WorldWideScience

Sample records for granulocyte-macrophage colony-stimulating factor-induced

  1. Recurrent spleen enlargement during cyclic granulocyte-macrophage colony-stimulating factor therapy for myelodysplastic syndrome

    Delmer, A.; Karmochkine, M.; Cadiou, M.; Gerhartz, H.; Zittoun, R.

    1990-01-01

    A 65-year-old woman with refractory anemia with excess of blasts received sequential courses of granulocyte-macrophage colony-stimulating factor therapy (GM-CSF) and low-dose cytosine arabinoside. Each course of GM-CSF induced a rapid and tremendous increase in leukocyte count as well as in spleen size, 111-indium chloride scanning suggested a myeloid metaplasia of the spleen. This observation suggests that in some patients the granulopoietic response to the myeloid growth factor stimulation may be predominant in the spleen

  2. A randomized clinical trial to evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium for in vitro fertilization

    Ziebe, Søren; Loft, Anne; Povlsen, Betina B

    2013-01-01

    To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR).......To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in embryo culture medium on ongoing implantation rate (OIR)....

  3. Granulocyte macrophage-colony-stimulating factor mouthwashes heal oral ulcers during head and neck radiotherapy

    Rovirosa, Angeles; Ferre, Jorge; Biete, Albert

    1998-01-01

    Purpose: To evaluate the effectiveness of granulocyte macrophage-colony-stimulating factor GM-CSF mouthwashes in the epithelization of radiation-induced oral mucosal ulceration, control of pain, and weight loss. Methods and Materials: Twelve patients received curative radiotherapy for head and neck carcinoma. All had oropharyngeal and/or oral mucosa irradiation, with a median dose of 72 Gy (range 50-74), with conventional fractionation. A total of 300 μg of GM-CSF in 250 cc of water for 1 h of mouthwashing was prescribed. The procedure started once oral ulceration in the irradiation field was detected. Patients, examined twice a week, were evaluated for oral ulceration, pain, and weight loss. Blood tests were taken weekly during GM-CSF administration. A comparison was carried out with 12 retrospective case-matched controls. Results: In the GM-CSF group, mucosa ulcerations healed in 9 of 12 (75%) of the patients during the course of the radiotherapy. Fifty percent of the patients said they felt less pain during the GM-CSF treatment; 30% needed morphine. The mean and median weight loss as a percentage of baseline weight in addition to the actual weight were 4.2% and 3%, respectively (variation ranged between a gain of 1% and a loss of 13%). No GM-CSF-related side effects were found. In the case control group, in the 12 cases, oral ulcerations increased during radiotherapy and two patients needed intubation intake and hospital admission, as opposed to the GM-CSF group. The mean and median percentage of weight loss were 5.8% and 5%, respectively. Sixty percent of patients needed morphine, as opposed to 30% in the GM-CSF group. Conclusions: Granulocyte macrophage-colony-stimulating factor was effective in curing mucosal ulcerations during the course of radiotherapy. This is the first time we have seen a drug with this capacity. Although the GM-CSF seems to be effective in the control of pain, oral intake, and weight loss, we need further studies with a greater number

  4. In vivo effect of human granulocyte-macrophage colony-stimulating factor on megakaryocytopoiesis

    Aglietta, M.; Monzeglio, C.; Sanavio, F.; Apra, F.; Morelli, S.; Stacchini, A.; Piacibello, W.; Bussolino, F.; Bagnara, G.; Zauli, G.

    1991-01-01

    The effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on megakaryocytopoiesis and platelet production was investigated in patients with normal hematopoiesis. Three findings indicated that GM-CSF plays a role in megakaryocytopoiesis. During treatment with GM-CSF (recombinant mammalian, glycosylated; Sandoz/Schering-Plough, 5.5 micrograms protein/kg/d, subcutaneously for 3 days) the percentage of megakaryocyte progenitors (megakaryocyte colony forming unit [CFU-Mk]) in S phase (evaluated by the suicide technique with high 3H-Tdr doses) increased from 31% +/- 16% to 88% +/- 11%; and the maturation profile of megakaryocytes was modified, with a relative increase in more immature stage I-III forms. Moreover, by autoradiography (after incubation of marrow cells with 125I-labeled GM-CSF) specific GM-CSF receptors were detectable on megakaryocytes. Nevertheless, the proliferative stimulus induced on the progenitors was not accompanied by enhanced platelet production (by contrast with the marked granulomonocytosis). It may be suggested that other cytokines are involved in the regulation of the intermediate and terminal stages of megakaryocytopoiesis in vivo and that their intervention is an essential prerequisite to turn the GM-CSF-induced proliferative stimulus into enhanced platelet production

  5. Development and characterization of antiserum to murine granulocyte-macrophage colony-stimulating factor

    Mochizuki, D.Y.; Eisenman, J.R.; Conlon, P.J.; Park, L.S.; Urdal, D.L.

    1986-01-01

    The expression in yeast of a cDNA clone encoding murine granulocyte-macrophage colony-stimulating factor (GM-CSF) has made possible the purification of large quantities of this recombinant protein. Rabbits immunized with pure recombinant GM-CSF generated antibodies that were shown to be specific for both recombinant GM-CSF and GM-CSF isolated from natural sources. Other lymphokines, including IL 1β, IL 2, IL 3, and recombinant human GM-CSF did not react with the antiserum. The antiserum together with recombinant GM-CSF that had been radiolabeled with 125 I to high specific activity, formed the foundation for a rapid, sensitive, and quantitative radioimmunoassay specific for murine GM-CSF. Furthermore, the antiserum was found to inhibit the biologic activities of GM-CSF as measured in both a bone marrow proliferation assay and a colony assay, and thus should prove to be a useful reagent for dissecting the complex growth factor activities involved in murine hematopoiesis

  6. The role of granulocyte macrophage-colony stimulating factor in gastrointestinal immunity to salmonellosis.

    Coon, C; Beagley, K W; Bao, S

    2009-08-01

    Human Salmonella infection, in particular, typhoid fever is a highly infectious disease that remains a major public health problem causing significant morbidity and mortality. The outcome of these infections depends on the host's immune response, particularly the actions of granulocytes and macrophages. Using a mouse model of human typhoid fever, with Salmonella typhimurium infection of wild type and granulocyte macrophage-colony stimulating factor (GM-CSF) knock out mice we show a delay in the onset of immune-mediated tissue damage in the spleens and livers of GM-CSF(-/-) mice. Furthermore, GM-CSF(-/-) mice have a prolonged sequestration of S. typhimurium in affected tissues despite an increased production of F4/80+ effector cells. Moreover in the absence of GM-CSF, a decrease in pro-inflammatory cytokine expression of tumor necrosis factor-alpha, interleukin-12 (IL-12) and IL-18 was found, which may alter the host's immune response to infection. GM-CSF appears to play an important role in the pathogenesis of Salmonellosis, and may contribute significantly to the development of protective gastrointestinal mucosal immune responses against oral pathogens.

  7. Granulocyte Macrophage Colony-Stimulating Factor-Activated Eosinophils Promote Interleukin-23 Driven Chronic Colitis

    Griseri, Thibault; Arnold, Isabelle C.; Pearson, Claire; Krausgruber, Thomas; Schiering, Chris; Franchini, Fanny; Schulthess, Julie; McKenzie, Brent S.; Crocker, Paul R.; Powrie, Fiona

    2015-01-01

    Summary The role of intestinal eosinophils in immune homeostasis is enigmatic and the molecular signals that drive them from protective to tissue damaging are unknown. Most commonly associated with Th2 cell-mediated diseases, we describe a role for eosinophils as crucial effectors of the interleukin-23 (IL-23)-granulocyte macrophage colony-stimulating factor (GM-CSF) axis in colitis. Chronic intestinal inflammation was characterized by increased bone marrow eosinopoiesis and accumulation of activated intestinal eosinophils. IL-5 blockade or eosinophil depletion ameliorated colitis, implicating eosinophils in disease pathogenesis. GM-CSF was a potent activator of eosinophil effector functions and intestinal accumulation, and GM-CSF blockade inhibited chronic colitis. By contrast neutrophil accumulation was GM-CSF independent and dispensable for colitis. In addition to TNF secretion, release of eosinophil peroxidase promoted colitis identifying direct tissue-toxic mechanisms. Thus, eosinophils are key perpetrators of chronic inflammation and tissue damage in IL-23-mediated immune diseases and it suggests the GM-CSF-eosinophil axis as an attractive therapeutic target. PMID:26200014

  8. High level of expression of recombinant human granulocyte-macrophage colony stimulating factor in transgenic rice cell suspension culture

    Shin, Yun-Ji; Hong, Shin-Young; Kwon, Tae-Ho

    2003-01-01

    Recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) has been previously produced in tobacco cell suspension cultures. However, the amount of hGM-CSF accumulated in the culture medium dropped quickly from its maximum of 150 microg/L at 5 d after incubation. To overcome...... of recombinant hGM-CSF in transgenic rice cell suspension culture and protease activity of this culture medium was low compared to that of tobacco culture system....

  9. Granulocyte macrophage colony stimulating factor (GM-CSF biological actions on human dermal fibroblasts

    S Montagnani

    2009-12-01

    Full Text Available Fibroblasts are involved in all pathologies characterized by increased ExtraCellularMatrix synthesis, from wound healing to fibrosis. Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF is a cytokine isolated as an hemopoietic growth factor but recently indicated as a differentiative agent on endothelial cells. In this work we demonstrated the expression of the receptor for GM-CSF (GMCSFR on human normal skin fibroblasts from healthy subjects (NFPC and on a human normal fibroblast cell line (NHDF and we try to investigate the biological effects of this cytokine. Human normal fibroblasts were cultured with different doses of GM-CSF to study the effects of this factor on GMCSFR expression, on cell proliferation and adhesion structures. In addition we studied the production of some Extra-Cellular Matrix (ECM components such as Fibronectin, Tenascin and Collagen I. The growth rate of fibroblasts from healthy donors (NFPC is not augmented by GM-CSF stimulation in spite of increased expression of the GM-CSFR. On the contrary, the proliferation of normal human dermal fibroblasts (NHDF cell line seems more influenced by high concentration of GM-CSF in the culture medium. The adhesion structures and the ECM components appear variously influenced by GM-CSF treatment as compared to fibroblasts cultured in basal condition, but newly only NHDF cells are really induced to increase their synthesis activity. We suggest that the in vitro treatment with GM-CSF can shift human normal fibroblasts towards a more differentiated state, due or accompanied by an increased expression of GM-CSFR and that such “differentiation” is an important event induced by such cytokine.

  10. Regulation of wound healing by granulocyte-macrophage colony-stimulating factor after vocal fold injury.

    Jae-Yol Lim

    Full Text Available OBJECTIVES: Vocal fold (VF scarring remains a therapeutic challenge. Granulocyte-macrophage colony-stimulating factor (GM-CSF facilitates epithelial wound healing, and recently, growth factor therapy has been applied to promote tissue repair. This study was undertaken to investigate the effect of GM-CSF on VF wound healing in vivo and in vitro. METHODS: VF scarring was induced in New Zealand white rabbits by direct injury. Immediately thereafter, either GM-CSF or PBS was injected into the VFs of rabbits. Endoscopic, histopathological, immunohistochemical, and biomechanical evaluations of VFs were performed at 3 months post-injury. Human vocal fold fibroblasts (hVFFs were cultured with GM-CSF. Production of type I and III collagen was examined immunocytochemically, and the synthesis of elastin and hyaluronic acids was evaluated by ELISA. The mRNA levels of genes related to ECM components and ECM production-related growth factors, such as HGF and TGF-ß1, were examined by real time RT-PCR. RESULTS: The GM-CSF-treated VFs showed reduced collagen deposition in comparison to the PBS-injected controls (P<0.05. Immunohistochemical staining revealed lower amounts of type I collagen and fibronectin in the GM-CSF-treated VFs (P<0.05 and P<0.01, respectively. Viscous and elastic shear moduli of VF samples were significantly lower in the GM-CSF group than in the PBS-injected group (P<0.001 and P<0.01, respectively. Mucosal waves in the GM-CSF group showed significant improvement when compared to the PBS group (P = 0.0446. GM-CSF inhibited TGF-β1-induced collagen synthesis by hVFFs (P<0.05 and the production of hyaluronic acids increased at 72 hours post-treatment (P<0.05. The expressions of HAS-2, tropoelastin, MMP-1, HGF, and c-Met mRNA were significantly increased by GM-CSF, although at different time points (P<0.05. CONCLUSION: The present study shows that GM-CSF offers therapeutic potential for the remodeling of VF wounds and the promotion of VF

  11. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  12. Granulocyte Macrophage Colony Stimulating Factor Supplementation in Culture Media for Subfertile Women Undergoing Assisted Reproduction Technologies: A Systematic Review

    Siristatidis, Charalampos; Vogiatzi, Paraskevi; Salamalekis, George; Creatsa, Maria; Vrachnis, Nikos; Glujovsky, Demián; Iliodromiti, Zoe; Chrelias, Charalampos

    2013-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is a cytokine/growth factor produced by epithelial cells that exerts embryotrophic effects during the early stages of embryo development. We performed a systematic review, and six studies that were performed in humans undergoing assisted reproduction technologies (ART) were located. We wanted to evaluate if embryo culture media supplementation with GM-CSF could improve success rates. As the type of studies and the outcome parameters investigated were heterogeneous, we decided not to perform a meta-analysis. Most of them had a trend favoring the supplementation with GM-CSF, when outcomes were measured in terms of increased percentage of good-quality embryos reaching the blastocyst stage, improved hatching initiation and number of cells in the blastocyst, and reduction of cell death. However, no statistically significant differences were found in implantation and pregnancy rates in all apart from one large multicenter trial, which reported favorable outcomes, in terms of implantation and live birth rates. We propose properly conducted and adequately powered randomized controlled trials (RCTs) to further validate and extrapolate the current findings with the live birth rate to be the primary outcome measure. PMID:23509457

  13. Combined application of alginate dressing and human granulocyte-macrophage colony stimulating factor promotes healing in refractory chronic skin ulcers.

    Huang, Guobao; Sun, Tangqing; Zhang, Lei; Wu, Qiuhe; Zhang, Keyan; Tian, Qingfen; Huo, Ran

    2014-06-01

    The aim of the present study was to evaluate the clinical therapeutic effect of the combined application of alginate and recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) on the healing of refractory chronic skin ulcers. A single center, three arm, randomized study was performed at Jinan Central Hospital (Jinan, Shandong, China). A total of 60 patients with refractory chronic skin ulcers, which persisted for >1 month, were enrolled and randomly assigned into one of the following three groups: alginate dressing/rhGM-CSF group (group A), rhGM-CSF only group (group B) and conventional (vaseline dressing) group (group C). The wound area rate was measured, granulation and color were observed and pain was evaluated. The data were summarized and statistical analysis was performed. The results demonstrated that group A exhibited a significantly faster wound healing rate and lower pain score compared with the other groups (PCSF for the treatment of refractory chronic skin ulcers demonstrated significant advantages. It promoted the growth of granulation tissue, accelerated re-epithelialization and also effectively reduced wound pain, and thus improved the quality of life for the patient. This suggests that the combined application of alginate and rhGM-CSF may be an effective therapeutic strategy for the clinical treatment of refractory chronic skin ulcers.

  14. The optimal use of granulocyte macrophage colony stimulating factor in radiation induced mucositis in head and neck squamous cell carcinoma.

    Patni Nidhi

    2005-01-01

    Full Text Available Objective: Evaluation of response of granulocyte macrophage colony stimulating factor (GM-CSF on acute radiation toxicity profile in head and neck squamous cell carcinoma. Methods and Materials: Thirty three patients with proven stage I or II head & neck carcinoma received conventional external beam radiation therapy. Out of these, six patients received postoperative adjuvant therapy while remaining 27 received definitive RT. Patients were given 100 mcg GM-CSF subcutaneously per day along with radiation after they developed grade 2 mucositis and /or grade 2 dysphagia and / or complained of moderate pain. GM-CSF was administered till there was a subjective relief or objective response. Patients were evaluated for oral ulceration, swallowing status, pain and weight loss. Response to the treatment and patient outcome was assessed. Results: There was a decreased severity of mucositis and dysphagia in the evaluated patients. None of the patients suffered severe pain or required opioids. The mean weight loss was only 1.94%. Minimal side effects were experienced with GM-CSF. Conclusions: GM-CSF reduces the severity of acute side effects of radiation therapy thereby allowing completion of the treatment without interruption. Its remarkable response needs to be evaluated further in large randomized trials. The time of initiation and cessation of GM-CSF during radiation therapy and the required dose needs to be established.

  15. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells

    Moonen, P.; Mermod, J.J.; Ernst, J.F.; Hirschi, M.; DeLamarter, J.F.

    1987-01-01

    Human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced by several recombinant sources including Escherichia coli, yeast, and animal cells was studied. Recombinant animal cells produced hGM-CSF in low quantities and in multiple forms of varying size. Mammalian hGM-CSF was purified 200,000-fold using immunoaffinity and lectin chromatography. Partially purified proteins produced in yeast and mammalian cells were assayed for the effects of deglycosylation. Following enzymatic deglycosylation, immunoreactivity was measured by radioimmunoassay and biological activity was measured in vitro on responsive human primary cells. Removal of N-linked oligosaccharides from both proteins increased their immunoreactivities by 4- to 8-fold. Removal of these oligosaccharides also increased their specific biological activities about 20-fold, to reach approximately the specific activity of recombinant hGM-CSF from E. coli. The E. coli produced-protein-lacking any carbohydrate- had by far the highest specific activity observed for the recombinant hGM-CSFs

  16. Biological properties in vitro of a combination of recombinant murine interleukin-3 and granulocyte-macrophage colony-stimulating factor.

    Riklis, I; Kletter, Y; Bleiberg, I; Fabian, I

    1989-04-01

    The effect of recombinant murine interleukin-3 (rIL-3) and recombinant murine granulocyte-macrophage colony-stimulating factor (rGM-CSF) on in vitro murine myeloid progenitor cell (CFU-C) growth and on the function of murine resident peritoneal macrophages was investigated. Both rIL-3 and rGM-CSF are known to support the growth of CFU-C and, when combined, were found to act synergistically to induce the development of an increased number of CFU-C. The distribution pattern of myeloid colonies in the presence of these two growth factors was in general similar to that in the presence of rGM-CSF alone. Both rGM-CSF and rIL-3 enhanced the phagocytosis of Candida albicans (CA) by mature macrophages producing an increase in the percentage of phagocytosing cells as well as an increase in the number of yeast particles ingested per cell. No additive effect on the phagocytosis was observed when the two growth factors were added concurrently. rGM-CSF, but not rIL-3, enhanced the killing of CA by macrophages. This killing was inhibited by scavengers of oxygen radicals.

  17. Affinity purification of human granulocyte macrophage colony-stimulating factor receptor alpha-chain. Demonstration of binding by photoaffinity labeling

    Chiba, S.; Shibuya, K.; Miyazono, K.; Tojo, A.; Oka, Y.; Miyagawa, K.; Takaku, F.

    1990-01-01

    The human granulocyte macrophage colony-stimulating factor (GM-CSF) receptor alpha-chain, a low affinity component of the receptor, was solubilized and affinity-purified from human placenta using biotinylated GM-CSF. Scatchard analysis of 125 I-GM-CSF binding to the placental membrane extract disclosed that the GM-CSF receptor had a dissociation constant (Kd) of 0.5-0.8 nM, corresponding to the Kd value of the GM-CSF receptor alpha-chain on the intact placental membrane. Affinity labeling of the solubilized protein using a photoreactive cross-linking agent, N-hydroxysuccinimidyl-4-azidobenzoate (HSAB), demonstrated a single specific band of 70-95 kDa representing a ligand-receptor complex. Approximately 2 g of the placental membrane extract was subjected to a biotinylated GM-CSF-fixed streptavidin-agarose column, resulting in a single major band at 70 kDa on a silver-stained sodium dodecyl sulfate gel. The radioiodination for the purified material disclosed that the purified protein had an approximate molecular mass of 70 kDa and a pI of 6.6. Binding activity of the purified material was demonstrated by photoaffinity labeling using HSAB- 125 I-GM-CSF, producing a similar specific band at 70-95 kDa as was demonstrated for the crude protein

  18. Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene

    Shannon, M.F.; Gamble, J.R.; Vadas, M.A.

    1988-01-01

    The gene for human granulocyte/macrophage colony-stimulating factor (GM-CSF) is expressed in a tissue-specific as well as an activation-dependent manner. The interaction of nuclear proteins with the promoter region of the GM-CSF gene that is likely to be responsible for this pattern of GM-CSF expression was investigated. The authors show that nuclear proteins interact with DNA fragments from the GM-CSF promoter in a cell-specific manner. A region spanning two cytokine-specific sequences, cytokine 1 (CK-1, 5', GAGATTCCAC 3') and cytokine 2 (CK-2, 5' TCAGGTA 3') bound two nuclear proteins from GM-CSF-expressing cells in gel retardation assays. NF-GMb was inducible with phorbol 12-myristate 13-acetate and accompanied induction of GM-CSF message. NF-GMb was absent in cell lines not producing GM-CSF, some of which had other distinct binding proteins. NF-GMa and NF-GMb eluted from a heparin-Sepharose column at 0.3 and 0.6 M KCl, respectively. They hypothesize that the sequences CK-1 and CK-2 bind specific proteins and regulate GM-CSF transcription

  19. Benefits of gene transduction of granulocyte macrophage colony-stimulating factor in cancer vaccine using genetically modified dendritic cells.

    Ojima, Toshiyasu; Iwahashi, Makoto; Nakamura, Masaki; Matsuda, Kenji; Nakamori, Mikihito; Ueda, Kentaro; Naka, Teiji; Katsuda, Masahiro; Miyazawa, Motoki; Yamaue, Hiroki

    2007-10-01

    Granulocyte macrophage colony-stimulating factor (GM-CSF) is a key cytokine for the generation and stimulation of dendritic cells (DCs), and it may also play a pivotal role in promoting the survival of DCs. In this study, the feasibility of creating a cancer vaccine using DCs adenovirally transduced with the carcinoembryonic antigen (CEA) gene and the GM-CSF gene was examined. In addition, the effect of the co-transduction of GM-CSF gene on the lifespan of these genetically modified DCs was determined. A cytotoxic assay using peripheral blood mononuclear cell (PBMC)-derived cytotoxic T lymphocytes (CTLs) was performed in a 4-h 51Cr release assay. The apoptosis of DCs was examined by TdT-mediated dUTP-FITC nick end labeling (TUNEL) assay. CEA-specific CTLs were generated from PBMCs stimulated with genetically modified DCs expressing CEA. The cytotoxicity of these CTLs was augmented by co-transduction of DCs with the GM-CSF gene. Co-transduction of the GM-CSF gene into DCs inhibited apoptosis of these DCs themselves via up-regulation of Bcl-x(L) expression, leading to the extension of the lifespan of these DCs. Furthermore, the transduction of the GM-CSF gene into DCs also suppressed the incidence of apoptosis of DCs induced by transforming growth factor-beta1 (TGFbeta-1). Immunotherapy using these genetically modified DCs may therefore be useful with several advantages as follows: i) adenoviral toxicity to DCs can be reduced; ii) the lifespan of vaccinated DCs can be prolonged; and iii) GM-CSF may protect DCs from apoptosis induced by tumor-derived TGFbeta-1 in the regional lymph nodes.

  20. Chimeric HIV-1 Envelope Glycoproteins with Potent Intrinsic Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF) Activity*

    Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF) domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed EnvGM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized EnvGM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric EnvGM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins. PMID:23565193

  1. Characterization and molecular features of the cell surface receptor for human granulocyte-macrophage colony-stimulating factor

    Chiba, S.; Tojo, A.; Kitamura, T.; Urabe, A.; Miyazono, K.; Takaku, F.

    1990-01-01

    The receptors for human granulocyte-macrophage colony-stimulating factor (GM-CSF) on the surfaces of normal and leukemic myeloid cells were characterized using 125I-labeled bacterially synthesized GM-CSF. The binding was rapid, specific, time dependent, and saturable. Scatchard analysis of the 125I-GM-CSF binding to peripheral blood neutrophils indicated the presence of a single class of binding site (Kd = 99 +/- 21 pM; 2,304 +/- 953 sites/cell). However, for peripheral blood monocytes and two GM-CSF-responsive myeloid cell lines (U-937 and TF-1), the Scatchard plots were biphasic curvilinear, which were best fit by curves derived from two binding site model: one with high affinity (Kd1 = 10-40 pM) and the other with low affinity (Kd2 = 0.9-2.0 nM). For U-937 cells, the number of high-affinity receptors was 1,058 +/- 402 sites/cell and that of low-affinity receptors was estimated to be 10,834 +/- 2,396 sites/cell. Cross-linking studies yielded three major bands with molecular masses of 150 kDa, 115 kDa, and 95 kDa, which were displaced by an excess amount of unlabeled GM-CSF, suggesting 135-kDa, 100-kDa, and 80-kDa species for the individual components of the human GM-CSF receptor. These bands comigrated for different cell types including peripheral blood neutrophils, U-937 cells and TF-1 cells. In experiments using U-937 cells, only the latter two bands appeared to be labeled in a dose-dependent manner in a low-affinity state. These results suggest that the human GM-CSF receptor possibly forms a multichain complex

  2. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  3. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The combined effect of erythropoietin and granulocyte macrophage colony stimulating factor on liver regeneration after major hepatectomy in rats

    Frangou Matrona

    2010-07-01

    Full Text Available Abstract Background The liver presents a remarkable capacity for regeneration after hepatectomy but the exact mechanisms and mediators involved are not yet fully clarified. Erythropoietin (EPO and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF have been shown to promote liver regeneration after major hepatectomy. Aim of this experimental study is to compare the impact of exogenous administration of EPO, GM-CSF, as well as their combination on the promotion of liver regeneration after major hepatectomy. Methods Wistar rats were submitted to 70% major hepatectomy. The animals were assigned to 4 experimental groups: a control group (n = 21 that received normal saline, an EPO group (n = 21, that received EPO 500 IU/kg, a GM-CSF group (n = 21 that received 20 mcg/kg of GM-CSF and a EPO+GMCSF group (n = 21 which received a combination of the above. Seven animals of each group were killed on the 1st, 3rd and 7th postoperative day and their remnant liver was removed to evaluate liver regeneration by immunochemistry for PCNA and Ki 67. Results Our data suggest that EPO and GM-CSF increases liver regeneration following major hepatectomy when administered perioperatively. EPO has a more significant effect than GM-CSF (p Conclusion EPO, GM-CSF and their combination enhance liver regeneration after hepatectomy in rats when administered perioperatively. However their combination has a weaker effect on liver regeneration compared to EPO alone. Further investigation is needed to assess the exact mechanisms that mediate this finding.

  5. Notch signaling mediates granulocyte-macrophage colony-stimulating factor priming-induced transendothelial migration of human eosinophils.

    Liu, L Y; Wang, H; Xenakis, J J; Spencer, L A

    2015-07-01

    Priming with cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) enhances eosinophil migration and exacerbates the excessive accumulation of eosinophils within the bronchial mucosa of asthmatics. However, mechanisms that drive GM-CSF priming are incompletely understood. Notch signaling is an evolutionarily conserved pathway that regulates cellular processes, including migration, by integrating exogenous and cell-intrinsic cues. This study investigates the hypothesis that the priming-induced enhanced migration of human eosinophils requires the Notch signaling pathway. Using pan Notch inhibitors and newly developed human antibodies that specifically neutralize Notch receptor 1 activation, we investigated a role for Notch signaling in GM-CSF-primed transmigration of human blood eosinophils in vitro and in the airway accumulation of mouse eosinophils in vivo. Notch receptor 1 was constitutively active in freshly isolated human blood eosinophils, and inhibition of Notch signaling or specific blockade of Notch receptor 1 activation during GM-CSF priming impaired priming-enhanced eosinophil transendothelial migration in vitro. Inclusion of Notch signaling inhibitors during priming was associated with diminished ERK phosphorylation, and ERK-MAPK activation was required for GM-CSF priming-induced transmigration. In vivo in mice, eosinophil accumulation within allergic airways was impaired following systemic treatment with Notch inhibitor, or adoptive transfer of eosinophils treated ex vivo with Notch inhibitor. These data identify Notch signaling as an intrinsic pathway central to GM-CSF priming-induced eosinophil tissue migration. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Increased production of granulocyte-macrophage colony-stimulating factor in Crohn's disease--a possible target for infliximab treatment

    Agnholt, Jørgen; Kelsen, Jens; Brandsborg, Birgitte

    2004-01-01

    The presence of neutrophils among epithelial cells is one of the major features of the inflammation in Crohn's disease, and has been used to indicate disease activity. The survival of neutrophils outside the blood vessels is limited and their longevity is influenced by granulocyte-macrophage colo...

  7. Role of Granulocyte-Macrophage Colony-Stimulating Factor Production by T Cells during Mycobacterium tuberculosis Infection.

    Rothchild, Alissa C; Stowell, Britni; Goyal, Girija; Nunes-Alves, Cláudio; Yang, Qianting; Papavinasasundaram, Kadamba; Sassetti, Christopher M; Dranoff, Glenn; Chen, Xinchun; Lee, Jinhee; Behar, Samuel M

    2017-10-24

    Mice deficient for granulocyte-macrophage colony-stimulating factor (GM-CSF -/- ) are highly susceptible to infection with Mycobacterium tuberculosis , and clinical data have shown that anti-GM-CSF neutralizing antibodies can lead to increased susceptibility to tuberculosis in otherwise healthy people. GM-CSF activates human and murine macrophages to inhibit intracellular M. tuberculosis growth. We have previously shown that GM-CSF produced by iNKT cells inhibits growth of M. tuberculosis However, the more general role of T cell-derived GM-CSF during infection has not been defined and how GM-CSF activates macrophages to inhibit bacterial growth is unknown. Here we demonstrate that, in addition to nonconventional T cells, conventional T cells also produce GM-CSF during M. tuberculosis infection. Early during infection, nonconventional iNKT cells and γδ T cells are the main source of GM-CSF, a role subsequently assumed by conventional CD4 + T cells as the infection progresses. M. tuberculosis -specific T cells producing GM-CSF are also detected in the peripheral blood of infected people. Under conditions where nonhematopoietic production of GM-CSF is deficient, T cell production of GM-CSF is protective and required for control of M. tuberculosis infection. However, GM-CSF is not required for T cell-mediated protection in settings where GM-CSF is produced by other cell types. Finally, using an in vitro macrophage infection model, we demonstrate that GM-CSF inhibition of M. tuberculosis growth requires the expression of peroxisome proliferator-activated receptor gamma (PPARγ). Thus, we identified GM-CSF production as a novel T cell effector function. These findings suggest that a strategy augmenting T cell production of GM-CSF could enhance host resistance against M. tuberculosis IMPORTANCE Mycobacterium tuberculosis is the bacterium that causes tuberculosis, the leading cause of death by any infection worldwide. T cells are critical components of the immune

  8. X-ray-induced production of granulocyte-macrophage colony-stimulating factor (GM-CSF) by mouse spleen cells in culture

    Onoda, M.; Shinoda, M.; Tsuneoka, K.; Shikita, M.

    1980-01-01

    Spleen cells were collected from normal mice and cultured in a medium containing 20% calf serum. Addition of lipopolysaccharide (LPS) in the culture significantly increased the production of granulocyte-macrophage colony-stimulating factor (GM-CSF), and a maximum induction was attained in 5 days. Irradiation of the spleen cells with 300 to 3000 R x rays also enhanced the production of GM-CSF, but there was a latent period of about 5 days before the factor appeared in the culture medium. The observed difference between LPS and x rays in the timing of inducing GM-CSF production in the spleen cell culture was consistent with the difference observed in animals. These results suggest that different mechanisms of GM-CSF production operate in the spleen in response to either LPS or x rays

  9. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    Sugumar, Thennarasu; Ganesan, Pugalenthi; Harishankar, Murugesan; Dhinakar Raj, Gopal

    2013-01-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  10. Molecular cloning, sequencing and structural studies of granulocyte-macrophage colony-stimulating factor (GM-CSF) from Indian water buffalo (Bubalus bubalis)

    Sugumar, Thennarasu

    2013-06-25

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that is essential for growth and development of progenitors of granulocytes and monocytes/macrophages. In this study, we report molecular cloning, sequencing and characterization of GM-CSF from Indian water buffalo, Bubalus bubalis. In addition, we performed sequence and structural analysis for buffalo GM-CSF. Buffalo GM-CSF has been compared with 17 mammalian GM-CSFs using multiple sequence alignment and phylogenetic tree. Three-dimensional model for buffalo GM-CSF and human receptor complex was built using homology modelling to study cross-reactivity between two species. Detailed analysis was performed to study GM-CSF interface and various interactions at the interface. © 2013 John Wiley & Sons Ltd.

  11. Neutrophil-induced transmigration of tumour cells treated with tumour-conditioned medium is facilitated by granulocyte-macrophage colony-stimulating factor.

    Wu, Q D

    2012-02-03

    OBJECTIVE: To investigate the effect of different cytokines that are present in tumour-conditioned medium on human neutrophil (PMN)-induced tumour cell transmigration. DESIGN: Laboratory study. SETTING: University hospital, Ireland. MATERIAL: Isolated human PMN and cultured human breast tumour cell line, MDA-MB-231. Interventions: Human PMN treated with either tumour-conditioned medium or different media neutralised with monoclonal antibodies (MoAb), and MDA-MB-231 cells were plated on macrovascular and microvascular endothelial monolayers in collagen-coated transwells to assess migration of tumour cells. MAIN OUTCOME MEASURES: Cytokines present in tumour-conditioned medium, PMN cytocidal function and receptor expression, and tumour cell transmigration. RESULTS: tumour-conditioned medium contained high concentrations of granulocyte-macrophage colony-stimulating factor (GM-CSF), vascular endothelial growth factor (VEGF), and interleukin 8 (IL-8), but not granulocyte colony-stimulating factor (G-CSF) and interleukin 3 (IL-3). Anti-GM-CSF MoAb significantly reduced PMN-induced transmigration of tumour cells treated with tumour-conditioned medium (p < 0.05), whereas anti-VEGF and anti-IL-8 MoAbs did not affect their migration. In addition, anti-GM-CSF MoAb, but not anti-VEGF or anti-IL-8 MoAb, reduced PMN CD11b and CD18 overexpression induced by tumour-conditioned medium (p < 0.05). CONCLUSION: These results indicate that the GM-CSF that is present in tumour-conditioned medium may be involved, at least in part, in alterations in PMN function mediated by the medium and subsequently PMN-induced transmigration of tumour cells.

  12. Short-term exposure of umbilical cord blood CD34+ cells to granulocyte-macrophage colony-stimulating factor early in culture improves ex vivo expansion of neutrophils.

    Marturana, Flavia; Timmins, Nicholas E; Nielsen, Lars K

    2011-03-01

    Despite the availability of modern antibiotics/antimycotics and cytokine support, neutropenic infection accounts for the majority of chemotherapy-associated deaths. While transfusion support with donor neutrophils is possible, cost and complicated logistics make such an option unrealistic on a routine basis. A manufactured neutrophil product could enable routine prophylactic administration of neutrophils, preventing the onset of neutropenia and substantially reducing the risk of infection. We examined the use of pre-culture strategies and various cytokine/modulator combinations to improve neutrophil expansion from umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HPC). Enriched UCB HPC were cultured using either two-phase pre-culture strategies or a single phase using various cytokine/modulator combinations. Outcome was assessed with respect to numerical expansion, cell morphology, granulation and respiratory burst activity. Pre-culture in the absence of strong differentiation signals (e.g. granulocyte colony-stimulating factor; G-CSF) failed to provide any improvement to final neutrophil yields. Similarly, removal of differentiating cells during pre-culture failed to improve neutrophil yields to an appreciable extent. Of the cytokine/modulator combinations, the addition of granulocyte-macrophage (GM)-colony-stimulating factor (CSF) alone gave the greatest increase. In order to avoid production of monocytes, it was necessary to remove GM-CSF on day 5. Using this strategy, neutrophil expansion improved 2.7-fold. Although all cytokines and culture strategies employed have been reported previously to enhance HPC expansion, we found that the addition of GM-CSF alone was sufficient to improve total cell yields maximally. The need to remove GM-CSF on day 5 to avoid monocyte differentiation highlights the context and time-dependent complexity of exogenous signaling in hematopoietic cell differentiation and growth.

  13. Effects of granulocyte-macrophage colony-stimulating factor and interleukin 6 on the growth of leukemic blasts in suspension culture.

    Tsao, C J; Cheng, T Y; Chang, S L; Su, W J; Tseng, J Y

    1992-05-01

    We examined the stimulatory effects of recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 6 (IL)-6 on the in vitro proliferation of leukemic blast cells from patients with acute leukemia. Bone marrow or peripheral blood leukemic blast cells were obtained from 21 patients, including 14 cases of acute myeloblastic leukemia (AML), four cases of acute lymphoblastic leukemia (ALL), two cases of acute undifferentiated leukemia, and one case of acute mixed-lineage leukemia. The proliferation of leukemic blast cells was evaluated by measuring the incorporation of 3H-thymidine into cells incubated with various concentrations of cytokines for 3 days. GM-CSF stimulated the DNA synthesis (with greater than 2.0 stimulation index) of blast cells in 9 of 14 (64%) AML cases, two cases of acute undifferentiated leukemia and one case of acute mixed-lineage leukemia. Only two cases of AML blasts responded to IL-6 to grow in the short-term suspension cultures. GM-CSF and IL-6 did not display a synergistic effect on the growth of leukemic cells. Moreover, GM-CSF and IL-6 did not stimulate the proliferation of ALL blast cells. Binding study also revealed the specific binding of GM-CSF on the blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia. Our results indicated that leukemic blast cells of acute undifferentiated leukemia and acute mixed-lineage leukemia possessed functional GM-CSF receptors.

  14. Nicotine can skew the characterization of the macrophage type-1 (MΦ1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the MΦ2 phenotype

    Yanagita, Manabu; Kobayashi, Ryohei; Murakami, Shinya

    2009-01-01

    Macrophages (MΦs) exhibit functional heterogeneity and plasticity in the local microenvironment. Recently, it was reported that MΦs can be divided into proinflammatory MΦs (MΦ1) and anti-inflammatory MΦs (MΦ2) based on their polarized functional properties. Here, we report that nicotine, the major ingredient of cigarette smoke, can modulate the characteristics of MΦ1. Granulocyte-macrophage colony-stimulating factor-driven MΦ1 with nicotine (Ni-MΦ1) showed the phenotypic characteristics of MΦ2. Like MΦ2, Ni-MΦ1 exhibited antigen-uptake activities. Ni-MΦ1 suppressed IL-12, but maintained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with MΦ1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated MΦ1, whereas Ni-MΦ1 reduced T cell proliferation and inhibited IFN-γ production by T cells. These results suggest that nicotine can change the functional characteristics of MΦ and skew the MΦ1 phenotype to MΦ2. We propose that nicotine is a potent regulator that modulates immune responses in microenvironments.

  15. Co-expression of HIV-1 virus-like particles and granulocyte-macrophage colony stimulating factor by GEO-D03 DNA vaccine

    Hellerstein, Michael; Xu, Yongxian; Marino, Tracie; Lu, Shan; Yi, Hong; Wright, Elizabeth R.; Robinson, Harriet L.

    2012-01-01

    Here, we report on GEO-D03, a DNA vaccine that co-expresses non-infectious HIV-1 virus-like particles (VLPs) and the human cytokine, granulocyte-macrophage colony-stimulating factor (GM-CSF). The virus-like particles display the native gp160 form of the HIV-1 Envelope glycoprotein (Env) and are designed to elicit antibody against the natural form of Env on virus and virus-infected cells. The DNA-expressed HIV Gag, Pol and Env proteins also have the potential to elicit virus-specific CD4 and CD8 T cells. The purpose of the co-expressed GM-CSF is to target a cytokine that recruits, expands and differentiates macrophages and dendritic cells to the site of VLP expression. The GEO-D03 DNA vaccine is currently entered into human trials as a prime for a recombinant modified vaccinia Ankara (MVA) boost. In preclinical studies in macaques using an SIV prototype vaccine, this vaccination regimen elicited both anti-viral T cells and antibody, and provided 70% protection against acquisition during 12 weekly rectal exposures with a heterologous SIV. Higher avidity of the Env-specific Ab for the native form of the Env in the challenge virus correlated with lower likelihood of SIV infection. PMID:23111169

  16. Mechanism of interleukin-13 production by granulocyte-macrophage colony-stimulating factor-dependent macrophages via protease-activated receptor-2.

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-06-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) promotes classically activated M1 macrophages. GM-CSF upregulates protease-activated receptor-2 (PAR-2) protein expression and activation of PAR-2 by human neutrophil elastase (HNE) regulates cytokine production. This study investigated the mechanism of PAR-2-mediated interleukin (IL)-13 production by GM-CSF-dependent macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. After stimulation with HNE to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway, IL-13 mRNA and protein levels were assessed by the reverse transcriptase-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. PAR-2 protein was detected in GM-CSF-dependent macrophages by Western blotting. Unexpectedly, PD98059 (an ERK1 inhibitor) increased IL-13 production, even at higher concentrations. Interestingly, U0126 (an ERK1/2 inhibitor) reduced IL-13 production in a concentration-dependent manner. Neither SB203580 (a p38alpha/p38beta inhibitor) nor BIRB796 (a p38gamma/p38delta inhibitor) affected IL-13 production, while TMB-8 (a calcium chelator) diminished IL-13 production. Stimulation with HNE promoted the production of IL-13 (a Th2 cytokine) by GM-CSF-dependent M1 macrophages. PAR-2-mediated IL-13 production may be dependent on the Ca(2+)/ERK2 signaling pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Enhancement of the grafting efficiency of transplanted marrow cells by preincubation with interleukin-3 and granulocyte-macrophage colony-stimulating factor

    Tavassoli, M.; Konno, M.; Shiota, Y.; Omoto, E.; Minguell, J.J.; Zanjani, E.D.

    1991-04-01

    To improve the grafting efficiency of transplanted murine hematopoietic progenitors, we briefly preincubated mouse bone marrow cells with interleukin-3 (IL-3) or granulocyte-macrophage colony-stimulating factor (GM-CSF) ex vivo before their transplantation into irradiated recipients. This treatment was translated into an increase in the seeding efficiency of colony-forming unit-spleen (CFU-S) and CFU-GM after transplantation. Not only was the concentration of CFU-S in the tibia increased 2 and 24 hours after transplantation, but the total cell number and CFU-S and CFU-GM concentrations were persistently higher in IL-3- and GM-CSF-treated groups 1 to 3 weeks after transplantation. In addition, the survival of animals as a function of transplanted cell number was persistently higher in IL-3- and GM-CSF-treated groups compared with controls. The data indicate that the pretreatment of marrow cells with IL-3 and GM-CSF before transplantation increases the seeding efficiency of hematopoietic stem cells and probably other progenitor cells after transplantation. This increased efficiency may be mediated by upward modulation of homing receptors. Therefore, ex vivo preincubation of donor marrow cells with IL-3 and GM-CSF may be a useful tactic in bone marrow transplantation.

  18. The effect of interleukin-8 and granulocyte macrophage colony stimulating factor on the response of neutrophils to formyl methionyl leucyl phenylalanine.

    Mikami, M; Llewellyn-Jones, C G; Stockley, R A

    1998-08-14

    Neutrophils isolated from patients with chronic bronchitis and emphysema have been shown to have enhanced responses to formyl peptides when assessed in vitro compared to age, sex matched controls. It is currently unclear whether the observed differences are due to a 'priming' effect by a second agent in vivo, or whether this is a primary difference in the neutrophils. We have studied the effects of interleukin-8, which is thought to be one of the major pro-inflammatory cytokines in chronic lung disease and granulocyte macrophage colony stimulating factor (GMCSF), in order to assess their effects on neutrophil chemotaxis and connective tissue degradation. In addition, we have assessed the effect of preincubation of these agents with neutrophils for 30 min followed by stimulation with F-Met-Leu-Phe (FMLP) to investigate any possible 'priming' effect that may be relevant to our clinical data. We report suppression of neutrophil chemotaxis to FMLP following incubation of the neutrophils with both IL-8 and GMCSF. However, we have observed an additive effect of IL-8 and FMLP for neutrophil degranulation leading to fibronectin degradation. The results suggest that IL-8 does not 'prime' neutrophils for subsequent FMLP stimulation as observed in vivo. Although the results for GMCSF were similar for the chemotactic response, the agent also had a synergistic effect on connective tissue degradation. However, it is concluded that neither agent could explain the enhanced neutrophil responses seen in our patients.

  19. Effects of Granulocyte-Macrophage Colony-Stimulating (GM-CSF Factor on Corneal Epithelial Cells in Corneal Wound Healing Model.

    Chang Rae Rho

    Full Text Available Granulocyte-macrophage colony-stimulating factor (GM-CSF is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs. We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF. An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml. MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.

  20. Effect of human granulocyte macrophage-colony stimulating factor on differentiation and apoptosis of the human osteosarcoma cell line SaOS-2

    L Postiglione

    2009-06-01

    Full Text Available We investigated the effects of human granulocyte macrophage- colony stimulating factor (GM-CSF on the relation between differentiation and apoptosis in SaOS-2 cells, an osteoblast-like cell line. To determine the relationship between these cellular processes, SaOS-2 cells were treated in vitro for 1, 7 and 14 days with 200 ng/mL GM-CSF and compared with untreated cells. Five nM insulin-like growth factor (IGF-I and 30 nM okadaic acid were used as negative and positive controls of apoptosis, respectively. Effects on cell differentiation were determined by ECM (extracellular matrix mineralization, morphology of some typical mature osteoblast differentiation markers, such as osteopontin and sialoprotein II (BSP-II, and production of bone ECM components such as collagen I. The results showed that treatment with GM-CSF caused cell differentiation accompanied by increased production of osteopontin and BSP-II, together with increased ECM deposition and mineralization. Flow cytometric analysis of annexin V and propidium iodide incorporation showed that GM-CSF up-regulated apoptotic cell death of SaOS-2 cells after 14 days of culture in contrast to okadaic acid, which stimulated SaOS-2 apoptosis only during the early period of culture. Endonucleolytic cleavage of genomic DNA, detected by “laddering analysis”, confirmed these data. The results suggest that GM-CSF induces osteoblastic differentiation and long-term apoptotic cell death of the SaOS-2 human osteosarcoma cell line, which in turn suggests a possible in vivo physiological role for GM-CSF on human osteoblast cells.

  1. Interleukin-6 production by human monocytes treated with granulocyte-macrophage colony-stimulating factor in the presence of lipopolysaccharide of oral microorganisms.

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-06-01

    This study focused on the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) and lipopolysaccharide of the putative periodontal pathogens Porphyromonas gingivalis or Fusobacterium nucleatum on IL-6 production by THP-1 cells (a human monocytic cell line). Resting THP-1 cells were alternatively treated with GM-CSF (50 IU/ml) and lipopolysaccharide of P. gingivalis or F. nucleatum, in varying concentrations for varying time periods. IL-6 production in supernatant fluids of treated cells was evaluated by an enzyme-linked immunosorbent assay (ELISA) and a reverse transcription polymerase chain reaction (RT-PCR) was used to evaluate gene expression. Untreated THP-1 cells did not produce IL-6 as determined by ELISA. RT-PCR also failed to detect IL-6 mRNA in untreated THP-1 cells, indicating that IL-6 was not constitutively produced. After stimulation of THP-1 cells with lipopolysaccharide of F. nucleatum or P. gingivalis, IL-6 was produced, peaking at 4 h (200-300 pg/ml) and thereafter sharply declining by 8 h. When GM-CSF was added together with lipopolysaccharide of P. gingivalis or F. nucleatum, there was a synergistic quantitative increase in production of IL-6 as measured by ELISA as compared with lipopolysaccharide alone. IL-6 mRNA was detected by RT-PCR, 15 min after stimulation with lipopolysaccharide of either P. gingivalis or F. nucleatum. GM-CSF supplementation with lipopolysaccharide of P. gingivalis shortened the transcription of IL-6 mRNA to 5 min, a shift which was not observed with lipopolysaccharide of F. nucleatum, possibly indicating a different mechanism of initiation of transcription. Production of IL-6 by GM-CSF-treated THP-1 cells in the presence of lipopolysaccharide of oral microorganisms may provide a model for studying the role of macrophages in acute and chronic periodontal diseases, including the clinical periodontal exacerbation as observed in chemotherapy patients receiving GM-CSF for bone marrow recovery.

  2. Granulocyte macrophage colony-stimulating factor enhances the modulatory effect of cytokines on monocyte-derived multinucleated giant cell formation and fungicidal activity against Paracoccidioides brasiliensis

    Magda Paula Pereira do Nascimento

    2011-09-01

    Full Text Available Multinucleated giant cells (MGC are cells present in characteristic granulomatous inflammation induced by intracellular infectious agents or foreign materials. The present study evaluated the modulatory effect of granulocyte macrophage colony-stimulating factor (GM-CSF in association with other cytokines such as interferon-gamma (IFN-γ, tumour necrosis factor-alpha, interleukin (IL-10 or transforming growth factor beta (TGF-β1 on the formation of MGC from human peripheral blood monocytes stimulated with Paracoccidioides brasiliensis antigen (PbAg. The generation of MGC was determined by fusion index (FI and the fungicidal activity of these cells was evaluated after 4 h of MGC co-cultured with viable yeast cells of P. brasiliensis strain 18 (Pb18. The results showed that monocytes incubated with PbAg and GM-CSF plus IFN-γ had a significantly higher FI than in all the other cultures, while the addition of IL-10 or TGF-β1 had a suppressive effect on MGC generation. Monocytes incubated with both pro and anti-inflammatory cytokines had a higher induction of foreign body-type MGC rather than Langhans-type MGC. MGC stimulated with PbAg and GM-CSF in association with the other cytokines had increased fungicidal activity and the presence of GM-CSF also partially inhibited the suppressive effects of IL-10 and TGF-β1. Together, these results suggest that GM-CSF is a positive modulator of PbAg-stimulated MGC generation and on the fungicidal activity against Pb18.

  3. Interleukin-6 and granulocyte-macrophage colony-stimulating factor in apical periodontitis: correlation with clinical and histologic findings of the involved teeth.

    Radics, T; Kiss, C; Tar, I; Márton, I J

    2003-02-01

    Apical periodontitis is characterized by the presence of immunocompetent cells producing a wide variety of inflammatory mediators. Releasing cytokines with long-range action, such as interleukin-6 (IL-6) and granulocyte-macrophage colony-stimulating factor (GM-CSF), apical periodontitis may induce changes in remote organs of the host. This study quantified the levels of IL-6 and GM-CSF in symptomatic and asymptomatic human periradicular lesions. Lesions were also characterized by size and histologic findings. Tissue samples were homogenized and supernatants were assayed using an enzyme-linked immunosorbent assay (ELISA). Correlations between cytokine levels and characteristic features (as single variables) of the lesions were analysed. There was a trend for higher levels of IL-6 and GM-CSF in symptomatic than in asymptomatic lesions, but the difference was not significant. Levels also tended to be higher in large than in small lesions, in polymorphonuclear (PMN) cell-rich than in PMN cell-poor samples, and in epithelialized than in non-epithelialized lesions. Significantly higher levels of IL-6 (778.1 +/- 220.5 pg/microg) and GM-CSF (363.3 +/- 98.4 pg/microg) were found in samples coincidentally possessing symptomatic and epithelialized features than in asymptomatic, small, PMN cell-poor, non-epithelialized lesions (IL-6: 45.2 +/- 13.1 pg/microg and GM-CSF: 135.1 +/- 26.4 pg/microg). These results suggest that symptomatic lesions containing epithelial cells represent an immunologically active stage of apical periodontitis, whereas asymptomatic, small, PMN cell-poor, non-epithelialized lesions represent healing apical lesions.

  4. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor.

