation Based on Graph Cuts

    Institute of Scientific and Technical Information of China (English)

    HU Zhilan; WANG Guijin; LIN Xinggang; YAN Hong

    2009-01-01

    Skin segmentation is widely used in many computer vision tasks to improve automated visualiza-tion. This paper presents a graph cuts algorithm to segment arbitrary skin regions from images. The detected face is used to determine the foreground skin seeds and the background non-skin seeds with the color probability distributions for the foreground represented by a single Gaussian model and for the background by a Gaussian mixture model. The probability distribution of the image is used for noise suppression to alle-viate the influence of the background regions having skin-like colors. Finally, the skin is segmented by graph cuts, with the regional parameter y optimally selected to adapt to different images. Tests of the algorithm on many real wodd photographs show that the scheme accurately segments skin regions and is robust against illumination variations, individual skin variations, and cluttered backgrounds.

  7. Using resource graphs to represent conceptual change

    Directory of Open Access Journals (Sweden)

    Michael C. Wittmann

    2006-08-01

    Full Text Available We introduce resource graphs, a representation of linked ideas used when reasoning about specific contexts in physics. Our model is consistent with previous descriptions of coordination classes and resources. It represents mesoscopic scales that are neither knowledge-in-pieces nor large-scale concepts. We use resource graphs to describe several forms of conceptual change: incremental, cascade, wholesale, and dual construction. For each, we give evidence from the physics education research literature to show examples of each form of conceptual change. Where possible, we compare our representation to models used by other researchers. Building on our representation, we analyze another form of conceptual change, differentiation, and suggest several experimental studies that would help understand the differences between reform-based curricula.

  8. Random geometric graphs with general connection functions

    Science.gov (United States)

    Dettmann, Carl P.; Georgiou, Orestis

    2016-03-01

    In the original (1961) Gilbert model of random geometric graphs, nodes are placed according to a Poisson point process, and links formed between those within a fixed range. Motivated by wireless ad hoc networks "soft" or "probabilistic" connection models have recently been introduced, involving a "connection function" H (r ) that gives the probability that two nodes at distance r are linked (directly connect). In many applications (not only wireless networks), it is desirable that the graph is connected; that is, every node is linked to every other node in a multihop fashion. Here the connection probability of a dense network in a convex domain in two or three dimensions is expressed in terms of contributions from boundary components for a very general class of connection functions. It turns out that only a few quantities such as moments of the connection function appear. Good agreement is found with special cases from previous studies and with numerical simulations.

  9. Mizan: Optimizing Graph Mining in Large Parallel Systems

    KAUST Repository

    Kalnis, Panos

    2012-03-01

    Extracting information from graphs, from nding shortest paths to complex graph mining, is essential for many ap- plications. Due to the shear size of modern graphs (e.g., social networks), processing must be done on large paral- lel computing infrastructures (e.g., the cloud). Earlier ap- proaches relied on the MapReduce framework, which was proved inadequate for graph algorithms. More recently, the message passing model (e.g., Pregel) has emerged. Although the Pregel model has many advantages, it is agnostic to the graph properties and the architecture of the underlying com- puting infrastructure, leading to suboptimal performance. In this paper, we propose Mizan, a layer between the users\\' code and the computing infrastructure. Mizan considers the structure of the input graph and the architecture of the in- frastructure in order to: (i) decide whether it is bene cial to generate a near-optimal partitioning of the graph in a pre- processing step, and (ii) choose between typical point-to- point message passing and a novel approach that puts com- puting nodes in a virtual overlay ring. We deployed Mizan on a small local Linux cluster, on the cloud (256 virtual machines in Amazon EC2), and on an IBM Blue Gene/P supercomputer (1024 CPUs). We show that Mizan executes common algorithms on very large graphs 1-2 orders of mag- nitude faster than MapReduce-based implementations and up to one order of magnitude faster than implementations relying on Pregel-like hash-based graph partitioning.

  10. Time- and Cost-Optimal Parallel Algorithms for the Dominance and Visibility Graphs

    Directory of Open Access Journals (Sweden)

    D. Bhagavathi

    1996-01-01

    Full Text Available The compaction step of integrated circuit design motivates associating several kinds of graphs with a collection of non-overlapping rectangles in the plane. These graphs are intended to capture various visibility relations amongst the rectangles in the collection. The contribution of this paper is to propose time- and cost-optimal algorithms to construct two such graphs, namely, the dominance graph (DG, for short and the visibility graph (VG, for short. Specifically, we show that with a collection of n non-overlapping rectangles as input, both these structures can be constructed in θ(log n time using n processors in the CREW model.

