Feder, Tomá s; Motwani, Rajeev
2009-01-01
Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.
Feder, Tomás
2009-06-01
Results on graph turnpike problem without distinctness, including its NP-completeness, and an O(m+n log n) algorithm, is presented. The usual turnpike problem has all pairwise distances given, but does not specify which pair of vertices w e corresponds to. There are two other problems that can be viewed as special cases of the graph turnpike problem, including the bandwidth problem and the low-distortion graph embedding problem. The aim for the turnpike problem in the NP-complete is to orient the edges with weights w i in either direction so that when the whole cycle is transversed in the real line, it returns to a chosen starting point for the cycle. An instance of the turnpike problem with or without distinctness is uniquely mappable if there exists at most one solution up to translation and choice of orientation.
Optimization Problems on Threshold Graphs
Elena Nechita
2010-06-01
Full Text Available During the last three decades, different types of decompositions have been processed in the field of graph theory. Among these we mention: decompositions based on the additivity of some characteristics of the graph, decompositions where the adjacency law between the subsets of the partition is known, decompositions where the subgraph induced by every subset of the partition must have predeterminate properties, as well as combinations of such decompositions. In this paper we characterize threshold graphs using the weakly decomposition, determine: density and stability number, Wiener index and Wiener polynomial for threshold graphs.
Quantum complexity of graph and algebraic problems
Doern, Sebastian
2008-01-01
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
Quantum complexity of graph and algebraic problems
Doern, Sebastian
2008-02-04
This thesis is organized as follows: In Chapter 2 we give some basic notations, definitions and facts from linear algebra, graph theory, group theory and quantum computation. In Chapter 3 we describe three important methods for the construction of quantum algorithms. We present the quantum search algorithm by Grover, the quantum amplitude amplification and the quantum walk search technique by Magniez et al. These three tools are the basis for the development of our new quantum algorithms for graph and algebra problems. In Chapter 4 we present two tools for proving quantum query lower bounds. We present the quantum adversary method by Ambainis and the polynomial method introduced by Beals et al. The quantum adversary tool is very useful to prove good lower bounds for many graph and algebra problems. The part of the thesis containing the original results is organized in two parts. In the first part we consider the graph problems. In Chapter 5 we give a short summary of known quantum graph algorithms. In Chapter 6 to 8 we study the complexity of our new algorithms for matching problems, graph traversal and independent set problems on quantum computers. In the second part of our thesis we present new quantum algorithms for algebraic problems. In Chapter 9 to 10 we consider group testing problems and prove quantum complexity bounds for important problems from linear algebra. (orig.)
The optimal graph partitioning problem
Sørensen, Michael Malmros; Holm, Søren
1993-01-01
. This problem can be formulated as a MILP, which turns out to be completely symmetrical with respect to the p classes, and the gap between the relaxed LP solution and the optimal solution is the largest one possible. These two properties make it very difficult to solve even smaller problems. In this paper...
The complexity of the matching-cut problem for planar graphs and other graph classes
Bonsma, P.S.
2009-01-01
The Matching-Cut problem is the problem to decide whether a graph has an edge cut that is also a matching. Previously this problem was studied under the name of the Decomposable Graph Recognition problem, and proved to be -complete when restricted to graphs with maximum degree four. In this paper it
VIGOR: Interactive Visual Exploration of Graph Query Results.
Pienta, Robert; Hohman, Fred; Endert, Alex; Tamersoy, Acar; Roundy, Kevin; Gates, Chris; Navathe, Shamkant; Chau, Duen Horng
2018-01-01
Finding patterns in graphs has become a vital challenge in many domains from biological systems, network security, to finance (e.g., finding money laundering rings of bankers and business owners). While there is significant interest in graph databases and querying techniques, less research has focused on helping analysts make sense of underlying patterns within a group of subgraph results. Visualizing graph query results is challenging, requiring effective summarization of a large number of subgraphs, each having potentially shared node-values, rich node features, and flexible structure across queries. We present VIGOR, a novel interactive visual analytics system, for exploring and making sense of query results. VIGOR uses multiple coordinated views, leveraging different data representations and organizations to streamline analysts sensemaking process. VIGOR contributes: (1) an exemplar-based interaction technique, where an analyst starts with a specific result and relaxes constraints to find other similar results or starts with only the structure (i.e., without node value constraints), and adds constraints to narrow in on specific results; and (2) a novel feature-aware subgraph result summarization. Through a collaboration with Symantec, we demonstrate how VIGOR helps tackle real-world problems through the discovery of security blindspots in a cybersecurity dataset with over 11,000 incidents. We also evaluate VIGOR with a within-subjects study, demonstrating VIGOR's ease of use over a leading graph database management system, and its ability to help analysts understand their results at higher speed and make fewer errors.
Applying Graph Theory to Problems in Air Traffic Management
Farrahi, Amir H.; Goldberg, Alan T.; Bagasol, Leonard N.; Jung, Jaewoo
2017-01-01
Graph theory is used to investigate three different problems arising in air traffic management. First, using a polynomial reduction from a graph partitioning problem, it isshown that both the airspace sectorization problem and its incremental counterpart, the sector combination problem are NP-hard, in general, under several simple workload models. Second, using a polynomial time reduction from maximum independent set in graphs, it is shown that for any fixed e, the problem of finding a solution to the minimum delay scheduling problem in traffic flow management that is guaranteed to be within n1-e of the optimal, where n is the number of aircraft in the problem instance, is NP-hard. Finally, a problem arising in precision arrival scheduling is formulated and solved using graph reachability. These results demonstrate that graph theory provides a powerful framework for modeling, reasoning about, and devising algorithmic solutions to diverse problems arising in air traffic management.
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.
2012-10-01
Exploring and analyzing the temporal evolution of features in large-scale time-varying datasets is a common problem in many areas of science and engineering. One natural representation of such data is tracking graphs, i.e., constrained graph layouts that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take hours to compute with existing techniques. Furthermore, the resulting graphs are often unmanageably large and complex even with an ideal layout. Finally, due to the cost of the layout, changing the feature definition, e.g. by changing an iso-value, or analyzing properly adjusted sub-graphs is infeasible. To address these challenges, this paper presents a new framework that couples hierarchical feature definitions with progressive graph layout algorithms to provide an interactive exploration of dynamically constructed tracking graphs. Our system enables users to change feature definitions on-the-fly and filter features using arbitrary attributes while providing an interactive view of the resulting tracking graphs. Furthermore, the graph display is integrated into a linked view system that provides a traditional 3D view of the current set of features and allows a cross-linked selection to enable a fully flexible spatio-temporal exploration of data. We demonstrate the utility of our approach with several large-scale scientific simulations from combustion science. © 2012 IEEE.
Polyhedral Computations for the Simple Graph Partitioning Problem
Sørensen, Michael Malmros
The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each containing no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we present a branch-and-cut algorithm for the problem that ...
A local search for a graph clustering problem
Navrotskaya, Anna; Il'ev, Victor
2016-10-01
In the clustering problems one has to partition a given set of objects (a data set) into some subsets (called clusters) taking into consideration only similarity of the objects. One of most visual formalizations of clustering is graph clustering, that is grouping the vertices of a graph into clusters taking into consideration the edge structure of the graph whose vertices are objects and edges represent similarities between the objects. In the graph k-clustering problem the number of clusters does not exceed k and the goal is to minimize the number of edges between clusters and the number of missing edges within clusters. This problem is NP-hard for any k ≥ 2. We propose a polynomial time (2k-1)-approximation algorithm for graph k-clustering. Then we apply a local search procedure to the feasible solution found by this algorithm and hold experimental research of obtained heuristics.
Solved and unsolved problems of chemical graph theory
Trinajstic, N.; Klein, D.J.; Randic, M.
1986-01-01
The development of several novel graph theoretical concepts and their applications in different branches of chemistry are reviewed. After a few introductory remarks they follow with an outline of selected important graph theoretical invariants, introducing some new results and indicating some open problems. They continue with discussing the problem of graph characterization and construction of graphs of chemical interest, with a particular emphasis on large systems. Finally they consider various problems and difficulties associated with special subgraphs, including subgraphs representing Kekule valence structures. The paper ends with a brief review of structure-property and structure-activity correlations, the topic which is one of prime motivations for application of graph theory to chemistry
Exploring and Making Sense of Large Graphs
2015-08-01
WWW), Rio de Janeiro , Brazil, pages 119–130. ACM, 2013. [BYH04] Xiao Bai, Hang Yu, and Edwin R. Hancock. Graph Matching Using Spectral Embedding and...grant number DE -AC52-07NA27344, the Defense Advanced Research Projects Agency under grant number W911NF-11-C-0088, the Air Force Research Laboratory...MDL principle) visualizing. Table 3.8: Feature-based comparison of VOG with alternative approaches. So ft clu ste rin g De ns e b lo ck s St ar s Ch ai
Singularly perturbed hyperbolic problems on metric graphs: asymptotics of solutions
Golovaty Yuriy
2017-04-01
Full Text Available We are interested in the evolution phenomena on star-like networks composed of several branches which vary considerably in physical properties. The initial boundary value problem for singularly perturbed hyperbolic differential equation on a metric graph is studied. The hyperbolic equation becomes degenerate on a part of the graph as a small parameter goes to zero. In addition, the rates of degeneration may differ in different edges of the graph. Using the boundary layer method the complete asymptotic expansions of solutions are constructed and justified.
A bicriterion Steiner tree problem on graph
Vujošević Mirko B.
2003-01-01
Full Text Available This paper presents a formulation of bicriterion Steiner tree problem which is stated as a task of finding a Steiner tree with maximal capacity and minimal length. It is considered as a lexicographic multicriteria problem. This means that the bottleneck Steiner tree problem is solved first. After that, the next optimization problem is stated as a classical minimums Steiner tree problem under the constraint on capacity of the tree. The paper also presents some computational experiments with the multicriteria problem.
Sur, Chiranjib; Shukla, Anupam
2018-03-01
Bacteria Foraging Optimisation Algorithm is a collective behaviour-based meta-heuristics searching depending on the social influence of the bacteria co-agents in the search space of the problem. The algorithm faces tremendous hindrance in terms of its application for discrete problems and graph-based problems due to biased mathematical modelling and dynamic structure of the algorithm. This had been the key factor to revive and introduce the discrete form called Discrete Bacteria Foraging Optimisation (DBFO) Algorithm for discrete problems which exceeds the number of continuous domain problems represented by mathematical and numerical equations in real life. In this work, we have mainly simulated a graph-based road multi-objective optimisation problem and have discussed the prospect of its utilisation in other similar optimisation problems and graph-based problems. The various solution representations that can be handled by this DBFO has also been discussed. The implications and dynamics of the various parameters used in the DBFO are illustrated from the point view of the problems and has been a combination of both exploration and exploitation. The result of DBFO has been compared with Ant Colony Optimisation and Intelligent Water Drops Algorithms. Important features of DBFO are that the bacteria agents do not depend on the local heuristic information but estimates new exploration schemes depending upon the previous experience and covered path analysis. This makes the algorithm better in combination generation for graph-based problems and combination generation for NP hard problems.
Local search for Steiner tree problems in graphs
Verhoeven, M.G.A.; Severens, M.E.M.; Aarts, E.H.L.; Rayward-Smith, V.J.; Reeves, C.R.; Smith, G.D.
1996-01-01
We present a local search algorithm for the Steiner tree problem in graphs, which uses a neighbourhood in which paths in a steiner tree are exchanged. The exchange function of this neigbourhood is based on multiple-source shortest path algorithm. We present computational results for a known
Searches on star graphs and equivalent oracle problems
Lee, Jaehak; Lee, Hai-Woong; Hillery, Mark
2011-01-01
We examine a search on a graph among a number of different kinds of objects (vertices), one of which we want to find. In a standard graph search, all of the vertices are the same, except for one, the marked vertex, and that is the one we wish to find. We examine the case in which the unmarked vertices can be of different types, so the background against which the search is done is not uniform. We find that the search can still be successful, but the probability of success is lower than in the uniform background case, and that probability decreases with the number of types of unmarked vertices. We also show how the graph searches can be rephrased as equivalent oracle problems.
Experimental quantum annealing: case study involving the graph isomorphism problem.
Zick, Kenneth M; Shehab, Omar; French, Matthew
2015-06-08
Quantum annealing is a proposed combinatorial optimization technique meant to exploit quantum mechanical effects such as tunneling and entanglement. Real-world quantum annealing-based solvers require a combination of annealing and classical pre- and post-processing; at this early stage, little is known about how to partition and optimize the processing. This article presents an experimental case study of quantum annealing and some of the factors involved in real-world solvers, using a 504-qubit D-Wave Two machine and the graph isomorphism problem. To illustrate the role of classical pre-processing, a compact Hamiltonian is presented that enables a reduced Ising model for each problem instance. On random N-vertex graphs, the median number of variables is reduced from N(2) to fewer than N log2 N and solvable graph sizes increase from N = 5 to N = 13. Additionally, error correction via classical post-processing majority voting is evaluated. While the solution times are not competitive with classical approaches to graph isomorphism, the enhanced solver ultimately classified correctly every problem that was mapped to the processor and demonstrated clear advantages over the baseline approach. The results shed some light on the nature of real-world quantum annealing and the associated hybrid classical-quantum solvers.
A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM
Román Anselmo Mora Gutiérrez
2016-08-01
Full Text Available A hybridalgorithm which combines mathematical programming techniques (Kruskal’s algorithm and the strategy of maintaining arc consistency to solve constraint satisfaction problem “CSP” and heuristic methods (musical composition method and DSATUR to resolve the robust graph coloring problem (RGCP is proposed in this paper. Experimental result shows that this algorithm is better than the other algorithms presented on the literature.
Distributed Graphs for Solving Co-modal Transport Problems
Karama , Jeribi; Hinda , Mejri; Hayfa , Zgaya; Slim , Hammadi
2011-01-01
International audience; The paper presents a new approach based on a special distributed graphs in order to solve co-modal transport problems. The co-modal transport system consists on combining different transport modes effectively in terms of economic, environmental, service and financial efficiency, etc. However, the problem is that these systems must deal with different distributed information sources stored in different locations and provided by different public and private companies. In...
A DNA Computing Model for the Graph Vertex Coloring Problem Based on a Probe Graph
Jin Xu
2018-02-01
Full Text Available The biggest bottleneck in DNA computing is exponential explosion, in which the DNA molecules used as data in information processing grow exponentially with an increase of problem size. To overcome this bottleneck and improve the processing speed, we propose a DNA computing model to solve the graph vertex coloring problem. The main points of the model are as follows: ① The exponential explosion problem is solved by dividing subgraphs, reducing the vertex colors without losing the solutions, and ordering the vertices in subgraphs; and ② the bio-operation times are reduced considerably by a designed parallel polymerase chain reaction (PCR technology that dramatically improves the processing speed. In this article, a 3-colorable graph with 61 vertices is used to illustrate the capability of the DNA computing model. The experiment showed that not only are all the solutions of the graph found, but also more than 99% of false solutions are deleted when the initial solution space is constructed. The powerful computational capability of the model was based on specific reactions among the large number of nanoscale oligonucleotide strands. All these tiny strands are operated by DNA self-assembly and parallel PCR. After thousands of accurate PCR operations, the solutions were found by recognizing, splicing, and assembling. We also prove that the searching capability of this model is up to O(359. By means of an exhaustive search, it would take more than 896 000 years for an electronic computer (5 × 1014 s−1 to achieve this enormous task. This searching capability is the largest among both the electronic and non-electronic computers that have been developed since the DNA computing model was proposed by Adleman’s research group in 2002 (with a searching capability of O(220. Keywords: DNA computing, Graph vertex coloring problem, Polymerase chain reaction
Exploring manifold structure of face images via multiple graphs
Alghamdi, Masheal
2013-01-01
Geometric structure in the data provides important information for face image recognition and classification tasks. Graph regularized non-negative matrix factorization (GrNMF) performs well in this task. However, it is sensitive to the parameters selection. Wang et al. proposed multiple graph regularized non-negative matrix factorization (MultiGrNMF) to solve the parameter selection problem by testing it on medical images. In this paper, we introduce the MultiGrNMF algorithm in the context of still face Image classification, and conduct a comparative study of NMF, GrNMF, and MultiGrNMF using two well-known face databases. Experimental results show that MultiGrNMF outperforms NMF and GrNMF for most cases.
Exploring manifold structure of face images via multiple graphs
Alghamdi, Masheal
2013-12-24
Geometric structure in the data provides important information for face image recognition and classification tasks. Graph regularized non-negative matrix factorization (GrNMF) performs well in this task. However, it is sensitive to the parameters selection. Wang et al. proposed multiple graph regularized non-negative matrix factorization (MultiGrNMF) to solve the parameter selection problem by testing it on medical images. In this paper, we introduce the MultiGrNMF algorithm in the context of still face Image classification, and conduct a comparative study of NMF, GrNMF, and MultiGrNMF using two well-known face databases. Experimental results show that MultiGrNMF outperforms NMF and GrNMF for most cases.
Chartrand, Gary; Rosen, Kenneth H
2008-01-01
Beginning with the origin of the four color problem in 1852, the field of graph colorings has developed into one of the most popular areas of graph theory. Introducing graph theory with a coloring theme, Chromatic Graph Theory explores connections between major topics in graph theory and graph colorings as well as emerging topics. This self-contained book first presents various fundamentals of graph theory that lie outside of graph colorings, including basic terminology and results, trees and connectivity, Eulerian and Hamiltonian graphs, matchings and factorizations, and graph embeddings. The remainder of the text deals exclusively with graph colorings. It covers vertex colorings and bounds for the chromatic number, vertex colorings of graphs embedded on surfaces, and a variety of restricted vertex colorings. The authors also describe edge colorings, monochromatic and rainbow edge colorings, complete vertex colorings, several distinguishing vertex and edge colorings, and many distance-related vertex coloring...
Wahid, Juliana; Hussin, Naimah Mohd
2016-08-01
The construction of population of initial solution is a crucial task in population-based metaheuristic approach for solving curriculum-based university course timetabling problem because it can affect the convergence speed and also the quality of the final solution. This paper presents an exploration on combination of graph heuristics in construction approach in curriculum based course timetabling problem to produce a population of initial solutions. The graph heuristics were set as single and combination of two heuristics. In addition, several ways of assigning courses into room and timeslot are implemented. All settings of heuristics are then tested on the same curriculum based course timetabling problem instances and are compared with each other in terms of number of population produced. The result shows that combination of saturation degree followed by largest degree heuristic produce the highest number of population of initial solutions. The results from this study can be used in the improvement phase of algorithm that uses population of initial solutions.
Graph theory favorite conjectures and open problems 1
Hedetniemi, Stephen; Larson, Craig
2016-01-01
This is the first in a series of volumes, which provide an extensive overview of conjectures and open problems in graph theory. The readership of each volume is geared toward graduate students who may be searching for research ideas. However, the well-established mathematician will find the overall exposition engaging and enlightening. Each chapter, presented in a story-telling style, includes more than a simple collection of results on a particular topic. Each contribution conveys the history, evolution, and techniques used to solve the authors’ favorite conjectures and open problems, enhancing the reader’s overall comprehension and enthusiasm. The editors were inspired to create these volumes by the popular and well attended special sessions, entitled “My Favorite Graph Theory Conjectures," which were held at the winter AMS/MAA Joint Meeting in Boston (January, 2012), the SIAM Conference on Discrete Mathematics in Halifax (June,2012) and the winter AMS/MAA Joint meeting in Baltimore(January, 2014). In...
PERSEUS-HUB: Interactive and Collective Exploration of Large-Scale Graphs
Di Jin
2017-07-01
Full Text Available Graphs emerge naturally in many domains, such as social science, neuroscience, transportation engineering, and more. In many cases, such graphs have millions or billions of nodes and edges, and their sizes increase daily at a fast pace. How can researchers from various domains explore large graphs interactively and efficiently to find out what is ‘important’? How can multiple researchers explore a new graph dataset collectively and “help” each other with their findings? In this article, we present Perseus-Hub, a large-scale graph mining tool that computes a set of graph properties in a distributed manner, performs ensemble, multi-view anomaly detection to highlight regions that are worth investigating, and provides users with uncluttered visualization and easy interaction with complex graph statistics. Perseus-Hub uses a Spark cluster to calculate various statistics of large-scale graphs efficiently, and aggregates the results in a summary on the master node to support interactive user exploration. In Perseus-Hub, the visualized distributions of graph statistics provide preliminary analysis to understand a graph. To perform a deeper analysis, users with little prior knowledge can leverage patterns (e.g., spikes in the power-law degree distribution marked by other users or experts. Moreover, Perseus-Hub guides users to regions of interest by highlighting anomalous nodes and helps users establish a more comprehensive understanding about the graph at hand. We demonstrate our system through the case study on real, large-scale networks.
The Container Problem in Bubble-Sort Graphs
Suzuki, Yasuto; Kaneko, Keiichi
Bubble-sort graphs are variants of Cayley graphs. A bubble-sort graph is suitable as a topology for massively parallel systems because of its simple and regular structure. Therefore, in this study, we focus on n-bubble-sort graphs and propose an algorithm to obtain n-1 disjoint paths between two arbitrary nodes in time bounded by a polynomial in n, the degree of the graph plus one. We estimate the time complexity of the algorithm and the sum of the path lengths after proving the correctness of the algorithm. In addition, we report the results of computer experiments evaluating the average performance of the algorithm.
The Reduction of Directed Cyclic Graph for Task Assignment Problem
Ariffin W.N.M.
2018-01-01
Full Text Available In this paper, a directed cyclic graph (DCG is proposed as the task graph. It is undesirable and impossible to complete the task according to the constraints if the cycle exists. Therefore, an effort should be done in order to eliminate the cycle to obtain a directed acyclic graph (DAG, so that the minimum amount of time required for the entire task can be found. The technique of reducing the complexity of the directed cyclic graph to a directed acyclic graph by reversing the orientation of the path is the main contribution of this study. The algorithm was coded using Java programming and consistently produced good assignment and task schedule.
Political Discourse Analysis Through Solving Problems of Graph Theory
Monica Patrut
2010-03-01
Full Text Available In this article, we show how, using graph theory, we can make a content analysis of political discourse. Assumptions of this analysis are:
- we have a corpus of speech of each party or candidate;
- we consider that speech conveys economic, political, socio-cultural values, these taking the form of words or word families;
- we consider that there are interdependences between the values of a political discourse; they are given by the co-occurrence of two values, as words in the text, within a well defined fragment, or they are determined by the internal logic of political discourse;
- established links between values in a political speech have associated positive numbers indicating the "power" of those links; these "powers" are defined according to both the number of co-occurrences of values, and the internal logic of the discourse where they occur.
In this context we intend to highlight the following:
a which is the dominant value in a political speech;
b which groups of values have ties between them and have no connection with the rest;
c which is the order in which political values should be set in order to obtain an equivalent but more synthetic speech compared to the already given one;
d which are the links between values that form the "core" political speech.
To solve these problems, we shall use the Political Analyst program. After that, we shall present the concepts necessary to the understanding of the introductory graph theory, useful in understanding the analysis of the software and then the operation of the program. This paper extends the previous paper [6].
An Application of Cartesian Graphing to Seismic Exploration.
Robertson, Douglas Frederick
1992-01-01
Describes how college students enrolled in a course in elementary algebra apply graphing and algebra to data collected from a seismic profile to uncover the structure of a subterranean rock formation. Includes steps guiding the activity. (MDH)
Fast crawling methods of exploring content distributed over large graphs
Wang, Pinghui; Zhao, Junzhou; Lui, John C. S.; Towsley, Don; Guan, Xiaohong
2018-01-01
Despite recent effort to estimate topology characteristics of large graphs (e.g., online social networks and peer-to-peer networks), little attention has been given to develop a formal crawling methodology to characterize the vast amount of content
Bapat, Ravindra B
2014-01-01
This new edition illustrates the power of linear algebra in the study of graphs. The emphasis on matrix techniques is greater than in other texts on algebraic graph theory. Important matrices associated with graphs (for example, incidence, adjacency and Laplacian matrices) are treated in detail. Presenting a useful overview of selected topics in algebraic graph theory, early chapters of the text focus on regular graphs, algebraic connectivity, the distance matrix of a tree, and its generalized version for arbitrary graphs, known as the resistance matrix. Coverage of later topics include Laplacian eigenvalues of threshold graphs, the positive definite completion problem and matrix games based on a graph. Such an extensive coverage of the subject area provides a welcome prompt for further exploration. The inclusion of exercises enables practical learning throughout the book. In the new edition, a new chapter is added on the line graph of a tree, while some results in Chapter 6 on Perron-Frobenius theory are reo...
Graph Modeling for Quadratic Assignment Problems Associated with the Hypercube
Mittelmann, Hans; Peng Jiming; Wu Xiaolin
2009-01-01
In the paper we consider the quadratic assignment problem arising from channel coding in communications where one coefficient matrix is the adjacency matrix of a hypercube in a finite dimensional space. By using the geometric structure of the hypercube, we first show that there exist at least n different optimal solutions to the underlying QAPs. Moreover, the inherent symmetries in the associated hypercube allow us to obtain partial information regarding the optimal solutions and thus shrink the search space and improve all the existing QAP solvers for the underlying QAPs.Secondly, we use graph modeling technique to derive a new integer linear program (ILP) models for the underlying QAPs. The new ILP model has n(n-1) binary variables and O(n 3 log(n)) linear constraints. This yields the smallest known number of binary variables for the ILP reformulation of QAPs. Various relaxations of the new ILP model are obtained based on the graphical characterization of the hypercube, and the lower bounds provided by the LP relaxations of the new model are analyzed and compared with what provided by several classical LP relaxations of QAPs in the literature.
EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
2015-01-16
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution, diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'
On a directed tree problem motivated by a newly introduced graph product
Antoon H. Boode
2015-10-01
Full Text Available In this paper we introduce and study a directed tree problem motivated by a new graph product that we have recently introduced and analysed in two conference contributions in the context of periodic real-time processes. While the two conference papers were focussing more on the applications, here we mainly deal with the graph theoretical and computational complexity issues. We show that the directed tree problem is NP-complete and present and compare several heuristics for this problem.
Optimal improvement of graphs related to nuclear safeguards problems
Jacobsen, S.E.
1977-08-01
This report develops the methodology for optimally improving graphs related to nuclear safeguards issues. In particular, given a fixed number of dollars, the report provides a method for optimally allocating such dollars over the arcs of a weighted graph (the weights vary as a function of dollars spent on arcs) so as to improve the system effectiveness measure which is the shortest of all shortest paths to several targets. Arc weights can be either clock times or detection probabilities and the algorithm does not explicitly consider all paths to the targets
PROBLEMS IN TOPOLOGICAL GRAPH THEORY : QUESTIONS I CAN'T ANSWER
Archdeacon, Dan
1999-01-01
This paper describes my Problems in Topological Graph Theory, which can be accessed through the world-wide-web at http: //www.emba .uvm.edu/~arcceack/problems/problems.html This list of problems is constantly being revised; the interested reader is encouraged to submit additions and updates.
Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory
Dees, Patrick D.; Zwack, Mathew R.; Steffens, Michael; Edwards, Stephen
2016-01-01
Within conceptual design changes occur rapidly due to a combination of uncertainty and shifting requirements. To stay relevant in this fluid time, trade studies must also be performed rapidly. In order to drive down analysis time while improving the information gained by these studies, surrogate models can be created to represent the complex output of a tool or tools within a specified tradespace. In order to create this model however, a large amount of data must be collected in a short amount of time. By this method, the historical approach of relying on subject matter experts to generate the data required is schedule infeasible. However, by implementing automation and distributed analysis the required data can be generated in a fraction of the time. Previous work focused on setting up a tool called multiPOST capable of orchestrating many simultaneous runs of an analysis tool assessing these automated analyses utilizing heuristics gleaned from the best practices of current subject matter experts. In this update to the previous work, elements of graph theory are included to further drive down analysis time by leveraging data previously gathered. It is shown to outperform the previous method in both time required, and the quantity and quality of data produced.
Two-particle quantum walks applied to the graph isomorphism problem
Gamble, John King; Friesen, Mark; Zhou Dong; Joynt, Robert; Coppersmith, S. N.
2010-01-01
We show that the quantum dynamics of interacting and noninteracting quantum particles are fundamentally different in the context of solving a particular computational problem. Specifically, we consider the graph isomorphism problem, in which one wishes to determine whether two graphs are isomorphic (related to each other by a relabeling of the graph vertices), and focus on a class of graphs with particularly high symmetry called strongly regular graphs (SRGs). We study the Green's functions that characterize the dynamical evolution single-particle and two-particle quantum walks on pairs of nonisomorphic SRGs and show that interacting particles can distinguish nonisomorphic graphs that noninteracting particles cannot. We obtain the following specific results. (1) We prove that quantum walks of two noninteracting particles, fermions or bosons, cannot distinguish certain pairs of nonisomorphic SRGs. (2) We demonstrate numerically that two interacting bosons are more powerful than single particles and two noninteracting particles, in that quantum walks of interacting bosons distinguish all nonisomorphic pairs of SRGs that we examined. By utilizing high-throughput computing to perform over 500 million direct comparisons between evolution operators, we checked all tabulated pairs of nonisomorphic SRGs, including graphs with up to 64 vertices. (3) By performing a short-time expansion of the evolution operator, we derive distinguishing operators that provide analytic insight into the power of the interacting two-particle quantum walk.
Fast crawling methods of exploring content distributed over large graphs
Wang, Pinghui
2018-03-15
Despite recent effort to estimate topology characteristics of large graphs (e.g., online social networks and peer-to-peer networks), little attention has been given to develop a formal crawling methodology to characterize the vast amount of content distributed over these networks. Due to the large-scale nature of these networks and a limited query rate imposed by network service providers, exhaustively crawling and enumerating content maintained by each vertex is computationally prohibitive. In this paper, we show how one can obtain content properties by crawling only a small fraction of vertices and collecting their content. We first show that when sampling is naively applied, this can produce a huge bias in content statistics (i.e., average number of content replicas). To remove this bias, one may use maximum likelihood estimation to estimate content characteristics. However, our experimental results show that this straightforward method requires to sample most vertices to obtain accurate estimates. To address this challenge, we propose two efficient estimators: special copy estimator (SCE) and weighted copy estimator (WCE) to estimate content characteristics using available information in sampled content. SCE uses the special content copy indicator to compute the estimate, while WCE derives the estimate based on meta-information in sampled vertices. We conduct experiments on a variety of real-word and synthetic datasets, and the results show that WCE and SCE are cost effective and also “asymptotically unbiased”. Our methodology provides a new tool for researchers to efficiently query content distributed in large-scale networks.
Surviving Rates of Graphs with Bounded Treewidth for the Firefighter Problem
Cai, Leizhen; Cheng, Yongxi; Verbin, Elad
2010-01-01
The firefighter problem is the following discrete-time game on a graph. Initially, a fire starts at a vertex of the graph. In each round, a firefighter protects one vertex not yet on fire, and then the fire spreads to all unprotected neighbors of the vertices on fire. The objective of the firefig...... of Cai and Wang [SIAM J. Discrete Math., 23 (2009), pp. 1814-1826] in affirmative....
A Novel Efficient Graph Model for the Multiple Longest Common Subsequences (MLCS Problem
Zhan Peng
2017-08-01
Full Text Available Searching for the Multiple Longest Common Subsequences (MLCS of multiple sequences is a classical NP-hard problem, which has been used in many applications. One of the most effective exact approaches for the MLCS problem is based on dominant point graph, which is a kind of directed acyclic graph (DAG. However, the time and space efficiency of the leading dominant point graph based approaches is still unsatisfactory: constructing the dominated point graph used by these approaches requires a huge amount of time and space, which hinders the applications of these approaches to large-scale and long sequences. To address this issue, in this paper, we propose a new time and space efficient graph model called the Leveled-DAG for the MLCS problem. The Leveled-DAG can timely eliminate all the nodes in the graph that cannot contribute to the construction of MLCS during constructing. At any moment, only the current level and some previously generated nodes in the graph need to be kept in memory, which can greatly reduce the memory consumption. Also, the final graph contains only one node in which all of the wanted MLCS are saved, thus, no additional operations for searching the MLCS are needed. The experiments are conducted on real biological sequences with different numbers and lengths respectively, and the proposed algorithm is compared with three state-of-the-art algorithms. The experimental results show that the time and space needed for the Leveled-DAG approach are smaller than those for the compared algorithms especially on large-scale and long sequences.
Band connectivity for topological quantum chemistry: Band structures as a graph theory problem
Bradlyn, Barry; Elcoro, L.; Vergniory, M. G.; Cano, Jennifer; Wang, Zhijun; Felser, C.; Aroyo, M. I.; Bernevig, B. Andrei
2018-01-01
The conventional theory of solids is well suited to describing band structures locally near isolated points in momentum space, but struggles to capture the full, global picture necessary for understanding topological phenomena. In part of a recent paper [B. Bradlyn et al., Nature (London) 547, 298 (2017), 10.1038/nature23268], we have introduced the way to overcome this difficulty by formulating the problem of sewing together many disconnected local k .p band structures across the Brillouin zone in terms of graph theory. In this paper, we give the details of our full theoretical construction. We show that crystal symmetries strongly constrain the allowed connectivities of energy bands, and we employ graph theoretic techniques such as graph connectivity to enumerate all the solutions to these constraints. The tools of graph theory allow us to identify disconnected groups of bands in these solutions, and so identify topologically distinct insulating phases.
Solving the replacement paths problem for planar directed graphs in O(n logn) time
Wulff-Nilsen, Christian
2010-01-01
In a graph G with non-negative edge lengths, let P be a shortest path from a vertex s to a vertex t. We consider the problem of computing, for each edge e on P, the length of a shortest path in G from s to t that avoids e. This is known as the replacement paths problem. We give a linearspace...
Wøhlk, Sanne; Laporte, Gilbert
2017-01-01
The aim of this paper is to computationally compare several algorithms for the Minimum Cost Perfect Matching Problem on an undirected complete graph. Our work is motivated by the need to solve large instances of the Capacitated Arc Routing Problem (CARP) arising in the optimization of garbage...... collection in Denmark. Common heuristics for the CARP involve the optimal matching of the odd-degree nodes of a graph. The algorithms used in the comparison include the CPLEX solution of an exact formulation, the LEDA matching algorithm, a recent implementation of the Blossom algorithm, as well as six...
Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model
Artiom Alhazov
2015-10-01
Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
An Adaptation of the Kernighan-Lin Heuristic to the Simple Graph Partitioning Problem
Sørensen, Michael Malmros
1999-01-01
to this problem of the Kernighan-Lin exchange heuristic, which was originally developed for the closely related 2-partition problem. The evaluation is carried out on problem instances on graphs with up to 50 nodes for which the optimal partition values are known or upper bounds are available. The computational...... results show that among all instances with known optimal values the best partition values found by a randomized version of this heuristic lie well within 1% off the optimum....
Graphs and an exactly solvable N-body problem in one dimension
Barucchi, G [Turin Univ. (Italy). Ist. di Fisica Matematica
1980-08-21
The one-dimensional N-body classical problem with inversely quadratic pair potential is considered. A method of explicit construction, by means of graphs, of the constants of the motion is given. It is then shown how to obtain, by means of a computer, the position variables of the particles as numerical functions of time.
Scalable Parallel Distributed Coprocessor System for Graph Searching Problems with Massive Data
Wanrong Huang
2017-01-01
Full Text Available The Internet applications, such as network searching, electronic commerce, and modern medical applications, produce and process massive data. Considerable data parallelism exists in computation processes of data-intensive applications. A traversal algorithm, breadth-first search (BFS, is fundamental in many graph processing applications and metrics when a graph grows in scale. A variety of scientific programming methods have been proposed for accelerating and parallelizing BFS because of the poor temporal and spatial locality caused by inherent irregular memory access patterns. However, new parallel hardware could provide better improvement for scientific methods. To address small-world graph problems, we propose a scalable and novel field-programmable gate array-based heterogeneous multicore system for scientific programming. The core is multithread for streaming processing. And the communication network InfiniBand is adopted for scalability. We design a binary search algorithm to address mapping to unify all processor addresses. Within the limits permitted by the Graph500 test bench after 1D parallel hybrid BFS algorithm testing, our 8-core and 8-thread-per-core system achieved superior performance and efficiency compared with the prior work under the same degree of parallelism. Our system is efficient not as a special acceleration unit but as a processor platform that deals with graph searching applications.
Exponential-Time Algorithms and Complexity of NP-Hard Graph Problems
Taslaman, Nina Sofia
of algorithms, as well as investigations into how far such improvements can get under reasonable assumptions. The first part is concerned with detection of cycles in graphs, especially parameterized generalizations of Hamiltonian cycles. A remarkably simple Monte Carlo algorithm is presented......NP-hard problems are deemed highly unlikely to be solvable in polynomial time. Still, one can often find algorithms that are substantially faster than brute force solutions. This thesis concerns such algorithms for problems from graph theory; techniques for constructing and improving this type......, and with high probability any found solution is shortest possible. Moreover, the algorithm can be used to find a cycle of given parity through the specified elements. The second part concerns the hardness of problems encoded as evaluations of the Tutte polynomial at some fixed point in the rational plane...
Jean Chamberlain Chedjou
2015-01-01
Full Text Available This paper develops a flexible analytical concept for robust shortest path detection in dynamically reconfigurable graphs. The concept is expressed by a mathematical model representing the shortest path problem solver. The proposed mathematical model is characterized by three fundamental parameters expressing (a the graph topology (through the “incidence matrix”, (b the edge weights (with dynamic external weights’ setting capability, and (c the dynamic reconfigurability through external input(s of the source-destination nodes pair. In order to demonstrate the universality of the developed concept, a general algorithm is proposed to determine the three fundamental parameters (of the mathematical model developed for all types of graphs regardless of their topology, magnitude, and size. It is demonstrated that the main advantage of the developed concept is that arc costs, the origin-destination pair setting, and the graph topology are dynamically provided by external commands, which are inputs of the shortest path solver model. This enables high flexibility and full reconfigurability of the developed concept, without any retraining need. To validate the concept developed, benchmarking is performed leading to a comparison of its performance with the performances of two well-known concepts based on neural networks.
Exploring mathematics problem-solving and proof
Grieser, Daniel
2018-01-01
Have you ever faced a mathematical problem and had no idea how to approach it? Or perhaps you had an idea but got stuck halfway through? This book guides you in developing your creativity, as it takes you on a voyage of discovery into mathematics. Readers will not only learn strategies for solving problems and logical reasoning, but they will also learn about the importance of proofs and various proof techniques. Other topics covered include recursion, mathematical induction, graphs, counting, elementary number theory, and the pigeonhole, extremal and invariance principles. Designed to help students make the transition from secondary school to university level, this book provides readers with a refreshing look at mathematics and deep insights into universal principles that are valuable far beyond the scope of this book. Aimed especially at undergraduate and secondary school students as well as teachers, this book will appeal to anyone interested in mathematics. Only basic secondary school mathematics is requi...
The fascinating world of graph theory
Benjamin, Arthur; Zhang, Ping
2015-01-01
Graph theory goes back several centuries and revolves around the study of graphs-mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics-and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducin
Infinite graphs in systematic biology, with an application to the species problem.
Alexander, Samuel A
2013-06-01
We argue that C. Darwin and more recently W. Hennig worked at times under the simplifying assumption of an eternal biosphere. So motivated, we explicitly consider the consequences which follow mathematically from this assumption, and the infinite graphs it leads to. This assumption admits certain clusters of organisms which have some ideal theoretical properties of species, shining some light onto the species problem. We prove a dualization of a law of T. A. Knight and C. Darwin, and sketch a decomposition result involving the internodons of D. Kornet, J. Metz and H. Schellinx. A further goal of this paper is to respond to B. Sturmfels' question, "Can biology lead to new theorems?"