    Tran, Anh-Minh; Nguyen, Thanh-Thao; Nguyen, Cong-Thuan; Huynh-Thi, Xuan-Mai; Nguyen, Cao-Tri; Trinh, Minh-Thuong; Tran, Linh-Thuoc; Cartwright, Stephanie P; Bill, Roslyn M; Tran-Van, Hieu

    2017-04-04

    Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is a glycoprotein that has been approved by the FDA for the treatment of neutropenia and leukemia in combination with chemotherapies. Recombinant hGM-CSF is produced industrially using the baker's yeast, Saccharomyces cerevisiae, by large-scale fermentation. The methylotrophic yeast, Pichia pastoris, has emerged as an alternative host cell system due to its shorter and less immunogenic glycosylation pattern together with higher cell density growth and higher secreted protein yield than S. cerevisiae. In this study, we compared the pipeline from gene to recombinant protein in these two yeasts. Codon optimization in silico for both yeast species showed no difference in frequent codon usage. However, rhGM-CSF expressed from S. cerevisiae BY4742 showed a significant discrepancy in molecular weight from those of P. pastoris X33. Analysis showed purified rhGM-CSF species with molecular weights ranging from 30 to more than 60 kDa. Fed-batch fermentation over 72 h showed that rhGM-CSF was more highly secreted from P. pastoris than S. cerevisiae (285 and 64 mg total secreted protein/L, respectively). Ion exchange chromatography gave higher purity and recovery than hydrophobic interaction chromatography. Purified rhGM-CSF from P. pastoris was 327 times more potent than rhGM-CSF from S. cerevisiae in terms of proliferative stimulating capacity on the hGM-CSF-dependent cell line, TF-1. Our data support a view that the methylotrophic yeast P. pastoris is an effective recombinant host for heterologous rhGM-CSF production.

  5. Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer.

    Elias, A D; Ayash, L; Anderson, K C; Hunt, M; Wheeler, C; Schwartz, G; Tepler, I; Mazanet, R; Lynch, C; Pap, S

    1992-06-01

    High-dose therapy with autologous marrow support results in durable complete remissions in selected patients with relapsed lymphoma and leukemia who cannot be cured with conventional dose therapy. However, substantial morbidity and mortality result from the 3- to 6-week period of marrow aplasia until the reinfused marrow recovers adequate hematopoietic function. Hematopoietic growth factors, particularly used after chemotherapy, can increase the number of peripheral blood progenitor cells (PBPCs) present in systemic circulation. The reinfusion of PBPCs with marrow has recently been reported to reduce the time to recovery of adequate marrow function. This study was designed to determine whether granulocyte-macrophage colony-stimulating factor (GM-CSF)-mobilized PBPCs alone (without marrow) would result in rapid and reliable hematopoietic reconstitution. Sixteen patients with metastatic breast cancer were treated with four cycles of doxorubicin, 5-fluorouracil, and methotrexate (AFM induction). Patients responding after the first two cycles were administered GM-CSF after the third and fourth cycles to recruit PBPCs for collection by two leukapheresis per cycle. These PBPCs were reinfused as the sole source of hematopoietic support after high doses of cyclophosphamide, thiotepa, and carboplatin. No marrow or hematopoietic cytokines were used after progenitor cell reinfusion. Granulocytes greater than or equal to 500/microL was observed on a median of day 14 (range, 8 to 57). Transfusion independence of platelets greater than or equal to 20,000/microL occurred on a median day of 12 (range, 8 to 134). However, three patients required the use of a reserve marrow for slow platelet engraftment. In retrospect, these patients were characterized by poor baseline bone marrow cellularity and poor platelet recovery after AFM induction therapy. When compared with 29 historical control patients who had received the same high-dose intensification chemotherapy using autologous

  6. Enhanced interleukin-8 production in THP-1 human monocytic cells by lipopolysaccharide from oral microorganisms and granulocyte-macrophage colony-stimulating factor.

    Baqui, A A; Meiller, T F; Falkler, W A

    1999-10-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-8 (IL-8) plays an important role in macrophage mediated inflammatory processes including exacerbation of periodontal diseases, one of the most common complications in GM-CSF receiving cancer patients. The effect of GM-CSF supplementation on IL-8 production was investigated in a human monocyte cell line THP-1, stimulated with lipopolysaccharide extracted from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. Resting THP-1 cells were treated with lipopolysaccharide (1 microgram/ml) of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) for varying time periods. The production of IL-8 in THP-1 cells was measured by a solid-phase enzyme-linked immunosorbent assay (ELISA). A very low level of the cytokine IL-8 was produced constitutive in THP-1 cells. Starting from 8 h of treatment and afterwards GM-CSF alone significantly increased IL-8 production in THP-1 cells. Lipopolysaccharide (1 microgram/ml) extracts from either F. nucleatum or P. gingivalis amplified IL-8 production 500-800 times in comparison to resting THP-1 cells. When lipopolysaccharide of F. nucleatum or P. gingivalis was supplemented with 50 IU/ml of GM-CSF, there was a statistically significant enhanced production of IL-8 by THP-1 cells after 1 day to 7 days of treatment as compared with lipopolysaccharide treatment alone. GM-CSF (50 IU/ml) also significantly increased IL-8 production from 2-7 days of treatment of THP-1 cells when supplemented with a positive control, phorbol-12-myristate-13 acetate (PMA), as compared to PMA treatment alone. These investigations using the in vitro THP-1 human monocyte cell model indicate that there may be an increase in the response on a cellular level to oral endotoxin following GM-CSF therapy as evidenced by enhanced production of the tissue-reactive inflammatory cytokine, IL-8.

  7. Adjuvant therapy for melanoma in dogs: results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor.

    MacEwen, E G; Kurzman, I D; Vail, D M; Dubielzig, R R; Everlith, K; Madewell, B R; Rodriguez, C O; Phillips, B; Zwahlen, C H; Obradovich, J; Rosenthal, R C; Fox, L E; Rosenberg, M; Henry, C; Fidel, J

    1999-12-01

    Spontaneous canine oral melanoma (COM) is a highly metastatic cancer, resistant to chemotherapy, and can serve as a model for cancer immunotherapy. Liposome-encapsulated muramyl tripeptide-phosphatidylethanolamine (L-MTP-PE) can activate the tumoricidal activity of the monocyte-macrophage system following i.v. injection. The objective of these studies was to evaluate the therapeutic effectiveness of L-MTP-PE administered alone and combined with recombinant canine granulocyte macrophage colony-stimulating factor (rcGM-CSF) in dogs undergoing surgery for oral melanoma. Ninety-eight dogs with histologically confirmed, clinically staged, oral melanoma were entered into two randomized, double-blind, surgical adjuvant trials. In trial 1, 50 dogs were stratified based on clinical stage and randomized to once a week L-MTP-PE or lipid equivalent (control). When all of the clinical stages were combined, no difference in disease-free survival or in survival time (ST) were detected. However, within stage I, dogs receiving L-MTP-PE had a significant increase in ST compared with control, with 80% of the dogs treated with L-MTP-PE still alive at >2 years. Within each stage II and stage III, there was no difference detected between the treatment groups. In trial 2, 48 dogs were stratified on the basis of clinical stage and extent of surgery (simple resection or radical excision), treated with L-MTP-PE two times a week, and randomized to rcGM-CSF or saline (placebo) given s.c. daily for 9 weeks. Within each stage and when all of the stages were combined, there was no difference between the treatment groups. In both studies, stage I COM is associated with a better prognosis. No effect on survival was observed with regard to tumor location in the oral cavity, sex, type/extent of surgery, or age. In a subset of dogs tested, pulmonary alveolar macrophage cytotoxicity was enhanced with combined rcGM-CSF and L-MTP-PE but not in dogs treated with L-MTP-PE alone. The present study

  8. Granulocyte-Macrophage Colony-Stimulating Factor Amplification of Interleukin-1β and Tumor Necrosis Factor Alpha Production in THP-1 Human Monocytic Cells Stimulated with Lipopolysaccharide of Oral Microorganisms

    Baqui, A. A. M. A.; Meiller, Timothy F.; Chon, Jennifer J.; Turng, Been-Foo; Falkler, William A.

    1998-01-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1β (IL-1β) and tumor necrosis factor alpha (TNF-α) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1β and TNF-α production following GM-CSF suppl...

  9. Effect of Granulocyte-Macrophage Colony-Stimulating Factor With or Without Supervised Exercise on Walking Performance in Patients With Peripheral Artery Disease: The PROPEL Randomized Clinical Trial.

    McDermott, Mary M; Ferrucci, Luigi; Tian, Lu; Guralnik, Jack M; Lloyd-Jones, Donald; Kibbe, Melina R; Polonsky, Tamar S; Domanchuk, Kathryn; Stein, James H; Zhao, Lihui; Taylor, Doris; Skelly, Christopher; Pearce, William; Perlman, Harris; McCarthy, Walter; Li, Lingyu; Gao, Ying; Sufit, Robert; Bloomfield, Christina L; Criqui, Michael H

    2017-12-05

    Benefits of granulocyte-macrophage colony-stimulating factor (GM-CSF) for improving walking ability in people with lower extremity peripheral artery disease (PAD) are unclear. Walking exercise may augment the effects of GM-CSF in PAD, since exercise-induced ischemia enhances progenitor cell release and may promote progenitor cell homing to ischemic calf muscle. To determine whether GM-CSF combined with supervised treadmill exercise improves 6-minute walk distance, compared with exercise alone and compared with GM-CSF alone; to determine whether GM-CSF alone improves 6-minute walk more than placebo and whether exercise improves 6-minute walk more than an attention control intervention. Randomized clinical trial with 2 × 2 factorial design. Participants were identified from the Chicago metropolitan area and randomized between January 6, 2012, and December 22, 2016, to 1 of 4 groups: supervised exercise + GM-CSF (exercise + GM-CSF) (n = 53), supervised exercise + placebo (exercise alone) (n = 53), attention control  + GM-CSF (GM-CSF alone) (n = 53), attention control + placebo (n = 51). The final follow-up visit was on August 15, 2017. Supervised exercise consisted of treadmill exercise 3 times weekly for 6 months. The attention control consisted of weekly educational lectures by clinicians for 6 months. GM-CSF (250 μg/m2/d) or placebo were administered subcutaneously (double-blinded) 3 times/wk for the first 2 weeks of the intervention. The primary outcome was change in 6-minute walk distance at 12-week follow-up (minimum clinically important difference, 20 m). P values were adjusted based on the Hochberg step-up method. Of 827 persons evaluated, 210 participants with PAD were randomized (mean age, 67.0 [SD, 8.6] years; 141 [67%] black, 82 [39%] women). One hundred ninety-five (93%) completed 12-week follow-up. At 12-week follow-up, exercise + GM-CSF did not significantly improve 6-minute walk distance more than

  10. Recombinant Granulocyte-Macrophage Colony-Stimulating Factor (rGM-CSF) : A Review of its Pharmacological Properties and Prospective Role in the Management of Myelosuppression.

    Grant, Susan M; Heel, Rennie C

    1992-04-01

    Recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) is a polypeptide hormone produced through recombinant DNA technologies in glycosylated (yeast or mammalian expression systems) or nonglycosylated (Escherichia coli expression system) form. It is a multilineage haematopoietin which stimulates proliferation and differentiation of bone marrow myeloid progenitors and increases peripheral white blood cell counts when administered systemically. Treatment is generally well tolerated, although mild to moderate flu-like symptoms are common and rGM-CSF-induced fever and fluid retention may be problematic in occasional patients. rGM-CSF accelerates recovery of peripheral neutrophil counts after bone marrow transplantation, and results of a placebo-controlled randomised trial correlate this with reduced infectious episodes and shortened length of hospitalisation in patients with lymphoid malignancies. A substantial number of patients with graft failure after bone marrow transplantation also respond to rGM-CSF. The duration of myelosuppression secondary to cancer chemotherapy can be significantly reduced by rGM-CSF which has permitted investigation of antineoplastic dose-intensity escalation. In some haematopoietic disorders (e.g. aplastic anaemia, myelodysplasia and neutropenia secondary to HIV infection and antiviral therapy), rGM-CSF produces clinically useful increases in peripheral blood granulocyte counts, although the effect is generally not sustained after drug withdrawal. The potential for rGM-CSF to stimulate proliferation of the abnormal clone in myelodysplasia and in acute myelogenous leukaemia following induction therapy is of concern. Available data suggest, however, that with appropriate monitoring and exclusion of high-risk patients this serious potential risk can be avoided, and that myelopoiesis is enhanced in such patients by rGM-CSF treatment. Recombinant colony-stimulating factors are a new therapeutic modality; hence many aspects of

  11. CXC chemokine receptor 3 expression on CD34(+) hematopoietic progenitors from human cord blood induced by granulocyte-macrophage colony-stimulating factor

    Jinquan, T; Quan, S; Jacobi, H H

    2000-01-01

    -induced CD34(+) progenitor chemotaxis. These chemotactic attracted CD34(+) progenitors are colony-forming units-granulocyte-macrophage. gamma IP-10 and Mig also induced GM-CSF-stimulated CD34(+) progenitor adhesion and aggregation by means of CXCR3, a finding confirmed by the observation that anti-CXCR3 m......Ab blocked these functions of gammaIP-10 and Mig but not of chemokine stromal cell-derived factor 1 alpha. gamma IP-10-induced and Mig-induced up-regulation of integrins (CD49a and CD49b) was found to play a crucial role in adhesion of GM-CSF-stimulated CD34(+) progenitors. Moreover, gamma IP-10 and Mig...... stimulated CXCR3 redistribution and cellular polarization in GM-CSF-stimulated CD34(+) progenitors. These results indicate that CXCR3-gamma IP-10 and CXCR3-Mig receptor-ligand pairs, as well as the effects of GM-CSF on them, may be especially important in the cytokine/chemokine environment...

  12. Granulocyte colony-stimulating factor induces in vitro lymphangiogenesis

    Lee, Ae Sin; Kim, Dal; Wagle, Susbin Raj; Lee, Jung Eun; Jung, Yu Jin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2013-01-01

    Highlights: •G-CSF induces tube formation, migration and proliferation of lymphatic cells. •G-CSF increases phosphorylation of MAPK and Akt in lymphatic endothelial cells. •MAPK and Akt pathways are linked to G-CSF-induced in vitro lymphangiogenesis. •G-CSF increases sprouting of a lymphatic ring. •G-CSF produces peritoneal lymphangiogenesis. -- Abstract: Granulocyte-colony stimulating factor (G-CSF) is reported to induce differentiation in cells of the monocyte lineage and angiogenesis in vascular endothelial cells, but its effects on lymphangiogenesis is uncertain. Here we examined the effects and the mechanisms of G-CSF-induced lymphangiogenesis using human lymphatic endothelial cells (hLECs). Our results showed that G-CSF induced capillary-like tube formation, migration and proliferation of hLECs in a dose- and time-dependent manner and enhanced sprouting of thoracic duct. G-CSF increased phosphorylation of Akt and ERK1/2 in hLECs. Supporting the observations, specific inhibitors of phosphatidylinositol 3′-kinase and MAPK suppressed the G-CSF-induced in vitro lymphangiogenesis and sprouting. Intraperitoneal administration of G-CSF to mice also stimulated peritoneal lymphangiogenesis. These findings suggest that G-CSF is a lymphangiogenic factor

  13. Identification of a new adapter protein that may link the common beta subunit of the receptor for granulocyte/macrophage colony-stimulating factor, interleukin (IL)-3, and IL-5 to phosphatidylinositol 3-kinase.

    Jücker, M; Feldman, R A

    1995-11-17

    Binding of human granulocyte/macrophage colony-stimulating factor (hGM-CSF) to its receptor induces the rapid activation of phosphatidylinositol-3 kinase (PI 3-kinase). As hGM-CSF receptor (hGMR) does not contain a consensus sequence for binding of PI 3-kinase, hGMR must use a distinct mechanism for its association with and activation of PI 3-kinase. Here, we describe the identification of a tyrosine-phosphorylated protein of 76-85 kDa (p80) that associates with the common beta subunit of hGMR and with the SH2 domains of the p85 subunit of PI 3-kinase in hGM-CSF-stimulated cells. Src/Yes and Lyn were tightly associated with the p80.PI 3-kinase complex, suggesting that p80 and other phosphotyrosyl proteins present in the complex were phosphorylated by Src family kinases. Tyrosine phosphorylation of p80 was only detected in hGM-CSF or human interleukin-3-stimulated cells, suggesting that activation of p80 might be specific for signaling via the common beta subunit. We postulate that p80 functions as an adapter protein that may participate in linking the hGM-CSF receptor to the PI 3-kinase signaling pathway.

  14. Nicotine can skew the characterization of the macrophage type-1 (M{Phi}1) phenotype differentiated with granulocyte-macrophage colony-stimulating factor to the M{Phi}2 phenotype

    Yanagita, Manabu; Kobayashi, Ryohei [Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka 565-0871 (Japan); Murakami, Shinya, E-mail: ipshinya@dent.osaka-u.ac.jp [Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka 565-0871 (Japan)

    2009-10-09

    Macrophages (M{Phi}s) exhibit functional heterogeneity and plasticity in the local microenvironment. Recently, it was reported that M{Phi}s can be divided into proinflammatory M{Phi}s (M{Phi}1) and anti-inflammatory M{Phi}s (M{Phi}2) based on their polarized functional properties. Here, we report that nicotine, the major ingredient of cigarette smoke, can modulate the characteristics of M{Phi}1. Granulocyte-macrophage colony-stimulating factor-driven M{Phi}1 with nicotine (Ni-M{Phi}1) showed the phenotypic characteristics of M{Phi}2. Like M{Phi}2, Ni-M{Phi}1 exhibited antigen-uptake activities. Ni-M{Phi}1 suppressed IL-12, but maintained IL-10 and produced high amounts of MCP-1 upon lipopolysaccharide stimulation compared with M{Phi}1. Moreover, we observed strong proliferative responses of T cells to lipopolysaccharide-stimulated M{Phi}1, whereas Ni-M{Phi}1 reduced T cell proliferation and inhibited IFN-{gamma} production by T cells. These results suggest that nicotine can change the functional characteristics of M{Phi} and skew the M{Phi}1 phenotype to M{Phi}2. We propose that nicotine is a potent regulator that modulates immune responses in microenvironments.

  15. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  16. The frequency of clinical pregnancy and implantation rate after cultivation of embryos in a medium with granulocyte macrophage colony-stimulating factor (GM-CSF) in patients with preceding failed attempts of ART.

    Tevkin, S; Lokshin, V; Shishimorova, M; Polumiskov, V

    2014-10-01

    The application in IVF practice of modern techniques can improve positive outcome of each cycle in the assisted reproductive technology (ART) programs and the effectiveness of treatment as a whole. There are embryos in the female reproductive tract in physiological medium which contain various cytokines and growth factors. It plays an important role in the regulation of normal embryonic development, improve implantation and subsequently optimizing the development of the fetus and the placenta. Granulocyte macrophage colony-stimulating factor (GM-CSF is one of the cytokines playing an important role in reproductive function. Addition of recombinant GM-CSF to the culture medium can makes closer human embryos culture to in vivo conditions and improve the efficacy ART cycles. The analysis of culture embryos in EmbryoGen medium has shown that fertilization rate embryo culture and transfer to patients with previous unsuccessful attempts increases clinical pregnancy rate compared to the control group 39.1 versus 27.8%, respectively. It is noted that the implantation rate (on 7 weeks' gestation) and progressive clinical pregnancy rate (on 12 weeks' gestation) were significantly higher in group embryos culture in EmbryoGen medium compared to standard combination of medium (ISM1+VA), and were 20.4 and 17.4% versus 11.6 and 9.1%, respectively.

  17. Substance P enhances tissue factor release from granulocyte-macrophage colony-stimulating factor-dependent macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway.

    Yamaguchi, Rui; Yamamoto, Takatoshi; Sakamoto, Arisa; Ishimaru, Yasuji; Narahara, Shinji; Sugiuchi, Hiroyuki; Yamaguchi, Yasuo

    2016-03-01

    Granulocyte-macrophage colony stimulating factor (GM-CSF) induces procoagulant activity of macrophages. Tissue factor (TF) is a membrane-bound glycoprotein and substance P (SP) is a pro-inflammatory neuropeptide involved in the formation of membrane blebs. This study investigated the role of SP in TF release by GM-CSF-dependent macrophages. SP significantly decreased TF levels in whole-cell lysates of GM-CSF-dependent macrophages. TF was detected in the culture supernatant by enzyme-linked immunosorbent assay after stimulation of macrophages by SP. Aprepitant (an SP/neurokinin 1 receptor antagonist) reduced TF release from macrophages stimulated with SP. Pretreatment of macrophages with a radical scavenger(pyrrolidinedithiocarbamate) also limited the decrease of TF in whole-cell lysates after stimulation with SP. A protein kinase C inhibitor (rottlerin) partially blocked this macrophage response to SP, while it was significantly inhibited by a ROCK inhibitor (Y-27632) or a dynamin inhibitor (dinasore). An Akt inhibitor (perifosine) also partially blocked this response. Furthermore, siRNA targeting p22phox, β-arrestin 2, or Rho A, blunted the release of TF from macrophages stimulated with SP. In other experiments, visceral adipocytes derived from cryopreserved preadipocytes were found to produce SP. In conclusion, SP enhances the release of TF from macrophages via the p22phox/β-arrestin 2/Rho A signaling pathway. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Activation of human gingival epithelial cells by cell-surface components of black-pigmented bacteria: augmentation of production of interleukin-8, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor and expression of intercellular adhesion molecule 1.

    Sugiyama, A; Uehara, A; Iki, K; Matsushita, K; Nakamura, R; Ogawa, T; Sugawara, S; Takada, H

    2002-01-01

    Black-pigmented anaerobic bacteria, such as Porphyromonas gingivalis and Prevotella intermedia, are amongst the predominant bacteria in periodontal pockets and have been implicated in periodontal diseases. To elucidate the roles of gingival keratinocytes, which are the first cells encountered by oral bacteria in periodontal diseases, human gingival keratinocytes in primary culture were stimulated with cell-surface components of P gingivalis and Pr. intermedia. A glycoprotein fraction from Pr. intermedia (PGP) clearly augmented the release of interleukin-8, granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor, as determined by enzyme-linked immunosorbent assay. This PGP also induced expression of intercellular adhesion molecule-1 (ICAM-1), as determined by flow cytometry. The augmentation of mRNA expression for these molecules was also confirmed by reverse transcription PCR. In contrast, lipopolysaccharide (LPS) from Pr. intermedia and Escherichia coli was completely inactive in these assays. LPS fraction and purified fimbriae from P gingivalis exhibited weak activities. Cytokine production and ICAM-1 expression by gingival keratinocytes might cause accumulation and activation of neutrophils in the epithelium and, therefore, may be involved in the initiation and development of inflammation in periodontal tissues.

  19. Molecular cloning of a second subunit of the receptor for human granulocyte - macrophage colony-stimulating factor (GM-CSF): Reconstitution of a high-affinity GM-CSF receptor

    Hayashida, Kazuhiro; Kitamura, Toshio; Gorman, D.M.; Miyajima, Atsushi; Arai, Kenichi; Yokota, Takashi

    1990-01-01

    Using the mouse interleukin 3 (IL-3) receptor cDNA as a probe, the authors obtained a monologous cDNA (KH97) from a cDNA library of a human hemopoietic cell line, TF-1. The protein encoded by the KH97 cDNA has 56% amino acid sequence identity with the mouse IL-3 receptor and retains features common to the family of cytokine receptors. Fibroblasts transfected with the KH97 cDNA expressed a protein of 120 kDa but did not bind any human cytokines, including IL-3 and granulocyte - macrophage colony-stimulating factor (GM-CSF). Interestingly, cotransfection of cDNAs for KH97 and the low-affinity human GM-CSF receptor in fibroblasts resulted in formation of a high-affinity receptor for GM-CSF. The dissociation rate of GM-CSF from the reconstituted high-affinity receptor was slower than that from the low-affinity site, whereas the association rate was unchanged. Cross-linking of 125 I-labeled GM-CSF to fibroblasts cotransfected with both cDNAs revealed the same cross-linking patterns as in TF-1 cells - i.e., two major proteins of 80 and 120 kDa which correspond to the low-affinity GM-CSF receptor and the KH97 protein, respectively. These results indicate that the high-affinity GM-CSF receptor is composed of at least two components in a manner analogous to the IL-2 receptor. They therefore propose to designate the low-affinity GM-CSF receptor and the KH97 protein as the α and β subunits of the GM-CSF receptor, respectively

  20. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy.

    Ren, Jun; Gwin, William R; Zhou, Xinna; Wang, Xiaoli; Huang, Hongyan; Jiang, Ni; Zhou, Lei; Agarwal, Pankaj; Hobeika, Amy; Crosby, Erika; Hartman, Zachary C; Morse, Michael A; H Eng, Kevin; Lyerly, H Kim

    2017-01-01

    Purpose : Although local oncolytic viral therapy (OVT) may enhance tumor lysis, antigen release, and adaptive immune responses, systemic antitumor responses post-therapy are limited. Adoptive immunotherapy with autologous dendritic cells (DC) and cytokine-induced killer cells (DC-CIK) synergizes with systemic therapies. We hypothesized that OVT with Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor (HSV-GM-CSF) would induce adaptive T cell responses that could be expanded systemically with sequential DC-CIK therapy. Patients and Methods : We performed a pilot study of intratumoral HSV-GM-CSF OVT followed by autologous DC-CIK cell therapy. In addition to safety and clinical endpoints, we monitored adaptive T cell responses by quantifying T cell receptor (TCR) populations in pre-oncolytic therapy, post-oncolytic therapy, and after DC-CIK therapy. Results : Nine patients with advanced malignancy were treated with OVT (OrienX010), of whom seven experienced stable disease (SD). Five of the OVT treated patients underwent leukapheresis, generation, and delivery of DC-CIKs, and two had SD, whereas three progressed. T cell receptor sequencing of TCR β sequences one month after OVT therapy demonstrates a dynamic TCR repertoire in response to OVT therapy in the majority of patients with the systematic expansion of multiple T cell clone populations following DC-CIK therapy. This treatment was well tolerated and long-term event free and overall survival was observed in six of the nine patients. Conclusions : Strategies inducing the local activation of tumor-specific immune responses can be combined with adoptive cellular therapies to expand the adaptive T cell responses systemically and further studies are warranted.

  1. A pilot study of the effect of granulocyte-macrophage colony-stimulating factor on oral mucositis in head and neck cancer patients during x-radiation therapy: a preliminary report

    Nicolatou, Ourania; Sotiropoulou-Lontou, Anastasia; Skarlatos, John; Kyprianou, Konstantinos; Kolitsi, Georgia; Dardoufas, Konstantinos

    1998-01-01

    Purpose: To evaluate the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) in reduction of radiotherapy-induced oral mucositis. Methods and Materials: Seventeen patients who were going to be irradiated with a total dose of 50-70 Gy for head and neck malignancies were included in the study. After the second week of radiotherapy, with the experience of oral pain, GM-CSF 400 μg was administered locally, once a day, until completion of radiotherapy. Patients were evaluated weekly for mucosal reaction and functional impairment. Results: Three patients with gross and functional mucositis grade I after the second week, completed the planned radiotherapy showing mucositis grade I. Eleven patients who experienced, after 2 weeks of radiotherapy, mucositis grade II and III, presented after the third week with gross mucositis grade I and II and functional impairment grade I. One of these 11 patients was then lost to follow-up and the remaining 10 completed their planned radiotherapy having an almost asymptomatic mucositis grade I. The 15th patient with gross mucositis grade III after the 2 weeks of radiotherapy, had a 2-day interruption because of painful mucositis and then continued and completed radiotherapy with gross and functional mucositis grade I. The 16th patient with mucositis grade III after the second week, did not show any improvement, and completed her planned radiotherapy with mucositis grade III which finally healed after the administration of acyclovir. The last, 17th patient discontinued radiotherapy at the third week because of mucositis grade IV and severe ulceration in apposition to an extensive gold prosthesis. Conclusion: The local administration of GM-CSF significantly reduced and almost healed radiation-induced oral mucositis in 14 of 17 patients during the radiotherapy, which was completed within the preplanned time and without any significant patient weight loss or functional impairment

  2. Propofol pretreatment attenuates LPS-induced granulocyte-macrophage colony-stimulating factor production in cultured hepatocytes by suppressing MAPK/ERK activity and NF-κB translocation

    Jawan, Bruno; Kao, Y.-H.; Goto, Shigeru; Pan, M.-C.; Lin, Y.-C.; Hsu, L.-W.; Nakano, Toshiaki; Lai, C.-Y.; Sun, C.-K.; Cheng, Y.-F.; Tai, M.-H.

    2008-01-01

    Propofol (PPF), a widely used intravenous anesthetic for induction and maintenance of anesthesia during surgeries, was found to possess suppressive effect on host immunity. This study aimed at investigating whether PPF plays a modulatory role in the lipopolysaccharide (LPS)-induced inflammatory cytokine expression in a cell line of rat hepatocytes. Morphological observation and viability assay showed that PPF exhibits no cytotoxicity at concentrations up to 300 μM after 48 h incubation. Pretreatment with 100 μM PPF for 24 h prior to LPS stimulation was performed to investigate the modulatory effect on LPS-induced inflammatory gene production. The results of semi-quantitative RT-PCR demonstrated that PPF pretreatment significantly suppressed the LPS-induced toll-like receptor (TLR)-4, CD14, tumor necrosis factor (TNF)-α, and granulocyte-macrophage colony-stimulating factor (GM-CSF) gene expression. Western blotting analysis showed that PPF pretreatment potentiated the LPS-induced TLR-4 downregulation. Flow cytometrical analysis revealed that PPF pretreatment showed no modulatory effect on the LPS-upregulated CD14 expression on hepatocytes. In addition, PPF pretreatment attenuated the phosphorylation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and IκBα, as well as the nuclear translocation of NF-κB primed by LPS. Moreover, addition of PD98059, a MAPK kinase inhibitor, significantly suppressed the LPS-induced NF-κB nuclear translocation and GM-CSF production, suggesting that the PPF-attenuated GM-CSF production in hepatocytes may be attributed to its suppressive effect on MAPK/ERK signaling pathway. In conclusion, PPF as an anesthetic may clinically benefit those patients who are vulnerable to sepsis by alleviating sepsis-related inflammatory response in livers

  3. The impact of concurrent granulocyte macrophage-colony stimulating factor on radiation-induced mucositis in head and neck cancer patients: A double-blind placebo-controlled prospective Phase III study by Radiation Therapy Oncology Group 9901

    Ryu, Janice K.; Swann, Suzanne; LeVeque, Francis; Scarantino, Charles W.; Johnson, Darlene J.; Chen, Allan; Fortin, Andre; Pollock, JonDavid; Kim, Harold; Ang, Kian K.

    2007-01-01

    Purpose: Based on early clinical evidence of potential mucosal protection by granulocyte-macrophage colony stimulating factor (GM-CSF), the Radiation Therapy Oncology Group conducted a double-blind, placebo-controlled, randomized study to test the efficacy and safety of GM-CSF in reducing the severity and duration of mucosal injury and pain (mucositis) associated with curative radiotherapy (RT) in head-and-neck cancer patients. Methods and Materials: Eligible patients included those with head-and-neck cancer with radiation ports encompassing >50% of oral cavity and/or oropharynx. Standard RT ports were used to cover the primary tumor and regional lymphatics at risk in standard fractionation to 60-70 Gy. Concurrent cisplatin chemotherapy was allowed. Patients were randomized to receive subcutaneous injection of GM-CSF 250 μg/m 2 or placebo 3 times a week. Mucosal reaction was assessed during the course of RT using the National Cancer Institute Common Toxicity Criteria and the protocol-specific scoring system. Results: Between October 2000 and September 2002, 130 patients from 36 institutions were accrued. Nine patients (7%) were excluded from the analysis, 3 as a result of drug unavailability. More than 80% of the patients participated in the quality-of-life endpoint of this study. The GM-CSF did not cause any increase in toxicity compared with placebo. There was no statistically significant difference in the average mean mucositis score in the GM-CSF and placebo arms by a t test (p = 0.4006). Conclusion: This placebo-controlled, randomized study demonstrated no significant effect of GM-CSF given concurrently compared with placebo in reducing the severity or duration of RT-induced mucositis in patients undergoing definitive RT for head-and-neck cancer

  4. Use of recombinant granulocyte-macrophage colony-stimulating factor during and after remission induction chemotherapy in patients aged 61 years and older with acute myeloid leukemia (AML) : Final report of AML-11, a phase III randomized study of the Leukemia Cooperative Group of European Organisation for the Research and Treatment of Cancer (EORTC-LCG) and the Dutch Belgian Hemato-Oncology Cooperative Group (HOVON)

    Lowenberg, B; Suciu, S; Archimbaud, E; Ossenkoppele, G; Verhoef, GEG; Vellenga, E; Wijermans, P; Berneman, Z; Dekker, AW; Stryckmans, P; Jehn, U; Muus, P; Sonneveld, P; Dardenne, M; Zittoun, R

    1997-01-01

    We conducted a prospective randomized multicenter clinical trial comparing the effects of granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to intensive chemotherapy in patients of 61 years and older with untreated newly diagnosed acute myeloid leukemia (AML). Patients were

  5. Mapping of monoclonal antibody- and receptor-binding domains on human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) using a surface plasmon resonance-based biosensor.

    Laricchia-Robbio, L; Liedberg, B; Platou-Vikinge, T; Rovero, P; Beffy, P; Revoltella, R P

    1996-10-01

    An automated surface plasmon resonance (SPR)-based biosensor system has been used for mapping antibody and receptor-binding regions on the recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) molecule. A rabbit antimouse IgG1-Fc antibody (RAM.Fc) was coupled to an extended carboxymethylated-hydrogel matrix attached to a gold surface in order to capture an anti-rhGM-CSF monoclonal antibody (MAb) injected over the sensing layer. rhGM-CSF was subsequently injected and allowed to bind to this antibody. Multisite binding assays were then performed, by flowing sequentially other antibodies and peptides over the surface, and the capacity of the latter to interact with the entrapped rhGM-CSF in a multimolecular complex was monitored in real time with SPR. Eleven MAb (all IgG1K), were analyzed: respectively, four antipeptide MAb raised against three distinct epitopes of the cytokine (two clones against residues 14-24, that includes part of the first alpha-helix toward the N-terminal region; one clone against peptide 30-41, an intrahelical loop; and one clone against residues 79-91, including part of the third alpha-helix) and seven antiprotein MAbs raised against the entire rhGM-CSF, whose target native epitopes are still undetermined. In addition, the binding capacity to rhGM-CSF of a synthetic peptide, corresponding to residues 238-254 of the extracellular human GM-CSF receptor alpha-chain, endowed with rhGM-CSF binding activity, was tested. The results from experiments performed with the biosensor were compared with those obtained by a sandwich enzyme-linked immunosorbent assay (ELISA), using the same reagents. The features of the biosensor technology (fully automated, measure in real time, sharpened yes/no response, less background disturbances, no need for washing step or labeling of the reagent) offered several advantages in these studies of MAb immunoreactivity and epitope mapping, giving a much better resolution and enabling more distinct

  6. Purification and molecular cloning of SH2- and SH3-containing inositol polyphosphate-5-phosphatase, which is involved in the signaling pathway of granulocyte-macrophage colony-stimulating factor, erythropoietin, and Bcr-Abl.

    Odai, H; Sasaki, K; Iwamatsu, A; Nakamoto, T; Ueno, H; Yamagata, T; Mitani, K; Yazaki, Y; Hirai, H

    1997-04-15

    Grb2/Ash and Shc are the adapter proteins that link tyrosine-kinase receptors to Ras and make tyrosine-kinase functionally associated with receptors and Ras in fibroblasts and hematopoietic cells. Grb2/Ash and Shc have the SH3, SH2, or phosphotyrosine binding domains. These domains bind to proteins containing proline-rich regions or tyrosine-phosphorylated proteins and contribute to the association of Grb2/Ash and Shc with other signaling molecules. However, there could remain unidentified signaling molecules that physically and functionally interact with these adapter proteins and have biologically important roles in the signaling pathways. By using the GST fusion protein including the full length of Grb2/Ash, we have found that c-Cbl and an unidentified 135-kD protein (pp135) are associated with Grb2/Ash. We have also found that they become tyrosine-phosphorylated by treatment of a human leukemia cell line, UT-7, with granulocyte-macrophage colony-stimulating factor (GM-CSF). We have purified the pp135 by using GST-Grb2/Ash affinity column and have isolated the full-length complementary DNA (cDNA) encoding the pp135 using a cDNA probe, which was obtained by the degenerate polymerase chain reaction based on a peptide sequence of the purified pp135. The cloned cDNA has 3,958 nucleotides that contain a single long open reading frame of 3,567 nucleotides, encoding a 1,189 amino acid protein with a predicted molecular weight of approximately 133 kD. The deduced amino acid sequence reveals that pp135 is a protein that has one SH2, one SH3, and one proline-rich domain. The pp135, which contains two motifs conserved among the inositol polyphosphate-5-phosphatase proteins, was shown to have the inositol polyphosphate-5-phosphatase activity. The pp135 was revealed to associate constitutively with Grb2/Ash and inducibly with Shc using UT-7 cells stimulated with GM-CSF. In the cell lines derived from human chronic myelogenous leukemia, pp135 was constitutively tyrosine

  7. Comparison of granulocyte-macrophage colony-stimulating factor and sucralfate mouthwashes in the prevention of radiation-induced mucositis: a double-blind prospective randomized phase III study

    Saarilahti, Kauko; Kajanti, Mikael; Joensuu, Timo; Kouri, Mauri; Joensuu, Heikki

    2002-01-01

    Purpose: To compare granulocyte-macrophage colony-stimulating factor (GM-CSF) mouthwashes with sucralfate mouthwashes in the prevention of radiation-induced mucositis. Methods and Materials: Forty patients with radically operated head-and-neck cancer were randomly allocated to use either GM-CSF (n=21) or sucralfate (n=19) mouthwashes during postoperative radiotherapy (RT). All patients received conventionally fractionated RT to a total dose of 50-60 Gy in 2-Gy daily fractions during 5-6 weeks to the primary site and regional lymphatics. A minimum of 50% of the oral cavity and oropharyngeal mucosa was included in the clinical target volume. GM-CSF mouthwashes consisted of 37.5 μg GM-CSF and sucralfate mouthwashes of 1.0 g of sucralfate distilled in water. Both washes were used 4 times daily, beginning after the first week of RT and continued to the end of the RT course. Symptoms related to radiation mucositis and body weight, serum prealbumin level, and blood cell counts were monitored weekly. Results: Oral mucositis tended to be less severe in the GM-CSF group (p=0.072). Complete (n=1) or partial (n=4) healing of mucositis occurred during the RT course in 5 patients (24%) in the GM-CSF group and in none of the patients in the sucralfate group (p=0.049). Patients who received GM-CSF had less mucosal pain (p=0.058) and were less often prescribed opioids for pain (p=0.042). Three patients in the sucralfate group needed hospitalization for mucositis during RT compared with none in the GM-CSF group. Four patients (21%) in the sucralfate group and none in the GM-CSF group required an interruption in the RT course (p=0.042). No significant differences in weight, prealbumin level, or blood cell count were found between the groups, and both mouthwashes were well tolerated. Conclusion: GM-CSF mouthwashes may be moderately more effective than sucralfate mouthwashes in preventing radiation-induced mucositis and mucositis-related pain, and their use may lead to less frequent

  8. Granulocyte-macrophage colony-stimulating factor amplification of interleukin-1beta and tumor necrosis factor alpha production in THP-1 human monocytic cells stimulated with lipopolysaccharide of oral microorganisms.

    Baqui, A A; Meiller, T F; Chon, J J; Turng, B F; Falkler, W A

    1998-05-01

    Cytokines, including granulocyte-macrophage colony-stimulating factor (GM-CSF), are used to assist in bone marrow recovery during cancer chemotherapy. Interleukin-1beta (IL-1beta) and tumor necrosis factor alpha (TNF-alpha) play important roles in inflammatory processes, including exacerbation of periodontal diseases, one of the most common complications in patients who undergo this therapy. A human monocyte cell line (THP-1) was utilized to investigate IL-1beta and TNF-alpha production following GM-CSF supplementation with lipopolysaccharide (LPS) from two oral microorganisms, Porphyromonas gingivalis and Fusobacterium nucleatum. LPS of P. gingivalis or F. nucleatum was prepared by a phenol-water extraction method and characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and determination of total protein and endotoxin contents. Resting THP-1 cells were treated with LPS of P. gingivalis or F. nucleatum and/or GM-CSF (50 IU/ml) by using different concentrations for various time periods. Production of IL-1beta and TNF-alpha in THP-1 cells was measured by solid-phase enzyme-linked immunosorbent assay. Reverse transcription (RT)-PCR was used to evaluate the gene expression of resting and treated THP-1 cells. IL-1beta was not detected in untreated THP-1 cells. IL-1beta production was, however, stimulated sharply at 4 h. GM-CSF amplified IL-1beta production in THP-1 cells treated with LPS from both oral anaerobes. No IL-1beta-specific mRNA transcript was detected in untreated THP-1 cells. However, IL-1beta mRNA was detected by RT-PCR 2 h after stimulation of THP-1 cells with LPS from both organisms. GM-CSF did not shorten the IL-1beta transcriptional activation time. GM-CSF plus F. nucleatum or P. gingivalis LPS activated THP-1 cells to produce a 1.6-fold increase in TNF-alpha production at 4 h over LPS stimulation alone. These investigations with the in vitro THP-1 model indicate that there may be an increase in the cellular immune response to oral

  9. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: subanalysis of the Phase III OPTiM trial

    Harrington KJ

    2016-11-01

    Full Text Available Kevin J Harrington,1 Robert HI Andtbacka,2 Frances Collichio,3 Gerald Downey,4 Lisa Chen,5 Zsolt Szabo,6 Howard L Kaufman7 1The Institute of Cancer Research/The Royal Marsden Hospital NIHR Biomedical Research Centre, London, UK; 2Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; 3Division of Hematology and Oncology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 4Amgen Ltd, Cambridge, UK; 5Amgen Inc, Thousand Oaks, CA, USA; 6Amgen GmbH, Zug, Switzerland; 7Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA Objectives: Talimogene laherparepvec is the first oncolytic immunotherapy to receive approval in Europe, the USA and Australia. In the randomized, open-label Phase III OPTiM trial (NCT00769704, talimogene laherparepvec significantly improved durable response rate (DRR versus granulocyte-macrophage colony-stimulating factor (GM-CSF in 436 patients with unresectable stage IIIB–IVM1c melanoma. The median overall survival (OS was longer versus GM-CSF in patients with earlier-stage melanoma (IIIB–IVM1a. Here, we report a detailed subgroup analysis of the OPTiM study in patients with IIIB–IVM1a disease. Patients and methods: The patients were randomized (2:1 ratio to intralesional talimogene laherparepvec or subcutaneous GM-CSF and were evaluated for DRR, overall response rate (ORR, OS, safety, benefit–risk and numbers needed to treat. Descriptive statistics were used for subgroup comparisons. Results: Among 249 evaluated patients with stage IIIB–IVM1a melanoma, DRR was higher with talimogene laherparepvec compared with GM-CSF (25.2% versus 1.2%; P<0.0001. ORR was also higher in the talimogene laherparepvec arm (40.5% versus 2.3%; P<0.0001, and 27 patients in the talimogene laherparepvec arm had a complete response, compared with none in GM-CSF-treated patients. The incidence rates of exposure-adjusted adverse events (AE and serious AEs were similar with both treatments. Conclusion

  10. Combination Immunotherapy of B16 Melanoma Using Anti–Cytotoxic T Lymphocyte–Associated Antigen 4 (Ctla-4) and Granulocyte/Macrophage Colony-Stimulating Factor (Gm-Csf)-Producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation

    van Elsas, Andrea; Hurwitz, Arthur A.; Allison, James P.

    1999-01-01

    We examined the effectiveness of cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) blockade, alone or in combination with a granulocyte/macrophage colony-stimulating factor (GM-CSF)–expressing tumor cell vaccine, on rejection of the highly tumorigenic, poorly immunogenic murine melanoma B16-BL6. Recently established tumors could be eradicated in 80% (68/85) of the cases using combination treatment, whereas each treatment by itself showed little or no effect. Tumor rejection was dependent on CD8+ and NK1.1+ cells but occurred irrespective of the presence of CD4+ T cells. Mice surviving a primary challenge rejected a secondary challenge with B16-BL6 or the parental B16-F0 line. The same treatment regimen was found to be therapeutically effective against outgrowth of preestablished B16-F10 lung metastases, inducing long-term survival. Of all mice surviving B16-BL6 or B16-F10 tumors after combination treatment, 56% (38/68) developed depigmentation, starting at the site of vaccination or challenge and in most cases progressing to distant locations. Depigmentation was found to occur in CD4-depleted mice, strongly suggesting that the effect was mediated by CTLs. This study shows that CTLA-4 blockade provides a powerful tool to enhance T cell activation and memory against a poorly immunogenic spontaneous murine tumor and that this may involve recruitment of autoreactive T cells. PMID:10430624

  11. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  12. MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial.

    Behrens, Frank; Tak, Paul P; Østergaard, Mikkel; Stoilov, Rumen; Wiland, Piotr; Huizinga, Thomas W; Berenfus, Vadym Y; Vladeva, Stoyanka; Rech, Juergen; Rubbert-Roth, Andrea; Korkosz, Mariusz; Rekalov, Dmitriy; Zupanets, Igor A; Ejbjerg, Bo J; Geiseler, Jens; Fresenius, Julia; Korolkiewicz, Roman P; Schottelius, Arndt J; Burkhardt, Harald

    2015-06-01

    To determine the safety, tolerability and signs of efficacy of MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), in patients with rheumatoid arthritis (RA). Patients with active, moderate RA were enrolled in a randomised, multicentre, double-blind, placebo-controlled, dose-escalation trial of intravenous MOR103 (0.3, 1.0 or 1.5 mg/kg) once a week for 4 weeks, with follow-up to 16 weeks. The primary outcome was safety. Of the 96 randomised and treated subjects, 85 completed the trial (n=27, 24, 22 and 23 for pooled placebo and MOR103 0.3, 1.0 and 1.5 mg/kg, respectively). Treatment emergent adverse events (AEs) in the MOR103 groups were mild or moderate in intensity and generally reported at frequencies similar to those in the placebo group. The most common AE was nasopharyngitis. In two cases, AEs were classified as serious because of hospitalisation: paronychia in a placebo subject and pleurisy in a MOR103 0.3 mg/kg subject. Both patients recovered fully. In exploratory efficacy analyses, subjects in the MOR103 1.0 and 1.5 mg/kg groups showed significant improvements in Disease Activity Score-28 scores and joint counts and significantly higher European League Against Rheumatism response rates than subjects receiving placebo. MOR103 1.0 mg/kg was associated with the largest reductions in disease activity parameters. MOR103 was well tolerated and showed preliminary evidence of efficacy in patients with active RA. The data support further investigation of this monoclonal antibody to GM-CSF in RA patients and potentially in those with other immune-mediated inflammatory diseases. NCT01023256. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Reinfusion of autologous lymphocytes with granulocyte-macrophage colony-stimulating factor induces rapid recovery of CD4+ and CD8+ T cells after high-dose chemotherapy for metastatic breast cancer

    de Gast, G. C.; Vyth-Dreese, F. A.; Nooijen, W.; van den Bogaard, C. J. C.; Sein, J.; Holtkamp, M. M. J.; Linthorst, G. A. M.; Baars, J. W.; Schornagel, J. H.; Rodenhuis, S.

    2002-01-01

    PURPOSE: Repeated high-dose chemotherapy (HDCT) followed by peripheral-blood progenitor cell (PBPC) transplantation can induce a complete remission in patients with metastatic breast cancer sensitive to standard chemotherapy (CT), but the majority of patients relapse within 1 to 2 years. The immune

  14. The Potential Role of Recombinant Hematopoietic Colony-Stimulating Factors in Preventing Infections in the Immunocompromised Host

    James Rusthoven

    1991-01-01

    Full Text Available Hematopoietic colony-stimulating factors coordinate the proliferation and maturation of bone marrow and peripheral blood cells during normal hematopoiesis. Most of these factors are now available as recombinant human colony-stimulating factors, and preclinical and clinical testing is proceeding rapidly. Granulocyte and granulocyte/macrophage colony-stimulating factors have been the most extensively studied to date. In human clinical trials, granulocyte colony-stimulating factor improves neutrophil counts and function, reduces episodes of febrile neutropenia, improves neutrophil recovery after disease- or treatment-induced myelosuppression, and reduces the number of serious infections in several neutropenic disease states. Granulocyte/macrophage colony-stimulating factor has similar biological properties but may also improve eosinophil proliferation and function, and platelet cell recovery after myelotoxic bone marrow injury, Interleukin-1 boosts the effects of granulocyte colony-stimulating factor and granulocyte/macrophage colony-stimulating factor, but also may promote the resolution of established infections in conjunction with antibiotics. The therapeutic realities and future therapeutic implications of these agents for the therapy of infections, cancer and hemopoietic disorders are discussed.

  15. Granulocyte-macrophage colony-stimulating factor does not increase the potency or efficacy of a foot-and-mouth disease virus subunit vaccine Fator estimulante de colônias de granu-lócitos e macrófagos (GM-CSF não aumenta a eficácia ou potência da vacina de subunidades da febre aftosa em suínos

    Luizinho Caron

    2005-09-01

    Full Text Available Foot-and-mouth disease (FMD is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5 vector containing the FMDV capsid (P1-2A and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24. An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C, however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF. However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.A febre aftosa é uma das doenças mais temidas nos rebanhos em todo o mundo. A vacinação tem sido uma arma eficiente no controle da doença, no entanto há preocupações com as vacinas atualmente utilizadas incluindo a necessidade de instalações de alta segurança para a produção dessas vacinas e a falta de um teste de diagnóstico aprovado que faça distinção precisa entre animais vacinados dos infectados. Várias vacinas têm sido testadas contra a febre aftosa e uma dessas

  16. Granulocyte-Macrophage Colony-Stimulating Factor Gene-Modified Vaccines for Immunotherapy of Cancer

    Bubeník, Jan

    1999-01-01

    Roč. 45, č. 4 (1999), s. 115-119 ISSN 0015-5500 R&D Projects: GA MZd NC45011; GA MZd NC5526; GA ČR GA312/98/0826; GA ČR GA312/99/0542 Institutional research plan: CEZ:AV0Z5052915 Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.493, year: 1999

  17. A Randomized Case-Controlled Study of Recombinant Human Granulocyte Colony Stimulating Factor for the Treatment of Sepsis in Preterm Neutropenic Infants

    Aktaş, Doğukan; Demirel, Bilge; Gürsoy, Tuğba; Ovalı, Fahri

    2015-01-01

    To investigate the efficacy and safety of recombinant human granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor (rhG-CSF) to treat sepsis in neutropenic preterm infants. Methods: Fifty-six neutropenic preterm infants with suspected or culture-proven sepsis hospitalized in Zeynep Kamil Maternity and Children's Educational and Training Hospital, Kozyatağı/Istanbul, Turkey between January 2008 and January 2010 were enrolled. Patients were ...

  18. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  19. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    -vitro culture of human embryos in the presence of 2 ng/ml GM-CSF resulted in 34.8% (8/23) uniformly normal embryos. Culture without 2 ng/ml GM-CSF resulted in 33.3% (9/27) uniformly normal embryos. A trend towards a higher number of TQE in the test group was observed; however, due to lack of TQE in the control...... women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In...