  11. Applicability of the Directed Graph Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Huszti, Jozsef [Institute of Isotope of the Hungarian Academy of Sciences, Budapest (Hungary); Nemeth, Andras [ESRI Hungary, Budapest (Hungary); Vincze, Arpad [Hungarian Atomic Energy Authority, Budapest (Hungary)

    2012-06-15

    Possible methods to construct, visualize and analyse the 'map' of the State's nuclear infrastructure based on different directed graph approaches are proposed. The transportation and the flow network models are described in detail. The use of the possible evaluation methodologies and the use of available software tools to construct and maintain the nuclear 'map' using pre-defined standard building blocks (nuclear facilities) are introduced and discussed.

  12. Reactome graph database: Efficient access to complex pathway data.

    Directory of Open Access Journals (Sweden)

    Antonio Fabregat

    2018-01-01

    Full Text Available Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j as well as the new ContentService (REST API that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.

  13. Reactome graph database: Efficient access to complex pathway data

    Science.gov (United States)

    Korninger, Florian; Viteri, Guilherme; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D’Eustachio, Peter

    2018-01-01

    Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types. PMID:29377902

  14. Efficient growth of complex graph states via imperfect path erasure

    International Nuclear Information System (INIS)

    Campbell, Earl T; Fitzsimons, Joseph; Benjamin, Simon C; Kok, Pieter

    2007-01-01

    Given a suitably large and well connected (complex) graph state, any quantum algorithm can be implemented purely through local measurements on the individual qubits. Measurements can also be used to create the graph state: path erasure techniques allow one to entangle multiple qubits by determining only global properties of the qubits. Here, this powerful approach is extended by demonstrating that even imperfect path erasure can produce the required graph states with high efficiency. By characterizing the degree of error in each path erasure attempt, one can subsume the resulting imperfect entanglement into an extended graph state formalism. The subsequent growth of the improper graph state can be guided, through a series of strategic decisions, in such a way as to bound the growth of the error and eventually yield a high-fidelity graph state. As an implementation of these techniques, we develop an analytic model for atom (or atom-like) qubits in mismatched cavities, under the double-heralding entanglement procedure of Barrett and Kok (2005 Phys. Rev. A 71 060310). Compared to straightforward post-selection techniques our protocol offers a dramatic improvement in growing complex high-fidelity graph states

  15. Reactome graph database: Efficient access to complex pathway data.

    Science.gov (United States)

    Fabregat, Antonio; Korninger, Florian; Viteri, Guilherme; Sidiropoulos, Konstantinos; Marin-Garcia, Pablo; Ping, Peipei; Wu, Guanming; Stein, Lincoln; D'Eustachio, Peter; Hermjakob, Henning

    2018-01-01

    Reactome is a free, open-source, open-data, curated and peer-reviewed knowledgebase of biomolecular pathways. One of its main priorities is to provide easy and efficient access to its high quality curated data. At present, biological pathway databases typically store their contents in relational databases. This limits access efficiency because there are performance issues associated with queries traversing highly interconnected data. The same data in a graph database can be queried more efficiently. Here we present the rationale behind the adoption of a graph database (Neo4j) as well as the new ContentService (REST API) that provides access to these data. The Neo4j graph database and its query language, Cypher, provide efficient access to the complex Reactome data model, facilitating easy traversal and knowledge discovery. The adoption of this technology greatly improved query efficiency, reducing the average query time by 93%. The web service built on top of the graph database provides programmatic access to Reactome data by object oriented queries, but also supports more complex queries that take advantage of the new underlying graph-based data storage. By adopting graph database technology we are providing a high performance pathway data resource to the community. The Reactome graph database use case shows the power of NoSQL database engines for complex biological data types.

  16. Properly colored connectivity of graphs

    CERN Document Server

    Li, Xueliang; Qin, Zhongmei

    2018-01-01

    A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.

  17. The toughness of split graphs

    NARCIS (Netherlands)

    Woeginger, G.J.

    1998-01-01

    In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).

  18. A faithful functor among algebras and graphs

    OpenAIRE

    Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)

    2016-01-01

    The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.

  19. Graphs with branchwidth at most three

    NARCIS (Netherlands)

    Bodlaender, H.L.; Thilikos, D.M.

    1997-01-01

    In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three, if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph

  20. A Modal-Logic Based Graph Abstraction

    NARCIS (Netherlands)

    Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.