The graph-theoretic minimum energy path problem for ionic conduction
Ippei Kishida
2015-10-01
Full Text Available A new computational method was developed to analyze the ionic conduction mechanism in crystals through graph theory. The graph was organized into nodes, which represent the crystal structures modeled by ionic site occupation, and edges, which represent structure transitions via ionic jumps. We proposed a minimum energy path problem, which is similar to the shortest path problem. An effective algorithm to solve the problem was established. Since our method does not use randomized algorithm and time parameters, the computational cost to analyze conduction paths and a migration energy is very low. The power of the method was verified by applying it to α-AgI and the ionic conduction mechanism in α-AgI was revealed. The analysis using single point calculations found the minimum energy path for long-distance ionic conduction, which consists of 12 steps of ionic jumps in a unit cell. From the results, the detailed theoretical migration energy was calculated as 0.11 eV by geometry optimization and nudged elastic band method. Our method can refine candidates for possible jumps in crystals and it can be adapted to other computational methods, such as the nudged elastic band method. We expect that our method will be a powerful tool for analyzing ionic conduction mechanisms, even for large complex crystals.
A Comparison of Local Search Methods for the Multicriteria Police Districting Problem on Graph
F. Liberatore
2016-01-01
Full Text Available In the current economic climate, law enforcement agencies are facing resource shortages. The effective and efficient use of scarce resources is therefore of the utmost importance to provide a high standard public safety service. Optimization models specifically tailored to the necessity of police agencies can help to ameliorate their use. The Multicriteria Police Districting Problem (MC-PDP on a graph concerns the definition of sound patrolling sectors in a police district. The objective of this problem is to partition a graph into convex and continuous subsets, while ensuring efficiency and workload balance among the subsets. The model was originally formulated in collaboration with the Spanish National Police Corps. We propose for its solution three local search algorithms: a Simple Hill Climbing, a Steepest Descent Hill Climbing, and a Tabu Search. To improve their diversification capabilities, all the algorithms implement a multistart procedure, initialized by randomized greedy solutions. The algorithms are empirically tested on a case study on the Central District of Madrid. Our experiments show that the solutions identified by the novel Tabu Search outperform the other algorithms. Finally, research guidelines for future developments on the MC-PDP are given.
Vestergaard, Preben Dahl; Hartnell, Bert L.
2006-01-01
There are many results dealing with the problem of decomposing a fixed graph into isomorphic subgraphs. There has also been work on characterizing graphs with the property that one can delete the edges of a number of edge disjoint copies of the subgraph and, regardless of how that is done, the gr...
Exploring Text and Icon Graph Interpretation in Students with Dyslexia: An Eye-tracking Study.
Kim, Sunjung; Wiseheart, Rebecca
2017-02-01
A growing body of research suggests that individuals with dyslexia struggle to use graphs efficiently. Given the persistence of orthographic processing deficits in dyslexia, this study tested whether graph interpretation deficits in dyslexia are directly related to difficulties processing the orthographic components of graphs (i.e. axes and legend labels). Participants were 80 college students with and without dyslexia. Response times and eye movements were recorded as students answered comprehension questions about simple data displayed in bar graphs. Axes and legends were labelled either with words (mixed-modality graphs) or icons (orthography-free graphs). Students also answered informationally equivalent questions presented in sentences (orthography-only condition). Response times were slower in the dyslexic group only for processing sentences. However, eye tracking data revealed group differences for processing mixed-modality graphs, whereas no group differences were found for the orthography-free graphs. When processing bar graphs, students with dyslexia differ from their able reading peers only when graphs contain orthographic features. Implications for processing informational text are discussed. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Graphs as a Problem-Solving Tool in 1-D Kinematics
Desbien, Dwain M.
2008-01-01
In this age of the microcomputer-based lab (MBL), students are quite accustomed to looking at graphs of position, velocity, and acceleration versus time. A number of textbooks argue convincingly that the slope of the velocity graph gives the acceleration, the area under the velocity graph yields the displacement, and the area under the…
A multi-directional rapidly exploring random graph (mRRG) for protein folding
Nath, Shuvra Kanti; Thomas, Shawna; Ekenna, Chinwe; Amato, Nancy M.
2012-01-01
Modeling large-scale protein motions, such as those involved in folding and binding interactions, is crucial to better understanding not only how proteins move and interact with other molecules but also how proteins misfold, thus causing many devastating diseases. Robotic motion planning algorithms, such as Rapidly Exploring Random Trees (RRTs), have been successful in simulating protein folding pathways. Here, we propose a new multi-directional Rapidly Exploring Random Graph (mRRG) specifically tailored for proteins. Unlike traditional RRGs which only expand a parent conformation in a single direction, our strategy expands the parent conformation in multiple directions to generate new samples. Resulting samples are connected to the parent conformation and its nearest neighbors. By leveraging multiple directions, mRRG can model the protein motion landscape with reduced computational time compared to several other robotics-based methods for small to moderate-sized proteins. Our results on several proteins agree with experimental hydrogen out-exchange, pulse-labeling, and F-value analysis. We also show that mRRG covers the conformation space better as compared to the other computation methods. Copyright © 2012 ACM.
Interactive exploration of large-scale time-varying data using dynamic tracking graphs
Widanagamaachchi, W.; Christensen, C.; Bremer, P.-T; Pascucci, Valerio
2012-01-01
that use one spatial dimension to indicate time and show the "tracks" of each feature as it evolves, merges or disappears. However, for practical data sets creating the corresponding optimal graph layouts that minimize the number of intersections can take
Magnolia Tilca
2014-10-01
Full Text Available The aim of this paper is to study the existence of the solution for the overlapping generations model, using fixed point theorems in metric spaces endowed with a graph. The overlapping generations model has been introduced and developed by Maurice Allais (1947, Paul Samuelson (1958, Peter Diamond (1965 and so on. The present paper treats the case presented by Edmond (2008 in (Edmond, 2008 for a continuous time. The theorem of existence of the solution for the prices fixed point problem derived from the overlapping generations model gives an approximation of the solution via the graph theory. The tools employed in this study are based on applications of the Jachymski fixed point theorem on metric spaces endowed with a graph (Jachymski, 2008
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
Biazzo, Indaco; Braunstein, Alfredo; Zecchina, Riccardo
2012-08-01
We study the behavior of an algorithm derived from the cavity method for the prize-collecting steiner tree (PCST) problem on graphs. The algorithm is based on the zero temperature limit of the cavity equations and as such is formally simple (a fixed point equation resolved by iteration) and distributed (parallelizable). We provide a detailed comparison with state-of-the-art algorithms on a wide range of existing benchmarks, networks, and random graphs. Specifically, we consider an enhanced derivative of the Goemans-Williamson heuristics and the dhea solver, a branch and cut integer linear programming based approach. The comparison shows that the cavity algorithm outperforms the two algorithms in most large instances both in running time and quality of the solution. Finally we prove a few optimality properties of the solutions provided by our algorithm, including optimality under the two postprocessing procedures defined in the Goemans-Williamson derivative and global optimality in some limit cases.
Vatutin Eduard
2017-12-01
Full Text Available The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Vatutin, Eduard
2017-12-01
The article deals with the problem of analysis of effectiveness of the heuristic methods with limited depth-first search techniques of decision obtaining in the test problem of getting the shortest path in graph. The article briefly describes the group of methods based on the limit of branches number of the combinatorial search tree and limit of analyzed subtree depth used to solve the problem. The methodology of comparing experimental data for the estimation of the quality of solutions based on the performing of computational experiments with samples of graphs with pseudo-random structure and selected vertices and arcs number using the BOINC platform is considered. It also shows description of obtained experimental results which allow to identify the areas of the preferable usage of selected subset of heuristic methods depending on the size of the problem and power of constraints. It is shown that the considered pair of methods is ineffective in the selected problem and significantly inferior to the quality of solutions that are provided by ant colony optimization method and its modification with combinatorial returns.
Collective Rationality in Graph Aggregation
Endriss, U.; Grandi, U.; Schaub, T.; Friedrich, G.; O'Sullivan, B.
2014-01-01
Suppose a number of agents each provide us with a directed graph over a common set of vertices. Graph aggregation is the problem of computing a single “collective” graph that best represents the information inherent in this profile of individual graphs. We consider this aggregation problem from the
Amine Labriji
2017-07-01
Full Text Available The topic of identifying the similarity of graphs was considered as highly recommended research field in the Web semantic, artificial intelligence, the shape recognition and information research. One of the fundamental problems of graph databases is finding similar graphs to a graph query. Existing approaches dealing with this problem are usually based on the nodes and arcs of the two graphs, regardless of parental semantic links. For instance, a common connection is not identified as being part of the similarity of two graphs in cases like two graphs without common concepts, the measure of similarity based on the union of two graphs, or the one based on the notion of maximum common sub-graph (SCM, or the distance of edition of graphs. This leads to an inadequate situation in the context of information research. To overcome this problem, we suggest a new measure of similarity between graphs, based on the similarity measure of Wu and Palmer. We have shown that this new measure satisfies the properties of a measure of similarities and we applied this new measure on examples. The results show that our measure provides a run time with a gain of time compared to existing approaches. In addition, we compared the relevance of the similarity values obtained, it appears that this new graphs measure is advantageous and offers a contribution to solving the problem mentioned above.
Gambler's ruin problem on Erdős-Rényi graphs
Néda, Zoltán; Davidova, Larissa; Újvári, Szeréna; Istrate, Gabriel
2017-02-01
A multiagent ruin-game is studied on Erdős-Rényi type graphs. Initially the players have the same wealth. At each time step a monopolist game is played on all active links (links that connect nodes with nonzero wealth). In such a game each player puts a unit wealth in the pot and the pot is won with equal probability by one of the players. The game ends when there are no connected players such that both of them have non-zero wealth. In order to characterize the final state for dense graphs a compact formula is given for the expected number of the remaining players with non-zero wealth and the wealth distribution among these players. Theoretical predictions are given for the expected duration of the ruin game. The dynamics of the number of active players is also investigated. Validity of the theoretical predictions is investigated by Monte Carlo experiments.
Autoregressive Moving Average Graph Filtering
Isufi, Elvin; Loukas, Andreas; Simonetto, Andrea; Leus, Geert
2016-01-01
One of the cornerstones of the field of signal processing on graphs are graph filters, direct analogues of classical filters, but intended for signals defined on graphs. This work brings forth new insights on the distributed graph filtering problem. We design a family of autoregressive moving average (ARMA) recursions, which (i) are able to approximate any desired graph frequency response, and (ii) give exact solutions for tasks such as graph signal denoising and interpolation. The design phi...
Interactive Graph Layout of a Million Nodes
Peng Mi
2016-12-01
Full Text Available Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph topology. This algorithm can interactively layout graphs with millions of nodes, and support real-time interaction to explore alternative graph layouts. Users can directly manipulate the layout of vertices in a force-directed fashion. The complexity of traditional repulsive force computation is reduced by approximating calculations based on the hierarchical structure of multi-level clustered graphs. We evaluate the algorithm performance, and demonstrate human-in-the-loop layout in two sensemaking case studies. Moreover, we summarize lessons learned for designing interactive large graph layout algorithms on the GPU.
Faenza, Y.; Oriolo, G.; Stauffer, G.
2011-01-01
We propose an algorithm for solving the maximum weighted stable set problem on claw-free graphs that runs in O(n^3)-time, drastically improving the previous best known complexity bound. This algorithm is based on a novel decomposition theorem for claw-free graphs, which is also intioduced in the present paper. Despite being weaker than the well-known structure result for claw-free graphs given by Chudnovsky and Seymour, our decomposition theorem is, on the other hand, algorithmic, i.e. it is ...
Gould, Ronald
2012-01-01
This introduction to graph theory focuses on well-established topics, covering primary techniques and including both algorithmic and theoretical problems. The algorithms are presented with a minimum of advanced data structures and programming details. This thoroughly corrected 1988 edition provides insights to computer scientists as well as advanced undergraduates and graduate students of topology, algebra, and matrix theory. Fundamental concepts and notation and elementary properties and operations are the first subjects, followed by examinations of paths and searching, trees, and networks. S
Endriss, U.; Grandi, U.
Graph aggregation is the process of computing a single output graph that constitutes a good compromise between several input graphs, each provided by a different source. One needs to perform graph aggregation in a wide variety of situations, e.g., when applying a voting rule (graphs as preference
Chen, Wenbin; Hendrix, William; Samatova, Nagiza F
2017-12-01
The problem of aligning multiple metabolic pathways is one of very challenging problems in computational biology. A metabolic pathway consists of three types of entities: reactions, compounds, and enzymes. Based on similarities between enzymes, Tohsato et al. gave an algorithm for aligning multiple metabolic pathways. However, the algorithm given by Tohsato et al. neglects the similarities among reactions, compounds, enzymes, and pathway topology. How to design algorithms for the alignment problem of multiple metabolic pathways based on the similarity of reactions, compounds, and enzymes? It is a difficult computational problem. In this article, we propose an algorithm for the problem of aligning multiple metabolic pathways based on the similarities among reactions, compounds, enzymes, and pathway topology. First, we compute a weight between each pair of like entities in different input pathways based on the entities' similarity score and topological structure using Ay et al.'s methods. We then construct a weighted k-partite graph for the reactions, compounds, and enzymes. We extract a mapping between these entities by solving the maximum-weighted k-partite matching problem by applying a novel heuristic algorithm. By analyzing the alignment results of multiple pathways in different organisms, we show that the alignments found by our algorithm correctly identify common subnetworks among multiple pathways.
Wi Hoon eJung
2013-10-01
Full Text Available One major characteristic of experts is intuitive judgment, which is an automatic process whereby patterns stored in memory through long-term training are recognized. Indeed, long-term training may influence brain structure and function. A recent study revealed that chess experts at rest showed differences in structure and functional connectivity (FC in the head of caudate, which is associated with rapid best next-move generation. However, less is known about the structure and function of the brains of Baduk experts compared with those of experts in other strategy games. Therefore, we performed voxel-based morphometry and FC analyses in Baduk experts to investigate structural brain differences and to clarify the influence of these differences on functional interactions. We also conducted graph theoretical analysis to explore the topological organization of whole-brain functional networks. Compared to novices, Baduk experts exhibited decreased and increased gray matter volume in the amygdala and nucleus accumbens, respectively. We also found increased FC between the amygdala and medial orbitofrontal cortex and decreased FC between the nucleus accumbens and medial prefrontal cortex. Further graph theoretical analysis revealed differences in measures of the integration of the network and in the regional nodal characteristics of various brain regions activated during Baduk. This study provides evidence for structural and functional differences as well as altered topological organization of the whole-brain functional networks in Baduk experts. Our findings also offer novel suggestions about the cognitive mechanisms behind Baduk expertise, which involves intuitive decision-making mediated by somatic marker circuitry and visuospatial processing.
Simplicial complexes of graphs
Jonsson, Jakob
2008-01-01
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
Mansutti, Alessio; Miculan, Marino; Peressotti, Marco
2017-01-01
We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly...... also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give...
Krange, Ingeborg; Arnseth, Hans Christian
2012-09-01
The aim of this study is to scrutinize the characteristics of conceptual meaning making when students engage with virtual worlds in combination with a spreadsheet with the aim to develop graphs. We study how these tools and the representations they contain or enable students to construct serve to influence their understanding of energy resource consumption. The data were gathered in 1st grade upper-secondary science classes and they constitute the basis for the interaction analysis of students' meaning making with representations. Our analyses demonstrate the difficulties involved in developing students' orientation toward more conceptual orientations to representations of the knowledge domain. Virtual worlds do not in themselves represent a solution to this problem.
Alspach, BR
1985-01-01
This volume deals with a variety of problems involving cycles in graphs and circuits in digraphs. Leading researchers in this area present here 3 survey papers and 42 papers containing new results. There is also a collection of unsolved problems.
A Comparison of Approaches for Solving Hard Graph-Theoretic Problems
2015-04-29
and Search”, in Discrete Mathematics and Its Applications, Book 7, CRC Press (1998): Boca Raton. [6] A. Lucas, “Ising Formulations of Many NP Problems...owner. 14. ABSTRACT In order to formulate mathematical conjectures likely to be true, a number of base cases must be determined. However, many... combinatorial problems are NP-hard and the computational complexity makes this research approach difficult using a standard brute force approach on a
Zhang, L.-C.; Patone, M.
2017-01-01
We synthesise the existing theory of graph sampling. We propose a formal definition of sampling in finite graphs, and provide a classification of potential graph parameters. We develop a general approach of Horvitz–Thompson estimation to T-stage snowball sampling, and present various reformulations of some common network sampling methods in the literature in terms of the outlined graph sampling theory.
Exploring classical Greek construction problems with interactive geometry software
Meskens, Ad
2017-01-01
In this book the classical Greek construction problems are explored in a didactical, enquiry based fashion using Interactive Geometry Software. The book traces the history of these problems, stating them in modern terminology. By focusing on constructions and the use of GeoGebra the reader is confronted with the same problems that ancient mathematicians once faced. The reader can step into the footsteps of Euclid, Viète and Cusanus amongst others and then by experimenting and discovering geometric relationships far exceed their accomplishments. Exploring these problems with the neusis-method lets him discover a class of interesting curves. By experimenting he will gain a deeper understanding of how mathematics is created. More than 100 exercises guide him through methods which were developed to try and solve the problems. The exercises are at the level of undergraduate students and only require knowledge of elementary Euclidean geometry and pre-calculus algebra. It is especially well-suited for those student...
Julien Maheut
2013-07-01
Full Text Available Purpose: The purpose of this paper is to present an algorithm that solves the supply network configuration and operations scheduling problem in a mass customization company that faces alternative operations for one specific tool machine order in a multiplant context. Design/methodology/approach: To achieve this objective, the supply chain network configuration and operations scheduling problem is presented. A model based on stroke graphs allows the design of an algorithm that enumerates all the feasible solutions. The algorithm considers the arrival of a new customized order proposal which has to be inserted into a scheduled program. A selection function is then used to choose the solutions to be simulated in a specific simulation tool implemented in a Decision Support System. Findings and Originality/value: The algorithm itself proves efficient to find all feasible solutions when alternative operations must be considered. The stroke structure is successfully used to schedule operations when considering more than one manufacturing and supply option in each step. Research limitations/implications: This paper includes only the algorithm structure for a one-by-one, sequenced introduction of new products into the list of units to be manufactured. Therefore, the lotsizing process is done on a lot-per-lot basis. Moreover, the validation analysis is done through a case study and no generalization can be done without risk. Practical implications: The result of this research would help stakeholders to determine all the feasible and practical solutions for their problem. It would also allow to assessing the total costs and delivery times of each solution. Moreover, the Decision Support System proves useful to assess alternative solutions. Originality/value: This research offers a simple algorithm that helps solve the supply network configuration problem and, simultaneously, the scheduling problem by considering alternative operations. The proposed system
Social Problems in Canadian Ice Hockey: An Exploration Through Film
Fogel Curtis A.
2014-12-01
Full Text Available While celebrated as a highly popular sport in Canada, there are many social problems existing within and around Canadian ice hockey. These problems are often overlooked and rarely depicted in academic and journalistic research on sport. These social problems include, but are not limited to: extreme violence resulting in injuries and death, hazing rituals, multiple types of sexual violence, drug abuse, financial corruption, as well as various forms of prejudice and discrimination. Prompted by pop-cultural depictions in films, this paper further identifies and explores social problems in Canadian ice hockey revealing the realism embedded within various seemingly fictional films.
Generalized connectivity of graphs
Li, Xueliang
2016-01-01
Noteworthy results, proof techniques, open problems and conjectures in generalized (edge-) connectivity are discussed in this book. Both theoretical and practical analyses for generalized (edge-) connectivity of graphs are provided. Topics covered in this book include: generalized (edge-) connectivity of graph classes, algorithms, computational complexity, sharp bounds, Nordhaus-Gaddum-type results, maximum generalized local connectivity, extremal problems, random graphs, multigraphs, relations with the Steiner tree packing problem and generalizations of connectivity. This book enables graduate students to understand and master a segment of graph theory and combinatorial optimization. Researchers in graph theory, combinatorics, combinatorial optimization, probability, computer science, discrete algorithms, complexity analysis, network design, and the information transferring models will find this book useful in their studies.
Gelfand, I M; Shnol, E E
1969-01-01
The second in a series of systematic studies by a celebrated mathematician I. M. Gelfand and colleagues, this volume presents students with a well-illustrated sequence of problems and exercises designed to illuminate the properties of functions and graphs. Since readers do not have the benefit of a blackboard on which a teacher constructs a graph, the authors abandoned the customary use of diagrams in which only the final form of the graph appears; instead, the book's margins feature step-by-step diagrams for the complete construction of each graph. The first part of the book employs simple fu
Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sullivan, Blair D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baker, Matthew B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schrock, Jonathan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Poole, Stephen W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2013-10-01
The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allowed the emulation of different application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report examines existing synthetic graph generator implementations in preparation for further study on the properties of their generated synthetic graphs.
Zhu, Zheng; Andresen, Juan Carlos; Janzen, Katharina; Katzgraber, Helmut G.
2013-03-01
We study the equilibrium and nonequilibrium properties of Boolean decision problems with competing interactions on scale-free graphs in a magnetic field. Previous studies at zero field have shown a remarkable equilibrium stability of Boolean variables (Ising spins) with competing interactions (spin glasses) on scale-free networks. When the exponent that describes the power-law decay of the connectivity of the network is strictly larger than 3, the system undergoes a spin-glass transition. However, when the exponent is equal to or less than 3, the glass phase is stable for all temperatures. First we perform finite-temperature Monte Carlo simulations in a field to test the robustness of the spin-glass phase and show, in agreement with analytical calculations, that the system exhibits a de Almeida-Thouless line. Furthermore, we study avalanches in the system at zero temperature to see if the system displays self-organized criticality. This would suggest that damage (avalanches) can spread across the whole system with nonzero probability, i.e., that Boolean decision problems on scale-free networks with competing interactions are fragile when not in thermal equilibrium.
Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM
1999-01-01
Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems
A librarian's guide to graphs, data and the semantic web
Powell, James
2015-01-01
Graphs are about connections, and are an important part of our connected and data-driven world. A Librarian's Guide to Graphs, Data and the Semantic Web is geared toward library and information science professionals, including librarians, software developers and information systems architects who want to understand the fundamentals of graph theory, how it is used to represent and explore data, and how it relates to the semantic web. This title provides a firm grounding in the field at a level suitable for a broad audience, with an emphasis on open source solutions and what problems these tools solve at a conceptual level, with minimal emphasis on algorithms or mathematics. The text will also be of special interest to data science librarians and data professionals, since it introduces many graph theory concepts by exploring data-driven networks from various scientific disciplines. The first two chapters consider graphs in theory and the science of networks, before the following chapters cover networks in vario...
Study of Chromatic parameters of Line, Total, Middle graphs and Graph operators of Bipartite graph
Nagarathinam, R.; Parvathi, N.
2018-04-01
Chromatic parameters have been explored on the basis of graph coloring process in which a couple of adjacent nodes receives different colors. But the Grundy and b-coloring executes maximum colors under certain restrictions. In this paper, Chromatic, b-chromatic and Grundy number of some graph operators of bipartite graph has been investigat
Brouwer, A.E.; Haemers, W.H.; Brouwer, A.E.; Haemers, W.H.
2012-01-01
This chapter presents some simple results on graph spectra.We assume the reader is familiar with elementary linear algebra and graph theory. Throughout, J will denote the all-1 matrix, and 1 is the all-1 vector.
Hyperbolicity in median graphs
mic problems in hyperbolic spaces and hyperbolic graphs have been .... that in general the main obstacle is that we do not know the location of ...... [25] Jonckheere E and Lohsoonthorn P, A hyperbolic geometry approach to multipath routing,.
Alexandru Maries
2013-11-01
Full Text Available The Test of Understanding Graphs in Kinematics (TUG-K is a multiple-choice test developed by Beichner in 1994 to assess students’ understanding of kinematics graphs. Many of the items on the TUG-K have strong distractor choices which correspond to students’ common difficulties with kinematics graphs. Instruction is unlikely to be effective if instructors do not know the common difficulties of introductory physics students and explicitly take them into account in their instructional design. We evaluate one aspect of the pedagogical content knowledge of first-year physics graduate students enrolled in a teaching assistant training course related to topics covered in the TUG-K. In particular, for each item on the TUG-K, the graduate students were asked to identify which incorrect answer choice they thought would be most commonly selected by introductory physics students if they did not know the correct answer after instruction in relevant concepts. We used the graduate student data and the data from Beichner’s original paper for introductory physics students (which was collected from over 500 college and high school students to assess this aspect of the pedagogical content knowledge of the graduate students, i.e., knowledge of student difficulties related to kinematics graphs as they are revealed by the TUG-K. We find that, although the graduate students, on average, performed better than random guessing at identifying introductory student difficulties on the TUG-K, they did not identify many common difficulties that introductory students have with graphs in kinematics. In addition, we find that the ability of graduate students to identify the difficulties of introductory students is context dependent and that discussions among the graduate students improved their understanding of student difficulties related to kinematics graphs. Moreover, we find that the ability of American graduate students in identifying common student difficulties is
Particle transport in breathing quantum graph
Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.
2012-01-01
Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)
Canonical Labelling of Site Graphs
Nicolas Oury
2013-06-01
Full Text Available We investigate algorithms for canonical labelling of site graphs, i.e. graphs in which edges bind vertices on sites with locally unique names. We first show that the problem of canonical labelling of site graphs reduces to the problem of canonical labelling of graphs with edge colourings. We then present two canonical labelling algorithms based on edge enumeration, and a third based on an extension of Hopcroft's partition refinement algorithm. All run in quadratic worst case time individually. However, one of the edge enumeration algorithms runs in sub-quadratic time for graphs with "many" automorphisms, and the partition refinement algorithm runs in sub-quadratic time for graphs with "few" bisimulation equivalences. This suite of algorithms was chosen based on the expectation that graphs fall in one of those two categories. If that is the case, a combined algorithm runs in sub-quadratic worst case time. Whether this expectation is reasonable remains an interesting open problem.
Joyner, W David
2017-01-01
This textbook acts as a pathway to higher mathematics by seeking and illuminating the connections between graph theory and diverse fields of mathematics, such as calculus on manifolds, group theory, algebraic curves, Fourier analysis, cryptography and other areas of combinatorics. An overview of graph theory definitions and polynomial invariants for graphs prepares the reader for the subsequent dive into the applications of graph theory. To pique the reader’s interest in areas of possible exploration, recent results in mathematics appear throughout the book, accompanied with examples of related graphs, how they arise, and what their valuable uses are. The consequences of graph theory covered by the authors are complicated and far-reaching, so topics are always exhibited in a user-friendly manner with copious graphs, exercises, and Sage code for the computation of equations. Samples of the book’s source code can be found at github.com/springer-math/adventures-in-graph-theory. The text is geared towards ad...
Incremental Frequent Subgraph Mining on Large Evolving Graphs
Abdelhamid, Ehab
2017-08-22
Frequent subgraph mining is a core graph operation used in many domains, such as graph data management and knowledge exploration, bioinformatics and security. Most existing techniques target static graphs. However, modern applications, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem on a single large evolving graph. We adapt the notion of “fringe” to the graph context, that is the set of subgraphs on the border between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and exploits them to prune the search space. To boost the efficiency, we propose an efficient index structure to maintain selected embeddings with minimal memory overhead. These embeddings are utilized to avoid redundant expensive subgraph isomorphism operations. Moreover, the proposed system supports batch updates. Using large real-world graphs, we experimentally verify that IncGM+ outperforms existing methods by up to three orders of magnitude, scales to much larger graphs and consumes less memory.
Connes, A.; Kreimer, D.
2000-01-01
This paper gives a complete selfcontained proof of our result (1999) showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra H which is commutative asan algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra G whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of H. We show then that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop γ(z) element of G, z element of C, where C is a small circle of complex dimensions around the integer dimension D of space-time. Our main result is that the renormalized theory is just the evaluation at z=D of the holomorphic part γ + of the Birkhoff decomposition of γ. We begin to analyse the group G and show that it is a semi-direct product of an easily understood abelian group by a highly non-trivial group closely tied up with groups of diffeomorphisms. (orig.)
A faithful functor among algebras and graphs
Falcón Ganfornina, Óscar Jesús; Falcón Ganfornina, Raúl Manuel; Núñez Valdés, Juan; Pacheco Martínez, Ana María; Villar Liñán, María Trinidad; Vigo Aguiar, Jesús (Coordinador)
2016-01-01
The problem of identifying a functor between the categories of algebras and graphs is currently open. Based on a known algorithm that identifies isomorphisms of Latin squares with isomorphism of vertex-colored graphs, we describe here a pair of graphs that enable us to find a faithful functor between finite-dimensional algebras over finite fields and these graphs.
A Modal-Logic Based Graph Abstraction
Bauer, J.; Boneva, I.B.; Kurban, M.E.; Rensink, Arend; Ehrig, H; Heckel, R.; Rozenberg, G.; Taentzer, G.
2008-01-01
Infinite or very large state spaces often prohibit the successful verification of graph transformation systems. Abstract graph transformation is an approach that tackles this problem by abstracting graphs to abstract graphs of bounded size and by lifting application of productions to abstract
Bollobas, Bela
2004-01-01
The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory.Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. A
Hendrix, William; Jenkins, John; Padmanabhan, Kanchana; Chakraborty, Arpan
2014-01-01
Practical Graph Mining with R presents a "do-it-yourself" approach to extracting interesting patterns from graph data. It covers many basic and advanced techniques for the identification of anomalous or frequently recurring patterns in a graph, the discovery of groups or clusters of nodes that share common patterns of attributes and relationships, the extraction of patterns that distinguish one category of graphs from another, and the use of those patterns to predict the category of new graphs. Hands-On Application of Graph Data Mining Each chapter in the book focuses on a graph mining task, such as link analysis, cluster analysis, and classification. Through applications using real data sets, the book demonstrates how computational techniques can help solve real-world problems. The applications covered include network intrusion detection, tumor cell diagnostics, face recognition, predictive toxicology, mining metabolic and protein-protein interaction networks, and community detection in social networks. De...
Interactive Graph Layout of a Million Nodes
Peng Mi; Maoyuan Sun; Moeti Masiane; Yong Cao; Chris North
2016-01-01
Sensemaking of large graphs, specifically those with millions of nodes, is a crucial task in many fields. Automatic graph layout algorithms, augmented with real-time human-in-the-loop interaction, can potentially support sensemaking of large graphs. However, designing interactive algorithms to achieve this is challenging. In this paper, we tackle the scalability problem of interactive layout of large graphs, and contribute a new GPU-based force-directed layout algorithm that exploits graph to...
Eulerian Graphs and Related Topics
Fleischner, Herbert
1990-01-01
The two volumes comprising Part 1 of this work embrace the theme of Eulerian trails and covering walks. They should appeal both to researchers and students, as they contain enough material for an undergraduate or graduate graph theory course which emphasizes Eulerian graphs, and thus can be read by any mathematician not yet familiar with graph theory. But they are also of interest to researchers in graph theory because they contain many recent results, some of which are only partial solutions to more general problems. A number of conjectures have been included as well. Various problems (such a
Not your problem? Exploring the relationship between problem formulation and social responsibility
Sveinung Jørgensen
2011-05-01
Full Text Available This article explores the relationship between organizationalproblem formulation and social responsibility. Thepurpose of the article is to illuminate how organizationalproblem formulations (1 determine the manner in whichthe organization attempts to solve the problem and (2involve the ascription of significance to a group of stakeholdersseen as relevant for the organization. This has implicationsfor the degree to which they assume responsibilityfor those stakeholders. We discuss three dimensions ofresponsible decision making – rationality in goal attainment,reverence for ethical norms, and respect for stakeholders.Thereby, we arrive at an understanding of how differentorganizations in the same sector conceive of, andattempt to solve fundamental problems in the sector, aswell as how their assumed responsibility is reflected therein.We present and discuss a case that discusses keysimilarities and differences between two organizations inthe drug sector – a pharmaceutical company that producesmedicine for the treatment of drug addiction and a foundationworking with drug rehabilitation. We illuminatehow the two organizations base their activities on divergentformulations of the drug problem and how this ismanifested in their approach to the problem. We argue that this ultimately translates into differences in the inclusion of various stakeholdersin their problem space, and thereby the degree to which they assumeresponsibility for key stakeholders. This contributes to the corporate socialresponsibility literature by providing an in depth account of how problem formulationsshape organizational activities and determine the practical inclusionof stakeholders’ interests in the decisions and activities of organizations.
Barra, F.; Gaspard, P.
2001-01-01
We consider the classical evolution of a particle on a graph by using a time-continuous Frobenius-Perron operator that generalizes previous propositions. In this way, the relaxation rates as well as the chaotic properties can be defined for the time-continuous classical dynamics on graphs. These properties are given as the zeros of some periodic-orbit zeta functions. We consider in detail the case of infinite periodic graphs where the particle undergoes a diffusion process. The infinite spatial extension is taken into account by Fourier transforms that decompose the observables and probability densities into sectors corresponding to different values of the wave number. The hydrodynamic modes of diffusion are studied by an eigenvalue problem of a Frobenius-Perron operator corresponding to a given sector. The diffusion coefficient is obtained from the hydrodynamic modes of diffusion and has the Green-Kubo form. Moreover, we study finite but large open graphs that converge to the infinite periodic graph when their size goes to infinity. The lifetime of the particle on the open graph is shown to correspond to the lifetime of a system that undergoes a diffusion process before it escapes
Network reconstruction via graph blending
Estrada, Rolando
2016-05-01
Graphs estimated from empirical data are often noisy and incomplete due to the difficulty of faithfully observing all the components (nodes and edges) of the true graph. This problem is particularly acute for large networks where the number of components may far exceed available surveillance capabilities. Errors in the observed graph can render subsequent analyses invalid, so it is vital to develop robust methods that can minimize these observational errors. Errors in the observed graph may include missing and spurious components, as well fused (multiple nodes are merged into one) and split (a single node is misinterpreted as many) nodes. Traditional graph reconstruction methods are only able to identify missing or spurious components (primarily edges, and to a lesser degree nodes), so we developed a novel graph blending framework that allows us to cast the full estimation problem as a simple edge addition/deletion problem. Armed with this framework, we systematically investigate the viability of various topological graph features, such as the degree distribution or the clustering coefficients, and existing graph reconstruction methods for tackling the full estimation problem. Our experimental results suggest that incorporating any topological feature as a source of information actually hinders reconstruction accuracy. We provide a theoretical analysis of this phenomenon and suggest several avenues for improving this estimation problem.
White, AT
1985-01-01
The field of topological graph theory has expanded greatly in the ten years since the first edition of this book appeared. The original nine chapters of this classic work have therefore been revised and updated. Six new chapters have been added, dealing with: voltage graphs, non-orientable imbeddings, block designs associated with graph imbeddings, hypergraph imbeddings, map automorphism groups and change ringing.Thirty-two new problems have been added to this new edition, so that there are now 181 in all; 22 of these have been designated as ``difficult'''' and 9 as ``unsolved''''. Three of the four unsolved problems from the first edition have been solved in the ten years between editions; they are now marked as ``difficult''''.
Chaotic Traversal (CHAT): Very Large Graphs Traversal Using Chaotic Dynamics
Changaival, Boonyarit; Rosalie, Martin; Danoy, Grégoire; Lavangnananda, Kittichai; Bouvry, Pascal
2017-12-01
Graph Traversal algorithms can find their applications in various fields such as routing problems, natural language processing or even database querying. The exploration can be considered as a first stepping stone into knowledge extraction from the graph which is now a popular topic. Classical solutions such as Breadth First Search (BFS) and Depth First Search (DFS) require huge amounts of memory for exploring very large graphs. In this research, we present a novel memoryless graph traversal algorithm, Chaotic Traversal (CHAT) which integrates chaotic dynamics to traverse large unknown graphs via the Lozi map and the Rössler system. To compare various dynamics effects on our algorithm, we present an original way to perform the exploration of a parameter space using a bifurcation diagram with respect to the topological structure of attractors. The resulting algorithm is an efficient and nonresource demanding algorithm, and is therefore very suitable for partial traversal of very large and/or unknown environment graphs. CHAT performance using Lozi map is proven superior than the, commonly known, Random Walk, in terms of number of nodes visited (coverage percentage) and computation time where the environment is unknown and memory usage is restricted.
Franziska Kuhlmann
Full Text Available Studying plant-aphid interactions is challenging as aphid feeding is a complex process hidden in the plant tissue. Here we propose a combination of two well established methods to study nutrient acquisition by aphids focusing on the uptake of isotopically labelled nitrogen ((15N. We combined the Electrical Penetration Graph (EPG technique that allows detailed recording of aphid feeding behaviour and stable isotope ratio mass spectrometry (IRMS to precisely measure the uptake of nitrogen. Bird cherry-oat aphids Rhopalosiphum padi L. (Hemiptera, Aphididae fed for 24 h on barley plants (Hordeum vulgare L., cultivar Lina, Poaceae that were cultivated with a (15N enriched nutrient solution. The time aphids fed in the phloem was strongly positive correlated with their (15N uptake. All other single behavioural phases were not correlated with (15N enrichment in the aphids, which corroborates their classification as non-feeding EPG phases. In addition, phloem-feeding and (15N enrichment of aphids was divided into two groups. One group spent only short time in the phloem phase and was unsuccessful in nitrogen acquisition, while the other group displayed longer phloem-feeding phases and was successful in nitrogen acquisition. This suggests that several factors such as the right feeding site, time span of feeding and individual conditions play a role for the aphids to acquire nutrients successfully. The power of this combination of methods for studying plant-aphid interactions is discussed.
Mooney, Barbara Logan; Corrales, L René; Clark, Aurora E
2012-03-30
This work discusses scripts for processing molecular simulations data written using the software package R: A Language and Environment for Statistical Computing. These scripts, named moleculaRnetworks, are intended for the geometric and solvent network analysis of aqueous solutes and can be extended to other H-bonded solvents. New algorithms, several of which are based on graph theory, that interrogate the solvent environment about a solute are presented and described. This includes a novel method for identifying the geometric shape adopted by the solvent in the immediate vicinity of the solute and an exploratory approach for describing H-bonding, both based on the PageRank algorithm of Google search fame. The moleculaRnetworks codes include a preprocessor, which distills simulation trajectories into physicochemical data arrays, and an interactive analysis script that enables statistical, trend, and correlation analysis, and other data mining. The goal of these scripts is to increase access to the wealth of structural and dynamical information that can be obtained from molecular simulations. Copyright © 2012 Wiley Periodicals, Inc.
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Exploring a Problem-Based Learning Approach in Pharmaceutics
Barbara McKenzie
2017-09-01
Full Text Available Objective. The basis of this study was to explore the impact of the initiation of a Problem-Base Learning (PBL approach within a second-year pharmaceutics degree on a Master of Pharmacy programme, introduced as a way of improving deep learning and to foster independent learning. Design. A semi-structured interview was used to seek feedback from the students, and feedback from staff was secured though a focus group. A thematic approach was used for the analysis, once data saturation had been reached. Exam pass-rate statistics were also analysed. Assessment. Five parent themes were identified from the student interviews: Module structure, Promoting lifelong learning, Integration and future practice, Outcomes and Student experience. The third year exam pass rate improved by 12% in the year following the introduction of PBL in second year. Conclusions. Various recommendations were proposed to further improve the module, based on the findings of this study. These include improving feedback and support through tutorials, reducing the volume of directed study, as well as highlighting the relevance of pharmaceutics to the pharmacy degree. A long-term review would be needed to assess the full implications of PBL teaching within this course.
Seiller, Thomas
2016-01-01
Interaction graphs were introduced as a general, uniform, construction of dynamic models of linear logic, encompassing all Geometry of Interaction (GoI) constructions introduced so far. This series of work was inspired from Girard's hyperfinite GoI, and develops a quantitative approach that should...... be understood as a dynamic version of weighted relational models. Until now, the interaction graphs framework has been shown to deal with exponentials for the constrained system ELL (Elementary Linear Logic) while keeping its quantitative aspect. Adapting older constructions by Girard, one can clearly define...... "full" exponentials, but at the cost of these quantitative features. We show here that allowing interpretations of proofs to use continuous (yet finite in a measure-theoretic sense) sets of states, as opposed to earlier Interaction Graphs constructions were these sets of states were discrete (and finite...
Trudeau, Richard J
1994-01-01
Preface1. Pure Mathematics Introduction; Euclidean Geometry as Pure Mathematics; Games; Why Study Pure Mathematics?; What's Coming; Suggested Reading2. Graphs Introduction; Sets; Paradox; Graphs; Graph diagrams; Cautions; Common Graphs; Discovery; Complements and Subgraphs; Isomorphism; Recognizing Isomorphic Graphs; Semantics The Number of Graphs Having a Given nu; Exercises; Suggested Reading3. Planar Graphs Introduction; UG, K subscript 5, and the Jordan Curve Theorem; Are there More Nonplanar Graphs?; Expansions; Kuratowski's Theorem; Determining Whether a Graph is Planar or
Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.