  20. Culture of human oocytes with granulocyte-macrophage colony-stimulating factor has no effect on embryonic chromosomal constitution

    Agerholm, Inge; Loft, Anne; Hald, Finn

    2010-01-01

    women donating 86 oocytes. The primary endpoint was to investigate the chromosomal constitution of human embryos (fluorescence in-situ hybridization analysis for chromosomes 13, 16, 18, 21, 22, X and Y) cultured with or without GM-CSF. The secondary endpoints were number of top-quality embryos (TQE......) and number of normally developed embryos evaluated morphologically on day 3. The cytogenetic analyses demonstrated non-inferiority and therefore the chromosomal constitution of human embryos cultured in vitro in the presence of 2 ng/ml GM-CSF was no worse than the control group cultured without GM-CSF. In......-vitro culture of human embryos in the presence of 2 ng/ml GM-CSF resulted in 34.8% (8/23) uniformly normal embryos. Culture without 2 ng/ml GM-CSF resulted in 33.3% (9/27) uniformly normal embryos. A trend towards a higher number of TQE in the test group was observed; however, due to lack of TQE in the control...

  1. Chemoimmunotherapy of cancer: potentiated effectiveness of granulocyte-macrophage colony-stimulating factor and ifosfamide derivative CBM-4A

    Indrová, Marie; Bubeník, Jan; Šímová, Jana; Bieblová, Jana; Jandlová, Táňa; Šmahel, M.; Vonka, V.; Glazman-Kusnierczyk, H.; Pajtasz-Piasecka, E.; Radzikowski, C.; Mikyšková, Romana

    2001-01-01

    Roč. 8, č. 6 (2001), s. 1371-1374 ISSN 1021-335X R&D Projects: GA MZd NC5526; GA MZd NC5900; GA ČR GA312/99/0542; GA ČR GA301/01/0985; GA ČR GA301/00/0114; GA AV ČR IAA7052002 Institutional research plan: CEZ:AV0Z5052915 Keywords : chemoimmunotherapy * murine * neoplasms Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.224, year: 2001

  2. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF) activity

    Isik, Gözde; van Montfort, Thijs; Boot, Maikel; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Sanders, Rogier W.

    2013-01-01

    HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs) that target the envelope glycoprotein complex (Env). An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env

  3. The role of granulocyte macrophage colony stimulating factor (GM-CSF) in radiation-induced tumor cell migration.

    Vilalta, Marta; Brune, Jourdan; Rafat, Marjan; Soto, Luis; Graves, Edward E

    2018-03-13

    Recently it has been observed in preclinical models that that radiation enhances the recruitment of circulating tumor cells to primary tumors, and results in tumor regrowth after treatment. This process may have implications for clinical radiotherapy, which improves control of a number of tumor types but which, despite continued dose escalation and aggressive fractionation, is unable to fully prevent local recurrences. By irradiating a single tumor within an animal bearing multiple lesions, we observed an increase in tumor cell migration to irradiated and unirradiated sites, suggesting a systemic component to this process. Previous work has identified the cytokine GM-CSF, produced by tumor cells following irradiation, as a key effector of this process. We evaluated the ability of systemic injections of a PEGylated form of GM-CSF to stimulate tumor cell migration. While increases in invasion and migration were observed for tumor cells in a transwell assay, we found that daily injections of PEG-GM-CSF to tumor-bearing animals did not increase migration of cells to tumors, despite the anticipated changes in circulating levels of granulocytes and monocytes produced by this treatment. Combination of PEG-GM-CSF treatment with radiation also did not increase tumor cell migration. These findings suggest that clinical use of GM-CSF to treat neutropenia in cancer patients will not have negative effects on the aggressiveness of residual cancer cells. However, further work is needed to characterize the mechanism by which GM-CSF facilitates systemic recruitment of trafficking tumor cells to tumors.

  4. The immunomodulatory effect of inhaled granulocyte-macrophage colony-stimulating factor in cystic fibrosis. A new treatment paradigm

    Heslet, Lars; Bay, Christiane; Nepper-Christensen, Steen

    2012-01-01

    Patients with cystic fibrosis (CF) experience recurrent infections and develop chronically infected lungs, which initiates an altered immunological alveolar environment. End-stage pulmonary dysfunction is a result of a long sequence of complex events in CF, progressing to alveolar macrophage dysf...

  5. Modulation of neutrophil and monocyte function by recombinant human granulocyte macrophage colony-stimulating factor in patients with lymphoma

    Kharazmi, A; Nielsen, H; Hovgaard, D

    1991-01-01

    by up to 43-fold. rhGM-CSF treatment did not affect degranulation of the neutrophils as measured by release of vitamin B12 binding protein. Degree of modulation of neutrophil and monocyte function by rhGM-CSF was independent of rhGM-CSF dosages administered. These data suggest that phagocytic defence...... and chemiluminescence responses to f-Met-Leu-Phe, zymosan activated serum (ZAS) and opsonized zymosan (OZ) were determined. It was observed that chemotactic response of neutrophils to f-Met-Leu-Phe and ZAS was reduced, whereas the chemiluminescence response of both cell types to f-Met-Leu-Phe and zymosan was enhanced...

  6. Ontogeny of the granulocyte/macrophage progenitor cell (GM-CFC) pools in the beagle.

    Nothdurft, W; Braasch, E; Calvo, W; Prümmer, O; Carbonell, F; Grilli, G; Fliedner, T M

    1984-04-01

    The pattern of development of the granulocyte/macrophage progenitor cell (GM-CFC) pools in the course of canine ontogeny was studied by means of the agar culture technique. Colony formation was stimulated by colony stimulating activity (CSA) in serum from lethally irradiated dogs in combination with erythrocyte-depleted peripheral blood leukocytes from normal adult dogs. The colonies thus obtained in cultures from the different organs were in general large (estimated maximum 50 000 cells) and consisted predominantly of mononucleated macrophages, suggesting that, in these studies, a progenitor cell with high proliferative potential (HPP-CFC) has been monitored. In the yolk sac, a transitory GM-CFC pool became established between day 23 and day 48 of gestation, reaching maximum numbers of approximately 41 X 10(3) per organ on days 36/37. At the same time the GM-CFC concentration in blood collected from the heart also reached a maximum of about 31 X 10(3)/ml, indicating its carrier function for the migration of GM-CFC. In the liver a quasi-exponential increase in the GM-CFC numbers took place between days 36/37 and days 57 to 59 when a total of about 15.2 X 10(6) was found but thereafter and up to day 4 post partum the GM-CFC numbers decreased by almost two orders of magnitude. A continuous increase in the GM-CFC numbers was found in the spleen between day 42 of gestation and day 4 post partum when a maximum of 5.1 X 10(6) to 8.7 X 10(6) was reached. In contrast to the GM-CFC numbers in the liver, the splenic GM-CFC dropped only by 50% of peak values when the dogs reached adulthood. The bone marrow always had the highest incidence of GM-CFC, the concentration per 10(6) cells being 18.7 X 10(3)/10(6) cells on days 45/46, the earliest time point at which cultures could be set up. The absolute GM-CFC numbers in the two femora increased continuously between days 45/46 and day 4 post partum in parallel with the growth of the bones. In the thymus a relatively small

  7. A methylcellulose microculture assay for the in vitro assessment of drug toxicity on granulocyte/macrophage progenitors (CFU-GM).

    Pessina, Augusto; Croera, Cristina; Bayo, Maria; Malerba, Ilaria; Passardi, Laura; Cavicchini, Loredana; Neri, Maria G; Gribaldo, Laura

    2004-03-01

    In a recent prevalidation study, the use of a methylcellulose colony-forming unit-granulocyte/macrophage (CFU-GM) macroassay for two independent in vitro tests (human and murine cell based) was suggested for quantifying the potential haematotoxicity of xenobiotics. In this paper, we describe the transfer of the macroassay to a 96-well plate microassay, in which the linearity of the response was studied (both in terms of CFU-GM and optical density [OD] versus the number of cells cultured), and the inhibitory concentration (IC) values for doxorubicin, 5-fluorouracil and taxol were determined and compared with those obtained by using the original macroassay. Fresh murine bone marrow and human umbilical cord blood mononuclear cells were used as a source of myeloid progenitors. The cells were cultured in methylcellulose containing granulocyte/macrophage-colony-stimulating factor, and in the presence of increasing drug concentrations. The cloning capacity of the progenitors was measured both as the number of colonies counted manually (CFU-GM), and as OD evaluated with an automated plate reader in an MTT test. Our results show that, in the microassay, up to 20 colonies/well could be easily counted, and that this range (20 to zero) gave a regression line from which IC values were calculated, which were very close to those obtained by using the macroassay (where the range of colony numbers was from 100 to zero). The test did not give good results when the OD (instead of the colony count) was used as the endpoint, because, although a high coefficient of determination was obtained, the OD values ranged from 0.6 to zero and the IC values determined were not comparable to those obtained by manual counts. The use of the microassay dramatically reduces the quantity of methylcellulose needed, and permits hundreds of cultures to be processed in the same experiment, contributing to significant reductions in both the work involved and the cost. A further important benefit is a

  8. A role for granulocyte-macrophage colony-stimulating factor in the regulation of CD8{sup +} T cell responses to rabies virus

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Schnell, Matthias J., E-mail: matthias.schnell@jefferson.edu [Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jefferson Vaccine Center, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2012-05-10

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8{sup +} T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8{sup +} T cell response was significantly lower. This was partly likely due to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8{sup +} T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8{sup +} T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.

  9. Rapid transient expression of human granulocyte-macrophage colony-stimulating factor in two industrial cultivars of tobacco (Nicotiana tabacum L. by agroinfiltration

    Lea Vojta

    2015-09-01

    Full Text Available We report the production of hGM-CSF cytokine in leaves of industrial tobacco cultivars DH-17 and DH-27 by using Agrobacterium-mediated transient expression. We prove the concept that very high biomass industrial tobacco plants are suitable platforms for rapid, low cost production of foreign proteins. Successful transient expression of the GM-CSF was achieved in less than three months, opening the possibility for future applications of this approach in rapid response production of various proteins of non-plant origin in industrial tobacco.

  10. Granulocyte macrophage-colony stimulating factor (GM-CSF) and sucralfate in prevention of radiation-induced mucositis: a prospective randomized study

    Makkonen, Tuula A.; Minn, Heikki; Jekunen, Antti; Vilja, Pekka; Tuominen, Juhani; Joensuu, Heikki

    2000-01-01

    Purpose: To compare subcutaneously given molgramostim (GM-CSF) and sucralfate mouth washings to sucralfate mouth washings in prevention of radiation-induced mucositis. Methods and Materials: Forty head and neck cancer patients were randomly assigned to use either GM-CSF and sucralfate (n = 20) or sucralfate alone (n = 20) during radiotherapy. Sucralfate was used as 1.0 g mouth washing 6 times daily after the first 10 Gy of radiotherapy, and 150-300 μg GM-CSF was given subcutaneously. The grade of radiation mucositis and blood cell counts were monitored weekly. Salivary lactoferrin was measured as a surrogate marker for oral mucositis. Results: We found no significant difference between the molgramostim and the control groups in the oral mucositis grade, oral pain, use of analgesic drugs, weight loss, or survival. The median maximum neutrophil counts (median, 9.2 x 10 9 /L vs. 5.9 x 10 9 /L, p = 0.0005), eosinophil counts (median, 1.3 x 10 9 /L vs. 0.2 x 10 9 /L, p = 0.0004), and salivary lactoferrin concentrations were higher in patients who received GM-CSF. The most common toxicities in the GM-CSF plus sucralfate group were skin reactions at the GM-CSF injection site (65%), fever (30%), bone pain (25%), and nausea (15%), whereas the toxicity of sucralfate given alone was minimal. Conclusion: We found no evidence indicating that subcutaneously given GM-CSF reduces the severity of radiation-induced mucositis

  11. Efficacy and safety of granulocyte macrophage-colony stimulating factor (GM-CSF) on the frequency and severity of radiation mucositis in patients with head and neck carcinoma

    Kannan, V.; Bapsy, Poonamallee P.; Anantha, Naranappa; Doval, Dinesh Chandra; Vaithianathan, Hema; Banumathy, G.; Reddy, Krishnamurthy B.; Kumaraswamy, Saklaspur Veerappaiah; Shenoy, Ashok Mohan

    1997-01-01

    Purpose: Based on the clinical evidence of mucosal protection by GM-CSF during cytotoxic chemotherapy, a pilot study was undertaken to determine the safety and mucosal reaction of patients receiving GM-CSF while undergoing definitive conventional fractionated radiotherapy in head and neck carcinoma. Methods and Materials: Patients were considered eligible if buccal mucosa and oropharynx were included in the teleradiation field. Ten adult patients with squamous cell carcinoma of head and neck (buccal mucosa--8 and posterior (1(3)) tongue--2) were entered into the trial. Radiation therapy was delivered with telecobalt machine at conventional 2 Gy fraction and 5 fractions/week. The radiation portals consisted of two parallel opposing lateral fields. GM-CSF was given subcutaneously at a dose of 1 μg/kg body weight, daily, after 20 Gy until the completion of radiation therapy. Patients were evaluated daily for mucosal reaction, pain, and functional impairment. Results: The median radiation dose was 66 Gy. Eight patients received ≥60 Gy. The tolerance to GM-CSF was good. All 10 patients completed the planned daily dose of GM-CSF without interruption. Mucosal toxicity was Grade I in four patients till the completion of radiotherapy (dose range 50-66 Gy). Six patients developed Grade II reaction, fibrinous mucosal lesions of maximum size 1.0-1.5 cm, during radiotherapy. None developed Grade III mucositis. The maximum mucosal pain was Grade I during GM-CSF therapy. In two patients after starting GM-CSF the pain reduced in intensity. Functional impairment was mild to moderate. All patients were able to maintain adequate oral intake during the treatment period. Total regression of mucosal reaction occurred within 8 days following completion of radiotherapy. Conclusions: GM-CSF administration concurrently with conventional fractionated radiotherapy was feasible without significant toxicity. The acute side effects of radiotherapy namely mucositis, pain, and functional impairment were nil to minimal. The results are suggestive of mucosal protection by GM-CSF during radiotherapy and warrants further study in randomized double blind trial

  12. Interleukin-3/granulocyte macrophage colony-stimulating factor receptor promotes stem cell expansion, monocytosis, and atheroma macrophage burden in mice with hematopoietic ApoE deficiency

    Wang, Mi; Subramanian, Manikandan; Abramowicz, Sandra; Murphy, Andrew J.; Gonen, Ayelet; Witztum, Joseph; Welch, Carrie; Tabas, Ira; Westerterp, Marit; Tall, Alan R.

    2014-01-01

    Coronary heart disease is associated with monocytosis. Studies using animal models of monocytosis and atherosclerosis such as ApoE(-/-) mice have shown bone marrow (BM) hematopoietic stem and multipotential progenitor cell (HSPC) expansion, associated with increased cell surface expression of the

  13. Value of different modalities of granulocyte-macrophage colony-stimulating factor applied during or after induction therapy of acute myeloid leukemia

    Lowenberg, B; Boogaerts, MA; Daenen, SMGJ; Verhoef, GEG; Hagenbeek, A; Vellenga, E; Ossenkoppele, GJ; Huijgens, PC; Verdonck, LF; vanderLelie, J; Wielenga, JJ; Gmur, J; Gratwohl, A; Hess, U; Fey, MF; vanPutten, WLJ

    1997-01-01

    Purpose: The hematopoietic growth factors (HGFs) introduced into induction chemotherapy (CT) of acute myeloid leukemia (AML) might be of benefit to treatment outcome by at least two mechanisms. HGFs given on days simultaneously with CT might sensitize the leukemic cells and enhance their

  14. The Combination of Fosfomycin, Metronidazole, and Recombinant Human Granulocyte-Macrophage Colony-Stimulating Factor is Stable in vitro and Has Maintained Antibacterial Activity

    Fonnes, Siv; Holzknecht, Barbara Juliane; Gasbjerg, Lærke Smidt

    2017-01-01

    to the antibacterial effects of fosfomycin and metronidazole alone. CONCLUSION: The drug combination had neutral and stable pH, was iso-osmotic, and had stable concentrations during 24 h of storage. The antibacterial effect of fosfomycin and metronidazole were not altered when the drugs were mixed....

  15. Macrophage colony-stimulating factor, CSF-1, and its proto-oncogene-encoded receptor

    Sherr, C.J.; Rettenmier, C.W.; Roussel, M.F.

    1988-01-01

    The macrophage colony-stimulating factor, CSF-1, or M-CSF, is one of a family of hematopoietic growth factors that stimulates the proliferation of monocytes, macrophages, and their committed bone marrow progenitors. Unlike pluripotent hemopoietins such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3 or multi-CSF), which affect the growth of myeloid cells of several different hematopoietic lineages, CSF-1 acts only on cells of the mononuclear phagocyte series to stimulate their growth and enhance their survival. Retroviral transduction of the feline c-fms gene in the Susan McDonough and Hardy Zuckerman-5 (HZ-5) strains of feline sarcoma virus (FeSV) led to genetic alterations that endowed the recombined viral oncogene (v-fms) with the ability to transform cells in culture morphologically and to induce firbrosarcomas and hematopoietic neoplasms in susceptible animals. The v-fms oncogene product differs from the normal CSF-1 receptor in certain of its cardinal biochemical properties, most notably in exhibiting constitutively high basal levels of tyrosine kinase activity in the absence of its ligand. Comparative studies of the c-fms and v-fms genes coupled with analyses of engineered mutants and receptor chimeras have begun to pinpoint pertinent genetic alterations in the normal receptor gene that unmask its latent oncogenic potential. In addition, the availability of biologically active c-fms, v-fms, and CSF-1 cDNAs has allowed these genes to be mobilized and expressed in naive cells, thereby facilitating assays for receptor coupling with downstream components of the mitogenic pathway in diverse cell types

  16. Protective, restorative, and therapeutic properties of recombinant colony-stimulating factors

    Talmadge, J.E.; Tribble, H.; Pennington, R.; Bowersox, O.; Schneider, M.A.; Castelli, P.; Black, P.L.; Abe, F.

    1989-01-01

    Pretreatment of mice with recombinant murine (rM) colony-stimulating factor-granulocyte-macrophage (CSF-gm) or recombinant human (rH) CSF-g provides partial protection from the lethal effects of ionizing radiation or the alkylating agent cyclophosphamide (CTX). In addition, these agents can significantly prolong survival if administered following lethal doses of irradiation or CTX. To induce protective activity, cytokines were injected 20 hours before lethal irradiation or CTX administration. To accelerate recovery from lethal irradiation, the cytokines must be administered shortly following irradiation, and the induction of maximal levels of activity is dependent on chronic administration. In contrast, because of their longer half-lives, accelerated recovery from alkylating agents requires a delay of at least 24 to 48 hours to allow complete clearance of CTX before administration of a CSF. Studies quantitating peripheral blood leukocytes and bone marrow cellularity as well as colony-forming units per culture (CFU-C) frequency and CFU-C per femur revealed a significant correlation between these parameters and the ability to survive lethal irradiation

  17. Proteomic Analysis Reveals Distinct Metabolic Differences Between Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) and Macrophage Colony Stimulating Factor (M-CSF) Grown Macrophages Derived from Murine Bone Marrow Cells.

    Na, Yi Rang; Hong, Ji Hye; Lee, Min Yong; Jung, Jae Hun; Jung, Daun; Kim, Young Won; Son, Dain; Choi, Murim; Kim, Kwang Pyo; Seok, Seung Hyeok

    2015-10-01

    Macrophages are crucial in controlling infectious agents and tissue homeostasis. Macrophages require a wide range of functional capabilities in order to fulfill distinct roles in our body, one being rapid and robust immune responses. To gain insight into macrophage plasticity and the key regulatory protein networks governing their specific functions, we performed quantitative analyses of the proteome and phosphoproteome of murine primary GM-CSF and M-CSF grown bone marrow derived macrophages (GM-BMMs and M-BMMs, respectively) using the latest isobaric tag based tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Strikingly, metabolic processes emerged as a major difference between these macrophages. Specifically, GM-BMMs show significant enrichment of proteins involving glycolysis, the mevalonate pathway, and nitrogen compound biosynthesis. This evidence of enhanced glycolytic capability in GM-BMMs is particularly significant regarding their pro-inflammatory responses, because increased production of cytokines upon LPS stimulation in GM-BMMs depends on their acute glycolytic capacity. In contrast, M-BMMs up-regulate proteins involved in endocytosis, which correlates with a tendency toward homeostatic functions such as scavenging cellular debris. Together, our data describes a proteomic network that underlies the pro-inflammatory actions of GM-BMMs as well as the homeostatic functions of M-BMMs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis

    Behrens, Frank; Tak, Paul P; Ostergaard, Mikkel

    2015-01-01

    OBJECTIVES: To determine the safety, tolerability and signs of efficacy of MOR103, a human monoclonal antibody to granulocyte-macrophage colony-stimulating factor (GM-CSF), in patients with rheumatoid arthritis (RA). METHODS: Patients with active, moderate RA were enrolled in a randomised...... placebo and MOR103 0.3, 1.0 and 1.5 mg/kg, respectively). Treatment emergent adverse events (AEs) in the MOR103 groups were mild or moderate in intensity and generally reported at frequencies similar to those in the placebo group. The most common AE was nasopharyngitis. In two cases, AEs were classified...... with active RA. The data support further investigation of this monoclonal antibody to GM-CSF in RA patients and potentially in those with other immune-mediated inflammatory diseases. TRIAL REGISTRATION NUMBER: NCT01023256....

  19. A randomized case-controlled study of recombinant human granulocyte colony stimulating factor for the treatment of sepsis in preterm neutropenic infants.

    Aktaş, Doğukan; Demirel, Bilge; Gürsoy, Tuğba; Ovalı, Fahri

    2015-06-01

    To investigate the efficacy and safety of recombinant human granulocyte colony-stimulating factor, recombinant human granulocyte-macrophage colony-stimulating factor (rhG-CSF) to treat sepsis in neutropenic preterm infants. Fifty-six neutropenic preterm infants with suspected or culture-proven sepsis hospitalized in Zeynep Kamil Maternity and Children's Educational and Training Hospital, Kozyatağı/Istanbul, Turkey between January 2008 and January 2010 were enrolled. Patients were randomized either to receive rhG-CSF plus empirical antibiotics (Group I) or empirical antibiotics alone (Group II). Clinical features were recorded. Daily complete blood count was performed until neutropenia subsided. Data were analyzed using SPSS version 11.5. Thirty-three infants received rhG-CSF plus antibiotic treatment and 23 infants received antibiotic treatment. No drug-related adverse event was recorded. Absolute neutrophil count values were significantly higher on the 2(nd) study day and 3(rd) study day in Group I. Short-term mortality did not differ between the groups. Treatment with rhG-CSF resulted in a more rapid recovery of ANC in neutropenic preterm infants. However, no reduction in short-term mortality was documented. Copyright © 2014. Published by Elsevier B.V.

  20. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Sonali Singh

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF, on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1 and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human

  1. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Singh, Sonali; Barr, Helen; Liu, Yi-Chia; Robins, Adrian; Heeb, Stephan; Williams, Paul; Fogarty, Andrew; Cámara, Miguel; Martínez-Pomares, Luisa

    2015-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF) patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN)-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1) and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human macrophages

  2. Colony-stimulating factors for chemotherapy-induced febrile neutropenia.

    Mhaskar, Rahul; Clark, Otavio Augusto Camara; Lyman, Gary; Engel Ayer Botrel, Tobias; Morganti Paladini, Luciano; Djulbegovic, Benjamin

    2014-10-30

    Febrile neutropenia is a frequent adverse event experienced by people with cancer who are undergoing chemotherapy, and is a potentially life-threatening situation. The current treatment is supportive care plus antibiotics. Colony-stimulating factors (CSFs), such as granulocyte-CSF (G-CSF) and granulocyte-macrophage CSF (GM-CSF), are cytokines that stimulate and accelerate the production of one or more cell lines in the bone marrow. Clinical trials have addressed the question of whether the addition of a CSF to antibiotics could improve outcomes in individuals diagnosed with febrile neutropenia. However, the results of these trials are conflicting. To evaluate the safety and efficacy of adding G-CSF or GM-CSF to standard treatment (antibiotics) when treating chemotherapy-induced febrile neutropenia in individuals diagnosed with cancer. We conducted the search in March 2014 and covered the major electronic databases: the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, LILACS, and SCI. We contacted experts in hematology and oncology and also scanned the citations from the relevant articles. We searched for randomized controlled trials (RCTs) that compared CSF plus antibiotics versus antibiotics alone for the treatment of chemotherapy-induced febrile neutropenia in adults and children. We used the standard methodological procedures expected by The Cochrane Collaboration. We performed meta-analysis of the selected studies using Review Manager 5 software. Fourteen RCTs (15 comparisons) including a total of 1553 participants addressing the role of CSF plus antibiotics in febrile neutropenia were included. Overall mortality was not improved by the use of CSF plus antibiotics versus antibiotics alone (hazard ratio (HR) 0.74 (95% confidence interval (CI) 0.47 to 1.16) P = 0.19; 13 RCTs; 1335 participants; low quality evidence). A similar finding was seen for infection-related mortality (HR 0.75 (95% CI 0.47 to 1.20) P = 0.23; 10 RCTs; 897

  3. Colony stimulating factors and their clinical implication

    Asano, Shigetaka

    1989-01-01

    Granulocytes and macrophage are dependent for their production and/or functional activation in vitro on the presence of a family of glycoproteins. They are generally called colony-stimulating factors (CSFs) because of their capacity to stimulate colony formation in semi-solid cultures, and are currently classified into four distinct subtypes, that is, Multi-CSF, GM-CSF, G-CSF and M-CSF, according to the cell type of colonies formed under their stimulation or their target cell specificity. All of the murine and human CSF subtypes and the genes for them have become available in a purified form and in a large scale, and now allow us to investigate their interactions, the mechanisms for their actions, the cell-cell interactions leading to their production and secretion, and their actions in vivo. Furthermore, the preclinical and/or clinical studies which were carried out using the purified CSFs strongly indicate that human CSFs will be effective strategies for preventing and treating opportunistic bacterial and fungal infection as a major cause of death in granulocytopenic patients. (author)

  4. Granulocyte colony-stimulating factor and leukemogenesis

    Lorena Lobo de Figueiredo

    2004-01-01

    Full Text Available THE granulocyte colony-stimulating factor (G-CSF plays an important role in normal granulopoiesis. Its functions are mediated by specific receptors on the surface of responsive cells and, upon ligand binding, several cytoplasmic tyrosine kinases are activated. The cytoplasmic region proximal to the membrane of the G-CSF receptor (G-CSF-R transduces proliferative and survival signals, whereas the distal carboxy-terminal region transduces maturation signals and suppresses the receptor's proliferative signals. Mutations in the G-CSF-R gene resulting in truncation of the carboxy-terminal region have been detected in a subset of patients with severe congenital neutropenia who developed acute myelogenous leukemia (AML. In addition, the AML1-ETO fusion protein, expressed in leukemic cells harboring the t(8;21, disrupt the physiological function of transcription factors such as C/EBPα and C/EBPε, which in turn deregulate G-CSF-R expression. The resulting high levels of G-CSF-R and G-CSF-dependent cell proliferation may be associated with pathogenesis of AML with t(8;21. Moreover, in vitro and in vivo studies demonstrated that G-CSF may act as a co-stimulus augmenting the response of PML-RARα acute promyelocytic leukemia cells to all-trans-retinoic acid treatment. Finally, in the PLZF-RARα acute promyelocytic leukemia transgenic model, G-CSF deficiency suppressed leukemia development. Altogether, these data suggest that the G-CSF signaling pathway may play a role in leukemogenesis.

  5. Effect of colony-stimulating factor and conventional- or high-dose chemotherapy on FDG uptake in bone marrow

    Kazama, Toshiki; Swanston, Nancy; Podoloff, Donald A.; Macapinlac, Homer A.

    2005-01-01

    Granulocyte or granulocyte-macrophage colony stimulating factor (CSF), usually used in conjunction with chemotherapy, may interfere with the 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) reading. The purpose of this study is to evaluate the effects of CSF, conventional-or high-dose chemotherapy on bone marrow FDG uptake. Two hundred and forty-one FDG PET scans obtained in 163 patients with lymphoma and no pathologically and radiologically proven bone marrow involvement were analyzed. The standardized uptake value (SUV) of each patient's spine was measured. Among patients with no recent history of CSF use, the average SUV in 36 patients with no history of chemotherapy was 1.60±0.34, that in 49 patients with a history of conventional-dose chemotherapy was 1.37±0.32, and that in 12 patients with a history of high-dose chemotherapy was 1.26±0.25 (P=0.008 and 0.002, respectively by Mann-Whitney U test). In 80 patients treated with conventional-dose chemotherapy and CSF, the average SUV after discontinuation of CSF was as follows: 0-7 days, 2.37±1.19; 8-14 days: 2.04±0.67; 15-21 days: 1.87±0.52; 22-30 days: 1.59±0.18; 31-90 days: 1.54±0.36. In 45 patients treated with high-dose chemotherapy and CSF, no significant increase in bone marrow uptake was seen in most of them. Bone marrow FDG uptake may be increased by CSF treatment and may be decreased by chemotherapy. In patients treated with conventional-dose chemotherapy and CSF, increased marrow uptake will return to the pretreatment value approximately 1 month after discontinuation of CSF. (orig.)

  6. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A. [Academy of Sciences of the Czech Republic, Inst. of Biophysics, Brno (Czech Republic); Znojil, V.; Vacha, J. [Masaryk Univ., Medical Faculty, Brno (Czech Republic)

    1998-03-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of {sup 60}Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au) 43 refs.

  7. Granulocyte colony-stimulating factor and drugs elevating extracellular adenosine synergize to enhance haematopoietic reconstitution in irradiated mice

    Pospisil, M.; Hofer, M.; Netikova, J.; Hola, J.; Vacek, A.; Znojil, V.; Vacha, J.

    1998-01-01

    The activation of adenosine receptors has recently been demonstrated to stimulate haematopoiesis. In the present study, we investigated the ability of drugs elevating extracellular adenosine to influence curative effects of granulocyte colony-stimulating factor (G-CSF) in mice exposed to a sublethal dose of 4 Gy of 60 Co radiation. Elevation of extracellular adenosine in mice was induced by the combined administration of dipyridamole, a drug inhibiting the cellular uptake of adenosine, and adenosine monophosphate (AMP), an adenosine prodrug. The effects of dipyridamole plus AMP, and G-CSF, administered either alone or in combination, were evaluated. The drugs were injected to mice in a 4-d treatment regimen starting on d 3 after irradiation and the haematopoietic response was evaluated on d 7, 10, 14, 18 and 24 after irradiation. While the effects of G-CSF on the late maturation stages of blood cells, appearing shortly after the completion of the treatment, were not influenced by dipyridamole plus AMP, positive effects of the combination therapy occurred in the post-irradiation recovery phase which is dependent on the repopulation of haematopoietic stem cells. This was indicated by the significant elevation of counts of granulocyte-macrophage progenitor cells (GM-CFC) and granulocytic cells in the bone marrow (d 14), of GM-CFC (d 14), granulocytic and erythroid cells (d 14 and 18) in the spleen, and of neutrophils (d 18), monocytes (d 14 and 18) and platelets (d 18) in the peripheral blood. These effects suggest that the repopulation potential of the combination therapy lies in a common multi-lineage cell population. The results of this study implicate the promising possibility to enhance the curative effects of G-CSF under conditions of myelosuppressive state induced by radiation exposure. (au)

  8. SIZE FRACTIONS OF AMBIENT PARTICULATE MATTER INDUCE GRANULOCYTE MACROPHAGE COLONY-STIMULATING FACTOR IN HUMAN BRONCHIAL EPITHELIAL CELLS BY MITOGEN-ACTIVATED PROTEIN KINASE PATHWAYS. (R827351C004)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Tumor regression induced by intratumor therapy with a disabled infectious single cycle (DISC) herpes simplex virus (HSV) vector, DISC/HSV/murine granulocyte-macrophage colony-stimulating factor, correlates with antigen-specific adaptive immunity.

    Ali, Selman A; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Rojas, José M; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2002-04-01

    Direct intratumor injection of a disabled infectious single cycle HSV-2 virus encoding the murine GM-CSF gene (DISC/mGM-CSF) into established murine colon carcinoma CT26 tumors induced a significant delay in tumor growth and complete tumor regression in up to 70% of animals. Pre-existing immunity to HSV did not reduce the therapeutic efficacy of DISC/mGM-CSF, and, when administered in combination with syngeneic dendritic cells, further decreased tumor growth and increased the incidence of complete tumor regression. Direct intratumor injection of DISC/mGM-CSF also inhibited the growth of CT26 tumor cells implanted on the contralateral flank or seeded into the lungs following i.v. injection of tumor cells (experimental lung metastasis). Proliferation of splenocytes in response to Con A was impaired in progressor and tumor-bearer, but not regressor, mice. A potent tumor-specific CTL response was generated from splenocytes of all mice with regressing, but not progressing tumors following in vitro peptide stimulation; this response was specific for the gp70 AH-1 peptide SPSYVYHQF and correlated with IFN-gamma, but not IL-4 cytokine production. Depletion of CD8(+) T cells from regressor splenocytes before in vitro stimulation with the relevant peptide abolished their cytolytic activity, while depletion of CD4(+) T cells only partially inhibited CTL generation. Tumor regression induced by DISC/mGM-CSF virus immunotherapy provides a unique model for evaluating the immune mechanism(s) involved in tumor rejection, upon which tumor immunotherapy regimes may be based.

  10. Thermal sensitivity and thermally enhanced radiosensitivity of murine bone marrow granulocyte-macrophage colony-forming units (CFU-GM)

    Yoshida, Hiroshi

    1994-01-01

    This study was to evaluate thermal response of granulocyte-macrophage colony-forming unit (CFU-GM) in vitro and to investigate the difference of thermally enhanced radiosensitivity on cell survivals of CFU-GM between in vitro and in vivo. In in vitro heating exposure, bone marrow suspensions, obtained from mouse femora or tibiae, were incubated; and in vivo heating exposure, the lower half-body of mice were immersed in a circulating hot water bath. For irradiation schedules, cell suspensions were irradiated in vitro or in vivo (whole-body irradiation). Thermal sensitivity curve, obtained by in vivo heating exposure, showed a shoulder region at short exposures followed by an exponential decline during longer heating exposures. The Arrhenius curve showed a break at 42.3deg C and inactivation enthalpy was 1836 kJ/mol (438 kcal/mole) below the break point and 704 kJ/mole (168 kcal/mole) above the point. When bone marrow suspensions, obtained after either in vitro or in vivo irradiation, were heated in vitro at 42deg C for 60 min, supura-additive effect on cell survivals was observed by in vivo irradiation, but not observed by in vitro irradiation. Thermal enhancement ratio (TER), defined as D 0 of combined in vivo irradiation and in vitro heating divided by D 0 of the sole in vivo irradiation, was 1.12. In vivo heating following in vivo irradiation also showed supra-additive effect, giving TER of 1.66. These findings indicated that murine marrow CFU-GM is sensitive to hyperthermia and that thermal radiosensitization is never negligible when hyperthermia is employed with preceding X-irradiation. Thus, combined use of radiotherapy and hyperthermia may decrease bone marrow function. (N.K.)

  11. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice.

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Magni, Michele; Longoni, Paolo; Milanesi, Marco; Stucchi, Claudio; Cleris, Loredana; Formelli, Franca; Gianni, Massimo A

    2002-11-01

    Defibrotide is a polydeoxyribonucleotide, which significantly reduces the expression of adhesion molecules on endothelial cells. We investigated the activity of Defibrotide alone or in combination with recombinant human granulocyte colony-stimulating factor (rhG-CSF) to mobilize peripheral blood progenitor cells (PBPCs) in BALB/c mice. A 5-day treatment with Defibrotide alone (1-15 mg/mouse/day) had no effect on WBC counts, frequencies and absolute numbers of total circulating colony-forming cells (CFCs), i.e., granulocyte-macrophage colony-forming units, erythroid burst-forming units, and multilineage colony-forming units. As compared with mock-injected mice, administration of rhG-CSF alone (5 micro g/mouse/day) for 5 days significantly (P Defibrotide (15 mg/mouse/day) and rhG-CSF significantly (P Defibrotide plus rhG-CSF resulted in a significant increase (P Defibrotide/rhG-CSF-mobilized mononuclear cells rescued 43% and 71% of recipient mice, respectively. Experiments of CFC homing performed in lethally irradiated or nonirradiated recipients showed that marrow homing of transplanted PBPCs was reduced by 3-fold in Defibrotide-treated animals as compared with mock-injected mice (P Defibrotide might be because of an effect on PBPC trafficking. In conclusion, our data demonstrate that Defibrotide synergizes with rhG-CSF and significantly increases the mobilization of a broad spectrum of PBPCs, including primitive and committed progenitor cells. These data might have relevant implications for autologous and allogeneic anticancer therapy in humans.

  12. Proliferation-stimulating effect of colony stimulating factor 2 on porcine trophectoderm cells is mediated by activation of phosphatidylinositol 3-kinase and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase.

    Wooyoung Jeong

    Full Text Available Colony-stimulating factor 2 (CSF2, also known as granulocyte macrophage colony-stimulating factor, facilitates mammalian embryonic development and implantation. However, biological functions and regulatory mechanisms of action of porcine endometrial CSF2 in peri-implantation events have not been elucidated. The aim of present study was to determine changes in cellular activities induced by CSFs and to access CSF2-induced intracellular signaling in porcine primary trophectoderm (pTr cells. Differences in expression of CSF2 mRNA in endometrium from cyclic and pregnant gilts were evaluated. Endometrial CSF2 mRNA expression increases during the peri-implantation period, Days 10 to 14 of pregnancy, as compared to the estrous cycle. pTr cells obtained in Day 12 of pregnancy were cultured in the presence or absence of CSF2 (20 ng/ml and LY294002 (20 µM, U0126 (20 µM, rapamycin (20 nM, and SB203580 (20 µM. CSF2 in pTr cell culture medium at 20 ng/ml significantly induced phosphorylation of AKT1, ERK1/2, MTOR, p70RSK and RPS6 protein, but not STAT3 protein. Also, the PI3K specific inhibitor (LY294002 abolished CSF2-induced increases in p-ERK1/2 and p-MTOR proteins, as well as CSF2-induced phosphorylation of AKT1. Changes in proliferation and migration of pTr cells in response to CSF2 were examined in dose- and time-response experiments. CSF2 significantly stimulated pTr cell proliferation and, U0126, rapamycin and LY294002 blocked this CSF2-induced proliferation of pTr cells. Collectively, during the peri-implantation phase of pregnancy in pigs, endometrial CSF2 stimulates proliferation of trophectoderm cells by activation of the PI3K-and ERK1/2 MAPK-dependent MTOR signal transduction cascades.

  13. Granulocyte-colony stimulating factor for hematopoietic stem cell donation from healthy female donors during pregnancy and lactation: what do we know?

    Pessach, Ilias; Shimoni, Avichai; Nagler, Arnon

    2013-01-01

    BACKGROUND Hematopoietic growth factors (HGFs) are mostly used as supportive measures to reduce infectious complications associated with neutropenia. Over the past decade, the use of HGFs became a common method for mobilizing human CD34+ stem cells, either for autologous or allogeneic transplantation. However, since their introduction the long-term safety of the procedure has become a major focus of discussion and research. Most information refers to healthy normal donors and data concerning pregnant and lactating women are scarce. The clinical question, which is the core of this review, is whether stem cell donation, preceded by administration of granulocyte-colony stimulating factor (G-CSF) for mobilization, is a safe procedure for pregnant donors. METHODS Literature searches were performed in Pubmed for English language articles published before the end of May 2012, focusing on G-CSF administration during pregnancy, lactation and hematopoietic stem cell donation. Searches included animal and human studies. RESULTS Data from animals (n = 15 studies) and women (n = 46 studies) indicate that G-CSF crosses the placenta, stimulates fetal granulopoiesis, improves neonatal survival mostly for very immature infants, promotes trophoblast growth and placental metabolism and has an anti-abortive role. Granulocyte macrophage-CSF is a key cytokine in the maternal immune tolerance towards the implanted embryo and exerts protective long-term programming effects to preimplantation embryos. The available data suggest that probably CSFs should not be administered during the time of most active organogenesis (first trimester), except perhaps for the first week during which implantation takes place. Provided CSF is administered during the second and third trimesters, it appears to be safe, and pregnant women receiving the CSF treatment can become hematopoietic stem cell donors. There are also risks related to the anesthesia, which is required for the bone marrow aspiration. During

  14. Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-01-01

    Roč. 19, č. 4 (2014), s. 4770-4778 ISSN 1420-3049 R&D Projects: GA ČR(CZ) GAP303/11/0128 Institutional support: RVO:68081707 Keywords : granulocyte colony-stimulating factor * radiation accident s * acute radiation syndrome Subject RIV: BO - Biophysics Impact factor: 2.416, year: 2014

  15. Selective binding and oligomerization of the murine granulocyte colony-stimulating factor receptor by a low molecular weight, nonpeptidyl ligand.

    Doyle, Michael L; Tian, Shin-Shay; Miller, Stephen G; Kessler, Linda; Baker, Audrey E; Brigham-Burke, Michael R; Dillon, Susan B; Duffy, Kevin J; Keenan, Richard M; Lehr, Ruth; Rosen, Jon; Schneeweis, Lumelle A; Trill, John; Young, Peter R; Luengo, Juan I; Lamb, Peter

    2003-03-14

    Granulocyte colony-stimulating factor regulates neutrophil production by binding to a specific receptor, the granulocyte colony-stimulating factor receptor, expressed on cells of the granulocytic lineage. Recombinant forms of granulocyte colony-stimulating factor are used clinically to treat neutropenias. As part of an effort to develop granulocyte colony-stimulating factor mimics with the potential for oral bioavailability, we previously identified a nonpeptidyl small molecule (SB-247464) that selectively activates murine granulocyte colony-stimulating factor signal transduction pathways and promotes neutrophil formation in vivo. To elucidate the mechanism of action of SB-247464, a series of cell-based and biochemical assays were performed. The activity of SB-247464 is strictly dependent on the presence of zinc ions. Titration microcalorimetry experiments using a soluble murine granulocyte colony-stimulating factor receptor construct show that SB-247464 binds to the extracellular domain of the receptor in a zinc ion-dependent manner. Analytical ultracentrifugation studies demonstrate that SB-247464 induces self-association of the N-terminal three-domain fragment in a manner that is consistent with dimerization. SB-247464 induces internalization of granulocyte colony-stimulating factor receptor on intact cells, consistent with a mechanism involving receptor oligomerization. These data show that small nonpeptidyl compounds are capable of selectively binding and inducing productive oligomerization of cytokine receptors.

  16. Human Granulocyte Colony-Stimulating Factor (hG-CSF) Expression in Plastids of Lactuca sativa

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Background: Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. Methods: hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA ter...

  17. The Granulocyte-colony stimulating factor has a dual role in neuronal and vascular plasticity

    Stephanie eWallner

    2015-08-01

    Full Text Available Granulocyte-colony stimulating factor (G-CSF is a growth factor that has originally been identified several decades ago as a hematopoietic factor required mainly for the generation of neutrophilic granulocytes, and is in clinical use for that. More recently, it has been discovered that G-CSF also plays a role in the brain as a growth factor for neurons and neural stem cells, and as a factor involved in the plasticity of the vasculature. We review and discuss these dual properties in view of the neuroregenerative potential of this growth factor.

  18. Recombinant granulocyte colony-stimulating factor administered enterally to neonates is not absorbed.

    Calhoun, Darlene A; Maheshwari, Akhil; Christensen, Robert D

    2003-08-01

    Granulocyte colony-stimulating factor (G-CSF) is present in liquids swallowed by the fetus and neonate; specifically, amniotic fluid, colostrum, and human milk. The swallowed G-CSF has local effects on enteric cells, which express the G-CSF receptor. However, some portion of the G-CSF ingested by the fetus and neonate might be absorbed into the circulation and have systemic actions, such as stimulating neutrophil production. To assess this possibility we sought to determine if circulating G-CSF concentrations of neonates increase after enteral administration of recombinant human granulocyte colony-stimulating factor (rhG-CSF). This was a single-center, prospective, blinded, randomized, 2 x 2 crossover study, with each infant receiving 1 dose of rhG-CSF (100 microg/kg) and 1 dose of placebo. Plasma G-CSF concentrations were measured at 2 and 4 hours after administration of the test solution. No significant change in plasma G-CSF concentration was observed after the enteral administration of rhG-CSF. On this basis, we conclude that orally administered rhG-CSF is not absorbed in significant quantities, and we speculate that the G-CSF swallowed by the fetus and neonate has local but not systemic effects.

  19. Highly Expressed Granulocyte Colony-Stimulating Factor (G-CSF) and Granulocyte Colony-Stimulating Factor Receptor (G-CSFR) in Human Gastric Cancer Leads to Poor Survival.

    Fan, Zhisong; Li, Yong; Zhao, Qun; Fan, Liqiao; Tan, Bibo; Zuo, Jing; Hua, Kelei; Ji, Qiang

    2018-03-23

    BACKGROUND Chemotherapy for advanced gastric cancer (GC) patients has been the mainstay of therapy for many years. Although adding anti-angiogenic drugs to chemotherapy improves patient survival slightly, identifying anti-angiogenic therapy-sensitive patients remains challenging for oncologists. Granulocyte colony-stimulating factor (G-CSF) promotes tumor growth and angiogenesis, which can be minimized with the anti-G-CSF antibody. Thus, G-CSF might be a potential tumor marker. However, the effects of G-CSF and G-CSFR expression on GC patient survival remain unclear. MATERIAL AND METHODS Seventy GC tissue samples were collected for G-CSF and G-CSFR detection by immunohistochemistry. A total of 40 paired GC tissues and matched adjacent mucosa were used to measure the G-CSF and G-CSFR levels by ELISA. Correlations between G-CSF/G-CSFR and clinical characteristics, VEGF-A levels and overall survival were analyzed. Biological function and underlying mechanistic investigations were carried out using SGC7901 cell lines, and the effects of G-CSF on tumor proliferation, migration, and tube formation were examined. RESULTS The levels of G-CSFR were upregulated in GC tissues compared to normal mucosa tissues. Higher G-CSF expression was associated with later tumor stages and higher tumor VEGF-A and serum CA724 levels, whereas higher G-CSFR expression was associated with lymph node metastasis. Patients with higher G-CSF expression had shorter overall survival times. In vitro, G-CSF stimulated SGC7901 proliferation and migration through the JAK2/STAT3 pathway and accelerated HUVEC tube formation. CONCLUSIONS These data suggest that increased G-CSF and G-CSFR in tumors leads to unfavorable outcomes for GC patients by stimulating tumor proliferation, migration, and angiogenesis, indicating that these factors are potential tumor targets for cancer treatment.

  20. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening.

    Kumar, Deepak; Moore, Robert M; Mercer, Brian M; Mansour, Joseph M; Mesiano, Sam; Schatz, Frederick; Lockwood, Charles J; Moore, John J

    2017-12-01

    factor and the fetal membrane fragments were rupture strength tested. Tumor necrosis factor-alpha and thrombin both weakened fetal membranes (43% and 62%, respectively) and increased granulocyte-macrophage colony-stimulating factor levels (3.7- and 5.9-fold, respectively). Pretreatment with 17-alpha hydroxyprogesterone caproate inhibited both tumor necrosis factor-alpha- and thrombin-induced fetal membrane weakening and concomitantly inhibited the induced increase in granulocyte-macrophage colony-stimulating factor in a concentration-dependent manner. However, contrary to our prior reports regarding progesterone and other progestogens, 17-alpha hydroxyprogesterone caproate did not also inhibit granulocyte-macrophage colony-stimulating factor-induced fetal membrane weakening. 17-Alpha hydroxyprogesterone caproate blocks tumor necrosis factor-alpha- and thrombin-induced fetal membrane weakening by inhibiting the production of granulocyte-macrophage colony-stimulating factor. However, 17-alpha hydroxyprogesterone caproate did not also inhibit granulocyte-macrophage colony-stimulating factor-induced weakening. We speculate that progestogens other than 17-alpha hydroxyprogesterone caproate may be more efficacious in preventing preterm premature rupture of the fetal membranes-related spontaneous preterm birth. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Structural insights into the backbone-circularized granulocyte colony-stimulating factor containing a short connector.

    Miyafusa, Takamitsu; Shibuya, Risa; Honda, Shinya

    2018-06-02

    Backbone circularization is a powerful approach for enhancing the structural stability of polypeptides. Herein, we present the crystal structure of the circularized variant of the granulocyte colony-stimulating factor (G-CSF) in which the terminal helical region was circularized using a short, two-amino acid connector. The structure revealed that the N- and C-termini were indeed connected by a peptide bond. The local structure of the C-terminal region transited from an α helix to 3 10 helix with a bend close to the N-terminal region, indicating that the structural change offset the insufficient length of the connector. This is the first-ever report of a crystal structure of the backbone of a circularized protein. It will facilitate the development of backbone circularization methodology. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Increased macrophage colony-stimulating factor levels in patients with Graves' disease.

    Morishita, Eriko; Sekiya, Akiko; Hayashi, Tomoe; Kadohira, Yasuko; Maekawa, Mio; Yamazaki, Masahide; Asakura, Hidesaku; Nakao, Shinji; Ohtake, Shigeki

    2008-10-01

    Previous studies have found markedly elevated serum concentrations of proinflammatory cytokines in patients with Graves' disease (GD). We investigated the role of macrophage colony-stimulating factor (M-CSF) in GD. We assayed concentrations of M-CSF in sera from 32 patients with GD (25 untreated; 7 receiving thiamazole therapy). We also studied 32 age-matched healthy subjects as controls. Relationships between serum M-CSF and both thyroid state and serum lipids were examined. Moreover, to examine the effect of thyroid hormone alone on serum M-CSF, T3 was administered orally to normal subjects. Serum concentrations of M-CSF in GD patients who were hyperthyroid were significantly increased compared with GD patients who were euthyroid (P oral T3 administered to 15 volunteers for 7 days produced significant increases in serum levels of M-CSF (P production of M-CSF in patients with GD.

  3. Recent Advances of Colony-Stimulating Factor-1 Receptor (CSF-1R) Kinase and Its Inhibitors.

    El-Gamal, Mohammed I; Al-Ameen, Shahad K; Al-Koumi, Dania M; Hamad, Mawadda G; Jalal, Nouran A; Oh, Chang-Hyun

    2018-01-17

    Colony stimulation factor-1 receptor (CSF-1R), which is also known as FMS kinase, plays an important role in initiating inflammatory, cancer, and bone disorders when it is overstimulated by its ligand, CSF-1. Innate immunity, as well as macrophage differentiation and survival, are regulated by the stimulation of the CSF-1R. Another ligand, interlukin-34 (IL-34), was recently reported to activate the CSF-1R receptor in a different manner. The relationship between CSF-1R and microglia has been reviewed. Both CSF-1 antibodies and small molecule CSF-1R kinase inhibitors have now been tested in animal models and in humans. In this Perspective, we discuss the role of CSF-1 and IL-34 in producing cancer, bone disorders, and inflammation. We also review the newly discovered and improved small molecule kinase inhibitors and monoclonal antibodies that have shown potent activity toward CSF-1R, reported from 2012 until 2017.

  4. Hematologic improvement in dogs with parvovirus infection treated with recombinant canine granulocyte-colony stimulating factor.

    Duffy, A; Dow, S; Ogilvie, G; Rao, S; Hackett, T

    2010-08-01

    Previously, dogs with canine parvovirus-induced neutropenia have not responded to treatment with recombinant human granulocyte-colony stimulating factor (rhG-CSF). However, recombinant canine G-CSF (rcG-CSF) has not been previously evaluated for treatment of parvovirus-induced neutropenia in dogs. We assessed the effectiveness of rcG-CSF in dogs with parvovirus-induced neutropenia with a prospective, open-label, nonrandomized clinical trial. Endpoints of our study were time to recovery of WBC and neutrophil counts, and duration of hospitalization. 28 dogs with parvovirus and neutropenia were treated with rcG-CSF and outcomes were compared to those of 34 dogs with parvovirus and neutropenia not treated with rcG-CSF. We found that mean WBC and neutrophil counts were significantly higher (P parvovirus infection, but indicate the need for additional studies to evaluate overall safety of the treatment.