    2008-01-01

    Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract

  1. Graphs whose complement and square are isomorphic

    DEFF Research Database (Denmark)

    Pedersen, Anders Sune

    2014-01-01

    We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...

  2. Acyclicity in edge-colored graphs

    DEFF Research Database (Denmark)

    Gutin, Gregory; Jones, Mark; Sheng, Bin

    2017-01-01

    A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...

  3. Building Scalable Knowledge Graphs for Earth Science

    Science.gov (United States)

    Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian

    2017-01-01

    Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.

  4. Port-Hamiltonian Systems on Open Graphs

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2010-01-01

    In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac

  5. Constructing Dense Graphs with Unique Hamiltonian Cycles

    Science.gov (United States)

    Lynch, Mark A. M.

    2012-01-01

    It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…

  6. Skew-adjacency matrices of graphs

    NARCIS (Netherlands)

    Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.

    2012-01-01

    The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic

  7. Chromatic polynomials of random graphs

    International Nuclear Information System (INIS)

    Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian

    2010-01-01

    Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.

  8. Commuting graphs of matrix algebras

    International Nuclear Information System (INIS)

    Akbari, S.; Bidkhori, H.; Mohammadian, A.

    2006-08-01

    The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non- central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this paper we investigate some graph theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields E and F and integers m, n ≥> 2, if Γ(M m (E)) ≅ Γ(M n (F)), then m = n and vertical bar E vertical bar = vertical bar F vertical bar. (author)

  9. Graph Quasicontinuous Functions and Densely Continuous Forms

    Directory of Open Access Journals (Sweden)

    Lubica Hola

    2017-07-01

    Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.

  10. On the Distribution of Random Geometric Graphs

    DEFF Research Database (Denmark)

    Badiu, Mihai Alin; Coon, Justin P.

    2018-01-01

    as a measure of the graph’s topological uncertainty (or information content). Moreover, the distribution is also relevant for determining average network performance or designing protocols. However, a major impediment in deducing the graph distribution is that it requires the joint probability distribution......Random geometric graphs (RGGs) are commonly used to model networked systems that depend on the underlying spatial embedding. We concern ourselves with the probability distribution of an RGG, which is crucial for studying its random topology, properties (e.g., connectedness), or Shannon entropy...... of the n(n − 1)/2 distances between n nodes randomly distributed in a bounded domain. As no such result exists in the literature, we make progress by obtaining the joint distribution of the distances between three nodes confined in a disk in R 2. This enables the calculation of the probability distribution...

  11. Analysis and enumeration algorithms for biological graphs

    CERN Document Server

    Marino, Andrea

    2015-01-01

    In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions...

  12. Random broadcast on random geometric graphs

    Energy Technology Data Exchange (ETDEWEB)

    Bradonjic, Milan [Los Alamos National Laboratory; Elsasser, Robert [UNIV OF PADERBORN; Friedrich, Tobias [ICSI/BERKELEY; Sauerwald, Tomas [ICSI/BERKELEY

    2009-01-01

    In this work, we consider the random broadcast time on random geometric graphs (RGGs). The classic random broadcast model, also known as push algorithm, is defined as: starting with one informed node, in each succeeding round every informed node chooses one of its neighbors uniformly at random and informs it. We consider the random broadcast time on RGGs, when with high probability: (i) RGG is connected, (ii) when there exists the giant component in RGG. We show that the random broadcast time is bounded by {Omicron}({radical} n + diam(component)), where diam(component) is a diameter of the entire graph, or the giant component, for the regimes (i), or (ii), respectively. In other words, for both regimes, we derive the broadcast time to be {Theta}(diam(G)), which is asymptotically optimal.

  13. Citation graph based ranking in Invenio

    CERN Document Server

    Marian, Ludmila; Rajman, Martin; Vesely, Martin

    2010-01-01

    Invenio is the web-based integrated digital library system developed at CERN. Within this framework, we present four types of ranking models based on the citation graph that complement the simple approach based on citation counts: time-dependent citation counts, a relevancy ranking which extends the PageRank model, a time-dependent ranking which combines the freshness of citations with PageRank and a ranking that takes into consideration the external citations. We present our analysis and results obtained on two main data sets: Inspire and CERN Document Server. Our main contributions are: (i) a study of the currently available ranking methods based on the citation graph; (ii) the development of new ranking methods that correct some of the identified limitations of the current methods such as treating all citations of equal importance, not taking time into account or considering the citation graph complete; (iii) a detailed study of the key parameters for these ranking methods. (The original publication is ava...