2006-01-01
Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan
2012-11-19
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-01-01
Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.
Multiple graph regularized protein domain ranking.
Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin
2012-11-19
Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Multiple graph regularized protein domain ranking
Wang Jim
2012-11-01
Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.
Diestel, Reinhard
2017-01-01
This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.”Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity. ”Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theo...
Girth 5 graphs from relative difference sets
Jørgensen, Leif Kjær
2005-01-01
We consider the problem of construction of graphs with given degree $k$ and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed ...
Girth 5 graphs from relative difference sets
Jørgensen, Leif Kjær
We consider the problem of construction of graphs with given degree and girth 5 and as few vertices as possible. We give a construction of a family of girth 5 graphs based on relative difference sets. This family contains the smallest known graph of degree 8 and girth 5 which was constructed by G...
Woeginger, G.J.
1998-01-01
In this short note we argue that the toughness of split graphs can be computed in polynomial time. This solves an open problem from a recent paper by Kratsch et al. (Discrete Math. 150 (1996) 231–245).
Deep Learning with Dynamic Computation Graphs
Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter
2017-01-01
Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...
Exploring the role of conceptual scaffolding in solving synthesis problems
Lin Ding1,*
2011-10-01
Full Text Available It is well documented that when solving problems experts first search for underlying concepts while students tend to look for equations and previously worked examples. The overwhelming majority of end-of-chapter (EOC problems in most introductory physics textbooks contain only material and examples discussed in a single chapter, rarely requiring a solver to conduct a general search for underlying concepts. Hypothesizing that complete reliance on EOC problems trains students to rely on a nonexpert approach, we designed and implemented “synthesis” problems, each combining two major concepts that are broadly separated in the teaching timeline. To provide students with guided conceptual scaffolding, we encapsulated each synthesis problem into a sequence with two preceding conceptually based multiple-choice questions. Each question contained one of the major concepts covered in the subsequent synthesis problem. Results from a small-scale interview study and two large-scale written tests showed that the scaffolding encouraged students to search for and apply appropriate fundamental principles in solving synthesis problems, and that repeated training using scaffolded synthesis problems also helped students to make cross-topic transfers.
RJSplot: Interactive Graphs with R.
Barrios, David; Prieto, Carlos
2018-03-01
Data visualization techniques provide new methods for the generation of interactive graphs. These graphs allow a better exploration and interpretation of data but their creation requires advanced knowledge of graphical libraries. Recent packages have enabled the integration of interactive graphs in R. However, R provides limited graphical packages that allow the generation of interactive graphs for computational biology applications. The present project has joined the analytical power of R with the interactive graphical features of JavaScript in a new R package (RJSplot). It enables the easy generation of interactive graphs in R, provides new visualization capabilities, and contributes to the advance of computational biology analytical methods. At present, 16 interactive graphics are available in RJSplot, such as the genome viewer, Manhattan plots, 3D plots, heatmaps, dendrograms, networks, and so on. The RJSplot package is freely available online at http://rjsplot.net. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chartrand, Gary; Zhang, Ping
2010-01-01
Gary Chartrand has influenced the world of Graph Theory for almost half a century. He has supervised more than a score of Ph.D. dissertations and written several books on the subject. The most widely known of these texts, Graphs and Digraphs, … has much to recommend it, with clear exposition, and numerous challenging examples [that] make it an ideal textbook for the advanced undergraduate or beginning graduate course. The authors have updated their notation to reflect the current practice in this still-growing area of study. By the authors' estimation, the 5th edition is approximately 50% longer than the 4th edition. … the legendary Frank Harary, author of the second graph theory text ever produced, is one of the figures profiled. His book was the standard in the discipline for several decades. Chartrand, Lesniak and Zhang have produced a worthy successor.-John T. Saccoman, MAA Reviews, June 2012 (This book is in the MAA's basic library list.)As with the earlier editions, the current text emphasizes clear...
Towards a theory of geometric graphs
Pach, Janos
2004-01-01
The early development of graph theory was heavily motivated and influenced by topological and geometric themes, such as the Konigsberg Bridge Problem, Euler's Polyhedral Formula, or Kuratowski's characterization of planar graphs. In 1936, when Denes Konig published his classical Theory of Finite and Infinite Graphs, the first book ever written on the subject, he stressed this connection by adding the subtitle Combinatorial Topology of Systems of Segments. He wanted to emphasize that the subject of his investigations was very concrete: planar figures consisting of points connected by straight-line segments. However, in the second half of the twentieth century, graph theoretical research took an interesting turn. In the most popular and most rapidly growing areas (the theory of random graphs, Ramsey theory, extremal graph theory, algebraic graph theory, etc.), graphs were considered as abstract binary relations rather than geometric objects. Many of the powerful techniques developed in these fields have been su...
An exploration of knowledge integration problems in interdisciplinary research teams
Bayerl, P.S.; Steinheider, B.
2009-01-01
The integration of function-specific expertise into a shared knowledge base is a crucial, but complex process for success in interdisciplinary teams. This paper presents an empirically derived typology of knowledge integration problems and links their occurrence to degree of heterogeneity and
Goldengorin, Boris; Vink, Marius de
1999-01-01
The Data-Correcting Algorithm (DCA) corrects the data of a hard problem instance in such a way that we obtain an instance of a well solvable special case. For a given prescribed accuracy of the solution, the DCA uses a branch and bound scheme to make sure that the solution of the corrected instance
Partitioning graphs into connected parts
Hof, van 't P.; Paulusma, D.; Woeginger, G.J.; Frid, A.; Morozov, A.S.; Rybalchenko, A.; Wagner, K.W.
2009-01-01
The 2-DISJOINT CONNECTED SUBGRAPHS problem asks if a given graph has two vertex-disjoint connected subgraphs containing pre-specified sets of vertices. We show that this problem is NP-complete even if one of the sets has cardinality 2. The LONGEST PATH CONTRACTIBILITY problem asks for the largest
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-11-12
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most existing algorithms for graph embedding only rely on the topology information and fail to use the copious information in nodes as well as edges. As a result, their performance for many tasks may not be satisfactory. In this thesis, we proposed a novel and general framework for graph embedding with rich text information (GERI) through constructing a heterogeneous network, in which we integrate node and edge content information with graph topology. Specially, we designed a novel biased random walk to explore the constructed heterogeneous network with the notion of flexible neighborhood. Our sampling strategy can compromise between BFS and DFS local search on heterogeneous graph. To further improve our algorithm, we proposed semi-supervised GERI (SGERI), which learns graph embedding in an discriminative manner through heterogeneous network with label information. The efficacy of our method is demonstrated by extensive comparison experiments with 9 baselines over multi-label and multi-class classification on various datasets including Citeseer, Cora, DBLP and Wiki. It shows that GERI improves the Micro-F1 and Macro-F1 of node classification up to 10%, and SGERI improves GERI by 5% in Wiki.
Semantic graphs and associative memories
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
"I'm Not Very Good at Solving Problems": An Exploration of Students' Problem Solving Behaviours
Muir, Tracey; Beswick, Kim; Williamson, John
2008-01-01
This paper reports one aspect of a larger study which looked at the strategies used by a selection of grade 6 students to solve six non-routine mathematical problems. The data revealed that the students exhibited many of the behaviours identified in the literature as being associated with novice and expert problem solvers. However, the categories…
Properly colored connectivity of graphs
Li, Xueliang; Qin, Zhongmei
2018-01-01
A comprehensive survey of proper connection of graphs is discussed in this book with real world applications in computer science and network security. Beginning with a brief introduction, comprising relevant definitions and preliminary results, this book moves on to consider a variety of properties of graphs that imply bounds on the proper connection number. Detailed proofs of significant advancements toward open problems and conjectures are presented with complete references. Researchers and graduate students with an interest in graph connectivity and colorings will find this book useful as it builds upon fundamental definitions towards modern innovations, strategies, and techniques. The detailed presentation lends to use as an introduction to proper connection of graphs for new and advanced researchers, a solid book for a graduate level topics course, or as a reference for those interested in expanding and further developing research in the area.
Total dominator chromatic number of a graph
Adel P. Kazemi
2015-06-01
Full Text Available Given a graph $G$, the total dominator coloring problem seeks a proper coloring of $G$ with the additional property that every vertex in the graph is adjacent to all vertices of a color class. We seek to minimize the number of color classes. We initiate to study this problem on several classes of graphs, as well as finding general bounds and characterizations. We also compare the total dominator chromatic number of a graph with the chromatic number and the total domination number of it.
Analyzing and synthesizing phylogenies using tree alignment graphs.
Stephen A Smith
Full Text Available Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG. The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees, we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to
Analyzing and synthesizing phylogenies using tree alignment graphs.
Smith, Stephen A; Brown, Joseph W; Hinchliff, Cody E
2013-01-01
Phylogenetic trees are used to analyze and visualize evolution. However, trees can be imperfect datatypes when summarizing multiple trees. This is especially problematic when accommodating for biological phenomena such as horizontal gene transfer, incomplete lineage sorting, and hybridization, as well as topological conflict between datasets. Additionally, researchers may want to combine information from sets of trees that have partially overlapping taxon sets. To address the problem of analyzing sets of trees with conflicting relationships and partially overlapping taxon sets, we introduce methods for aligning, synthesizing and analyzing rooted phylogenetic trees within a graph, called a tree alignment graph (TAG). The TAG can be queried and analyzed to explore uncertainty and conflict. It can also be synthesized to construct trees, presenting an alternative to supertrees approaches. We demonstrate these methods with two empirical datasets. In order to explore uncertainty, we constructed a TAG of the bootstrap trees from the Angiosperm Tree of Life project. Analysis of the resulting graph demonstrates that areas of the dataset that are unresolved in majority-rule consensus tree analyses can be understood in more detail within the context of a graph structure, using measures incorporating node degree and adjacency support. As an exercise in synthesis (i.e., summarization of a TAG constructed from the alignment trees), we also construct a TAG consisting of the taxonomy and source trees from a recent comprehensive bird study. We synthesized this graph into a tree that can be reconstructed in a repeatable fashion and where the underlying source information can be updated. The methods presented here are tractable for large scale analyses and serve as a basis for an alternative to consensus tree and supertree methods. Furthermore, the exploration of these graphs can expose structures and patterns within the dataset that are otherwise difficult to observe.
Multidimensional Brain MRI segmentation using graph cuts
Lecoeur, Jeremy
2010-01-01
This thesis deals with the segmentation of multimodal brain MRIs by graph cuts method. First, we propose a method that utilizes three MRI modalities by merging them. The border information given by the spectral gradient is then challenged by a region information, given by the seeds selected by the user, using a graph cut algorithm. Then, we propose three enhancements of this method. The first consists in finding an optimal spectral space because the spectral gradient is based on natural images and then inadequate for multimodal medical images. This results in a learning based segmentation method. We then explore the automation of the graph cut method. Here, the various pieces of information usually given by the user are inferred from a robust expectation-maximization algorithm. We show the performance of these two enhanced versions on multiple sclerosis lesions. Finally, we integrate atlases for the automatic segmentation of deep brain structures. These three new techniques show the adaptability of our method to various problems. Our different segmentation methods are better than most of nowadays techniques, speaking of computation time or segmentation accuracy. (authors)
Bipartite separability and nonlocal quantum operations on graphs
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
Cyclic graphs and Apery's theorem
Sorokin, V N
2002-01-01
This is a survey of results about the behaviour of Hermite-Pade approximants for graphs of Markov functions, and a survey of interpolation problems leading to Apery's result about the irrationality of the value ζ(3) of the Riemann zeta function. The first example is given of a cyclic graph for which the Hermite-Pade problem leads to Apery's theorem. Explicit formulae for solutions are obtained, namely, Rodrigues' formulae and integral representations. The asymptotic behaviour of the approximants is studied, and recurrence formulae are found
Graph visualization (Invited talk)
Wijk, van J.J.; Kreveld, van M.J.; Speckmann, B.
2012-01-01
Black and white node link diagrams are the classic method to depict graphs, but these often fall short to give insight in large graphs or when attributes of nodes and edges play an important role. Graph visualization aims obtaining insight in such graphs using interactive graphical representations.
Incremental Frequent Subgraph Mining on Large Evolving Graphs
Abdelhamid, Ehab; Canim, Mustafa; Sadoghi, Mohammad; Bhatta, Bishwaranjan; Chang, Yuan-Chi; Kalnis, Panos
2017-01-01
, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem
Optimizing graph algorithms on pregel-like systems
Salihoglu, Semih; Widom, Jennifer
2014-01-01
We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high
Yap, Hian-Poh
1996-01-01
This book provides an up-to-date and rapid introduction to an important and currently active topic in graph theory. The author leads the reader to the forefront of research in this area. Complete and easily readable proofs of all the main theorems, together with numerous examples, exercises and open problems are given. The book is suitable for use as a textbook or as seminar material for advanced undergraduate and graduate students. The references are comprehensive and so it will also be useful for researchers as a handbook.
Pragmatic Graph Rewriting Modifications
Rodgers, Peter; Vidal, Natalia
1999-01-01
We present new pragmatic constructs for easing programming in visual graph rewriting programming languages. The first is a modification to the rewriting process for nodes the host graph, where nodes specified as 'Once Only' in the LHS of a rewrite match at most once with a corresponding node in the host graph. This reduces the previously common use of tags to indicate the progress of matching in the graph. The second modification controls the application of LHS graphs, where those specified a...
Chen, Wenzhi
2016-01-01
Design is a powerful weapon for modern companies so it is important to have excellent designers in the industry. The purpose of this study is to explore the learning problems and the resources that students use to overcome problems in undergraduate industrial design studio courses. A survey with open-type questions was conducted to collect data.…
Exploring the Impact of Gambling Advertising: An Interview Study of Problem Gamblers
Binde, Per
2009-01-01
This study qualitatively explored the impact of gambling advertising on problem gambling by interviewing twenty-five people with current or past gambling problems. Interviews were relatively long and involved the participants' viewing numerous examples of gambling advertising. A quarter of the participants reported that gambling advertising had no…
Schappin, Renske; Wijnroks, Lex; Uniken Venema, Monica; Jongmans, Marian
OBJECTIVE: Although predictors of the prevalence of behavioral problems in preterm-born children have been frequently studied, predictors of behavioral change in these children remain unknown. Therefore, in this study we explore predictors of short-term changes in problem behavior in preterm-born
Rosmanis, Ansis
2011-01-01
I introduce a continuous-time quantum walk on graphs called the quantum snake walk, the basis states of which are fixed-length paths (snakes) in the underlying graph. First, I analyze the quantum snake walk on the line, and I show that, even though most states stay localized throughout the evolution, there are specific states that most likely move on the line as wave packets with momentum inversely proportional to the length of the snake. Next, I discuss how an algorithm based on the quantum snake walk might potentially be able to solve an extended version of the glued trees problem, which asks to find a path connecting both roots of the glued trees graph. To the best of my knowledge, no efficient quantum algorithm solving this problem is known yet.
Ancestral Genres of Mathematical Graphs
Gerofsky, Susan
2011-01-01
Drawing from sources in gesture studies, cognitive science, the anthropology of religion and art/architecture history, this article explores cultural, bodily and cosmological resonances carried (unintentionally) by mathematical graphs on Cartesian coordinates. Concepts of asymmetric bodily spaces, grids, orthogonality, mapping and sacred spaces…
Supplantation of Mental Operations on Graphs
Vogel, Markus; Girwidz, Raimund; Engel, Joachim
2007-01-01
Research findings show the difficulties younger students have in working with graphs. Higher mental operations are necessary for a skilled interpretation of abstract representations. We suggest connecting a concrete representation of the modeled problem with the related graph. The idea is to illustrate essential mental operations externally. This…
Graph coarsening and clustering on the GPU
Fagginger Auer, B.O.; Bisseling, R.H.
2013-01-01
Agglomerative clustering is an effective greedy way to quickly generate graph clusterings of high modularity in a small amount of time. In an effort to use the power offered by multi-core CPU and GPU hardware to solve the clustering problem, we introduce a fine-grained sharedmemory parallel graph
Degree-based graph construction
Kim, Hyunju; Toroczkai, Zoltan; Erdos, Peter L; Miklos, Istvan; Szekely, Laszlo A
2009-01-01
Degree-based graph construction is a ubiquitous problem in network modelling (Newman et al 2006 The Structure and Dynamics of Networks (Princeton Studies in Complexity) (Princeton, NJ: Princeton University Press), Boccaletti et al 2006 Phys. Rep. 424 175), ranging from social sciences to chemical compounds and biochemical reaction networks in the cell. This problem includes existence, enumeration, exhaustive construction and sampling questions with aspects that are still open today. Here we give necessary and sufficient conditions for a sequence of nonnegative integers to be realized as a simple graph's degree sequence, such that a given (but otherwise arbitrary) set of connections from an arbitrarily given node is avoided. We then use this result to present a swap-free algorithm that builds all simple graphs realizing a given degree sequence. In a wider context, we show that our result provides a greedy construction method to build all the f-factor subgraphs (Tutte 1952 Can. J. Math. 4 314) embedded within K n setmn S k , where K n is the complete graph and S k is a star graph centred on one of the nodes. (fast track communication)
Adaptive Graph Convolutional Neural Networks
Li, Ruoyu; Wang, Sheng; Zhu, Feiyun; Huang, Junzhou
2018-01-01
Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for eac...
Contracting a planar graph efficiently
Holm, Jacob; Italiano, Giuseppe F.; Karczmarz, Adam
2017-01-01
the data structure, we can achieve optimal running times for decremental bridge detection, 2-edge connectivity, maximal 3-edge connected components, and the problem of finding a unique perfect matching for a static planar graph. Furthermore, we improve the running times of algorithms for several planar...
Fixation Time for Evolutionary Graphs
Nie, Pu-Yan; Zhang, Pei-Ai
Evolutionary graph theory (EGT) is recently proposed by Lieberman et al. in 2005. EGT is successful for explaining biological evolution and some social phenomena. It is extremely important to consider the time of fixation for EGT in many practical problems, including evolutionary theory and the evolution of cooperation. This study characterizes the time to asymptotically reach fixation.
C. Dalfo
2015-10-01
Full Text Available We study a family of graphs related to the $n$-cube. The middle cube graph of parameter k is the subgraph of $Q_{2k-1}$ induced by the set of vertices whose binary representation has either $k-1$ or $k$ number of ones. The middle cube graphs can be obtained from the well-known odd graphs by doubling their vertex set. Here we study some of the properties of the middle cube graphs in the light of the theory of distance-regular graphs. In particular, we completely determine their spectra (eigenvalues and their multiplicities, and associated eigenvectors.
PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION
W. Dorner
2016-06-01
Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.
Acyclicity in edge-colored graphs
Gutin, Gregory; Jones, Mark; Sheng, Bin
2017-01-01
A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type i......+1, i=1,2,3,4. The first three types are equivalent to the absence of PC cycles, PC closed trails, and PC closed walks, respectively. While graphs of types 1, 2 and 3 can be recognized in polynomial time, the problem of recognizing graphs of type 4 is, somewhat surprisingly, NP-hard even for 2-edge-colored...... graphs (i.e., when only two colors are used). The same problem with respect to type 5 is polynomial-time solvable for all edge-colored graphs. Using the five types, we investigate the border between intractability and tractability for the problems of finding the maximum number of internally vertex...
Some Results on the Graph Theory for Complex Neutrosophic Sets
Shio Gai Quek
2018-05-01
Full Text Available Fuzzy graph theory plays an important role in the study of the symmetry and asymmetry properties of fuzzy graphs. With this in mind, in this paper, we introduce new neutrosophic graphs called complex neutrosophic graphs of type 1 (abbr. CNG1. We then present a matrix representation for it and study some properties of this new concept. The concept of CNG1 is an extension of the generalized fuzzy graphs of type 1 (GFG1 and generalized single-valued neutrosophic graphs of type 1 (GSVNG1. The utility of the CNG1 introduced here are applied to a multi-attribute decision making problem related to Internet server selection.
On the partition dimension of two-component graphs
D O Haryeni
2017-11-17
Nov 17, 2017 ... Partition dimension; disconnected graph; component. 2010 Mathematics Subject Classification. 05C12, 05C15. 1. Introduction. The study of the partition dimension for graphs was initiated by Chartrand et al. [2] aimed at finding a new way to solve the problem in metric dimensions of graphs. Many results.
Mutual proximity graphs for improved reachability in music recommendation.
Flexer, Arthur; Stevens, Jeff
2018-01-01
This paper is concerned with the impact of hubness, a general problem of machine learning in high-dimensional spaces, on a real-world music recommendation system based on visualisation of a k-nearest neighbour (knn) graph. Due to a problem of measuring distances in high dimensions, hub objects are recommended over and over again while anti-hubs are nonexistent in recommendation lists, resulting in poor reachability of the music catalogue. We present mutual proximity graphs, which are an alternative to knn and mutual knn graphs, and are able to avoid hub vertices having abnormally high connectivity. We show that mutual proximity graphs yield much better graph connectivity resulting in improved reachability compared to knn graphs, mutual knn graphs and mutual knn graphs enhanced with minimum spanning trees, while simultaneously reducing the negative effects of hubness.
Xu, Kexiang; Trinajstić, Nenad
2015-01-01
This is the first book to focus on the topological index, the Harary index, of a graph, including its mathematical properties, chemical applications and some related and attractive open problems. This book is dedicated to Professor Frank Harary (1921—2005), the grandmaster of graph theory and its applications. It has be written by experts in the field of graph theory and its applications. For a connected graph G, as an important distance-based topological index, the Harary index H(G) is defined as the sum of the reciprocals of the distance between any two unordered vertices of the graph G. In this book, the authors report on the newest results on the Harary index of a graph. These results mainly concern external graphs with respect to the Harary index; the relations to other topological indices; its properties and applications to pure graph theory and chemical graph theory; and two significant variants, i.e., additively and multiplicatively weighted Harary indices. In the last chapter, we present a number o...
Equitable Colorings Of Corona Multiproducts Of Graphs
Furmánczyk Hanna
2017-11-01
Full Text Available A graph is equitably k-colorable if its vertices can be partitioned into k independent sets in such a way that the numbers of vertices in any two sets differ by at most one. The smallest k for which such a coloring exists is known as the equitable chromatic number of G and denoted by =(G. It is known that the problem of computation of =(G is NP-hard in general and remains so for corona graphs. In this paper we consider the same model of coloring in the case of corona multiproducts of graphs. In particular, we obtain some results regarding the equitable chromatic number for the l-corona product G ◦l H, where G is an equitably 3- or 4-colorable graph and H is an r-partite graph, a cycle or a complete graph. Our proofs are mostly constructive in that they lead to polynomial algorithms for equitable coloring of such graph products provided that there is given an equitable coloring of G. Moreover, we confirm the Equitable Coloring Conjecture for corona products of such graphs. This paper extends the results from [H. Furmánczyk, K. Kaliraj, M. Kubale and V.J. Vivin, Equitable coloring of corona products of graphs, Adv. Appl. Discrete Math. 11 (2013 103–120].
Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems
Ortiz-Bayliss, José Carlos; Amaya, Ivan; Conant-Pablos, Santiago Enrique; Terashima-Marín, Hugo
2018-01-01
When solving constraint satisfaction problems (CSPs), it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differen...
Parallel External Memory Graph Algorithms
Arge, Lars Allan; Goodrich, Michael T.; Sitchinava, Nodari
2010-01-01
In this paper, we study parallel I/O efficient graph algorithms in the Parallel External Memory (PEM) model, one o f the private-cache chip multiprocessor (CMP) models. We study the fundamental problem of list ranking which leads to efficient solutions to problems on trees, such as computing lowest...... an optimal speedup of Â¿(P) in parallel I/O complexity and parallel computation time, compared to the single-processor external memory counterparts....
Soetevent, A.R.
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial
Graphing Inequalities, Connecting Meaning
Switzer, J. Matt
2014-01-01
Students often have difficulty with graphing inequalities (see Filloy, Rojano, and Rubio 2002; Drijvers 2002), and J. Matt Switzer's students were no exception. Although students can produce graphs for simple inequalities, they often struggle when the format of the inequality is unfamiliar. Even when producing a correct graph of an…
van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime
2016-01-01
This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,
Fuzzy Graph Language Recognizability
Kalampakas , Antonios; Spartalis , Stefanos; Iliadis , Lazaros
2012-01-01
Part 5: Fuzzy Logic; International audience; Fuzzy graph language recognizability is introduced along the lines of the established theory of syntactic graph language recognizability by virtue of the algebraic structure of magmoids. The main closure properties of the corresponding class are investigated and several interesting examples of fuzzy graph languages are examined.
Brouwer, A.E.; Haemers, W.H.
2012-01-01
This book gives an elementary treatment of the basic material about graph spectra, both for ordinary, and Laplace and Seidel spectra. The text progresses systematically, by covering standard topics before presenting some new material on trees, strongly regular graphs, two-graphs, association
An Association-Oriented Partitioning Approach for Streaming Graph Query
Yun Hao
2017-01-01
Full Text Available The volumes of real-world graphs like knowledge graph are increasing rapidly, which makes streaming graph processing a hot research area. Processing graphs in streaming setting poses significant challenges from different perspectives, among which graph partitioning method plays a key role. Regarding graph query, a well-designed partitioning method is essential for achieving better performance. Existing offline graph partitioning methods often require full knowledge of the graph, which is not possible during streaming graph processing. In order to handle this problem, we propose an association-oriented streaming graph partitioning method named Assc. This approach first computes the rank values of vertices with a hybrid approximate PageRank algorithm. After splitting these vertices with an adapted variant affinity propagation algorithm, the process order on vertices in the sliding window can be determined. Finally, according to the level of these vertices and their association, the partition where the vertices should be distributed is decided. We compare its performance with a set of streaming graph partition methods and METIS, a widely adopted offline approach. The results show that our solution can partition graphs with hundreds of millions of vertices in streaming setting on a large collection of graph datasets and our approach outperforms other graph partitioning methods.
Artistic image analysis using graph-based learning approaches.
Carneiro, Gustavo
2013-08-01
We introduce a new methodology for the problem of artistic image analysis, which among other tasks, involves the automatic identification of visual classes present in an art work. In this paper, we advocate the idea that artistic image analysis must explore a graph that captures the network of artistic influences by computing the similarities in terms of appearance and manual annotation. One of the novelties of our methodology is the proposed formulation that is a principled way of combining these two similarities in a single graph. Using this graph, we show that an efficient random walk algorithm based on an inverted label propagation formulation produces more accurate annotation and retrieval results compared with the following baseline algorithms: bag of visual words, label propagation, matrix completion, and structural learning. We also show that the proposed approach leads to a more efficient inference and training procedures. This experiment is run on a database containing 988 artistic images (with 49 visual classification problems divided into a multiclass problem with 27 classes and 48 binary problems), where we show the inference and training running times, and quantitative comparisons with respect to several retrieval and annotation performance measures.
He Xiaomei; Mao Mengcai
2014-01-01
Based on analyzing the current situation of uranium resources and exploration effort in East China, the main existing problems, technical thought and countermeasure for the future exploration in East China are discussed in this paper. The degree of both uranium exploration and study in East China is relatively high, philosophy of scientific mineral-prospecting should be established in the new round of mineral prospecting. Under guidance of metallogenic theory of large mineralization cluster area and uranium metallogenic theory of multi-sources, previous data and research achievement should be analyzed and summarized. With the help of metallogenic model, useful methods and means should be applied to set up exploration model in order to realize news phase of model exploration, comprehensive exploration, 3D exploration and quantitative exploration. Efficiency of exploration of uranium resources should be strugglingly increased. High profitable uranium resources will be actively found with rich, shallow, near and easy features. The prospecting targets and strategy reserves of uranium resources will be increased in East China. (authors)
Maunz, Peter Lukas Wilhelm [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sterk, Jonathan David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lobser, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Parekh, Ojas D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ryan-Anderson, Ciaran [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-01-01
In recent years, advanced network analytics have become increasingly important to na- tional security with applications ranging from cyber security to detection and disruption of ter- rorist networks. While classical computing solutions have received considerable investment, the development of quantum algorithms to address problems, such as data mining of attributed relational graphs, is a largely unexplored space. Recent theoretical work has shown that quan- tum algorithms for graph analysis can be more efficient than their classical counterparts. Here, we have implemented a trapped-ion-based two-qubit quantum information proces- sor to address these goals. Building on Sandia's microfabricated silicon surface ion traps, we have designed, realized and characterized a quantum information processor using the hyperfine qubits encoded in two 171 Yb + ions. We have implemented single qubit gates using resonant microwave radiation and have employed Gate set tomography (GST) to characterize the quan- tum process. For the first time, we were able to prove that the quantum process surpasses the fault tolerance thresholds of some quantum codes by demonstrating a diamond norm distance of less than 1 . 9 x 10 [?] 4 . We used Raman transitions in order to manipulate the trapped ions' motion and realize two-qubit gates. We characterized the implemented motion sensitive and insensitive single qubit processes and achieved a maximal process infidelity of 6 . 5 x 10 [?] 5 . We implemented the two-qubit gate proposed by Molmer and Sorensen and achieved a fidelity of more than 97 . 7%.
Graphs on Surfaces and the Partition Function of String Theory
Garcia-Islas, J. Manuel
2007-01-01
Graphs on surfaces is an active topic of pure mathematics belonging to graph theory. It has also been applied to physics and relates discrete and continuous mathematics. In this paper we present a formal mathematical description of the relation between graph theory and the mathematical physics of discrete string theory. In this description we present problems of the combinatorial world of real importance for graph theorists. The mathematical details of the paper are as follows: There is a com...
Rutherford, Vanessa
2012-01-01
This study explores how a problem-solving based professional learning community (PLC) affects the beliefs, knowledge, and instructional practices of two sixth-grade mathematics teachers. An interview and two observations were conducted prior to beginning the year-long PLC in order to gather information about the participants' beliefs,…
Çakiroglu, Ünal; Öztürk, Mücahit
2017-01-01
This study intended to explore the development of self-regulation in a flipped classroom setting. Problem based learning activities were carried out in flipped classrooms to promote self-regulation. A total of 30 undergraduate students from Mechatronic department participated in the study. Self-regulation skills were discussed through students'…
Exploring the Learning of Mathematics Word Problems by African Immigrant Early Learners
Mahofa, Ernest; Adendorff, Stanley; Kwenda, Chiwimbiso
2018-01-01
The aim of this study was to explore the learning of mathematics word problems by African immigrant early learners in the Western Cape Province of South Africa (SA). Phenomenology was used as the philosophical underpinning for this study and also informed the research method. Purposive sampling methods were used to select 10 African immigrant…
Healing a Vulnerable Self : Exploring Return to Work for Women With Mental Health Problems
Nielsen, Maj Britt D.; Rugulies, Reiner; Hjortkjaer, Charlotte; Bultmann, Ute; Christensen, Ulla
Mental health problems (MHPs) such as stress and depression are among the leading causes of work disability. In this article we explore how women with MHPs experience sickness absence and subsequent return to work. We conducted 16 semistructured interviews and employed constructivist grounded theory
Graph Mining Meets the Semantic Web
Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Lim, Seung-Hwan [ORNL
2015-01-01
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluate the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.
Hell, Pavol
2004-01-01
This is a book about graph homomorphisms. Graph theory is now an established discipline but the study of graph homomorphisms has only recently begun to gain wide acceptance and interest. The subject gives a useful perspective in areas such as graph reconstruction, products, fractional and circular colourings, and has applications in complexity theory, artificial intelligence, telecommunication, and, most recently, statistical physics.Based on the authors' lecture notes for graduate courses, this book can be used as a textbook for a second course in graph theory at 4th year or master's level an
Introduction to quantum graphs
Berkolaiko, Gregory
2012-01-01
A "quantum graph" is a graph considered as a one-dimensional complex and equipped with a differential operator ("Hamiltonian"). Quantum graphs arise naturally as simplified models in mathematics, physics, chemistry, and engineering when one considers propagation of waves of various nature through a quasi-one-dimensional (e.g., "meso-" or "nano-scale") system that looks like a thin neighborhood of a graph. Works that currently would be classified as discussing quantum graphs have been appearing since at least the 1930s, and since then, quantum graphs techniques have been applied successfully in various areas of mathematical physics, mathematics in general and its applications. One can mention, for instance, dynamical systems theory, control theory, quantum chaos, Anderson localization, microelectronics, photonic crystals, physical chemistry, nano-sciences, superconductivity theory, etc. Quantum graphs present many non-trivial mathematical challenges, which makes them dear to a mathematician's heart. Work on qu...
Joint Graph Layouts for Visualizing Collections of Segmented Meshes
Ren, Jing; Schneider, Jens; Ovsjanikov, Maks; Wonka, Peter
2017-01-01
We present a novel and efficient approach for computing joint graph layouts and then use it to visualize collections of segmented meshes. Our joint graph layout algorithm takes as input the adjacency matrices for a set of graphs along with partial, possibly soft, correspondences between nodes of different graphs. We then use a two stage procedure, where in the first step, we extend spectral graph drawing to include a consistency term so that a collection of graphs can be handled jointly. Our second step extends metric multi-dimensional scaling with stress majorization to the joint layout setting, while using the output of the spectral approach as initialization. Further, we discuss a user interface for exploring a collection of graphs. Finally, we show multiple example visualizations of graphs stemming from collections of segmented meshes and we present qualitative and quantitative comparisons with previous work.
Joint Graph Layouts for Visualizing Collections of Segmented Meshes
Ren, Jing
2017-09-12
We present a novel and efficient approach for computing joint graph layouts and then use it to visualize collections of segmented meshes. Our joint graph layout algorithm takes as input the adjacency matrices for a set of graphs along with partial, possibly soft, correspondences between nodes of different graphs. We then use a two stage procedure, where in the first step, we extend spectral graph drawing to include a consistency term so that a collection of graphs can be handled jointly. Our second step extends metric multi-dimensional scaling with stress majorization to the joint layout setting, while using the output of the spectral approach as initialization. Further, we discuss a user interface for exploring a collection of graphs. Finally, we show multiple example visualizations of graphs stemming from collections of segmented meshes and we present qualitative and quantitative comparisons with previous work.
Pristine transfinite graphs and permissive electrical networks
Zemanian, Armen H
2001-01-01
A transfinite graph or electrical network of the first rank is obtained conceptually by connecting conventionally infinite graphs and networks together at their infinite extremities. This process can be repeated to obtain a hierarchy of transfiniteness whose ranks increase through the countable ordinals. This idea, which is of recent origin, has enriched the theories of graphs and networks with radically new constructs and research problems. The book provides a more accessible introduction to the subject that, though sacrificing some generality, captures the essential ideas of transfiniteness for graphs and networks. Thus, for example, some results concerning discrete potentials and random walks on transfinite networks can now be presented more concisely. Conversely, the simplifications enable the development of many new results that were previously unavailable. Topics and features: *A simplified exposition provides an introduction to transfiniteness for graphs and networks.*Various results for conventional g...
Integer Flows and Circuit Covers of Graphs and Signed Graphs
Cheng, Jian
The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it
Enabling Graph Appliance for Genome Assembly
Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL
2015-01-01
In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.
Efficient dynamic graph construction for inductive semi-supervised learning.
Dornaika, F; Dahbi, R; Bosaghzadeh, A; Ruichek, Y
2017-10-01
Most of graph construction techniques assume a transductive setting in which the whole data collection is available at construction time. Addressing graph construction for inductive setting, in which data are coming sequentially, has received much less attention. For inductive settings, constructing the graph from scratch can be very time consuming. This paper introduces a generic framework that is able to make any graph construction method incremental. This framework yields an efficient and dynamic graph construction method that adds new samples (labeled or unlabeled) to a previously constructed graph. As a case study, we use the recently proposed Two Phase Weighted Regularized Least Square (TPWRLS) graph construction method. The paper has two main contributions. First, we use the TPWRLS coding scheme to represent new sample(s) with respect to an existing database. The representative coefficients are then used to update the graph affinity matrix. The proposed method not only appends the new samples to the graph but also updates the whole graph structure by discovering which nodes are affected by the introduction of new samples and by updating their edge weights. The second contribution of the article is the application of the proposed framework to the problem of graph-based label propagation using multiple observations for vision-based recognition tasks. Experiments on several image databases show that, without any significant loss in the accuracy of the final classification, the proposed dynamic graph construction is more efficient than the batch graph construction. Copyright © 2017 Elsevier Ltd. All rights reserved.
On revealing graph cycles via boundary measurements
Belishev, M I; Wada, N
2009-01-01
This paper deals with boundary value inverse problems on a metric graph, the structure of the graph being assumed unknown. The question under consideration is how to detect from the dynamical and/or spectral inverse data whether the graph contains cycles (is not a tree). For any graph Ω, the dynamical as well as spectral boundary inverse data determine the so-called wave diameter d w : H -1 (Ω) → R defined on functionals supported in the graph. The known fact is that if Ω is a tree then d w ≥ 0 holds and, in this case, the inverse data determine Ω up to isometry. A graph Ω is said to be coordinate if the functions {dist Ω (., γ)} γin∂Ω constitute a coordinate system on Ω. For such graphs, we propose a procedure, which reveals the presence/absence of cycles. The hypothesis is that Ω contains cycles if and only if d w takes negative values. We do not justify this hypothesis in the general case but reduce it to a certain special class of graphs (suns)
Lohrenz, J.
1992-01-01
Oil and gas exploration is a unique kind of business. Businesses providing a vast and ever-changing panoply of products to markets are a focus of several disciplines' energetic study and analysis. The product inventory problem is robust, pertinent, and meaningful, and it merits the voluminous and protracted attention received from keen business practitioners. Prototypical business practitioners, be they trained by years of business hurly-burly, or sophisticated MBAs with arrays of mathematical algorithms and computers, are not normally prepared, however, to recognize the unique nature of exploration's inventories. Put together such a business practitioner with an explorationist and misunderstandings, hidden and open, are inevitable and predictably rife. The first purpose of this paper is to articulate the inherited inventory handling paradigms of business practitioners in relation to exploration's inventories. To do so, standard pedagogy in business administration is used and a case study of an exploration venture is presented. A second purpose is to show the burdens that the misunderstandings create. The result is not just business plans that go awry, but public policies that have effects opposite from those intended
Exploring Primary Student’s Problem-Solving Ability by Doing Tasks Like PISA's Question
Rita Novita
2012-07-01
Full Text Available Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development students’ problem-solving ability. The tasks that have been developed by PISA meet both of these criteria. As stated by the NCTM, that problem-solving skill and ability should be developed to students when they were in primary school (K5-8, therefore, it is important to do an effort to guide students in developing problem-solving ability from primary school such as accustom students to do some mathematical solving-problem tasks. Thus, in this research we tried to investigate how to develop mathematical problem-solving tasks like PISA’s question that have potential effect toward students’ mathematical problem-solving abilities?. We used a formative evaluation type of development research as an mean to achieve this research goal. This type of research is conducted in two steps, namely preliminary stage and formative evaluation stage covering self evaluation, prototyping (expert reviews, one-to-one, and small group, and field test. This research involve four primary schools in Palembang, there are SD Muhammadiyah 6 Palembang, MIN 1 & MIN 2 Palembang, and SDN 179 Palembang. The result of this research showed that the mathematical problem-solving tasks that have been developed have potential effect in exploring mathematical problem-solving ability of the primary school students. It is shown from their work in solving problem where all of the indicators of problem solving competency have emerged quite well category. In addition, based on interview
A first course in graph theory
Chartrand, Gary
2012-01-01
This comprehensive text offers undergraduates a remarkably student-friendly introduction to graph theory. Written by two of the field's most prominent experts, it takes an engaging approach that emphasizes graph theory's history. Unique examples and lucid proofs provide a sound yet accessible treatment that stimulates interest in an evolving subject and its many applications.Optional sections designated as ""excursion"" and ""exploration"" present interesting sidelights of graph theory and touch upon topics that allow students the opportunity to experiment and use their imaginations. Three app
Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis
Kuźnik, Krzysztof
2012-06-02
This paper introduces the graph grammar based model for developing multi-thread multi-frontal parallel direct solver for two dimensional isogeometric finite element method. Execution of the solver algorithm has been expressed as the sequence of graph grammar productions. At the beginning productions construct the elimination tree with leaves corresponding to finite elements. Following sequence of graph grammar productions generates element frontal matri-ces at leaf nodes, merges matrices at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar productions allows us to explore the concurrency of the algorithm. The graph grammar productions are grouped into sets of independent tasks that can be executed concurrently. The resulting concurrent multi-frontal solver algorithm is implemented and tested on NVIDIA GPU, providing O(NlogN) execution time complexity where N is the number of degrees of freedom. We have confirmed this complexity by solving up to 1 million of degrees of freedom with 448 cores GPU.