  5. Granulocyte Colony-Stimulating Factor in the Treatment of Acute Radiation Syndrome: A Concise Review

    Michal Hofer

    2014-04-01

    Full Text Available This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF, in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  6. Granulocyte colony-stimulating factor protects mice during respiratory virus infections.

    Tamar Hermesh

    Full Text Available A burst in the production of pro-inflammatory molecules characterizes the beginning of the host response to infection. Cytokines, chemokines, and growth factors work in concert to control pathogen replication and activate innate and adaptive immune responses. Granulocyte colony-stimulating factor (G-CSF mobilizes and activates hematopoietic cells from the bone marrow, and it has been shown to mediate the generation of effective immunity against bacterial and fungal infections. G-CSF is produced at high levels in the lungs during infection with influenza and parainfluenza viruses, but its role during these infections is unknown. Here we show that during infection of mice with a non-lethal dose of influenza or Sendai virus, G-CSF promotes the accumulation of activated Ly6G+ granulocytes that control the extent of the lung pro-inflammatory response. Remarkably, these G-CSF-mediated effects facilitate viral clearance and sustain mouse survival.

  7. Tissue localization and fate in mice of injected multipotential colony-stimulating factor

    Metcalf, D.; Nicola, N.A.

    1988-01-01

    The hemopoietic regulator multipotential colony-stimulating factor [Multi-CSF (interleukin 3)] has proliferative effects on a wide range of hemopoietic cells in vitro and in vivo. Native or recombination Multi-CSF injected intravenoulsy into adult mice had an initial half-life of 3-5 min and a second phase of 50 min. Clear labeling of hemopoietic cells was observed in the bone marrow and spleen of mice injected intravenously with recombinant 125 I-labeled Multi-CSF showing that injected Multi-CSF can obtain access to such cells in situ. A high proportion of injected 125 I-labeled Multi-CSF of both types became localized in the liver and in the kidney (in cells of the Bowman's capsule and proximal renal tubules). The kidney appeared to be an active site of degradation of Multi-CSF with the early appearance of low molecular weight labeled material in the urine

  8. The effect of long-term treatment with granulocyte colony-stimulating factor on hematopoiesis in HIV-infected individuals

    Nielsen, S D; Sørensen, T U; Aladdin, H

    2000-01-01

    This randomized, placebo-controlled trial examine the long-term effect of granulocyte colony-stimulating factor (G-CSF) on absolute numbers of CD34+ progenitor cells and progenitor cell function in human immunodeficiency virus (HIV)-infected patients. G-CSF (300 microg filgrastim) or placebo was ...

  9. Aggressive cutaneous vasculitis in a patient with chronic lymphatic leukemia following granulocyte colony stimulating factor injection: a case report

    El Husseiny Noha M

    2011-03-01

    Full Text Available Abstract Introduction Vasculitis has been reported in a few cases of chronic lymphatic leukemia and with granulocytic colony-stimulating factor therapy. Those with granulocytic colony-stimulating factor occurred after prolonged therapy and there was a rise in total leukocyte count unlike that in our patient who received just a single injection for the first time. Case presentation We report the case of a 64-year-old Egyptian man with chronic lymphatic leukemia who developed progressive cutaneous vasculitic lesions following injection of a single dose of a granulocytic colony stimulating factor before a third cycle of chemotherapy to improve neutropenia. This is an unusual case and the pathogenesis is not fully understood. Our patient was not on any medical treatment except for bisoprolol for ischemic heart disease. Although aggressive management with steroids, anticoagulation and plasmapheresis had been carried out, the condition was aggressive and the patient's consciousness deteriorated. A magnetic resonance imaging scan of his brain revealed multiple ischemic foci that could be attributed to vasculitis of the brain. Conclusion The aim of this case report is to highlight the importance of monitoring patients on granulocytic colony-stimulating factor therapy, especially in the context of other conditions (such as a hematological malignancy that may lead to an adverse outcome.

  10. CHOP compared with CHOP plus granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin's lymphoma

    Doorduijn, JK; van der Holt, B; van Imhoff, GW; van der Hem, KG; Kramer, MHH; van Oers, MHJ; Ossenkoppele, GJ; Verdonck, LF; Verhoef, GEG; Steijaert, MMC; Buijt, I.; Uyl-de Groot, CA; van Agthoven, M; Mulder, AH; Sonneveld, P; Schaafsma, M.

    2003-01-01

    Purpose : To investigate whether the relative close-intensity of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy could be improved by prophylactic administration of granulocyte colony-stimulating factor (G-CSF) in elderly patients with aggressive non-Hodgkin's lymphoma

  11. CHOP compared with CHOP plus granulocyte colony-stimulating factor in elderly patients with aggressive non-Hodgkin's lymphoma

    Doorduijn, J. K.; van der Holt, B.; van Imhoff, G. W.; van der Hem, K. G.; Kramer, M. H. H.; van Oers, M. H. J.; Ossenkoppele, G. J.; Schaafsma, M. R.; Verdonck, L. F.; Verhoef, G. E. G.; Steijaert, M. M. C.; Buijt, I.; Uyl-de Groot, C. A.; van Agthoven, M.; Mulder, A. H.; Sonneveld, P.

    2003-01-01

    PURPOSE: To investigate whether the relative dose-intensity of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy could be improved by prophylactic administration of granulocyte colony-stimulating factor (G-CSF) in elderly patients with aggressive non-Hodgkin's lymphoma

  12. Recombinant human granulocyte colony-stimulating factor (rhG-CSF; filgrastim) treatment of clozapine-induced agranulocytosis

    Nielsen, H

    1993-01-01

    After 10 weeks of treatment with clozapine, severe agranulocytosis was diagnosed in a 33-year-old female. The patient was treated with filgrastim (granulocyte colony-stimulating factor [G-CSF]) 5 micrograms kg-1 day-1. The neutrophil count was 0.234 x 10(9) l-1 on admission, with a further decrease...

  13. Stem cell mobilization by granulocyte colony-stimulating factor for myocardial recovery after acute myocardial infarction: a meta-analysis

    Zohlnhofer, D.; Dibra, A.; Koppara, T.

    2008-01-01

    OBJECTIVES: The objective of this meta-analysis was to evaluate the effect of stem cell mobilization by granulocyte colony-stimulating factor (G-CSF) on myocardial regeneration on the basis of a synthesis of the data generated by randomized, controlled clinical trials of G-CSF after acute...

  14. Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease.

    Powell, Tiffany M; Paul, Jonathan D; Hill, Jonathan M; Thompson, Michael; Benjamin, Moshe; Rodrigo, Maria; McCoy, J Philip; Read, Elizabeth J; Khuu, Hanh M; Leitman, Susan F; Finkel, Toren; Cannon, Richard O

    2005-02-01

    Endothelial progenitor cells (EPCs) that may repair vascular injury are reduced in patients with coronary artery disease (CAD). We reasoned that EPC number and function may be increased by granulocyte colony-stimulating factor (G-CSF) used to mobilize hematopoietic progenitor cells in healthy donors. Sixteen CAD patients had reduced CD34(+)/CD133(+) (0.0224+/-0.0063% versus 0.121+/-0.038% mononuclear cells [MNCs], P<0.01) and CD133(+)/VEGFR-2(+) cells, consistent with EPC phenotype (0.00033+/-0.00015% versus 0.0017+/-0.0006% MNCs, P<0.01), compared with 7 healthy controls. Patients also had fewer clusters of cells in culture, with out-growth consistent with mature endothelial phenotype (2+/-1/well) compared with 16 healthy subjects at high risk (13+/-4/well, P<0.05) or 14 at low risk (22+/-3/well, P<0.001) for CAD. G-CSF 10 microg/kg per day for 5 days increased CD34(+)/CD133(+) cells from 0.5+/-0.2/microL to 59.5+/-10.6/microL and CD133(+)/ VEGFR-2(+) cells from 0.007+/-0.004/microL to 1.9+/-0.6/microL (both P<0.001). Also increased were CD133(+) cells that coexpressed the homing receptor CXCR4 (30.4+/-8.3/microL, P<0.05). Endothelial cell-forming clusters in 10 patients increased to 27+/-9/well after treatment (P<0.05), with a decline to 9+/-4/well at 2 weeks (P=0.06). Despite reduced EPCs compared with healthy controls, patients with CAD respond to G-CSF with increases in EPC number and homing receptor expression in the circulation and endothelial out-growth in culture. Endothelial progenitor cells (EPCs) are reduced in coronary artery disease. Granulocyte colony-stimulating factor (CSF) administered to patients increased: (1) CD133+/VEGFR-2+ cells consistent with EPC phenotype; (2) CD133+ cells coexpressing the chemokine receptor CXCR4, important for homing of EPCs to ischemic tissue; and (3) endothelial cell-forming clusters in culture. Whether EPCs mobilized into the circulation will be useful for the purpose of initiating vascular growth and myocyte repair

  15. Long-active granulocyte colony-stimulating factor for peripheral blood hematopoietic progenitor cell mobilization.

    Martino, Massimo; Laszlo, Daniele; Lanza, Francesco

    2014-06-01

    Peg-filgrastim (PEG-FIL), a polyethylene glycol-conjugated form of granulocyte colony-stimulating factor (G-CSF), has been introduced in clinical practice and is effective in shortening the time of neutropenia after cytotoxic chemotherapy. G-CSF has emerged as the preferred cytokine for hematopoietic progenitor cells' (HPC) mobilization. Nevertheless, data on the ability of PEG-FIL in this field have been published. We review publications in the field with the goal of providing an overview of this approach. PEG-FIL may be able to mobilize CD34(+) cells in a more timely fashion than G-CSF, with the advantages of only a single-dose administration, an earlier start and a reduction in the number of apheresis procedures. The main controversies concern the dosage of the drug and the optimal dose. In the context of chemo-mobilization, a single dose of 6 mg PEG-FIL seems effective in terms of HPC's mobilization and there is no increase in this effect if the dose is doubled to 12 mg. Steady-state mobilization requires higher doses of PEG-FIL and this approach is not cost-effective when compared with G-CSF. The experiences with PEG-FIL in the healthy donor setting are very limited.

  16. Human granulocyte colony-stimulating factor (hG-CSF) expression in plastids of Lactuca sativa.

    Sharifi Tabar, Mehdi; Habashi, Ali Akbar; Rajabi Memari, Hamid

    2013-01-01

    Human granulocyte colony-stimulating factor (hG-CSF) can serve as valuable biopharmaceutical for research and treatment of the human blood cancer. Transplastomic plants have been emerged as a new and high potential candidate for production of recombinant biopharmaceutical proteins in comparison with transgenic plants due to extremely high level expression, biosafety and many other advantages. hG-CSF gene was cloned into pCL vector between prrn16S promoter and TpsbA terminator. The recombinant vector was coated on nanogold particles and transformed to lettuce chloroplasts through biolistic method. Callogenesis and regeneration of cotyledonary explants were obtained by Murashige and Skoog media containing 6-benzylaminopurine and 1-naphthaleneacetic acid hormones. The presence of hG-CSF gene in plastome was studied with four specific PCR primers and expression by Western immunoblotting. hG-CSF gene cloning was confirmed by digestion and sequencing. Transplastomic lettuce lines were regenerated and subjected to molecular analysis. The presence of hG-CSF in plastome was confirmed by PCR using specific primers designed from the plastid genome. Western immunoblotting of extracted protein from transplastomic plants showed a 20-kDa band, which verified the expression of recombinant protein in lettuce chloroplasts. This study is the first report that successfully express hG-CSF gene in lettuce chloroplast. The lettuce plastome can provide a cheap and safe expression platform for producing valuable biopharmaceuticals for research and treatment.

  17. Granulocyte-colony stimulating factor controls neural and behavioral plasticity in response to cocaine.

    Calipari, Erin S; Godino, Arthur; Peck, Emily G; Salery, Marine; Mervosh, Nicholas L; Landry, Joseph A; Russo, Scott J; Hurd, Yasmin L; Nestler, Eric J; Kiraly, Drew D

    2018-01-16

    Cocaine addiction is characterized by dysfunction in reward-related brain circuits, leading to maladaptive motivation to seek and take the drug. There are currently no clinically available pharmacotherapies to treat cocaine addiction. Through a broad screen of innate immune mediators, we identify granulocyte-colony stimulating factor (G-CSF) as a potent mediator of cocaine-induced adaptations. Here we report that G-CSF potentiates cocaine-induced increases in neural activity in the nucleus accumbens (NAc) and prefrontal cortex. In addition, G-CSF injections potentiate cocaine place preference and enhance motivation to self-administer cocaine, while not affecting responses to natural rewards. Infusion of G-CSF neutralizing antibody into NAc blocks the ability of G-CSF to modulate cocaine's behavioral effects, providing a direct link between central G-CSF action in NAc and cocaine reward. These results demonstrate that manipulating G-CSF is sufficient to alter the motivation for cocaine, but not natural rewards, providing a pharmacotherapeutic avenue to manipulate addictive behaviors without abuse potential.

  18. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi

    2000-01-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 μg/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  19. Expression of granulocyte colony-stimulating factor receptor correlates with prognosis in oral and mesopharyngeal carcinoma.

    Tsuzuki, H; Fujieda, S; Sunaga, H; Noda, I; Saito, H

    1998-02-15

    Granulocyte colony-stimulating factor receptors (G-CSFRs) have been observed on the surface of not only hematopoietic cells but also several cancer cells. The stimulation of G-CSF has been demonstrated to induce proliferation and activation of G-CSFR-positive cells. In this study, we investigated the expression of G-CSFR on the surface of tumor cells and G-CSF production in oral and mesopharyngeal squamous cell carcinoma (SCC) by an immunohistochemical approach. Of 58 oral and mesopharyngeal SCCs, 31 cases (53.4%) and 36 cases (62.1%) were positive for G-CSFR and G-CSF, respectively. There was no association between G-CSFR expression and G-CSF staining. In the group positive for G-CSFR expression, relapse was significantly more likely after primary treatment (P = 0.0069), whereas there was no association between G-CSFR expression and age, sex, tumor size, lymph node metastasis, and clinical stage. Also, the G-CSFR-positive groups had a significantly lower disease-free and overall survival rate than the G-CSFR-negative groups (P = 0.0172 and 0.0188, respectively). However, none of the clinical markers correlated significantly with G-CSF staining, nor did the status of G-CSF production influence the overall survival. The results imply that assessment of G-CSFR may prove valuable in selecting patients with oral and mesopharyngeal SCC for aggressive therapy.

  20. Fluorine-18 fluorodeoxyglucose splenic uptake from extramedullary hematopoiesis after granulocyte colony-stimulating factor stimulation.

    Abdel-Dayem, H M; Rosen, G; El-Zeftawy, H; Naddaf, S; Kumar, M; Atay, S; Cacavio, A

    1999-05-01

    Two patients with sarcoma, one with recurrent osteosarcoma of the spine and the other with metastatic synovial cell sarcoma, were treated with high-dose chemotherapy that produced severe leukopenia. The patients received granulocyte colony-stimulating factor (G-CSF) to stimulate the bone marrow (480 mg given subcutaneously twice daily for 5 to 7 days); their responses were seen as a marked increase in peripheral leukocyte count with no change in the erythrocyte or platelet counts. The patients had fluorine-18 fluorodeoxyglucose (F-18 FDG) imaging 24 hours after the end of G-CSF treatment. Diffusely increased uptake of F-18 FDG was seen in the bone marrow in both patients. In addition, markedly increased uptake in the spleen was noted in both, indicating that the spleen was the site of extramedullary hematopoiesis. The patients had no evidence of splenic metastases. The first patient had a history of irradiation to the dorsal spine, which was less responsive to G-CSF administration than was the nonirradiated lumbar spine.

  1. Structural analysis of the receptors for granulocyte colony-stimulating factor on neutrophils

    Hanazono, Y.; Hosoi, T.; Kuwaki, T.; Matsuki, S.; Miyazono, K.; Miyagawa, K.; Takaku, F.

    1990-01-01

    We investigated granulocyte colony-stimulating factor (G-CSF) receptors on neutrophils from three patients with chronic myelogenous leukemia (CML) in the chronic phase, in comparison with four normal volunteers. Because we experienced some difficulties in radioiodinating intact recombinant human G-CSF, we developed a new derivative of human G-CSF termed YPY-G-CSF. It was easy to iodinate this protein using the lactoperoxidase method because of two additional tyrosine residues, and its radioactivity was higher than that previously reported. The biological activity of YPY-G-CSF as G-CSF was fully retained. Scatchard analysis demonstrated that CML neutrophils had a single class of binding sites (1400 +/- 685/cell) with a dissociation constant (Kd) of 245 +/- 66 pM. The number of sites and Kd value of CML neutrophils were not significantly different from those of normal neutrophils (p greater than 0.9). Cross-linking studies revealed two specifically labeled bands of [125I]YPY-G-CSF-receptor complexes with apparent molecular masses of 160 and 110 kd on both normal and CML neutrophils. This is the first report describing two receptor proteins on neutrophils. According to the analyses of the proteolytic process of these cross-linked complexes and proteolytic mapping, we assume that alternative splicing or processing from a single gene may generate two distinct receptor proteins that bind specifically to G-CSF but have different fates in intracellular metabolism

  2. Colony-stimulating factor (CSF) radioimmunoassay: detection of a CSF subclass stimulating macrophage production

    Stanley, E.R.

    1979-01-01

    Colony-stimulating factors (CSFs) stimulate the differentiation of immature precursor cells to mature granulocytes and macrophages. Purified 125 I-labeled murine L cell CSF has been used to develop a radioimmunoassay (RIA) that detects a subclass of CSFs that stimulates macrophage production. Murine CSF preparations that contain this subclass of CSF compete for all of the CSF binding sites on anti-L cell CSF antibody. With the exception of mouse serum, which can contain inhibitors of the bioassay, there is complete correspondence between activities determined by RIA and those determined by bioassay. The RIA is slightly more sensitive than the bioassay, detecting approximately 0.3 fmol of purified L cell CSF. It can also detect this subclass of CSF in chickens, rats, and humans. In the mouse, the subclass is distinguished from other CSFs by a murine cell bioassay dose-response curve in which 90% of the response occurs over a 10-fold (rather than a 100-fold) increase in concentration, by stimulating the formations of colonies contaning a high proportion of mononuclear (rather than granulocytic) cells, and by certain physical characteristics

  3. Radioprotective effect of colony-stimulating factor on mice irradiated with 60Co γ-rays

    Zhang Junning; Wang Tao; Xu Changshao; Wang Hongyun

    1995-01-01

    Adult male mice were irradiated with γ-rays 6 Gy once or 3 Gy three times in 7 days and intraperitoneally injected with colony-stimulating factor (CSF) in high doses or low doses. Mice of the control group were injected with normal saline only. Within 30 days after irradiation, the survival rate of mice irradiated with 6 Gy γ-rays once and treated with high dose CSF was 9/25, while that in the control group was 2/25. The survival rate of mice irradiated with 3 Gy three times and treated with high dose CSF was 10/13, while that in the control group was 4/13. Moreover, the survival times of both irradiated groups treated with high dose CSF were much longer than the control groups (p<0.01). This experiment also showed that CSF could reduce the lowering of peripheral blood white blood cell counts and promote their recovery. The number of CFU-S in mice treated with CSF was much higher (23.8 +- 4.82) than in the control group (9.4 +- 4.39) (p<0.01). Therefore, CSF could recover and reconstruct the hematopoietic function of bone marrow, and prolong the survival of irradiated mice

  4. Multipronged attenuation of macrophage-colony stimulating factor signaling by Epstein-Barr virus BARF1

    Shim, Ann Hye-Ryong; Chang, Rhoda Ahn; Chen, Xiaoyan; Longnecker, Richard; He, Xiaolin [NWU

    2014-10-02

    The ubiquitous EBV causes infectious mononucleosis and is associated with several types of cancers. The EBV genome encodes an early gene product, BARF1, which contributes to pathogenesis, potentially through growth-altering and immune-modulating activities, but the mechanisms for such activities are poorly understood. We have determined the crystal structure of BARF1 in complex with human macrophage-colony stimulating factor (M-CSF), a hematopoietic cytokine with pleiotropic functions in development and immune response. BARF1 and M-CSF form a high-affinity, stable, ring-like complex in both solution and the crystal, with a BARF1 hexameric ring surrounded by three M-CSF dimers in triangular array. The binding of BARF1 to M-CSF dramatically reduces but does not completely abolish M-CSF binding and signaling through its cognate receptor FMS. A three-pronged down-regulation mechanism is proposed to explain the biological effect of BARF1 on M-CSF:FMS signaling. These prongs entail control of the circulating and effective local M-CSF concentration, perturbation of the receptor-binding surface of M-CSF, and imposition of an unfavorable global orientation of the M-CSF dimer. Each prong may reduce M-CSF:FMS signaling to a limited extent but in combination may alter M-CSF:FMS signaling dramatically. The downregulating mechanism of BARF1 underlines a viral modulation strategy, and provides a basis for understanding EBV pathogenesis.

  5. Prevention of myelosuppression by combined treatment with enterosorbent and granulocyte colony-stimulating factor.

    Shevchuk, O O; Posokhova, К А; Todor, I N; Lukianova, N Yu; Nikolaev, V G; Chekhun, V F

    2015-06-01

    Hematotoxicity and its complication are the prominent limiting factors for rational treatment of malignancies. Granulocyte colony-stimulating factor (G-CSF) is used to increase granulocyte production. It has been shown previously that enterosorption causes prominent myeloprotective activity also. Still, no trial was performed to combine both of them. To study the influence of combination of enterosorption and pharmaceutical analogue of naturally occurring G-CSF (filgrastim) on bone marrow protection and the growth of grafted tumor in a case of injection of melphalan (Mel). Mel injections were used for promotion of bone marrow suppression in rats. Carbon granulated enterosorbent C2 (IEPOR) was used for providing of enteral sorption detoxifying therapy. Filgrastim was used to increase white blood cells (WBC) count. The simultaneous usage of enterosorption and filgrastim had maximum effectiveness for restoring of all types of blood cells. WBC count was higher by 138.3% compared with the Mel group. The increase of platelets count by 98.5% was also observed. In the group (Mel + C2 + filgrastim) the absolute neutrophils count was twofold higher, in comparison with rats of Mel group. Simultaneous administration of G-CSF-analogue and carbonic enterosorbent C2 is a perspective approach for bone marrow protection, when the cytostatic drug melphalan is used. Such combination demonstrates prominent positive impact on restoring of all types of blood cells and had no influence on the antitumor efficacy.

  6. Regulation of granulocyte colony-stimulating factor receptor-mediated granulocytic differentiation by C-mannosylation.

    Otani, Kei; Niwa, Yuki; Suzuki, Takehiro; Sato, Natsumi; Sasazawa, Yukiko; Dohmae, Naoshi; Simizu, Siro

    2018-04-06

    Granulocyte colony-stimulating factor (G-CSF) receptor (G-CSFR) is a type I cytokine receptor which is involved in hematopoietic cell maturation. G-CSFR has three putative C-mannosylation sites at W253, W318, and W446; however, it is not elucidated whether G-CSFR is C-mannosylated or not. In this study, we first demonstrated that G-CSFR was C-mannosylated at only W318. We also revealed that C-mannosylation of G-CSFR affects G-CSF-dependent downstream signaling through changing ligand binding capability but not cell surface localization. Moreover, C-mannosylation of G-CSFR was functional and regulated granulocytic differentiation in myeloid 32D cells. In conclusion, we found that G-CSFR is C-mannosylated at W318 and that this C-mannosylation has role(s) for myeloid cell differentiation through regulating downstream signaling. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Plasma macrophage colony-stimulating factor levels during cardiopulmonary bypass with extracorporeal circulation

    Y. Denizot

    1996-01-01

    Full Text Available Leukocytosis and thrombocytopenia occur during cardiopulmonary bypass (CPB with extracorporeal circulation (ECC. Elevated circulating concentrations of macrophage colony-stimulating factor (M-CSF are reported during thrombocytopenia and leukopenia of different origins. We have assessed M-CSF concentrations in 40 patients undergoing CPB with ECC. Plasma M-CSF concentrations were stable during ECC and increased at the 6th (7.3 ± 0.7 IU/μg protein and 24th (8.6 ± 0.8 IU/μg protein postoperative hour compared with pre-ECC values (4.9 ± 0.5 IU/μg protein. A deep thrombocytopenia was found during ECC and until the 24th postoperative hour. A drop of leukocyte counts was found during ECC followed by an increase after ECC weaning. While no correlation was found between M-CSF concentrations and the leukocyte counts, M-CSF values were positively correlated with platelet counts only before and during ECC. Thus, M-CSF is not implicated in the thrombocytopenia and the leukopenia generated during CPB with ECC. However the elevated levels of M-CSFa few hours after the end of ECC might play a role in the inflammatory process often observed after CPB.

  8. Does granulocyte colony-stimulating factor exacerbate radiation-induced acute lung injury in rats?

    Miura, Gouji; Awaya, Hitomi; Matsumoto, Tsuneo; Tanaka, Nobuyuki; Matsunaga, Naofumi [Yamaguchi Univ., Ube (Japan). School of Medicine

    2000-08-01

    Radiation pneumonitis (RP) frequently occurs as a complication of thoracic irradiation. However, the mechanism of RP is not well known. Activated neutrophils are a possible pathogenesis of RP. Neutrophil activation induced by granulocyte colony-stimulating factor (G-CSF) may exacerbate RP. We studied the effects of recombinant human G-CSF on acute lung injury induced by thoracic irradiation using rats. Animals were divided into three groups: sham irradiation with saline control, irradiation alone, and irradiation with G-CSF. Actual irradiation was given as a single fraction of 16 Gy delivered to the right hemithorax. G-CSF at a dose of 12 {mu}g/body was administered subcutaneously once a day from 14 to 18 days after actual irradiation. Lung injury was evaluated 21 days after irradiation by bronchoalveolar lavage (BAL) fluid findings and the lung wet/dry weight (W/D) ratio. Neutrophil and lymphocyte counts in BAL fluid and the W/D ratio were significantly increased in the irradiation alone and the irradiation with G-CSF groups compared with those of the sham irradiation+saline control group. However, there was no significant difference observed between the irradiation alone and irradiation with G-CSF groups. In conclusion, this study suggests that postradiation administration of G-CSF does not exacerbate acute lung injury induced by thoracic irradiation in rats. (author)

  9. Drugs elevating extracellular adenosine administered in vivo induce serum colony-stimulating activity and interleukin-6 in mice

    Weiterová, Lenka; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Štreitová, Denisa

    2007-01-01

    Roč. 56, č. 4 (2007), s. 463-473 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GP305/03/D050 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : extracellular adenosine * serum colony-stimulating activity * interleukin-6 Subject RIV: BO - Biophysics Impact factor: 1.505, year: 2007

  10. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis

    England, Timothy J.; Sprigg, Nikola; Alasheev, Andrey M.; Belkin, Andrey A.; Kumar, Amit; Prasad, Kameshwar; Bath, Philip M.

    2016-01-01

    Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and typ...

  11. Effects of human granulocyte-colony stimulating factor on fracture healing in rats

    Bozlar, M.; Aslan, B.; Kalaci, A.; Yanat, Ahmet N.; Baktiroglu, L.; Tasci, A.

    2005-01-01

    Granulocyte colony stimulation factor (G-CSF) is generally used to prevent and cure the neutropenia associated with chemotherapy and bone marrow transplantation. In addition to its effects on neutrophil function, G-CSF was found to have the characteristic of modulating the cytokines in the inflammatory response. Then, the question to answer is whether it has any effect on fracture healing and to what extent? In this study, we test the effects of G-CSF on the healing of tibia fracture in a rat model. This study was performed at Harran University, Sanliurfa, Turkey between July 2003 and August 2004. Twenty female, healthy Sprague-Dawley rats, weighing between 250 and 300 gm were divided into 2 groups, and their tibiae broken. The rats in the G-CSF group were injected subcutaneous with 25ug/kg/day of recombinant human G-CSF for 7 days, and the ones in the control group with 0.9% sodium chloride. Rats were sacrificed 3 weeks after surgery and then radiological, histological and biomechanical evaluations were performed. Biomechanical tests were performed at the Middle East Technical University, Ankara, Turkey.The median radiographic scores for the control group were calculated as 4.1, and 6.1 for the G-CSF group (p = 0.016). Cortex remodeling, callus formation, bone union and marrow changes values did not differ significantly (p > 0.05). Mechanical parameter (mean max-Load) values for the control group were found to be 24.0 +/- 3.0 N, and 241.5 +/-75.7 N for the G-CSF group (p 0.001). We found that G-CSF has an important effect on fracture healing. However, this effect requires further study. (author)

  12. Granulocyte colony-stimulating factor in repeated IVF failure, a randomized trial.

    Aleyasin, Ashraf; Abediasl, Zhila; Nazari, Atefeh; Sheikh, Mahdi

    2016-06-01

    Recent studies have revealed key roles for granulocyte colony-stimulating factor (GCSF) in embryo implantation process and maintenance of pregnancy, and some studies showed promising results by using local intrauterine infusion of GCSF in patients undergoing in vitro fertilization (IVF). This multicenter, randomized, controlled trial included 112 infertile women with repeated IVF failure to evaluate the efficacy of systemic single-dose subcutaneous GCSF administration on IVF success in these women. In this study, the Long Protocol of ovarian stimulation was used for all participants. Sealed, numbered envelopes assigned 56 patients to receive subcutaneous 300 µg GCSF before implantation and 56 in the control group. The implantation (number of gestational sacs on the total number of transferred embryos), chemical pregnancy (positive serum β-HCG), and clinical pregnancy (gestational sac and fetal heart) rates were compared between the two groups. This trial is registered at www.irct.ir (IRCT201503119568N11). The successful implantation (18% vs 7.2%, P=0.007), chemical pregnancy (44.6% vs 19.6%, P=0.005), and clinical pregnancy (37.5% vs 14.3%, P=0.005) rates were significantly higher in the intervention group than in the control group. After adjustment for participants' age, endometrial thickness, good-quality oocyte counts, number of transferred embryos, and anti-Mullerian hormone levels, GCSF treatment remained significantly associated with successful implantation (OR=2.63, 95% CI=1.09-6.96), having chemical pregnancy (OR= 2.74, 95% CI=1.11-7.38) and clinical pregnancy (OR=2.94, 95% CI=1.23-8.33). In conclusion, administration of single-dose systemic subcutaneous GCSF before implantation significantly increases the IVF success, implantation, and pregnancy rates in infertile women with repeated IVF failure. © 2016 Society for Reproduction and Fertility.

  13. Granulocyte colony stimulating factor attenuates inflammation in a mouse model of amyotrophic lateral sclerosis

    Giniatullina Raisa

    2011-06-01

    Full Text Available Abstract Background Granulocyte colony stimulating factor (GCSF is protective in animal models of various neurodegenerative diseases. We investigated whether pegfilgrastim, GCSF with sustained action, is protective in a mouse model of amyotrophic lateral sclerosis (ALS. ALS is a fatal neurodegenerative disease with manifestations of upper and lower motoneuron death and muscle atrophy accompanied by inflammation in the CNS and periphery. Methods Human mutant G93A superoxide dismutase (SOD1 ALS mice were treated with pegfilgrastim starting at the presymptomatic stage and continued until the end stage. After long-term pegfilgrastim treatment, the inflammation status was defined in the spinal cord and peripheral tissues including hematopoietic organs and muscle. The effect of GCSF on spinal cord neuron survival and microglia, bone marrow and spleen monocyte activation was assessed in vitro. Results Long-term pegfilgrastim treatment prolonged mutant SOD1 mice survival and attenuated both astro- and microgliosis in the spinal cord. Pegfilgrastim in SOD1 mice modulated the inflammatory cell populations in the bone marrow and spleen and reduced the production of pro-inflammatory cytokine in monocytes and microglia. The mobilization of hematopoietic stem cells into the circulation was restored back to basal level after long-term pegfilgrastim treatment in SOD1 mice while the storage of Ly6C expressing monocytes in the bone marrow and spleen remained elevated. After pegfilgrastim treatment, an increased proportion of these cells in the degenerative muscle was detected at the end stage of ALS. Conclusions GCSF attenuated inflammation in the CNS and the periphery in a mouse model of ALS and thereby delayed the progression of the disease. This mechanism of action targeting inflammation provides a new perspective of the usage of GCSF in the treatment of ALS.

  14. Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice.

    Bernitz, Jeffrey M; Daniel, Michael G; Fstkchyan, Yesai S; Moore, Kateri

    2017-04-06

    Granulocyte colony-stimulating factor (G-CSF) is used clinically to treat leukopenia and to enforce hematopoietic stem cell (HSC) mobilization to the peripheral blood (PB). However, G-CSF is also produced in response to infection, and excessive exposure reduces HSC repopulation capacity. Previous work has shown that dormant HSCs contain all the long-term repopulation potential in the bone marrow (BM), and that as HSCs accumulate a divisional history, they progressively lose regenerative potential. As G-CSF treatment also induces HSC proliferation, we sought to examine whether G-CSF-mediated repopulation defects are a result of increased proliferative history. To do so, we used an established H2BGFP label retaining system to track HSC divisions in response to G-CSF. Our results show that dormant HSCs are preferentially mobilized to the PB on G-CSF treatment. We find that this mobilization does not result in H2BGFP label dilution of dormant HSCs, suggesting that G-CSF does not stimulate dormant HSC proliferation. Instead, we find that proliferation within the HSC compartment is restricted to CD41-expressing cells that function with short-term, and primarily myeloid, regenerative potential. Finally, we show CD41 expression is up-regulated within the BM HSC compartment in response to G-CSF treatment. This emergent CD41 Hi HSC fraction demonstrates no observable engraftment potential, but directly matures into megakaryocytes when placed in culture. Together, our results demonstrate that dormant HSCs mobilize in response to G-CSF treatment without dividing, and that G-CSF-mediated proliferation is restricted to cells with limited regenerative potential found within the HSC compartment. © 2017 by The American Society of Hematology.

  15. Comparison of two strategies for the treatment of radiogenic leukopenia using granulocyte colony stimulating factor

    Adamietz, I.A.; Rosskopf, B.; Dapper, F.D.; Lieven, H. von; Boettcher, H.D.

    1996-01-01

    Purpose: Radiation-induced leukopenia can cause a delay or discontinuation of radiotherapy. This complication can be overcome with the use of granulocyte colony-stimulating factor (G-CSF). However, an uncertainty exists regarding the mode of application of G-CSF in patients treated with radiotherapy. For this reason, the efficacy of two strategies for the administration of G-CSF in irradiated patients was compared in a prospective randomized clinical study. Methods and Materials: Forty-one patients who developed leukopenia ( 9 per liter) while undergoing radiotherapy were treated with G-CSF at a daily dose of 5 μg/kg. The first group received single injections of G-CSF as required (n = 21). The second group received G-CSF on at least 3 consecutive days (n = 20). An analysis was made of the changes in leucocyte counts, the number of days on which radiotherapy had to be interrupted, and the side effects of growth-factor treatment. Results: An increase in leucocyte values in the peripheral blood was observed in all patients treated with G-CSF. In the group which received G-CSF when required, two injections (range: 1-8) were administered in most cases. In the second group, most of the patients received three injections (range: 3-9). The average duration of therapy interruptions due to leukopenia was 4.8 days (0-28) in the first therapy arm and 2.5 (0-20) in the second arm. The variance in the duration of therapy interruptions between the two groups was not significant (p = 0.2). Radiotherapy had to be terminated in two patients due to thrombocytopenia but the application of G-CSF did not seem to be a reason of decreasing platelet counts. Conclusions: Our results reveal that G-CSF is safe and effective in the treatment of radiation-induced leukopenia regardless of the mode of application. Because the calculated difference related to radiation treatment interruptions has no clinical relevance, both approaches examined in our study appear reasonable.

  16. Timing of granulocyte-colony stimulating factor treatment after acute myocardial infarction and recovery of left ventricular function: results from the STEMMI trial

    Overgaard, Mikkel; Ripa, Rasmus Sejersten; Wang, Yongzhong

    2010-01-01

    Granulocyte-colony stimulating factor (G-CSF) therapy after ST-elevation myocardial infarction (STEMI) have not demonstrated impact on systolic recovery compared to placebo. However, recent studies suggest that timing of G-CSF therapy is crucial.......Granulocyte-colony stimulating factor (G-CSF) therapy after ST-elevation myocardial infarction (STEMI) have not demonstrated impact on systolic recovery compared to placebo. However, recent studies suggest that timing of G-CSF therapy is crucial....

  17. Myeloprotective Action of Combined Application of Ukrainian Recombinant Granulocyte Colony Stimulating Factor (r-GCSF and Enterosorbent С2 in Rats with Malignant Guerin Carcinoma

    Todor, I.M.

    2015-03-01

    Full Text Available The aim of the study is to analyze myeloprotective effect of novel enterosorbents alone and in combination with two recombinant granulocyte colony stimulating factors: Neupogen (Switzerland and r- GCSF (Ukraine. It is proven that Ukrainian version of recombinant granulocyte colony stimulating factor r-GCSF does not concede officinal drug Neupogen (Switzerland by its experimental therapeutic action and combined use with enterosorbent C2 significantly increases myeloprotective effect of both GCSF versions.

  18. Granulocyte-colony stimulating factor (G-CSF improves motor recovery in the rat impactor model for spinal cord injury.

    Tanjew Dittgen

    Full Text Available Granulocyte-colony stimulating factor (G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function.

  19. Clinical outcome after stem cell mobilization with granulocyte-colony-stimulating factor after acute ST-elevation myocardial infarction:

    Ripa, Rasmus S; Jørgensen, Erik; Kastrup, Jens

    2013-01-01

    Background. Granulocyte-colony-stimulating factor (G-CSF) has been investigated in trials aiming to promote recovery of myocardial function after myocardial infarction. Long-term safety-data have never been reported. A few studies indicated an increased risk of in-stent re-stenosis. We aimed to i.......8; 0.3). Conclusions. We found no indication of increased risk of adverse events up to 5 years after G-CSF treatment. These results support the continued investigation of G-CSF for cardiac therapy....

  20. Isolation, nucleotide sequence and expression of a cDNA encoding feline granulocyte colony-stimulating factor.

    Dunham, S P; Onions, D E

    2001-06-21

    A cDNA encoding feline granulocyte colony stimulating factor (fG-CSF) was cloned from alveolar macrophages using the reverse transcriptase-polymerase chain reaction. The cDNA is 949 bp in length and encodes a predicted mature protein of 174 amino acids. Recombinant fG-CSF was expressed as a glutathione S-transferase fusion and purified by affinity chromatography. Biological activity of the recombinant protein was demonstrated using the murine myeloblastic cell line GNFS-60, which showed an ED50 for fG-CSF of approximately 2 ng/ml. Copyright 2001 Academic Press.

  1. The effect of granulocyte-colony stimulating factor on rotator cuff healing after injury and repair.

    Ross, David; Maerz, Tristan; Kurdziel, Michael; Hein, Joel; Doshi, Shashin; Bedi, Asheesh; Anderson, Kyle; Baker, Kevin

    2015-05-01

    The failure rate of tendon-bone healing after repair of rotator cuff tears remains high. A variety of biologic- and cell-based therapies aimed at improving rotator cuff healing have been investigated, and stem cell-based techniques have become increasingly more common. However, most studies have focused on the implantation of exogenous cells, which introduces higher risk and cost. We aimed to improve rotator cuff healing by inducing endogenous stem cell mobilization with systemic administration of granulocyte-colony stimulating factor (G-CSF). We asked: (1) Does G-CSF administration increase local cellularity after acute rotator cuff repair? (2) Is there histologic evidence that G-CSF improved organization at the healing enthesis? (3) Does G-CSF administration improve biomechanical properties of the healing supraspinatus tendon-bone complex? (4) Are there micro-MRI-based observations indicating G-CSF-augmented tendon-bone healing? After creation of full-thickness supraspinatus tendon defects with immediate repair, 52 rats were randomized to control or G-CSF-treated groups. G-CSF was administered for 5 days after repair and rats were euthanized at 12 or 19 postoperative days. Shoulders were subjected to micro-MR imaging, stress relaxation, and load-to-failure as well as blinded histologic and histomorphometric analyses. G-CSF-treated animals had significantly higher cellularity composite scores at 12 and 19 days compared with both control (12 days: 7.40 ± 1.14 [confidence interval {CI}, 5.98-8.81] versus 4.50 ± 0.57 [CI, 3.58-5.41], p = 0.038; 19 days: 8.00 ± 1.00 [CI, 6.75-9.24] versus 5.40 ± 0.89 [CI, 4.28-6.51], p = 0.023) and normal animals (12 days: p = 0.029; 19 days: p = 0.019). There was no significant difference between G-CSF-treated animals or control animals in ultimate stress (MPa) and strain, modulus (MPa), or yield stress (MPa) and strain at either 12 days (p = 1.000, p = 0.104, p = 1.000, p = 0.909, and p = 0.483, respectively) or 19 days (p = 0

  2. Comparative effectiveness of colony-stimulating factors in febrile neutropenia prophylaxis: how results are affected by research design.

    Henk, Henry J; Li, Xiaoyan; Becker, Laura K; Xu, Hairong; Gong, Qi; Deeter, Robert G; Barron, Richard L

    2015-01-01

    To examine the impact of research design on results in two published comparative effectiveness studies. Guidelines for comparative effectiveness research have recommended incorporating disease process in study design. Based on the recommendations, we develop a checklist of considerations and apply the checklist in review of two published studies on comparative effectiveness of colony-stimulating factors. Both studies used similar administrative claims data, but different methods, which resulted in directionally different estimates. Major design differences between the two studies include: whether the timing of intervention in disease process was identified and whether study cohort and outcome assessment period were defined based on this temporal relationship. Disease process and timing of intervention should be incorporated into the design of comparative effectiveness studies.

  3. Application of microchip CGE for the analysis of PEG-modified recombinant human granulocyte-colony stimulating factors.

    Park, Eun Ji; Lee, Kyung Soo; Lee, Kang Choon; Na, Dong Hee

    2010-11-01

    The purpose of this study was to evaluate the microchip CGE (MCGE) for the analysis of PEG-modified granulocyte-colony stimulating factor (PEG-G-CSF) prepared with PEG-aldehydes. The unmodified and PEG-modified G-CSFs were analyzed by Protein 80 and 230 Labchips on the Agilent 2100 Bioanalyzer. The MCGE allowed size-based separation and quantitation of PEG-G-CSF. The Protein 80 Labchip was useful for PEG-5K-G-CSF, while the Protein 230 Labchip was more suitable for PEG-20K-G-CSF. The MCGE was also used to monitor a search for optimal PEG-modification (PEGylation) conditions to produce mono-PEG-G-CSF. This study demonstrates the usefulness of MCGE for monitoring and optimizing the PEGylation of G-CSF with the advantages of speed, minimal sample consumption, and automatic quantitation.

  4. Relationship of colony-stimulating activity to apparent kill of human colony-forming cells by irradiation and hydroxyurea

    Broxmeyer, H.E.; Galbraith, P.R.; Baker, F.L.

    1976-01-01

    Suspensions of human bone marrow cells were subjected to 137 Cs irradiation in vitro and then cultured in semisolid agar medium. Cultures of irradiated cells were stimulated with colony-stimulating activity (CSA) of different potencies, and it was found that the amount of stimulation applied to cultures influenced the apparent kill of colony-forming cells (CFC). It was also found that the effects of irradiation on colony formation were not confined to CFC kill since medium conditioned by cells during irradiation exhibited stimulatory and inhibitory properties after treatment by 600 and 1000 rads, respectively. Studies in which irradiated cells were pretreated with hydroxyurea indicated that CFC in the DNA synthetic phase of the cell cycle were particularly sensitive to low doses of irradiation. The proliferative capacity of CFC surviving 1000 rads was undiminished as judged by their ability to form large colonies. Estimates of CFC kill by hydroxyurea were also affected by the level of CSA

  5. Granulocyte-colony-stimulating factor (G-CSF) signaling in spinal microglia drives visceral sensitization following colitis.

    Basso, Lilian; Lapointe, Tamia K; Iftinca, Mircea; Marsters, Candace; Hollenberg, Morley D; Kurrasch, Deborah M; Altier, Christophe

    2017-10-17

    Pain is a main symptom of inflammatory diseases and often persists beyond clinical remission. Although we have a good understanding of the mechanisms of sensitization at the periphery during inflammation, little is known about the mediators that drive central sensitization. Recent reports have identified hematopoietic colony-stimulating factors as important regulators of tumor- and nerve injury-associated pain. Using a mouse model of colitis, we identify the proinflammatory cytokine granulocyte-colony-stimulating factor (G-CSF or Csf-3) as a key mediator of visceral sensitization. We report that G-CSF is specifically up-regulated in the thoracolumbar spinal cord of colitis-affected mice. Our results show that resident spinal microglia express the G-CSF receptor and that G-CSF signaling mediates microglial activation following colitis. Furthermore, healthy mice subjected to intrathecal injection of G-CSF exhibit pronounced visceral hypersensitivity, an effect that is abolished by microglial depletion. Mechanistically, we demonstrate that G-CSF injection increases Cathepsin S activity in spinal cord tissues. When cocultured with microglia BV-2 cells exposed to G-CSF, dorsal root ganglion (DRG) nociceptors become hyperexcitable. Blocking CX3CR1 or nitric oxide production during G-CSF treatment reduces excitability and G-CSF-induced visceral pain in vivo. Finally, administration of G-CSF-neutralizing antibody can prevent the establishment of persistent visceral pain postcolitis. Overall, our work uncovers a DRG neuron-microglia interaction that responds to G-CSF by engaging Cathepsin S-CX3CR1-inducible NOS signaling. This interaction represents a central step in visceral sensitization following colonic inflammation, thereby identifying spinal G-CSF as a target for treating chronic abdominal pain.

  6. Granulocyte-Colony Stimulating Factor Receptor, Tissue Factor, and VEGF-R Bound VEGF in Human Breast Cancer In Loco.

    Wojtukiewicz, Marek Z; Sierko, Ewa; Skalij, Piotr; Kamińska, Magda; Zimnoch, Lech; Brekken, Ralf A; Thorpe, Philip E

    2016-01-01

    Doxorubicin and docetaxel-based chemotherapy regimens used in breast cancer patients are associated with high risk of febrile neutropenia (FN). Granulocyte colony-stimulating factors (G-CSF) are recommended for both treating and preventing chemotherapy-induced neutropenia. Increased thrombosis incidence in G-CSF treated patients was reported; however, the underlying mechanisms remain unclear. The principal activator of blood coagulation in cancer is tissue factor (TF). It additionally contributes to cancer progression and stimulates angiogenesis. The main proangiogenic factor is vascular endothelial growth factor (VEGF). The aim of the study was to evaluate granulocyte-colony stimulating factor receptor (G-CSFR), tissue factor (TF) expression and vascular endothelial growth factor receptor (VEGF-R) bound VEGF in human breast cancer in loco. G-CSFR, TF and VEGFR bound VEGF (VEGF: VEGFR) were assessed in 28 breast cancer tissue samples. Immunohistochemical (IHC) methodologies according to ABC technique and double staining IHC procedure were employed utilizing antibodies against G-CSFR, TF and VEGF associated with VEGFR (VEGF: VEGFR). Expression of G-CSFR was demonstrated in 20 breast cancer tissue specimens (71%). In 6 cases (21%) the expression was strong (IRS 9-12). Strong expression of TF was observed in all investigated cases (100%). Moreover, expression of VEGF: VEGFR was visualized in cancer cells (IRS 5-8). No presence of G-CSFR, TF or VEGF: VEGFR was detected on healthy breast cells. Double staining IHC studies revealed co-localization of G-CSFR and TF, G-CSFR and VEGF: VEGFR, as well as TF and VEGF: VEGFR on breast cancer cells and ECs. The results of the study indicate that GCSFR, TF and VEGF: VEGFR expression as well as their co-expression might influence breast cancer biology, and may increase thromboembolic adverse events incidence.

  7. Primary granulocyte colony-stimulating factor prophylaxis during the first two cycles only or throughout all chemotherapy cycles in patients with breast cancer at risk for febrile neutropenia

    Aarts, M.J.; Peters, F.P.; Mandigers, C.M.P.W.; Dercksen, M.W.; Stouthard, J.M.; Nortier, H.J.; Laarhoven, H.W.M. van; Warmerdam, L.J. van; Wouw, A.J. van de; Jacobs, E.M.G.; Mattijssen, V.; Rijt, C.C. van der; Smilde, T.J.; Velden, A.W. van der; Temizkan, M.; Batman, E.; Muller, E.W.; Gastel, S.M. van; Borm, G.F.; Tjan-Heijnen, V.C.

    2013-01-01

    PURPOSE: Early breast cancer is commonly treated with anthracyclines and taxanes. However, combining these drugs increases the risk of myelotoxicity and may require granulocyte colony-stimulating factor (G-CSF) support. The highest incidence of febrile neutropenia (FN) and largest benefit of G-CSF

  8. Primary Granulocyte Colony-Stimulating Factor Prophylaxis During the First Two Cycles Only or Throughout All Chemotherapy Cycles in Patients With Breast Cancer at Risk for Febrile Neutropenia

    Aarts, Maureen J.; Peters, Frank P.; Mandigers, Caroline M.; Dercksen, M. Wouter; Stouthard, Jacqueline M.; Nortier, Hans J.; van Laarhoven, Hanneke W.; van Warmerdam, Laurence J.; van de Wouw, Agnes J.; Jacobs, Esther M.; Mattijssen, Vera; van der Rijt, Carin C.; Smilde, Tineke J.; van der Velden, Annette W.; Temizkan, Mehmet; Batman, Erdogan; Muller, Erik W.; van Gastel, Saskia M.; Borm, George F.; Tjan-Heijnen, Vivianne C. G.

    2013-01-01

    Purpose Early breast cancer is commonly treated with anthracyclines and taxanes. However, combining these drugs increases the risk of myelotoxicity and may require granulocyte colony-stimulating factor (G-CSF) support. The highest incidence of febrile neutropenia (FN) and largest benefit of G-CSF

  9. A STUDY OF INTERMEDIATES INVOLVED IN THE FOLDING PATHWAY FOR RECOMBINANT HUMAN MACROPHAGE COLONY-STIMULATING FACTOR (M-CSF) - EVIDENCE FOR 2 DISTINCT FOLDING PATHWAYS

    WILKINS, JA; CONE, J; RANDHAWA, ZI; WOOD, D; WARREN, MK; WITKOWSKA, HE

    The folding pathway for a 150-amino acid recombinant form of the dimeric cytokine human macrophage colony-stimulating factor (M-CSF) has been studied. All 14 cysteine residues in the biologically active homodimer are involved in disulfide linkages. The structural characteristics of folding

  10. Dose intensity of standard adjuvant CMF with granulocyte colony-stimulating factor for premenopausal patients with node-positive breast cancer

    deGraaf, H; Willemse, PHB; Bong, SB; Piersma, H; Tjabbes, T; vanVeelen, H; Coenen, JLLM; deVries, EGE

    1996-01-01

    The effects of granulocyte colony-stimulating factor (G-CSF) on total dose and dose intensity of standard oral adjuvant CMF (cyclophosphamide, methotrexate, and 5-fluorouracil) chemotherapy were studied in premenopausal patients with node-positive breast cancer. Treatment consisted of standard CMF

  11. Effects of recombinant human granulocyte colony-stimulating factor on leucopenia in zidovudine-treated patients with AIDS and AIDS related complex, a phase I/II study

    van der Wouw, P. A.; van Leeuwen, R.; van Oers, R. H.; Lange, J. M.; Danner, S. A.

    1991-01-01

    Twelve male patients, eight with the acquired immunodeficiency syndrome (AIDS) and four with AIDS related complex (ARC), who had zidovudine associated neutropenia (less than 1 x 10(9) neutrophils/l) were treated with recombinant human granulocyte colony-stimulating factor (G-CSF) in a phase I/II

  12. Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1

    Visser, G.; Rake, J.P.; Labrune, P.; Leonard, J.V.; Moses, S.; Ullrich, K.; Wendel, U.; Groenier, K.H.; Smit, G.P.