  14. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.; Egerstedt, Magnus; Shamma, Jeff S.

    2015-01-01

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  15. Formation of Robust Multi-Agent Networks through Self-Organizing Random Regular Graphs

    KAUST Repository

    Yasin Yazicioǧlu, A.

    2015-11-25

    Multi-Agent networks are often modeled as interaction graphs, where the nodes represent the agents and the edges denote some direct interactions. The robustness of a multi-Agent network to perturbations such as failures, noise, or malicious attacks largely depends on the corresponding graph. In many applications, networks are desired to have well-connected interaction graphs with relatively small number of links. One family of such graphs is the random regular graphs. In this paper, we present a decentralized scheme for transforming any connected interaction graph with a possibly non-integer average degree of k into a connected random m-regular graph for some m ϵ [k+k ] 2. Accordingly, the agents improve the robustness of the network while maintaining a similar number of links as the initial configuration by locally adding or removing some edges. © 2015 IEEE.

  16. Overlapping community detection based on link graph using distance dynamics

    Science.gov (United States)

    Chen, Lei; Zhang, Jing; Cai, Li-Jun

    2018-01-01

    The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.

  17. Learning a Health Knowledge Graph from Electronic Medical Records.

    Science.gov (United States)

    Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David

    2017-07-20

    Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).

  18. Interactive Graph Layout of a Million Nodes

    OpenAIRE

    Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North

    2016-01-01

    Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...

  19. Khovanov homology of graph-links

    Energy Technology Data Exchange (ETDEWEB)

    Nikonov, Igor M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)

    2012-08-31

    Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.

  20. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  1. Narrative Collage of Image Collections by Scene Graph Recombination.

    Science.gov (United States)

    Fang, Fei; Yi, Miao; Feng, Hui; Hu, Shenghong; Xiao, Chunxia

    2017-10-04

    Narrative collage is an interesting image editing art to summarize the main theme or storyline behind an image collection. We present a novel method to generate narrative images with plausible semantic scene structures. To achieve this goal, we introduce a layer graph and a scene graph to represent relative depth order and semantic relationship between image objects, respectively. We firstly cluster the input image collection to select representative images, and then extract a group of semantic salient objects from each representative image. Both Layer graphs and scene graphs are constructed and combined according to our specific rules for reorganizing the extracted objects in every image. We design an energy model to appropriately locate every object on the final canvas. Experiment results show that our method can produce competitive narrative collage result and works well on a wide range of image collections.

  2. Two-setting Bell inequalities for graph states

    International Nuclear Information System (INIS)

    Toth, Geza; Guehne, Otfried; Briegel, Hans J.

    2006-01-01

    We present Bell inequalities for graph states with a high violation of local realism. In particular, we show that there is a basic Bell inequality for every nontrivial graph state which is violated by the state at least by a factor of 2. This inequality needs the measurement of, at most, two operators for each qubit and involves only some of the qubits. We also show that for some families of graph states composite Bell inequalities can be constructed such that the violation of local realism increases exponentially with the number of qubits. We prove that some of our inequalities are facets of the convex polytope containing the many-body correlations consistent with local hidden variable models. Our Bell inequalities are built from stabilizing operators of graph states

  3. A hierarchical approach to reducing communication in parallel graph algorithms

    KAUST Repository

    Harshvardhan,

    2015-01-01

    Large-scale graph computing has become critical due to the ever-increasing size of data. However, distributed graph computations are limited in their scalability and performance due to the heavy communication inherent in such computations. This is exacerbated in scale-free networks, such as social and web graphs, which contain hub vertices that have large degrees and therefore send a large number of messages over the network. Furthermore, many graph algorithms and computations send the same data to each of the neighbors of a vertex. Our proposed approach recognizes this, and reduces communication performed by the algorithm without change to user-code, through a hierarchical machine model imposed upon the input graph. The hierarchical model takes advantage of locale information of the neighboring vertices to reduce communication, both in message volume and total number of bytes sent. It is also able to better exploit the machine hierarchy to further reduce the communication costs, by aggregating traffic between different levels of the machine hierarchy. Results of an implementation in the STAPL GL shows improved scalability and performance over the traditional level-synchronous approach, with 2.5 × - 8× improvement for a variety of graph algorithms at 12, 000+ cores.