Object recognition in images via a factor graph model
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Chan, Zenobia C Y
2013-08-01
To explore students' attitude towards problem-based learning, creativity and critical thinking, and the relevance to nursing education and clinical practice. Critical thinking and creativity are crucial in nursing education. The teaching approach of problem-based learning can help to reduce the difficulties of nurturing problem-solving skills. However, there is little in the literature on how to improve the effectiveness of a problem-based learning lesson by designing appropriate and innovative activities such as composing songs, writing poems and using role plays. Exploratory qualitative study. A sample of 100 students participated in seven semi-structured focus groups, of which two were innovative groups and five were standard groups, adopting three activities in problem-based learning, namely composing songs, writing poems and performing role plays. The data were analysed using thematic analysis. There are three themes extracted from the conversations: 'students' perceptions of problem-based learning', 'students' perceptions of creative thinking' and 'students' perceptions of critical thinking'. Participants generally agreed that critical thinking is more important than creativity in problem-based learning and clinical practice. Participants in the innovative groups perceived a significantly closer relationship between critical thinking and nursing care, and between creativity and nursing care than the standard groups. Both standard and innovative groups agreed that problem-based learning could significantly increase their critical thinking and problem-solving skills. Further, by composing songs, writing poems and using role plays, the innovative groups had significantly increased their awareness of the relationship among critical thinking, creativity and nursing care. Nursing educators should include more types of creative activities than it often does in conventional problem-based learning classes. The results could help nurse educators design an appropriate
Sequential Optimization of Paths in Directed Graphs Relative to Different Cost Functions
Mahayni, Malek A.
2011-01-01
developed to solve the optimal paths problem with different kinds of graphs. An algorithm that solves the problem of paths’ optimization in directed graphs relative to different cost functions is described in [1]. It follows an approach extended from
Labeled Embedding Of (n, n-2-Graphs In Their Complements
Tahraoui M.-A.
2017-11-01
Full Text Available Graph packing generally deals with unlabeled graphs. In [4], the authors have introduced a new variant of the graph packing problem, called the labeled packing of a graph. This problem has recently been studied on trees [M.A. Tahraoui, E. Duchêne and H. Kheddouci, Labeled 2-packings of trees, Discrete Math. 338 (2015 816-824] and cycles [E. Duchˆene, H. Kheddouci, R.J. Nowakowski and M.A. Tahraoui, Labeled packing of graphs, Australas. J. Combin. 57 (2013 109-126]. In this note, we present a lower bound on the labeled packing number of any (n, n − 2-graph into Kn. This result improves the bound given by Woźniak in [Embedding graphs of small size, Discrete Appl. Math. 51 (1994 233-241].
PuLP/XtraPuLP : Partitioning Tools for Extreme-Scale Graphs
2017-09-21
PuLP/XtraPulp is software for partitioning graphs from several real-world problems. Graphs occur in several places in real world from road networks, social networks and scientific simulations. For efficient parallel processing these graphs have to be partitioned (split) with respect to metrics such as computation and communication costs. Our software allows such partitioning for massive graphs.
Graph reconstruction with a betweenness oracle
Abrahamsen, Mikkel; Bodwin, Greg; Rotenberg, Eva
2016-01-01
Graph reconstruction algorithms seek to learn a hidden graph by repeatedly querying a blackbox oracle for information about the graph structure. Perhaps the most well studied and applied version of the problem uses a distance oracle, which can report the shortest path distance between any pair...... of nodes. We introduce and study the betweenness oracle, where bet(a, m, z) is true iff m lies on a shortest path between a and z. This oracle is strictly weaker than a distance oracle, in the sense that a betweenness query can be simulated by a constant number of distance queries, but not vice versa...
Chartrand, Gary
1984-01-01
Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap
Distributed graph coloring fundamentals and recent developments
Barenboim, Leonid
2013-01-01
The focus of this monograph is on symmetry breaking problems in the message-passing model of distributed computing. In this model a communication network is represented by a n-vertex graph G = (V,E), whose vertices host autonomous processors. The processors communicate over the edges of G in discrete rounds. The goal is to devise algorithms that use as few rounds as possible.A typical symmetry-breaking problem is the problem of graph coloring. Denote by ? the maximum degree of G. While coloring G with ? + 1 colors is trivial in the centralized setting, the problem becomes much more challenging
Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati
2017-09-01
One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.
Adriaan R. Soetevent
2010-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. I propose an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. One feature of graph models of price competition is that spatial discontinuities in firm-level demand may occur. I show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs. I conjecture that this non-existence result holds...
Pim Heijnen; Adriaan Soetevent
2014-01-01
This paper extends Hotelling's model of price competition with quadratic transportation costs from a line to graphs. We derive an algorithm to calculate firm-level demand for any given graph, conditional on prices and firm locations. These graph models of price competition may lead to spatial discontinuities in firm-level demand. We show that the existence result of D'Aspremont et al. (1979) does not extend to simple star graphs and conjecture that this non-existence result holds more general...
Aleks Kissinger
2014-03-01
Full Text Available String diagrams are a powerful tool for reasoning about physical processes, logic circuits, tensor networks, and many other compositional structures. Dixon, Duncan and Kissinger introduced string graphs, which are a combinatoric representations of string diagrams, amenable to automated reasoning about diagrammatic theories via graph rewrite systems. In this extended abstract, we show how the power of such rewrite systems can be greatly extended by introducing pattern graphs, which provide a means of expressing infinite families of rewrite rules where certain marked subgraphs, called !-boxes ("bang boxes", on both sides of a rule can be copied any number of times or removed. After reviewing the string graph formalism, we show how string graphs can be extended to pattern graphs and how pattern graphs and pattern rewrite rules can be instantiated to concrete string graphs and rewrite rules. We then provide examples demonstrating the expressive power of pattern graphs and how they can be applied to study interacting algebraic structures that are central to categorical quantum mechanics.
Creating more effective graphs
Robbins, Naomi B
2012-01-01
A succinct and highly readable guide to creating effective graphs The right graph can be a powerful tool for communicating information, improving a presentation, or conveying your point in print. If your professional endeavors call for you to present data graphically, here's a book that can help you do it more effectively. Creating More Effective Graphs gives you the basic knowledge and techniques required to choose and create appropriate graphs for a broad range of applications. Using real-world examples everyone can relate to, the author draws on her years of experience in gr
Alberto Apostolico
2009-08-01
Full Text Available The Web Graph is a large-scale graph that does not fit in main memory, so that lossless compression methods have been proposed for it. This paper introduces a compression scheme that combines efficient storage with fast retrieval for the information in a node. The scheme exploits the properties of the Web Graph without assuming an ordering of the URLs, so that it may be applied to more general graphs. Tests on some datasets of use achieve space savings of about 10% over existing methods.
b-tree facets for the simple graph partitioning polytope
Sørensen, Michael Malmros
2004-01-01
The simple graph partitioning problem is to partition an edge-weighted graph into mutually disjoint subgraphs, each consisting of no more than b nodes, such that the sum of the weights of all edges in the subgraphs is maximal. In this paper we introduce a large class of facet defining inequalities...... for the simple graph partitioning polytopes P_n(b), b >= 3, associated with the complete graph on n nodes. These inequalities are induced by a graph configuration which is built upon trees of cardinality b. We provide a closed-form theorem that states all necessary and sufficient conditions for the facet...... defining property of the inequalities. Udgivelsesdato: JUN...
Graphs of groups on surfaces interactions and models
White, AT
2001-01-01
The book, suitable as both an introductory reference and as a text book in the rapidly growing field of topological graph theory, models both maps (as in map-coloring problems) and groups by means of graph imbeddings on sufaces. Automorphism groups of both graphs and maps are studied. In addition connections are made to other areas of mathematics, such as hypergraphs, block designs, finite geometries, and finite fields. There are chapters on the emerging subfields of enumerative topological graph theory and random topological graph theory, as well as a chapter on the composition of English
Hatem, Neil
2010-01-01
This study investigates the relationship between the use of graphing calculators employed as Type II technology and student achievement, as determined by assessing students' problem solving skills associated with the concept of function, at the college algebra and pre-calculus level. In addition, this study explores the integration of graphing…
Graph Theory. 1. Fragmentation of Structural Graphs
Lorentz JÄNTSCHI
2002-12-01
Full Text Available The investigation of structural graphs has many fields of applications in engineering, especially in applied sciences like as applied chemistry and physics, computer sciences and automation, electronics and telecommunication. The main subject of the paper is to express fragmentation criteria in graph using a new method of investigation: terminal paths. Using terminal paths are defined most of the fragmentation criteria that are in use in molecular topology, but the fields of applications are more generally than that, as I mentioned before. Graphical examples of fragmentation are given for every fragmentation criteria. Note that all fragmentation is made with a computer program that implements a routine for every criterion.[1] A web routine for tracing all terminal paths in graph can be found at the address: http://vl.academicdirect.ro/molecular_topology/tpaths/ [1] M. V. Diudea, I. Gutman, L. Jäntschi, Molecular Topology, Nova Science, Commack, New York, 2001, 2002.
Breast compression – An exploration of problem solving and decision-making in mammography
Nightingale, J.M.; Murphy, F.J.; Robinson, L.; Newton-Hughes, A.; Hogg, P.
2015-01-01
Objective: Breast compression decreases radiation dose and reduces potential for motion and geometric unsharpness, yet there is variability in applied compression force within and between some centres. This article explores the problem solving process applied to the application of breast compression force from the mammography practitioners' perspective. Methods: A qualitative analysis was undertaken using an existing full data set of transcribed qualitative data collected in a phenomenological study of mammography practitioner values, behaviours and beliefs. The data emerged from focus groups conducted at six NHS breast screening centres in England (participant n = 41), and semi-structured interviews with mammography educators (n = 6). A researcher followed a thematic content analysis process to extract data related to mammography compression problem solving, developing a series of categories, themes and sub-themes. Emerging themes were then peer-validated by two other researchers, and developed into a model of practice. Results: Seven consecutive stages contributed towards compression force problem solving: assessing the request; first impressions; explanations and consent; handling the breast and positioning; applying compression force; final adjustments; feedback. The model captures information gathering, problem framing, problem solving and decision making which inform an ‘ideal’ compression scenario. Behavioural problem solving, heuristics and intuitive decision making are reflected within this model. Conclusion: The application of compression should no longer be considered as one single task within mammography, but is now recognised as a seven stage problem solving continuum. This continuum model is the first to be applied to mammography, and is adaptable and transferable to other radiography practice settings. - Highlights: • Mammography compression should no longer be considered as one single examination task. • A seven stage breast
Forbidden Structures for Planar Perfect Consecutively Colourable Graphs
Borowiecka-Olszewska Marta
2017-05-01
Full Text Available A consecutive colouring of a graph is a proper edge colouring with posi- tive integers in which the colours of edges incident with each vertex form an interval of integers. The idea of this colouring was introduced in 1987 by Asratian and Kamalian under the name of interval colouring. Sevast- janov showed that the corresponding decision problem is NP-complete even restricted to the class of bipartite graphs. We focus our attention on the class of consecutively colourable graphs whose all induced subgraphs are consecutively colourable, too. We call elements of this class perfect consecutively colourable to emphasise the conceptual similarity to perfect graphs. Obviously, the class of perfect consecutively colourable graphs is induced hereditary, so it can be characterized by the family of induced forbidden graphs. In this work we give a necessary and sufficient conditions that must be satisfied by the generalized Sevastjanov rosette to be an induced forbid- den graph for the class of perfect consecutively colourable graphs. Along the way, we show the exact values of the deficiency of all generalized Sevastjanov rosettes, which improves the earlier known estimating result. It should be mentioned that the deficiency of a graph measures its closeness to the class of consecutively colourable graphs. We motivate the investigation of graphs considered here by showing their connection to the class of planar perfect consecutively colourable graphs.
A graph rewriting programming language for graph drawing
Rodgers, Peter
1998-01-01
This paper describes Grrr, a prototype visual graph drawing tool. Previously there were no visual languages for programming graph drawing algorithms despite the inherently visual nature of the process. The languages which gave a diagrammatic view of graphs were not computationally complete and so could not be used to implement complex graph drawing algorithms. Hence current graph drawing tools are all text based. Recent developments in graph rewriting systems have produced computationally com...
de Mol, M.J.; Rensink, Arend; Hunt, James J.
This paper introduces an approach for adding graph transformation-based functionality to existing JAVA programs. The approach relies on a set of annotations to identify the intended graph structure, as well as on user methods to manipulate that structure, within the user’s own JAVA class
Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.
2004-01-01
In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite
Husfeldt, Thore
2015-01-01
This chapter presents an introduction to graph colouring algorithms. The focus is on vertex-colouring algorithms that work for general classes of graphs with worst-case performance guarantees in a sequential model of computation. The presentation aims to demonstrate the breadth of available...
Packing Degenerate Graphs Greedily
Allen, P.; Böttcher, J.; Hladký, J.; Piguet, Diana
2017-01-01
Roč. 61, August (2017), s. 45-51 ISSN 1571-0653 R&D Projects: GA ČR GJ16-07822Y Institutional support: RVO:67985807 Keywords : tree packing conjecture * graph packing * graph processes Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics
Graph-theoretical concepts and physicochemical data
Lionello Pogliani
2003-02-01
Full Text Available Graph theoretical concepts have been used to model the molecular polarizabilities of fifty-four organic derivatives, and the induced dipole moment of a set of fifty-seven organic compounds divided into three subsets. The starting point of these modeling strategies is the hydrogen-suppressed chemical graph and pseudograph of a molecule, which works very well for second row atoms. From these types of graphs a set of graph-theoretical basis indices, the molecular connectivity indices, can be derived and used to model properties and activities of molecules. With the aid of the molecular connectivity basis indices it is then possible to build higher-order descriptors. The problem of 'graph' encoding the contribution of the inner-core electrons of heteroatoms can here be solved with the aid of odd complete graphs, Kp-(p-odd. The use of these graph tools allow to draw an optimal modeling of the molecular polarizabilities and a satisfactory modeling of the induced dipole moment of a wide set of organic derivatives.
A conjugate gradient method for the spectral partitioning of graphs
Kruyt, Nicolaas P.
1997-01-01
The partitioning of graphs is a frequently occurring problem in science and engineering. The spectral graph partitioning method is a promising heuristic method for this class of problems. Its main disadvantage is the large computing time required to solve a special eigenproblem. Here a simple and
Significance evaluation in factor graphs
Madsen, Tobias; Hobolth, Asger; Jensen, Jens Ledet
2017-01-01
in genomics and the multiple-testing issues accompanying them, accurate significance evaluation is of great importance. We here address the problem of evaluating statistical significance of observations from factor graph models. Results Two novel numerical approximations for evaluation of statistical...... significance are presented. First a method using importance sampling. Second a saddlepoint approximation based method. We develop algorithms to efficiently compute the approximations and compare them to naive sampling and the normal approximation. The individual merits of the methods are analysed both from....... Conclusions The applicability of saddlepoint approximation and importance sampling is demonstrated on known models in the factor graph framework. Using the two methods we can substantially improve computational cost without compromising accuracy. This contribution allows analyses of large datasets...
Flux networks in metabolic graphs
Warren, P B; Queiros, S M Duarte; Jones, J L
2009-01-01
A metabolic model can be represented as a bipartite graph comprising linked reaction and metabolite nodes. Here it is shown how a network of conserved fluxes can be assigned to the edges of such a graph by combining the reaction fluxes with a conserved metabolite property such as molecular weight. A similar flux network can be constructed by combining the primal and dual solutions to the linear programming problem that typically arises in constraint-based modelling. Such constructions may help with the visualization of flux distributions in complex metabolic networks. The analysis also explains the strong correlation observed between metabolite shadow prices (the dual linear programming variables) and conserved metabolite properties. The methods were applied to recent metabolic models for Escherichia coli, Saccharomyces cerevisiae and Methanosarcina barkeri. Detailed results are reported for E. coli; similar results were found for other organisms
Distributed Large Independent Sets in One Round On Bounded-independence Graphs
Halldorsson , Magnus M.; Konrad , Christian
2015-01-01
International audience; We present a randomized one-round, single-bit messages, distributed algorithm for the maximum independent set problem in polynomially bounded-independence graphs with poly-logarithmic approximation factor. Bounded-independence graphs capture various models of wireless networks such as the unit disc graphs model and the quasi unit disc graphs model. For instance, on unit disc graphs, our achieved approximation ratio is O((log(n)/log(log(n)))^2).A starting point of our w...
GoFFish: A Sub-Graph Centric Framework for Large-Scale Graph Analytics1
Simmhan, Yogesh; Kumbhare, Alok; Wickramaarachchi, Charith; Nagarkar, Soonil; Ravi, Santosh; Raghavendra, Cauligi; Prasanna, Viktor
2014-08-25
Large scale graph processing is a major research area for Big Data exploration. Vertex centric programming models like Pregel are gaining traction due to their simple abstraction that allows for scalable execution on distributed systems naturally. However, there are limitations to this approach which cause vertex centric algorithms to under-perform due to poor compute to communication overhead ratio and slow convergence of iterative superstep. In this paper we introduce GoFFish a scalable sub-graph centric framework co-designed with a distributed persistent graph storage for large scale graph analytics on commodity clusters. We introduce a sub-graph centric programming abstraction that combines the scalability of a vertex centric approach with the flexibility of shared memory sub-graph computation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation. We map Connected Components, SSSP and PageRank algorithms to this model to illustrate its flexibility. Further, we empirically analyze GoFFish using several real world graphs and demonstrate its significant performance improvement, orders of magnitude in some cases, compared to Apache Giraph, the leading open source vertex centric implementation.
Qi, Bin; Guo, Linli; Zhang, Zhixian
2016-07-01
Space life science and life support engineering are prominent problems in manned deep space exploration mission. Some typical problems are discussed in this paper, including long-term life support problem, physiological effect and defense of varying extraterrestrial environment. The causes of these problems are developed for these problems. To solve these problems, research on space life science and space medical-engineering should be conducted. In the aspect of space life science, the study of space gravity biology should focus on character of physiological effect in long term zero gravity, co-regulation of physiological systems, impact on stem cells in space, etc. The study of space radiation biology should focus on target effect and non-target effect of radiation, carcinogenicity of radiation, spread of radiation damage in life system, etc. The study of basic biology of space life support system should focus on theoretical basis and simulating mode of constructing the life support system, filtration and combination of species, regulation and optimization method of life support system, etc. In the aspect of space medical-engineering, the study of bio-regenerative life support technology should focus on plants cultivation technology, animal-protein production technology, waste treatment technology, etc. The study of varying gravity defense technology should focus on biological and medical measures to defend varying gravity effect, generation and evaluation of artificial gravity, etc. The study of extraterrestrial environment defense technology should focus on risk evaluation of radiation, monitoring and defending of radiation, compound prevention and removal technology of dust, etc. At last, a case of manned lunar base is analyzed, in which the effective schemes of life support system, defense of varying gravity, defense of extraterrestrial environment are advanced respectively. The points in this paper can be used as references for intensive study on key
Schappin, Renske; Wijnroks, Lex; Uniken Venema, Monica; Jongmans, Marian
2018-02-01
Although predictors of the prevalence of behavioral problems in preterm-born children have been frequently studied, predictors of behavioral change in these children remain unknown. Therefore, in this study we explore predictors of short-term changes in problem behavior in preterm-born preschoolers, an age period characterized by rapid behavioral change. Two- to 5-year-old children born with a gestational age behavioral problems. Following screening, 59 children with a t-score ≥60 on either the internal, external or total problem scale of the Child Behavior Checklist were included in the study. Linear mixed modeling was used to investigate predictors of change in behavior over a 1-year period. Higher levels of parenting stress, parent perceived child vulnerability, and parental hostility towards the child and lower educational levels of the mother significantly predicted increases in externalizing behavior. The higher the age of the child, the more internalizing problems decreased. Parenting stress, parent perceived child vulnerability and parental hostility towards the child were the only modifiable predictors of increases in externalizing behavior, whilst no modifiable predictors of internalizing behavior were found. There may be a reciprocal interaction between stress in parents and child externalizing problems. Furthermore, stress and worries may directly influence parents' reports on behavioral measures, because it could cause them to be concerned by behavior otherwise perceived as normal. Therefore, future interventions for parents of preterm-born children should primarily address parental stress and concerns regarding their child. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar
2017-03-06
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Subgraph detection using graph signals
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
In this paper we develop statistical detection theory for graph signals. In particular, given two graphs, namely, a background graph that represents an usual activity and an alternative graph that represents some unusual activity, we are interested in answering the following question: To which of the two graphs does the observed graph signal fit the best? To begin with, we assume both the graphs are known, and derive an optimal Neyman-Pearson detector. Next, we derive a suboptimal detector for the case when the alternative graph is not known. The developed theory is illustrated with numerical experiments.
Destroying longest cycles in graphs and digraphs
Van Aardt, Susan A.; Burger, Alewyn P.; Dunbar, Jean E.
2015-01-01
In 1978, C. Thomassen proved that in any graph one can destroy all the longest cycles by deleting at most one third of the vertices. We show that for graphs with circumference k≤8 it suffices to remove at most 1/k of the vertices. The Petersen graph demonstrates that this result cannot be extended...... to include k=9 but we show that in every graph with circumference nine we can destroy all 9-cycles by removing 1/5 of the vertices. We consider the analogous problem for digraphs and show that for digraphs with circumference k=2,3, it suffices to remove 1/k of the vertices. However this does not hold for k≥4....
Namhee Kim
Full Text Available Graph representations have been widely used to analyze and design various economic, social, military, political, and biological networks. In systems biology, networks of cells and organs are useful for understanding disease and medical treatments and, in structural biology, structures of molecules can be described, including RNA structures. In our RNA-As-Graphs (RAG framework, we represent RNA structures as tree graphs by translating unpaired regions into vertices and helices into edges. Here we explore the modularity of RNA structures by applying graph partitioning known in graph theory to divide an RNA graph into subgraphs. To our knowledge, this is the first application of graph partitioning to biology, and the results suggest a systematic approach for modular design in general. The graph partitioning algorithms utilize mathematical properties of the Laplacian eigenvector (µ2 corresponding to the second eigenvalues (λ2 associated with the topology matrix defining the graph: λ2 describes the overall topology, and the sum of µ2's components is zero. The three types of algorithms, termed median, sign, and gap cuts, divide a graph by determining nodes of cut by median, zero, and largest gap of µ2's components, respectively. We apply these algorithms to 45 graphs corresponding to all solved RNA structures up through 11 vertices (∼ 220 nucleotides. While we observe that the median cut divides a graph into two similar-sized subgraphs, the sign and gap cuts partition a graph into two topologically-distinct subgraphs. We find that the gap cut produces the best biologically-relevant partitioning for RNA because it divides RNAs at less stable connections while maintaining junctions intact. The iterative gap cuts suggest basic modules and assembly protocols to design large RNA structures. Our graph substructuring thus suggests a systematic approach to explore the modularity of biological networks. In our applications to RNA structures, subgraphs
Spectral clustering and biclustering learning large graphs and contingency tables
Bolla, Marianna
2013-01-01
Explores regular structures in graphs and contingency tables by spectral theory and statistical methods This book bridges the gap between graph theory and statistics by giving answers to the demanding questions which arise when statisticians are confronted with large weighted graphs or rectangular arrays. Classical and modern statistical methods applicable to biological, social, communication networks, or microarrays are presented together with the theoretical background and proofs. This book is suitable for a one-semester course for graduate students in data mining, mult
Marc-Thorsten Hütt
2012-06-01
Full Text Available Cellular automata (CA are a remarkably efficient tool for exploring general properties of complex systems and spatiotemporal patterns arising from local rules. Totalistic cellular automata, where the update rules depend only on the density of neighboring states, are at the same time a versatile tool for exploring dynamical processes on graphs. Here we briefly review our previous results on cellular automata on graphs, emphasizing some systematic relationships between network architecture and dynamics identified in this way. We then extend the investigation towards graphs obtained in a simulated-evolution procedure, starting from Erdő s–Rényi (ER graphs and selecting for low entropies of the CA dynamics. Our key result is a strong association of low Shannon entropies with a broadening of the graph’s degree distribution.
Non-heuristic reduction of the graph in graph-cut optimization
Malgouyres, François; Lermé, Nicolas
2012-01-01
During the last ten years, graph cuts had a growing impact in shape optimization. In particular, they are commonly used in applications of shape optimization such as image processing, computer vision and computer graphics. Their success is due to their ability to efficiently solve (apparently) difficult shape optimization problems which typically involve the perimeter of the shape. Nevertheless, solving problems with a large number of variables remains computationally expensive and requires a high memory usage since underlying graphs sometimes involve billion of nodes and even more edges. Several strategies have been proposed in the literature to improve graph-cuts in this regards. In this paper, we give a formal statement which expresses that a simple and local test performed on every node before its construction permits to avoid the construction of useless nodes for the graphs typically encountered in image processing and vision. A useless node is such that the value of the maximum flow in the graph does not change when removing the node from the graph. Such a test therefore permits to limit the construction of the graph to a band of useful nodes surrounding the final cut.
EXPLORING THE PROBLEMS FACED BY TECHNICAL SCHOOL STUDENTS IN LEARNING ENGINEERING COURSES
RAMLEE MUSTAPHA
2014-12-01
Full Text Available The teaching of engineering courses is relatively challenging due to the nature of the courses that are perceived as “difficult courses” by a number of students. Thus, the purpose of this action research was to explore the problems faced by electrical and electronic engineering (PKEE students studying a difficult topic–transistor. This research was also aimed at identifying the students’ attitude towards Problem-based Learning (PBL. Literature has shown that PBL could enhance students’ understanding and make the learning more meaningful. The theoretical framework of this study was based on Kemmis and Mc Taggart model. Cooperative learning method was also utilised in this study consisted of Jigsaw technique in the first and second rounds of the study. In the final round, the discussion method was used. In an action research design, a classroom is a usual research site. Thus, an engineering class of 30 Form 5 students in a Technical School was selected. The PBL method was applied in the class for a nine-week duration. Empirical data were gathered from peer assessment, observation, and pre- and post-tests. The data were described descriptively using frequency, mean and standard deviation. The main results show that the students were more interactive and their post-test result shows significant increases. In terms of the attitude towards PBL, the participants rated PBL highly. The participants also assert that the main benefits of PBL include enhancing their collaborative and problem-solving skills.
Contextual Weisfeiler-Lehman Graph Kernel For Malware Detection
Narayanan, Annamalai; Meng, Guozhu; Yang, Liu; Liu, Jinliang; Chen, Lihui
2016-01-01
In this paper, we propose a novel graph kernel specifically to address a challenging problem in the field of cyber-security, namely, malware detection. Previous research has revealed the following: (1) Graph representations of programs are ideally suited for malware detection as they are robust against several attacks, (2) Besides capturing topological neighbourhoods (i.e., structural information) from these graphs it is important to capture the context under which the neighbourhoods are reac...
Haynes Teresa W.
2014-08-01
Full Text Available A path π = (v1, v2, . . . , vk+1 in a graph G = (V,E is a downhill path if for every i, 1 ≤ i ≤ k, deg(vi ≥ deg(vi+1, where deg(vi denotes the degree of vertex vi ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds
Tailored Random Graph Ensembles
Roberts, E S; Annibale, A; Coolen, A C C
2013-01-01
Tailored graph ensembles are a developing bridge between biological networks and statistical mechanics. The aim is to use this concept to generate a suite of rigorous tools that can be used to quantify and compare the topology of cellular signalling networks, such as protein-protein interaction networks and gene regulation networks. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies of random graph ensembles constrained with degree distribution and degree-degree correlation. We also construct an ergodic detailed balance Markov chain with non-trivial acceptance probabilities which converges to a strictly uniform measure and is based on edge swaps that conserve all degrees. The acceptance probabilities can be generalized to define Markov chains that target any alternative desired measure on the space of directed or undirected graphs, in order to generate graphs with more sophisticated topological features.
Wilson, Robin J
1985-01-01
Graph Theory has recently emerged as a subject in its own right, as well as being an important mathematical tool in such diverse subjects as operational research, chemistry, sociology and genetics. This book provides a comprehensive introduction to the subject.
The many faces of graph dynamics
Pignolet, Yvonne Anne; Roy, Matthieu; Schmid, Stefan; Tredan, Gilles
2017-06-01
The topological structure of complex networks has fascinated researchers for several decades, resulting in the discovery of many universal properties and reoccurring characteristics of different kinds of networks. However, much less is known today about the network dynamics: indeed, complex networks in reality are not static, but rather dynamically evolve over time. Our paper is motivated by the empirical observation that network evolution patterns seem far from random, but exhibit structure. Moreover, the specific patterns appear to depend on the network type, contradicting the existence of a ‘one fits it all’ model. However, we still lack observables to quantify these intuitions, as well as metrics to compare graph evolutions. Such observables and metrics are needed for extrapolating or predicting evolutions, as well as for interpolating graph evolutions. To explore the many faces of graph dynamics and to quantify temporal changes, this paper suggests to build upon the concept of centrality, a measure of node importance in a network. In particular, we introduce the notion of centrality distance, a natural similarity measure for two graphs which depends on a given centrality, characterizing the graph type. Intuitively, centrality distances reflect the extent to which (non-anonymous) node roles are different or, in case of dynamic graphs, have changed over time, between two graphs. We evaluate the centrality distance approach for five evolutionary models and seven real-world social and physical networks. Our results empirically show the usefulness of centrality distances for characterizing graph dynamics compared to a null-model of random evolution, and highlight the differences between the considered scenarios. Interestingly, our approach allows us to compare the dynamics of very different networks, in terms of scale and evolution speed.
Uniform Single Valued Neutrosophic Graphs
S. Broumi
2017-09-01
Full Text Available In this paper, we propose a new concept named the uniform single valued neutrosophic graph. An illustrative example and some properties are examined. Next, we develop an algorithmic approach for computing the complement of the single valued neutrosophic graph. A numerical example is demonstrated for computing the complement of single valued neutrosophic graphs and uniform single valued neutrosophic graph.
Bollobás, Béla
1998-01-01
The time has now come when graph theory should be part of the education of every serious student of mathematics and computer science, both for its own sake and to enhance the appreciation of mathematics as a whole. This book is an in-depth account of graph theory, written with such a student in mind; it reflects the current state of the subject and emphasizes connections with other branches of pure mathematics. The volume grew out of the author's earlier book, Graph Theory -- An Introductory Course, but its length is well over twice that of its predecessor, allowing it to reveal many exciting new developments in the subject. Recognizing that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavor of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory such as coloring, matching, extremal theory, and algebraic graph theory, the book presents a detailed ...
Graph Grammar-Based Multi-Frontal Parallel Direct Solver for Two-Dimensional Isogeometric Analysis
Kuźnik, Krzysztof; Paszyński, Maciej; Calo, Victor M.
2012-01-01
at parent nodes and eliminates rows corresponding to fully assembled degrees of freedom. Finally, there are graph grammar productions responsible for root problem solution and recursive backward substitutions. Expressing the solver algorithm by graph grammar
PERANCANGAN SISTEM PENJADWALAN PEMBELAJARAN MENGGUNAKAN GRAPH COLORING
Taufik Hidayatulloh
2016-03-01
Full Text Available Abstract - In learning scheduling problem often faced by schools in the new academic year. Sometimes collisions on the schedule was not found when the learning process has begun, so it is necessary to re-schedule on the schedule. And this resulted in the teaching and learning first weeks less to run well. Researchers previously have used various methods to solve the scheduling as Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (coloring of a graph is the simplest method and the experimental results indicate that the development of methods of scheduling Graph Coloring deliver results that meet an average of 93% across the specified constraints. At the time of split schedules that require extra energy at the start of learning did not experience a collision. With this system is expected to facilitate the allocation of space, teachers, lessons to avoid a collision. Keywords: Information Systems, Scheduling, graph coloring Abstraksi - Dalam masalah penjadwalan pembelajaran sering dihadapi sekolah pada tahun ajaran baru. Terkadang tabrakan pada jadwal itu baru ditemukan ketika proses belajar mengajar telah dimulai, sehingga perlu dilakukan penjadwalan ulang pada jadwal tersebut. Dan hal ini mengakibatkan kegiatan belajar mengajar pada minggu-minggu pertama kurang dapat berjalan dengan baik. Para peneliti sebelumnya telah menggunakan berbagai metode untuk memecahkan penjadwalan seperti Tabu search, Simulated Annealing, Network Flow, Graph Coloring. Graph Coloring (pewarnaan graf merupakan metode yang paling sederhana dan hasil percobaan menunjukkan bahwa pengembangan metode Graph Coloring memberikan hasil penjadwalan yang memenuhi rata-rata 93% seluruh constraints yang ditentukan. Pada saat membagi jadwal memerlukan energi ekstra agar pada saat di mulai pembelajaran tidak mengalami tabrakan. Dengan sistem ini diharapkan dapat mempermudah dalam mengalokasikan ruangan, guru, pelajaran agar tidak mengalami tabrakan. Kata
Argument Graph as a Tool for Promoting Collaborative Online Reading
Kiili, Carita
2013-01-01
This study explored how the construction of an argument graph promotes students' collaborative online reading compared to note-taking. Upper secondary school students ("n"?=?76) worked in pairs. The pairs were asked to search for and read source material on the Web for a joint essay and either construct an argument graph or take notes…
Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems
José Carlos Ortiz-Bayliss
2018-01-01
Full Text Available When solving constraint satisfaction problems (CSPs, it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differences among the orderings produced by some commonly used heuristics and the way bad first decisions affect the search cost. One of the most important findings of this work confirms the paramount importance of first decisions. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. We propose a simple method to improve early decisions of heuristics. By using it, performance of heuristics increases.
Exploring the Impact of Early Decisions in Variable Ordering for Constraint Satisfaction Problems.
Ortiz-Bayliss, José Carlos; Amaya, Ivan; Conant-Pablos, Santiago Enrique; Terashima-Marín, Hugo
2018-01-01
When solving constraint satisfaction problems (CSPs), it is a common practice to rely on heuristics to decide which variable should be instantiated at each stage of the search. But, this ordering influences the search cost. Even so, and to the best of our knowledge, no earlier work has dealt with how first variable orderings affect the overall cost. In this paper, we explore the cost of finding high-quality orderings of variables within constraint satisfaction problems. We also study differences among the orderings produced by some commonly used heuristics and the way bad first decisions affect the search cost. One of the most important findings of this work confirms the paramount importance of first decisions. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. Another one is the evidence that many of the existing variable ordering heuristics fail to appropriately select the first variable to instantiate. We propose a simple method to improve early decisions of heuristics. By using it, performance of heuristics increases.
Proxy Graph: Visual Quality Metrics of Big Graph Sampling.
Nguyen, Quan Hoang; Hong, Seok-Hee; Eades, Peter; Meidiana, Amyra
2017-06-01
Data sampling has been extensively studied for large scale graph mining. Many analyses and tasks become more efficient when performed on graph samples of much smaller size. The use of proxy objects is common in software engineering for analysis and interaction with heavy objects or systems. In this paper, we coin the term 'proxy graph' and empirically investigate how well a proxy graph visualization can represent a big graph. Our investigation focuses on proxy graphs obtained by sampling; this is one of the most common proxy approaches. Despite the plethora of data sampling studies, this is the first evaluation of sampling in the context of graph visualization. For an objective evaluation, we propose a new family of quality metrics for visual quality of proxy graphs. Our experiments cover popular sampling techniques. Our experimental results lead to guidelines for using sampling-based proxy graphs in visualization.
A first course in graph theory and combinatorics
Cioabă, Sebastian M
2009-01-01
The concept of a graph is fundamental in mathematics since it conveniently encodes diverse relations and facilitates combinatorial analysis of many complicated counting problems. In this book, the authors have traced the origins of graph theory from its humble beginnings of recreational mathematics to its modern setting for modeling communication networks as is evidenced by the World Wide Web graph used by many Internet search engines. This book is an introduction to graph theory and combinatorial analysis. It is based on courses given by the second author at Queen's University at Kingston, Ontario, Canada between 2002 and 2008. The courses were aimed at students in their final year of their undergraduate program.
On some interconnections between combinatorial optimization and extremal graph theory
Cvetković Dragoš M.
2004-01-01
Full Text Available The uniting feature of combinatorial optimization and extremal graph theory is that in both areas one should find extrema of a function defined in most cases on a finite set. While in combinatorial optimization the point is in developing efficient algorithms and heuristics for solving specified types of problems, the extremal graph theory deals with finding bounds for various graph invariants under some constraints and with constructing extremal graphs. We analyze by examples some interconnections and interactions of the two theories and propose some conclusions.
Govender, I.; Govender, D.; Havenga, M.; Mentz, E.; Breed, B.; Dignum, F.; Dignum, V.
2014-01-01
The difficulty of learning to program has long been identified amongst novices. This study explored the benefits of teaching a problem solving strategy by comparing students’ perceptions and attitudes towards problem solving before and after the strategy was implemented in secondary schools. Based
Generalized belief propagation on tree robust structured region graphs
Gelfand, A.E.; Welling, M.; Murphy, K.; de Freitas, N.
2012-01-01
This paper provides some new guidance in the construction of region graphs for Generalized Belief Propagation (GBP). We connect the problem of choosing the outer regions of a LoopStructured Region Graph (SRG) to that of finding a fundamental cycle basis of the corresponding Markov network. We also
Algebraic Methods for Counting Euclidean Embeddings of Rigid Graphs
I.Z. Emiris; E.P. Tsigaridas; A. Varvitsiotis (Antonios); E.R. Gasner
2009-01-01
textabstract The study of (minimally) rigid graphs is motivated by numerous applications, mostly in robotics and bioinformatics. A major open problem concerns the number of embeddings of such graphs, up to rigid motions, in Euclidean space. We capture embeddability by polynomial systems
Bisimulation reduction of big graphs on MapReduce
Luo, Y.; Lange, de Y.; Fletcher, G.H.L.; De Bra, P.M.E.; Hidders, A.J.H.; Gottlob, G.; Grasso, G.; Olteanu, D.; Schallhart, C.
2013-01-01
Computing the bisimulation partition of a graph is a fundamental problem which plays a key role in a wide range of basic applications. Intuitively, two nodes in a graph are bisimilar if they share basic structural properties such as labeling and neighborhood topology. In data management, reducing a
First-passage percolation on the random graph
Hofstad, van der R.W.; Hooghiemstra, G.; Van Mieghem, P.
2001-01-01
We study first-passage percolation on the random graph Gp(N) with exponentially distributed weights on the links. For the special case of the complete graph, this problem can be described in terms of a continuous-time Markov chain and recursive trees. The Markov chain X(t) describes the number of
Optimizing graph algorithms on pregel-like systems
Salihoglu, Semih
2014-03-01
We study the problem of implementing graph algorithms efficiently on Pregel-like systems, which can be surprisingly challenging. Standard graph algorithms in this setting can incur unnecessary inefficiencies such as slow convergence or high communication or computation cost, typically due to structural properties of the input graphs such as large diameters or skew in component sizes. We describe several optimization techniques to address these inefficiencies. Our most general technique is based on the idea of performing some serial computation on a tiny fraction of the input graph, complementing Pregel\\'s vertex-centric parallelism. We base our study on thorough implementations of several fundamental graph algorithms, some of which have, to the best of our knowledge, not been implemented on Pregel-like systems before. The algorithms and optimizations we describe are fully implemented in our open-source Pregel implementation. We present detailed experiments showing that our optimization techniques improve runtime significantly on a variety of very large graph datasets.