    2002-01-01

    Patients with glycogen storage disease type 1b (GSD-1b) have neutropenia and neutrophil dysfunction that predispose to frequent infections and inflammatory bowel disease (IBD), for which granulocyte colony-stimulating factor (GCSF) is given. To investigate the use and the value of GCSF treatment in

  13. Porcine granulocyte-colony stimulating factor (G-CSF) delivered via replication-defective adenovirus induces a sustained increase in circulating peripheral blood neutrophils

    The use of immunomodulators is a promising area for biotherapeutic, prophylactic, and metaphylactic use to prevent and combat infectious disease, particularly during periods of peak disease incidence. Cytokines, including granulocyte colony-stimulating factor (G-CSF), are one class of compounds that...

  14. Cloning and expression of porcine Colony Stimulating Factor-1 (CSF-1) and Colony Stimulating Factor-1 Receptor (CSF-1R) and analysis of the species specificity of stimulation by CSF-1 and Interleukin 34

    Gow, Deborah J.; Garceau, Valerie; Kapetanovic, Ronan; Sester, David P.; Fici, Greg J.; Shelly, John A.; Wilson, Thomas L.; Hume, David A.

    2012-01-01

    Macrophage Colony Stimulating Factor (CSF-1) controls the survival, differentiation and proliferation of cells of the mononuclear phagocyte system. A second ligand for the CSF-1R, Interleukin 34 (IL-34), has been described, but its physiological role is not yet known. The domestic pig provides an alternative to traditional rodent models for evaluating potential therapeutic applications of CSF-1R agonists and antagonists. To enable such studies, we cloned and expressed active pig CSF-1. To provide a bioassay, pig CSF-1R was expressed in the factor-dependent Ba/F3 cell line. On this transfected cell line, recombinant porcine CSF-1 and human CSF-1 had identical activity. Mouse CSF-1 does not interact with the human CSF-1 receptor but was active on pig. By contrast, porcine CSF-1 was active on mouse, human, cat and dog cells. IL-34 was previously shown to be species-specific, with mouse and human proteins demonstrating limited cross-species activity. The pig CSF-1R was equally responsive to both mouse and human IL-34. Based upon the published crystal structures of CSF-1/CSF-1R and IL34/CSF-1R complexes, we discuss the molecular basis for the species specificity. PMID:22974529

  15. Uptake and economic impact of first-cycle colony-stimulating factor use during adjuvant treatment of breast cancer.

    Hershman, Dawn L; Wilde, Elizabeth T; Wright, Jason D; Buono, Donna L; Kalinsky, Kevin; Malin, Jennifer L; Neugut, Alfred I

    2012-03-10

    In 2002, pegfilgrastim was approved by the US Food and Drug Administration and the benefits of dose-dense breast cancer chemotherapy, especially for hormone receptor (HR) -negative tumors, were reported. We examined first-cycle colony-stimulating factor use (FC-CSF) before and after 2002 and estimated US expenditures for dose-dense chemotherapy. We identified patients in Surveillance, Epidemiology, and End Results-Medicare greater than 65 years old with stages I to III breast cancer who had greater than one chemotherapy claim within 6 months of diagnosis(1998 to 2005) and classified patients with an average cycle length less than 21 days as having received dose-dense chemotherapy. The associations of patient, tumor, and physician-related factors with the receipt of any colony-stimulating factor (CSF) and FC-CSF use were analyzed by using generalized estimating equations. CSF costs were estimated for patients who were undergoing dose-dense chemotherapy. Among the 10,773 patients identified, 5,266 patients (48.9%) had a CSF claim. CSF use was stable between 1998 and 2002 and increased from 36.8% to 73.7% between 2002 and 2005, FC-CSF use increased from 13.2% to 67.9%, and pegfilgrastim use increased from 4.1% to 83.6%. In a multivariable analysis, CSF use was associated with age and chemotherapy type and negatively associated with black/Hispanic race, rural residence, and shorter chemotherapy duration. FC-CSF use was associated with high socioeconomic status but not with age or race/ethnicity. The US annual CSF expenditure for women with HR-positive tumors treated with dose-dense chemotherapy is estimated to be $38.8 million. A rapid increase in FC-CSF use occurred over a short period of time, which was likely a result of the reported benefits of dose-dense chemotherapy and the ease of pegfilgrastim administration. Because of the increasing evidence that elderly HR-positive patients do not benefit from dose-dense chemotherapy, limiting pegfilgrastim use would combat

  16. Effect of granulocyte colony stimulating factor (G-CSF on IVF outcomes in infertile women: An RCT

    Maryam Eftekhar

    2016-05-01

    Full Text Available Background: Despite major advances in assisted reproductive techniques, the implantation rates remain relatively low. Some studies have demonstrated that intrauterine infusion of granulocyte colony stimulating factor (G-CSF improves implantation in infertile women. Objective: To assess the G-CSF effects on IVF outcomes in women with normal endometrial thickness. Materials and methods: In this randomized controlled clinical trial, 100 infertile women with normal endometrial thickness who were candidate for IVF were evaluated in two groups. Exclusion criteria were positive history of repeated implantation failure (RIF, endocrine disorders, severe endometriosis, congenital or acquired uterine anomaly and contraindication for G-CSF (renal disease, sickle cell disease, or malignancy. In G-CSF group (n=50, 300 μg trans cervical intrauterine of G-CSF was administered at the oocyte retrieval day. Controls (n=50 were treated with standard protocol. Chemical, clinical and ongoing pregnancy rates, implantation rate, and miscarriage rate were compared between groups. Results: Number of total and mature oocytes (MII, two pronuclei (2PN, total embryos, transferred embryos, quality of transferred embryos, and fertilization rate did not differ significantly between two groups. So there were no significant differences between groups in chemical, clinical and ongoing pregnancy rate, implantation rate, and miscarriage rate Conclusion: our result showed in normal IVF patients with normal endometrial thickness, the intrauterine infusion of G-CSF did not improve pregnancy outcomes.

  17. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer.

    Huang, Yan-Shan; Wen, Xiao-Fang; Wu, Yi-Liang; Wang, Ye-Fei; Fan, Min; Yang, Zhi-Yu; Liu, Wei; Zhou, Lin-Fu

    2010-03-01

    The plasma half-life of therapeutic proteins is a critical factor in many clinical applications. Therefore, new strategies to prolong plasma half-life of long-acting peptides and protein drugs are in high demand. Here, we designed an artificial gelatin-like protein (GLK) and fused this hydrophilic GLK polymer to granulocyte-colony-stimulating factor (G-CSF) to generate a chimeric GLK/G-CSF fusion protein. The genetically engineered recombinant GLK/G-CSF (rGLK/G-CSF) fusion protein was purified from Pichia pastoris. In vitro studies demonstrated that rGLK/G-CSF possessed an enlarged hydrodynamic radius, improved thermal stability and retained full bioactivity compared to unfused G-CSF. Following a single subcutaneous administration to rats, the rGLK/G-CSF fusion protein displayed a slower plasma clearance rate and stimulated greater and longer lasting increases in circulating white blood cells than G-CSF. Our findings indicate that fusion with this artificial, hydrophilic, GLK polymer provides many advantages in the construction of a potent hematopoietic factor with extended plasma half-life. This approach could be easily applied to other therapeutic proteins and have important clinical applications. (c) 2009 Elsevier B.V. All rights reserved.

  18. The safety and clinical efficacy of recombinant human granulocyte colony stimulating factor injection for colon cancer patients undergoing chemotherapy

    Jie Chen

    Full Text Available Summary Objective: The present study was designed to evaluate safety and efficacy of recombinant human granulocyte colony stimulating factor (G-CSF injection and whether this regimen could reduce the incidence of adverse events caused by chemotherapy. Method: A total of 100 patients with colon cancer who were treated with chemotherapy in our hospital from January 2011 to December 2014 were randomly divided into two groups, with 50 patients in each group. The patients in the treatment group received G-CSF 24 hours after chemotherapy for consecutive three days; the patients in the control group received the same dose of normal saline. Routine blood tests were performed 7 days and 14 days after chemotherapy. Results: Compared with the control group, the incidences of febrile neutropenia and leukocytopenia in the treatment group were significantly lower (p<0.05. In addition, the incidence of liver dysfunction in the treatment group was lower than that of the control group, without statistical significance. The incidence of myalgia in the treatment was higher than that of the control group without statistical significance. Conclusion: The present study indicated that G-CSF injection after chemotherapy is safe and effective for preventing adverse events in colon cancer patients with chemotherapy.

  19. Colony stimulating factor 1 receptor inhibition delays recurrence of glioblastoma after radiation by altering myeloid cell recruitment and polarization

    Stafford, Jason H.; Hirai, Takahisa; Deng, Lei; Chernikova, Sophia B.; Urata, Kimiko; West, Brian L.; Brown, J. Martin

    2016-01-01

    Background Glioblastoma (GBM) may initially respond to treatment with ionizing radiation (IR), but the prognosis remains extremely poor because the tumors invariably recur. Using animal models, we previously showed that inhibiting stromal cell–derived factor 1 signaling can prevent or delay GBM recurrence by blocking IR-induced recruitment of myeloid cells, specifically monocytes that give rise to tumor-associated macrophages. The present study was aimed at determining if inhibiting colony stimulating factor 1 (CSF-1) signaling could be used as an alternative strategy to target pro-tumorigenic myeloid cells recruited to irradiated GBM. Methods To inhibit CSF-1 signaling in myeloid cells, we used PLX3397, a small molecule that potently inhibits the tyrosine kinase activity of the CSF-1 receptor (CSF-1R). Combined IR and PLX3397 therapy was compared with IR alone using 2 different human GBM intracranial xenograft models. Results GBM xenografts treated with IR upregulated CSF-1R ligand expression and increased the number of CD11b+ myeloid-derived cells in the tumors. Treatment with PLX3397 both depleted CD11b+ cells and potentiated the response of the intracranial tumors to IR. Median survival was significantly longer for mice receiving combined therapy versus IR alone. Analysis of myeloid cell differentiation markers indicated that CSF-1R inhibition prevented IR-recruited monocyte cells from differentiating into immunosuppressive, pro-angiogenic tumor-associated macrophages. Conclusion CSF-1R inhibition may be a promising strategy to improve GBM response to radiotherapy. PMID:26538619

  20. Simplified in vitro refolding and purification of recombinant human granulocyte colony stimulating factor using protein folding cation exchange chromatography.

    Vemula, Sandeep; Dedaniya, Akshay; Thunuguntla, Rahul; Mallu, Maheswara Reddy; Parupudi, Pavani; Ronda, Srinivasa Reddy

    2015-01-30

    Protein folding-strong cation exchange chromatography (PF-SCX) has been employed for efficient refolding with simultaneous purification of recombinant human granulocyte colony stimulating factor (rhG-CSF). To acquire a soluble form of renatured and purified rhG-CSF, various chromatographic conditions, including the mobile phase composition and pH was evaluated. Additionally, the effects of additives such as urea, amino acids, polyols, sugars, oxidizing agents and their amalgamations were also investigated. Under the optimal conditions, rhG-CSF was efficaciously solubilized, refolded and simultaneously purified by SCX in a single step. The experimental results using ribose (2.0M) and arginine (0.6M) combination were found to be satisfactory with mass yield, purity and specific activity of 71%, ≥99% and 2.6×10(8)IU/mg respectively. Through this investigation, we concluded that the SCX refolding method was more efficient than conventional methods which has immense potential for the large-scale production of purified rhG-CSF. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Granulocyte colony stimulating factor priming chemotherapy is more effective than standard chemotherapy as salvage therapy in relapsed acute myeloid leukemia.

    Shen, Ying; He, Aili; Wang, Fangxia; Bai, Ju; Wang, Jianli; Zhao, Wanhong; Zhang, Wanggang; Cao, Xingmei; Chen, Yinxia; Liu, Jie; Ma, Xiaorong; Chen, Hongli; Feng, Yuandong; Yang, Yun

    2017-12-29

    To improve the complete remission (CR) rate of newly diagnosed acute myeloid leukemia (AML) patients and alleviate the severe side effects of double induction chemotherapy, we combined a standard regimen with granulocyte colony-stimulating factor (G-CSF) priming chemotherapy to compose a new double induction regimen for AML patients who failed to achieve CR after the first course. Ninety-seven patients with AML who did not achieve CR after the first course of standard chemotherapy were enrolled. Among them, 45 patients received G-CSF priming combined with low-dose chemotherapy during days 20-22 of the first course of chemotherapy, serving as priming group, 52 patients were administered standard chemotherapy again, serving as control group. Between the two groups there were no differences in the French-American-British (FAB) classification, risk status, the first course of chemotherapy, blood cell count or blasts percentage of bone marrow before the second course. But the CR rate was significantly higher and the adverse effect was much lower in the priming group than the control group. Cox multivariate regression analysis showed that WBC level before the second course and the selection of the second chemotherapy regimen were two independent factors for long survival of patients. These results elucidate that standard chemotherapy followed by G-CSF priming new double induction chemotherapy is an effective method for AML patients to improve CR rate and reduce adverse effects. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. Mobilization of stem cell with granulocyte-colony stimulating factor promotes recovery after traumatic brain injury in rat

    Mohsen Marzban

    2010-01-01

    Full Text Available Introduction: This study was designed to investigate the effects of granulocyte colony-stimulating factor (G-CSF administration in rats for 6 weeks after traumatic brain injury (TBI. Methods: Adult male Wistar rats (n = 30 were injured with controlled cortical impact device and divided into four groups. The treatment groups (n = 10 each were injected subcutaneously with recombinant human G-CSF. Vehicle group (n=10 received phosphate buffered saline (PBS and only Brdu intraperitoneally. Bromodeoxyuridine (BrdU was used for mitotic labeling. Experimental rats were injected intraperitoneally with BrdU. Rats were killed at 6th week after traumatic brain injury. Neurological functional evaluation of animals was performed before and after injury using neurological severity scores (NSS. Animals were sacrificed 42 days after TBI and brain sections were stained using Brdu immunohistochemistry. Results: Statistically significant improvement in functional outcome was observed in treatment groups when compared with control (p<0.01. This benefit was visible 7 days after TBI and persisted until 42 days (end of trial. Histological analysis showed that Brdu cell positive was more in the lesion boundary zone at treatment animal group than all injected animals. Discussion: We believe that G-CSF therapeutic protocol reported here represents an attractive strategy for the development of a clinically significant noninvasive traumatic brain injury therapy.

  3. Granulocyte colony-stimulating factor in toxic epidermal necrolysis (TEN) and Chelsea & Westminster TEN management protocol [corrected].

    de Sica-Chapman, A; Williams, G; Soni, N; Bunker, C B

    2010-04-01

    Toxic epidermal necrolysis (TEN) is a rare but life-threatening, allergic drug reaction. Skin blistering with epidermal and mucosal necrolysis with subsequent detachment from an inflamed underlying dermis is a hallmark of the condition. The pathogenesis of TEN is not well understood, accounting for controversies about its management and significant delay in initiating potentially beneficial therapy. There are no management protocols based on a robust evidence base. Prompt recognition of the diagnosis and consensus on early management initiatives are necessary in order to improve outcomes and survival in TEN. To date, TEN management has been directed at arresting the allergic reaction and treating the complications. We have identified a need for specific medical interventions to accelerate wound regeneration. This approach has not previously been adopted in the management of TEN. We observed that in two cases of severe TEN, dramatic re-epithelialization and recovery coincided with the introduction of granulocyte colony-stimulating factor (G-CSF) for neutropenia. We explain how addition of the G-CSF promotes recovery from TEN by enhanced bioregeneration of the damaged tissues through accelerated re-epithelialization. G-CSF has been used for severe neutropenia in TEN, but we recommend and explain why, as in our Chelsea and Westminster protocol, G-CSF should be considered in treating severe TEN irrespective of the severity of neutropenia.

  4. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    Sun, Bao-Liang; He, Mei-Qing; Han, Xiang-Yu; Sun, Jing-Yi; Yang, Ming-Feng; Yuan, Hui; Fan, Cun-Dong; Zhang, Shuai; Mao, Lei-Lei; Li, Da-Wei; Zhang, Zong-Yong; Zheng, Cheng-Bi; Yang, Xiao-Yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  5. Two protocols to treat thin endometrium with granulocyte colony-stimulating factor during frozen embryo transfer cycles.

    Xu, Bin; Zhang, Qiong; Hao, Jie; Xu, Dabao; Li, Yanping

    2015-04-01

    The efficacy of two granulocyte colony-stimulating factor (G-CSF) protocols for thin endometrium were investigated. Eighty-two patients were diagnosed with thin endometrium (endometrial scratch subgroups. Compared with previous cycles, endometrial thickness increased from 5.7 ± 0.7 mm to 8.1 ± 2.1 mm after G-CSF treatment (P Endometrial thickness increases were not significantly different between the two subgroups. The G-CSF with endometrial scratch subgroup established nominally higher though non-significant clinical pregnancy and live birth rates than the G-CSF only subgroup (53.8 % versus 42.9% and 38.5% versus 28.6%, respectively). Fifty-two patients underwent FET despite edometrial thickness less than 7 mm, and were included as controls. Significantly higher embryo implantation and clinical pregnancy rates were observed in the G-CSF group compared with the control group (31.5% versus 13.9%; P Endometrial scracth did not impair G-CSF treatment for thin endometrium and favoured pregnancy and live birth rates. For patients with thin endometrium, embryo transfer cancellation and G-CSF treatment in subsequent FET cycles is beneficial. Copyright © 2014 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Lithium-stimulated recovery of granulopoiesis after sublethal irradiation is not mediated via increased levels of colony stimulating factor (CSF)

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1985-01-01

    Lithium accelerates the recovery of granulopoiesis following sublethal (2 Gy) whole body x-irradiation. Studies are described that further define this Li-mediated recovery by measuring the levels of colony-stimulating factor (CSF) present in serum from mice administered 105 μg/mouse (total dose) of ultra-pure Li 2 CO 3 for 3 days following irradiation. On days 1-28 following the last lithium dose, the serum was tested for its CSF activity against both normal non-adherent derived bone marrow target cells and non-adherent marrow cells from mice administered cyclophosphamide (200 mg/kg body weight). Serum was assayed at 0.01, 0.1, 1 and 10% final concentration. No significant difference in the total number of CFU-GM was observed from normal marrow using either serum from irradiated mice or lithium-treated and irradiated mice, although the irradiation did produce a 300% rise in CFU-GM colonies compared to normal serum (days 4 and 10-15). From regenerating marrow, a significant difference (P <= 0.01) was observed in CFU-GM cultured with serum at 0.1% concentration from irradiated and lithium-treated mice compared to irradiated mice without lithium. The presence of CSF was confirmed by its reduced activity in the presence of anti-(CSF). (U.K.)

  7. Granulocyte colony-stimulating factors for febrile neutropenia prophylaxis following chemotherapy: systematic review and meta-analysis

    Stevenson Matt D

    2011-09-01

    Full Text Available Abstract Background Febrile neutropenia (FN occurs following myelosuppressive chemotherapy and is associated with morbidity, mortality, costs, and chemotherapy reductions and delays. Granulocyte colony-stimulating factors (G-CSFs stimulate neutrophil production and may reduce FN incidence when given prophylactically following chemotherapy. Methods A systematic review and meta-analysis assessed the effectiveness of G-CSFs (pegfilgrastim, filgrastim or lenograstim in reducing FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. G-CSFs were compared with no primary G-CSF prophylaxis and with one another. Nine databases were searched in December 2009. Meta-analysis used a random effects model due to heterogeneity. Results Twenty studies compared primary G-CSF prophylaxis with no primary G-CSF prophylaxis: five studies of pegfilgrastim; ten of filgrastim; and five of lenograstim. All three G-CSFs significantly reduced FN incidence, with relative risks of 0.30 (95% CI: 0.14 to 0.65 for pegfilgrastim, 0.57 (95% CI: 0.48 to 0.69 for filgrastim, and 0.62 (95% CI: 0.44 to 0.88 for lenograstim. Overall, the relative risk of FN for any primary G-CSF prophylaxis versus no primary G-CSF prophylaxis was 0.51 (95% CI: 0.41 to 0.62. In terms of comparisons between different G-CSFs, five studies compared pegfilgrastim with filgrastim. FN incidence was significantly lower for pegfilgrastim than filgrastim, with a relative risk of 0.66 (95% CI: 0.44 to 0.98. Conclusions Primary prophylaxis with G-CSFs significantly reduces FN incidence in adults undergoing chemotherapy for solid tumours or lymphoma. Pegfilgrastim reduces FN incidence to a significantly greater extent than filgrastim.

  8. Interferon-alpha suppressed granulocyte colony stimulating factor production is reversed by CL097, a TLR7/8 agonist.

    Tajuddin, Tariq

    2012-02-01

    BACKGROUND AND AIM: Neutropenia, a major side-effect of interferon-alpha (IFN-alpha) therapy can be effectively treated by the recombinant form of granulocyte colony stimulating factor (G-CSF), an important growth factor for neutrophils. We hypothesized that IFN-alpha might suppress G-CSF production by peripheral blood mononuclear cells (PBMCs), contributing to the development of neutropenia, and that a toll-like receptor (TLR) agonist might overcome this suppression. METHODS: Fifty-five patients who were receiving IFN-alpha\\/ribavirin combination therapy for chronic hepatitis C virus (HCV) infection were recruited. Absolute neutrophil counts (ANC), monocyte counts and treatment outcome data were recorded. G-CSF levels in the supernatants of PBMCs isolated from the patients and healthy controls were assessed by enzyme-linked immunosorbent assay following 18 h of culture in the absence or presence of IFN- alpha or the TLR7\\/8 agonist, CL097. RESULTS: Therapeutic IFN-alpha caused a significant reduction in neutrophil counts in all patients, with 15 patients requiring therapeutic G-CSF. The reduction in ANC over the course of IFN-alpha treatment was paralleled by a decrease in the ability of PBMCs to produce G-CSF. In vitro G-CSF production by PBMCs was suppressed in the presence of IFN-alpha; however, co-incubation with a TLR7\\/8 agonist significantly enhanced G-CSF secretion by cells obtained both from HCV patients and healthy controls. CONCLUSIONS: Suppressed G-CSF production in the presence of IFN-alpha may contribute to IFN-alpha-induced neutropenia. However, a TLR7\\/8 agonist elicits G-CSF secretion even in the presence of IFN-alpha, suggesting a possible therapeutic role for TLR agonists in treatment of IFN-alpha-induced neutropenia.

  9. Annual patient and caregiver burden of oncology clinic visits for granulocyte-colony stimulating factor therapy in the US.

    Stephens, J Mark; Li, Xiaoyan; Reiner, Maureen; Tzivelekis, Spiros

    2016-01-01

    Prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs) is indicated for chemotherapy patients with a significant risk of febrile neutropenia. This study estimates the annual economic burden on patients and caregivers of clinic visits for prophylactic G-CSF injections in the US. Annual clinic visits for prophylactic G-CSF injections (all cancers) were estimated from national cancer incidence, chemotherapy treatment and G-CSF utilization data, and G-CSF sales and pricing information. Patient travel times, plus time spent in the clinic, were estimated from patient survey responses collected during a large prospective cohort study (the Prospective Study of the Relationship between Chemotherapy Dose Intensity and Mortality in Early-Stage (I-III) Breast Cancer Patients). Economic models were created to estimate travel costs, patient co-pays and the economic value of time spent by patients and caregivers in G-CSF clinic visits. Estimated total clinic visits for prophylactic G-CSF injections in the US were 1.713 million for 2015. Mean (SD) travel time per visit was 62 (50) min; mean (SD) time in the clinic was 41 (68) min. Total annual time for travel to and from the clinic, plus time at the clinic, is estimated at 4.9 million hours, with patient and caregiver time valued at $91.8 million ($228 per patient). The estimated cumulative annual travel distance for G-CSF visits is 60.2 million miles, with a total transportation cost of $28.9 million ($72 per patient). Estimated patient co-pays were $61.1 million, ∼$36 per visit, $152 per patient. The total yearly economic impact on patients and caregivers is $182 million, ∼$450 per patient. Data to support model parameters were limited. Study estimates are sensitive to the assumptions used. The burden of clinic visits for G-CSF therapy is a significant addition to the total economic burden borne by cancer patients and their families.

  10. Inhibition of colony-stimulating factor 1 receptor early in disease ameliorates motor deficits in SCA1 mice.

    Qu, Wenhui; Johnson, Andrea; Kim, Joo Hyun; Lukowicz, Abigail; Svedberg, Daniel; Cvetanovic, Marija

    2017-05-25

    Polyglutamine (polyQ) expansion in the protein Ataxin-1 (ATXN1) causes spinocerebellar ataxia type 1 (SCA1), a fatal dominantly inherited neurodegenerative disease characterized by motor deficits, cerebellar neurodegeneration, and gliosis. Currently, there are no treatments available to delay or ameliorate SCA1. We have examined the effect of depleting microglia during the early stage of disease by using PLX, an inhibitor of colony-stimulating factor 1 receptor (CSFR1), on disease severity in a mouse model of SCA1. Transgenic mouse model of SCA1, ATXN1[82Q] mice, and wild-type littermate controls were treated with PLX from 3 weeks of age. The effects of PLX on microglial density, astrogliosis, motor behavior, atrophy, and gene expression of Purkinje neurons were examined at 3 months of age. PLX treatment resulted in the elimination of 70-80% of microglia from the cerebellum of both wild-type and ATXN1[82Q] mice. Importantly, PLX ameliorated motor deficits in SCA1 mice. While we have not observed significant improvement in the atrophy or disease-associated gene expression changes in Purkinje neurons upon PLX treatment, we have detected reduced expression of pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) and increase in the protein levels of wild-type ataxin-1 and post-synaptic density protein 95 (PSD95) that may help improve PN function. A decrease in the number of microglia during an early stage of disease resulted in the amelioration of motor deficits in SCA1 mice.

  11. Granulocyte-colony stimulating factor and umbilical cord blood cell transplantation: Synergistic therapies for the treatment of traumatic brain injury

    Michael G Liska

    2017-01-01

    Full Text Available Traumatic brain injury (TBI is now characterized as a progressive, degenerative disease and continues to stand as a prevalent cause of death and disability. The pathophysiology of TBI is complex, with a variety of secondary cell death pathways occurring which may persist chronically following the initial cerebral insult. Current therapeutic options for TBI are minimal, with surgical intervention or rehabilitation therapy existing as the only viable treatments. Considering the success of stem-cell therapies in various other neurological diseases, their use has been proposed as a potential potent therapy for patients suffering TBI. Moreover, stem cells are highly amenable to adjunctive use with other therapies, providing an opportunity to overcome the inherent limitations of using a single therapeutic agent. Our research has verified this additive potential by demonstrating the efficacy of co-delivering human umbilical cord blood (hUCB cells with granulocyte-colony stimulating factor (G-CSF in a murine model of TBI, providing encouraging results which support the potential of this approach to treat patients suffering from TBI. These findings justify ongoing research toward uncovering the mechanisms which underlie the functional improvements exhibited by hUCB + G-CSF combination therapy, thereby facilitating its safe and effect transition into the clinic. This paper is a review article. Referred literature in this paper has been listed in the reference section. The datasets supporting the conclusions of this article are available online by searching various databases, including PubMed. Some original points in this article come from the laboratory practice in our research center and the authors' experiences.

  12. Role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in gastric ulcer healing in mice.

    Kawahara, Y; Nakase, Y; Isomoto, Y; Matsuda, N; Amagase, K; Kato, S; Takeuchi, K

    2011-08-01

    We examined the role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in the healing of gastric ulcers in mice. Male M-CSF-deficient (op/op) and M-CSF-expressing heterozygote (+/?) mice were used. Gastric ulcers were induced by thermal cauterization under ether anesthesia, and healing was observed for 14 days after ulceration. The numbers of macrophages and microvessels in the gastric mucosa were determined immunohistochemically with anti-CD68 and anti-CD31 antibodies, respectively. Expression of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF) mRNA was determined via real-time reverse transcription-polymerase chain reaction (RT-PCR), and the mucosal content of prostaglandin (PG) E(2) was determined via enzyme immunoassay on day 10 after ulceration. The healing of gastric ulcers was significantly delayed in op/op mice compared with +/? mice. Further, significantly fewer macrophages were observed in the normal gastric mucosa of op/op mice than in +/? mice. Ulcer induction caused a marked accumulation of macrophages around the ulcer base in +/? mice, but this response was attenuated in op/op mice. The mucosal PGE(2) content as well as the expression of COX-2, VEGF, and TNF-α mRNA were all upregulated in the ulcerated area of +/? mice but significantly suppressed in op/op mice. The degree of vascularization in the ulcerated area was significantly lower in op/op mice than in +/? mice. Taken together, these results suggest that M-CSF-dependent macrophages play an important role in the healing of gastric ulcers, and that this action may be associated with angiogenesis promoted by upregulation of COX-2/PGE(2) production.

  13. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  14. Macrophage colony-stimulating factor and its receptor signaling augment glycated albumin-induced retinal microglial inflammation in vitro

    Jiang Chun H

    2011-01-01

    Full Text Available Abstract Background Microglial activation and the proinflammatory response are controlled by a complex regulatory network. Among the various candidates, macrophage colony-stimulating factor (M-CSF is considered an important cytokine. The up-regulation of M-CSF and its receptor CSF-1R has been reported in brain disease, as well as in diabetic complications; however, the mechanism is unclear. An elevated level of glycated albumin (GA is a characteristic of diabetes; thus, it may be involved in monocyte/macrophage-associated diabetic complications. Results The basal level of expression of M-CSF/CSF-1R was examined in retinal microglial cells in vitro. Immunofluorescence, real-time PCR, immunoprecipitation, and Western blot analyses revealed the up-regulation of CSF-1R in GA-treated microglial cells. We also detected increased expression and release of M-CSF, suggesting that the cytokine is produced by activated microglia via autocrine signaling. Using an enzyme-linked immunosorbent assay, we found that GA affects microglial activation by stimulating the release of tumor necrosis factor-α and interleukin-1β. Furthermore, the neutralization of M-CSF or CSF-1R with antibodies suppressed the proinflammatory response. Conversely, this proinflammatory response was augmented by the administration of M-CSF. Conclusions We conclude that GA induces microglial activation via the release of proinflammatory cytokines, which may contribute to the inflammatory pathogenesis of diabetic retinopathy. The increased microglial expression of M-CSF/CSF-1R not only is a response to microglial activation in diabetic retinopathy but also augments the microglial inflammation responsible for the diabetic microenvironment.

  15. Purity assessment of recombinant human granulocyte colony-stimulating factor in finished drug product by capillary zone electrophoresis.

    Benković, Goran; Skrlin, Ana; Madić, Tomislav; Debeljak, Zeljko; Medić-Šarić, Marica

    2014-09-01

    Current methods for determination of impurities with different charge-to-volume ratio are limited especially in terms of sensitivity and precision. The main goal of this research was to establish a quantitative method for determination of impurities with charges differing from that of recombinant human granulocyte colony-stimulating factor (rhG-CSF, filgrastim) with superior precision and sensitivity compared to existing methods. A CZE method has been developed, optimized, and validated for a purity assessment of filgrastim in liquid pharmaceutical formulations. Optimal separation of filgrastim from the related impurities with different charges was achieved on a 50 μm id fused-silica capillary of a total length of 80.5 cm. A BGE that contains 100 mM phosphoric acid adjusted to pH 7.0 with triethanolamine was used. The applied voltage was 20 kV while the temperature was maintained at 25°C. UV detection was set to 200 nm. Method was validated in terms of selectivity/specificity, linearity, precision, LOD, LOQ, stability, and robustness. Linearity was observed in the concentration range of 6-600 μg/mL and the LOQ was determined to be 0.3% relative to the concentration of filgrastim of 0.6 mg/mL. Other validation parameters were also found to be acceptable; thus the method was successfully applied for a quantitative purity assessment of filgrastim in a finished drug product. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Is febrile neutropenia prophylaxis with granulocyte-colony stimulating factors economically justified for adjuvant TC chemotherapy in breast cancer?

    Skedgel, Chris; Rayson, Daniel; Younis, Tallal

    2016-01-01

    Febrile neutropenia (FN) during adjuvant chemotherapy is associated with morbidity, mortality risk, and substantial cost, and subsequent chemotherapy dose reductions may result in poorer outcomes. Patients at high risk of, or who develop FN, often receive prophylaxis with granulocyte colony-stimulating factors (G-CSF). We investigated whether different prophylaxis strategies with G-CSF offered favorable value-for-money. We developed a decision model to estimate the short- and long-term costs and outcomes of a hypothetical cohort of women with breast cancer receiving adjuvant taxotere + cyclophosphamide (TC) chemotherapy. The short-term phase estimated upfront costs and FN risks with adjuvant TC chemotherapy without G-CSF prophylaxis (i.e., chemotherapy dose reductions) as well as with secondary and primary G-CSF prophylaxis strategies. The long-term phase estimated the expected costs and quality-adjusted life years (QALYs) for patients who completed adjuvant TC chemotherapy with or without one or more episodes of FN. Secondary G-CSF was associated with lower costs and greater QALY gains than a no G-CSF strategy. Primary G-CSF appears likely to be cost-effective relative to secondary G-CSF at FN rates greater than 28%, assuming some loss of chemotherapy efficacy at lower dose intensities. The cost-effectiveness of primary vs. secondary G-CSF was sensitive to FN risk and mortality, and loss of chemotherapy efficacy following FN. Secondary G-CSF is more effective and less costly than a no G-CSF strategy. Primary G-CSF may be justified at higher willingness-to-pay thresholds and/or higher FN risks, but this threshold FN risk appears to be higher than the 20% rate recommended by current clinical guidelines.

  17. Granulocyte Colony-Stimulating Factor Combined with Methylprednisolone Improves Functional Outcomes in Rats with Experimental Acute Spinal Cord Injury

    William Gemio Jacobsen Teixeira

    2018-02-01

    Full Text Available OBJECTIVES: To evaluate the effects of combined treatment with granulocyte colony-stimulating factor (G-CSF and methylprednisolone in rats subjected to experimental spinal cord injury. METHODS: Forty Wistar rats received a moderate spinal cord injury and were divided into four groups: control (no treatment; G-CSF (G-CSF at the time of injury and daily over the next five days; methylprednisolone (methylprednisolone for 24 h; and G-CSF/Methylprednisolone (methylprednisolone for 24 h and G-CSF at the time of injury and daily over the next five days. Functional evaluation was performed using the Basso, Beattie and Bresnahan score on days 2, 7, 14, 21, 28, 35 and 42 following injury. Motor-evoked potentials were evaluated. Histological examination of the spinal cord lesion was performed immediately after euthanasia on day 42. RESULTS: Eight animals were excluded (2 from each group due to infection, a normal Basso, Beattie and Bresnahan score at their first evaluation, or autophagy, and 32 were evaluated. The combination of methylprednisolone and G-CSF promoted greater functional improvement than methylprednisolone or G-CSF alone (p<0.001. This combination also exhibited a synergistic effect, with improvements in hyperemia and cellular infiltration at the injury site (p<0.001. The groups displayed no neurophysiological differences (latency p=0.85; amplitude p=0.75. CONCLUSION: Methylprednisolone plus G-CSF promotes functional and histological improvements superior to those achieved by either of these drugs alone when treating spinal cord contusion injuries in rats. Combining the two drugs did have a synergistic effect.

  18. Cost-benefit analysis of prophylactic granulocyte colony-stimulating factor during CHOP antineoplastic therapy for non-Hodgkin's lymphoma.

    Dranitsaris, G; Altmayer, C; Quirt, I

    1997-06-01

    Several randomised comparative trials have shown that granulocyte colony-stimulating factor (G-CSF) reduces the duration of neutropenia, hospitalisation and intravenous antibacterial use in patients with cancer who are receiving high-dosage antineoplastic therapy. However, one area that has received less attention is the role of G-CSF in standard-dosage antineoplastic regimens. One such treatment that is considered to have a low potential for inducing fever and neutropenia is the CHOP regimen (cyclophosphamide, doxorubicin, vincristine and prednisone) for non-Hodgkin's lymphoma. We conducted a cost-benefit analysis from a societal perspective in order to estimate the net cost or benefit of prophylactic G-CSF in this patient population. This included direct costs for hospitalisation with antibacterial support, as well as indirect societal costs, such as time off work and antineoplastic therapy delays secondary to neutropenia. The findings were then tested by a comprehensive sensitivity analysis. The administration of G-CSF at a dosage of 5 micrograms/kg/day for 11 doses following CHOP resulted in an overall net cost of $Can1257. In the sensitivity analysis, lowering the G-CSF dosage to 2 micrograms/kg/day generated a net benefit of $Can6564, indicating a situation that was cost saving to society. The results of the current study suggest that the use of G-CSF in patients receiving CHOP antineoplastic therapy produces a situation that is close to achieving cost neutrality. However, low-dosage (2 micrograms/kg/day) G-CSF is an economically attractive treatment strategy because it may result in overall savings to society.

  19. Macrophage colony-stimulating factor receptor marks and regulates a fetal myeloid-primed B-cell progenitor in mice.

    Zriwil, Alya; Böiers, Charlotta; Wittmann, Lilian; Green, Joanna C A; Woll, Petter S; Jacobsen, Sten Eirik W; Sitnicka, Ewa

    2016-07-14

    Although it is well established that unique B-cell lineages develop through distinct regulatory mechanisms during embryonic development, much less is understood about the differences between embryonic and adult B-cell progenitor cells, likely to underpin the genetics and biology of infant and childhood PreB acute lymphoblastic leukemia (PreB-ALL), initiated by distinct leukemia-initiating translocations during embryonic development. Herein, we establish that a distinct subset of the earliest CD19(+) B-cell progenitors emerging in the E13.5 mouse fetal liver express the colony-stimulating factor-1 receptor (CSF1R), previously thought to be expressed, and play a lineage-restricted role in development of myeloid lineages, and macrophages in particular. These early embryonic CSF1R(+)CD19(+) ProB cells also express multiple other myeloid genes and, in line with this, possess residual myeloid as well as B-cell, but not T-cell lineage potential. Notably, these CSF1R(+) myeloid-primed ProB cells are uniquely present in a narrow window of embryonic fetal liver hematopoiesis and do not persist in adult bone marrow. Moreover, analysis of CSF1R-deficient mice establishes a distinct role of CSF1R in fetal B-lymphopoiesis. CSF1R(+) myeloid-primed embryonic ProB cells are relevant for infant and childhood PreB-ALLs, which frequently have a bi-phenotypic B-myeloid phenotype, and in which CSF1R-rearrangements have recently been reported. © 2016 by The American Society of Hematology.

  20. Adrenaline administration promotes the efficiency of granulocyte colony stimulating factor-mediated hematopoietic stem and progenitor cell mobilization in mice.

    Chen, Chong; Cao, Jiang; Song, Xuguang; Zeng, Lingyu; Li, Zhenyu; Li, Yong; Xu, Kailin

    2013-01-01

    A high dose of granulocyte colony stimulating factor (G-CSF) is widely used to mobilize hematopoietic stem and progenitor cells (HSPC), but G-CSF is relatively inefficient and may cause adverse effects. Recently, adrenaline has been found to play important roles in HSPC mobilization. In this study, we explored whether adrenaline combined with G-CSF could induce HSPC mobilization in a mouse model. Mice were treated with adrenaline and either a high or low dose of G-CSF alone or in combination. Peripheral blood HSPC counts were evaluated by flow cytometry. Levels of bone marrow SDF-1 were measured by ELISA, the transcription of CXCR4 and SDF-1 was measured by real-time RT-PCR, and CXCR4 protein was detected by Western blot. Our results showed that adrenaline alone fails to mobilize HSPCs into the peripheral blood; however, when G-CSF and adrenaline are combined, the WBC counts and percentages of HSPCs are significantly higher compared to those in mice that received G-CSF alone. The combined use of adrenaline and G-CSF not only accelerated HSPC mobilization, but also enabled the efficient mobilization of HSPCs into the peripheral blood at lower doses of G-CSF. Adrenaline/G-CSF treatment also extensively downregulated levels of SDF-1 and CXCR4 in mouse bone marrow. These results demonstrated that adrenaline combined with G-CSF can induce HSPC mobilization by down-regulating the CXCR4/SDF-1 axis, indicating that the use of adrenaline may enable the use of reduced dosages or durations of G-CSF treatment, minimizing G-CSF-associated complications.

  1. Extension of Tissue Plasminogen Activator Treatment Window by Granulocyte-Colony Stimulating Factor in a Thromboembolic Rat Model of Stroke

    Ike C. dela Peña

    2018-05-01

    Full Text Available When given beyond 4.5 h of stroke onset, tissue plasminogen activator (tPA induces deleterious side effects in the ischemic brain, notably, hemorrhagic transformation (HT. We examined the efficacy of granulocyte-colony stimulating factor (G-CSF in reducing delayed tPA-induced HT, cerebral infarction, and neurological deficits in a thromboembolic (TE stroke model, and whether the effects of G-CSF were sustained for longer periods of recovery. After stroke induction, rats were given intravenous saline (control, tPA (10 mg/kg, or G-CSF (300 μg/kg + tPA 6 h after stroke. We found that G-CSF reduced delayed tPA-associated HT by 47%, decreased infarct volumes by 33%, and improved motor and neurological deficits by 15% and 25%, respectively. It also prevented delayed tPA treatment-induced mortality by 46%. Immunohistochemistry showed 1.5- and 1.8-fold enrichment of the endothelial progenitor cell (EPC markers CD34+ and VEGFR2 in the ischemic cortex and striatum, respectively, and 1.7- and 2.8-fold increases in the expression of the vasculogenesis marker von Willebrand factor (vWF in the ischemic cortex and striatum, respectively, in G-CSF-treated rats compared with tPA-treated animals. Flow cytometry revealed increased mobilization of CD34+ cells in the peripheral blood of rats given G-CSF. These results corroborate the efficacy of G-CSF in enhancing the therapeutic time window of tPA for stroke treatment via EPC mobilization and enhancement of vasculogenesis.

  2. Combined measurement of growth and differentiation in suspension cultures of purified human CD34-positive cells enables a detailed analysis of myelopoiesis

    Kerst, J. M.; Slaper-Cortenbach, I. C.; von dem Borne, A. E.; van der Schoot, C. E.; van Oers, R. H.

    1992-01-01

    In this study we have made a detailed analysis of growth factor (granulocyte-macrophage colony-stimulating factor [GM-CSF], granulocyte colony-stimulating factor [G-CSF], and macrophage colony-stimulating factor [M-CSF])-induced proliferation and differentiation of highly purified CD34+ committed

  3. Design of Recombinant Stem Cell Factor macrophage Colony Stimulating Factor Fusion Proteins and their Biological Activity In Vitro

    Chen, Tao; Yang, Jie; Wang, Yuelang; Zhan, Chenyang; Zang, Yuhui; Qin, Junchuan

    2005-05-01

    Stem cell factor (SCF) and macrophage colony stimulating factor (M-CSF) can act in synergistic way to promote the growth of mononuclear phagocytes. SCF-M-CSF fusion proteins were designed on the computer using the Homology and Biopolymer modules of the software packages InsightII. Several existing crystal structures were used as templates to generate models of the complexes of receptor with fusion protein. The structure rationality of the fusion protein incorporated a series of flexible linker peptide was analyzed on InsightII system. Then, a suitable peptide GGGGSGGGGSGG was chosen for the fusion protein. Two recombinant SCF-M-CSF fusion proteins were generated by construction of a plasmid in which the coding regions of human SCF (1-165aa) and M-CSF (1-149aa) cDNA were connected by this linker peptide coding sequence followed by subsequent expression in insect cell. The results of Western blot and activity analysis showed that these two recombinant fusion proteins existed as a dimer with a molecular weight of 84 KD under non-reducing conditions and a monomer of 42 KD at reducing condition. The results of cell proliferation assays showed that each fusion protein induced a dose-dependent proliferative response. At equimolar concentration, SCF/M-CSF was about 20 times more potent than the standard monomeric SCF in stimulating TF-1 cell line growth, while M-CSF/SCF was 10 times of monomeric SCF. No activity difference of M-CSF/SCF or SCF/M-CSF to M-CSF (at same molar) was found in stimulating the HL-60 cell linear growth. The synergistic effect of SCF and M-CSF moieties in the fusion proteins was demonstrated by the result of clonogenic assay performed with human bone mononuclear, in which both SCF/M-CSF and M-CSF/SCF induced much higher number of CFU-M than equimolar amount of SCF or M-CSF or that of two cytokines mixture.

  4. Granulocyte Colony-Stimulating Factor Use after Autologous Peripheral Blood Stem Cell Transplantation: Comparison of Two Practices.

    Singh, Amrita D; Parmar, Sapna; Patel, Khilna; Shah, Shreya; Shore, Tsiporah; Gergis, Usama; Mayer, Sebastian; Phillips, Adrienne; Hsu, Jing-Mei; Niesvizky, Ruben; Mark, Tomer M; Pearse, Roger; Rossi, Adriana; van Besien, Koen

    2018-02-01

    Administration of granulocyte colony-stimulating factor (G-CSF) after autologous peripheral blood stem cell transplantation (PBSCT) is generally recommended to reduce the duration of severe neutropenia; however, data regarding the optimal timing of G-CSFs post-transplantation are limited and conflicting. This retrospective study was performed at NewYork-Presbyterian/Weill Cornell Medical Center between November 5, 2013, and August 9, 2016, of adult inpatient autologous PBSCT recipients who received G-CSF empirically starting on day +5 (early) versus on those who received G-CSF on day +12 only if absolute neutrophil count (ANC) was ANC-driven). G-CSF was dosed at 300 µg in patients weighing ANC-driven (n = 50) G-CSF regimen. Patient and transplantation characteristics were comparable in the 2 groups. In the ANC-driven group, 24% (n = 12) received G-CSF on day +12 and 60% (n = 30) started G-CSF earlier due to febrile neutropenia or at the physician's discretion, 6% (n = 3) started after day +12 at the physician's discretion, and 10% (n = 5) did not receive any G-CSF. The median start day of G-CSF therapy was day +10 in the ANC-driven group versus day +5 in the early group (P ANC-driven group (P = .07). There were no significant between-group differences in time to platelet engraftment, 1-year relapse rate, or 1-year overall survival. The incidence of febrile neutropenia was 74% in the early group versus 90% in the ANC-driven group (P = .04); however, there was no significant between-group difference in the incidence of positive bacterial cultures or transfer to the intensive care unit. The duration of G-CSF administration until neutrophil engraftment was 6 days in the early group versus 3 days in the ANC-driven group (P ANC-driven group (P = .28). Our data show that early initiation of G-CSF (on day +5) and ANC-driven initiation of G-CSF following autologous PBSCT were associated with a similar time to neutrophil engraftment

  5. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-01-01

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with posit...

  6. Effect of granulocyte colony-stimulating factor on murine thymic emigration and subsets reconstitution after a sublethal dose of irradiation

    Zhao Hongxia; Guo Mei; Sun Xuedong; Ai Huisheng

    2011-01-01

    Objective: To investigate the effects of recombinant human granulocyte colony stimulating factor (G-CSF) on murine thymic emigration and subsets reconstitution after a sublethal dose of irradiation. Methods: Female BALB/c mice were irradiated with a 6.0 Gy of γ-ray total-body irradiation and then randomly divided into GCSF group and control group. For mice in the GCSF group, recombinant human G-CSF 100 μg · kg -1 · d -1 was injected subcutaneously once daily for 14 continuous days and mice in the control group were given the same volume of phosphate buffered solution (PBS). At 7, 14, 21 and 28 days later, mice were killed and thymus mononuclear cell suspension were analyzed by flow cytometry for the percentage of the four stages of thymic CD4 - CD8 - double negative cells (DN1-4) and the CD4 + CD8 + double positive ( CD4 + CD8 + DP), CD4 + CD8 - single positive (CD4 + SP), CD4 - CD8 + single positive cells (CD8 + SP).Real-time PCR was used for detection and quantitation of murine T cell receptor rearrangement excision circles (sjTRECs) of the thymic cells of 30 and 60 d after irradiation. Results: The percentage of thymic DN1 cells in GCSF group was significantly higher than that of the control group 7 d after irradiation (t=9.59, P<0.05). 21 d later, the proportion of thymic DN3 and DN4 cells were higher than those of the control group (t=16.37, 7.6, P<0.05). The percentage of thymic CD4 + CD8 + DP cells decreased 7 d after irradiation,increased at 14 d, decreased again at 21 days,and then got a permanent recover. The percentage of thymic CD4 + CD8 + DP cells in the GCSF group recovered to normal and was significantly higher than that of the control group 28 days after irradiation (t=12.22, P<0.05). The percentage of thymic CD8 + SP cells of the GCSF group was significantly higher than that of the control group 21 d after irradiation (t=3.77, P<0.05), while G-CSF had no obvious influence on the percentage of the thymic CD4 + SP cells. The sjTRECs copies in the

  7. Increased Frequency of Peripheral B and T Cells Expressing Granulocyte Monocyte Colony-Stimulating Factor in Rheumatoid Arthritis Patients

    Anastasia Makris

    2018-01-01

    Full Text Available ObjectivesGranulocyte monocyte colony-stimulating factor (GM-CSF is currently considered a crucial inflammatory mediator and a novel therapeutic target in rheumatoid arthritis (RA, despite the fact that its precise cellular sources remain uncertain. We studied the expression of GM-CSF in peripheral lymphocytes from RA patients and its change with antirheumatic therapies.MethodsIntracellular GM-CSF expression was assessed by flow cytometry in stimulated peripheral B (CD19+ and T (CD3+ cells from RA patients (n = 40, disease (n = 31 including osteoarthritis n = 15, psoriatic arthritis n = 10, and systemic rheumatic diseases n = 6 and healthy (n = 16 controls. The phenotype of GM-CSF+ B cells was assessed as well as longitudinal changes in GM-CSF+ lymphocytes during methotrexate (MTX, n = 10 or anti-tumor necrosis factor (anti-TNF, n = 10 therapy.ResultsAmong untreated RA patients with active disease (Disease Activity Score 28-C-reactive protein = 5.6 ± 0.89 an expanded population of peripheral GM-CSF+ B (4.1 ± 2.2% and T (3.4 ± 1.6% cells was detected compared with both disease (1.7 ± 0.9%, p < 0.0001 and 1.7 ± 1.3%, p < 0.0001, respectively and healthy (0.3 ± 0.2%, p < 0.0001 and 0.6 ± 0.6%, p < 0.0001 controls. RA GM-CSF+ B cells displayed more commonly a plasmablast or transitional phenotype (37.12 ± 18.34% vs. 14.26 ± 9.46%, p = 0.001 and 30.49 ± 15.04% vs. 2.45 ± 1.84%, p < 0.0001, respectively and less a memory phenotype (21.46 ± 20.71% vs. 66.99 ± 16.63%, p < 0.0001 compared to GM-CSF− cells. GM-CSF expression in RA patients did not correlate to disease duration, activity or serological status. Anti-TNF treatment led to a statistically significant decrease in GM-CSF+ B and T cells while MTX had no significant effect.DiscussionThis is the first study showing an expanded population of GM-CSF+ B and T lymphocytes

  8. [Effect of lipopolysaccharides from Porphyromonas endodontalis on the expression of macrophage colony stimulating factor in mouse osteoblasts].