  4. Strategy and pattern recognition in expert\\ud comprehension of 2 × 2 interaction graphs

    OpenAIRE

    Peebles, David

    2013-01-01

    I present a model of expert comprehension performance for 2 × 2 "interaction" graphs typically used to present data from two-way factorial research designs. Developed using the ACT-R cognitive architecture, the model simulates the cognitive and perceptual operations involved in interpreting interaction graphs and provides a detailed characterisation of the information\\ud extracted from the diagram, the prior knowledge required to interpret interaction graphs, and the knowledge generated durin...

  5. Crossed products for interactions and graph algebras

    DEFF Research Database (Denmark)

    Kwasniewski, Bartosz

    2014-01-01

    We consider Exel’s interaction (V,H) over a unital C*-algebra A, such that V(A) and H(A) are hereditary subalgebras of A. For the associated crossed product, we obtain a uniqueness theorem, ideal lattice description, simplicity criterion and a version of Pimsner–Voiculescu exact sequence. These r......We consider Exel’s interaction (V,H) over a unital C*-algebra A, such that V(A) and H(A) are hereditary subalgebras of A. For the associated crossed product, we obtain a uniqueness theorem, ideal lattice description, simplicity criterion and a version of Pimsner–Voiculescu exact sequence....... These results cover the case of crossed products by endomorphisms with hereditary ranges and complemented kernels. As model examples of interactions not coming from endomorphisms we introduce and study in detail interactions arising from finite graphs. The interaction (V,H) associated to a graph E acts...... on the core F_E of the graph algebra C*(E). By describing a partial homeomorphism dual to (V,H) we find the fundamental structure theorems for C*(E), such as Cuntz–Krieger uniqueness theorem, as results concerning reversible noncommutative dynamics on F_E . We also provide a new approach to calculation of K...

  6. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Science.gov (United States)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it

  7. An original approach to the mathematical concept of graph from braid crafts

    Directory of Open Access Journals (Sweden)

    Albanese Veronica

    2016-01-01

    Full Text Available In previous researches we found that a community of Argentinean artisans models its own practices of braiding using graphs. Inspired by these findings, we designed an educational activity to introduce the concept of graphs. The study of graphs helps students to develop combinatorial and systematic thinking as well as skills to model reality and abstract and generalize patterns from particular situations. The tasks proposed aim to construct the concept of graphs, then identify characteristics that allow some graphs to be models of braids and finally use them to invent more graphs for new braids. The activity performed in a secondary school teachers’ educational course, had quite satisfactory results due to the number of braids invented and the small amount of mistakes made by the participants.

  8. On the graph turnpike problem

    KAUST Repository

    Feder, Tomá s; Motwani, Rajeev

    2009-01-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  9. On the graph turnpike problem

    KAUST Repository

    Feder, Tomás

    2009-06-01

    Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.

  10. Negation switching invariant signed graphs

    Directory of Open Access Journals (Sweden)

    Deepa Sinha

    2014-04-01

    Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.

  11. Quantum snake walk on graphs

    International Nuclear Information System (INIS)

    Rosmanis, Ansis

    2011-01-01

    I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.

  12. Bounds for percolation thresholds on directed and undirected graphs

    Science.gov (United States)

    Hamilton, Kathleen; Pryadko, Leonid

    2015-03-01

    Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.

  13. On Graph Rewriting, Reduction and Evaluation

    DEFF Research Database (Denmark)

    Zerny, Ian

    2010-01-01

    We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter-derive a t......We inter-derive two prototypical styles of graph reduction: reduction machines à la Turner and graph rewriting systems à la Barendregt et al. To this end, we adapt Danvy et al.'s mechanical program derivations from the world of terms to the world of graphs. We also outline how to inter...

  14. The fascinating world of graph theory

    CERN Document Server

    Benjamin, Arthur; Zhang, Ping

    2015-01-01

    Graph theory goes back several centuries and revolves around the study of graphs-mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics-and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducin

  15. XML Graphs in Program Analysis

    DEFF Research Database (Denmark)

    Møller, Anders; Schwartzbach, Michael Ignatieff

    2007-01-01

    XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...... of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey four very different applications: XML in Java, Java Servlets and JSP, transformations between XML and non-XML data, and XSLT....