On some covering graphs of a graph
Shariefuddin Pirzada
2016-10-01
Full Text Available For a graph $G$ with vertex set $V(G=\\{v_1, v_2, \\dots, v_n\\}$, let $S$ be the covering set of $G$ having the maximum degree over all the minimum covering sets of $G$. Let $N_S[v]=\\{u\\in S : uv \\in E(G \\}\\cup \\{v\\}$ be the closed neighbourhood of the vertex $v$ with respect to $S.$ We define a square matrix $A_S(G= (a_{ij},$ by $a_{ij}=1,$ if $\\left |N_S[v_i]\\cap N_S[v_j] \\right| \\geq 1, i\
Fundamentals of algebraic graph transformation
Ehrig, Hartmut; Prange, Ulrike; Taentzer, Gabriele
2006-01-01
Graphs are widely used to represent structural information in the form of objects and connections between them. Graph transformation is the rule-based manipulation of graphs, an increasingly important concept in computer science and related fields. This is the first textbook treatment of the algebraic approach to graph transformation, based on algebraic structures and category theory. Part I is an introduction to the classical case of graph and typed graph transformation. In Part II basic and advanced results are first shown for an abstract form of replacement systems, so-called adhesive high-level replacement systems based on category theory, and are then instantiated to several forms of graph and Petri net transformation systems. Part III develops typed attributed graph transformation, a technique of key relevance in the modeling of visual languages and in model transformation. Part IV contains a practical case study on model transformation and a presentation of the AGG (attributed graph grammar) tool envir...
The STAPL Parallel Graph Library
Harshvardhan,
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable distributed graph container and a collection of commonly used parallel graph algorithms. The library introduces pGraph pViews that separate algorithm design from the container implementation. It supports three graph processing algorithmic paradigms, level-synchronous, asynchronous and coarse-grained, and provides common graph algorithms based on them. Experimental results demonstrate improved scalability in performance and data size over existing graph libraries on more than 16,000 cores and on internet-scale graphs containing over 16 billion vertices and 250 billion edges. © Springer-Verlag Berlin Heidelberg 2013.
Chen, Chen-Yuan
2013-01-01
In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…
Transduction on Directed Graphs via Absorbing Random Walks.
De, Jaydeep; Zhang, Xiaowei; Lin, Feng; Cheng, Li
2017-08-11
In this paper we consider the problem of graph-based transductive classification, and we are particularly interested in the directed graph scenario which is a natural form for many real world applications.Different from existing research efforts that either only deal with undirected graphs or circumvent directionality by means of symmetrization, we propose a novel random walk approach on directed graphs using absorbing Markov chains, which can be regarded as maximizing the accumulated expected number of visits from the unlabeled transient states. Our algorithm is simple, easy to implement, and works with large-scale graphs on binary, multiclass, and multi-label prediction problems. Moreover, it is capable of preserving the graph structure even when the input graph is sparse and changes over time, as well as retaining weak signals presented in the directed edges. We present its intimate connections to a number of existing methods, including graph kernels, graph Laplacian based methods, and interestingly, spanning forest of graphs. Its computational complexity and the generalization error are also studied. Empirically our algorithm is systematically evaluated on a wide range of applications, where it has shown to perform competitively comparing to a suite of state-of-the-art methods. In particular, our algorithm is shown to work exceptionally well with large sparse directed graphs with e.g. millions of nodes and tens of millions of edges, where it significantly outperforms other state-of-the-art methods. In the dynamic graph setting involving insertion or deletion of nodes and edge-weight changes over time, it also allows efficient online updates that produce the same results as of the batch update counterparts.
Ribes, Luis
2017-01-01
This book offers a detailed introduction to graph theoretic methods in profinite groups and applications to abstract groups. It is the first to provide a comprehensive treatment of the subject. The author begins by carefully developing relevant notions in topology, profinite groups and homology, including free products of profinite groups, cohomological methods in profinite groups, and fixed points of automorphisms of free pro-p groups. The final part of the book is dedicated to applications of the profinite theory to abstract groups, with sections on finitely generated subgroups of free groups, separability conditions in free and amalgamated products, and algorithms in free groups and finite monoids. Profinite Graphs and Groups will appeal to students and researchers interested in profinite groups, geometric group theory, graphs and connections with the theory of formal languages. A complete reference on the subject, the book includes historical and bibliographical notes as well as a discussion of open quest...
Subdominant pseudoultrametric on graphs
Dovgoshei, A A; Petrov, E A [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-08-31
Let (G,w) be a weighted graph. We find necessary and sufficient conditions under which the weight w:E(G)→R{sup +} can be extended to a pseudoultrametric on V(G), and establish a criterion for the uniqueness of such an extension. We demonstrate that (G,w) is a complete k-partite graph, for k≥2, if and only if for any weight that can be extended to a pseudoultrametric, among all such extensions one can find the least pseudoultrametric consistent with w. We give a structural characterization of graphs for which the subdominant pseudoultrametric is an ultrametric for any strictly positive weight that can be extended to a pseudoultrametric. Bibliography: 14 titles.
a Super Voxel-Based Riemannian Graph for Multi Scale Segmentation of LIDAR Point Clouds
Li, Minglei
2018-04-01
Automatically segmenting LiDAR points into respective independent partitions has become a topic of great importance in photogrammetry, remote sensing and computer vision. In this paper, we cast the problem of point cloud segmentation as a graph optimization problem by constructing a Riemannian graph. The scale space of the observed scene is explored by an octree-based over-segmentation with different depths. The over-segmentation produces many super voxels which restrict the structure of the scene and will be used as nodes of the graph. The Kruskal coordinates are used to compute edge weights that are proportional to the geodesic distance between nodes. Then we compute the edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths between super voxel nodes on the scene surface. The final segmentation results are generated by clustering similar super voxels and cutting off the weak edges in the graph. The performance of this method was evaluated on LiDAR point clouds for both indoor and outdoor scenes. Additionally, extensive comparisons to state of the art techniques show that our algorithm outperforms on many metrics.
An Experiment on Graph Analysis Methodologies for Scenarios
Brothers, Alan J.; Whitney, Paul D.; Wolf, Katherine E.; Kuchar, Olga A.; Chin, George
2005-09-30
Visual graph representations are increasingly used to represent, display, and explore scenarios and the structure of organizations. The graph representations of scenarios are readily understood, and commercial software is available to create and manage these representations. The purpose of the research presented in this paper is to explore whether these graph representations support quantitative assessments of the underlying scenarios. The underlying structure of the scenarios is the information that is being targeted in the experiment and the extent to which the scenarios are similar in content. An experiment was designed that incorporated both the contents of the scenarios and analysts’ graph representations of the scenarios. The scenarios’ content was represented graphically by analysts, and both the structure and the semantics of the graph representation were attempted to be used to understand the content. The structure information was not found to be discriminating for the content of the scenarios in this experiment; but, the semantic information was discriminating.
Mykhalovskiy, Eric
2011-09-01
Using criminal law powers to respond to people living with HIV (PHAs) who expose sexual partners to HIV or transmit the virus to them is a prominent global HIV public policy issue. While there are widespread concerns about the public health impact of HIV-related criminalization, the social science literature on the topic is limited. This article responds to that gap in knowledge by reporting on the results of qualitative research conducted with service providers and PHAs in Canada. The article draws on a studies in the social organization of knowledge perspective and insights from critical criminology and work on the "medico-legal borderland." It investigates the role played by the legal concept of "significant risk" in coordinating criminal law governance and its interface with public health and HIV prevention. In doing so, the article emphasizes that exploring the public health impact of criminalization must move past the criminal law--PHA dyad to address broader social and institutional processes relevant to HIV prevention. Drawing on individual and focus group interviews, this article explores how criminal law governance shapes the activities of providers engaged in HIV prevention counseling, conceptualized as a complex of activities linking clinicians, public health officials, front-line counselors, PHAs, and others. It emphasizes three key findings: (1) the concept of significant risk poses serious problems to risk communication in HIV counseling and contributes to contradictory advice about disclosure obligations; (2) criminalization discourages PHAs' openness about HIV non-disclosure in counseling relationships; and (3) the recontextualization of public health interpretations of significant risk in criminal proceedings can intensify criminalization. Copyright © 2011 Elsevier Ltd. All rights reserved.
Quantitative graph theory mathematical foundations and applications
Dehmer, Matthias
2014-01-01
The first book devoted exclusively to quantitative graph theory, Quantitative Graph Theory: Mathematical Foundations and Applications presents and demonstrates existing and novel methods for analyzing graphs quantitatively. Incorporating interdisciplinary knowledge from graph theory, information theory, measurement theory, and statistical techniques, this book covers a wide range of quantitative-graph theoretical concepts and methods, including those pertaining to real and random graphs such as:Comparative approaches (graph similarity or distance)Graph measures to characterize graphs quantitat
On semidefinite programming bounds for graph bandwidth
de Klerk, E.; Nagy, M.; Sotirov, R.
2013-01-01
In this paper, we propose two new lower bounds on graph bandwidth and cyclic bandwidth based on semidefinite programming (SDP) relaxations of the quadratic assignment problem. We compare the new bounds with two other SDP bounds reported in [A. Blum, G. Konjevod, R. Ravi, and S. Vempala,
Dynamic Matchings in Convex Bipartite Graphs
Brodal, Gerth Stølting; Georgiadis, Loukas; Hansen, Kristoffer Arnsfelt
2007-01-01
We consider the problem of maintaining a maximum matching in a convex bipartite graph G = (V,E) under a set of update operations which includes insertions and deletions of vertices and edges. It is not hard to show that it is impossible to maintain an explicit representation of a maximum matching...
Connected feedback vertex set in planar graphs
Grigoriev, Alexander; Sitters, René
2010-01-01
We study the problem of finding a minimum tree spanning the faces of a given planar graph. We show that a constant factor approximation follows from the unconnected version if the minimum degree is 3. Moreover, we present a polynomial time approximation scheme for both the connected and unconnected
Exploring the pros and cons of mechanistic case diagrams for problem-based learning
Minjeong Kim
2017-09-01
Full Text Available Purpose Mechanistic case diagram (MCD was recommended for increasing the depth of understanding of disease, but with few articles on its specific methods. We address the experience of making MCD in the fullest depth to identify the pros and cons of using MCDs in such ways. Methods During problem-based learning, we gave guidelines of MCD for its mechanistic exploration from subcellular processes to clinical features, being laid out in as much detail as possible. To understand the students’ attitudes and depth of study using MCDs, we analyzed the results of a questionnaire in an open format about experiencing MCDs and examined the resulting products. Results Through the responses to questionnaire, we found several favorable outcomes, major of which was deeper insight and comprehensive understanding of disease facilitated by the process of making well-organized diagram. The main disadvantages of these guidelines were the feeling of too much workload and difficulty of finding mechanisms. Students gave suggestions to overcome these problems: cautious reading of comprehensive texts, additional guidance from staff about depth and focus of mechanisms, and cooperative group work. From the analysis of maps, we recognized there should be allowance of diversities in the appearance of maps and many hypothetical connections, which could be related to an insufficient understanding of mechanisms in nature. Conclusion The more detailed an MCD task is, the better students can become acquainted with deep knowledges. However, this advantage should be balanced by the results that there are many ensuing difficulties for the work and deliberate help plans should be prepared.
Cheung, King Sing
2014-01-01
Petri nets are a formal and theoretically rich model for the modelling and analysis of systems. A subclass of Petri nets, augmented marked graphs possess a structure that is especially desirable for the modelling and analysis of systems with concurrent processes and shared resources.This monograph consists of three parts: Part I provides the conceptual background for readers who have no prior knowledge on Petri nets; Part II elaborates the theory of augmented marked graphs; finally, Part III discusses the application to system integration. The book is suitable as a first self-contained volume
Dayal, Amit; Brock, David
2018-01-01
Prashant Chandrasekar, a lead developer for the Social Interactome project, has tasked the team with creating a graph representation of the data collected from the social networks involved in that project. The data is currently stored in a MySQL database. The client requested that the graph database be Cayley, but after a literature review, Neo4j was chosen. The reasons for this shift will be explained in the design section. Secondarily, the team was tasked with coming up with three scena...
Stevanovic, Dragan
2015-01-01
Spectral Radius of Graphs provides a thorough overview of important results on the spectral radius of adjacency matrix of graphs that have appeared in the literature in the preceding ten years, most of them with proofs, and including some previously unpublished results of the author. The primer begins with a brief classical review, in order to provide the reader with a foundation for the subsequent chapters. Topics covered include spectral decomposition, the Perron-Frobenius theorem, the Rayleigh quotient, the Weyl inequalities, and the Interlacing theorem. From this introduction, the
Graph embedding with rich information through heterogeneous graph
Sun, Guolei
2017-01-01
Graph embedding, aiming to learn low-dimensional representations for nodes in graphs, has attracted increasing attention due to its critical application including node classification, link prediction and clustering in social network analysis. Most
A graph algebra for scalable visual analytics.
Shaverdian, Anna A; Zhou, Hao; Michailidis, George; Jagadish, Hosagrahar V
2012-01-01
Visual analytics (VA), which combines analytical techniques with advanced visualization features, is fast becoming a standard tool for extracting information from graph data. Researchers have developed many tools for this purpose, suggesting a need for formal methods to guide these tools' creation. Increased data demands on computing requires redesigning VA tools to consider performance and reliability in the context of analysis of exascale datasets. Furthermore, visual analysts need a way to document their analyses for reuse and results justification. A VA graph framework encapsulated in a graph algebra helps address these needs. Its atomic operators include selection and aggregation. The framework employs a visual operator and supports dynamic attributes of data to enable scalable visual exploration of data.
Dynamic airspace configuration method based on a weighted graph model
Chen Yangzhou
2014-08-01
Full Text Available This paper proposes a new method for dynamic airspace configuration based on a weighted graph model. The method begins with the construction of an undirected graph for the given airspace, where the vertices represent those key points such as airports, waypoints, and the edges represent those air routes. Those vertices are used as the sites of Voronoi diagram, which divides the airspace into units called as cells. Then, aircraft counts of both each cell and of each air-route are computed. Thus, by assigning both the vertices and the edges with those aircraft counts, a weighted graph model comes into being. Accordingly the airspace configuration problem is described as a weighted graph partitioning problem. Then, the problem is solved by a graph partitioning algorithm, which is a mixture of general weighted graph cuts algorithm, an optimal dynamic load balancing algorithm and a heuristic algorithm. After the cuts algorithm partitions the model into sub-graphs, the load balancing algorithm together with the heuristic algorithm transfers aircraft counts to balance workload among sub-graphs. Lastly, airspace configuration is completed by determining the sector boundaries. The simulation result shows that the designed sectors satisfy not only workload balancing condition, but also the constraints such as convexity, connectivity, as well as minimum distance constraint.
Using Graph and Vertex Entropy to Compare Empirical Graphs with Theoretical Graph Models
Tomasz Kajdanowicz
2016-09-01
Full Text Available Over the years, several theoretical graph generation models have been proposed. Among the most prominent are: the Erdős–Renyi random graph model, Watts–Strogatz small world model, Albert–Barabási preferential attachment model, Price citation model, and many more. Often, researchers working with real-world data are interested in understanding the generative phenomena underlying their empirical graphs. They want to know which of the theoretical graph generation models would most probably generate a particular empirical graph. In other words, they expect some similarity assessment between the empirical graph and graphs artificially created from theoretical graph generation models. Usually, in order to assess the similarity of two graphs, centrality measure distributions are compared. For a theoretical graph model this means comparing the empirical graph to a single realization of a theoretical graph model, where the realization is generated from the given model using an arbitrary set of parameters. The similarity between centrality measure distributions can be measured using standard statistical tests, e.g., the Kolmogorov–Smirnov test of distances between cumulative distributions. However, this approach is both error-prone and leads to incorrect conclusions, as we show in our experiments. Therefore, we propose a new method for graph comparison and type classification by comparing the entropies of centrality measure distributions (degree centrality, betweenness centrality, closeness centrality. We demonstrate that our approach can help assign the empirical graph to the most similar theoretical model using a simple unsupervised learning method.
Towards Scalable Graph Computation on Mobile Devices.
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2014-10-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach.
Towards Scalable Graph Computation on Mobile Devices
Chen, Yiqi; Lin, Zhiyuan; Pienta, Robert; Kahng, Minsuk; Chau, Duen Horng
2015-01-01
Mobile devices have become increasingly central to our everyday activities, due to their portability, multi-touch capabilities, and ever-improving computational power. Such attractive features have spurred research interest in leveraging mobile devices for computation. We explore a novel approach that aims to use a single mobile device to perform scalable graph computation on large graphs that do not fit in the device's limited main memory, opening up the possibility of performing on-device analysis of large datasets, without relying on the cloud. Based on the familiar memory mapping capability provided by today's mobile operating systems, our approach to scale up computation is powerful and intentionally kept simple to maximize its applicability across the iOS and Android platforms. Our experiments demonstrate that an iPad mini can perform fast computation on large real graphs with as many as 272 million edges (Google+ social graph), at a speed that is only a few times slower than a 13″ Macbook Pro. Through creating a real world iOS app with this technique, we demonstrate the strong potential application for scalable graph computation on a single mobile device using our approach. PMID:25859564
Handbook of graph grammars and computing by graph transformation
Engels, G; Kreowski, H J; Rozenberg, G
1999-01-01
Graph grammars originated in the late 60s, motivated by considerations about pattern recognition and compiler construction. Since then, the list of areas which have interacted with the development of graph grammars has grown quite impressively. Besides the aforementioned areas, it includes software specification and development, VLSI layout schemes, database design, modeling of concurrent systems, massively parallel computer architectures, logic programming, computer animation, developmental biology, music composition, visual languages, and many others.The area of graph grammars and graph tran
Topics in graph theory graphs and their Cartesian product
Imrich, Wilfried; Rall, Douglas F
2008-01-01
From specialists in the field, you will learn about interesting connections and recent developments in the field of graph theory by looking in particular at Cartesian products-arguably the most important of the four standard graph products. Many new results in this area appear for the first time in print in this book. Written in an accessible way, this book can be used for personal study in advanced applications of graph theory or for an advanced graph theory course.
Obasi, Ezemenari M; Brooks, Jessica J; Cavanagh, Lucia
2016-01-01
Few studies have sought to understand the concurrent relationship between cognitive and affective processes on alcohol use and negative alcohol-related consequences, despite both being identified as predictive risk factors in the college population. More research is needed to understand the relationships between identified factors of problem drinking among this at-risk population. The purpose of this study was to test if the relationship between psychological distress and problem drinking among university students (N = 284; M-age = 19.77) was mediated by negative affect regulation strategies and positive alcohol-related expectancies. Two latent mediation models of problem drinking were tested using structural equation modeling (SEM). The parsimonious three-path mediated latent model was supported by the data, as evidenced by several model fit indices. Furthermore, the alternate saturated model provided similar fit to the data, but contained several direct relationships that were not statistically significant. The relationship between psychological distress and problem drinking was mediated by an extended contributory chain, including negative affect regulation and positive alcohol-related expectancies. Implications for prevention and treatment, as well as future directions, are discussed. © The Author(s) 2015.
Network evolution driven by dynamics applied to graph coloring
Wu Jian-She; Li Li-Guang; Yu Xin; Jiao Li-Cheng; Wang Xiao-Hua
2013-01-01
An evolutionary network driven by dynamics is studied and applied to the graph coloring problem. From an initial structure, both the topology and the coupling weights evolve according to the dynamics. On the other hand, the dynamics of the network are determined by the topology and the coupling weights, so an interesting structure-dynamics co-evolutionary scheme appears. By providing two evolutionary strategies, a network described by the complement of a graph will evolve into several clusters of nodes according to their dynamics. The nodes in each cluster can be assigned the same color and nodes in different clusters assigned different colors. In this way, a co-evolution phenomenon is applied to the graph coloring problem. The proposed scheme is tested on several benchmark graphs for graph coloring
Irene Govender
2014-07-01
Full Text Available The difficulty of learning to program has long been identified amongst novices. This study explored the benefits of teaching a problem solving strategy by comparing students’ perceptions and attitudes towards problem solving before and after the strategy was implemented in secondary schools. Based on self-efficacy theory, students’ problem solving self-efficacy as well as teachers’ self-efficacy were investigated, showing that both students’ and teachers’ self-efficacy may have benefited from the explicit instruction. This would imply that teaching problem solving explicitly should be encouraged to increase self-efficacy to program.
Resistance Distances in Vertex-Face Graphs
Shangguan, Yingmin; Chen, Haiyan
2018-01-01
The computation of two-point resistances in networks is a classical problem in electric circuit theory and graph theory. Let G be a triangulation graph with n vertices embedded on an orientable surface. Define K(G) to be the graph obtained from G by inserting a new vertex vϕ to each face ϕ of G and adding three new edges (u, vϕ), (v, vϕ) and (w, vϕ), where u, v and w are three vertices on the boundary of ϕ. In this paper, using star-triangle transformation and resistance local-sum rules, explicit relations between resistance distances in K(G) and those in G are obtained. These relations enable us to compute resistance distance between any two points of Kk(G) recursively. As explanation examples, some resistances in several networks are computed, including the modified Apollonian network and networks constructed from tetrahedron, octahedron and icosahedron, respectively.
Fadzil, Hidayah Mohd
2017-01-01
Developing problem solving skills is often accepted as a desirable goal in many educational settings. However, there is little evidence to support that students are better problem solvers after graduating. The students can solve routine problems but they confronted difficulties when adapting their prior knowledge for the solution of new problems.…
Coloring geographical threshold graphs
Bradonjic, Milan [Los Alamos National Laboratory; Percus, Allon [Los Alamos National Laboratory; Muller, Tobias [EINDHOVEN UNIV. OF TECH
2008-01-01
We propose a coloring algorithm for sparse random graphs generated by the geographical threshold graph (GTG) model, a generalization of random geometric graphs (RGG). In a GTG, nodes are distributed in a Euclidean space, and edges are assigned according to a threshold function involving the distance between nodes as well as randomly chosen node weights. The motivation for analyzing this model is that many real networks (e.g., wireless networks, the Internet, etc.) need to be studied by using a 'richer' stochastic model (which in this case includes both a distance between nodes and weights on the nodes). Here, we analyze the GTG coloring algorithm together with the graph's clique number, showing formally that in spite of the differences in structure between GTG and RGG, the asymptotic behavior of the chromatic number is identical: {chi}1n 1n n / 1n n (1 + {omicron}(1)). Finally, we consider the leading corrections to this expression, again using the coloring algorithm and clique number to provide bounds on the chromatic number. We show that the gap between the lower and upper bound is within C 1n n / (1n 1n n){sup 2}, and specify the constant C.
Budhiraja, A.S.; Mukherjee, D.; Wu, R.
2017-01-01
We consider a variation of the supermarket model in which the servers can communicate with their neighbors and where the neighborhood relationships are described in terms of a suitable graph. Tasks with unit-exponential service time distributions arrive at each vertex as independent Poisson
Kucharik, Marcel; Hofacker, Ivo; Stadler, Peter
2014-01-01
of the folding free energy landscape, however, can provide the relevant information. Results We introduce the basin hopping graph (BHG) as a novel coarse-grained model of folding landscapes. Each vertex of the BHG is a local minimum, which represents the corresponding basin in the landscape. Its edges connect...
Analysis and enumeration algorithms for biological graphs
Marino, Andrea
2015-01-01
In this work we plan to revise the main techniques for enumeration algorithms and to show four examples of enumeration algorithms that can be applied to efficiently deal with some biological problems modelled by using biological networks: enumerating central and peripheral nodes of a network, enumerating stories, enumerating paths or cycles, and enumerating bubbles. Notice that the corresponding computational problems we define are of more general interest and our results hold in the case of arbitrary graphs. Enumerating all the most and less central vertices in a network according to their eccentricity is an example of an enumeration problem whose solutions are polynomial and can be listed in polynomial time, very often in linear or almost linear time in practice. Enumerating stories, i.e. all maximal directed acyclic subgraphs of a graph G whose sources and targets belong to a predefined subset of the vertices, is on the other hand an example of an enumeration problem with an exponential number of solutions...
The STAPL Parallel Graph Library
Harshvardhan,; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2013-01-01
This paper describes the stapl Parallel Graph Library, a high-level framework that abstracts the user from data-distribution and parallelism details and allows them to concentrate on parallel graph algorithm development. It includes a customizable
graphkernels: R and Python packages for graph comparison.
Sugiyama, Mahito; Ghisu, M Elisabetta; Llinares-López, Felipe; Borgwardt, Karsten
2018-02-01
Measuring the similarity of graphs is a fundamental step in the analysis of graph-structured data, which is omnipresent in computational biology. Graph kernels have been proposed as a powerful and efficient approach to this problem of graph comparison. Here we provide graphkernels, the first R and Python graph kernel libraries including baseline kernels such as label histogram based kernels, classic graph kernels such as random walk based kernels, and the state-of-the-art Weisfeiler-Lehman graph kernel. The core of all graph kernels is implemented in C ++ for efficiency. Using the kernel matrices computed by the package, we can easily perform tasks such as classification, regression and clustering on graph-structured samples. The R and Python packages including source code are available at https://CRAN.R-project.org/package=graphkernels and https://pypi.python.org/pypi/graphkernels. mahito@nii.ac.jp or elisabetta.ghisu@bsse.ethz.ch. Supplementary data are available online at Bioinformatics. © The Author(s) 2017. Published by Oxford University Press.
Learning a Nonnegative Sparse Graph for Linear Regression.
Fang, Xiaozhao; Xu, Yong; Li, Xuelong; Lai, Zhihui; Wong, Wai Keung
2015-09-01
Previous graph-based semisupervised learning (G-SSL) methods have the following drawbacks: 1) they usually predefine the graph structure and then use it to perform label prediction, which cannot guarantee an overall optimum and 2) they only focus on the label prediction or the graph structure construction but are not competent in handling new samples. To this end, a novel nonnegative sparse graph (NNSG) learning method was first proposed. Then, both the label prediction and projection learning were integrated into linear regression. Finally, the linear regression and graph structure learning were unified within the same framework to overcome these two drawbacks. Therefore, a novel method, named learning a NNSG for linear regression was presented, in which the linear regression and graph learning were simultaneously performed to guarantee an overall optimum. In the learning process, the label information can be accurately propagated via the graph structure so that the linear regression can learn a discriminative projection to better fit sample labels and accurately classify new samples. An effective algorithm was designed to solve the corresponding optimization problem with fast convergence. Furthermore, NNSG provides a unified perceptiveness for a number of graph-based learning methods and linear regression methods. The experimental results showed that NNSG can obtain very high classification accuracy and greatly outperforms conventional G-SSL methods, especially some conventional graph construction methods.
GRAMI: Generalized Frequent Subgraph Mining in Large Graphs
El Saeedy, Mohammed El Sayed
2011-07-24
Mining frequent subgraphs is an important operation on graphs. Most existing work assumes a database of many small graphs, but modern applications, such as social networks, citation graphs or protein-protein interaction in bioinformatics, are modeled as a single large graph. Interesting interactions in such applications may be transitive (e.g., friend of a friend). Existing methods, however, search for frequent isomorphic (i.e., exact match) subgraphs and cannot discover many useful patterns. In this paper we propose GRAMI, a framework that generalizes frequent subgraph mining in a large single graph. GRAMI discovers frequent patterns. A pattern is a graph where edges are generalized to distance-constrained paths. Depending on the definition of the distance function, many instantiations of the framework are possible. Both directed and undirected graphs, as well as multiple labels per vertex, are supported. We developed an efficient implementation of the framework that models the frequency resolution phase as a constraint satisfaction problem, in order to avoid the costly enumeration of all instances of each pattern in the graph. We also implemented CGRAMI, a version that supports structural and semantic constraints; and AGRAMI, an approximate version that supports very large graphs. Our experiments on real data demonstrate that our framework is up to 3 orders of magnitude faster and discovers more interesting patterns than existing approaches.
Solar discrepancies: Mars exploration and the curious problem of inter-planetary time
Mirmalek, Zara Lenora
The inter-planetary work system for the NASA's Mars Exploration Rovers (MER) mission entailed coordinating work between two corporally diverse workgroups, human beings and solar-powered robots, and between two planets with asynchronous axial rotations. The rotation of Mars takes approximately 24 hours and 40 minutes while for Earth the duration is 24 hours, a differential that was synchronized on Earth by setting a clock forward forty minutes every day. The hours of the day during which the solar-powered rovers were operational constituted the central consideration in the relationship between time and work around which the schedule of MER science operations were organized. And, the operational hours for the rovers were precarious for at least two reasons: on the one hand, the possibility of a sudden and inexplicable malfunction was always present; on the other, the rovers were powered by solar-charged batteries that could simply (and would eventually) fail. Thus, the timetable for the inter-planetary work system was scheduled according to the daily cycle of the sun on Mars and a version of clock time called Mars time was used to keep track of the movement of the sun on Mars. While the MER mission was a success, it does not necessarily follow that all aspects of mission operations were successful. One of the central problems that plagued the organization of mission operations was precisely this construct called "Mars time" even while it appeared that the use of Mars time was unproblematic and central to the success of the mission. In this dissertation, Zara Mirmalek looks at the construction of Mars time as a tool and as a social process. Of particular interest are the consequences of certain (ostensibly foundational) assumptions about the relationship between clock time and the conduct of work that contributed to making the relationship between Mars time and work on Earth appear operational. Drawing on specific examples of breakdowns of Mars time as a support
Theoretical issues in quantum computing: Graph isomorphism, PageRank, and Hamiltonian determination
Rudinger, Kenneth Michael
This thesis explores several theoretical questions pertaining to quantum computing. First we examine several questions regarding multi-particle quantum random walk-based algorithms for the graph isomorphism problem. We find that there exists a non-trivial difference between continuous-time walks of one and two non-interacting particles as compared to non-interacting walks of three or more particles, in that the latter are able to distinguish many strongly regular graphs (SRGs), a class of graphs with many graph pairs that are difficult to distinguish. We demonstrate analytically where this distinguishing power comes from, and we show numerically that three-particle and four-particle non-interacting continuous-time walks can distinguish many pairs of strongly regular graphs. We additionally show that this distinguishing power, while it grows with particle number, is bounded, so that no continuous-time non-interacting walk of fixed particle number can distinguish all strongly regular graphs. We then investigate the relationship between continuous-time and discrete-time walks, in the context of the graph isomorphism problem. While it has been previously demonstrated numerically that discrete-time walks of non-interacting particles can distinguish some SRGs, we demonstrate where this distinguishing power comes from. We also show that while no continuous-time non-interacting walk of fixed particle number can distinguish SRGs, it remains a possibility that such a discrete-time walk could, leaving open the possibility of a non-trivial difference between discrete-time and continuous-time walks. The last piece of our work on graph isomorphism examines limitations on certain kinds of continuous-time walk-based algorithms for distinguishing graphs. We show that a very general class of continuous-time walk algorithms, with a broad class of allowable interactions, cannot distinguish all graphs. We next consider a previously-proposed quantum adiabatic algorithm for computing the
A linear time algorithm for minimum fill-in and treewidth for distance heredity graphs
Broersma, Haitze J.; Dahlhaus, E.; Kloks, A.J.J.; Kloks, T.
2000-01-01
A graph is distance hereditary if it preserves distances in all its connected induced subgraphs. The MINIMUM FILL-IN problem is the problem of finding a chordal supergraph with the smallest possible number of edges. The TREEWIDTH problem is the problem of finding a chordal embedding of the graph
Winlaw, Manda [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); De Sterck, Hans [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sanders, Geoffrey [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-26
In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.
Groupies in multitype random graphs
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erd?s-R?nyi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Groupies in multitype random graphs.
Shang, Yilun
2016-01-01
A groupie in a graph is a vertex whose degree is not less than the average degree of its neighbors. Under some mild conditions, we show that the proportion of groupies is very close to 1/2 in multitype random graphs (such as stochastic block models), which include Erdős-Rényi random graphs, random bipartite, and multipartite graphs as special examples. Numerical examples are provided to illustrate the theoretical results.
Temporal Representation in Semantic Graphs
Levandoski, J J; Abdulla, G M
2007-08-07
A wide range of knowledge discovery and analysis applications, ranging from business to biological, make use of semantic graphs when modeling relationships and concepts. Most of the semantic graphs used in these applications are assumed to be static pieces of information, meaning temporal evolution of concepts and relationships are not taken into account. Guided by the need for more advanced semantic graph queries involving temporal concepts, this paper surveys the existing work involving temporal representations in semantic graphs.
Quantum walks on quotient graphs
Krovi, Hari; Brun, Todd A.
2007-01-01
A discrete-time quantum walk on a graph Γ is the repeated application of a unitary evolution operator to a Hilbert space corresponding to the graph. If this unitary evolution operator has an associated group of symmetries, then for certain initial states the walk will be confined to a subspace of the original Hilbert space. Symmetries of the original graph, given by its automorphism group, can be inherited by the evolution operator. We show that a quantum walk confined to the subspace corresponding to this symmetry group can be seen as a different quantum walk on a smaller quotient graph. We give an explicit construction of the quotient graph for any subgroup H of the automorphism group and illustrate it with examples. The automorphisms of the quotient graph which are inherited from the original graph are the original automorphism group modulo the subgroup H used to construct it. The quotient graph is constructed by removing the symmetries of the subgroup H from the original graph. We then analyze the behavior of hitting times on quotient graphs. Hitting time is the average time it takes a walk to reach a given final vertex from a given initial vertex. It has been shown in earlier work [Phys. Rev. A 74, 042334 (2006)] that the hitting time for certain initial states of a quantum walks can be infinite, in contrast to classical random walks. We give a condition which determines whether the quotient graph has infinite hitting times given that they exist in the original graph. We apply this condition for the examples discussed and determine which quotient graphs have infinite hitting times. All known examples of quantum walks with hitting times which are short compared to classical random walks correspond to systems with quotient graphs much smaller than the original graph; we conjecture that the existence of a small quotient graph with finite hitting times is necessary for a walk to exhibit a quantum speedup
A generalization of total graphs
M Afkhami
2018-04-12
Apr 12, 2018 ... product of any lower triangular matrix with the transpose of any element of U belongs to U. The ... total graph of R, which is denoted by T( (R)), is a simple graph with all elements of R as vertices, and ...... [9] Badawi A, On dot-product graph of a commutative ring, Communications in Algebra 43 (2015). 43–50.
Graph transformation tool contest 2008
Rensink, Arend; van Gorp, Pieter
This special section is the outcome of the graph transformation tool contest organised during the Graph-Based Tools (GraBaTs) 2008 workshop, which took place as a satellite event of the International Conference on Graph Transformation (ICGT) 2008. The contest involved two parts: three “off-line case
On dominator colorings in graphs
colors required for a dominator coloring of G is called the dominator .... Theorem 1.3 shows that the complete graph Kn is the only connected graph of order n ... Conversely, if a graph G satisfies condition (i) or (ii), it is easy to see that χd(G) =.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Crone, T. J.; Knuth, F.; Marburg, A.
2016-12-01
A broad array of Earth science problems can be investigated using high-definition video imagery from the seafloor, ranging from those that are geological and geophysical in nature, to those that are biological and water-column related. A high-definition video camera was installed as part of the Ocean Observatory Initiative's core instrument suite on the Cabled Array, a real-time fiber optic data and power system that stretches from the Oregon Coast to Axial Seamount on the Juan de Fuca Ridge. This camera runs a 14-minute pan-tilt-zoom routine 8 times per day, focusing on locations of scientific interest on and near the Mushroom vent in the ASHES hydrothermal field inside the Axial caldera. The system produces 13 GB of lossless HD video every 3 hours, and at the time of this writing it has generated 2100 recordings totaling 28.5 TB since it began streaming data into the OOI archive in August of 2015. Because of the large size of this dataset, downloading the entirety of the video for long timescale investigations is not practical. We are developing a set of user-side tools for downloading single frames and frame ranges from the OOI HD camera raw data archive to aid users interested in using these data for their research. We use these tools to download about one year's worth of partial frame sets to investigate several questions regarding the hydrothermal system at ASHES, including the variability of bacterial "floc" in the water-column, and changes in high temperature fluid fluxes using optical flow techniques. We show that while these user-side tools can facilitate rudimentary scientific investigations using the HD camera data, a server-side computing environment that allows users to explore this dataset without downloading any raw video will be required for more advanced investigations to flourish.
Algorithms for Planar Graphs and Graphs in Metric Spaces
Wulff-Nilsen, Christian
structural properties that can be exploited. For instance, a road network or a wire layout on a microchip is typically (near-)planar and distances in the network are often defined w.r.t. the Euclidean or the rectilinear metric. Specialized algorithms that take advantage of such properties are often orders...... of magnitude faster than the corresponding algorithms for general graphs. The first and main part of this thesis focuses on the development of efficient planar graph algorithms. The most important contributions include a faster single-source shortest path algorithm, a distance oracle with subquadratic...... for geometric graphs and graphs embedded in metric spaces. Roughly speaking, the stretch factor is a real value expressing how well a (geo-)metric graph approximates the underlying complete graph w.r.t. distances. We give improved algorithms for computing the stretch factor of a given graph and for augmenting...
Exploring Primary Student's Problem-Solving Ability by Doing Tasks Like PISA's Question
Novita, Rita; Zulkardi, Zulkardi; Hartono, Yusuf
2012-01-01
Problem solving plays an important role in mathematics and should have a prominent role in the mathematics education. The term “problem solving” refers to mathematics tasks that have the potential to provide intellectual challenges for enhancing students’ mathematical understanding and development. In addition, the contextual problem that requires students to connect their mathematical knowledge in solving mathematical situational problem is believed to be an impact on the development student...
Annema, J.A.; Mouter, N.
2013-01-01
Key actors (consultants, scientists and policy makers) in the Netherlands transport policy cost-benefit analysis (CBA) practice consider ‘problem analysis’ to be one of the important CBA substantive problems. Their idea is that a good-quality problem analysis can help to identify proper solutions,
Harary, Frank
2015-01-01
Presented in 1962-63 by experts at University College, London, these lectures offer a variety of perspectives on graph theory. Although the opening chapters form a coherent body of graph theoretic concepts, this volume is not a text on the subject but rather an introduction to the extensive literature of graph theory. The seminar's topics are geared toward advanced undergraduate students of mathematics.Lectures by this volume's editor, Frank Harary, include ""Some Theorems and Concepts of Graph Theory,"" ""Topological Concepts in Graph Theory,"" ""Graphical Reconstruction,"" and other introduc
Spectral fluctuations of quantum graphs
Pluhař, Z.; Weidenmüller, H. A.
2014-01-01
We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry
Dynamic Representations of Sparse Graphs
Brodal, Gerth Stølting; Fagerberg, Rolf
1999-01-01
We present a linear space data structure for maintaining graphs with bounded arboricity—a large class of sparse graphs containing e.g. planar graphs and graphs of bounded treewidth—under edge insertions, edge deletions, and adjacency queries. The data structure supports adjacency queries in worst...... case O(c) time, and edge insertions and edge deletions in amortized O(1) and O(c+log n) time, respectively, where n is the number of nodes in the graph, and c is the bound on the arboricity....
Domination criticality in product graphs
M.R. Chithra
2015-07-01
Full Text Available A connected dominating set is an important notion and has many applications in routing and management of networks. Graph products have turned out to be a good model of interconnection networks. This motivated us to study the Cartesian product of graphs G with connected domination number, γc(G=2,3 and characterize such graphs. Also, we characterize the k−γ-vertex (edge critical graphs and k−γc-vertex (edge critical graphs for k=2,3 where γ denotes the domination number of G. We also discuss the vertex criticality in grids.
Graph Creation, Visualisation and Transformation
Maribel Fernández
2010-03-01
Full Text Available We describe a tool to create, edit, visualise and compute with interaction nets - a form of graph rewriting systems. The editor, called GraphPaper, allows users to create and edit graphs and their transformation rules using an intuitive user interface. The editor uses the functionalities of the TULIP system, which gives us access to a wealth of visualisation algorithms. Interaction nets are not only a formalism for the specification of graphs, but also a rewrite-based computation model. We discuss graph rewriting strategies and a language to express them in order to perform strategic interaction net rewriting.
Minimum nonuniform graph partitioning with unrelated weights
Makarychev, K. S.; Makarychev, Yu S.