    Yu, Yaqiong; Qiu, Lihong; Guo, Jiajie; Qu, Liu; Xu, Liya; Zhong, Ming

    2014-09-01

    To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of macrophage colony stimulating factor (M-CSF) mRNA and protein in MC3T3-E1 cells and the role of nucler factor-κB (NF-κB) in the process. MC3T3-E1 cells were treated with different concentrations of Pe-LPS (0-50 mg/L) and 10 mg/L Pe-LPS for different hours (0-24 h). The expression of M-CSF mRNA and protein was detected by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunoadsordent assay (ELISA). The cells untreated by Pe-LPS served as control. The expression of M- CSF mRNA and protein was also detected in 10 mg/L Pe- LPS treated MC3T3-E1 cells after pretreated with BAY 11-7082 for 1 h, a special NF-κB inhibitor. The groups were divided as follows, control group, BAY group (10 µmol/L BAY 11-7082 treated alone MC3T3-E1 cells), Pe-LPS group (10 mg/L Pe-LPS stimulated MC3T3-E1 cells for 6 h), BAY combine with Pe-LPS group (10 µmol/L BAY 11-7082 pretreated cells for 1 h and 10 mg/L of Pe-LPS stimulated MC3T3-E1 cells for 6 h). The level of M- CSF mRNA and protein increased significantly after treatment with different concentrations of Pe-LPS (0-50 mg/L), which indicated that Pe-LPS induced osteoblasts to express M-CSF mRNA and protein in dose dependent manners. The expression of M-CSF protein increased from (35 ± 2) ng/L (control group) to (170 ± 8) ng/L (50 mg/L group). Maximal induction of M-CSF mRNA expression was found in the MC3T3- E1 cells treated with 10 mg/L Pe-LPS for 6 h. After 6 h, the expression of M-CSF mRNA decreased gradually. The expression of M-CSF protein also increased with the treatment of 10 mg/L Pe-LPS for 10 h [(122 ± 4) ng/L]. After 10 h, the expression of M-CSF protein decreased gradually. The mRNA and proteins of M-CSF decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. There was no significant difference between BAY group and the control. Pe-LPS may induce

  9. Native low-density lipoprotein uptake by macrophage colony-stimulating factor-differentiated human macrophages is mediated by macropinocytosis and micropinocytosis.

    Anzinger, Joshua J; Chang, Janet; Xu, Qing; Buono, Chiara; Li, Yifu; Leyva, Francisco J; Park, Bum-Chan; Greene, Lois E; Kruth, Howard S

    2010-10-01

    To examine the pinocytotic pathways mediating native low-density lipoprotein (LDL) uptake by human macrophage colony-stimulating factor-differentiated macrophages (the predominant macrophage phenotype in human atherosclerotic plaques). We identified the kinase inhibitor SU6656 and the Rho GTPase inhibitor toxin B as inhibitors of macrophage fluid-phase pinocytosis of LDL. Assessment of macropinocytosis by time-lapse microscopy revealed that both drugs almost completely inhibited macropinocytosis, although LDL uptake and cholesterol accumulation by macrophages were only partially inhibited (approximately 40%) by these agents. Therefore, we investigated the role of micropinocytosis in mediating LDL uptake in macrophages and identified bafilomycin A1 as an additional partial inhibitor (approximately 40%) of macrophage LDL uptake that targeted micropinocytosis. When macrophages were incubated with both bafilomycin A1 and SU6656, inhibition of LDL uptake was additive (reaching 80%), showing that these inhibitors target different pathways. Microscopic analysis of fluid-phase uptake pathways in these macrophages confirmed that LDL uptake occurs through both macropinocytosis and micropinocytosis. Our findings show that human macrophage colony-stimulating factor-differentiated macrophages take up native LDL by macropinocytosis and micropinocytosis, underscoring the importance of both pathways in mediating LDL uptake by these cells.

  10. Mobilization and collection of CD34+ cells for autologous transplantation of peripheral blood hematopoietic progenitor cells in children: analysis of two different granulocyte-colony stimulating factor doses

    Kátia Aparecida de Brito Eid

    2015-06-01

    Full Text Available Introduction: The use of peripheral hematopoietic progenitor cells (HPCs is the cell choice in autologous transplantation. The classic dose of granulocyte-colony stimulating factor (G- CSF for mobilization is a single daily dose of 10 µg/kg of patient body weight. There is a theory that higher doses of granulocyte-colony stimulating factor applied twice daily could increase the number of CD34+ cells collected in fewer leukapheresis procedures. Objective: The aim of this study was to compare a fractionated dose of 15 µg G-CSF/kg of body weight and the conventional dose of granulocyte-colony stimulating factor in respect to the number of leukapheresis procedures required to achieve a minimum collection of 3 × 106 CD34+ cells/kg body weight. Methods: Patients were divided into two groups: Group 10 - patients who received a single daily dose of 10 µg G-CSF/kg body weight and Group 15 - patients who received a fractioned dose of 15 µg G-CSF/kg body weight daily. The leukapheresis procedure was carried out in an automated cell separator. The autologous transplantation was carried out when a minimum number of 3 × 106 CD34+ cells/kg body weight was achieved. Results: Group 10 comprised 39 patients and Group 15 comprised 26 patients. A total of 146 apheresis procedures were performed: 110 (75.3% for Group 10 and 36 (24.7% for Group 15. For Group 10, a median of three (range: 1-7 leukapheresis procedures and a mean of 8.89 × 106 CD34+ cells/kg body weight (±9.59 were collected whereas for Group 15 the corresponding values were one (range: 1-3 and 5.29 × 106 cells/kg body weight (±4.95. A statistically significant difference was found in relation to the number of apheresis procedures (p-value <0.0001. Conclusions: To collect a minimum target of 3 × 106 CD34+ cells/kg body weight, the administration of a fractionated dose of 15 µg G-CSF/kg body weight significantly decreased the number of leukapheresis procedures performed.

  11. EFFECTIVENESS AND SAFETY OF RECOMBINANT HUMAN GRANULOCYTIC COLONY-STIMULATING FACTOR IN TREATMENT OF GRANULOCYTOPENIA DEVELOPED DURING IMMUNOSUPPRESSIVE THERAPY IN PATIENTS WITH JUVENILE RHEUMATOID ARTHRITIS

    E.I. Alexeeva

    2010-01-01

    Full Text Available Treatment of patients with severe clinical course of juvenile rheumatoid arthritis (JRA is difficult problem. During the last years genetically engineered biological drugs are used equally with traditional immunosuppressive agents in treatment of severe forms of juvenile arthritis. High effectiveness of these drugs can be accompanied with development of unfavorable effects, for example, febrile neutropenia. The article presents results of a study of effectiveness and safety of recombinant human granulocytic colony-stimulating factor — filgrastim (Leucostim — in treatment of granulocytopenia developed during immunosuppressive therapy in 16 patients with JRA. It was shown that administration of filgrastim arrests leucopenia in 100% of patients and granulocytopenia — in 93% of patients in 24 hours after first injection. High effectiveness of drug was combined with good tolerability and safety.Key words: children, treatment, granulocytopenia, filgrastim, juvenile rheumatoid arthritis.(Voprosy sovremennoi pediatrii — Current Pediatrics. – 2010;9(4:94-100

  12. Febrile Neutropenia Risk Assessment and Granulocyte-Colony Stimulating Factor Support in Patients with Diffuse Large B Cell Lymphoma Receiving R-CHOP Regimens

    Salar, Antonio; Haioun, Corinne; Rossi, Francesca Gaia

    2009-01-01

    BACKGROUND: ASCO and EORTC guidelines recommend granulocyte colony-stimulating factor (G-CSF) primary prophylaxis for cancer patients with a ≥20% overall risk of febrile neutropenia (FN), and to support delivery of dose-dense regimens. CHOP-like regimens (with rituximab [R]) are the current...... standard of care for the management of aggressive non-Hodgkin lymphoma (NHL), but they are often associated with significant myelosuppression. Neutropenic events, particularly febrile neutropenia (FN), can be life-threatening and may lead to dose delays or reductions that compromise the efficacy......-CSF primary prophylaxis. Across all cycles, 29% of R-CHOP-21 patients had an unplanned hospitalization, with neutropenia/FN being the main reason. Subsequently, 67% of patients achieved a relative dose intensity (RDI) of ≥90% of their planned treatment (with respect to cyclophosphamide, doxorubicin...

  13. Percutaneous implantation of peripheral blood mononuclear cells mobilized with granulocyte colony stimulating factor in osteoarthritis of the knee. First case reported in Cuba

    Baganet Cobas, Aymara Maria; Hernandez Ramirez, Porfirio; Fernandez Delgado, Norma

    2010-01-01

    The degenerative joint disease, also known as osteoarthrosis affects to 10% of elderlies aged 60. It is mainly characterized by pain in the involved joint, crepitation, morning stiff and a progressive limitation of movement of that joint leading to a partial or total wear of articular cartilage. The treatment of the knee osteoarthrosis is a great challenge. The recent advances in use of regenerative medicine suggest that adult stem cells could represent a promisor alternative in the treatment of this entity. In a female patient aged 61 presenting with knee osteoarthrosis authors placed a percutaneous implant of autologous mononuclear cells mobilized to peripheral blood by granulocyte colony-stimulating factor achieving a fast clinical and radiological improvement. This result suggests that the procedure used is a feasible, simple, safe and less expensive method for treatment of articular degenerative lesions

  14. Effects of bacterial lipopolysaccharide and X-irradiation on the production of colony-stimulating factor and the maintenance of granulopoiesis in bone marrow culture

    Izumi, H.; Miyanomae, T.; Tsurusawa, M.; Fujita, J.; Mori, K.

    1984-01-01

    Effects of bacterial lipopolysaccharide (LPS) and X-irradiation on CSF production and granulopoiesis in long-term bone marrow cultures were studied. Levels of colony-stimulating factor (CSF) increased soon after the refeeding of the culture, but the activity was undetectable at day 7. Addition of LPS induced a significant increase in CSF levels in the culture, followed by an elevated granulopoiesis. The increase in CSF levels was suppressed when culture medium that had been harvested at refeeding on day 7 was added. Although irradiation did not increase CSF production, granulopoiesis was markedly stimulated shortly after irradiation. Thus granulopoiesis in long-term bone marrow culture may also be regulated by humoral factors such as CSF, and the culture system may represent the in vivo response to haemopoietic stimuli. (author)

  15. Granulocyte Colony-stimulating Factor-primed Bone Marrow: An Excellent Stem-cell Source for Transplantation in Acute Myelocytic Leukemia and Chronic Myelocytic Leukemia

    Yuhang Li

    2015-01-01

    Full Text Available Background: Steady-state bone marrow (SS-BM and granulocyte colony-stimulating growth factor-primed BM/peripheral blood stem-cell (G-BM/G-PBSC are the main stem-cell sources used in allogeneic hematopoietic stem-cell transplantation. Here, we evaluated the treatment effects of SS-BM and G-BM/G-PBSC in human leucocyte antigen (HLA-identical sibling transplantation. Methods: A total of 226 patients (acute myelogenous leukemia-complete remission 1, chronic myelogenous leukemia-chronic phase 1 received SS-BM, G-BM, or G-PBSC from an HLA-identical sibling. Clinical outcomes (graft-versus-host disease [GVHD], overall survival, transplant-related mortality [TRM], and leukemia-free survival [LFS] were analyzed. Results: When compared to SS-BM, G-BM gave faster recovery time to neutrophil or platelet (P 0.05. Conclusions: G-CSF-primed bone marrow shared the advantages of G-PBSC and SS-BM. We conclude that G-BM is an excellent stem-cell source that may be preferable to G-PBSC or SS-BM in patients receiving HLA-identical sibling hematopoietic stem-cell transplantation.

  16. The Effect of Recombinant Granulocyte Colony-Stimulating Factor on Oral and Periodontal Manifestations in a Patient with Cyclic Neutropenia: A Case Report

    Sergio Matarasso

    2009-01-01

    Full Text Available Cyclic Neutropenia (CN is characterized by recurrent infections, fever, oral ulcerations, and severe periodontitis as result of the reduced host defences. The previous studies have established the effectiveness of recombinant granulocyte colony-stimulating factor (GCSF to increase the number and the function of neutrophils in the peripheral blood in this disease. In a 20-year-old Caucasian female with a diagnosis of cyclic neutropenia, oral clinical examination revealed multiple painful ulcerations of the oral mucosa, poor oral hygiene conditions, marginal gingivitis, and moderate periodontitis. The patient received a treatment with G-CSF (Pegfilgrastim, 6 mg/month in order to improve her immunological status. Once a month nonsurgical periodontal treatment was carefully performed when absolute neutrophil count (ANC was ≥500/L. The treatment with G-CSF resulted in a rapid increase of circulating neutrophils that, despite its short duration, leaded to a reduction in infection related events and the resolution of the multiple oral ulcerations. The disappearance of oral pain allowed an efficacy nonsurgical treatment and a normal tooth brushing that determined a reduction of probing depth (PD≤4 mm and an improvement of the oral hygiene conditions recorded at 6-month follow-up.

  17. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  18. Hematological remission and long term hematological control of acute myeloblastic leukemia induced and maintained by granulocyte-colony stimulating factor (G-CSF) therapy.

    Xavier, Luciana; Cunha, Manuel; Gonçalves, Cristina; Teixeira, Maria dos Anjos; Coutinho, Jorge; Ribeiro, António Carlos Pinto; Lima, Margarida

    2003-12-01

    We describe a case of a patient with CD34+, TdT+, CD13-, CD33-, MPO- undifferentiated acute leukemia who refused chemotherapy and who achieved complete hematological remission 14 months after the diagnosis, during a short course of granulocyte-colony stimulating factor (G-CSF) for neutropenia and life threatening infection. Relapse occurred approximately one year later and G-CSF was reintroduced, being maintained for 4 months, at a dose and frequency adapted to maintain normal blood counts, a complete hematological remission being achieved again. Five months after withdrawing the G-CSF therapy a second relapse was observed; G-CSF was tried again with success, resulting in a very good hematological response that was sustained by G-CSF maintenance therapy. One year latter there was the need of increasing the doses of G-CSF in order to obtain the same hematological effect, at same time blast cells acquired a more mature CD34+, TdT-, CD13+, CD33-, MPO+ myeloid phenotype. Finally, the patient developed progressive neutropenia, anemia, thrombocytopenia and acute leukemia in spite of G-CSF therapy, dying 64 months after initial diagnosis (50 months after starting G-CSF therapy) with overt G-CSF resistant acute myeloblastic leukemia (AML), after failure of conventional induction chemotherapy.

  19. A pilot cohort study of granulocyte colony-stimulating factor in the treatment of unresponsive thin endometrium resistant to standard therapies.

    Gleicher, N; Kim, A; Michaeli, T; Lee, H-J; Shohat-Tal, A; Lazzaroni, E; Barad, D H

    2013-01-01

    Is thin endometrium unresponsive to standard treatments expandable by intrauterine perfusion with granulocyte colony-stimulating factor (G-CSF)? This cohort study is supportive of the effectiveness of G-CSF in expanding chronically unresponsive endometria. In a previous small case series, we reported the successful off-label use of G-CSF in four consecutive patients, who had previously failed to expand their endometria beyond 6.9 mm with the use of standard treatments. In a prospective observational cohort pilot study over 18 months, we described 21 consecutive infertile women with endometria women had, based on age-specific FSH and anti-Müllerian hormone, an objective diagnosis of diminished ovarian reserve and had failed 2.0 ± 2.1 prior IVF cycles elsewhere. With 5.2 ± 1.9 days between G-CSF perfusions and embryo transfers, endometrial thickness increased from 6.4 ± 1.4 to 9.3 ± 2.1 mm (P inventors on a number of awarded and still pending U.S. patents, none related to the materials presented here. N.G. is on the board of a medically related company, not in any way associated with the data presented here.

  20. Effect of granulocyte colony stimulating EPC on cardiac function and myocardial energy expenditure in patients with heart failure after myocardial infarction.

    Zhao, Zilin; Luo, Jianchun; Ma, Lixian; Luo, Xia; Huang, Liangyan

    2015-01-01

    To study the changes of cardiac function and myocardial energy expenditure following treatment with granulocyte colony stimulating factor (G-CSF) in patients with heart failure after myocardial infarction. Thirty-eight patients with heart failure after myocardial infarction were randomized into G-CSF treatment group and control group. All the patients received conventional treatment (medication and interventional therapy), and the patients in treatment group were given additional G-CSF (600 μg/day) for 7 consecutive days. The plasma level of brain-type natriuretic peptide (BNP) and the number of endothelial progenitor cells (EPC) in the peripheral blood were detected before and at 7 days and 4 months after the treatment. The cardiac functions (LVEF, FS, LVIDs, PWTs, EDV, SV, ET) was evaluated by ultrasonic imaging before and at 2 weeks and 4 months after the treatment. The MEE and circumferential end-systolic wall stress (cESS) were calculated by correlation formula. The number of EPC was significantly higher in the treatment group than in the control group after the treatment especially at 7 days (Pexpenditure were improved in all the patients at 2 weeks and 4 months after the treatment, and the improvement was more obvious in the treatment group (Pexpenditure in patients with heart failure after myocardial infarction.

  1. Erythropoietin plus granulocyte colony-stimulating factor in the treatment of myelodysplastic syndromes. Identification of a subgroup of responders. The Spanish Erythropathology Group.

    Remacha, A F; Arrizabalaga, B; Villegas, A; Manteiga, R; Calvo, T; Julià, A; Fernández Fuertes, I; González, F A; Font, L; Juncà, J; del Arco, A; Malcorra, J J; Equiza, E P; de Mendiguren, B P; Romero, M

    1999-12-01

    Anemia leading to transfusion is probably the most important problem in patients with myelodysplastic syndromes (MDS). Human recombinant erythropoietin (rHuEpo) and granulocyte colony-stimulating factor (G-CSF) have been used to treat patients with anemia of MDS, but fewer than 50% respond. The aim of this work was to evaluate the benefit of rHuEpo +/- G-CSF treatment and to isolate the response predictive variables in a group of selected patients with MDS. A non-randomized multicenter trial was carried out in 32 patients with MDS. The inclusion criteria were age >= 18 years, refractory anemia (RA) or refractory anemia with ringed sideroblasts, Hb +1 (77% of cases responded). In contrast, when this score was <= 1 only 15 % of the cases responded. Use of the Scandinavian-American response score is to be recommended in a patient-oriented approach to treating MDS cases with the Epo and G-CSF. Treatment with rHuEpo and G-CSF is safe, its main drawback being its cost. However, a long-term study evaluating the regimen's cost-benefit ratio is warranted.

  2. Effect of granulocyte colony-stimulating factor treatment at a low dose but for a long duration in patients with coronary heart disease. A pilot study

    Suzuki, Koji; Nagashima, Kenshi; Arai, Masazumi

    2006-01-01

    In animal models, granulocyte colony-stimulating factor (G-CSF) improves post-infarct cardiac function. However, in pilot studies involving patients with angina and acute myocardial infarction (AMI), G-CSF at a high dose frequently induced coronary occlusion or restenosis, but those at a low dose showed no significant beneficial effect. We hypothesized that a low dose but long duration of G-CSF will have a beneficial effect without serious complications to patients with coronary heart disease. Forty-six patients with angina or AMI were randomly assigned into G-CSF and non-G-CSF control groups, respectively. Recombinant G-CSF was subcutaneously injected once a day for 10 days. The leukocyte counts in the peripheral blood were controlled at approximately 30,000/μl. One month later, a Thallium-201 single photon emission computed tomography revealed the increased percentage uptake and the reduced extent and severity scores in the G-CSF angina group. In the G-CSF AMI group, the curve between the ejection fraction and peak creatine kinase shifted significantly upward, compared with that of the non-G-CSF AMI group. Serious complications were not observed during the 6 months of observation. A low dose but long duration of G-CSF treatment may have a beneficial effect without any serious complications in patients with coronary heart disease. (author)

  3. Identification and in vitro characterization of novel nanobodies against human granulocyte colony-stimulating factor receptor to provide inhibition of G-CSF function.

    Bakherad, Hamid; Gargari, Seyed Latif Mousavi; Sepehrizadeh, Zargham; Aghamollaei, Hossein; Taheri, Ramezan Ali; Torshabi, Maryam; Yazdi, Mojtaba Tabatabaei; Ebrahimizadeh, Walead; Setayesh, Neda

    2017-09-01

    It has been shown that Granulocyte colony-stimulating factor (G-CSF) has a higher expression in malignant tumors, and anti-G-CSF therapy considerably decreases tumor growth, tumor vascularization and metastasis. Thus, blocking the signaling pathway of G-CSF could be beneficial in cancer therapy. This study is aimed at designing and producing a monoclonal nanobody that could act as an antagonist of G-CSF receptor. Nanobodies are the antigen binding fragments of camelid single-chain antibodies, also known as VHH. These fragments have exceptional properties which makes them ideal for tumor imaging and therapeutic applications. We have used our previously built nanobody phage libraries to isolate specific nanobodies to the G-CSF receptor. After a series of cross-reactivity and affinity experiments, two unique nanobodies were selected for functional analysis. Proliferation assay, real-time PCR and immunofluorescence assays were used to characterize these nanobodies. Finally, VHH26 nanobody that was able to specifically bind G-CSF receptor (G-CSF-R) on the surface of NFS60 cells and efficiently block G-CSF-R downstream signaling pathway in a dose-dependent manner was selected. This nanobody could be further developed into a valuable tool in tumor therapy and it forms a basis for additional studies in preclinical animal models. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Systemic granulocyte colony-stimulating factor (G-CSF) enhances wound healing in dystrophic epidermolysis bullosa (DEB): Results of a pilot trial.

    Fine, Jo-David; Manes, Becky; Frangoul, Haydar

    2015-07-01

    Chronic nonhealing wounds are the norm in patients with inherited epidermolysis bullosa (EB), especially those with dystrophic EB (DEB). A possible benefit in wound healing after subcutaneous treatment with granulocyte colony-stimulating factor (G-CSF) was suggested from an anecdotal report of a patient given this during stem cell mobilization before bone-marrow transplantation. We sought to determine whether benefit in wound healing in DEB skin might result after 6 daily doses of G-CSF and to confirm its safety. Patients were assessed for changes in total body blister and erosion counts, surface areas of selected wounds, and specific symptomatology after treatment. Seven patients with DEB (recessive, 6; dominant, 1) were treated daily with subcutaneous G-CSF (10 μg/kg/dose) and reevaluated on day 7. For all patients combined, median reductions of 75.5% in lesional size and 36.6% in blister/erosion counts were observed. When only the 6 responders were considered, there were median reductions of 77.4% and 38.8% of each of these measured parameters, respectively. No adverse side effects were noted. Limitations include small patient number, more than 1 DEB subtype included, and lack of untreated age-matched control subjects. Subcutaneous G-CSF may be beneficial in promoting wound healing in some patients with DEB when conventional therapies fail. Copyright © 2015 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  5. An Epstein-Barr virus encoded inhibitor of Colony Stimulating Factor-1 signaling is an important determinant for acute and persistent EBV infection.

    Makoto Ohashi

    2012-12-01

    Full Text Available Acute Epstein-Barr virus (EBV infection is the most common cause of Infectious Mononucleosis. Nearly all adult humans harbor life-long, persistent EBV infection which can lead to development of cancers including Hodgkin Lymphoma, Burkitt Lymphoma, nasopharyngeal carcinoma, gastric carcinoma, and lymphomas in immunosuppressed patients. BARF1 is an EBV replication-associated, secreted protein that blocks Colony Stimulating Factor 1 (CSF-1 signaling, an innate immunity pathway not targeted by any other virus species. To evaluate effects of BARF1 in acute and persistent infection, we mutated the BARF1 homologue in the EBV-related herpesvirus, or lymphocryptovirus (LCV, naturally infecting rhesus macaques to create a recombinant rhLCV incapable of blocking CSF-1 (ΔrhBARF1. Rhesus macaques orally challenged with ΔrhBARF1 had decreased viral load indicating that CSF-1 is important for acute virus infection. Surprisingly, ΔrhBARF1 was also associated with dramatically lower virus setpoints during persistent infection. Normal acute viral load and normal viral setpoints during persistent rhLCV infection could be restored by Simian/Human Immunodeficiency Virus-induced immunosuppression prior to oral inoculation with ΔrhBARF1 or infection of immunocompetent animals with a recombinant rhLCV where the rhBARF1 was repaired. These results indicate that BARF1 blockade of CSF-1 signaling is an important immune evasion strategy for efficient acute EBV infection and a significant determinant for virus setpoint during persistent EBV infection.

  6. The receptor for Granulocyte-colony stimulating factor (G-CSF is expressed in radial glia during development of the nervous system

    Krüger Carola

    2008-03-01

    Full Text Available Abstract Background Granulocyte colony-stimulating (G-CSF factor is a well-known hematopoietic growth factor stimulating the proliferation and differentiation of myeloid progenitors. Recently, we uncovered that G-CSF acts also as a neuronal growth factor in the brain, which promotes adult neural precursor differentiation and enhances regeneration of the brain after insults. In adults, the receptor for G-CSF is predominantly expressed in neurons in many brain areas. We also described expression in neurogenic regions of the adult brain, such as the subventricular zone and the subgranular layer of the dentate gyrus. In addition, we found close co-localization of the G-CSF receptor and its ligand G-CSF. Here we have conducted a systematic expression analysis of G-CSF receptor and its ligand in the developing embryo. Results Outside the central nervous system (CNS we found G-CSF receptor expression in blood vessels, muscles and their respective precursors and neurons. The expression of the G-CSF receptor in the developing CNS was most prominent in radial glia cells. Conclusion Our data imply that in addition to the function of G-CSF and its receptor in adult neurogenesis, this system also has a role in embryonic neurogenesis and nervous system development.

  7. Colony stimulating factor-1 receptor is a central component of the foreign body response to biomaterial implants in rodents and non-human primates

    Doloff, Joshua C.; Veiseh, Omid; Vegas, Arturo J.; Tam, Hok Hei; Farah, Shady; Ma, Minglin; Li, Jie; Bader, Andrew; Chiu, Alan; Sadraei, Atieh; Aresta-Dasilva, Stephanie; Griffin, Marissa; Jhunjhunwala, Siddharth; Webber, Matthew; Siebert, Sean; Tang, Katherine; Chen, Michael; Langan, Erin; Dholokia, Nimit; Thakrar, Raj; Qi, Meirigeng; Oberholzer, Jose; Greiner, Dale L.; Langer, Robert; Anderson, Daniel G.

    2017-06-01

    Host recognition and immune-mediated foreign body response to biomaterials can compromise the performance of implanted medical devices. To identify key cell and cytokine targets, here we perform in-depth systems analysis of innate and adaptive immune system responses to implanted biomaterials in rodents and non-human primates. While macrophages are indispensable to the fibrotic cascade, surprisingly neutrophils and complement are not. Macrophages, via CXCL13, lead to downstream B cell recruitment, which further potentiated fibrosis, as confirmed by B cell knockout and CXCL13 neutralization. Interestingly, colony stimulating factor-1 receptor (CSF1R) is significantly increased following implantation of multiple biomaterial classes: ceramic, polymer and hydrogel. Its inhibition, like macrophage depletion, leads to complete loss of fibrosis, but spares other macrophage functions such as wound healing, reactive oxygen species production and phagocytosis. Our results indicate that targeting CSF1R may allow for a more selective method of fibrosis inhibition, and improve biomaterial biocompatibility without the need for broad immunosuppression.

  8. The impact of donor characteristics on the immune cell composition of mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests.

    Wang, Yu-Tong; Zhao, Xiang-Yu; Zhao, Xiao-Su; Xu, Lan-Ping; Zhang, Xiao-Hui; Wang, Yu; Liu, Kai-Yan; Chang, Ying-Jun; Huang, Xiao-Jun

    2015-12-01

    The association of donor characteristics with immune cell composition in allografts remains poorly understood. In this retrospective study, the effects of donor characteristics on immune cell composition in allografts were investigated. The correlations of donor characteristics with the immune cell composition in mixture allografts of granulocyte-colony-stimulating factor-mobilized marrow harvests and peripheral blood harvests of 390 healthy donors (male, 240; female, 150; median age, 40 years old) were analyzed. The median doses of CD3+ T cells, CD4+ T cells, CD8+ T cells, CD3+CD4-CD8- T cells, and monocytes in mixture allografts were 160.57 × 10(6), 89.29 × 10(6), 56.16 × 10(6), 10.87 × 10(6), and 137.94 × 10(6)/kg, respectively. Multivariate analysis showed that younger donor age was associated with a higher dose of CD3+ T cells (p = 0.006), CD3+CD8+ T cells (p donor weight with CD3+ T cells (p blood lymphocyte pre-peripheral blood apheresis was correlated with the yield of CD3+ T cells (p blood monocyte count before marrow harvest predicted the monocyte dose (p = 0.002). The results suggested that older and overweight donors should not be chosen. The monocyte and lymphocyte counts before harvest could predict the yield of immune cells in allografts. © 2015 AABB.

  9. Just-in-time rescue plerixafor in combination with chemotherapy and granulocyte-colony stimulating factor for peripheral blood progenitor cell mobilization.

    Smith, Veronica R; Popat, Uday; Ciurea, Stefan; Nieto, Yago; Anderlini, Paolo; Rondon, Gabriela; Alousi, Amin; Qazilbash, Muzaffar; Kebriaei, Partow; Khouri, Issa; de Lima, Marcos; Champlin, Richard; Hosing, Chitra

    2013-09-01

    Plerixafor, a recently approved peripheral blood progenitor cell mobilizing agent, is often added to granulocyte-colony stimulating factor (G-CSF) to mobilize peripheral blood progenitor cells in patients with lymphoma or myeloma who cannot mobilize enough CD34+ cells with G-CSF alone to undergo autologous stem cell transplantation. However, data are lacking regarding the feasibility and efficacy of just-in-time plerixafor in combination with chemotherapy and G-CSF. We reviewed the peripheral blood stem cell collection data of 38 consecutive patients with lymphoma (Hodgkin's and non-Hodgkin's) and multiple myeloma who underwent chemomobilization and high-dose G-CSF and just-in-time plerixafor to evaluate the efficacy of this treatment combination. All patients with multiple myeloma and all but one patient with lymphoma collected the minimum required number of CD34+ cells to proceed with autologous stem cell transplantation (>2 × 10(6) /kg of body weight). The median CD34+ cell dose collected in patients with non-Hodgkin lymphoma was 4.93 × 10(6) /kg of body weight. The median CD34+ cell dose collected for patients with multiple myeloma was 8.81 × 10(6) /kg of body weight. Plerixafor was well tolerated; no grade 2 or higher non-hematologic toxic effects were observed. Copyright © 2013 Wiley Periodicals, Inc.

  10. High pH solubilization and chromatography-based renaturation and purification of recombinant human granulocyte colony-stimulating factor from inclusion bodies.

    Li, Ming; Fan, Hua; Liu, Jiahua; Wang, Minhong; Wang, Lili; Wang, Chaozhan

    2012-03-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) is a very efficient therapeutic protein drug which has been widely used in human clinics to treat cancer patients suffering from chemotherapy-induced neutropenia. In this study, rhG-CSF was solubilized from inclusion bodies by using a high-pH solution containing low concentration of urea. It was found that solubilization of the rhG-CSF inclusion bodies greatly depended on the buffer pH employed; alkalic pH significantly favored the solubilization. In addition, when small amount of urea was added to the solution at high pH, the solubilization was further enhanced. After solubilization, the rhG-CSF was renatured with simultaneous purification by using weak anion exchange, strong anion exchange, and hydrophobic interaction chromatography, separately. The results indicated that the rhG-CSF solubilized by the high-pH solution containing low concentration of urea had much higher mass recovery than the one solubilized by 8 M urea when using anyone of the three refolding methods employed in this work. In the case of weak anion exchange chromatography, the high pH solubilized rhG-CSF could get a mass recovery of 73%. The strategy of combining solubilization of inclusion bodies at high pH with refolding of protein using liquid chromatography may become a routine method for protein production from inclusion bodies.

  11. Granulocyte colony-stimulating factor for amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled study of Iranian patients.

    Amirzagar, Nasibeh; Nafissi, Shahriar; Tafakhori, Abbas; Modabbernia, Amirhossein; Amirzargar, Aliakbar; Ghaffarpour, Majid; Siroos, Bahaddin; Harirchian, Mohammad Hossein

    2015-04-01

    The aim of this study was to determine the efficacy and tolerability of granulocyte colony-stimulating factor (G-CSF) in subjects with amyotrophic lateral sclerosis (ALS). Forty subjects with ALS were randomly assigned to two groups, which received either subcutaneous G-CSF (5 μg/kg/q12h) or placebo for 5 days. The subjects were then followed up for 3 months using the ALS Functional Rating Scale-Revised (ALSFRS-R), manual muscle testing, ALS Assessment Questionnaire-40, and nerve conduction studies. CD34+/CD133+ cell count and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated at baseline. The rate of disease progression did not differ significantly between the two groups. The reduction in ALSFRS-R scores was greater in female subjects in the G-CSF group than in their counterparts in the placebo group. There was a trend toward a positive correlation between baseline CSF MCP-1 levels and the change in ALSFRS-R scores in both groups (Spearman's ρ=0.370, p=0.070). With the protocol implemented in this study, G-CSF is not a promising option for the treatment of ALS. Furthermore, it may accelerate disease progression in females.

  12. Evaluating the effects of buffer conditions and extremolytes on thermostability of granulocyte colony-stimulating factor using high-throughput screening combined with design of experiments.

    Ablinger, Elisabeth; Hellweger, Monika; Leitgeb, Stefan; Zimmer, Andreas

    2012-10-15

    In this study, we combined a high-throughput screening method, differential scanning fluorimetry (DSF), with design of experiments (DoE) methodology to evaluate the effects of several formulation components on the thermostability of granulocyte colony stimulating factor (G-CSF). First we performed a primary buffer screening where we tested thermal stability of G-CSF in different buffers, pH values and buffer concentrations. The significance of each factor and the two-way interactions between them were studied by multivariable regression analysis. pH was identified as most critical factor regarding thermal stability. The most stabilizing buffer, sodium glutamate, and sodium acetate were determined for further investigations. Second we tested the effect of 6 naturally occurring extremolytes (trehalose, sucrose, ectoine, hydroxyectoine, sorbitol, mannitol) on the thermal stability of G-CSF, using a central composite circumscribed design. At low pH (3.8) and low buffer concentration (5 mM) all extremolytes led to a significant increase in thermal stability except the addition of ectoine which resulted in a strong destabilization of G-CSF. Increasing pH and buffer concentration led to an increase in thermal stability with all investigated extremolytes. The described systematic approach allowed to create a ranking of stabilizing extremolytes at different buffer conditions. Copyright © 2012. Published by Elsevier B.V.

  13. Diagnostic Power of Vascular Endothelial Growth Factor and Macrophage Colony-Stimulating Factor in Breast Cancer Patients Based on ROC Analysis

    Monika Zajkowska

    2016-01-01

    Full Text Available Breast cancer (BC is the most common malignancy in women. Vascular endothelial growth factor (VEGF has been described as an important regulator of angiogenesis which plays a vital role in the progression of tumor. Macrophage colony-stimulating factor (M-CSF is a cytokine whose functions include regulation of hematopoietic lineages cells growth, proliferation, and differentiation. We investigated the diagnostic significance of these parameters in comparison to CA15-3 in BC patients and in relation to the control group (benign breast tumor and healthy women. Plasma levels of the tested parameters were determined by ELISA and CA15-3 was determined by CMIA. VEGF was shown to be comparable to CA15-3 values of sensitivity in BC group and, what is more important, higher values in early stages of BC. VEGF was also the only parameter which has statistically significant AUC in all stages of cancer. M-CSF has been shown to be comparable to CA15-3 and VEGF, specificity, and AUC values only in stages III and IV of BC. These results indicate the usefulness and high diagnostic power of VEGF in the detection of BC. Also, it occurred to be the best candidate for cancer diagnostics in stages I and II of BC and in the differentiation between BC and benign cases.

  14. Promotive effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on recovery from neutropenia induced by fractionated irradiation in mice

    Kabaya, Koji; Watanabe, Masahiko; Kusaka, Masaru; Seki, Masatoshi (Kirin Brewery Co., Ltd., Gunma (Japan). Pharmaceutical Research Laboratory); Fushiki, Masato

    1994-08-01

    The effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the recovery from neutropenia induced by fractionated whole-body irradiation was investigated in mice. Male 7-week old C3H/HeN mice received a total of ten exposures of 0.25 Gy/day from day 1 to 5 and from day 8 to 12. Peripheral neutropenia with a nadir on day 17 was caused by the fractionated irradiation. Daily subcutaneous injections of rhG-CSF at 0.25 and 2.5 [mu]g/body/day from day from day 1 to 21 promoted the recovery of neutrophils in a dose-dependent manner. The kinetics of morphologically identifiable bone marrow cells were studied to clarify the mechanism behind the promotive effect of this factor. A slight decrease in mitotic immature granulocytes, such as myeloblasts, promyelocytes and myelocytes on day 5, and a drastic decrease in metamyelocytes and marrow neutrophils on days 5, 9, and 17 were seen in the femur of irradiated mice. Treatment using rhG-CSF caused an increase in immature granulocytes of all differential stages in the femur. Microscopic findings of the femurs and spleens also reveals an increase in immature granulocytes in these organs in mice injected with rhG-CSF. These results indicate that rhG-CSF accelerates granulopoiesis in the femur and spleen, thereby promoting recovery from neutropenia induced by fractionated irradiation. (author).

  15. Promotive effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on recovery from neutropenia induced by fractionated irradiation in mice

    Kabaya, Koji; Watanabe, Masahiko; Kusaka, Masaru; Seki, Masatoshi; Fushiki, Masato.

    1994-01-01

    The effect of recombinant human granulocyte colony-stimulating factor (rhG-CSF) on the recovery from neutropenia induced by fractionated whole-body irradiation was investigated in mice. Male 7-week old C3H/HeN mice received a total of ten exposures of 0.25 Gy/day from day 1 to 5 and from day 8 to 12. Peripheral neutropenia with a nadir on day 17 was caused by the fractionated irradiation. Daily subcutaneous injections of rhG-CSF at 0.25 and 2.5 μg/body/day from day from day 1 to 21 promoted the recovery of neutrophils in a dose-dependent manner. The kinetics of morphologically identifiable bone marrow cells were studied to clarify the mechanism behind the promotive effect of this factor. A slight decrease in mitotic immature granulocytes, such as myeloblasts, promyelocytes and myelocytes on day 5, and a drastic decrease in metamyelocytes and marrow neutrophils on days 5, 9, and 17 were seen in the femur of irradiated mice. Treatment using rhG-CSF caused an increase in immature granulocytes of all differential stages in the femur. Microscopic findings of the femurs and spleens also reveals an increase in immature granulocytes in these organs in mice injected with rhG-CSF. These results indicate that rhG-CSF accelerates granulopoiesis in the femur and spleen, thereby promoting recovery from neutropenia induced by fractionated irradiation. (author)

  16. Both systemic and local application of Granulocyte-colony stimulating factor (G-CSF is neuroprotective after retinal ganglion cell axotomy

    Dietz Gunnar PH

    2009-05-01

    Full Text Available Abstract Background The hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF plays a crucial role in controlling the number of neutrophil progenitor cells. Its function is mediated via the G-CSF receptor, which was recently found to be expressed also in the central nervous system. In addition, G-CSF provided neuroprotection in models of neuronal cell death. Here we used the retinal ganglion cell (RGC axotomy model to compare effects of local and systemic application of neuroprotective molecules. Results We found that the G-CSF receptor is robustly expressed by RGCs in vivo and in vitro. We thus evaluated G-CSF as a neuroprotectant for RGCs and found a dose-dependent neuroprotective effect of G-CSF on axotomized RGCs when given subcutaneously. As stem stell mobilization had previously been discussed as a possible contributor to the neuroprotective effects of G-CSF, we compared the local treatment of RGCs by injection of G-CSF into the vitreous body with systemic delivery by subcutaneous application. Both routes of application reduced retinal ganglion cell death to a comparable extent. Moreover, G-CSF enhanced the survival of immunopurified RGCs in vitro. Conclusion We thus show that G-CSF neuroprotection is at least partially independent of potential systemic effects and provide further evidence that the clinically applicable G-CSF could become a treatment option for both neurodegenerative diseases and glaucoma.

  17. Pretransplant mobilization with granulocyte colony-stimulating factor improves B-cell reconstitution by lentiviral vector gene therapy in SCID-X1 mice.

    Huston, Marshall W; Riegman, Adriaan R A; Yadak, Rana; van Helsdingen, Yvette; de Boer, Helen; van Til, Niek P; Wagemaker, Gerard

    2014-10-01

    Hematopoietic stem cell (HSC) gene therapy is a demonstrated effective treatment for X-linked severe combined immunodeficiency (SCID-X1), but B-cell reconstitution and function has been deficient in many of the gene therapy treated patients. Cytoreductive preconditioning is known to improve HSC engraftment, but in general it is not considered for SCID-X1 since the poor health of most of these patients at diagnosis and the risk of toxicity preclude the conditioning used in standard bone marrow stem cell transplantation. We hypothesized that mobilization of HSC by granulocyte colony-stimulating factor (G-CSF) should create temporary space in bone marrow niches to improve engraftment and thereby B-cell reconstitution. In the present pilot study supplementing our earlier preclinical evaluation (Huston et al., 2011), Il2rg(-/-) mice pretreated with G-CSF were transplanted with wild-type lineage negative (Lin(-)) cells or Il2rg(-/-) Lin(-) cells transduced with therapeutic IL2RG lentiviral vectors. Mice were monitored for reconstitution of lymphocyte populations, level of donor cell chimerism, and antibody responses as compared to 2 Gy total body irradiation (TBI), previously found effective in promoting B-cell reconstitution. The results demonstrate that G-CSF promotes B-cell reconstitution similar to low-dose TBI and provides proof of principle for an alternative approach to improve efficacy of gene therapy in SCID patients without adverse effects associated with cytoreductive conditioning.

  18. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial

    Ripa, RS; Jorgensen, E; Wang, Y

    2006-01-01

    BACKGROUND: Phase 1 clinical trials of granulocyte-colony stimulating factor (G-CSF) treatment after myocardial infarction have indicated that G-CSF treatment is safe and may improve left ventricular function. This randomized, double-blind, placebo-controlled trial aimed to assess the efficacy of......: Bone marrow stem cell mobilization with subcutaneous G-CSF is safe but did not lead to further improvement in ventricular function after acute myocardial infarction compared with the recovery observed in the placebo group...

  19. Characterization of buffy coat-derived granulocytes for clinical use: a comparison with granulocyte colony-stimulating factor/dexamethasone-pretreated donor-derived products.

    van de Geer, A; Gazendam, R P; Tool, A T J; van Hamme, J L; de Korte, D; van den Berg, T K; Zeerleder, S S; Kuijpers, T W

    2017-02-01

    Buffy coat-derived granulocytes have been described as an alternative to the apheresis product from donors pretreated with dexamethasone and granulocyte colony-stimulating factor (G-CSF). The latter is - dependent on the local and national settings - obtained following a demanding and time-consuming procedure, which is undesirable in critically ill septic patients. In contrast, buffy coat-derived products have a large volume and are often heavily contaminated with red cells and platelets. We developed a new pooled buffy coat-derived product with high purity and small volume, and performed a comprehensive functional characterization of these granulocytes. We pooled ten buffy coats following the production of platelet concentrates. Saline 0·9% was added to decrease the viscosity and the product was split into plasma, red cells and a 'super' buffy coat. Functional data of the granulocytes were compared to those obtained with granulocytes from healthy controls and G-CSF/dexamethasone-pretreated donors. Buffy coat-derived granulocytes showed adhesion, chemotaxis, reactive oxygen species production, degranulation, NETosis and in vitro killing of Staphylococcus aureus, Escherichia coli and Aspergillus species comparable to control and G-CSF/dexamethasone-derived granulocytes. Candida killing was superior compared to G-CSF/dexamethasone-derived granulocytes. Immunophenotyping was normal; especially no signs of activation in the buffy coat-derived granulocytes were seen. Viability was reduced. Buffy coats are readily available in the regular blood production process and would take away the concerns around the apheresis product. The product described appears a promising alternative for transfusion purposes. © 2017 International Society of Blood Transfusion.

  20. Transplanted Peripheral Blood Stem Cells Mobilized by Granulocyte Colony-Stimulating Factor Promoted Hindlimb Functional Recovery After Spinal Cord Injury in Mice.

    Takahashi, Hiroshi; Koda, Masao; Hashimoto, Masayuki; Furuya, Takeo; Sakuma, Tsuyoshi; Kato, Kei; Okawa, Akihiko; Inada, Taigo; Kamiya, Koshiro; Ota, Mitsutoshi; Maki, Satoshi; Takahashi, Kazuhisa; Yamazaki, Masashi; Mannoji, Chikato

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) mobilizes peripheral blood stem cells (PBSCs) derived from bone marrow. We hypothesized that intraspinal transplantation of PBSCs mobilized by G-CSF could promote functional recovery after spinal cord injury. Spinal cords of adult nonobese diabetes/severe immunodeficiency mice were injured using an Infinite Horizon impactor (60 kdyn). One week after the injury, 3.0 µl of G-CSF-mobilized human mononuclear cells (MNCs; 0.5 × 10(5)/µl), G-CSF-mobilized human CD34-positive PBSCs (CD34; 0.5 × 10(5)/µl), or normal saline was injected to the lesion epicenter. We performed immunohistochemistry. Locomotor recovery was assessed by Basso Mouse Scale. The number of transplanted human cells decreased according to the time course. The CD31-positive area was significantly larger in the MNC and CD34 groups compared with the vehicle group. The number of serotonin-positive fibers was significantly larger in the MNC and CD34 groups than in the vehicle group. Immunohistochemistry revealed that the number of apoptotic oligodendrocytes was significantly smaller in cell-transplanted groups, and the areas of demyelination in the MNC- and CD34-transplanted mice were smaller than that in the vehicle group, indicating that cell transplantation suppressed oligodendrocyte apoptosis and demyelination. Both the MNC and CD34 groups showed significantly better hindlimb functional recovery compared with the vehicle group. There was no significant difference between the two types of transplanted cells. Intraspinal transplantation of G-CSF-mobilized MNCs or CD34-positive cells promoted angiogenesis, serotonergic fiber regeneration/sparing, and preservation of myelin, resulting in improved hindlimb function after spinal cord injury in comparison with vehicle-treated control mice. Transplantation of G-CSF-mobilized PBSCs has advantages for treatment of spinal cord injury in the ethical and immunological viewpoints, although further exploration

  1. Advantages of concurrent biochemotherapy modified by decrescendo interleukin-2, granulocyte colony-stimulating factor, and tamoxifen for patients with metastatic melanoma.

    O'Day, S J; Gammon, G; Boasberg, P D; Martin, M A; Kristedja, T S; Guo, M; Stern, S; Edwards, S; Fournier, P; Weisberg, M; Cannon, M; Fawzy, N W; Johnson, T D; Essner, R; Foshag, L J; Morton, D L

    1999-09-01

    Concurrent biochemotherapy results in high response rates but also significant toxicity in patients with metastatic melanoma. We attempted to improve its efficacy and decrease its toxicity by using decrescendo dosing of interleukin-2 (IL-2), posttreatment granulocyte colony-stimulating factor (G-CSF), and low-dose tamoxifen. Forty-five patients with poor prognosis metastatic melanoma were treated at a community hospital inpatient oncology unit affiliated with the John Wayne Cancer Institute (Santa Monica, CA) between July 1995 and September 1997. A 5-day modified concurrent biochemotherapy regimen of dacarbazine, vinblastine, cisplatin, decrescendo IL-2, interferon alfa-2b, and tamoxifen was repeated at 21-day intervals. G-CSF was administered beginning on day 6 for 7 to 10 days. The overall response rate was 57% (95% confidence interval, 42% to 72%), the complete response rate was 23%, and the partial response rate was 34%. Complete remissions were achieved in an additional 11% of patients by surgical resection of residual disease after biochemotherapy. The median time to progression was 6.3 months and the median duration of survival was 11.4 months. At a maximum follow-up of 36 months (range, 10 to 36 months), 32% of patients are alive and 14% remain free of disease. Decrescendo IL-2 dosing and administration of G-CSF seemed to reduce toxicity, length of hospital stay, and readmission rates. No patient required intensive care unit monitoring, and there were no treatment-related deaths. The data from this study indicate that the modified concurrent biochemotherapy regimen reduces the toxicity of concurrent biochemotherapy with no apparent decrease in response rate in patients with poor prognosis metastatic melanoma.

  2. Efficacy, safety and proper dose analysis of PEGylated granulocyte colony-stimulating factor as support for dose-dense adjuvant chemotherapy in node positive Chinese breast cancer patients.

    Zhang, Fan; LingHu, RuiXia; Zhan, XingYang; Li, Ruisheng; Feng, Fan; Gao, Xudong; Zhao, Lei; Yang, Junlan

    2017-10-03

    For high-risk breast cancer patients with positive axillary lymph nodes, dose-dense every-two-week epirubicin/cyclophosphamide-paclitaxel (ddEC-P) regimen is the optimal postoperative adjuvant therapy. However, this regimen is limited by the grade 3/4 neutropenia and febrile neutropenia (FN). There is an urgent need to explore the efficacy, safety and proper dosage of PEGylated granulocyte colony-stimulating factor (PEG-G-CSF) as support for ddEC-P in Chinese breast cancer patients with positive axillary lymph nodes. Prospectively, 40 women with stage IIIA to IIIC breast cancer received ddEC-P ± trastuzumab as adjuvant treatment. PEG-G-CSF was injected subcutaneously in a dose of 6 mg or 3 mg on the 2 th day of each treatment cycle. With administration of PEG-G-CSF, all of the 40 patients completed 8 cycles of ddEC-P ± trastuzumab regimen without dose reductions or treatment delays. Moreover, no FN cases were observed. Further analysis showed that the proper dosage of PEG-G-CSF was 6 mg for ddEC treatment, and 3 mg for ddP treatment. PEG-G-CSF exhibits advantages compared with G-CSF in convenient of administration and tolerance for high risk Chinese breast cancer patients. More importantly, the proper dose of PEG-G-CSF for high risk Chinese breast cancer patients during ddEC-P chemotherapy may be 6 mg for ddEC treatment and 3 mg for ddP treatment.

  3. Topical granulocyte colony-stimulating factor for the treatment of oral and genital ulcers of patients with Behçet's disease.

    Bacanli, A; Yerebakan Dicle, O; Parmaksizoglu, B; Yilmaz, E; Alpsoy, E

    2006-09-01

    Recurrent and painful ulcers of the oral mucosa and genital skin/mucosa are the most commonly observed manifestations in patients with Behçet's disease (BD). They affect patients' quality of life. Because of the effectiveness of granulocyte colony-stimulating factor (G-CSF) in wound healing, it may also be useful for the treatment of oral ulcers (OU) and genital ulcers (GU) of BD. We aimed to determine the efficacy of topically applied G-CSF in the treatment of OU and GU of BD. Seven patients with BD diagnosed according to the criteria of the International Study Group for Behçet's Disease were involved in the study. The patients were observed for 3 months before the study, and all occurrences were recorded during this period. Patients were given topical G-CSF for OU (4 x 120 microg/day, for 5 days) and/or GU (4 x 30 microg/day, for 5 days) and followed-up for 3 months after treatment. No concurrent disease-specific or immunosuppressive topical or systemic drugs were given during the study period. G-CSF treatment decreased the healing time and pain of OU and GU in six of seven patients compared with the pretreatment period. However, the effectiveness of the G-CSF treatment on OU and GU healing time and pain severity did not continue during the post-treatment period. G-CSF has beneficial effects on the healing duration and pain severity of OU and GU of patients with BD. However, given the high cost, impractical preparation and inability to cure the disease, G-CSF treatment should be chosen only in selected patients.

  4. Granulocyte colony-stimulating factor decreases the Th1/Th2 ratio in peripheral blood mononuclear cells from patients with chronic immune thrombocytopenic purpura in vitro.