  16. Graph topologies on closed multifunctions

    Directory of Open Access Journals (Sweden)

    Giuseppe Di Maio

    2003-10-01

    Full Text Available In this paper we study function space topologies on closed multifunctions, i.e. closed relations on X x Y using various hypertopologies. The hypertopologies are in essence, graph topologies i.e topologies on functions considered as graphs which are subsets of X x Y . We also study several topologies, including one that is derived from the Attouch-Wets filter on the range. We state embedding theorems which enable us to generalize and prove some recent results in the literature with the use of known results in the hyperspace of the range space and in the function space topologies of ordinary functions.

  17. Cyclic graphs and Apery's theorem

    International Nuclear Information System (INIS)

    Sorokin, V N

    2002-01-01

    This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found

  18. Interacting particle systems on graphs

    Science.gov (United States)

    Sood, Vishal

    In this dissertation, the dynamics of socially or biologically interacting populations are investigated. The individual members of the population are treated as particles that interact via links on a social or biological network represented as a graph. The effect of the structure of the graph on the properties of the interacting particle system is studied using statistical physics techniques. In the first chapter, the central concepts of graph theory and social and biological networks are presented. Next, interacting particle systems that are drawn from physics, mathematics and biology are discussed in the second chapter. In the third chapter, the random walk on a graph is studied. The mean time for a random walk to traverse between two arbitrary sites of a random graph is evaluated. Using an effective medium approximation it is found that the mean first-passage time between pairs of sites, as well as all moments of this first-passage time, are insensitive to the density of links in the graph. The inverse of the mean-first passage time varies non-monotonically with the density of links near the percolation transition of the random graph. Much of the behavior can be understood by simple heuristic arguments. Evolutionary dynamics, by which mutants overspread an otherwise uniform population on heterogeneous graphs, are studied in the fourth chapter. Such a process underlies' epidemic propagation, emergence of fads, social cooperation or invasion of an ecological niche by a new species. The first part of this chapter is devoted to neutral dynamics, in which the mutant genotype does not have a selective advantage over the resident genotype. The time to extinction of one of the two genotypes is derived. In the second part of this chapter, selective advantage or fitness is introduced such that the mutant genotype has a higher birth rate or a lower death rate. This selective advantage leads to a dynamical competition in which selection dominates for large populations

  19. Generating hierarchial scale-free graphs from fractals

    Energy Technology Data Exchange (ETDEWEB)

    Komjathy, Julia, E-mail: komyju@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary); Simon, Karoly, E-mail: simonk@math.bme.hu [Department of Stochastics, Institute of Mathematics, Technical University of Budapest, H-1529 P.O. Box 91 (Hungary)

    2011-08-15

    Highlights: > We generate deterministic scale-free networks using graph-directed self similar IFS. > Our model exhibits similar clustering, power law decay properties to real networks. > The average length of shortest path and the diameter of the graph are determined. > Using this model, we generate random graphs with prescribed power law exponent. - Abstract: Motivated by the hierarchial network model of E. Ravasz, A.-L. Barabasi, and T. Vicsek, we introduce deterministic scale-free networks derived from a graph directed self-similar fractal {Lambda}. With rigorous mathematical results we verify that our model captures some of the most important features of many real networks: the scale-free and the high clustering properties. We also prove that the diameter is the logarithm of the size of the system. We point out a connection between the power law exponent of the degree distribution and some intrinsic geometric measure theoretical properties of the underlying fractal. Using our (deterministic) fractal {Lambda} we generate random graph sequence sharing similar properties.

  20. Dynamics of Nearest-Neighbour Competitions on Graphs

    Science.gov (United States)

    Rador, Tonguç

    2017-10-01

    Considering a collection of agents representing the vertices of a graph endowed with integer points, we study the asymptotic dynamics of the rate of the increase of their points according to a very simple rule: we randomly pick an an edge from the graph which unambiguously defines two agents we give a point the the agent with larger point with probability p and to the lagger with probability q such that p+q=1. The model we present is the most general version of the nearest-neighbour competition model introduced by Ben-Naim, Vazquez and Redner. We show that the model combines aspects of hyperbolic partial differential equations—as that of a conservation law—graph colouring and hyperplane arrangements. We discuss the properties of the model for general graphs but we confine in depth study to d-dimensional tori. We present a detailed study for the ring graph, which includes a chemical potential approximation to calculate all its statistics that gives rather accurate results. The two-dimensional torus, not studied in depth as the ring, is shown to possess critical behaviour in that the asymptotic speeds arrange themselves in two-coloured islands separated by borders of three other colours and the size of the islands obey power law distribution. We also show that in the large d limit the d-dimensional torus shows inverse sine law for the distribution of asymptotic speeds.