2017-12-01
We give a bi-criteria approximation algorithm for the Minimum Nonuniform Graph Partitioning problem, recently introduced by Krauthgamer, Naor, Schwartz and Talwar. In this problem, we are given a graph G=(V,E) and k numbers ρ_1,\\dots, ρ_k. The goal is to partition V into k disjoint sets (bins) P_1,\\dots, P_k satisfying \\vert P_i\\vert≤ ρi \\vert V\\vert for all i, so as to minimize the number of edges cut by the partition. Our bi-criteria algorithm gives an O(\\sqrt{log \\vert V\\vert log k}) approximation for the objective function in general graphs and an O(1) approximation in graphs excluding a fixed minor. The approximate solution satisfies the relaxed capacity constraints \\vert P_i\\vert ≤ (5+ \\varepsilon)ρi \\vert V\\vert. This algorithm is an improvement upon the O(log \\vert V\\vert)-approximation algorithm by Krauthgamer, Naor, Schwartz and Talwar. We extend our results to the case of 'unrelated weights' and to the case of 'unrelated d-dimensional weights'. A preliminary version of this work was presented at the 41st International Colloquium on Automata, Languages and Programming (ICALP 2014). Bibliography: 7 titles.
Co-occurrence graphs for word sense disambiguation in the biomedical domain.
Duque, Andres; Stevenson, Mark; Martinez-Romo, Juan; Araujo, Lourdes
2018-05-01
Word sense disambiguation is a key step for many natural language processing tasks (e.g. summarization, text classification, relation extraction) and presents a challenge to any system that aims to process documents from the biomedical domain. In this paper, we present a new graph-based unsupervised technique to address this problem. The knowledge base used in this work is a graph built with co-occurrence information from medical concepts found in scientific abstracts, and hence adapted to the specific domain. Unlike other unsupervised approaches based on static graphs such as UMLS, in this work the knowledge base takes the context of the ambiguous terms into account. Abstracts downloaded from PubMed are used for building the graph and disambiguation is performed using the personalized PageRank algorithm. Evaluation is carried out over two test datasets widely explored in the literature. Different parameters of the system are also evaluated to test robustness and scalability. Results show that the system is able to outperform state-of-the-art knowledge-based systems, obtaining more than 10% of accuracy improvement in some cases, while only requiring minimal external resources. Copyright © 2018 Elsevier B.V. All rights reserved.
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar
2017-04-25
In this paper the focus is on subsampling as well as reconstructing the second-order statistics of signals residing on nodes of arbitrary undirected graphs. Second-order stationary graph signals may be obtained by graph filtering zero-mean white noise and they admit a well-defined power spectrum whose shape is determined by the frequency response of the graph filter. Estimating the graph power spectrum forms an important component of stationary graph signal processing and related inference tasks such as Wiener prediction or inpainting on graphs. The central result of this paper is that by sampling a significantly smaller subset of vertices and using simple least squares, we can reconstruct the second-order statistics of the graph signal from the subsampled observations, and more importantly, without any spectral priors. To this end, both a nonparametric approach as well as parametric approaches including moving average and autoregressive models for the graph power spectrum are considered. The results specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non-parametric and the moving average models, whereas a particular subsampling scheme that allows linear estimation for the autoregressive model is proposed. Numerical experiments on synthetic as well as real datasets related to climatology and processing handwritten digits are provided to demonstrate the developed theory.
Learning heat diffusion graphs
Thanou, Dorina; Dong, Xiaowen; Kressner, Daniel; Frossard, Pascal
2016-01-01
Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the...
Syed, M. Qasim; Lovatt, Ian
2014-01-01
This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…
Understanding Charts and Graphs.
1987-07-28
Farenheit degrees, which have no Onaturalo zero ); finally, ratio scales have numbers that are ordered so that the magnitudes of differences are important and...system. They have to do with the very nature of how marks serve as meaningful symbols. In the ideal case, a chart or graph will be absolutely unambiguous...and these laws comprise this principle (see Stevens, 1974). Absolute discriminability: A minimal magnitude of a mark is necessary for it to be detected
Yao Zhenkai
2012-01-01
A composite evaluation model of commercial geological exploration and mining development project was discussed, this new model consists of polity-economy-technique (PET) synthetic evaluation sub-model and geology-mining-metallurgy (GMM) technique evaluation sub-model. Besides, some key technical problems in commercial negotiation, such as information screening, quoted price and analysis of deadline, were briefly analyzed. (author)
Wallace, Deshira D.; Boynton, Marcella H.; Lytle, Leslie A.
2017-01-01
Objective: This study explored the association of stress and depression with a multidimensional sleep problems construct in a sample of 2-year college students. Participants: The sample consisted of 440 students enrolled in 2-year study from Fall 2011 to Fall 2013. Methods: Participants in an obesity prevention study completed surveys assessing…
Schelvis, R.M.C.; Zwetsloot, G.I.J.M.; Bos, E.H.; Wiezer, N.M.
2014-01-01
In this paper, we will explore the relevance, meaning and perspectives of teacher, team and school resilience. The central research questions are: does the concept of teacher, team and school resilience offer new and promising perspectives on persistent problems in the educational sector? And
Levin, Michael E.; Lillis, Jason; Seeley, John; Hayes, Steven C.; Pistorello, Jacqueline; Biglan, Anthony
2012-01-01
Objective: This study explored the relationship of experiential avoidance (eg, the tendency to avoid, suppress, or otherwise control internal experiences even when doing so causes behavioral harm) to alcohol use disorders and alcohol-related problems. Participants: Cross-sectional data were collected from 240 undergraduate college students in…
Application of Bipolar Fuzzy Sets in Graph Structures
Muhammad Akram
2016-01-01
Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.
Parallel Algorithms for Graph Optimization using Tree Decompositions
Sullivan, Blair D [ORNL; Weerapurage, Dinesh P [ORNL; Groer, Christopher S [ORNL
2012-06-01
Although many $\\cal{NP}$-hard graph optimization problems can be solved in polynomial time on graphs of bounded tree-width, the adoption of these techniques into mainstream scientific computation has been limited due to the high memory requirements of the necessary dynamic programming tables and excessive runtimes of sequential implementations. This work addresses both challenges by proposing a set of new parallel algorithms for all steps of a tree decomposition-based approach to solve the maximum weighted independent set problem. A hybrid OpenMP/MPI implementation includes a highly scalable parallel dynamic programming algorithm leveraging the MADNESS task-based runtime, and computational results demonstrate scaling. This work enables a significant expansion of the scale of graphs on which exact solutions to maximum weighted independent set can be obtained, and forms a framework for solving additional graph optimization problems with similar techniques.
Inverse scattering problem for quantum graph vertices
Cheon, T.; Exner, Pavel; Turek, O.
2011-01-01
Roč. 83, č. 6 (2011), 062715/1-062715/4 ISSN 1050-2947 R&D Projects: GA MŠk LC06002; GA ČR GAP203/11/0701 Institutional research plan: CEZ:AV0Z10480505 Keywords : WIRES Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.878, year: 2011
Sergio Marrero-Osorio
2011-05-01
Full Text Available El autor realiza una concisa revisión sobre la aplicación de grafos en la resolución de problemas decómputo en ingeniería, enfatizando en un método propuesto por Martínez Escanaverino que utilizagrafos dicromáticos y ha sido usado en el ámbito científico técnico de Cuba. Analiza, basado en seisejemplos, el escaso empleo que se ha dado hasta el momento al software disponible para trazar yeditar los sucesivos grafos durante el proceso de resolución; estudiando y evaluando un grupo de 18editores de grafos por sus aptitudes para aplicar el mencionado método. Finalmente se recomiendauno de ellos para su uso futuro y se confirma la conveniencia de su empleo a través de unacomparación.Palabras claves: análisis estructural, resolución de problemas, algoritmos, modelo matemático, grafosdicromáticos, editores de grafos.___________________________________________________________________AbstractAuthor makes a concise review about employment of graphs in solving engineering computationalproblems, emphasizing in one method proposed by Martinez Escanaverino which uses dichromaticgraphs and has been applied in Cuban technical sciences. Analyzes, based in six examples, lack inuse (until this moment of software for graph drawing and edition through problem solving process,studying and evaluating 18 available graph editors and suggesting one of them for future applicationsof mentioned method. Finally, making a comparison, are confirmed advantages of its usage.Key words: structural analysis, problem solving, algorithms, mathematical models, dichromatic graphs,graph editors.
Professional writers and empathy: Exploring the barriers to anticipating reader problems
de Jong, Menno D.T.; Lentz, Leo
2007-01-01
Research has shown that professional writers cannot accurately predict the problems readers will experience when using functional documents. In this paper, we give an overview of reasons why it can be so hardfor writers to anticipate reader problems. We elaborate on the concept of empathy, and
Schwabsky, Nitza
2013-01-01
The present study examines the nonroutine problems that eight Anglo-American principals encountered in managing three elementary bilingual immersion schools in the Northwest United States. Using qualitative inquiry to collect data, I employed the multisited ethnographic research model. The principals reported nonroutine problems in the following…
Fear perception and social behavioral problems in children with epilepsy: An explorative study
Coenen, Maraike; Aarnoudse, Ceciel; Brouwer, O.F.; Veenstra, Wencke S.
2013-01-01
Introduction Nassau and Drotar (1997) state that children with epilepsy often show emotional and behavioral problems. They also hypothesize that these problems may be caused by impaired social competences. Golouboff et al. (2008) show that in children with temporal lobe epilepsy, impaired
Pathfinding in graph-theoretic sabotage models. I. Simultaneous attack by several teams
Hulme, B.L.
1976-07-01
Graph models are developed for fixed-site safeguards systems. The problem of finding optimal routes for several sabotage teams is cast as a problem of finding shortest paths in a graph. The motivation, rationale, and interpretation of the mathematical models are discussed in detail, and an algorithm for efficiently solving the associated path problem is described
Sum of All-Pairs Shortest Path Distances in a Planar Graph in Subquadratic Time
Wulff-Nilsen, Christian
2008-01-01
We consider the problem of computing the Wiener index of a graph, defined as the sum of distances between all pairs of its vertices. It is an open problem whether the Wiener index of a planar graph can be found in subquadratic time. We solve this problem by presenting an algorithm with O(n^2*log...
Graphs cospectral with a friendship graph or its complement
Alireza Abdollahi
2013-12-01
Full Text Available Let $n$ be any positive integer and let $F_n$ be the friendship (or Dutch windmill graph with $2n+1$ vertices and $3n$ edges. Here we study graphs with the same adjacency spectrum as the $F_n$. Two graphs are called cospectral if the eigenvalues multiset of their adjacency matrices are the same. Let $G$ be a graph cospectral with $F_n$. Here we prove that if $G$ has no cycle of length $4$ or $5$, then $Gcong F_n$. Moreover if $G$ is connected and planar then $Gcong F_n$.All but one of connected components of $G$ are isomorphic to $K_2$.The complement $overline{F_n}$ of the friendship graph is determined by its adjacency eigenvalues, that is, if $overline{F_n}$ is cospectral with a graph $H$, then $Hcong overline{F_n}$.
GraphStore: A Distributed Graph Storage System for Big Data Networks
Martha, VenkataSwamy
2013-01-01
Networks, such as social networks, are a universal solution for modeling complex problems in real time, especially in the Big Data community. While previous studies have attempted to enhance network processing algorithms, none have paved a path for the development of a persistent storage system. The proposed solution, GraphStore, provides an…
Multigraph: Interactive Data Graphs on the Web
Phillips, M. B.
2010-12-01
Many aspects of geophysical science involve time dependent data that is often presented in the form of a graph. Considering that the web has become a primary means of communication, there are surprisingly few good tools and techniques available for presenting time-series data on the web. The most common solution is to use a desktop tool such as Excel or Matlab to create a graph which is saved as an image and then included in a web page like any other image. This technique is straightforward, but it limits the user to one particular view of the data, and disconnects the graph from the data in a way that makes updating a graph with new data an often cumbersome manual process. This situation is somewhat analogous to the state of mapping before the advent of GIS. Maps existed only in printed form, and creating a map was a laborious process. In the last several years, however, the world of mapping has experienced a revolution in the form of web-based and other interactive computer technologies, so that it is now commonplace for anyone to easily browse through gigabytes of geographic data. Multigraph seeks to bring a similar ease of access to time series data. Multigraph is a program for displaying interactive time-series data graphs in web pages that includes a simple way of configuring the appearance of the graph and the data to be included. It allows multiple data sources to be combined into a single graph, and allows the user to explore the data interactively. Multigraph lets users explore and visualize "data space" in the same way that interactive mapping applications such as Google Maps facilitate exploring and visualizing geography. Viewing a Multigraph graph is extremely simple and intuitive, and requires no instructions. Creating a new graph for inclusion in a web page involves writing a simple XML configuration file and requires no programming. Multigraph can read data in a variety of formats, and can display data from a web service, allowing users to "surf
Decomposing Oriented Graphs into Six Locally Irregular Oriented Graphs
Bensmail, Julien; Renault, Gabriel
2016-01-01
An undirected graph G is locally irregular if every two of its adjacent vertices have distinct degrees. We say that G is decomposable into k locally irregular graphs if there exists a partition E1∪E2∪⋯∪Ek of the edge set E(G) such that each Ei induces a locally irregular graph. It was recently co...
X-Graphs: Language and Algorithms for Heterogeneous Graph Streams
2017-09-01
are widely used by academia and industry. 15. SUBJECT TERMS Data Analytics, Graph Analytics, High-Performance Computing 16. SECURITY CLASSIFICATION...form the core of the DeepDive Knowledge Construction System. 2 INTRODUCTION The goal of the X-Graphs project was to develop computational techniques...memory multicore machine. Ringo is based on Snap.py and SNAP, and uses Python . Ringo now allows the integration of Delite DSL Framework Graph
Exploring Behavioral Sleep Problems in Children With ADHD and Comorbid Autism Spectrum Disorder.
Thomas, Simone; Lycett, Kate; Papadopoulos, Nicole; Sciberras, Emma; Rinehart, Nicole
2015-12-04
This study (a) compared behavioral sleep problems in children with comorbid ADHD and autism spectrum disorder (ASD) with those with ADHD and (b) examined child/family factors associated with sleep problems. Cross-sectional study comparison of 392 children with a confirmed ADHD diagnosis (ADHD+ASD, n=93, ADHD, n=299) recruited from 21 peadiatric practises in Victoria, Australia. Data were collected from parents. Key measures included the Child Sleep Habits Questionnaire (CSHQ). Children with ADHD + ASD experienced similar levels and types of behavioral sleep problems compared with those with ADHD. In both groups, the presence of co-occurring internalizing and externalizing comorbidities was associated with sleep problems. Sleep problems were also associated with parent age in the ADHD + ASD group and poorer parent mental health in the ADHD group. Findings suggest comorbid ASD is not associated with increased behavioral sleep problems in children with ADHD and that co-occurring internalizing and externalizing comorbidities may flag children in these groups with sleep problems. © The Author(s) 2015.
Delahunty, Thomas; Seery, Niall; Lynch, Raymond
2018-04-01
Currently, there is significant interest being directed towards the development of STEM education to meet economic and societal demands. While economic concerns can be a powerful driving force in advancing the STEM agenda, care must be taken that such economic imperative does not promote research approaches that overemphasize pragmatic application at the expense of augmenting the fundamental knowledge base of the discipline. This can be seen in the predominance of studies investigating problem solving approaches and procedures, while neglecting representational and conceptual processes, within the literature. Complementing concerns about STEM graduates' problem solving capabilities, raised within the pertinent literature, this paper discusses a novel methodological approach aimed at investigating the cognitive elements of problem conceptualization. The intention is to demonstrate a novel method of data collection that overcomes some of the limitations cited in classic problem solving research while balancing a search for fundamental understanding with the possibility of application. The methodology described in this study employs an electroencephalographic (EEG) headset, as part of a mixed methods approach, to gather objective evidence of students' cognitive processing during problem solving epochs. The method described provides rich evidence of students' cognitive representations of problems during episodes of applied reasoning. The reliability and validity of the EEG method is supported by the stability of the findings across the triangulated data sources. The paper presents a novel method in the context of research within STEM education and demonstrates an effective procedure for gathering rich evidence of cognitive processing during the early stages of problem conceptualization.
The Graph Laplacian and the Dynamics of Complex Networks
Thulasidasan, Sunil [Los Alamos National Laboratory
2012-06-11
In this talk, we explore the structure of networks from a spectral graph-theoretic perspective by analyzing the properties of the Laplacian matrix associated with the graph induced by a network. We will see how the eigenvalues of the graph Laplacian relate to the underlying network structure and dynamics and provides insight into a phenomenon frequently observed in real world networks - the emergence of collective behavior from purely local interactions seen in the coordinated motion of animals and phase transitions in biological networks, to name a few.
Youngstrom, Eric; Weist, Mark D; Albus, Kathleen E
2003-09-01
This study examined relationships between violence exposure, other stressors, family support, and self-concept on self-reported behavioral problems among 320 urban adolescents (aged 11-18) referred for mental health treatment. Overall, participants reported high levels of violence exposure, with a median of six past encounters with violence as a witness, victim, or through the experiences of associates. All forms of violence exposure (witnessing, being a victim, knowing of victims) were correlated with internalizing and externalizing behavioral problems for males and females. Total violence exposure predicted behavioral problems among participants, even after controlling for the effects of other risk, demographic and protective factors. Family support and self-concept moderated the influence of life stress and cumulative risk on problem behavior outcomes, but these protective variables did not significantly moderate violence exposure.
Building Scalable Knowledge Graphs for Earth Science
Ramachandran, R.; Maskey, M.; Gatlin, P. N.; Zhang, J.; Duan, X.; Bugbee, K.; Christopher, S. A.; Miller, J. J.
2017-12-01
Estimates indicate that the world's information will grow by 800% in the next five years. In any given field, a single researcher or a team of researchers cannot keep up with this rate of knowledge expansion without the help of cognitive systems. Cognitive computing, defined as the use of information technology to augment human cognition, can help tackle large systemic problems. Knowledge graphs, one of the foundational components of cognitive systems, link key entities in a specific domain with other entities via relationships. Researchers could mine these graphs to make probabilistic recommendations and to infer new knowledge. At this point, however, there is a dearth of tools to generate scalable Knowledge graphs using existing corpus of scientific literature for Earth science research. Our project is currently developing an end-to-end automated methodology for incrementally constructing Knowledge graphs for Earth Science. Semantic Entity Recognition (SER) is one of the key steps in this methodology. SER for Earth Science uses external resources (including metadata catalogs and controlled vocabulary) as references to guide entity extraction and recognition (i.e., labeling) from unstructured text, in order to build a large training set to seed the subsequent auto-learning component in our algorithm. Results from several SER experiments will be presented as well as lessons learned.
Community detection by graph Voronoi diagrams
Deritei, Dávid; Lázár, Zsolt I.; Papp, István; Járai-Szabó, Ferenc; Sumi, Róbert; Varga, Levente; Ravasz Regan, Erzsébet; Ercsey-Ravasz, Mária
2014-06-01
Accurate and efficient community detection in networks is a key challenge for complex network theory and its applications. The problem is analogous to cluster analysis in data mining, a field rich in metric space-based methods. Common to these methods is a geometric, distance-based definition of clusters or communities. Here we propose a new geometric approach to graph community detection based on graph Voronoi diagrams. Our method serves as proof of principle that the definition of appropriate distance metrics on graphs can bring a rich set of metric space-based clustering methods to network science. We employ a simple edge metric that reflects the intra- or inter-community character of edges, and a graph density-based rule to identify seed nodes of Voronoi cells. Our algorithm outperforms most network community detection methods applicable to large networks on benchmark as well as real-world networks. In addition to offering a computationally efficient alternative for community detection, our method opens new avenues for adapting a wide range of data mining algorithms to complex networks from the class of centroid- and density-based clustering methods.
Endomorphisms of graph algebras
Conti, Roberto; Hong, Jeong Hee; Szymanski, Wojciech
2012-01-01
We initiate a systematic investigation of endomorphisms of graph C*-algebras C*(E), extending several known results on endomorphisms of the Cuntz algebras O_n. Most but not all of this study is focused on endomorphisms which permute the vertex projections and globally preserve the diagonal MASA D...... that the restriction to the diagonal MASA of an automorphism which globally preserves both D_E and the core AF-subalgebra eventually commutes with the corresponding one-sided shift. Secondly, we exhibit several properties of proper endomorphisms, investigate invertibility of localized endomorphisms both on C...
On domination multisubdivision number of unicyclic graphs
Joanna Raczek
2018-01-01
Full Text Available The paper continues the interesting study of the domination subdivision number and the domination multisubdivision number. On the basis of the constructive characterization of the trees with the domination subdivision number equal to 3 given in [H. Aram, S.M. Sheikholeslami, O. Favaron, Domination subdivision number of trees, Discrete Math. 309 (2009, 622-628], we constructively characterize all connected unicyclic graphs with the domination multisubdivision number equal to 3. We end with further questions and open problems.
Gromov hyperbolicity in lexicographic product graphs
41
on the group [17]. The concept of hyperbolicity appears also in discrete mathematics, algorithms and networking. For .... graph (of a presentation with solvable word problem) there is an algorithm which allows to decide if it is ...... of Theorem 3.14, i.e., dG1◦{w}(Vp, [π(x)π(z)] ∪ [π(z)π(y)]) = δ(G1) with π the canonical projection.
Parallel algorithms for finding cliques in a graph
Szabo, S
2011-01-01
A clique is a subgraph in a graph that is complete in the sense that each two of its nodes are connected by an edge. Finding cliques in a given graph is an important procedure in discrete mathematical modeling. The paper will show how concepts such as splitting partitions, quasi coloring, node and edge dominance are related to clique search problems. In particular we will discuss the connection with parallel clique search algorithms. These concepts also suggest practical guide lines to inspect a given graph before starting a large scale search.
Graph Algorithm Animation with Grrr
Rodgers, Peter; Vidal, Natalia
2000-01-01
We discuss geometric positioning, highlighting of visited nodes and user defined highlighting that form the algorithm animation facilities in the Grrr graph rewriting programming language. The main purpose of animation was initially for the debugging and profiling of Grrr code, but recently it has been extended for the purpose of teaching algorithms to undergraduate students. The animation is restricted to graph based algorithms such as graph drawing, list manipulation or more traditional gra...
Vertex Degrees and Isomorphic Properties in Complement of an m-Polar Fuzzy Graph
Ch. Ramprasad
2017-01-01
Full Text Available Computational intelligence and computer science rely on graph theory to solve combinatorial problems. Normal product and tensor product of an m-polar fuzzy graph have been introduced in this article. Degrees of vertices in various product graphs, like Cartesian product, composition, tensor product, and normal product, have been computed. Complement and μ-complement of an m-polar fuzzy graph are defined and some properties are studied. An application of an m-polar fuzzy graph is also presented in this article.
Exploring Proposals for Resolving the Initial Conditions and Multiverse Problems in Inflation
Panithanpaisal, Nondh; Steinhardt, Paul
2018-01-01
The theory of cosmic inflation with the plateau-like potentials for the scalar field is very successful in predicting standard cosmological parameters. However, if the quantum effects are included, the theory inherently contains serious problems, namely, the multiverse problem and the initial conditions problem. It has been suggested in Mukhanov 2015 and Deen et al. 2016 to add a potential wall to the potential, so that the field never reaches the self-reproduction point. We examine these two proposals by varying the positions of the potential wall as well as varying the initial ratios of kinetic energy, potential energy and curvature. We demonstrate that both proposals are fine-tuned, at best, as they suffer from the drift in the predictions of the spectral tilt (ns) and the tensor-to-scalar ratio (r).
Local adjacency metric dimension of sun graph and stacked book graph
Yulisda Badri, Alifiah; Darmaji
2018-03-01
A graph is a mathematical system consisting of a non-empty set of nodes and a set of empty sides. One of the topics to be studied in graph theory is the metric dimension. Application in the metric dimension is the navigation robot system on a path. Robot moves from one vertex to another vertex in the field by minimizing the errors that occur in translating the instructions (code) obtained from the vertices of that location. To move the robot must give different instructions (code). In order for the robot to move efficiently, the robot must be fast to translate the code of the nodes of the location it passes. so that the location vertex has a minimum distance. However, if the robot must move with the vertex location on a very large field, so the robot can not detect because the distance is too far.[6] In this case, the robot can determine its position by utilizing location vertices based on adjacency. The problem is to find the minimum cardinality of the required location vertex, and where to put, so that the robot can determine its location. The solution to this problem is the dimension of adjacency metric and adjacency metric bases. Rodrguez-Velzquez and Fernau combine the adjacency metric dimensions with local metric dimensions, thus becoming the local adjacency metric dimension. In the local adjacency metric dimension each vertex in the graph may have the same adjacency representation as the terms of the vertices. To obtain the local metric dimension of values in the graph of the Sun and the stacked book graph is used the construction method by considering the representation of each adjacent vertex of the graph.
Graph Design via Convex Optimization: Online and Distributed Perspectives
Meng, De
Network and graph have long been natural abstraction of relations in a variety of applications, e.g. transportation, power system, social network, communication, electrical circuit, etc. As a large number of computation and optimization problems are naturally defined on graphs, graph structures not only enable important properties of these problems, but also leads to highly efficient distributed and online algorithms. For example, graph separability enables the parallelism for computation and operation as well as limits the size of local problems. More interestingly, graphs can be defined and constructed in order to take best advantage of those problem properties. This dissertation focuses on graph structure and design in newly proposed optimization problems, which establish a bridge between graph properties and optimization problem properties. We first study a new optimization problem called Geodesic Distance Maximization Problem (GDMP). Given a graph with fixed edge weights, finding the shortest path, also known as the geodesic, between two nodes is a well-studied network flow problem. We introduce the Geodesic Distance Maximization Problem (GDMP): the problem of finding the edge weights that maximize the length of the geodesic subject to convex constraints on the weights. We show that GDMP is a convex optimization problem for a wide class of flow costs, and provide a physical interpretation using the dual. We present applications of the GDMP in various fields, including optical lens design, network interdiction, and resource allocation in the control of forest fires. We develop an Alternating Direction Method of Multipliers (ADMM) by exploiting specific problem structures to solve large-scale GDMP, and demonstrate its effectiveness in numerical examples. We then turn our attention to distributed optimization on graph with only local communication. Distributed optimization arises in a variety of applications, e.g. distributed tracking and localization, estimation
Gladwell, P.; Badlan, K.; Cramp, F. A.; Palmer, S.
2016-01-01
BACKGROUND: Transcutaneous Electrical Nerve Stimulation (TENS) could offer a non-drug form of pain relief, but there is no consensus regarding its effectiveness for chronic musculoskeletal pain or chronic low back pain. A recent review of previous trial methodology identified significant problems with low treatment fidelity. There is little information available to inform the development of a pragmatic implementation design for a TENS evaluation.\\ud OBJECTIVES: To explore the experiences of s...
Equitable Coloring of Graphs. Recent Theoretical Results and New Practical Algorithms
Furmańczyk Hanna
2016-09-01
Full Text Available In many applications in sequencing and scheduling it is desirable to have an underlaying graph as equitably colored as possible. In this paper we survey recent theoretical results concerning conditions for equitable colorability of some graphs and recent theoretical results concerning the complexity of equitable coloring problem. Next, since the general coloring problem is strongly NP-hard, we report on practical experiments with some efficient polynomial-time algorithms for approximate equitable coloring of general graphs.
Distributed-Memory Breadth-First Search on Massive Graphs
Buluc, Aydin [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Research Division; Beamer, Scott [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences; Madduri, Kamesh [Pennsylvania State Univ., University Park, PA (United States). Computer Science & Engineering Dept.; Asanovic, Krste [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences; Patterson, David [Univ. of California, Berkeley, CA (United States). Dept. of Electrical Engineering and Computer Sciences
2017-09-26
This chapter studies the problem of traversing large graphs using the breadth-first search order on distributed-memory supercomputers. We consider both the traditional level-synchronous top-down algorithm as well as the recently discovered direction optimizing algorithm. We analyze the performance and scalability trade-offs in using different local data structures such as CSR and DCSC, enabling in-node multithreading, and graph decompositions such as 1D and 2D decomposition.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
Mehmet Fatih Öçal
2017-01-01
Full Text Available Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students’ learning during graphing functions. However, the display of graphs of functions that students sketched by hand may be relatively different when compared to the correct forms sketched using graphing software. The possible misleading effects of this situation brought a discussion of a misconception (asymptote misconception on graphing functions. The purpose of this study is two- fold. First of all, this study investigated whether using graphing software (GeoGebra in this case helps students to determine and resolve this misconception in calculus classrooms. Second, the reasons for this misconception are sought. The multiple case study was utilized in this study. University students in two calculus classrooms who received instructions with (35 students or without GeoGebra assisted instructions (32 students were compared according to whether they fell into this misconception on graphing basic functions (1/x, lnx, ex. In addition, students were interviewed to reveal the reasons behind this misconception. Data were analyzed by means of descriptive and content analysis methods. The findings indicated that those who received GeoGebra assisted instruction were better in resolving it. In addition, the reasons behind this misconception were found to be teacher-based, exam-based and some other factors.
A graph signal filtering-based approach for detection of different edge types on airborne lidar data
Bayram, Eda; Vural, Elif; Alatan, Aydin
2017-10-01
Airborne Laser Scanning is a well-known remote sensing technology, which provides a dense and highly accurate, yet unorganized point cloud of earth surface. During the last decade, extracting information from the data generated by airborne LiDAR systems has been addressed by many studies in geo-spatial analysis and urban monitoring applications. However, the processing of LiDAR point clouds is challenging due to their irregular structure and 3D geometry. In this study, we propose a novel framework for the detection of the boundaries of an object or scene captured by LiDAR. Our approach is motivated by edge detection techniques in vision research and it is established on graph signal filtering which is an exciting and promising field of signal processing for irregular data types. Due to the convenient applicability of graph signal processing tools on unstructured point clouds, we achieve the detection of the edge points directly on 3D data by using a graph representation that is constructed exclusively to answer the requirements of the application. Moreover, considering the elevation data as the (graph) signal, we leverage aerial characteristic of the airborne LiDAR data. The proposed method can be employed both for discovering the jump edges on a segmentation problem and for exploring the crease edges on a LiDAR object on a reconstruction/modeling problem, by only adjusting the filter characteristics.
Galitski, Victor; Kogan, Vladimir; Galitski, Victor Jr
2013-01-01
A series of seminal technological revolutions has led to a new generation of electronic devices miniaturized to such tiny scales where the strange laws of quantum physics come into play. There is no doubt that, unlike scientists and engineers of the past, technology leaders of the future will have to rely on quantum mechanics in their everyday work. This makes teaching and learning the subject of paramount importance for further progress. Mastering quantum physics is a very non-trivial task and its deep understanding can only be achieved through working out real-life problems and examples. It is notoriously difficult to come up with new quantum-mechanical problems that would be solvable with a pencil and paper, and within a finite amount of time. This book remarkably presents some 700+ original problems in quantum mechanics together with detailed solutions covering nearly 1000 pages on all aspects of quantum science. The material is largely new to the English-speaking audience. The problems have been collect...
Exploring a Structure for Mathematics Lessons That Foster Problem Solving and Reasoning
Sullivan, Peter; Walker, Nadia; Borcek, Chris; Rennie, Mick
2015-01-01
While there is widespread agreement on the importance of incorporating problem solving and reasoning into mathematics classrooms, there is limited specific advice on how this can best happen. This is a report of an aspect of a project that is examining the opportunities and constraints in initiating learning by posing challenging mathematics tasks…
The School Leadership Literature in Managerialist Times: Exploring the Problem of Textual Apologism.
Thrupp, Martin
2003-01-01
Critiques major topics or themes in school-leadership texts, such as problem-solving techniques; suggests alternative topics or themes for school administrators, such as ideas-based leadership. Draws implications for writers on school leadership. (Contains 59 references.) (PKP)
Students’ Representation in Mathematical Word Problem-Solving: Exploring Students’ Self-efficacy
Sahendra, A.; Budiarto, M. T.; Fuad, Y.
2018-01-01
This descriptive qualitative research aims at investigating student represented in mathematical word problem solving based on self-efficacy. The research subjects are two eighth graders at a school in Surabaya with equal mathematical ability consisting of two female students with high and low self-efficacy. The subjects were chosen based on the results of test of mathematical ability, documentation of the result of middle test in even semester of 2016/2017 academic year, and results of questionnaire of mathematics word problem in terms of self-efficacy scale. The selected students were asked to do mathematical word problem solving and be interviewed. The result of this study shows that students with high self-efficacy tend to use multiple representations of sketches and mathematical models, whereas students with low self-efficacy tend to use single representation of sketches or mathematical models only in mathematical word problem-solving. This study emphasizes that teachers should pay attention of student’s representation as a consideration of designing innovative learning in order to increase the self-efficacy of each student to achieve maximum mathematical achievement although it still requires adjustment to the school situation and condition.
Scotch Matthew
2006-09-01
Full Text Available Abstract Background A Community health assessment (CHA involves the use of Geographic Information Systems (GIS in conjunction with other software to analyze health and population data and perform numerical-spatial problem solving. There has been little research on identifying how public health professionals integrate this software during typical problem solving scenarios. A better understanding of this is needed to answer the "What" and the "How". The "What" identifies the specific software being used and the "How" explains the way they are integrated together during problem solving steps. This level of understanding will highlight the role of GIS utilization during problem solving and suggest to developers how GIS can be enhanced to better support data analysis during community health assessment. Results An online survey was developed to identify the information technology used during CHA analysis. The tasks were broken down into steps and for our analysis these steps were categorized by action: Data Management/Access, Data Navigation, Geographic Comparison, Detection of Spatial Boundaries, Spatial Modelling, and Ranking Analysis. 27 CHA professionals completed the survey, with the majority of participants (14 being from health departments. Statistical software (e.g. SPSS was the most popular software for all but one of the types of steps. For this step (detection of spatial boundaries, GIS was identified as the most popular technology. Conclusion Most CHA professionals indicated they use statistical software in conjunction with GIS. The statistical software appears to drive the analysis, while GIS is used primarily for simple spatial display (and not complex spatial analysis. This purpose of this survey was to thoroughly examine into the process of problem solving during community health assessment data analysis and to gauge how GIS is integrated with other software for this purpose. These findings suggest that GIS is used more for spatial
Spectrum Graph Coloring and Applications to Wi-Fi Channel Assignment
David Orden
2018-03-01
Full Text Available We introduce and explore a family of vertex-coloring problems, which, surprisingly enough, have not been considered before despite stemming from the problem of Wi-Fi channel assignment. Given a spectrum of colors, endowed with a matrix of interferences between each pair of colors, the Threshold Spectrum Coloring problem fixes the number of colors available and aims to minimize the interference threshold, i.e., the maximum of the interferences at the vertices. Conversely, the Chromatic Spectrum Coloring problem fixes a threshold and aims to minimize the number of colors for which respecting that threshold is possible. As the main theoretical results, we prove tight upper bounds for the solutions to each problem. Since both problems turn out to be NP-hard, we complete the scene with experimental results. We propose a DSATUR-based heuristic and study its performance to minimize the maximum vertex interference in Wi-Fi channel assignment, both for randomly-generated graphs and for a real-world scenario. Further, for all these graphs, we experimentally check the goodness of the theoretical bounds.
ON BIPOLAR SINGLE VALUED NEUTROSOPHIC GRAPHS
Said Broumi; Mohamed Talea; Assia Bakali; Florentin Smarandache
2016-01-01
In this article, we combine the concept of bipolar neutrosophic set and graph theory. We introduce the notions of bipolar single valued neutrosophic graphs, strong bipolar single valued neutrosophic graphs, complete bipolar single valued neutrosophic graphs, regular bipolar single valued neutrosophic graphs and investigate some of their related properties.
Graph based techniques for tag cloud generation
Leginus, Martin; Dolog, Peter; Lage, Ricardo Gomes
2013-01-01
Tag cloud is one of the navigation aids for exploring documents. Tag cloud also link documents through the user defined terms. We explore various graph based techniques to improve the tag cloud generation. Moreover, we introduce relevance measures based on underlying data such as ratings...... or citation counts for improved measurement of relevance of tag clouds. We show, that on the given data sets, our approach outperforms the state of the art baseline methods with respect to such relevance by 41 % on Movielens dataset and by 11 % on Bibsonomy data set....
Graph Theory. 2. Vertex Descriptors and Graph Coloring
Lorentz JÄNTSCHI
2002-12-01
Full Text Available This original work presents the construction of a set of ten sequence matrices and their applications for ordering vertices in graphs. For every sequence matrix three ordering criteria are applied: lexicographic ordering, based on strings of numbers, corresponding to every vertex, extracted as rows from sequence matrices; ordering by the sum of path lengths from a given vertex; and ordering by the sum of paths, starting from a given vertex. We also examine a graph that has different orderings for the above criteria. We then proceed to demonstrate that every criterion induced its own partition of graph vertex. We propose the following theoretical result: both LAVS and LVDS criteria generate identical partitioning of vertices in any graph. Finally, a coloring of graph vertices according to introduced ordering criteria was proposed.
How Symmetric Are Real-World Graphs? A Large-Scale Study
Fabian Ball
2018-01-01
Full Text Available The analysis of symmetry is a main principle in natural sciences, especially physics. For network sciences, for example, in social sciences, computer science and data science, only a few small-scale studies of the symmetry of complex real-world graphs exist. Graph symmetry is a topic rooted in mathematics and is not yet well-received and applied in practice. This article underlines the importance of analyzing symmetry by showing the existence of symmetry in real-world graphs. An analysis of over 1500 graph datasets from the meta-repository networkrepository.com is carried out and a normalized version of the “network redundancy” measure is presented. It quantifies graph symmetry in terms of the number of orbits of the symmetry group from zero (no symmetries to one (completely symmetric, and improves the recognition of asymmetric graphs. Over 70% of the analyzed graphs contain symmetries (i.e., graph automorphisms, independent of size and modularity. Therefore, we conclude that real-world graphs are likely to contain symmetries. This contribution is the first larger-scale study of symmetry in graphs and it shows the necessity of handling symmetry in data analysis: The existence of symmetries in graphs is the cause of two problems in graph clustering we are aware of, namely, the existence of multiple equivalent solutions with the same value of the clustering criterion and, secondly, the inability of all standard partition-comparison measures of cluster analysis to identify automorphic partitions as equivalent.
On an edge partition and root graphs of some classes of line graphs
K Pravas
2017-04-01
Full Text Available The Gallai and the anti-Gallai graphs of a graph $G$ are complementary pairs of spanning subgraphs of the line graph of $G$. In this paper we find some structural relations between these graph classes by finding a partition of the edge set of the line graph of a graph $G$ into the edge sets of the Gallai and anti-Gallai graphs of $G$. Based on this, an optimal algorithm to find the root graph of a line graph is obtained. Moreover, root graphs of diameter-maximal, distance-hereditary, Ptolemaic and chordal graphs are also discussed.
Exploring the Connection Between Sampling Problems in Bayesian Inference and Statistical Mechanics
Pohorille, Andrew
2006-01-01
The Bayesian and statistical mechanical communities often share the same objective in their work - estimating and integrating probability distribution functions (pdfs) describing stochastic systems, models or processes. Frequently, these pdfs are complex functions of random variables exhibiting multiple, well separated local minima. Conventional strategies for sampling such pdfs are inefficient, sometimes leading to an apparent non-ergodic behavior. Several recently developed techniques for handling this problem have been successfully applied in statistical mechanics. In the multicanonical and Wang-Landau Monte Carlo (MC) methods, the correct pdfs are recovered from uniform sampling of the parameter space by iteratively establishing proper weighting factors connecting these distributions. Trivial generalizations allow for sampling from any chosen pdf. The closely related transition matrix method relies on estimating transition probabilities between different states. All these methods proved to generate estimates of pdfs with high statistical accuracy. In another MC technique, parallel tempering, several random walks, each corresponding to a different value of a parameter (e.g. "temperature"), are generated and occasionally exchanged using the Metropolis criterion. This method can be considered as a statistically correct version of simulated annealing. An alternative approach is to represent the set of independent variables as a Hamiltonian system. Considerab!e progress has been made in understanding how to ensure that the system obeys the equipartition theorem or, equivalently, that coupling between the variables is correctly described. Then a host of techniques developed for dynamical systems can be used. Among them, probably the most powerful is the Adaptive Biasing Force method, in which thermodynamic integration and biased sampling are combined to yield very efficient estimates of pdfs. The third class of methods deals with transitions between states described
Exploring Intergenerational Discontinuity in Problem Behavior: Bad Parents with Good Children
Dong, Beidi; Krohn, Marvin D.