    Ge, Fei; Zhang, Zhuo; Hou, Jinxiao; Cao, Fenglin; Zhang, Yingmei; Wang, Ping; Wei, Hong; Zhou, Jin

    2016-12-01

    Chronic immune thrombocytopenia purpura (ITP) is an autoimmune disease that exhibits an abnormally high Th1/Th2 ratio. Granulocyte colony-stimulating factor (G-CSF) has been shown to decrease the Th1/Th2 ratio in healthy donors. In this study, we investigated the effects of G-CSF treatment on the Th1/Th2 cells and the underlying mechanisms in patients with ITP in vitro. Peripheral blood mononuclear cells (PBMCs) isolated from patients with ITP and healthy controls were treated with G-CSF. Expression levels of interferon (IFN)-γ, interleukin (IL)-2, IL-4, and IL-13 in supernatants were measured by enzyme-linked immunosorbent assays. The expression of IFN-γ, IL-4, and G-CSF receptor (G-CSFR) on Th1 and Th2 cells were examined by flow cytometry and confocal microscopy. The mRNA expression of IFN-γ, IL-2, IL-4, IL-13, and T-box expressed in T cells (T-bet) and GATA-binding protein 3 (GATA-3) in PBMCs was evaluated by reverse transcription polymerase chain reaction. The results showed that G-CSF could significantly reduce the Th1/Th2 ratio in PBMCs from patients with ITP in vitro. As the concentration of G-CSF increased, Th1/Th2 ([IFN-γ+IL-2]/[IL-4+IL-13]) cytokine ratios and T-bet/GATA-3 mRNA ratios decreased in a concentration-dependent manner. Th1 cells and Th2 cells both expressed G-CSFR. These results suggest that G-CSF could decrease the Th1/Th2 ratio in the context of ITP, and elucidate the direct and indirect immunomodulatory mechanisms underlying G-CSF functions in Th1/Th2 cells, thus supporting the therapeutic potential of G-CSF in the treatment of patients with ITP. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Primary granulocyte colony-stimulating factor prophylaxis during the first two cycles only or throughout all chemotherapy cycles in patients with breast cancer at risk for febrile neutropenia.

    Aarts, Maureen J; Peters, Frank P; Mandigers, Caroline M; Dercksen, M Wouter; Stouthard, Jacqueline M; Nortier, Hans J; van Laarhoven, Hanneke W; van Warmerdam, Laurence J; van de Wouw, Agnes J; Jacobs, Esther M; Mattijssen, Vera; van der Rijt, Carin C; Smilde, Tineke J; van der Velden, Annette W; Temizkan, Mehmet; Batman, Erdogan; Muller, Erik W; van Gastel, Saskia M; Borm, George F; Tjan-Heijnen, Vivianne C G

    2013-12-01

    Early breast cancer is commonly treated with anthracyclines and taxanes. However, combining these drugs increases the risk of myelotoxicity and may require granulocyte colony-stimulating factor (G-CSF) support. The highest incidence of febrile neutropenia (FN) and largest benefit of G-CSF during the first cycles of chemotherapy lead to questions about the effectiveness of continued use of G-CSF throughout later cycles of chemotherapy. In a multicenter study, patients with breast cancer who were considered fit enough to receive 3-weekly polychemotherapy, but also had > 20% risk for FN, were randomly assigned to primary G-CSF prophylaxis during the first two chemotherapy cycles only (experimental arm) or to primary G-CSF prophylaxis throughout all chemotherapy cycles (standard arm). The noninferiority hypothesis was that the incidence of FN would be maximally 7.5% higher in the experimental compared with the standard arm. After inclusion of 167 eligible patients, the independent data monitoring committee advised premature study closure. Of 84 patients randomly assigned to G-CSF throughout all chemotherapy cycles, eight (10%) experienced an episode of FN. In contrast, of 83 patients randomly assigned to G-CSF during the first two cycles only, 30 (36%) had an FN episode (95% CI, 0.13 to 0.54), with a peak incidence of 24% in the third cycle (ie, first cycle without G-CSF prophylaxis). In patients with early breast cancer at high risk for FN, continued use of primary G-CSF prophylaxis during all chemotherapy cycles is of clinical relevance and thus cannot be abandoned.

  6. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  7. Therapy with granulocyte colony-stimulating factor in the chronic stage, but not in the acute stage, improves experimental autoimmune myocarditis in rats via nitric oxide.

    Shimada, Kana; Okabe, Taka-aki; Mikami, Yu; Hattori, Miki; Fujita, Masatoshi; Kishimoto, Chiharu

    2010-09-01

    We systematically investigated serial efficacy of granulocyte colony-stimulating factor (G-CSF) therapy upon experimental autoimmune myocarditis (EAM) in rats treated with and without the inhibition of nitric oxide (NO) with the analyses of tissue regeneration. G-CSF could mobilize multipotent progenitor cells of bone marrow into the peripheral blood and may improve ventricular function. A rat model of porcine myosin-induced EAM was used. After the immunization of myosin, G-CSF (10 microg/kg/day) or saline was injected intraperitoneally on days 0-21 in experiment 1 and on days 21-42 in experiment 2. Additional myosin-immunized rats were orally given 25 mg/kg/day of N(G)-nitro-L-arginine methylester (L-NAME), an inhibitor of nitric oxide synthase (NOS), in each experiment (each group; n=8-21). Serum cytokines and peripheral blood cell counts were measured in each group. In experiment 1, G-CSF treatment aggravated cardiac pathology associated with increased macrophage inflammatory protein-2 (MIP-2) and interleukin-6 (IL-6) levels and enhanced superoxide production. In experiment 2, G-CSF treatment reduced the severity of myocarditis with increased capillary density and improved left ventricular ejection fraction. In the rats with EAM treated with G-CSF associated with oral L-NAME treatment in experiment 2, the severity of myocarditis was not reduced. Myocardial c-kit(+) cells were demonstrated only in G-CSF-treated group in experiment 2 but not in other groups. G-CSF has differential effects on EAM in rats associated with the modulation of cytokine network. The overwhelming superoxide production by G-CSF administration in the acute stage may worsen the disease. G-CSF therapy improved cardiac function via NO system in a rat model of myocarditis in the chronic stage, but not in the acute stage, possibly through the myocardial regeneration and acceleration of healing process. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. High Expression of Colony-Stimulating Factor 1 Receptor Associates with Unfavorable Cancer-Specific Survival of Patients with Clear Cell Renal Cell Carcinoma.

    Yang, Liu; Liu, Yidong; An, Huimin; Chang, Yuan; Zhang, Weijuan; Zhu, Yu; Xu, Le; Xu, Jiejie

    2016-03-01

    Colony-stimulating factor 1 receptor (CSF-1R), a single-pass type III transmembrane tyrosine-protein kinase, is mainly involved in inflammation and immune regulation to facilitate the progression of solid tumors. This study aimed to evaluate the impact of CSF-1R expression on clinical outcome of patients with clear cell renal cell carcinoma (ccRCC) after surgery. We retrospectively enrolled 268 patients with ccRCC undergoing nephrectomy between 2001 and 2004. Clinicopathologic features and cancer-specific survival (CSS) were collected. Western blot analysis was performed in the pairwise comparisons of CSF-1R expression in peritumor and tumor tissues of patients with ccRCC. Immunohistochemistry was conducted to determine CSF-1R expression level in tumor specimens. Survival analysis was performed by the Kaplan-Meier method. Cox regression models were used to evaluate the impact of prognostic factors on CSS. A concordance index was calculated to measure prognostic accuracy. A prognostic nomogram was constructed on the basis of the identified independent prognostic factors. CSF-1R expression in tumor tissues was higher than in peritumor tissues in 71.4% (5 of 7) patients. CSF-1R expression of tumor tissues was positively associated with metastasis, tumor, node, metastasis classification system (TNM) stage, Eastern Cooperative Oncology Group performance status score and poor CSS. CSF-1R expression was determined as an independent prognostic factor for CSS in patients with ccRCC. Furthermore, extension of the well-established prognostic models with CSF-1R expression presented significantly improved prognostic accuracy. An efficient prognostic nomogram was constructed on the basis of the independent prognostic factors. High CSF-1R expression is a potential independent adverse prognostic factor for CSS in patients with ccRCC.

  9. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in a rat model of anterior ischemic optic neuropathy (rAION).

    Chang, Chung-Hsing; Huang, Tzu-Lun; Huang, Shun-Ping; Tsai, Rong-Kung

    2014-01-01

    The purpose of this study was to investigate the neuroprotective effects of recombinant human granulocyte colony stimulating factor (G-CSF), as administered in a rat model of anterior ischemic optic neuropathy (rAION). Using laser-induced photoactivation of intravenously administered Rose Bengal in the optic nerve head of 60 adult male Wistar rats, an anterior ischemic optic neuropathy (rAION) was inducted. Rats either immediately received G-CSF (subcutaneous injections) or phosphate buffered saline (PBS) for 5 consecutive days. Rats were euthanized at 4 weeks post infarct. Density of retinal ganglion cells (RGCs) was counted using retrograde labeling of Fluoro-gold. Visual function was assessed by flash visual-evoked potentials (FVEP) at 4 weeks. TUNEL assay in the retinal sections and immunohistochemical staining of ED1 (marker of macrophage/microglia) were investigated in the optic nerve (ON) specimens. The RGC densities in the central and mid-peripheral retinas in the G-CSF treated rats were significantly higher than those of the PBS-treated rats (survival rate was 71.4% vs. 33.2% in the central retina; 61.8% vs. 22.7% in the mid-peripheral retina, respectively; both p optic nerve sections of G-CSF-treated rats (16 ± 6/HPF vs. 35 ± 10/HPF; p = 0.016). In conclusion, administration of G-CSF is neuroprotective in the rat model of anterior ischemic optic neuropathy, as demonstrated both structurally by RGC density and functionally by FVEP. G-CSF may work via the dual actions of anti-apoptosis for RGC surviving as well as anti-inflammation in the optic nerves as evidenced by less infiltration of ED1-povitive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Direct anti-inflammatory effects of granulocyte colony-stimulating factor (G-CSF) on activation and functional properties of human T cell subpopulations in vitro.

    Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2018-03-01

    We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Inductive potential of recombinant human granulocyte colony-stimulating factor to mature neutrophils from X-irradiated human peripheral blood hematopoietic progenitor cells

    Katsumori, Takeo; Yoshino, Hironori; Hayashi, Masako; Takahashi, Kenji; Kashiwakura, Ikuo

    2009-01-01

    Recombinant human granulocyte colony-stimulating factor (rhG-CSF) has been used for treatment of neutropenia. Filgrastim, Nartograstim, and Lenograstim are clinically available in Japan. However, the differences in potential benefit for radiation-induced disorder between these types of rhG-CSFs remain unknown. Therefore, the effects of three different types of rhG-CSFs on granulocyte progenitor cells and expansion of neutrophils from nonirradiated or 2 Gy X-irradiated human CD34 + hematopoietic progenitor cells were examined. For analysis of granulocyte colony-forming units (CFU-G) and a surviving fraction of CFU-G, nonirradiated or X-irradiated CD34 + cells were cultured in methylcellulose containing rhG-CSF. These cells were cultured in serum-free medium supplemented with rhG-CSF, and the expansion and characteristics of neutrophils were analyzed. All three types of rhG-CSFs increased the number of CFU-G in a dose-dependent manner; however, Lenograstim is superior to others because of CFU-G-derived colony formation at relatively low doses. The surviving fraction of CFU-G was independent of the types of rhG-CSFs. Expansion of neutrophils by rhG-CSF was largely attenuated by X-irradiation, though no significant difference in neutrophil number was observed between the three types of rhG-CSFs under both nonirradiation and X-irradiation conditions. In terms of functional characteristics of neutrophils, Lenograstim-induced neutrophils produced high levels of reactive oxygen species compared to Filgrastim, when rhG-CSF was applied to nonirradiated CD34 + cells. In conclusion, different types of rhG-CSFs lead to different effects when rhG-CSF is applied to nonirradiated CD34 + cells, though Filgrastim, Nartograstim, and Lenograstim show equal effects on X-irradiated CD34 + cells. (author)

  12. Administration of granulocyte-colony stimulating factor accompanied with a balanced diet improves cardiac function alterations induced by high fat diet in mice.

    Daltro, Pâmela Santana; Alves, Paula Santana; Castro, Murilo Fagundes; Azevedo, Carine M; Vasconcelos, Juliana Fraga; Allahdadi, Kyan James; de Freitas, Luiz Antônio Rodrigues; de Freitas Souza, Bruno Solano; Dos Santos, Ricardo Ribeiro; Soares, Milena Botelho Pereira; Macambira, Simone Garcia

    2015-12-03

    High fat diet (HFD) is a major contributor to the development of obesity and cardiovascular diseases due to the induction of cardiac structural and hemodynamic abnormalities. We used a model of diabetic cardiomyopathy in C57Bl/6 mice fed with a HFD to investigate the effects of granulocyte-colony stimulating factor (G-CSF), a cytokine known for its beneficial effects in the heart, on cardiac anatomical and functional abnormalities associated with obesity and type 2 diabetes. Groups of C57Bl/6 mice were fed with standard diet (n = 8) or HFD (n = 16). After 36 weeks, HFD animals were divided into a group treated with G-CSF + standard diet (n = 8) and a vehicle control group + standard diet (n = 8). Cardiac structure and function were assessed by electrocardiography, echocardiography and treadmill tests, in addition to the evaluation of body weight, fasting glicemia, insulin and glucose tolerance at different time points. Histological analyses were performed in the heart tissue. HFD consumption induced metabolic alterations characteristic of type 2 diabetes and obesity, as well as cardiac fibrosis and reduced exercise capacity. Upon returning to a standard diet, obese mice body weight returned to non-obese levels. G-CSF administration accelerated the reduction in of body weight in obese mice. Additionally, G-CSF treatment reduced insulin levels, diminished heart fibrosis, increased exercise capacity and reversed cardiac alterations, including bradycardia, elevated QRS amplitude, augmented P amplitude, increased septal wall thickness, left ventricular posterior thickening and cardiac output reduction. Our results indicate that G-CSF administration caused beneficial effects on obesity-associated cardiac impairment.

  13. Donor body mass index is an important factor that affects peripheral blood progenitor cell yield in healthy donors after mobilization with granulocyte-colony-stimulating factor.

    Chen, Jian; Burns, Kevin M; Babic, Aleksandar; Carrum, George; Kennedy, Martha; Segura, Francisco J; Garcia, Salvador; Potts, Sandra; Leveque, Christopher

    2014-01-01

    The use of hematopoietic progenitor cell (HPC) transplantation has rapidly expanded in recent years. Currently, several sources of HPCs are available for transplantation including peripheral blood HPCs (PBPCs), cord blood cells, and marrow cells. Of these, PBPC collection has become the major source of HPCs. An important variable in PBPC collection is the response to PBPC mobilization, which varies significantly and sometime causes mobilization failure. A retrospective study of 69 healthy donors who underwent PBPC donation by leukapheresis was performed. All of these donors received 10 μg/kg/day or more granulocyte-colony-stimulating factor (G-CSF) for 5 days before PBPC harvest. Donor factors were evaluated and correlated with mobilization responses, as indicated by the precollection CD34 count (pre-CD34). Donors with a pre-CD34 of more than 100 × 10(6) /L had higher body mass index (BMI) compared with donors whose pre-CD34 was 38 × 10(6) to 99 × 10(6) /L or less than 38 × 10(6) /L (32.0 ± 1.04 kg/m(2) vs. 28.7 ± 0.93 kg/m(2) vs. 25.9 ± 1.27 kg/m(2) , respectively; p donors with high BMIs had higher pre-CD34 on a per-kilogram-of-body-weight basis compared with donors with low BMIs. BMI is an important factor that affects donor's response to mobilization and consequently the HPC yield. This effect may be due to a relatively high dose of G-CSF administered to donors with higher BMI or due to the presence of unknown intrinsic factors affecting mobilization that correlate with the amount of adipose tissue in each donor. © 2013 American Association of Blood Banks.

  14. The role of donor characteristics and post-granulocyte colony-stimulating factor white blood cell counts in predicting the adverse events and yields of stem cell mobilization.

    Chen, Shu-Huey; Yang, Shang-Hsien; Chu, Sung-Chao; Su, Yu-Chieh; Chang, Chu-Yu; Chiu, Ya-Wen; Kao, Ruey-Ho; Li, Dian-Kun; Yang, Kuo-Liang; Wang, Tso-Fu

    2011-05-01

    Granulocyte colony-stimulating factor (G-CSF) is now widely used for stem cell mobilization. We evaluated the role of post-G-CSF white blood cell (WBC) counts and donor factors in predicting adverse events and yields associated with mobilization. WBC counts were determined at baseline, after the third and the fifth dose of G-CSF in 476 healthy donors. Donors with WBC ≥ 50 × 10(3)/μL post the third dose of G-CSF experienced more fatigue, myalgia/arthralgia, and chills, but final post-G-CSF CD34(+) cell counts were similar. Although the final CD34(+) cell count was higher in donors with WBC ≥ 50 × 10(3)/μL post the fifth G-CSF, the incidence of side effects was similar. Females more frequently experienced headache, nausea/anorexia, vomiting, fever, and lower final CD34(+) cell count than did males. Donors with body mass index (BMI) ≥ 25 showed higher incidences of sweat and insomnia as well as higher final CD34(+) cell counts. Donor receiving G-CSF ≥ 10 μg/kg tended to experience bone pain, headache and chills more frequently. Multivariate analysis indicated that female gender is an independent factor predictive of the occurrence of most side effects, except for ECOG > 1 and chills. Higher BMI was also an independent predictor for fatigue, myalgia/arthralgia, and sweat. Higher G-CSF dose was associated with bone pain, while the WBC count post the third G-CSF was associated with fatigue only. In addition, one donor in the study period did not complete the mobilization due to suspected anaphylactoid reaction. Observation for 1 h after the first injection of G-CSF is required to prevent complications from unpredictable side effects.

  15. Hematopoietic properties of granulocyte colony-stimulating factor/immunoglobulin (G-CSF/IgG-Fc fusion proteins in normal and neutropenic rodents.

    George N Cox

    Full Text Available Previously we showed that granulocyte colony-stimulating factor (G-CSF in vitro bioactivity is preserved when the protein is joined via a flexible 7 amino acid linker to an immunoglobulin-1 (IgG1-Fc domain and that the G-CSF/IgG1-Fc fusion protein possessed a longer circulating half-life and improved hematopoietic properties compared to G-CSF in normal rats. We have extended this analysis by comparing the relative hematopoietic potencies of G-CSF/IgG1-Fc to G-CSF in normal mice and to G-CSF and polyethylene glycol (PEG -modified G-CSF in neutropenic rats. Mice were treated for 5 days using different doses and dosing regimens of G-CSF/IgG1-Fc or G-CSF and circulating neutrophil levels in the animals measured on Day 6. G-CSF/IgG1-Fc stimulated greater increases in blood neutrophils than comparable doses of G-CSF when administered using daily, every other day or every third day dosing regimens. In rats made neutropenic with cyclophosphamide, G-CSF/IgG1-Fc accelerated recovery of blood neutrophils to normal levels (from Day 9 to Day 5 when administered as 5 daily injections or as a single injection on Day 1. By contrast, G-CSF accelerated neutrophil recovery when administered as 5 daily injections, but not when administered as a single injection. G-CSF/IgG1-Fc was as effective as PEG-G-CSF at accelerating neutrophil recovery following a single injection in neutropenic rats. G-CSF/IgG1-Fc and G-CSF/IgG4-Fc fusion proteins in which the 7 amino acid linker was deleted also were effective at accelerating neutrophil recovery following a single injection in neutropenic rats. These studies confirm the enhanced in vivo hematopoietic properties of G-CSF/IgG-Fc fusion proteins.

  16. Evaluation of Dutch guideline for just-in-time addition of plerixafor to stem cell mobilization in patients who fail with granulocyte-colony-stimulating factor.

    Bilgin, Yavuz M; Visser, Otto; Beckers, Erik A M; te Boome, Liane C J; Huisman, Cynthia; Ypma, Paula F; Croockewit, Alexandra J; Netelenbos, Tanja; Kramer, Ellen P A; de Greef, Georgine E

    2015-05-01

    Plerixafor in combination with granulocyte-colony-stimulating factor (G-CSF) is approved for the use of stem cell collection in patients who fail to mobilize on G-CSF. In 2009 the Stem Cell Working Party of the Dutch-Belgian Cooperative Trial group for Hematology Oncology (HOVON) composed a guideline for the use of plerixafor. According to this guideline it is recommended to add plerixafor to G-CSF in patients with circulating CD34+ cell counts of fewer than 20 × 10(6) /L on 2 consecutive days accompanied by increasing white blood cells. In this analysis we evaluated retrospectively the outcome of the use of this guideline in the Netherlands. In total 111 patients received plerixafor with a median one administration (range, one to four administrations). Of these patients 55.8% had non-Hodgkin lymphoma, 31.5% multiple myeloma, 8.1% Hodgkin lymphoma, and 4.5% nonhematologic malignancies. In 63.9% patients sufficient numbers of CD34+ cells were collected. In patients with multiple myeloma more successful mobilizations with plerixafor were observed compared to patients with non-Hodgkin lymphoma (71.4% vs. 61.3%). In patients with circulating CD34+ cell counts of at least 2.0 × 10(6) /L before administration of plerixafor a successful mobilization was achieved in 76.5%, and in the patients with very low (0-1 × 10(6) /L) circulating CD34+ cell counts the success rate was 44.2%. Application of the HOVON guideline on the just-in-time administration of plerixafor is effective for mobilization of hematopoietic stem cells in the majority of patients. Stem cell yield in patients with non-Hodgkin lymphoma was lower compared to patients with multiple myeloma. Also patients with very low circulating CD34+ cells before addition of plerixafor might benefit from this approach. © 2014 AABB.

  17. Effects of recombinant human granulocyte colony-stimulating factor on central and peripheral T lymphocyte reconstitution after sublethal irradiation in mice

    Zhao Hongxia; Guo Mei; Sun Xuedong; Ai Huisheng; Sun Wanjun; Hu Hailan; Wei Li

    2013-01-01

    Granulocyte colony-stimulating factor (G-CSF) is one of the most critical cytokines used for the treatment of acute radiation syndrome (ARS). In addition to the hematopoietic effects of G-CSF on the differentiation and proliferation of myeloid progenitor cells, G-CSF is also known to have immunomodulatory effects. The aim of the present study was to investigate whether G-CSF could accelerate central and peripheral T lymphocyte recovery after a sublethal dose of irradiation. Female BALB/c mice were subjected to 6 Gy of total body irradiation and then were treated with either 100 μg/kg G-CSF or an equal volume of PBS once daily for 14 days. Percentages of thymocyte subpopulations including CD4- CD8-, CD4+ CD8+, CD4+ CD8- and CD4- CD8+ T cells, peripheral CD3+, CD4+ and CD8+ cells were analyzed by flow cytometry. Recent thymic emigrants (RTEs) were assessed by real-time polymerase chain reaction (PCR) using primers specific to the 257-bp T cell receptor rearrangement excision circles (sjTRECs). The proliferative capacity of splenic mononuclear cells upon exposure to ConA was measured by using the Cell Count Kit-8 (CCK-8). G-CSF treatment promoted thymocyte regeneration, accelerated the recovery of CD4+ CD8+ cells and increased the frequency of thymocyte sjTRECs. These effects were more prominent at early time points (Day 28) after irradiation. G-CSF also increased the rate of recovery of peripheral CD3+, CD4+ and CD8+ cells and shortened the period of severe lymphopenia following irradiation. G-CSF also increased the splenic mononuclear cell mitotic responsiveness to ConA more than control-treated cells. Our results show that G-CSF accelerates T cell recovery through both thymic-dependent and thymic-independent pathways, which could be used to increase the rate of immune reconstitution after sublethal irradiation. (author)

  18. Efficacy of polyethylene glycol-conjugated bovine granulocyte colony-stimulating factor for reducing the incidence of naturally occurring clinical mastitis in periparturient dairy cows and heifers.

    Hassfurther, Renee L; TerHune, Terry N; Canning, Peter C

    2015-03-01

    To evaluate effects of various doses of polyethylene glycol (PEG)-conjugated bovine granulocyte colony-stimulating factor (bG-CSF) on the incidence of naturally occurring clinical mastitis in periparturient dairy cattle. 211 periparturient Holstein cows and heifers. Approximately 7 days before the anticipated date of parturition (day of parturition = day 0), healthy cattle received SC injections of sterile saline (0.9% NaCl) solution (control treatment) or PEG-bG-CSF at 5, 10, or 20 μg/kg. Cattle were commingled and housed in a pen with dirt flooring, which was kept wet to maximize the incidence of naturally occurring clinical mastitis. Within 24 hours after parturition, each animal again received the assigned treatment. Mammary glands and milk were visually scored for abnormalities twice daily for 28 days after parturition. Milk samples were aseptically collected from mammary glands with an abnormal appearance or abnormal milk and submitted for microbial culture. Daily milk production was recorded, and milk composition was assessed on days 3, 5, 7, and 10. Cattle treated with PEG-bG-CSF at 10 and 20 μg/kg had significantly fewer cases of clinical mastitis (9/54 and 5/53, respectively), compared with control cattle (18/53). Administration of PEG -bG-CSF did not significantly affect daily milk production or milk composition. Results suggested that PEG-bG-CSF was effective for reducing the incidence of naturally occurring clinical mastitis in periparturient dairy cattle. Further investigations of the use of PEG-bG-CSF as a potential preventative intervention should be conducted.

  19. Mobilization of primitive and committed hematopoietic progenitors in nonhuman primates treated with defibrotide and recombinant human granulocyte colony-stimulating factor.

    Carlo-Stella, Carmelo; Di Nicola, Massimo; Longoni, Paolo; Milani, Raffaella; Milanesi, Marco; Guidetti, Anna; Haanstra, Krista; Jonker, Margaret; Cleris, Loredana; Magni, Michele; Formelli, Franca; Gianni, Alesssandro M

    2004-01-01

    The aim of this study was to evaluate the capacity of defibrotide in enhancing cytokine-induced hematopoietic mobilization in rhesus monkeys. Animals received recombinant human granulocyte colony-stimulating factor (rhG-CSF, 100 microg/kg/day SC for 5 days) and, after a 4- to 6-week washout period, were remobilized with defibrotide (15 mg/kg/hour continuous intravenous for 5 days) plus rhG-CSF. Hematopoietic mobilization was evaluated by complete blood counts, differential counts, as well as frequency and absolute numbers of colony-forming cells (CFCs), high-proliferative potential CFCs (HPP-CFCs), and long-term culture-initiating cells (LTC-ICs). Compared to baseline values, rhG-CSF increased circulating CFCs, HPP-CFCs, and LTC-ICs by 158-, 125-, and 67-fold, respectively; the same figures for defibrotide/rhG-CSF were 299-, 1452-, and 295-fold, respectively. Defibrotide/rhG-CSF treatment compared to rhG-CSF alone increased CFCs, HPP-CFCs, and LTC-ICs by 1.4- (35,089 vs 25,825, pdefibrotide treatment associated with a 5-day rhG-CSF treatment. Compared to rhG-CSF, defibrotide/rhG-CSF increased the mobilization of CFCs, HPP-CFCs, and LTC-ICs by 2- (31,128 vs 15,527, pdefibrotide enhances rhG-CSF-elicited mobilization of primitive and committed progenitors; and 2) a 2-day defibrotide injection is as effective as a 5-day injection.

  20. Enhancement of innate immunity with granulocyte colony-stimulating factor did not mitigate disease in pigs infected with a highly pathogenic Chinese PRRSV strain.

    Schlink, Sarah N; Lager, Kelly M; Brockmeier, Susan L; Loving, Crystal L; Miller, Laura C; Vorwald, Ann C; Yang, Han-Chun; Kehrli, Marcus E; Faaberg, Kay S

    2016-10-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for one of the most economically important diseases in swine worldwide. It causes reproductive failure in sows and pneumonia in pigs that predisposes them to secondary bacterial infections. Methods to control PRRSV and/or limit secondary bacterial infections are desired to reduce the impact of this virus on animal health. Neutrophils play a major role in combatting infection; they can act as phagocytes as well as produce and release lytic enzymes that have potent antimicrobial effects leading to the destruction and clearance of bacterial pathogens. Granulocyte-colony stimulating factor (G-CSF) is a cytokine that controls the production, differentiation and function of granulocytes (including neutrophils) from the bone marrow. Recent work from our laboratory has shown that encoding porcine G-CSF in a replication-defective adenovirus (Ad5-G-CSF) and delivering a single dose to pigs induced a neutrophilia lasting more than two weeks. As secondary bacterial infection is a common occurrence following PRRSV infection, particularly following challenge with highly pathogenic (HP)-PRRSV, the aim of the current study was to evaluate the effectiveness of a single prophylactic dose of adenovirus-encoded G-CSF to mitigate secondary bacterial disease associated with HP-PRRSV infection. Administration of Ad5-G-CSF induced a significant neutrophilia as expected. However, between 1 and 2days following HP-PRRSV challenge the number of circulating neutrophils decreased dramatically in the HP-PRRSV infected group, but not the non-infected Ad5-G-CSF group. Ad5-G-CSF administration induced monocytosis as well, which was also reduced by HP-PRRSV challenge. There was no difference in the progression of disease between the Ad5-G-CSF and Ad5-empty groups following HP-PRRSV challenge, with pneumonia and systemic bacterial infection occurring in both treatment groups. Given the impact of HP-PRRSV infection on the

  1. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone

    Adrian Tudor Balseanu

    2014-06-01

    Full Text Available Attractive therapeutic strategies to enhance post-stroke recovery of aged brains include methods of cellular therapy that can enhance the endogenous restorative mechanisms of the injured brain. Since stroke afflicts mostly the elderly, it is highly desirable to test the efficacy of cell therapy in the microenvironment of aged brains that is generally refractory to regeneration. In particular, stem cells from the bone marrow allow an autologous transplantation approach that can be translated in the near future to the clinical practice. Such a bone marrow-derived therapy includes the grafting of stem cells as well as the delayed induction of endogenous stem cell mobilization and homing by the stem cell mobilizer granulocyte colony-stimulating factor (G-CSF. We tested the hypothesis that grafting of bone marrow-derived pre-differentiated mesenchymal cells (BM-MSCs in G-CSF-treated animals improves the long-term functional outcome in aged rodents. To this end, G-CSF alone (50 μg/kg or in combination with a single dose (106 cells of rat BM MSCs was administered intravenously to Sprague-Dawley rats at 6 h after transient occlusion (90 min of the middle cerebral artery. Infarct volume was measured by magnetic resonance imaging at 3 and 48 days post-stroke and additionally by immunhistochemistry at day 56. Functional recovery was tested during the entire post-stroke survival period of 56 days. Daily treatment for post-stroke aged rats with G-CSF led to a robust and consistent improvement of neurological function after 28 days. The combination therapy also led to robust angiogenesis in the formerly infarct core and beyond in the “islet of regeneration.” However, G-CSF + BM MSCs may not impact at all on the spatial reference-memory task or infarct volume and therefore did not further improve the post-stroke recovery. We suggest that in a real clinical practice involving older post-stroke patients, successful regenerative therapies

  2. Stem cell collection in unmanipulated HLA-haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised blood and bone marrow for patients with haematologic malignancies: the impact of donor characteristics and procedural settings.

    Zhang, C; Chen, X-H; Zhang, X; Gao, L; Gao, L; Kong, P-Y; Peng, X-G; Sun, A-H; Gong, Y; Zeng, D-F; Wang, Q-Y

    2010-06-01

    Unmanipulated haploidentical/mismatched related transplantation with combined granulocyte-colony stimulating factor-mobilised peripheral blood stem cells (G-PBSCs) and granulocyte-colony stimulating factor-mobilised bone marrow (G-BM) has been developed as an alternative transplantation strategy for patients with haematologic malignancies. However, little information is available about the factors predicting the outcome of peripheral blood stem cell (PBSC) collection and bone marrow (BM) harvest in this transplantation. The effects of donor characteristics and procedure factors on CD34(+) cell yield were investigated. A total of 104 related healthy donors received granulocyte-colony stimulating factor (G-CSF) followed by PBSC collection and BM harvest. Male donors had significantly higher yields compared with female donors. In multiple regression analysis for peripheral blood collection, age and flow rate were negatively correlated with cell yield, whereas body mass index, pre-aphaeresis white blood cell (WBC) and circulating immature cell (CIC) counts were positively correlated with cell yields. For BM harvest, age was negatively correlated with cell yields, whereas pre-BM collection CIC counts were positively correlated with cell yield. All donors achieved the final product of >or=6 x10(6) kg(-1) recipient body weight. This transplantation strategy has been shown to be a feasible approach with acceptable outcomes in stem cell collection for patients who received HLA-haploidentical/mismatched transplantation with combined G-PBSCs and G-BM. In donors with multiple high-risk characteristics for poor aphaeresis CD34(+) cell yield, BM was an alternative source.

  3. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebo-controlled stem cells in myocardial infarction (STEMMI) trial

    Ripa, Rasmus Sejersten; Jørgensen, Erik; Wang, Yongzhong

    2006-01-01

    BACKGROUND: Phase 1 clinical trials of granulocyte-colony stimulating factor (G-CSF) treatment after myocardial infarction have indicated that G-CSF treatment is safe and may improve left ventricular function. This randomized, double-blind, placebo-controlled trial aimed to assess the efficacy...... hours after symptom onset. Patients were randomized to double-blind treatment with G-CSF (10 microg/kg of body weight) or placebo for 6 days. The primary end point was change in systolic wall thickening from baseline to 6 months determined by cardiac magnetic resonance imaging (MRI). An independent core...

  4. Adsorption of recombinant human granulocyte colony stimulating factor (rhG-CSF) to polyvinyl chloride, polypropylene, and glass: effect of solvent additives.

    Johnston, T P

    1996-01-01

    The adsorption of recombinant-derived proteins to glass and polymeric materials used in their packaging and delivery remains a problem. Loss of these very expensive proteins to surface adsorption not only results in reduced yields during purification and scale-up, but also to decreased therapeutic efficacy. The purpose of the present investigation was to inhibit/minimize adsorption of a model protein, namely, recombinant human granulocyte colony stimulating factor (rhG-CSF) to glass, polyvinyl chloride (PVC), and polypropylene by inclusion of select solvent additives. Solvent additives used to inhibit/minimize surface adsorption included glycerin, U.S.P. (0.5%, 1%, 5%, and 25% v/v), Pluronic F-127 (0.005%, 0.05%, and 0.5% w/w), Pluronic F-68 (0.005%, 0.05%, and 0.5% w/w), Tween 80 (0.005% and 0.05% w/w) and Tween 20 (0.005%, 0.05%, and 0.5% w/w). Over the rhG-CSF concentration range of 0.0 ng/ml to 300 ng/ml, the amount of rhG-CSF bound per cm2 of PVC increased with an increase in the rhG-CSF concentration tested. At rhG-CSF equilibrium concentrations of 262 +/- 3.7 ng/ml and 136 +/- 1.9 ng/ml, the rhG-CSF bound/cm2 of PVC at 22 degrees C and 45 degrees C reached a maximum of 37.6 +/- 9.8 ng/cm2 and 165.2 +/- 11.7 ng/cm2, respectively. The adsorption isotherms determined at each temperature were described by the classic Freundlich equation. Moreover, the rate of adsorption of rhG-CSF to PVC was extremely rapid. The mean values of the percent of rhG-CSF bound to PVC after only 10 minutes of equilibration at 22 degrees C and 45 degrees C were 92.8 +/- 9.2 percent and 97.3 +/- 17.9 percent, respectively. The mean values of the percent of rhG-CSF bound to PVC at 22 degrees C and 45 degrees C after 24 hours were 52.4 +/- 10.9% and 70.0 +/- 9.7%, respectively, indicating that some desorption of rhG-CSF does occur during 24 hr. However, surface adsorption of rhG-CSF to PVC was shown to be irreversible over a 1 hr time period. Using viscometry, an estimate of the thickness

  5. [Influence of granulocyte colony stimulating factor on distribution of bone marrow stem cells and its role in protecting brain in rats with cerebral ischemia].

    Li, Jian-sheng; Liu, Jing-xia; Liu, Ke; Wang, Ding-chao; Ren, Wei-hong; Zhang, Xin-feng; Tian, Yu-shou

    2011-06-01

    To explore the influence of recombination granulocyte colony stimulating factor (rG-CSF) on mobilization and distribution of bone marrow stem cells (BMSCs) in blood and brain tissue, and its role in protecting brain in rats with cerebral ischemia. One hundred and six Sprague-Dawley (SD) rats were divided into sham-operated group (n=10),model group (n=48), rG-CSF group (n=48) according to the method of random digital table, and rats in model and rG-CSF groups were divided into four subgroups: i.e. 2, 3, 7 and 14 days subgroups, with 12 rats in each subgroup. Middle cerebral artery occlusion (MCAO) model was reproduced with nylon thread. In rats of rG-CSF group rG-CSF (10 μg/kg) was administered by subcutaneous injection 3 days before and 2 days after operation respectively, once a day. Rats in sham-operated and model groups were administered with normal saline in the same volume, once a day. At the corresponding time after operation, general neural function score (GNFS) of rats was measured. Blood was collected through abdominal aorta, then white blood cell (WBC) and CD34+ cells in peripheral blood were counted. Brain pathologic changes were observed, and expression of CD34+ cells in rats brain tissue was determined by using immunohistochemical method. (1) GNFS was lower obviously in 2-day model group compared with that in sham-operated group, and then increased gradually. At 7 days and 14 days after operation, GNFS in rG-CSF group was higher significantly than that in model group (7 days: 11.86±0.69 vs. 10.53±0.76, 14 days: 13.38±0.52 vs. 12.38±0.52, both P<0.01). (2) WBC and CD34+ cells in peripheral blood in model group increased obviously, with the highest level appeared at 3 days and lowered at 7 days and 14 days. Increase of WBC and CD34+ cells in rats of rG-CSF group was more obvious than that of model group at each time point except CD34+ in 14 days group [WBC (×10(9)/L) 2 days: 11.75±1.76 vs. 8.07±1.27, 3 days: 13.07±1.70 vs. 10.88±1.78, 7 days: 8

  6. Sustained trilineage recovery and disappearance of abnormal chromosome clone in a patient with myelodysplastic syndrome following combination therapy with cytokines (granulocyte colony-stimulating factor and erythropoietin) and high-dose methylprednisolone.

    Imai, Y; Fukuoka, T; Nakatani, A; Ohsaka, A; Takahashi, A

    1996-04-01

    We report a case of hypoplastic myelodyplastic syndrome (MDS) (refractory anemia (RA)) in which sustained trilineage haematological response and persistent disappearance of an abnormal chromosome clone were achieved after treatment with combination therapy of cytokines (granulocyte colony-stimulating factor (G-CSF) and erythropoietin (Epo)) and methylprednisolone (mPSL) pulse dose. The patient's haematological recovery was rapid and maintained even after cessation of the therapy. In addition, the predominant chromosome clone 13q- in bone marrow cells disappeared in the fourth week. The patient's improved bone marrow haemopoiesis and disappearance of the abnormal chromosome has continued to the present, 13 months after treatment. The occurrence of both trilineage response and abnormal chromosome disappearance in MDS patients treated with cytokine(s) or steroids is rare. Combination therapy might therefore be advantageous in MDS.

  7. Hallway gossip between Ras and PI3K pathways.

    Emanuel, Peter D

    2014-05-01

    In this issue of Blood, Goodwin et al investigate the pathogenesis of juvenile myelomonocytic leukemia (JMML), demonstrating that mutant Shp2 induces granulocyte macrophage-colony-stimulating factor (GM-CSF) hypersensitivity and that the p110δ subunit of phosphatidylinositol 3-kinase (PI3K) further promotes this dysregulation

  8. Recombinant Newcastle disease virus (NDV) with inserted gene coding for GM-CSF as a new vector for cancer immunogene therapy

    Janke, M.; Peeters, B.P.H.; Leeuw, de O.S.; Moormann, R.J.M.; Arnold, A.; Fournier, P.; Schirrmacher, V.

    2007-01-01

    This is the first report describing recombinant (rec) Newcastle disease virus (NDV) as vector for gene therapy of cancer. The gene encoding granulocyte/macrophage colony-stimulating factor (GM-CSF) was inserted as an additional transcription unit at two different positions into the NDV genome. The

  9. Circulating cytokines and cytokine receptors in infliximab treatment failure due to TNF-α independent Crohn disease

    Steenholdt, Casper; Coskun, Mehmet; Buhl, Sine

    2016-01-01

    -IFX antibodies. Circulating cytokines and cytokine receptors were assessed by enzyme-linked immunosorbent assay: granulocyte-macrophage colony-stimulating factor, interferon-γ, interleukin (IL)-1α, IL-1β, IL-1Ra, IL-6, IL-10, IL-12p70, soluble TNF receptor (sTNF-R) 1, sTNF-R2, IL-17A, and monocyte chemotactic...

  10. The application of hematopoietic growth factors in drug-induced agranulocytosis: a review of 70 cases

    Sprikkelman, A.; de Wolf, J. T.; Vellenga, E.

    1994-01-01

    Since 1989, granulocyte-macrophage and granulocyte colony-stimulating factors (GM-CSF, G-CSF) have been increasingly applied in the treatment of drug-induced agranulocytosis. In order to evaluate the effectiveness of GM-CSF and G-CSF in the treatment of drug-induced agranulocytosis, we have studied

  11. Clinical role of GM-CSF in neutrophil recovery in relation to health care parameters

    Hofstra, LS; DeVries, EGE; UylDeGroot, CA; Vellenga, E

    Recombinant human growth factors, particularly granulocyte-macrophage colony-stimulating factor (GM-CSF), have been only available for a few years. Since their introduction they have affected the management of drug-induced neutropenia, the use of dose intensive chemotherapy regimens and in the

  12. Distinct changes in pulmonary surfactant homeostasis in common beta-chain-and GM-CSF-deficient mice

    Reed, JA; Ikegami, M; Robb, L; Begley, CG; Ross, G; Whitsett, JA

    Pulmonary alveolar proteinosis (PAP) is caused by inactivation of either granulocyte-macrophage colony-stimulating factor (GMCSF) or GM receptor common beta-chain (beta(c)) genes in mice [GM(-/-), beta(c)(-/-)], demonstrating a critical role of GM-CSF signaling in surfactant homeostasis. To

  13. The Gottingen minipig is a model of the hematopoietic acute radiation syndrome: G-colony stimulating factor stimulates hematopoiesis and enhances survival from lethal total-body γ-irradiation.

    Moroni, Maria; Ngudiankama, Barbara F; Christensen, Christine; Olsen, Cara H; Owens, Rossitsa; Lombardini, Eric D; Holt, Rebecca K; Whitnall, Mark H

    2013-08-01

    We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes. Published by Elsevier Inc.

  14. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    Moroni, Maria, E-mail: maria.moroni@usuhs.edu [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Ngudiankama, Barbara F. [Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland (United States); Christensen, Christine [Division of Comparative Pathology, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Olsen, Cara H. [Biostatistics Consulting Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Owens, Rossitsa [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Lombardini, Eric D. [Veterinary Medicine Department, Armed Forces Research Institute of Medical Sciences, Bangkok (Thailand); Holt, Rebecca K. [Veterinary Science Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States); Whitnall, Mark H. [Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland (United States)

    2013-08-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes.

  15. Effect of granulocyte-colony stimulating factor on empiric therapy with flomoxef sodium and tobramycin in febrile neutropenic patients with hematological malignancies. Kan-etsu Hematological Disease and Infection Study Group.

    Yoshida, M; Karasawa, M; Naruse, T; Fukuda, M; Hirashima, K; Oh, H; Ninomiya, H; Abe, T; Saito, K; Shishido, H; Moriyama, Y; Shibata, A; Motoyoshi, K; Nagata, N; Miura, Y

    1999-02-01

    The clinical effects of concomitant use of granulocyte-colony stimulating factor (G-CSF) on empiric antibiotic therapy in febrile neutropenic patients were evaluated in a randomized fashion. Two hundred and fourteen neutropenic febrile episodes (neutrophil counts flomoxef sodium and tobramycin with or without G-CSF. The resolution of fever at day 4 (excellent response) or at day 7 (good response) was deemed effective. Among 157 evaluable episodes, the observed excellent responses were 31 (38.8%) and the good responses were 20 (25.0%) in the G-CSF group; those in the control group were 26 (33.8%) and 25 (32.5%), respectively. The overall efficacy rate was 63.8% (51/80) in the G-CSF group and 66.2% (51/77) in the control group (not significant). The initial neutrophil count was 0.186 +/- 0.249 x 10(9)/l in the G-CSF group and 0.235 +/- 0.290 x 10(9)/l in the control group, and rose to 2.889 +/- 4.198 x 10(9)/l and 0.522 +/- 0.844 x 10(9)/l, respectively, at day 7. These results indicate that G-CSF does not affect the rate of response to empiric antibiotic therapy in febrile neutropenic patients, although a significant effect of G-CSF was observed on neutrophil recovery.

  16. SEIFEM 2017: from real life to an agreement on the use of granulocyte transfusions and colony-stimulating factors for prophylaxis and treatment of infectious complications in patients with hematologic malignant disorders.

    Busca, Alessandro; Cesaro, Simone; Teofili, Luciana; Delia, Mario; Cattaneo, Chiara; Criscuolo, Marianna; Marchesi, Francesco; Fracchiolla, Nicola Stefano; Valentini, Caterina Giovanna; Farina, Francesca; Di Blasi, Roberta; Prezioso, Lucia; Spolzino, Angelica; Candoni, Anna; Del Principe, Maria Ilaria; Verga, Luisa; Nosari, Annamaria; Aversa, Franco; Pagano, Livio

    2018-02-01

    The rapid spread of severe infections mainly due to resistant pathogens, justifies the search for therapies aiming to restore immune functions severely compromised in patients with hematologic malignancies. Areas covered: The present review summarizes the current knowledge on the role of granulocyte transfusions and colony-stimulating factors as treatment strategy for hematologic patients with serious infectious complications. In addition, a survey among 21 hematologic centers, to evaluate the clinical practice for the use of G-CSF originator and biosimilars was performed. Expert commentary: Granulocyte transfusions with a target dose of at least 1.5-3 × 10 8 cells/kg, may be considered as an approach to bridge the gap between marrow suppression and recovery of granulocytes. G-CSF shortens the period of neutropenia, the hospitalization, the use of antibiotics and the rate of febrile neutropenia (FN) in adult and pediatric patients with non-Hodgkin lymphoma, and in adults with acute myeloid leukemia where these advantages nevertheless, did not translate into a clinical benefit. G-CSF biosimilar showed equivalence or non-inferiority to filgrastim. There are no data supporting the use of GM-CSF, eltrombopag and erythropoietin for preventing or treating infectious complications in patients with hematologic disorders.

  17. The Gottingen Minipig Is a Model of the Hematopoietic Acute Radiation Syndrome: G-Colony Stimulating Factor Stimulates Hematopoiesis and Enhances Survival From Lethal Total-Body γ-Irradiation

    Moroni, Maria; Ngudiankama, Barbara F.; Christensen, Christine; Olsen, Cara H.; Owens, Rossitsa; Lombardini, Eric D.; Holt, Rebecca K.; Whitnall, Mark H.

    2013-01-01

    Purpose: We are characterizing the Gottingen minipig as an additional large animal model for advanced drug testing for the acute radiation syndrome (ARS) to enhance the discovery and development of novel radiation countermeasures. Among the advantages provided by this model, the similarities to human hematologic parameters and dynamics of cell loss/recovery after irradiation provide a convenient means to compare the efficacy of drugs known to affect bone marrow cellularity and hematopoiesis. Methods and Materials: Male Gottingen minipigs, 4 to 5 months old and weighing 9 to 11 kg, were used for this study. We tested the standard off-label treatment for ARS, rhG-CSF (Neupogen, 10 μg/kg/day for 17 days), at the estimated LD70/30 total-body γ-irradiation (TBI) radiation dose for the hematopoietic syndrome, starting 24 hours after irradiation. Results: The results indicated that granulocyte colony stimulating factor (G-CSF) enhanced survival, stimulated recovery from neutropenia, and induced mobilization of hematopoietic progenitor cells. In addition, the administration of G-CSF resulted in maturation of monocytes/macrophages. Conclusions: These results support continuing efforts toward validation of the minipig as a large animal model for advanced testing of radiation countermeasures and characterization of the pathophysiology of ARS, and they suggest that the efficacy of G-CSF in improving survival after total body irradiation may involve mechanisms other than increasing the numbers of circulating granulocytes

  18. Comparison of autologous cell therapy and granulocyte-colony stimulating factor (G-CSF) injection vs. G-CSF injection alone for the treatment of acute radiation syndrome in a non-human primate model

    Bertho, Jean-Marc; Frick, Johanna; Prat, Marie; Demarquay, Christelle; Dudoignon, Nicolas; Trompier, Francois; Gorin, Norbert-Claude; Thierry, Dominique; Gourmelon, Patrick

    2005-01-01

    Purpose: To compare the efficacy of autologous cell therapy after irradiation combined with granulocyte-colony stimulating factor (G-CSF) injections with G-CSF treatment alone in a heterogeneous model of irradiation representative of an accidental situation. Material and Methods: Non-human primates were irradiated at 8.7 Gy whole-body dose with the right arm shielded to receive 4.8 Gy. The first group of animals received G-CSF (lenograstim) injections starting 6 h after irradiation, and a second group received a combination of G-CSF (lenograstim) injections and autologous expanded hematopoietic cells. Animals were followed up for blood cell counts, circulating progenitors, and bone marrow cellularity. Results: No significant differences were seen between the two treatment groups, whatever the parameter observed: time to leukocyte or platelet recovery and duration and severity of aplasia. Conclusion: Our results indicated that identical recovery kinetic was observed when irradiated animals are treated with G-CSF independently of the reinjection of ex vivo expanded autologous hematopoietic cells. Thus G-CSF injections might be chosen as a first-line therapeutic strategy in the treatment of accidental acute radiation victims

  19. Cost-effectiveness of granulocyte colony-stimulating factor prophylaxis in chemotherapy-induced febrile neutropenia among breast cancer and Non-Hodgkin's lymphoma patients under Taiwan's national health insurance system.

    Wen, Tsun-Jen; Wen, Yu-Wen; Chien, Chun-Ru; Chiang, Shao-Chin; Hsu, William Wei-Yuan; Shen, Li-Jiuan; Hsiao, Fei-Yuan

    2017-04-01

    The beneficial effects of granulocyte colony-stimulating factor (G-CSF) prophylaxis on reducing the risk of chemotherapy-induced febrile neutropenia (CIFN) were well documented throughout the literature. However, existing data regarding its cost-effectiveness were conflicting. We estimated the cost-effectiveness of G-CSF prophylaxis in CIFN under Taiwan's National Health Insurance (NHI) system. Data on clinical outcomes and direct medical costs were derived for 5179 newly diagnosed breast cancer and 629 non-Hodgkin's lymphoma (NHL) patients from the NHI claims database. Patients were further categorized into three subgroups as "primary-", "secondary-" and "no -" prophylaxis based on their patterns of G-CSF use. Generalized estimating equations were applied to estimate the impact of G-CSF use on the incidence of CIFN. The incremental cost-effectiveness ratios of primary and secondary prophylactic G-CSF use were calculated and sensitivity analyses were performed. Primary prophylaxis of G-CSF decreased the incidence of CIFN by 27% and 83%, while secondary prophylaxis by 34% and 22% in breast cancer and NHL patients, respectively. Compared with those with no prophylaxis, the incremental cost per CIFN reduced in primary prophylaxis is $931 and $52 among patients with breast cancer and NHL, respectively. In contrast, secondary prophylaxis is dominated by no prophylaxis and primary prophylaxis in both cancer patients. Primary but not secondary prophylactic use of G-CSF was cost-effective in CIFN in breast cancer and NHL patients under Taiwan's NHI system. © 2016 John Wiley & Sons, Ltd.

  20. Effect of granulocyte colony-stimulating factor (G-CSF) in human immunodeficiency virus-infected patients: increase in numbers of naive CD4 cells and CD34 cells makes G-CSF a candidate for use in gene therapy or to support antiretroviral therapy

    Nielsen, S D; Afzelius, P; Dam-Larsen, S

    1998-01-01

    The potential of granulocyte colony-stimulating factor (G-CSF) to mobilize CD4 cells and/or CD34 cells for use in gene therapy or to support antiretroviral therapy was examined. Ten human immunodeficiency virus-infected patients were treated with G-CSF (300 microg/day) for 5 days. Numbers of CD4.......01/microL (P CSF induced increases in numbers of CD34 cells and CD4 cells in HIV-infected patients...