2014-01-01
Using data from the Rochester Youth Development Study, a series of regression models are estimated on offspring problem behavior with a focus on the interaction between parental history of delinquency and the parent-child relationship. Good parenting practices significantly interact with the particular shape of parental propensity of offending over time, functioning as protective factors to protect against problematic behaviors among those who are most at risk. The moderation effects vary sli...
Filip Morisse
2013-01-01
Full Text Available The field of intellectual disability (ID is strongly influenced by the Quality of Life paradigm (QOL. We aimed at investigating whether or not the QOL paradigm also applies to clients with ID and cooccurring mental health problems. This paper aims at stimulating a debate on this topic, by investigating whether or not QOL domains are universal. Focus groups with natural and professional network members were organized to gather qualitative data, in order to answer two questions: (1 Are the QOL dimensions conceptualized in the model of Schalock et al. applicable for persons with ID and mental health problems? (2 What are indicators relating to the above-mentioned dimensions in relation to persons with ID and mental health problems? The results offer some proof for the assumption that the QOL construct seems to have universal properties. With regard to the second question, the study revealed that the natural and professional network members are challenged to look for the most appropriate support strategies, taking specific indicators of QOL into account. When aspects of empowerment and regulation are used in an integrated manner, the application of the QOL paradigm could lead to positive outcomes concerning self-determination, interdependence, social inclusion, and emotional development.
Graphs and matroids weighted in a bounded incline algebra.
Lu, Ling-Xia; Zhang, Bei
2014-01-01
Firstly, for a graph weighted in a bounded incline algebra (or called a dioid), a longest path problem (LPP, for short) is presented, which can be considered the uniform approach to the famous shortest path problem, the widest path problem, and the most reliable path problem. The solutions for LPP and related algorithms are given. Secondly, for a matroid weighted in a linear matroid, the maximum independent set problem is studied.
The planar cubic Cayley graphs
Georgakopoulos, Agelos
2018-01-01
The author obtains a complete description of the planar cubic Cayley graphs, providing an explicit presentation and embedding for each of them. This turns out to be a rich class, comprising several infinite families. He obtains counterexamples to conjectures of Mohar, Bonnington and Watkins. The author's analysis makes the involved graphs accessible to computation, corroborating a conjecture of Droms.
Groupies in random bipartite graphs
Yilun Shang
2010-01-01
A vertex $v$ of a graph $G$ is called a groupie if its degree is notless than the average of the degrees of its neighbors. In thispaper we study the influence of bipartition $(B_1,B_2)$ on groupiesin random bipartite graphs $G(B_1,B_2,p)$ with both fixed $p$ and$p$ tending to zero.
Nested Dynamic Condition Response Graphs
Hildebrandt, Thomas; Mukkamala, Raghava Rao; Slaats, Tijs
2012-01-01
We present an extension of the recently introduced declarative process model Dynamic Condition Response Graphs ( DCR Graphs) to allow nested subgraphs and a new milestone relation between events. The extension was developed during a case study carried out jointly with our industrial partner...
Bell inequalities for graph states
Toth, G.; Hyllus, P.; Briegel, H.J.; Guehne, O.
2005-01-01
Full text: In the last years graph states have attracted an increasing interest in the field of quantum information theory. Graph states form a family of multi-qubit states which comprises many popular states such as the GHZ states and the cluster states. They also play an important role in applications. For instance, measurement based quantum computation uses graph states as resources. From a theoretical point of view, it is remarkable that graph states allow for a simple description in terms of stabilizing operators. In this contribution, we investigate the non-local properties of graph states. We derive a family of Bell inequalities which require three measurement settings for each party and are maximally violated by graph states. In turn, any graph state violates at least one of the inequalities. We show that for certain types of graph states the violation of these inequalities increases exponentially with the number of qubits. We also discuss connections to other entanglement properties such as the positively of the partial transpose or the geometric measure of entanglement. (author)
Graph Sampling for Covariance Estimation
Chepuri, Sundeep Prabhakar; Leus, Geert
2017-01-01
specialize for undirected circulant graphs in that the graph nodes leading to the best compression rates are given by the so-called minimal sparse rulers. A near-optimal greedy algorithm is developed to design the subsampling scheme for the non
A cluster algorithm for graphs
S. van Dongen
2000-01-01
textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)
Monte Carlo exploration of Mikheyev-Smirnov-Wolfenstein solutions to the solar neutrino problem
Shi, X.; Schramm, D. N.; Bahcall, J. N.
1992-01-01
The paper explores the impact of astrophysical uncertainties on the Mikheyev-Smirnov-Wolfenstein (MSW) solution by calculating the allowed MSW solutions for 1000 different solar models with a Monte Carlo selection of solar model input parameters, assuming a full three-family MSW mixing. Applications are made to the chlorine, gallium, Kamiokande, and Borexino experiments. The initial GALLEX result limits the mixing parameters to the upper diagonal and the vertical regions of the MSW triangle. The expected event rates in the Borexino experiment are also calculated, assuming the MSW solutions implied by GALLEX.
Applied and computational harmonic analysis on graphs and networks
Irion, Jeff; Saito, Naoki
2015-09-01
In recent years, the advent of new sensor technologies and social network infrastructure has provided huge opportunities and challenges for analyzing data recorded on such networks. In the case of data on regular lattices, computational harmonic analysis tools such as the Fourier and wavelet transforms have well-developed theories and proven track records of success. It is therefore quite important to extend such tools from the classical setting of regular lattices to the more general setting of graphs and networks. In this article, we first review basics of graph Laplacian matrices, whose eigenpairs are often interpreted as the frequencies and the Fourier basis vectors on a given graph. We point out, however, that such an interpretation is misleading unless the underlying graph is either an unweighted path or cycle. We then discuss our recent effort of constructing multiscale basis dictionaries on a graph, including the Hierarchical Graph Laplacian Eigenbasis Dictionary and the Generalized Haar-Walsh Wavelet Packet Dictionary, which are viewed as generalizations of the classical hierarchical block DCTs and the Haar-Walsh wavelet packets, respectively, to the graph setting. Finally, we demonstrate the usefulness of our dictionaries by using them to simultaneously segment and denoise 1-D noisy signals sampled on regular lattices, a problem where classical tools have difficulty.
Label Information Guided Graph Construction for Semi-Supervised Learning.
Zhuang, Liansheng; Zhou, Zihan; Gao, Shenghua; Yin, Jingwen; Lin, Zhouchen; Ma, Yi
2017-09-01
In the literature, most existing graph-based semi-supervised learning methods only use the label information of observed samples in the label propagation stage, while ignoring such valuable information when learning the graph. In this paper, we argue that it is beneficial to consider the label information in the graph learning stage. Specifically, by enforcing the weight of edges between labeled samples of different classes to be zero, we explicitly incorporate the label information into the state-of-the-art graph learning methods, such as the low-rank representation (LRR), and propose a novel semi-supervised graph learning method called semi-supervised low-rank representation. This results in a convex optimization problem with linear constraints, which can be solved by the linearized alternating direction method. Though we take LRR as an example, our proposed method is in fact very general and can be applied to any self-representation graph learning methods. Experiment results on both synthetic and real data sets demonstrate that the proposed graph learning method can better capture the global geometric structure of the data, and therefore is more effective for semi-supervised learning tasks.
Exploring the Use of Computer Simulations in Unraveling Research and Development Governance Problems
Balaban, Mariusz A.; Hester, Patrick T.
2012-01-01
Understanding Research and Development (R&D) enterprise relationships and processes at a governance level is not a simple task, but valuable decision-making insight and evaluation capabilities can be gained from their exploration through computer simulations. This paper discusses current Modeling and Simulation (M&S) methods, addressing their applicability to R&D enterprise governance. Specifically, the authors analyze advantages and disadvantages of the four methodologies used most often by M&S practitioners: System Dynamics (SO), Discrete Event Simulation (DES), Agent Based Modeling (ABM), and formal Analytic Methods (AM) for modeling systems at the governance level. Moreover, the paper describes nesting models using a multi-method approach. Guidance is provided to those seeking to employ modeling techniques in an R&D enterprise for the purposes of understanding enterprise governance. Further, an example is modeled and explored for potential insight. The paper concludes with recommendations regarding opportunities for concentration of future work in modeling and simulating R&D governance relationships and processes.
Planar graphs theory and algorithms
Nishizeki, T
1988-01-01
Collected in this volume are most of the important theorems and algorithms currently known for planar graphs, together with constructive proofs for the theorems. Many of the algorithms are written in Pidgin PASCAL, and are the best-known ones; the complexities are linear or 0(nlogn). The first two chapters provide the foundations of graph theoretic notions and algorithmic techniques. The remaining chapters discuss the topics of planarity testing, embedding, drawing, vertex- or edge-coloring, maximum independence set, subgraph listing, planar separator theorem, Hamiltonian cycles, and single- or multicommodity flows. Suitable for a course on algorithms, graph theory, or planar graphs, the volume will also be useful for computer scientists and graph theorists at the research level. An extensive reference section is included.
Quantum chaos on discrete graphs
Smilansky, Uzy
2007-01-01
Adapting a method developed for the study of quantum chaos on quantum (metric) graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76), spectral ζ functions and trace formulae for discrete Laplacians on graphs are derived. This is achieved by expressing the spectral secular equation in terms of the periodic orbits of the graph and obtaining functions which belong to the class of ζ functions proposed originally by Ihara (1966 J. Mat. Soc. Japan 18 219) and expanded by subsequent authors (Stark and Terras 1996 Adv. Math. 121 124, Kotani and Sunada 2000 J. Math. Sci. Univ. Tokyo 7 7). Finally, a model of 'classical dynamics' on the discrete graph is proposed. It is analogous to the corresponding classical dynamics derived for quantum graphs (Kottos and Smilansky 1997 Phys. Rev. Lett. 79 4794, Kottos and Smilansky 1999 Ann. Phys., NY 274 76). (fast track communication)
Educational leaders' information seeking behavior and problem solving - an explorative study
Hyldegård, Jette Seiden; Harboe, Thomas; Rump, Camilla Østerberg
in education may influence educational leaders’ approach to educational leadership. As demonstrated in the poster it seems that the preferred approach to information seeking and problem solving could be associated with specific approaches to educational leadership, hence different notions of quality: 1......) informal, 2) bureaucratic or 3) knowledge based. It is stated that information, leadership and quality are interrelated and influential factors in educational development and practice. Consequently, more research is needed to inform and develop academic leadership in higher education as well as helping...
Gauthier, Jami M; Witte, Tracy K; Correia, Christopher J
2017-04-01
Previous findings on the relationship between suicide ideation (SI) and alcohol misuse among college students are inconsistent, leading to conflicting clinical implications. We aimed to clarify this relationship in order to determine the utility of regarding alcohol misuse as a risk factor for SI in this population. Unselected college students (N = 545) completed an online survey including measures of alcohol consumption, problems, drinking motives, SI, and related variables. Our results suggest alcohol misuse is not a correlate of SI among college students; therefore, one should not assume that students who misuse alcohol are necessarily at increased risk for SI. © 2016 The American Association of Suicidology.
Optimal graph based segmentation using flow lines with application to airway wall segmentation
Petersen, Jens; Nielsen, Mads; Lo, Pechin
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited for ...
Optimal graph based segmentation using flow lines with application to airway wall segmentation
Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau
2011-01-01
This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited...
On characterizing terrain visibility graphs
William Evans
2015-06-01
Full Text Available A terrain is an $x$-monotone polygonal line in the $xy$-plane. Two vertices of a terrain are mutually visible if and only if there is no terrain vertex on or above the open line segment connecting them. A graph whose vertices represent terrain vertices and whose edges represent mutually visible pairs of terrain vertices is called a terrain visibility graph. We would like to find properties that are both necessary and sufficient for a graph to be a terrain visibility graph; that is, we would like to characterize terrain visibility graphs.Abello et al. [Discrete and Computational Geometry, 14(3:331--358, 1995] showed that all terrain visibility graphs are “persistent”. They showed that the visibility information of a terrain point set implies some ordering requirements on the slopes of the lines connecting pairs of points in any realization, and as a step towards showing sufficiency, they proved that for any persistent graph $M$ there is a total order on the slopes of the (pseudo lines in a generalized configuration of points whose visibility graph is $M$.We give a much simpler proof of this result by establishing an orientation to every triple of vertices, reflecting some slope ordering requirements that are consistent with $M$ being the visibility graph, and prove that these requirements form a partial order. We give a faster algorithm to construct a total order on the slopes. Our approach attempts to clarify the implications of the graph theoretic properties on the ordering of the slopes, and may be interpreted as defining properties on an underlying oriented matroid that we show is a restricted type of $3$-signotope.
Gems of combinatorial optimization and graph algorithms
Skutella, Martin; Stiller, Sebastian; Wagner, Dorothea
2015-01-01
Are you looking for new lectures for your course on algorithms, combinatorial optimization, or algorithmic game theory? Maybe you need a convenient source of relevant, current topics for a graduate student or advanced undergraduate student seminar? Or perhaps you just want an enjoyable look at some beautiful mathematical and algorithmic results, ideas, proofs, concepts, and techniques in discrete mathematics and theoretical computer science? Gems of Combinatorial Optimization and Graph Algorithms is a handpicked collection of up-to-date articles, carefully prepared by a select group of international experts, who have contributed some of their most mathematically or algorithmically elegant ideas. Topics include longest tours and Steiner trees in geometric spaces, cartograms, resource buying games, congestion games, selfish routing, revenue equivalence and shortest paths, scheduling, linear structures in graphs, contraction hierarchies, budgeted matching problems, and motifs in networks. This ...
Dynamic graphs, community detection, and Riemannian geometry
Bakker, Craig; Halappanavar, Mahantesh; Visweswara Sathanur, Arun
2018-03-29
A community is a subset of a wider network where the members of that subset are more strongly connected to each other than they are to the rest of the network. In this paper, we consider the problem of identifying and tracking communities in graphs that change over time {dynamic community detection} and present a framework based on Riemannian geometry to aid in this task. Our framework currently supports several important operations such as interpolating between and averaging over graph snapshots. We compare these Riemannian methods with entry-wise linear interpolation and that the Riemannian methods are generally better suited to dynamic community detection. Next steps with the Riemannian framework include developing higher-order interpolation methods (e.g. the analogues of polynomial and spline interpolation) and a Riemannian least-squares regression method for working with noisy data.
Mutual Contextualization in Tripartite Graphs of Folksonomies
Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel
The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.
Graph-related optimization and decision support systems
Krichen, Saoussen
2014-01-01
Constrained optimization is a challenging branch of operations research that aims to create a model which has a wide range of applications in the supply chain, telecommunications and medical fields. As the problem structure is split into two main components, the objective is to accomplish the feasible set framed by the system constraints. The aim of this book is expose optimization problems that can be expressed as graphs, by detailing, for each studied problem, the set of nodes and the set of edges. This graph modeling is an incentive for designing a platform that integrates all optimizatio
Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives
Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni
2018-03-01
This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.
Kupavskii, A B; Raigorodskii, A M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2013-10-31
We investigate in detail some properties of distance graphs constructed on the integer lattice. Such graphs find wide applications in problems of combinatorial geometry, in particular, such graphs were employed to answer Borsuk's question in the negative and to obtain exponential estimates for the chromatic number of the space. This work is devoted to the study of the number of cliques and the chromatic number of such graphs under certain conditions. Constructions of sequences of distance graphs are given, in which the graphs have unit length edges and contain a large number of triangles that lie on a sphere of radius 1/√3 (which is the minimum possible). At the same time, the chromatic numbers of the graphs depend exponentially on their dimension. The results of this work strengthen and generalize some of the results obtained in a series of papers devoted to related issues. Bibliography: 29 titles.
Laplacian eigenvectors of graphs Perron-Frobenius and Faber-Krahn type theorems
Biyikoğu, Türker; Stadler, Peter F
2007-01-01
Eigenvectors of graph Laplacians have not, to date, been the subject of expository articles and thus they may seem a surprising topic for a book. The authors propose two motivations for this new LNM volume: (1) There are fascinating subtle differences between the properties of solutions of Schrödinger equations on manifolds on the one hand, and their discrete analogs on graphs. (2) "Geometric" properties of (cost) functions defined on the vertex sets of graphs are of practical interest for heuristic optimization algorithms. The observation that the cost functions of quite a few of the well-studied combinatorial optimization problems are eigenvectors of associated graph Laplacians has prompted the investigation of such eigenvectors. The volume investigates the structure of eigenvectors and looks at the number of their sign graphs ("nodal domains"), Perron components, graphs with extremal properties with respect to eigenvectors. The Rayleigh quotient and rearrangement of graphs form the main methodology.
Hayden, H. Emily; Chiu, Ming Ming
2015-01-01
We explore development of elementary preservice teachers' reflective practices as they solved problems encountered while teaching in a reading clinic. Written reflections (N = 175) were collected across 8 weeks from 23 preservice teachers and analyzed to investigate relationships among problem exploration, teaching adaptations, and problem…
CORECLUSTER: A Degeneracy Based Graph Clustering Framework
Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M. ,; Vazirgiannis , Michalis
2014-01-01
International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typically suffer from high time and space complexity. In thisarticle, we present \\textsc{CoreCluster}, an efficient graph clusteringframework based on the concept of graph degeneracy, that can be used along withany known graph clusteri...
Exploring L1 model space in search of conductivity bounds for the MT problem
Wheelock, B. D.; Parker, R. L.
2013-12-01
Geophysical inverse problems of the type encountered in electromagnetic techniques are highly non-unique. As a result, any single inverted model, though feasible, is at best inconclusive and at worst misleading. In this paper, we use modified inversion methods to establish bounds on electrical conductivity within a model of the earth. Our method consists of two steps, each making use of the 1-norm in model regularization. Both 1-norm minimization problems are framed without approximation as non-negative least-squares (NNLS) problems. First, we must identify a parsimonious set of regions within the model for which upper and lower bounds on average conductivity will be sought. This is accomplished by minimizing the 1-norm of spatial variation, which produces a model with a limited number of homogeneous regions; in fact, the number of homogeneous regions will never be greater than the number of data, regardless of the number of free parameters supplied. The second step establishes bounds for each of these regions with pairs of inversions. The new suite of inversions also uses a 1-norm penalty, but applied to the conductivity values themselves, rather than the spatial variation thereof. In the bounding step we use the 1-norm of our model parameters because it is proportional to average conductivity. For a lower bound on average conductivity, the 1-norm within a bounding region is minimized. For an upper bound on average conductivity, the 1-norm everywhere outside a bounding region is minimized. The latter minimization has the effect of concentrating conductance into the bounding region. Taken together, these bounds are a measure of the uncertainty in the associated region of our model. Starting with a blocky inverse solution is key in the selection of the bounding regions. Of course, there is a tradeoff between resolution and uncertainty: an increase in resolution (smaller bounding regions), results in greater uncertainty (wider bounds). Minimization of the 1-norm of
Exploring Intergenerational Discontinuity in Problem Behavior: Bad Parents with Good Children
Dong, Beidi; Krohn, Marvin D.
2014-01-01
Using data from the Rochester Youth Development Study, a series of regression models are estimated on offspring problem behavior with a focus on the interaction between parental history of delinquency and the parent-child relationship. Good parenting practices significantly interact with the particular shape of parental propensity of offending over time, functioning as protective factors to protect against problematic behaviors among those who are most at risk. The moderation effects vary slightly by the age of our subjects. Accordingly, it is important to distinguish the effect of not only the level of parental delinquency at one point in time, but also the shape of the delinquency trajectory on outcomes for their children. Good parenting holds the hope of breaking the vicious cycle of intergenerational transmission of delinquency. PMID:26097437
Dim target detection method based on salient graph fusion
Hu, Ruo-lan; Shen, Yi-yan; Jiang, Jun
2018-02-01
Dim target detection is one key problem in digital image processing field. With development of multi-spectrum imaging sensor, it becomes a trend to improve the performance of dim target detection by fusing the information from different spectral images. In this paper, one dim target detection method based on salient graph fusion was proposed. In the method, Gabor filter with multi-direction and contrast filter with multi-scale were combined to construct salient graph from digital image. And then, the maximum salience fusion strategy was designed to fuse the salient graph from different spectral images. Top-hat filter was used to detect dim target from the fusion salient graph. Experimental results show that proposal method improved the probability of target detection and reduced the probability of false alarm on clutter background images.
Random graph states, maximal flow and Fuss-Catalan distributions
Collins, BenoIt; Nechita, Ion; Zyczkowski, Karol
2010-01-01
For any graph consisting of k vertices and m edges we construct an ensemble of random pure quantum states which describe a system composed of 2m subsystems. Each edge of the graph represents a bipartite, maximally entangled state. Each vertex represents a random unitary matrix generated according to the Haar measure, which describes the coupling between subsystems. Dividing all subsystems into two parts, one may study entanglement with respect to this partition. A general technique to derive an expression for the average entanglement entropy of random pure states associated with a given graph is presented. Our technique relies on Weingarten calculus and flow problems. We analyze the statistical properties of spectra of such random density matrices and show for which cases they are described by the free Poissonian (Marchenko-Pastur) distribution. We derive a discrete family of generalized, Fuss-Catalan distributions and explicitly construct graphs which lead to ensembles of random states characterized by these novel distributions of eigenvalues.
Multiple Illuminant Colour Estimation via Statistical Inference on Factor Graphs.
Mutimbu, Lawrence; Robles-Kelly, Antonio
2016-08-31
This paper presents a method to recover a spatially varying illuminant colour estimate from scenes lit by multiple light sources. Starting with the image formation process, we formulate the illuminant recovery problem in a statistically datadriven setting. To do this, we use a factor graph defined across the scale space of the input image. In the graph, we utilise a set of illuminant prototypes computed using a data driven approach. As a result, our method delivers a pixelwise illuminant colour estimate being devoid of libraries or user input. The use of a factor graph also allows for the illuminant estimates to be recovered making use of a maximum a posteriori (MAP) inference process. Moreover, we compute the probability marginals by performing a Delaunay triangulation on our factor graph. We illustrate the utility of our method for pixelwise illuminant colour recovery on widely available datasets and compare against a number of alternatives. We also show sample colour correction results on real-world images.
Calculating Graph Algorithms for Dominance and Shortest Path
Sergey, Ilya; Midtgaard, Jan; Clarke, Dave
2012-01-01
We calculate two iterative, polynomial-time graph algorithms from the literature: a dominance algorithm and an algorithm for the single-source shortest path problem. Both algorithms are calculated directly from the definition of the properties by fixed-point fusion of (1) a least fixed point...... expressing all finite paths through a directed graph and (2) Galois connections that capture dominance and path length. The approach illustrates that reasoning in the style of fixed-point calculus extends gracefully to the domain of graph algorithms. We thereby bridge common practice from the school...... of program calculation with common practice from the school of static program analysis, and build a novel view on iterative graph algorithms as instances of abstract interpretation...
Application-Specific Graph Sampling for Frequent Subgraph Mining and Community Detection
Purohit, Sumit; Choudhury, Sutanay; Holder, Lawrence B.
2017-12-11
Graph mining is an important data analysis methodology, but struggles as the input graph size increases. The scalability and usability challenges posed by such large graphs make it imperative to sample the input graph and reduce its size. The critical challenge in sampling is to identify the appropriate algorithm to insure the resulting analysis does not suffer heavily from the data reduction. Predicting the expected performance degradation for a given graph and sampling algorithm is also useful. In this paper, we present different sampling approaches for graph mining applications such as Frequent Subgrpah Mining (FSM), and Community Detection (CD). We explore graph metrics such as PageRank, Triangles, and Diversity to sample a graph and conclude that for heterogeneous graphs Triangles and Diversity perform better than degree based metrics. We also present two new sampling variations for targeted graph mining applications. We present empirical results to show that knowledge of the target application, along with input graph properties can be used to select the best sampling algorithm. We also conclude that performance degradation is an abrupt, rather than gradual phenomena, as the sample size decreases. We present the empirical results to show that the performance degradation follows a logistic function.
Bond graph to digraph conversion: A sensor placement optimization ...
In this paper, we consider the optimal sensors placement problem for ... is due to the fact that the construction is generally done from the state equations, ... The Bond Graph (BG) tool defined in Paynter (1961) formal- ... Sensor placement and structural problem formulation .... Thus the obtained four matrices are as follows:.
Hierarchy of modular graph identities
D’Hoker, Eric; Kaidi, Justin
2016-01-01
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Hierarchy of modular graph identities
D’Hoker, Eric; Kaidi, Justin [Mani L. Bhaumik Institute for Theoretical Physics, Department of Physics and Astronomy,University of California,Los Angeles, CA 90095 (United States)
2016-11-09
The low energy expansion of Type II superstring amplitudes at genus one is organized in terms of modular graph functions associated with Feynman graphs of a conformal scalar field on the torus. In earlier work, surprising identities between two-loop graphs at all weights, and between higher-loop graphs of weights four and five were constructed. In the present paper, these results are generalized in two complementary directions. First, all identities at weight six and all dihedral identities at weight seven are obtained and proven. Whenever the Laurent polynomial at the cusp is available, the form of these identities confirms the pattern by which the vanishing of the Laurent polynomial governs the full modular identity. Second, the family of modular graph functions is extended to include all graphs with derivative couplings and worldsheet fermions. These extended families of modular graph functions are shown to obey a hierarchy of inhomogeneous Laplace eigenvalue equations. The eigenvalues are calculated analytically for the simplest infinite sub-families and obtained by Maple for successively more complicated sub-families. The spectrum is shown to consist solely of eigenvalues s(s−1) for positive integers s bounded by the weight, with multiplicities which exhibit rich representation-theoretic patterns.
Haith-Cooper, Melanie
2003-01-01
This paper is the second of two parts exploring a study that was undertaken to investigate the role of the tutor in facilitating problem-based learning (PBL). The first part focussed on the methodological underpinnings of the study. This paper aims to focus on the findings of the study and their implications for the facilitation of PBL. Six essential themes emerged from the findings that described the facilitation role. The tutors believed that their facilitation role was essentially structured around the decision of when to intervene and how to intervene in the PBL process. Modelling and non-verbal communication were seen as essential strategies for the facilitator. Underpinning these decisions was the need to trust in the philosophy of PBL. However, within many of the themes, there was a divergence of opinion as to how the role should actually be undertaken. Despite this, these findings have implications for the future role of PBL facilitators in Health Professional Education.
Arie Trouwborst
2011-06-01
Full Text Available The contamination of the world's oceans by human garbage, especially plastics, ranks among those environmental problems whose resolution appears remote, despite the considerable public attention paid to the 'Great Garbage Patch' in the Pacific, 'plastic soup', and the like. This 'marine litter' (or 'marine debris' problem is characterized by diffuse sources and an array of adverse environmental impacts, including entanglement of and ingestion by albatrosses, fulmars, turtles, seals and a variety of other marine wildlife. This article explores the evolving role of international law in the efforts to manage marine litter, including recent developments involving the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention and the European Union's Marine Strategy Framework Directive (MSFD.
Arie Trouwborst
2011-06-01
Full Text Available The contamination of the world's oceans by human garbage, especially plastics, ranks among those environmental problems whose resolution appears remote, despite the considerable public attention paid to the 'Great Garbage Patch' in the Pacific, 'plastic soup', and the like. This 'marine litter' (or 'marine debris' problem is characterized by diffuse sources and an array of adverse environmental impacts, including entanglement of and ingestion by albatrosses, fulmars, turtles, seals and a variety of other marine wildlife. This article explores the evolving role of international law in the efforts to manage marine litter, including recent developments involving the Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR Convention and the European Union's Marine Strategy Framework Directive (MSFD.
Tangwa, G B
2004-02-01
In this paper, the author attempts to explore some of the problems connected with the formulation and application of international biomedical ethical guidelines, with particular reference to Africa. Recent attempts at revising and updating some international medical ethical guidelines have been bedevilled by intractable controversies and wrangling regarding both the content and formulation. From the vantage position of relative familiarity with both African and Western contexts, and the privilege of having been involved in the revision and updating of one of the international ethical guidelines, the author reflects broadly on these issues and attempts prescribing an approach from both the theoretical and practical angles liable to mitigate, if not completely eliminate, some of the problems and difficulties.
Fortgang, Rebecca G; Hoff, Rani A; Potenza, Marc N
2018-02-16
High rates of both problem and pathological gambling (PPG) and substance-use disorders (SUDs) have been reported in schizophrenia, and yet PPG frequently goes undetected in clinical practice and unexamined in research. Here, we aimed to examine the relationship between PPG and SUDs in a large sample of patients across several factors related to both gambling and substance use, including poly-substance use. Additionally, delay discounting is a form of impulsivity known to positively associate with both PPG and SUDs and thought to underlie mechanisms of addiction in both contexts. We aimed to investigate the relationship between PPG and delay discounting in schizophrenia. 337 individuals with schizophrenia completed structured face-to-face interviews regarding gambling behaviors, substance use, and delay discounting. PPG in schizophrenia was associated with substance use, in particular with poly-substance use, and with delay discounting among males. Factors related to substance use were strongly linked with gambling in this sample, but not always with PPG more than recreational gambling. Our findings overall support the notions that multiple forms of gambling in schizophrenia are clinically relevant, that gambling may share common substrates with substance use, and that delay discounting represents a potential mechanism of this association in males.
Problems of ecological and technical safety by exploration and production of natural gas hydrates
Chen-Chen
2006-10-01
Full Text Available Gas hydrates - the firm crystal connections form water (liquid water, ice, water vapor and low-molecular waterproof natural gases (mainly methane whose crystal structure effectively compresses gas e.s.: each cubic meter of hydrate can yield over 160 m3 of methane.In present time, the exploitation of the Messoyahsk (Russia and Mallik (Canada deposits of gas hydrates is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments depends on the improvement of geophysical and the well test research, among which native-state core drilling is one of the major. Sampling a native-state core from gas hydrates sediments keeps not only the original composition but structural - textural features of their construction.Despite of the appeal to use gas hydrates as a perspective and ecologically pure fuel possessing huge resources, the investigation and development of their deposits can lead to a number of negative consequences connected with hazards arising from the maintenance of their technical and ecological safety of carrying out. Scales of the arising problems can change from local to regional and even global.
Bifulco, Antonia; Moran, Patricia; Jacobs, Catherine; Bunn, Amanda
2009-01-01
An intergenerational study examined mothers' insecure attachment style using the Attachment Style Interview (ASI; Bifulco et al., 2002a) in relation to her history of partner relationships, her parenting competence, and depression or anxiety disorder in her offspring. The sample comprised 146 high-risk, mother-adolescent offspring pairs in London, who were recruited on the basis of the mothers' psychosocial vulnerability for depression. Retrospective, biographical, and clinical interviews were undertaken independently with mother and offspring. A path model was developed, which showed that mothers' insecure attachment style had no direct link to either recalled child neglect/abuse or currently assessed disorder in their adolescent and young adult offspring. The connections appeared to be indirect, through the quality of relationships in the family system: mothers' insecure attachment and their partners' problem behavior accounted for variance in mothers' incompetent parenting as rated by interviewers. These variables predicted her neglect/abuse of the child, which was the only variable directly associated with internalizing disorder in her offspring. Mother's lifetime depression did not add to the model. It is argued that an ecological approach (emphasizing social adversity and different role domains) and a lifespan approach (emphasizing a history of adverse relationships a different life stages) is important in understanding the mechanisms by which parental insecure attachment style influences transmission of risk to the next generation.
Nichols, Jeri Ann
This study examined the relationship between mathematics background and performance on graph-related problems in physics before and after instruction on the graphical analysis of motion and several microcomputer-based laboratory experiences. Students identified as either having or not having a graphing technology enhanced precalculus mathematics background were further categorized into one of four groups according to mathematics placement at the university. The performances of these groups were compared to identity differences. Pre- and Post-test data were collected from 589 students and 312 students during Autumn Quarter 1990 and Winter Quarter 1991 respectively. Background information was collected from each student. Significant differences were found between students with the technology enhanced mathematics background and those without when considering the entire populations both quarters. The students with the technology background were favored Autumn quarter and students without the technology background were favored Winter quarter. However, the entire population included an underrepresentation of students at the highest and lowest placements; hence, these were eliminated from the analyses. No significant differences were found between the technology/no technology groups after the elimination of the underrepresented groups. All categories of students increased their mean scores from pretest to post-test; the average increase was 8.23 points Autumn Quarter and 11.41 points Winter Quarter. Males consistently outperformed females on both the pretest and the post-test Autumn 1990. All students found questions involving the concept of acceleration more difficult than questions involving velocity or distance. Questions requiring students to create graphs were more difficult than questions requiring students to interpret graphs. Further research involving a qualitative component is recommended to identify the specific skills students use when solving graph
XML Graphs in Program Analysis
Møller, Anders; Schwartzbach, Michael I.
2011-01-01
of XML graphs against different XML schema languages, and provide a software package that enables others to make use of these ideas. We also survey the use of XML graphs for program analysis with four very different languages: XACT (XML in Java), Java Servlets (Web application programming), XSugar......XML graphs have shown to be a simple and effective formalism for representing sets of XML documents in program analysis. It has evolved through a six year period with variants tailored for a range of applications. We present a unified definition, outline the key properties including validation...
Rabern, Landon
2007-01-01
We improve upper bounds on the chromatic number proven independently in \\cite{reedNote} and \\cite{ingo}. Our main lemma gives a sufficient condition for two paths in graph to be completely joined. Using this, we prove that if a graph has an optimal coloring with more than $\\frac{\\omega}{2}$ singleton color classes, then it satisfies $\\chi \\leq \\frac{\\omega + \\Delta + 1}{2}$. It follows that a graph satisfying $n - \\Delta < \\alpha + \\frac{\\omega - 1}{2}$ must also satisfy $\\chi \\leq \\frac{\\ome...
Graphs with Eulerian unit spheres
Knill, Oliver
2015-01-01
d-spheres in graph theory are inductively defined as graphs for which all unit spheres S(x) are (d-1)-spheres and that the removal of one vertex renders the graph contractible. Eulerian d-spheres are geometric d-spheres which are d+1 colorable. We prove here that G is an Eulerian sphere if and only if the degrees of all the (d-2)-dimensional sub-simplices in G are even. This generalizes a Kempe-Heawood result for d=2 and is work related to the conjecture that all d-spheres have chromatic numb...
Full Two-Body Problem Mass Parameter Observability Explored Through Doubly Synchronous Systems
Davis, Alex Benjamin; Scheeres, Daniel
2018-04-01
The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. For these systems the doubly synchronous equilibrium occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body’s mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by proving the nonsingularity of the relationship between the frequencies and mass parameters for doubly synchronous systems. Thus we can invert the relationship to show that given observations of the frequencies, we can solve for the mass parameters of a target system. In so doing we are able to predict the estimation covariance of the mass parameters based on observation quality and define necessary observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for these systems’ mass parameters
Wiener index and Diameter of a Planar Graph in Subquadratic Time
Wulff-Nilsen, Christian
2009-01-01
Consider the problem of computing the sum of distances between each pair of vertices of an unweighted graph. This sum is also known as the Wiener index of the graph, a generalization of a definition given by H. Wiener in 1947. A molecular topological index is a value obtained from the graph...... structure of a molecule such that this value (hopefully) correlates with physical and/or chemical properties of the molecule. The Wiener index is perhaps the most studied molecular topological index with more than a thousand publications. It is open whether the Wiener index of a planar graph can be obtained...... in subquadratic time. In my talk, I will solve this open problem by exhibiting an O(n2 log log n / log n) time algorithm, where n is the size of the graph. A simple modification yields an algorithm with the same time bound that computes the diameter (maximum distance between any vertex pair) of a planar graph. I...
An Exploration of Dual Systems via Time Pressure Manipulation in Decision-making Problems
Guo, Lisa
Every day, decisions need to be made where time is a limiting factor. Regardless of situation, time constraints often place a premium on rapid decision-making. Researchers have been interested in studying this human behavior and understanding its underlying cognitive processes. In previous studies, scientists have believed that the cognitive processes underlying decision-making behavior were consistent with dual-process modes of thinking. Critics of dual-process theory question the vagueness of its definition, and claim that single-process accounts can explain the data just as well. My aim is to elucidate the cognitive processes that underlie decisions which involve some level of risk through the experimental manipulation of time pressure. Using this method, I hope to distinguish between competing hypotheses related to the origin of the effect. I will explore three types of decisions that illustrate these concepts: risky decision-making involving gambles, intertemporal choice, and one-shot public goods games involving social cooperation. In our experiments, participants made decisions about gambles framed as either gains or losses; decided upon intertemporal choices for smaller but sooner rewards or larger but later rewards; and played a one-shot public goods game involving social cooperation and contributing an amount of money to a group. In each case, we experimentally manipulated time pressure, either within subjects or among individuals. Results showed under time pressure, increased framing effects under in both hypothetical and incentivized choices; and greater contributions and cooperation among individuals, lending support to the dual process hypothesis that these effects arise from a fast, intuitive system. However, our intertemporal choice experiment showed that time constraints led to increased selection of the larger but later options, which suggests that the magnitude of the reward may play larger role in choice selection under cognitive load than
A Ranking Approach on Large-Scale Graph With Multidimensional Heterogeneous Information.
Wei, Wei; Gao, Bin; Liu, Tie-Yan; Wang, Taifeng; Li, Guohui; Li, Hang
2016-04-01
Graph-based ranking has been extensively studied and frequently applied in many applications, such as webpage ranking. It aims at mining potentially valuable information from the raw graph-structured data. Recently, with the proliferation of rich heterogeneous information (e.g., node/edge features and prior knowledge) available in many real-world graphs, how to effectively and efficiently leverage all information to improve the ranking performance becomes a new challenging problem. Previous methods only utilize part of such information and attempt to rank graph nodes according to link-based methods, of which the ranking performances are severely affected by several well-known issues, e.g., over-fitting or high computational complexity, especially when the scale of graph is very large. In this paper, we address the large-scale graph-based ranking problem and focus on how to effectively exploit rich heterogeneous information of the graph to improve the ranking performance. Specifically, we propose an innovative and effective semi-supervised PageRank (SSP) approach to parameterize the derived information within a unified semi-supervised learning framework (SSLF-GR), then simultaneously optimize the parameters and the ranking scores of graph nodes. Experiments on the real-world large-scale graphs demonstrate that our method significantly outperforms the algorithms that consider such graph information only partially.
Szabó, György; Fáth, Gábor
2007-07-01
Game theory is one of the key paradigms behind many scientific disciplines from biology to behavioral sciences to economics. In its evolutionary form and especially when the interacting agents are linked in a specific social network the underlying solution concepts and methods are very similar to those applied in non-equilibrium statistical physics. This review gives a tutorial-type overview of the field for physicists. The first four sections introduce the necessary background in classical and evolutionary game theory from the basic definitions to the most important results. The fifth section surveys the topological complications implied by non-mean-field-type social network structures in general. The next three sections discuss in detail the dynamic behavior of three prominent classes of models: the Prisoner's Dilemma, the Rock-Scissors-Paper game, and Competing Associations. The major theme of the review is in what sense and how the graph structure of interactions can modify and enrich the picture of long term behavioral patterns emerging in evolutionary games.
Approximating centrality in evolving graphs: toward sublinearity
Priest, Benjamin W.; Cybenko, George
2017-05-01
The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.
The forwarding indices of graphs - a survey
Jun-Ming Xu
2013-01-01
Full Text Available A routing \\(R\\ of a connected graph \\(G\\ of order \\(n\\ is a collection of \\(n(n-1\\ simple paths connecting every ordered pair of vertices of \\(G\\. The vertex-forwarding index \\(\\xi(G,R\\ of \\(G\\ with respect to a routing \\(R\\ is defined as the maximum number of paths in \\(R\\ passing through any vertex of \\(G\\. The vertex-forwarding index \\(\\xi(G\\ of \\(G\\ is defined as the minimum \\(\\xi(G,R\\ over all routings \\(R\\ of \\(G\\. Similarly, the edge-forwarding index \\(\\pi(G,R\\ of \\(G\\ with respect to a routing \\(R\\ is the maximum number of paths in \\(R\\ passing through any edge of \\(G\\. The edge-forwarding index \\(\\pi(G\\ of \\(G\\ is the minimum \\(\\pi(G,R\\ over all routings \\(R\\ of \\(G\\. The vertex-forwarding index or the edge-forwarding index corresponds to the maximum load of the graph. Therefore, it is important to find routings minimizing these indices and thus has received much research attention for over twenty years. This paper surveys some known results on these forwarding indices, further research problems and several conjectures, also states some difficulty and relations to other topics in graph theory.
Kim, Song-Ju; Aono, Masashi; Hara, Masahiko
2010-07-01
We propose a model - the "tug-of-war (TOW) model" - to conduct unique parallel searches using many nonlocally-correlated search agents. The model is based on the property of a single-celled amoeba, the true slime mold Physarum, which maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a "nonlocal correlation" among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). This nonlocal correlation was shown to be useful for decision making in the case of a dilemma. The multi-armed bandit problem is to determine the optimal strategy for maximizing the total reward sum with incompatible demands, by either exploiting the rewards obtained using the already collected information or exploring new information for acquiring higher payoffs involving risks. Our model can efficiently manage the "exploration-exploitation dilemma" and exhibits good performances. The average accuracy rate of our model is higher than those of well-known algorithms such as the modified -greedy algorithm and modified softmax algorithm, especially, for solving relatively difficult problems. Moreover, our model flexibly adapts to changing environments, a property essential for living organisms surviving in uncertain environments.
Van Mierlo, L D; Bootsma-Van der Wiel, A; Meiland, F J M; Van Hout, H P J; Stek, M L; Dröes, R M
2015-01-01
In the Netherlands, many community-dwelling people with dementia and behavioral disturbances and their family caregivers receive mental health care from a community psychiatric nurse (CPN). To promote continuity of care for these persons after moving to a nursing home, a transfer intervention was developed. The aim of this explorative study was to evaluate this intervention and its implementation. A qualitative explorative study design was used. CPNs visited professional nursing home carers, people with dementia and family caregivers six weeks after moving, advised on how to manage behavioral problems of their former clients and provided support to family caregivers. Twenty-two interviews were conducted with participants exposed to the intervention (5 CPNs, 5 family and 12 nursing home carers) and with 11 stakeholders (i.e., nursing home and mental health care managers, professional caregivers) to identify facilitators and barriers to the implementation. Data were collected in 2012 and 2013. The follow-up visit at six weeks met the need for background information of new admitted patients and helped family caregivers close off the period prior to the move. It did not meet the original purpose of providing nursing home staff with advice about problem behaviors on time: six weeks after the move was experienced as too late. The transfer intervention increased the awareness of nursing home staff about personal and behavioral characteristics of residents with dementia and supported caregivers in coping with the new situation. The timing of the intervention could be improved by scheduling it immediately after the move.
Graph anomalies in cyber communications
Vander Wiel, Scott A [Los Alamos National Laboratory; Storlie, Curtis B [Los Alamos National Laboratory; Sandine, Gary [Los Alamos National Laboratory; Hagberg, Aric A [Los Alamos National Laboratory; Fisk, Michael [Los Alamos National Laboratory
2011-01-11
Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.
Open Graphs and Computational Reasoning
Lucas Dixon
2010-06-01
Full Text Available We present a form of algebraic reasoning for computational objects which are expressed as graphs. Edges describe the flow of data between primitive operations which are represented by vertices. These graphs have an interface made of half-edges (edges which are drawn with an unconnected end and enjoy rich compositional principles by connecting graphs along these half-edges. In particular, this allows equations and rewrite rules to be specified between graphs. Particular computational models can then be encoded as an axiomatic set of such rules. Further rules can be derived graphically and rewriting can be used to simulate the dynamics of a computational system, e.g. evaluating a program on an input. Examples of models which can be formalised in this way include traditional electronic circuits as well as recent categorical accounts of quantum information.
Generating random networks and graphs
Coolen, Ton; Roberts, Ekaterina
2017-01-01
This book supports researchers who need to generate random networks, or who are interested in the theoretical study of random graphs. The coverage includes exponential random graphs (where the targeted probability of each network appearing in the ensemble is specified), growth algorithms (i.e. preferential attachment and the stub-joining configuration model), special constructions (e.g. geometric graphs and Watts Strogatz models) and graphs on structured spaces (e.g. multiplex networks). The presentation aims to be a complete starting point, including details of both theory and implementation, as well as discussions of the main strengths and weaknesses of each approach. It includes extensive references for readers wishing to go further. The material is carefully structured to be accessible to researchers from all disciplines while also containing rigorous mathematical analysis (largely based on the techniques of statistical mechanics) to support those wishing to further develop or implement the theory of rand...
Learning a Health Knowledge Graph from Electronic Medical Records.
Rotmensch, Maya; Halpern, Yoni; Tlimat, Abdulhakim; Horng, Steven; Sontag, David
2017-07-20
Demand for clinical decision support systems in medicine and self-diagnostic symptom checkers has substantially increased in recent years. Existing platforms rely on knowledge bases manually compiled through a labor-intensive process or automatically derived using simple pairwise statistics. This study explored an automated process to learn high quality knowledge bases linking diseases and symptoms directly from electronic medical records. Medical concepts were extracted from 273,174 de-identified patient records and maximum likelihood estimation of three probabilistic models was used to automatically construct knowledge graphs: logistic regression, naive Bayes classifier and a Bayesian network using noisy OR gates. A graph of disease-symptom relationships was elicited from the learned parameters and the constructed knowledge graphs were evaluated and validated, with permission, against Google's manually-constructed knowledge graph and against expert physician opinions. Our study shows that direct and automated construction of high quality health knowledge graphs from medical records using rudimentary concept extraction is feasible. The noisy OR model produces a high quality knowledge graph reaching precision of 0.85 for a recall of 0.6 in the clinical evaluation. Noisy OR significantly outperforms all tested models across evaluation frameworks (p < 0.01).
Low-algorithmic-complexity entropy-deceiving graphs
Zenil, Hector
2017-07-08
In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure\\'s range of applications and demonstrating the weaknesses of computable measures of complexity.
Low-algorithmic-complexity entropy-deceiving graphs
Zenil, Hector; Kiani, Narsis A.; Tegner, Jesper
2017-01-01
In estimating the complexity of objects, in particular, of graphs, it is common practice to rely on graphand information-theoretic measures. Here, using integer sequences with properties such as Borel normality, we explain how these measures are not independent of the way in which an object, such as a graph, can be described or observed. From observations that can reconstruct the same graph and are therefore essentially translations of the same description, we see that when applying a computable measure such as the Shannon entropy, not only is it necessary to preselect a feature of interest where there is one, and to make an arbitrary selection where there is not, but also more general properties, such as the causal likelihood of a graph as a measure (opposed to randomness), can be largely misrepresented by computable measures such as the entropy and entropy rate. We introduce recursive and nonrecursive (uncomputable) graphs and graph constructions based on these integer sequences, whose different lossless descriptions have disparate entropy values, thereby enabling the study and exploration of a measure's range of applications and demonstrating the weaknesses of computable measures of complexity.
Network graph analysis and visualization with Gephi
Cherven, Ken
2013-01-01
A practical, hands-on guide, that provides you with all the tools you need to visualize and analyze your data using network graphs with Gephi.This book is for data analysts who want to intuitively reveal patterns and trends, highlight outliers, and tell stories with their data using Gephi. It is great for anyone looking to explore interactions within network datasets, whether the data comes from social media or elsewhere. It is also a valuable resource for those seeking to learn more about Gephi without being overwhelmed by technical details.
Graph theory and its applications
Gross, Jonathan L
2006-01-01
Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
Weighted Maximum-Clique Transversal Sets of Graphs
Chuan-Min Lee
2011-01-01
A maximum-clique transversal set of a graph G is a subset of vertices intersecting all maximum cliques of G. The maximum-clique transversal set problem is to find a maximum-clique transversal set of G of minimum cardinality. Motivated by the placement of transmitters for cellular telephones, Chang, Kloks, and Lee introduced the concept of maximum-clique transversal sets on graphs in 2001. In this paper, we study the weighted version of the maximum-clique transversal set problem for split grap...
Reproducibility of graph metrics in fMRI networks
Qawi K Telesford
2010-12-01
Full Text Available The reliability of graph metrics calculated in network analysis is essential to the interpretation of complex network organization. These graph metrics are used to deduce the small-world properties in networks. In this study, we investigated the test-retest reliability of graph metrics from functional magnetic resonance imaging (fMRI data collected for two runs in 45 healthy older adults. Graph metrics were calculated on data for both runs and compared using intraclass correlation coefficient (ICC statistics and Bland-Altman (BA plots. ICC scores describe the level of absolute agreement between two measurements and provide a measure of reproducibility. For mean graph metrics, ICC scores were high for clustering coefficient (ICC=0.86, global efficiency (ICC=0.83, path length (ICC=0.79, and local efficiency (ICC=0.75; the ICC score for degree was found to be low (ICC=0.29. ICC scores were also used to generate reproducibility maps in brain space to test voxel-wise reproducibility for unsmoothed and smoothed data. Reproducibility was uniform across the brain for global efficiency and path length, but was only high in network hubs for clustering coefficient, local efficiency and degree. BA plots were used to test the measurement repeatability of all graph metrics. All graph metrics fell within the limits for repeatability. Together, these results suggest that with exception of degree, mean graph metrics are reproducible and suitable for clinical studies. Further exploration is warranted to better understand reproducibility across the brain on a voxel-wise basis.
Graphs with branchwidth at most three
Bodlaender, H.L.; Thilikos, D.M.
1997-01-01
In this paper we investigate both the structure of graphs with branchwidth at most three, as well as algorithms to recognise such graphs. We show that a graph has branchwidth at most three, if and only if it has treewidth at most three and does not contain the three-dimensional binary cube graph
Graphs whose complement and square are isomorphic
Pedersen, Anders Sune
2014-01-01
We study square-complementary graphs, that is, graphs whose complement and square are isomorphic. We prove several necessary conditions for a graph to be square-complementary, describe ways of building new square-complementary graphs from existing ones, construct infinite families of square-compl...
Acyclicity in edge-colored graphs
Gutin, Gregory; Jones, Mark; Sheng, Bin
2017-01-01
A walk W in edge-colored graphs is called properly colored (PC) if every pair of consecutive edges in W is of different color. We introduce and study five types of PC acyclicity in edge-colored graphs such that graphs of PC acyclicity of type i is a proper superset of graphs of acyclicity of type...
Building Scalable Knowledge Graphs for Earth Science
Ramachandran, Rahul; Maskey, Manil; Gatlin, Patrick; Zhang, Jia; Duan, Xiaoyi; Miller, J. J.; Bugbee, Kaylin; Christopher, Sundar; Freitag, Brian
2017-01-01
Knowledge Graphs link key entities in a specific domain with other entities via relationships. From these relationships, researchers can query knowledge graphs for probabilistic recommendations to infer new knowledge. Scientific papers are an untapped resource which knowledge graphs could leverage to accelerate research discovery. Goal: Develop an end-to-end (semi) automated methodology for constructing Knowledge Graphs for Earth Science.
Port-Hamiltonian Systems on Open Graphs
Schaft, A.J. van der; Maschke, B.M.
2010-01-01
In this talk we discuss how to define in an intrinsic manner port-Hamiltonian dynamics on open graphs. Open graphs are graphs where some of the vertices are boundary vertices (terminals), which allow interconnection with other systems. We show that a directed graph carries two natural Dirac
Constructing Dense Graphs with Unique Hamiltonian Cycles
Lynch, Mark A. M.
2012-01-01
It is not difficult to construct dense graphs containing Hamiltonian cycles, but it is difficult to generate dense graphs that are guaranteed to contain a unique Hamiltonian cycle. This article presents an algorithm for generating arbitrarily large simple graphs containing "unique" Hamiltonian cycles. These graphs can be turned into dense graphs…
Skew-adjacency matrices of graphs
Cavers, M.; Cioaba, S.M.; Fallat, S.; Gregory, D.A.; Haemers, W.H.; Kirkland, S.J.; McDonald, J.J.; Tsatsomeros, M.
2012-01-01
The spectra of the skew-adjacency matrices of a graph are considered as a possible way to distinguish adjacency cospectral graphs. This leads to the following topics: graphs whose skew-adjacency matrices are all cospectral; relations between the matchings polynomial of a graph and the characteristic
Chromatic polynomials of random graphs
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
Commuting graphs of matrix algebras
Akbari, S.; Bidkhori, H.; Mohammadian, A.
2006-08-01
The commuting graph of a ring R, denoted by Γ(R), is a graph whose vertices are all non- central elements of R and two distinct vertices x and y are adjacent if and only if xy = yx. The commuting graph of a group G, denoted by Γ(G), is similarly defined. In this paper we investigate some graph theoretic properties of Γ(M n (F)), where F is a field and n ≥ 2. Also we study the commuting graphs of some classical groups such as GL n (F) and SL n (F). We show that Γ(M n (F)) is a connected graph if and only if every field extension of F of degree n contains a proper intermediate field. We prove that apart from finitely many fields, a similar result is true for Γ(GL n (F)) and Γ(SL n (F)). Also we show that for two fields E and F and integers m, n ≥> 2, if Γ(M m (E)) ≅ Γ(M n (F)), then m = n and vertical bar E vertical bar = vertical bar F vertical bar. (author)
Graph-cut based discrete-valued image reconstruction.
Tuysuzoglu, Ahmet; Karl, W Clem; Stojanovic, Ivana; Castañòn, David; Ünlü, M Selim
2015-05-01
Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns.
Neuro-symbolic representation learning on biological knowledge graphs.
Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert
2017-09-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Neuro-symbolic representation learning on biological knowledge graphs
Alshahrani, Mona
2017-04-21
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge.We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of SemanticWeb based knowledge bases in biology to use in machine learning and data analytics.https://github.com/bio-ontology-research-group/walking-rdf-and-owl.robert.hoehndorf@kaust.edu.sa.Supplementary data are available at Bioinformatics online.
Regular graph construction for semi-supervised learning
Vega-Oliveros, Didier A; Berton, Lilian; Eberle, Andre Mantini; Lopes, Alneu de Andrade; Zhao, Liang
2014-01-01
Semi-supervised learning (SSL) stands out for using a small amount of labeled points for data clustering and classification. In this scenario graph-based methods allow the analysis of local and global characteristics of the available data by identifying classes or groups regardless data distribution and representing submanifold in Euclidean space. Most of methods used in literature for SSL classification do not worry about graph construction. However, regular graphs can obtain better classification accuracy compared to traditional methods such as k-nearest neighbor (kNN), since kNN benefits the generation of hubs and it is not appropriate for high-dimensionality data. Nevertheless, methods commonly used for generating regular graphs have high computational cost. We tackle this problem introducing an alternative method for generation of regular graphs with better runtime performance compared to methods usually find in the area. Our technique is based on the preferential selection of vertices according some topological measures, like closeness, generating at the end of the process a regular graph. Experiments using the global and local consistency method for label propagation show that our method provides better or equal classification rate in comparison with kNN
Scalable force directed graph layout algorithms using fast multipole methods
Yunis, Enas Abdulrahman
2012-06-01
We present an extension to ExaFMM, a Fast Multipole Method library, as a generalized approach for fast and scalable execution of the Force-Directed Graph Layout algorithm. The Force-Directed Graph Layout algorithm is a physics-based approach to graph layout that treats the vertices V as repelling charged particles with the edges E connecting them acting as springs. Traditionally, the amount of work required in applying the Force-Directed Graph Layout algorithm is O(|V|2 + |E|) using direct calculations and O(|V| log |V| + |E|) using truncation, filtering, and/or multi-level techniques. Correct application of the Fast Multipole Method allows us to maintain a lower complexity of O(|V| + |E|) while regaining most of the precision lost in other techniques. Solving layout problems for truly large graphs with millions of vertices still requires a scalable algorithm and implementation. We have been able to leverage the scalability and architectural adaptability of the ExaFMM library to create a Force-Directed Graph Layout implementation that runs efficiently on distributed multicore and multi-GPU architectures. © 2012 IEEE.
Bounds for percolation thresholds on directed and undirected graphs
Hamilton, Kathleen; Pryadko, Leonid
2015-03-01
Percolation theory is an efficient approach to problems with strong disorder, e.g., in quantum or classical transport, composite materials, and diluted magnets. Recently, the growing role of big data in scientific and industrial applications has led to a renewed interest in graph theory as a tool for describing complex connections in various kinds of networks: social, biological, technological, etc. In particular, percolation on graphs has been used to describe internet stability, spread of contagious diseases and computer viruses; related models describe market crashes and viral spread in social networks. We consider site-dependent percolation on directed and undirected graphs, and present several exact bounds for location of the percolation transition in terms of the eigenvalues of matrices associated with graphs, including the adjacency matrix and the Hashimoto matrix used to enumerate non-backtracking walks. These bounds correspond t0 a mean field approximation and become asymptotically exact for graphs with no short cycles. We illustrate this convergence numerically by simulating percolation on several families of graphs with different cycle lengths. This research was supported in part by the NSF Grant PHY-1416578 and by the ARO Grant W911NF-11-1-0027.
Graph Quasicontinuous Functions and Densely Continuous Forms
Lubica Hola
2017-07-01
Full Text Available Let $X, Y$ be topological spaces. A function $f: X \\to Y$ is said to be graph quasicontinuous if there is a quasicontinuous function $g: X \\to Y$ with the graph of $g$ contained in the closure of the graph of $f$. There is a close relation between the notions of graph quasicontinuous functions and minimal usco maps as well as the notions of graph quasicontinuous functions and densely continuous forms. Every function with values in a compact Hausdorff space is graph quasicontinuous; more generally every locally compact function is graph quasicontinuous.
Oches, E. A.; Szymanski, D. W.; Snyder, B.; Gulati, G. J.; Davis, P. T.
2012-12-01
The highly interdisciplinary nature of sustainability presents pedagogic challenges when sustainability concepts are incorporated into traditional disciplinary courses. At Bentley University, where over 90 percent of students major in business disciplines, we have created a multidisciplinary course module centered on corn ethanol that explores a complex social, environmental, and economic problem and develops basic data analysis and analytical thinking skills in several courses spanning the natural, physical, and social sciences within the business curriculum. Through an NSF-CCLI grant, Bentley faculty from several disciplines participated in a summer workshop to define learning objectives, create course modules, and develop an assessment plan to enhance interdisciplinary sustainability teaching. The core instructional outcome was a data-rich exercise for all participating courses in which students plot and analyze multiple parameters of corn planted and harvested for various purposes including food (human), feed (animal), ethanol production, and commodities exchanged for the years 1960 to present. Students then evaluate patterns and trends in the data and hypothesize relationships among the plotted data and environmental, social, and economic drivers, responses, and unintended consequences. After the central data analysis activity, students explore corn ethanol production as it relates to core disciplinary concepts in their individual classes. For example, students in Environmental Chemistry produce ethanol using corn and sugar as feedstocks and compare the efficiency of each process, while learning about enzymes, fermentation, distillation, and other chemical principles. Principles of Geology students examine the effects of agricultural runoff on surface water quality associated with extracting greater agricultural yield from mid-continent croplands. The American Government course examines the role of political institutions, the political process, and various
Discrete geometric analysis of message passing algorithm on graphs
Watanabe, Yusuke
2010-04-01
We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.
Precalculus Teachers' Perspectives on Using Graphing Calculators: An Example from One Curriculum
Karadeniz, Ilyas; Thompson, Denisse R.
2018-01-01
Graphing calculators are hand-held technological tools currently used in mathematics classrooms. Teachers' perspectives on using graphing calculators are important in terms of exploring what teachers think about using such technology in advanced mathematics courses, particularly precalculus courses. A descriptive intrinsic case study was conducted…
Discrete Morse functions for graph configuration spaces
Sawicki, A
2012-01-01
We present an alternative application of discrete Morse theory for two-particle graph configuration spaces. In contrast to previous constructions, which are based on discrete Morse vector fields, our approach is through Morse functions, which have a nice physical interpretation as two-body potentials constructed from one-body potentials. We also give a brief introduction to discrete Morse theory. Our motivation comes from the problem of quantum statistics for particles on networks, for which generalized versions of anyon statistics can appear. (paper)
Dynamic Programming and Graph Algorithms in Computer Vision*
Felzenszwalb, Pedro F.; Zabih, Ramin
2013-01-01
Optimization is a powerful paradigm for expressing and solving problems in a wide range of areas, and has been successfully applied to many vision problems. Discrete optimization techniques are especially interesting, since by carefully exploiting problem structure they often provide non-trivial guarantees concerning solution quality. In this paper we briefly review dynamic programming and graph algorithms, and discuss representative examples of how these discrete optimization techniques have been applied to some classical vision problems. We focus on the low-level vision problem of stereo; the mid-level problem of interactive object segmentation; and the high-level problem of model-based recognition. PMID:20660950
Samatova, N F; Schmidt, M C; Hendrix, W; Breimyer, P; Thomas, K; Park, B-H
2008-01-01
Data-driven construction of predictive models for biological systems faces challenges from data intensity, uncertainty, and computational complexity. Data-driven model inference is often considered a combinatorial graph problem where an enumeration of all feasible models is sought. The data-intensive and the NP-hard nature of such problems, however, challenges existing methods to meet the required scale of data size and uncertainty, even on modern supercomputers. Maximal clique enumeration (MCE) in a graph derived from such biological data is often a rate-limiting step in detecting protein complexes in protein interaction data, finding clusters of co-expressed genes in microarray data, or identifying clusters of orthologous genes in protein sequence data. We report two key advances that address this challenge. We designed and implemented the first (to the best of our knowledge) parallel MCE algorithm that scales linearly on thousands of processors running MCE on real-world biological networks with thousands and hundreds of thousands of vertices. In addition, we proposed and developed the Graph Perturbation Theory (GPT) that establishes a foundation for efficiently solving the MCE problem in perturbed graphs, which model the uncertainty in the data. GPT formulates necessary and sufficient conditions for detecting the differences between the sets of maximal cliques in the original and perturbed graphs and reduces the enumeration time by more than 80% compared to complete recomputation
Khovanov homology of graph-links
Nikonov, Igor M [M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow (Russian Federation)
2012-08-31
Graph-links arise as the intersection graphs of turning chord diagrams of links. Speaking informally, graph-links provide a combinatorial description of links up to mutations. Many link invariants can be reformulated in the language of graph-links. Khovanov homology, a well-known and useful knot invariant, is defined for graph-links in this paper (in the case of the ground field of characteristic two). Bibliography: 14 titles.
Edge compression techniques for visualization of dense directed graphs.
Dwyer, Tim; Henry Riche, Nathalie; Marriott, Kim; Mears, Christopher
2013-12-01
We explore the effectiveness of visualizing dense directed graphs by replacing individual edges with edges connected to 'modules'-or groups of nodes-such that the new edges imply aggregate connectivity. We only consider techniques that offer a lossless compression: that is, where the entire graph can still be read from the compressed version. The techniques considered are: a simple grouping of nodes with identical neighbor sets; Modular Decomposition which permits internal structure in modules and allows them to be nested; and Power Graph Analysis which further allows edges to cross module boundaries. These techniques all have the same goal--to compress the set of edges that need to be rendered to fully convey connectivity--but each successive relaxation of the module definition permits fewer edges to be drawn in the rendered graph. Each successive technique also, we hypothesize, requires a higher degree of mental effort to interpret. We test this hypothetical trade-off with two studies involving human participants. For Power Graph Analysis we propose a novel optimal technique based on constraint programming. This enables us to explore the parameter space for the technique more precisely than could be achieved with a heuristic. Although applicable to many domains, we are motivated by--and discuss in particular--the application to software dependency analysis.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai
2018-01-01
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and
Memoryless cooperative graph search based on the simulated annealing algorithm
Hou Jian; Yan Gang-Feng; Fan Zhen
2011-01-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment. (interdisciplinary physics and related areas of science and technology)
Graph theory with applications
Vasudev, C
2006-01-01
Salient Features Over 1500 problems are used to illustrate concepts, related to different topics, and introduce applications. Over 1000 exercises in the text with many different types of questions posed. Precise mathematical language is used without excessive formalism and abstraction. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets are stated clearly and unambiguously, and all are carefully graded for various levels of difficulty. This text has been carefully designed for flexible use.
Frijters, Paul; Johnston, David W; Lordan, Grace; Shields, Michael A
2013-05-01
There is considerable policy interest in the impact of macroeconomic conditions on health-related behaviours and outcomes. This paper sheds new light on this issue by exploring the relationship between macroeconomic conditions and an indicator of problem drinking derived from state-level data on alcoholism-related Google searches conducted in the US over the period 2004-2011. We find the current recessionary period coincided with an almost 20% increase in alcoholism-related searches. Controlling for state and time-effects, a 5% rise in unemployment is followed in the next 12 months by an approximate 15% increase in searches. The use of Internet searches to inform on health-related behaviours and outcomes is in its infancy; but we suggest that the data provides important real-time information for policy-makers and can help to overcome the under-reporting in surveys of sensitive information. Copyright © 2013 Elsevier Ltd. All rights reserved.
Grisham, John W; Martiniuk, Alexandra L C; Negin, Joel; Wright, E P
2015-03-01
Worldwide interest in problem-based learning (PBL) has grown in past decades. This article aims to evaluate the perceived effectiveness, appropriateness, benefits, and challenges attributed to the use of PBL in public health education in Vietnam with a view to providing recommendations for curricular design and future policy. Teachers at 2 universities in Hanoi participated in group interviews, and students from these 2 universities completed Likert-style questionnaires. Students and teachers regarded PBL positively. However, there was consensus that hybrid models that used PBL alongside other methods are probably the most beneficial for public health education in Vietnam. Teachers discussed the educational and systematic advantages and difficulties associated with PBL. Themes arising from this analysis may be helpful in guiding future research-namely, regarding the application of PBL in low- and middle-income countries and in public health. Further exploration of the use of PBL hybrid models is discussed. © 2012 APJPH.
Visual Reasoning in Computational Environment: A Case of Graph Sketching
Leung, Allen; Chan, King Wah
2004-01-01
This paper reports the case of a form six (grade 12) Hong Kong student's exploration of graph sketching in a computational environment. In particular, the student summarized his discovery in the form of two empirical laws. The student was interviewed and the interviewed data were used to map out a possible path of his visual reasoning. Critical…
Zero Forcing Sets and Controllability of Dynamical Systems Defined on Graphs
Monshizadeh Naini, Nima; Zhang, Shuo; Camlibel, M. Kanat
In this technical note, controllability of systems defined on graphs is discussed. We consider the problem of controllability of the network for a family of matrices carrying the structure of an underlying directed graph. A one-to-one correspondence between the set of leaders rendering the network
Approximating maximum weight cycle covers in directed graphs with weights zero and one
Bläser, Markus; Manthey, Bodo
2005-01-01
A cycle cover of a graph is a spanning subgraph each node of which is part of exactly one simple cycle. A $k$-cycle cover is a cycle cover where each cycle has length at least $k$. Given a complete directed graph with edge weights zero and one, Max-$k$-DCC(0, 1) is the problem of finding a k-cycle
Debnath, Lokenath
2010-01-01
This article is essentially devoted to a brief historical introduction to Euler's formula for polyhedra, topology, theory of graphs and networks with many examples from the real-world. Celebrated Konigsberg seven-bridge problem and some of the basic properties of graphs and networks for some understanding of the macroscopic behaviour of real…
The Use of Graphs in Specific Situations of the Initial Conditions of Linear Differential Equations
Buendía, Gabriela; Cordero, Francisco
2013-01-01
In this article, we present a discussion on the role of graphs and its significance in the relation between the number of initial conditions and the order of a linear differential equation, which is known as the initial value problem. We propose to make a functional framework for the use of graphs that intends to broaden the explanations of the…
Strong oriented chromatic number of planar graphs without short cycles
Mickaël Montassier
2008-01-01
Full Text Available Let M be an additive abelian group. A strong oriented coloringof an oriented graph G is a mapping φ from V(G to M such that (1 φ(u ≠ φ(v whenever uv is an arc in G and (2 φ(v - φ(u ≠ -(φ(t - φ(z whenever uv and zt are two arcs in G. We say that G has a M-strong-oriented coloring. The strong oriented chromatic number of an oriented graph, denoted by χ s (G, is the minimal order of a group M, such that G has M-strong-oriented coloring. This notion was introduced by Nešetřil and Raspaud. In this paper, we pose the following problem: Let i ≥ 4 be an integer. Let G be an oriented planar graph without cycles of lengths 4 to i. Which is the strong oriented chromatic number of G ? Our aim is to determine the impact of triangles on the strong oriented coloring. We give some hints of answers to this problem by proving that: (1 the strong oriented chromatic number of any oriented planar graph without cycles of lengths 4 to 12 is at most 7, and (2 the strong oriented chromatic number of any oriented planar graph without cycles of length 4 or 6 is at most 19.
Xu, Zhiqiang
2017-02-16
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Xu, Zhiqiang; Cheng, James; Xiao, Xiaokui; Fujimaki, Ryohei; Muraoka, Yusuke
2017-01-01
Attributed graph clustering, also known as community detection on attributed graphs, attracts much interests recently due to the ubiquity of attributed graphs in real life. Many existing algorithms have been proposed for this problem, which are either distance based or model based. However, model selection in attributed graph clustering has not been well addressed, that is, most existing algorithms assume the cluster number to be known a priori. In this paper, we propose two efficient approaches for attributed graph clustering with automatic model selection. The first approach is a popular Bayesian nonparametric method, while the second approach is an asymptotic method based on a recently proposed model selection criterion, factorized information criterion. Experimental results on both synthetic and real datasets demonstrate that our approaches for attributed graph clustering with automatic model selection significantly outperform the state-of-the-art algorithm.
Eigenfunction statistics on quantum graphs
Gnutzmann, S.; Keating, J.P.; Piotet, F.
2010-01-01
We investigate the spatial statistics of the energy eigenfunctions on large quantum graphs. It has previously been conjectured that these should be described by a Gaussian Random Wave Model, by analogy with quantum chaotic systems, for which such a model was proposed by Berry in 1977. The autocorrelation functions we calculate for an individual quantum graph exhibit a universal component, which completely determines a Gaussian Random Wave Model, and a system-dependent deviation. This deviation depends on the graph only through its underlying classical dynamics. Classical criteria for quantum universality to be met asymptotically in the large graph limit (i.e. for the non-universal deviation to vanish) are then extracted. We use an exact field theoretic expression in terms of a variant of a supersymmetric σ model. A saddle-point analysis of this expression leads to the estimates. In particular, intensity correlations are used to discuss the possible equidistribution of the energy eigenfunctions in the large graph limit. When equidistribution is asymptotically realized, our theory predicts a rate of convergence that is a significant refinement of previous estimates. The universal and system-dependent components of intensity correlation functions are recovered by means of an exact trace formula which we analyse in the diagonal approximation, drawing in this way a parallel between the field theory and semiclassics. Our results provide the first instance where an asymptotic Gaussian Random Wave Model has been established microscopically for eigenfunctions in a system with no disorder.
Andreas P. Braun
2016-04-01
Full Text Available Box graphs succinctly and comprehensively characterize singular fibers of elliptic fibrations in codimension two and three, as well as flop transitions connecting these, in terms of representation theoretic data. We develop a framework that provides a systematic map between a box graph and a crepant algebraic resolution of the singular elliptic fibration, thus allowing an explicit construction of the fibers from a singular Weierstrass or Tate model. The key tool is what we call a fiber face diagram, which shows the relevant information of a (partial toric triangulation and allows the inclusion of more general algebraic blowups. We shown that each such diagram defines a sequence of weighted algebraic blowups, thus providing a realization of the fiber defined by the box graph in terms of an explicit resolution. We show this correspondence explicitly for the case of SU(5 by providing a map between box graphs and fiber faces, and thereby a sequence of algebraic resolutions of the Tate model, which realizes each of the box graphs.
Hierarchical organisation of causal graphs
Dziopa, P.
1993-01-01
This paper deals with the design of a supervision system using a hierarchy of models formed by graphs, in which the variables are the nodes and the causal relations between the variables of the arcs. To obtain a representation of the variables evolutions which contains only the relevant features of their real evolutions, the causal relations are completed with qualitative transfer functions (QTFs) which produce roughly the behaviour of the classical transfer functions. Major improvements have been made in the building of the hierarchical organization. First, the basic variables of the uppermost level and the causal relations between them are chosen. The next graph is built by adding intermediary variables to the upper graph. When the undermost graph has been built, the transfer functions parameters corresponding to its causal relations are identified. The second task consists in the upwelling of the information from the undermost graph to the uppermost one. A fusion procedure of the causal relations has been designed to compute the QFTs relevant for each level. This procedure aims to reduce the number of parameters needed to represent an evolution at a high level of abstraction. These techniques have been applied to the hierarchical modelling of nuclear process. (authors). 8 refs., 12 figs
Aono, Masashi; Kim, Song-Ju; Hara, Masahiko; Munakata, Toshinori
2014-03-01
The true slime mold Physarum polycephalum, a single-celled amoeboid organism, is capable of efficiently allocating a constant amount of intracellular resource to its pseudopod-like branches that best fit the environment where dynamic light stimuli are applied. Inspired by the resource allocation process, the authors formulated a concurrent search algorithm, called the Tug-of-War (TOW) model, for maximizing the profit in the multi-armed Bandit Problem (BP). A player (gambler) of the BP should decide as quickly and accurately as possible which slot machine to invest in out of the N machines and faces an "exploration-exploitation dilemma." The dilemma is a trade-off between the speed and accuracy of the decision making that are conflicted objectives. The TOW model maintains a constant intracellular resource volume while collecting environmental information by concurrently expanding and shrinking its branches. The conservation law entails a nonlocal correlation among the branches, i.e., volume increment in one branch is immediately compensated by volume decrement(s) in the other branch(es). Owing to this nonlocal correlation, the TOW model can efficiently manage the dilemma. In this study, we extend the TOW model to apply it to a stretched variant of BP, the Extended Bandit Problem (EBP), which is a problem of selecting the best M-tuple of the N machines. We demonstrate that the extended TOW model exhibits better performances for 2-tuple-3-machine and 2-tuple-4-machine instances of EBP compared with the extended versions of well-known algorithms for BP, the ϵ-Greedy and SoftMax algorithms, particularly in terms of its short-term decision-making capability that is essential for the survival of the amoeba in a hostile environment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Leung, Karen K; Finlay, Juli; Silvius, James L; Koehn, Sharon; McCleary, Lynn; Cohen, Carole A; Hum, Susan; Garcia, Linda; Dalziel, William; Emerson, Victor F; Pimlott, Nicholas J G; Persaud, Malini; Kozak, Jean; Drummond, Neil
2011-07-01
Increasing evidence suggests that early diagnosis and management of dementia-related symptoms may improve the quality of life for patients and their families. However, individuals may wait from 1-3 years from the onset of symptoms before receiving a diagnosis. The objective of this qualitative study was to explore the perceptions and experiences of problem recognition, and the process of obtaining a diagnosis among individuals with early-stage dementia and their primary carers. From 2006-2009, six Anglo-Canadians with dementia and seven of their carers were recruited from the Alzheimer's Society of Calgary to participate in semi-structured interviews. Using an inductive, thematic approach to the analysis, five major themes were identified: becoming aware of memory problems, attributing meanings to symptoms, initiating help-seeking, acknowledging the severity of cognitive changes and finally obtaining a definitive diagnosis. Individuals with dementia reported noticing memory difficulties earlier than their carers. However, initial symptoms were perceived as ambiguous, and were normalised and attributed to concurrent health problems. The diagnostic process was typically characterised by multiple visits and interactions with health professionals, and a diagnosis was obtained as more severe cognitive deficits emerged. Throughout the diagnostic pathway, carers played dynamic roles. Carers initially served as a source of encouragement to seek help, but they eventually became actively involved over concerns about alternative diagnoses and illness management. A better understanding of the pre-diagnosis period, and the complex interactions between people's beliefs and attributions about symptoms, may elucidate some of the barriers as well as strategies to promote a timelier dementia diagnosis. © 2011 Blackwell Publishing Ltd.
Combinatorics and graph theory
Vasudev, C
2007-01-01
About the Book: This text has been carefully designed for flexible use for First Semester M.C.A. course of Uttar Pradesh Technical University (U.P.T.U.), and it contains the following features: Precise mathematical language is used without excessive formalism and abstraction. Over 900 exercises (problem sets) in the text with many different types of questions posed. Care has been taken to balance the mix of notation and words in mathematical statements. Problem sets (exercises) are stated clearly and unambiguously and all are carefully graded for various levels of difficulty. Contents:
Bond graph modelling of engineering systems: theory, applications and software support
Borutzky, Wolfgang; Margolis, Donald L
2011-01-01
... way such that analytical or computer response predictions can be straightforwardly carried out. Bond graphs are a concise pictorial representation of all types of interacting energetic systems. In my experience working with engineers on the development of complex systems it is obvious that these systems suffer from thermal problems, structural problems, vibration and noise problems, and control and stability issues that do not fit into a single discipline. Bond graphs provide the link by which all these different ...
Méthodes de graphe pour la segmentation d'images et le suivi d'objets dynamiques
Wang , Xiaofang
2015-01-01
Image segmentation is a fundamental problem in computer vision. In particular, unsupervised image segmentation is an important component in many high-level algorithms and practical vision systems. In this dissertation, we propose three methods that approach image segmentation from different angles of graph based methods and are proved powerful to address these problems. Our first method develops an original graph construction method. We also analyze different types of graph construction metho...
Graph-Based Methods for Discovery Browsing with Semantic Predications
Wilkowski, Bartlomiej; Fiszman, Marcelo; Miller, Christopher M
2011-01-01
. Poorly understood relationships may be explored through novel points of view, and potentially interesting relationships need not be known ahead of time. In a process of "cooperative reciprocity" the user iteratively focuses system output, thus controlling the large number of relationships often generated...... in literature-based discovery systems. The underlying technology exploits SemRep semantic predications represented as a graph of interconnected nodes (predication arguments) and edges (predicates). The system suggests paths in this graph, which represent chains of relationships. The methodology is illustrated...
Shortest path problems. Road network on cities and we want to navigate between cities. . – p.8/30 ..... The rest of the talk... Computing connectivities between all pairs of vertices good algorithm wrt both space and time to compute the exact solution. . – p.15/30 ...
Graph modeling systems and methods
Neergaard, Mike
2015-10-13
An apparatus and a method for vulnerability and reliability modeling are provided. The method generally includes constructing a graph model of a physical network using a computer, the graph model including a plurality of terminating vertices to represent nodes in the physical network, a plurality of edges to represent transmission paths in the physical network, and a non-terminating vertex to represent a non-nodal vulnerability along a transmission path in the physical network. The method additionally includes evaluating the vulnerability and reliability of the physical network using the constructed graph model, wherein the vulnerability and reliability evaluation includes a determination of whether each terminating and non-terminating vertex represents a critical point of failure. The method can be utilized to evaluate wide variety of networks, including power grid infrastructures, communication network topologies, and fluid distribution systems.
Negation switching invariant signed graphs
Deepa Sinha
2014-04-01
Full Text Available A signed graph (or, $sigraph$ in short is a graph G in which each edge x carries a value $\\sigma(x \\in \\{-, +\\}$ called its sign. Given a sigraph S, the negation $\\eta(S$ of the sigraph S is a sigraph obtained from S by reversing the sign of every edge of S. Two sigraphs $S_{1}$ and $S_{2}$ on the same underlying graph are switching equivalent if it is possible to assign signs `+' (`plus' or `-' (`minus' to vertices of $S_{1}$ such that by reversing the sign of each of its edges that has received opposite signs at its ends, one obtains $S_{2}$. In this paper, we characterize sigraphs which are negation switching invariant and also see for what sigraphs, S and $\\eta (S$ are signed isomorphic.
Component efficient solutions in line-graph games with applications
van den Brink, J.R.; van der Laan, G.; Vasil'ev, V.
2007-01-01
Recently, applications of cooperative game theory to economic allocation problems have gained popularity. We investigate a class of cooperative games that generalizes some economic applications with a similar structure. These are the so-called line-graph games being cooperative TU-games in which the