  1. Cardiotoxicity of combined administration of adriamycin and granulocyte colony-stimulating factor (G-CSF) in rats. With special reference to 125I-MIBG cardioautoradiography and histopathological findings

    Niitsu, Nozomi; Yamazaki, Junichi; Serizawa, Isao; Misaizu, Tadashi; Sato, Masanori.

    1995-01-01

    We studied whether adriamycin (ADM)-induced myocardial damage in rats is advanced when recombinant human granulocyte colony-stimulating factor (G-CSF) is administered. Rats were divided into three groups: ADM group, ADM+G-CSF group and vehicle-treated control group. ADM (2 mg/kg, i.p.) was administered for the first 2 days in each cycle and 10 days administration of G-CSF (50lμg/kg, s.c.) was started two days after the second administration of ADM in each cycle. The administration cycle was repeated 3 times. One day after the last administration, following parameters were analyzed: hematological examination including peripheral blood and bone marrow cells, electrocardiogram (ECG) and histopathological findings. At 4 hr after an intravenous administration of 125 I-metaiodobenzylguanidine ( 125 I-MIBG), accumulation of 125 I-MIBG in some organs and findings of autoradiography (ARG) of the heart was examined. ECG revealed an extended ventricular activation (VAT) time in the ADM and ADM+G-CSF groups. In the histopathological analysis, vacuolar degeneration of the myocardium was observed in both the ADM and ADM+G-CSF groups. The severity of the change was equivalent in those groups. The accumulation of 125 I-MIBG in the heart was lower in both the ADM and ADM+G-CSF groups than in the control group. The same tendency was observed in ARG, but the difference between the ADM group and the ADM+G-CSF group was not significant. These results suggest that administration of G-CSF in the standard clinical dosage does not aggravate ADM-induced myocardial damage. However, because this disorder may be more clearly manifested by treatment with higher doses of ADM, it is necessary to conduct further studies on the methods of administration. (author)

  2. The use of granulocyte colony stimulating factor (G-CSF) and management of chemotherapy delivery during adjuvant treatment for early-stage breast cancer--further observations from the IMPACT solid study.

    Mäenpää, Johanna; Varthalitis, Ioannis; Erdkamp, Frans; Trojan, Andreas; Krzemieniecki, Krzysztof; Lindman, Henrik; Bendall, Kate; Vogl, Florian D; Verma, Shailendra

    2016-02-01

    To investigate the use and impact of granulocyte colony-stimulating factors (G-CSF) on chemotherapy delivery and neutropenia management in breast cancer in a clinical practice setting. IMPACT Solid was an international, prospective observational study in patients with a physician-assessed febrile neutropenia (FN) risk of ≥20%. This analysis focused on stages I-III breast cancer patients who received a standard chemotherapy regimen for which the FN risk was published. Chemotherapy delivery and neutropenia-related outcomes were reported according to the FN risk of the regimen and intent of G-CSF use. 690 patients received a standard chemotherapy regimen; 483 received the textbook dose/schedule with a majority of these regimens (84%) having a FN risk ≥10%. Patients receiving a regimen with a FN risk ≥10% were younger with better performance status than those receiving a regimen with a FN risk <10%. Patients who received higher-risk regimens were more likely to receive G-CSF primary prophylaxis (48% vs 22%), complete their planned chemotherapy (97% vs 88%) and achieve relative dose intensity ≥85% (93% vs 86%) than those receiving lower-risk regimens. Most first FN events (56%) occurred in cycles not supported with G-CSF primary prophylaxis. Physicians generally recommend standard adjuvant chemotherapy regimens and were more likely to follow G-CSF guidelines for younger, good performance status patients in the curative setting, and often modify standard regimens in more compromised patients. However, G-CSF support is not optimal, indicated by G-CSF primary prophylaxis use in <50% of high-risk patients and observation of FN without G-CSF support. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Studies on mechanism of treatment of granulocyte colony-stimulating factor, recombinant human interleukin-11 and recombinant human interleukin-2 on hematopoietic injuries induced by 4.5 Gy γ-rays irradiation in beagles

    Li Ming; Ou Hongling; Xing Shuang; Huang Haixiao; Xiong Guolin; Xie Ling; Zhao Yanfang; Zhao Zhenhu; Wang Ning; Wang Jinxiang; Miao Jingcheng; Zhu Nankang; Luo Qingliang; Cong Yuwen; Zhang Xueguang

    2010-01-01

    Objective: To investigate the mechanism of treatment of granulocyte colony-stimulating factor (rhG-CSF), recombinant human interleukin-11 (rhIL-11) and recombinant human interleukin-2 (rhIL-2) on hematopoietic injuries induced by 4.5 Gy 60 Co γ-ray irradiation in beagles, and to provide experimental evidence for the clinical treatment of extremely severe myeloid acute radiation sickness (ARS). Methods: Sixteen beagle dogs were given 4.5 Gy 60 Co γ-ray total body irradiation (TBI), then randomly assigned into irradiation control group, supportive care group or cytokines + supportive care (abbreviated as cytokines) group. In addition to supportive care, rhG-CSF, rhIL-11 and rhIL-2 were administered subcutaneously to treat dogs in cytokines group. The percentage of CD34 + cells, cell cycle and apoptosis of nucleated cells in peripheral blood were examined by Flow cytometry. Results: After 4.5 Gy 60 Co γ-ray irradiation, the CD34 + cells in peripheral blood declined obviously (61.3% and 52.1% of baseline for irradiation control and supportive care group separately). The cell proportion of nucleated cells in G 0 /G 1 phase was increased notably notably (99.27% and 99.49% respectively). The rate of apoptosis (26.93% and 21.29% separately) and necrosis (3.27% and 4.14%, respectively) of nucleated cells were elevated significantly when compared with values before irradiation (P 0 /G 1 phase blockage of nucleated cells became more serious (99.71%). The rate of apoptosis (5.66%) and necrosis (1.60%) of nucleated cells were significantly lower than that of irradiation control and supportive care groups 1 d after exposure. Conclusions: Cytokines maybe mobilize CD34 + cells in bone marrow to peripheral blood, indce cell block at G 0 /G 1 phase and reduce apoptosis, and eventually cure hematopoietic injuries induced by irradiation. (authors)

  4. Increased mobilization and yield of stem cells using plerixafor in combination with granulocyte-colony stimulating factor for the treatment of non-Hodgkin’s lymphoma and multiple myeloma

    Louis M Pelus

    2011-02-01

    Full Text Available Louis M Pelus1, Sherif S Farag21Department of Microbiology and Immunology, 2Division of Hematology and Oncology, Department of Internal Medicine, Indiana University School of Medicine, Indianapolis, IndianaAbstract: Multiple myeloma and non-Hodgkin’s lymphoma remain the most common indications for high-dose chemotherapy and autologous peripheral blood stem cell rescue. While a CD34+ cell dose of 1 × 106/kg is considered the minimum required for engraftment, higher CD34+ doses correlate with improved outcome. Numerous studies, however, support targeting a minimum CD34+ cell dose of 2.0 × 106/kg, and an “optimal” dose of 4 to 6 × 106/kg for a single transplant. Unfortunately, up to 40% of patients fail to mobilize an optimal CD34+ cell dose using myeloid growth factors alone. Plerixafor is a novel reversible inhibitor of CXCR4 that significantly increases the mobilization and collection of higher numbers of hematopoietic progenitor cells. Two randomized multi-center clinical trials in patients with non-Hodgkin’s lymphoma and multiple myeloma have demonstrated that the addition of plerixafor to granulocyte-colony stimulating factor increases the mobilization and yield of CD34+ cells in fewer apheresis days, which results in durable engraftment. This review summarizes the pharmacology and evidence for the clinical efficacy of plerixafor in mobilizing hematopoietic stem and progenitor cells, and discusses potential ways to utilize plerixafor in a cost-effective manner in patients with these diseases.Keywords: plerixafor, mobilization, stem cells, lymphoma, myeloma

  5. Consistent bone marrow-derived cell mobilization following repeated short courses of granulocyte-colony-stimulating factor in patients with amyotrophic lateral sclerosis: results from a multicenter prospective trial.

    Tarella, Corrado; Rutella, Sergio; Gualandi, Francesca; Melazzini, Mario; Scimè, Rosanna; Petrini, Mario; Moglia, Cristina; Ulla, Marco; Omedé, Paola; Bella, Vincenzo La; Corbo, Massimo; Silani, Vincenzo; Siciliano, Gabriele; Mora, Gabriele; Caponnetto, Claudia; Sabatelli, Mario; Chiò, Adriano

    2010-01-01

    The aim of this study was to evaluate and characterize the feasibility and safety of bone marrow-derived cell (BMC) mobilization following repeated courses of granulocyte-colony stimulating factor (G-CSF) in patients with amyotrophic lateral sclerosis (ALS). Between January 2006 and March 2007, 26 ALS patients entered a multicenter trial that included four courses of BMC mobilization at 3-month intervals. In each course, G-CSF (5 microg/kg b.i.d.) was administered for four consecutive days; 18% mannitol was also given. Mobilization was monitored by flow cytometry analysis of circulating CD34(+) cells and by in vitro colony assay for clonogenic progenitors. Co-expression by CD34(+) cells of CD133, CD90, CD184, CD117 and CD31 was also assessed. Twenty patients completed the four-course schedule. One patient died and one refused to continue the program before starting the mobilization courses; four discontinued the study protocol because of disease progression. Overall, 89 G-CSF courses were delivered. There were two severe adverse events: one prolactinoma and one deep vein thrombosis. There were no discontinuations as a result of toxic complications. Circulating CD34(+) cells were monitored during 85 G-CSF courses and were always markedly increased; the range of median peak values was 41-57/microL, with no significant differences among the four G-CSF courses. Circulating clonogenic progenitor levels paralleled CD34(+) cell levels. Most mobilized CD34(+) cells co-expressed stem cell markers, with a significant increase in CD133 co-expression. It is feasible to deliver repeated courses of G-CSF to mobilize a substantial number of CD34(+) cells in patients with ALS; mobilized BMC include immature cells with potential clinical usefulness.

  6. Purification of human recombinant granulocyte colony stimulating ...

    Ramya

    2012-06-21

    Jun 21, 2012 ... Proteins expressed as inclusion bodies are currently solubilized by the use of high ... by dialyzing with buffer containing reducing and oxidizing agents. Renaturation of ... MATERIALS AND METHODS. Expression system and ...

  7. Basal CD34+ Cell Count Predicts Peripheral Blood Stem Cell Mobilization in Healthy Donors after Administration of Granulocyte Colony-Stimulating Factor: A Longitudinal, Prospective, Observational, Single-Center, Cohort Study.

    Martino, Massimo; Gori, Mercedes; Pitino, Annalisa; Gentile, Massimo; Dattola, Antonia; Pontari, Antonella; Vigna, Ernesto; Moscato, Tiziana; Recchia, Anna Grazia; Barilla', Santina; Tripepi, Giovanni; Morabito, Fortunato

    2017-07-01

    A longitudinal, prospective, observational, single-center, cohort study on healthy donors (HDs) was designed to identify predictors of CD34 + cells on day 5 with emphasis on the predictive value of the basal CD34 + cell count. As potential predictors of mobilization, age, sex, body weight, height, blood volume as well as white blood cell count, peripheral blood (PB) mononuclear cells, platelet count, hematocrit, and hemoglobin levels were considered. Two different evaluations of CD34 + cell counts were determined for each donor: baseline (before granulocyte colony-stimulating factor [G-CSF] administration) and in PB after G-CSF administration on the morning of the fifth day (day 5). A total of 128 consecutive HDs (66 males) with a median age of 43 years were enrolled. CD34 + levels on day 5 displayed a non-normal distribution, with a median value of 75.5 cells/µL. To account for the non-normal distribution of the dependent variable, a quantile regression analysis to predict CD34 + on day 5 using the baseline value of CD34 + as the key predictor was performed. On crude analysis, a baseline value of CD34 + ranging from .5 cells/µL to 1 cells/µL predicts a median value of 50 cells/µL on day 5; a value of 2 cells/µL predicts a median value of 70.7 cells/µL; a value of 3 cells/µL to 4 cells/µL predicts a median value of 91.3 cells/µL, and a value ≥ 5 predicts a median value of 112 cells/µL. In conclusion, the baseline PB CD34 + cell count correlates with the effectiveness of allogeneic PB stem cell mobilization and could be useful to plan the collection. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. Early applications of granulocyte colony-stimulating factor (G-CSF) can stabilize the blood-optic-nerve barrier and ameliorate inflammation in a rat model of anterior ischemic optic neuropathy (rAION).

    Wen, Yao-Tseng; Huang, Tzu-Lun; Huang, Sung-Ping; Chang, Chung-Hsing; Tsai, Rong-Kung

    2016-10-01

    Granulocyte colony-stimulating factor (G-CSF) was reported to have a neuroprotective effect in a rat model of anterior ischemic optic neuropathy (rAION model). However, the therapeutic window and anti-inflammatory effects of G-CSF in a rAION model have yet to be elucidated. Thus, this study aimed to determine the therapeutic window of G-CSF and investigate the mechanisms of G-CSF via regulation of optic nerve (ON) inflammation in a rAION model. Rats were treated with G-CSF on day 0, 1, 2 or 7 post-rAION induction for 5 consecutive days, and a control group were treated with phosphate-buffered saline (PBS). Visual function was assessed by flash visual evoked potentials at 4 weeks post-rAION induction. The survival rate and apoptosis of retinal ganglion cells were determined by FluoroGold labeling and TUNEL assay, respectively. ON inflammation was evaluated by staining of ED1 and Iba1, and ON vascular permeability was determined by Evans Blue extravasation. The type of macrophage polarization was evaluated using quantitative real-time PCR (qRT-PCR). The protein levels of TNF-α and IL-1β were analyzed by western blotting. A therapeutic window during which G-CSF could rescue visual function and retinal ganglion cell survival was demonstrated at day 0 and day 1 post-infarct. Macrophage infiltration was reduced by 3.1- and 1.6-fold by G-CSF treatment starting on day 0 and 1 post-rAION induction, respectively, compared with the PBS-treated group (P<0.05). This was compatible with 3.3- and 1.7-fold reductions in ON vascular permeability after G-CSF treatment compared with PBS treatment (P<0.05). Microglial activation was increased by 3.8- and 3.2-fold in the early (beginning treatment at day 0 or 1) G-CSF-treated group compared with the PBS-treated group (P<0.05). Immediate (within 30 mins of infarct) treatment with G-CSF also induced M2 microglia/macrophage activation. The cytokine levels were lower in the group that received immediate G-CSF treatment compared to

  9. A phase I study of different doses and frequencies of pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) in patients with standard-dose chemotherapy-induced neutropenia.

    Qin, Yan; Han, Xiaohong; Wang, Lin; Du, Ping; Yao, Jiarui; Wu, Di; Song, Yuanyuan; Zhang, Shuxiang; Tang, Le; Shi, Yuankai

    2017-10-01

    The recommended dose of prophylactic pegylated recombinant human granulocyte-colony stimulating factor (PEG rhG-CSF) is 100 μg/kg once per cycle for patients receiving intense-dose chemotherapy. However, few data are available on the proper dose for patients receiving less-intense chemotherapy. The aim of this phase I study is to explore the proper dose and administration schedule of PEG rhG-CSF for patients receiving standard-dose chemotherapy. Eligible patients received 3-cycle chemotherapy every 3 weeks. No PEG rhG-CSF was given in the first cycle. Patients experienced grade 3 or 4 neutropenia would then enter the cycle 2 and 3. In cycle 2, patients received a single subcutaneous injection of prophylactic PEG rhG-CSF on d 3, and received half-dose subcutaneous injection in cycle 3 on d 3 and d 5, respectively. Escalating doses (30, 60, 100 and 200 μg/kg) of PEG rhG-CSF were investigated. A total of 26 patients were enrolled and received chemotherapy, in which 24 and 18 patients entered cycle 2 and cycle 3 treatment, respectively. In cycle 2, the incidence of grade 3 or 4 neutropenia for patients receiving single-dose PEG rhG-CSF of 30, 60, 100 and 200 μg/kg was 66.67%, 33.33%, 22.22% and 0, respectively, with a median duration less than 1 (0-2) d. No grade 3 or higher neutropenia was noted in cycle 3 in all dose cohorts. The pharmacokinetic and pharmacodynamic profiles of PEG rhG-CSF used in cancer patients were similar to those reported, as well as the safety. Double half dose administration model showed better efficacy result than a single dose model in terms of grade 3 neutropenia and above. The single dose of 60 μg/kg, 100 μg/kg and double half dose of 30 μg/kg were recommended to the phase II study, hoping to find a preferable method for neutropenia treatment.

  10. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours.

    Aapro, M S; Bohlius, J; Cameron, D A; Dal Lago, Lissandra; Donnelly, J Peter; Kearney, N; Lyman, G H; Pettengell, R; Tjan-Heijnen, V C; Walewski, J; Weber, Damien C; Zielinski, C

    2011-01-01

    Chemotherapy-induced neutropenia is a major risk factor for infection-related morbidity and mortality and also a significant dose-limiting toxicity in cancer treatment. Patients developing severe (grade 3/4) or febrile neutropenia (FN) during chemotherapy frequently receive dose reductions and/or delays to their chemotherapy. This may impact the success of treatment, particularly when treatment intent is either curative or to prolong survival. In Europe, prophylactic treatment with granulocyte-colony stimulating factors (G-CSFs), such as filgrastim (including approved biosimilars), lenograstim or pegfilgrastim is available to reduce the risk of chemotherapy-induced neutropenia. However, the use of G-CSF prophylactic treatment varies widely in clinical practice, both in the timing of therapy and in the patients to whom it is offered. The need for generally applicable, European-focused guidelines led to the formation of a European Guidelines Working Party by the European Organisation for Research and Treatment of Cancer (EORTC) and the publication in 2006 of guidelines for the use of G-CSF in adult cancer patients at risk of chemotherapy-induced FN. A new systematic literature review has been undertaken to ensure that recommendations are current and provide guidance on clinical practice in Europe. We recommend that patient-related adverse risk factors, such as elderly age (≥65 years) and neutrophil count be evaluated in the overall assessment of FN risk before administering each cycle of chemotherapy. It is important that after a previous episode of FN, patients receive prophylactic administration of G-CSF in subsequent cycles. We provide an expanded list of common chemotherapy regimens considered to have a high (≥20%) or intermediate (10-20%) risk of FN. Prophylactic G-CSF continues to be recommended in patients receiving a chemotherapy regimen with high risk of FN. When using a chemotherapy regimen associated with FN in 10-20% of patients, particular attention

  11. Effects of Acrolein on Leukotriene Biosynthesis in Human Neutrophils

    Zemski Berry, Karin A.; Henson, Peter M.; Murphy, Robert C.

    2008-01-01

    Acrolein is a toxic, highly reactive α,β-unsaturated aldehyde that is present in high concentrations in cigarette smoke. In the current study, the effect of acrolein on eicosanoid synthesis in stimulated human neutrophils was examined. Eicosanoid synthesis in neutrophils was initiated by priming with granulocyte-macrophage colony-stimulating factor (GM-CSF) and subsequent stimulation with formyl-methionyl-leucyl-phenylalanine (fMLP) and 5-LO products in addition to small amounts of COX produc...

  12. Nitro-oleic acid regulates growth factor-induced differentiation of bone marrow-derived macrophages

    Vereščáková, Hana; Ambrožová, Gabriela; Kubala, Lukáš; Perečko, Tomáš; Koudelka, Adolf; Vašíček, Ondřej; Rudolph, T.K.; Klinke, A.; Woodcock, S.R.; Freeman, B.A.; Pekarová, Michaela

    2017-01-01

    Roč. 104, MAR2017 (2017), s. 10-19 ISSN 0891-5849 R&D Projects: GA ČR GP13-40824P; GA ČR(CZ) GJ17-08066Y; GA MŠk(CZ) LD15069 Institutional support: RVO:68081707 Keywords : colony-stimulating factor * nitrated fatty-acids * hematopoietic stem-cells * gm-csf Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemistry and molecular biology Impact factor: 5.606, year: 2016

  13. Peripheral blood cells from children with RASopathies show enhanced spontaneous colonies growth in vitro and hyperactive RAS signaling

    Gaipa, G; Bugarin, C; Cianci, P; Sarno, J; Bonaccorso, P; Biondi, A; Selicorni, A

    2015-01-01

    Germline mutations in genes coding for molecules involved in the RAS/RAF/MEK/ERK pathway are the hallmarks of a newly classified family of autosomal dominant syndromes termed RASopathies. Myeloproliferative disorders (MPDs), in particular, juvenile myelomonocytic leukemia, can lead to potentially severe complications in children with Noonan syndrome (NS). We studied 27 children with NS or other RASopathies and 35 age-matched children as control subjects. Peripheral blood (PB) cells from these patients were studied for in vitro colony-forming units (CFUs) activity, as well as for intracellular phosphosignaling. Higher spontaneous growth of both burst-forming units-erythroid (BFU-E) and CFU-granulocyte/macrophage (CFU-GM) colonies from RAS-mutated patients were observed as compared with control subjects. We also observed a significantly higher amount of GM-colony-stimulating factor-induced p-ERK in children with RASopathies. Our findings demonstrate for the first time that PB cells isolated from children suffering from NS or other RASopathies without MPD display enhanced BFU-E and CFU-GM colony formation in vitro. The biological significance of these findings clearly awaits further studies. Collectively, our data provide a basis for further investigating of only partially characterized hematological alterations present in children suffering from RASopathies, and may provide new markers for progression toward malignant MPD in these patients

  14. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  15. MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor, in the treatment of patients with moderate rheumatoid arthritis: results of a phase Ib/IIa randomised, double-blind, placebo-controlled, dose-escalation trial

    Behrens, Frank; Tak, Paul P; Østergaard, Mikkel; Stoilov, Rumen; Wiland, Piotr; Huizinga, Thomas W; Berenfus, Vadym Y; Vladeva, Stoyanka; Rech, Juergen; Rubbert-Roth, Andrea; Korkosz, Mariusz; Rekalov, Dmitriy; Zupanets, Igor A; Ejbjerg, Bo J; Geiseler, Jens; Fresenius, Julia; Korolkiewicz, Roman P; Schottelius, Arndt J; Burkhardt, Harald

    2015-01-01

    Objectives To determine the safety, tolerability and signs of efficacy of MOR103, a human monoclonal antibody to granulocyte–macrophage colony-stimulating factor (GM-CSF), in patients with rheumatoid arthritis (RA). Methods Patients with active, moderate RA were enrolled in a randomised, multicentre, double-blind, placebo-controlled, dose-escalation trial of intravenous MOR103 (0.3, 1.0 or 1.5 mg/kg) once a week for 4 weeks, with follow-up to 16 weeks. The primary outcome was safety. Results Of the 96 randomised and treated subjects, 85 completed the trial (n=27, 24, 22 and 23 for pooled placebo and MOR103 0.3, 1.0 and 1.5 mg/kg, respectively). Treatment emergent adverse events (AEs) in the MOR103 groups were mild or moderate in intensity and generally reported at frequencies similar to those in the placebo group. The most common AE was nasopharyngitis. In two cases, AEs were classified as serious because of hospitalisation: paronychia in a placebo subject and pleurisy in a MOR103 0.3 mg/kg subject. Both patients recovered fully. In exploratory efficacy analyses, subjects in the MOR103 1.0 and 1.5 mg/kg groups showed significant improvements in Disease Activity Score-28 scores and joint counts and significantly higher European League Against Rheumatism response rates than subjects receiving placebo. MOR103 1.0 mg/kg was associated with the largest reductions in disease activity parameters. Conclusions MOR103 was well tolerated and showed preliminary evidence of efficacy in patients with active RA. The data support further investigation of this monoclonal antibody to GM-CSF in RA patients and potentially in those with other immune-mediated inflammatory diseases. Trial registration number NCT01023256 PMID:24534756

  16. Prevalidation of a model for predicting acute neutropenia by colony forming unit granulocyte/macrophage (CFU-GM) assay.

    Pessina, A; Albella, B; Bueren, J; Brantom, P; Casati, S; Gribaldo, L; Croera, C; Gagliardi, G; Foti, P; Parchment, R; Parent-Massin, D; Sibiril, Y; Van Den Heuvel, R

    2001-12-01

    This report describes an international prevalidation study conducted to optimise the Standard Operating Procedure (SOP) for detecting myelosuppressive agents by CFU-GM assay and to study a model for predicting (by means of this in vitro hematopoietic assay) the acute xenobiotic exposure levels that cause maximum tolerated decreases in absolute neutrophil counts (ANC). In the first phase of the study (Protocol Refinement), two SOPs were assessed, by using two cell culture media (Test A, containing GM-CSF; and Test B, containing G-CSF, GM-CSF, IL-3, IL-6 and SCF), and the two tests were applied to cells from both human (bone marrow and umbilical cord blood) and mouse (bone marrow) CFU-GM. In the second phase (Protocol Transfer), the SOPs were transferred to four laboratories to verify the linearity of the assay response and its interlaboratory reproducibility. After a further phase (Protocol Performance), dedicated to a training set of six anticancer drugs (adriamycin, flavopindol, morpholino-doxorubicin, pyrazoloacridine, taxol and topotecan), a model for predicting neutropenia was verified. Results showed that the assay is linear under SOP conditions, and that the in vitro endpoints used by the clinical prediction model of neutropenia are highly reproducible within and between laboratories. Valid tests represented 95% of all tests attempted. The 90% inhibitory concentration values (IC(90)) from Test A and Test B accurately predicted the human maximum tolerated dose (MTD) for five of six and for four of six myelosuppressive anticancer drugs, respectively, that were selected as prototype xenobiotics. As expected, both tests failed to accurately predict the human MTD of a drug that is a likely protoxicant. It is concluded that Test A offers significant cost advantages compared to Test B, without any loss of performance or predictive accuracy. On the basis of these results, we proposed a formal Phase II validation study using the Test A SOP for 16-18 additional xenobiotics that represent the spectrum of haematotoxic potential.

  17. Serial cytokine alterations and abnormal neuroimaging in newborn infants with encephalopathy.

    O'Hare, Fiona M; Watson, R William G; O'Neill, Amanda; Segurado, Ricardo; Sweetman, Deirdre; Downey, Paul; Mooney, Eoghan; Murphy, John; Donoghue, Veronica; Molloy, Eleanor J

    2017-04-01

    Inflammatory cytokines may play a role in the final common pathway in the pathogenesis of hypoxic-ischaemic injury in experimental models. We aimed to profile the systemic pro-and anti-inflammatory response over the first week of life in term infants at risk of neonatal encephalopathy. In a tertiary referral university neonatal intensive care unit, serial blood samples were analysed from 41 term infants (requiring resuscitation at birth) in this prospective observational pilot study. Serum levels of 10 pro-and anti-inflammatory cytokines were evaluated including interleukin(IL)-1α, IL-1β, IL-6, IL-8, IL-10, tumour necrosis factor(TNF)-α, interferon (IFN)-γ, vascular endothelial growth factor (VEGF), granulocyte/colony-stimulating factor (G-CSF) and granulocyte macrophage/colony-stimulating factor (GM-CSF). Infants with neonatal encephalopathy and abnormal neuroimaging (n = 15) had significantly elevated granulocyte macrophage/colony-stimulating factor at 0-24 h and interleukin-8, interleukin-6 and interleukin-10 at 24-48 hour. Tumour necrosis factor-α and vascular endothelial growth factor levels were lower at 72-96 hour (p < 0.05). Significantly elevated levels of interleukin-10 were associated with mortality. Serum cytokine changes and innate immune dysregulation in the first week of life may be indicators of outcome in neonatal encephalopathy but require validation in larger studies. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. In Vivo Monitoring of pH, Redox Status, and Glutathione Using L-Band EPR for Assessment of Therapeutic Effectiveness in Solid Tumors

    Bobko, Andrey A.; Eubank, Timothy D.; Voorhees, Jeffrey L.; Efimova, Olga V.; Kirilyuk, Igor A.; Petryakov, Sergey; Trofimiov, Dmitrii G.; Marsh, Clay B.; Zweier, Jay L.; Grigor’ev, Igor A.; Samouilov, Alexandre; Khramtsov, Valery V.

    2011-01-01

    Approach for in vivo real-time assessment of tumor tissue extracellular pH (pHe), redox, and intracellular glutathione based on L-band EPR spectroscopy using dual function pH and redox nitroxide probe and disulfide nitroxide biradical, is described. These parameters were monitored in PyMT mice bearing breast cancer tumors during treatment with granulocyte macrophage colony-stimulating factor. It was observed that tumor pHe is about 0.4 pH units lower than that in normal mammary gland tissue. Treatment with granulocyte macrophage colony-stimulating factor decreased the value of pHe by 0.3 units compared with PBS control treatment. Tumor tissue reducing capacity and intracellular glutathione were elevated compared with normal mammary gland tissue. Granulocyte macrophage colony-stimulating factor treatment resulted in a decrease of the tumor tissue reducing capacity and intracellular glutathione content. In addition to spectroscopic studies, pHe mapping was performed using recently proposed variable frequency proton–electron double-resonance imaging. The pH mapping superimposed with MRI image supports probe localization in mammary gland/tumor tissue, shows high heterogeneity of tumor tissue pHe and a difference of about 0.4 pH units between average pHe values in tumor and normal mammary gland. In summary, the developed multifunctional approach allows for in vivo, noninvasive pHe, extracellular redox, and intracellular glutathione content monitoring during investigation of various therapeutic strategies for solid tumors. Magn Reson Med 000:000–000, 2011. PMID:22113626

  19. Development and validation of a multiplex add-on assay for sepsis biomarkers using xMAP technology

    Kofoed, Kristian; Schneider, Uffe Vest; Scheel, Troels

    2006-01-01

    BACKGROUND: Sepsis is a common and often fatal disease. Because sepsis can be caused by many different organisms, biomarkers that can aid in diagnosing sepsis and monitoring treatment efficacy are highly warranted. New sepsis markers may provide additional information to complement the currently...... triggering receptor expressed on myeloid cells-1 (sTREM-1), and macrophage migration inhibiting factor (MIF) was developed and validated in-house. This 3-plex assay was added to a commercially available interleukin-1beta (IL-1beta), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor, and tumor...

  20. Development and validation of a multiplex add-on assay of biomarkers related to sepsis using xMAP technology

    Kofoed, Kristian; Vest Schneider, Uffe; Scheel, Troels

    2006-01-01

    BACKGROUND: Sepsis is a common and often fatal disease. Because sepsis can be caused by many different organisms, biomarkers that can aid in diagnosing sepsis and monitoring treatment efficacy are highly warranted. New sepsis markers may provide additional information to complement the currently...... triggering receptor expressed on myeloid cells-1 (sTREM-1), and macrophage migration inhibiting factor (MIF) was developed and validated in-house. This 3-plex assay was added to a commercially available interleukin-1beta (IL-1beta), IL-6, IL-8, granulocyte/macrophage colony-stimulating factor, and tumor...

  1. Characterization of monocyte-derived dendritic cells maturated with IFN-alpha

    Svane, I M; Nikolajsen, K; Walter, M R

    2006-01-01

    Dendritic cells (DC) are promising candidates for cancer immunotherapy. These cells can be generated from peripheral blood monocytes cultured with granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin-4 (IL-4). In order to obtain full functional capacity, maturation is required......, maturation with IFN-alpha has only a small effect on induction of autologous T-cell stimulatory capacity of the DC. However, an increase in DC allogeneic T-cell stimulatory capacity was observed. These data suggest that IFN-alpha has a potential as a maturation agent used in DC-based cancer vaccine trials...

  2. Petiveria alliacea L. extract protects mice against Listeria monocytogenes infection--effects on bone marrow progenitor cells.

    Quadros, M R; Souza Brito, A R; Queiroz, M L

    1999-02-01

    In this study we have investigated the effects of Petiveria alliacea on the hematopoietic response of mice infected with Listeria monocytogenes. Our results demonstrate a protective effect of the crude extract of P. alliacea since the survival of the treated/infected was higher than that in the infected group. Moreover, the number of granulocyte/macrophage colonies (CFU-GM) and the serum colony stimulating activity levels were increased in the treated/infected mice in relation to the infected group. These results suggest an immunomodulation of Petiveria alliacea extract on hematopoiesis, which may be responsible, at least in part, for the increased resistance of mice to Listeria monocytogenes infection.

  3. Uso de fatores de crescimento epidérmico e estimulador de colônias de granulócitos na prevenção e tratamento da enterocolite necrosante no recém-nascido Use of epidermic and granulocyte-colony stimulating growth factors in the prevention and treatment of necrotizing enterocolitis of the newborn

    Dáfne Cardoso B. da Silva

    2008-06-01

    pathophysiology of this disease improves, new therapies, such as the administration of epidermal growth factor and granulocyte colony-stimulating factor, are being discussed. CONCLUSIONS: The use of growth factors for treatment and prevention of NEC seems promising. However, further clinics assays are needed to evaluate the effectiveness and the safety of these growth factors. At this moment, the best clinical practice is the prevention of the disease.

  4. Mechanism of suppression of normal hemopoietic activity by lymphokine-activated killer cells and their products

    Gibson, F.M.; Malkovska, V.; Myint, A.A.; Meager, A.; Gordon-Smith, E.C.

    1991-01-01

    Interleukin 2 (IL-2)-activated lymphocytes (lymphokine-activated killer [LAK] cells) have been shown to inhibit the formation of autologous human granulocyte-macrophage hemopoietic progenitors (granulocyte-macrophage colony-forming units, CFU-GM) in vitro. Effects of LAK cells on these progenitors may include a number of different mechanisms. LAK cells are potent cytotoxic lymphocytes capable of lysing certain normal autologous cells. They also produce cytokines known to inhibit hemopoiesis (interferon gamma [IFN-gamma] and tumor necrosis factor alpha [TNF-alpha]) or enhance it (granulocyte-macrophage colony-stimulating factor, GM-CSF). In the authors' current study they analyzed the mechanism of suppression of autologous CFU-GM by LAK cells. Their results suggest that LAK cells are not directly cytotoxic to normal CFU-GM. They show that it is possible to abolish the hemopoiesis-inhibiting activity of LAK cells without abrogating their cytotoxicity against tumor cell lines using inhibitors of DNA synthesis, namely hydroxyurea or irradiation

  5. Hematopoietic regulatory factors produced in long-term murine bone marrow cultures and the effect of in vitro irradiation

    Gualtieri, R.J.; Shadduck, R.K.; Baker, D.G.; Quesenberry, P.J.

    1984-01-01

    The nature of hematopoietic regulatory factors elaborated by the adherent (stromal) cells of long-term murine bone marrow cultures and the effect of in vitro stromal irradiation (XRT) on the production of these factors was investigated. Using an in situ stromal assay it was possible to demonstrate stromal elaboration of at least two colony-stimulating activities, ie, granulocyte/macrophage colony-stimulating activity (G/M-CSA) and megakaryocyte colony-stimulating activity (Meg-CSA). Exposure of the stroma to XRT resulted in dose-dependent elevations of both activities that correlated inversely with total myeloid cell mass. Mixture experiments that combined control and irradiated stroma revealed that the hematopoietically active control stroma could block detection of XRT-related G/M-CSA elevations. Antiserum directed against purified L cell colony-stimulating factor (CSF) reduced granulocyte/macrophage colony formation in the target layer but did not effect the increased Meg-CSA. While a radioimmunoassay for L-cell type CSF was unable to detect significant differences in concentrated media from control and irradiated cultures, bioassays of these media revealed XRT-related G/M-CSA elevations. These results indicate that the G/M-CSA elaborated in these cultures is immunologically distinct from the Meg-CSA produced, and although distinct from L cell CSF, the G/M-CSA is crossreactive with the L cell CSF antiserum. Morphologic, histochemical, and factor VII antigen immunofluorescent studies were performed on the stromal cell population responsible for production of these stimulatory activities. In addition to ''fat'' cells, the stromal cells remaining after XRT were composed of two predominant cell populations. These included a major population of acid phosphatase and nonspecific esterase-positive macrophage-like cells and a minor population of factor VII antigen negative epithelioid cells

  6. Delivery of GM-CSF to Protect against Influenza Pneumonia

    Subramaniam, Renuka; Hillberry, Zachary; Chen, Han; Feng, Yan; Fletcher, Kalyn; Neuenschwander, Pierre; Shams, Homayoun

    2015-01-01

    Background Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV) pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza. Methods Granulocyte-macrophage colony stimulating factor (GM-CSF) contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production. Results Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF) in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM). In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV. Conclusion We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection. PMID:25923215

  7. Delivery of GM-CSF to Protect against Influenza Pneumonia.

    Renuka Subramaniam

    Full Text Available Since adaptive immunity is thought to be central to immunity against influenza A virus (IAV pneumonias, preventive strategies have focused primarily on vaccines. However, vaccine efficacy has been variable, in part because of antigenic shift and drift in circulating influenza viruses. Recent studies have highlighted the importance of innate immunity in protecting against influenza.Granulocyte-macrophage colony stimulating factor (GM-CSF contributes to maturation of mononuclear phagocytes, enhancing their capacity for phagocytosis and cytokine production.Overexpression of granulocyte macrophage-colony stimulating factor (GM-CSF in the lung of transgenic mice provides remarkable protection against IAV, which depends on alveolar macrophages (AM. In this study, we report that pulmonary delivery of GM-CSF to wild type young and aged mice abrogated mortality from IAV.We also demonstrate that protection is species specific and human GM-CSF do not protect the mice nor stimulates mouse immunity. We also show that IAV-induced lung injury is the culprit for side-effects of GM-CSF in treating mice after IAV infection, and introduce a novel strategy to deliver the GM-CSF to and retain it in the alveolar space even after IAV infection.

  8. Comparación de la eficacia y seguridad de la terapia combinada de cardiomioplastia celular con el factor estimulante de colonias de granulocitos en pacientes con cardiopatía isquémica en dos vías de implatación Comparison of efficacy and safety of combined therapy of cellular cardiomyoplasty and granulocyte colony stimulating factor in patients with ischemic cardiomyopathy in two routes of implantation

    Juan M Senior

    2011-04-01

    ía sostenida de la fracción de eyección y los MET más allá de los beneficios que se logran con la revascularización y la terapia farmacológica óptima.The objective of this study is to assess efficacy and safety of combined therapy of cellular cardiomyoplasty and granulocyte colony stimulating factor in patients with ischemic cardiomyopathy and explore possible differences between the implantation routes. METHODOLOGY: we performed a before and after study for longitudinal data comparing echocardiographic variables and number of Met achieved in the stress test before and at two, six and twelve months after the procedure. Likewise, mortality and adverse therapy effects were evaluated. Differences in the results were analyzed according to the intracoronary vs. epicardiac route of implantation. RESULTS: eighteen patients were included; 62,3% men, with mean age 49.4 ± 11,7 years. Mean ejection fraction was 31% ± 0,04. In twelve patients implantation was performed by intracoronary route and in six by epicardiac route. Mean ejection fraction before cell implantation was 30% with an interquartil range (IQR of 28-35%, and MET average was 6 with an interquartil rage of 5-7. Both variables as well as end-systolic and end-diastolic volumes increased significantly after the procedure, with a tendency to greater increase in ejection fraction in the group of patients whose route was epicardial implantation compared with intracoronary route; however, the number of patients in each subgroup prevented to make a definitive analysis. One patient had surgical wound infection and three died two months after implantation (one of septic shock and two of cardiogenic shock. CONCLUSION: in our environment the performance of combination therapy with cellular cardiomyoplasty and granulocyte colony stimulating factor is feasible. This is a safe procedure that achieved a sustained improvement in ejection fraction and MET beyond benefits achieved with revascularization and optimal pharmacological

  9. Paclitaxel, ifosfamide and cisplatin with granulocyte colony-stimulating factor or recombinant human interleukin 3 and granulocyte colony-stimulating factor in ovarian cancer : A feasibility study

    Veldhuis, GJ; Willemse, PHB; Beijnen, JH; Piersma, H; vanderGraaf, WTA; deVries, EGE; Boonstra, J.

    1997-01-01

    The tolerability and efficacy of four courses of paclitaxel and ifosfamide plus cisplatin every 3 weeks was evaluated in patients with residual or refractory ovarian cancer. Additionally, supportive haematological effects of recombinant human interleukin 3 (rhIL-3) and recombinant human granulocyte

  10. Activation of adenosine A3 receptors potentiates stimulatory effects of IL-3, SCF, and GM-CSF on mouse granulocyte-macrophage hematopoietic progenitor cells

    Hofer, Michal; Vacek, Antonín; Pospíšil, Milan; Holá, Jiřina; Štreitová, Denisa; Znojil, V.

    2009-01-01

    Roč. 58, č. 2 (2009), s. 247-252 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : hematopoiesis * adenosine A3 receptor agonist * hematopoietic growth factors Subject RIV: BO - Biophysics Impact factor: 1.430, year: 2009

  11. Hemopoietic regeneration in murine spleen following transfusion of normal and irradiated marrow: different response of granulocyte/macrophage and erythroid precursors

    Wangenheim, K.-H. von; Peterson, H.-P.; Huebner, G.E.; Feinendegen, L.E.

    1987-01-01

    To investigate cell proliferation in regenerating spleen, bone marrow of normal and gamma-irradiated donor mice (3 weeks after 5 Gy) was transfused into lethally irradiated recipients. In the donors and in the recipient spleens numbers of CFU-S and progenitor cells were determined. In the irradiated donors the progenitors were at control level after 3 weeks of recovery although CFU-S were still at 50% of control. Recipients of the irradiated marrow received therefore an increased proportion of progenitors. CFU-C appeared to be self-renewing and/or increased in number due to enhanced CFU-S differentiation, but not the erythroid progenitors. CFU-S self-renewal was reduced after 5 Gy. The data suggest that cell differentiation and maturation proceed during early splenic regeneration. The quantity of CFU-C does not necessarily mirror the situation in the stem cell compartment. (author)

  12. Role of contractile prostaglandins and Rho-kinase in growth factor-induced airway smooth muscle contraction

    Zaagsma Johan

    2005-07-01

    Full Text Available Abstract Background In addition to their proliferative and differentiating effects, several growth factors are capable of inducing a sustained airway smooth muscle (ASM contraction. These contractile effects were previously found to be dependent on Rho-kinase and have also been associated with the production of eicosanoids. However, the precise mechanisms underlying growth factor-induced contraction are still unknown. In this study we investigated the role of contractile prostaglandins and Rho-kinase in growth factor-induced ASM contraction. Methods Growth factor-induced contractions of guinea pig open-ring tracheal preparations were studied by isometric tension measurements. The contribution of Rho-kinase, mitogen-activated protein kinase (MAPK and cyclooxygenase (COX to these reponses was established, using the inhibitors Y-27632 (1 μM, U-0126 (3 μM and indomethacin (3 μM, respectively. The Rho-kinase dependency of contractions induced by exogenously applied prostaglandin F2α (PGF2α and prostaglandin E2 (PGE2 was also studied. In addition, the effects of the selective FP-receptor antagonist AL-8810 (10 μM and the selective EP1-antagonist AH-6809 (10 μM on growth factor-induced contractions were investigated, both in intact and epithelium-denuded preparations. Growth factor-induced PGF2α-and PGE2-release in the absence and presence of Y-27632, U-0126 and indomethacin, was assessed by an ELISA-assay. Results Epidermal growth factor (EGF-and platelet-derived growth factor (PDGF-induced contractions of guinea pig tracheal smooth muscle preparations were dependent on Rho-kinase, MAPK and COX. Interestingly, growth factor-induced PGF2α-and PGE2-release from tracheal rings was significantly reduced by U-0126 and indomethacin, but not by Y-27632. Also, PGF2α-and PGE2-induced ASM contractions were largely dependent on Rho-kinase, in contrast to other contractile agonists like histamine. The FP-receptor antagonist AL-8810 (10 μM significantly

  13. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  14. Preliminary experiences of intralesional immunotherapy in cutaneous metastatic melanoma.

    Ridolfi, Laura; Ridolfi, Ruggero

    2002-01-01

    Antigen presenting cells are inactive within tumor tissue because of local immunosuppression. Tumor infiltrating lymphocyte signal activation transducing mechanisms are also seriously impaired. Administration of granulocyte macrophage-colony stimulating factor may lead to antigen-presenting cell recovery and interleukin-2 may restore local tumor infiltrating lymphocyte activation. Moreover, interleukin-2 increases the systemic lymphocyte population, an event which seems to correlate with a better prognosis. The present phase I-II study was carried out to examine whether intralesional injection of granulocyte macrophage-colony stimulating factor followed by subcutaneous interleukin-2 would induce a clinical response in advanced, pretreated and elderly melanoma patients. Fourteen patients over 60 years of age received intralesional granulocyte macrophage-colony stimulating factor (150 micrograms per lesion on day 1), generally divided between the two largest cutaneous lesions, followed by perilesional subcutaneous interleukin-2 (3.000.000/IU) for 5 days (3 to 7) every 3 weeks. All patients received 6 courses of treatment unless progression occurred. Clinical evaluation of the treated cutaneous lesions was assessed at the baseline and before every cycle. Distant lesions were checked every two cycles. Four clinical responses (2 partial responses and 2 minimal responses) (28.5%), which also involved lesions that had not been directly treated, and seven cases of stable disease were observed. The response duration for partial response and minimal response was 9, 4, 4 and 2.5+ months, respectively. Stable disease (50%) recorded in the 7 patients was short term, 3-6 months. Three patients rapidly progressed after 2, 2, and 1 therapy cycles, respectively. The patient who reached the best partial response had a fairly high absolute lymphocyte count (1600 to 2400/mm3). The second one, who reached a complete remission after subsequent locoregional chemotherapy and hyperthermia

  15. Key role of integrin α(IIb)β (3) signaling to Syk kinase in tissue factor-induced thrombin generation.

    van der Meijden, Paola E J; Feijge, Marion A H; Swieringa, Frauke; Gilio, Karen; Nergiz-Unal, Reyhan; Hamulyák, Karly; Heemskerk, Johan W M

    2012-10-01

    The fibrin(ogen) receptor, integrin α(IIb)β(3), has a well-established role in platelet spreading, aggregation and clot retraction. How α(IIb)β(3) contributes to platelet-dependent coagulation is less well resolved. Here, we demonstrate that the potent suppressing effect of clinically used α(IIb)β(3) blockers on tissue factor-induced thrombin generation is linked to diminished platelet Ca(2+) responses and phosphatidylserine (PS) exposure. The same blockers suppress these responses in platelets stimulated with collagen and thrombin receptor agonists, whereas added fibrinogen potentiates these responses. In platelets spreading on fibrinogen, outside-in α(IIb)β(3) signaling similarly enhances thrombin-induced Ca(2+) rises and PS exposure. These responses are reduced in α(IIb)β(3)-deficient platelets from patients with Glanzmann's thrombasthenia. Furthermore, the contribution of α(IIb)β(3) to tissue factor-induced platelet Ca(2+) rises, PS exposure and thrombin generation in plasma are fully dependent on Syk kinase activity. Tyrosine phosphorylation analysis confirms a key role of Syk activation, which is largely but not exclusively dependent on α(IIb)β(3) activation. It is concluded that the majority of tissue factor-induced procoagulant activity of platelets relies on Syk activation and ensuing Ca(2+) signal generation, and furthermore that a considerable part of Syk activation relies on α(IIb)β(3) signaling. These results hence point to a novel role of Syk in integrin-dependent thrombin generation.

  16. Cytokines, chemokines, and colony-stimulating factors in human milk: the 1997 update.

    Garofalo, R P; Goldman, A S

    1998-01-01

    Epidemiologic studies conducted over the past 30 years to investigate the protective functions of human milk strongly support the notion that breast-feeding prevents infantile infections, particularly those affecting the gastrointestinal and respiratory tracts. However, more recent clinical and experimental observations also suggest that human milk not only provides passive protection, but also can directly modulate the immunological development of the recipient infant. The study of this remarkable defense system in human milk has been difficult due to its biochemical complexity, the small concentration of certain bioactive components, the compartmentalization of some of these agents, the dynamic quantitative and qualitative changes of milk during lactation, and the lack of specific reagents to quantify these agents. Nevertheless, a host of bioactive substances including hormones, growth factors, and immunological factors such as cytokines have been identified in human milk. Cytokines are pluripotent polypeptides that act in autocrine/paracrine fashions by binding to specific cellular receptors. They operate in networks and orchestrate the development and functions of the immune system. Several different cytokines and chemokines have been discovered in human milk over the past years, and the list is growing very rapidly. This article will review the current knowledge about the increasingly complex network of chemoattractants, activators, and anti-inflammatory cytokines present in human milk and their potential role in compensating for the developmental delay of the neonate immune system.

  17. Heterogeneity Within Macrophage Populations: A Possible Role for Colony Stimulating Factors

    1988-04-04

    highest concentration ofriFN-yused (5.0 U/ml), a depression of T cell proliferation induced by the antigen-pulsed rGM-CSF-derived macrophages was...stimulation by rGM-CSF and nCSF-1 in bone marrow cells derived from normal mice and mice 3 and 7 days post-treatment with 5FU . Bone marrow cells

  18. Macrophage colony stimulating factor (M-CSF) induces Fc receptor expression on macrophages

    Magee, D.M.; Wing, E.J.; Waheed, A.; Shadduck, R.K.

    1986-01-01

    M-CSF is a glycoprotein that stimulates bone marrow progenitor cells to proliferate and differentiate into macrophages (M theta). In addition, M-CSF can modulate the function of mature M theta. In this study, the authors determined the effect of M-CSF on expression of receptors for IgG (Fc receptors). Murine resident peritoneal M theta monolayers were incubated with either M-CSF, recombinant gamma interferon (IFN), or left untreated for 48 hrs. Expression of Fc receptors was assessed by microscopy using an antibody coated sheet erythrocytes (EA) rosette assay. The results indicated that M-CSF treated M theta had significantly higher numbers of bound EA (7.1 erythrocytes/M theta), than IFN M theta (4.4), or untreated M theta (2.5) (p 51 Cr labelled EA assay, CSF M theta (16,411 cpm), IFN M theta (10,887), untreated M theta (6897) (p < 0.001). Additionally, the maximal response was noted between 10 and 500 units M-CSF. Purified anti-M-CSF IgG, when included in the cultures, ablated the enhancement of EA binding, whereas normal rabbit IgG did not. These findings indicate that M-CSF is a potent inducer of Fc receptor expression on M theta and supports other data concerning the role of M-CSF as a biological response modifier

  19. Reduced salmonella fecal shedding in swine administered porcine granulocyte-colony stimulating factor (G-CSF)

    Salmonella colonization of food animals is a concern for animal health, food safety and public health. Key objectives of pre-harvest food safety programs are to detect asymptomatic Salmonella carriage in food animals, reduce colonization, and prevent transmission of Salmonella to other animals and ...

  20. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  1. Pulmonary Alveolar Proteinosis in Setting of Inhaled Toxin Exposure and Chronic Substance Abuse

    Meirui Li

    2018-01-01

    Full Text Available Pulmonary alveolar proteinosis (PAP is a rare lung disorder in which defects in alveolar macrophage maturation or function lead to the accumulation of proteinaceous surfactant in alveolar space, resulting in impaired gas exchange and hypoxemia. PAP is categorized into three types: hereditary, autoimmune, and secondary. We report a case of secondary PAP in a 47-year-old man, whose risk factors include occupational exposure to inhaled toxins, especially aluminum dust, the use of anabolic steroids, and alcohol abuse, which in mice leads to alveolar macrophage dysfunction through a zinc-dependent mechanism that inhibits granulocyte macrophage-colony stimulating factor (GM-CSF receptor signalling. Although the rarity and vague clinical presentation of PAP can pose diagnostic challenges, clinician awareness of PAP risk factors may facilitate the diagnostic process and lead to more prompt treatment.

  2. Microbiota-Dependent Crosstalk Between Macrophages and ILC3 Promotes Intestinal Homeostasis

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P.; Belkaid, Yasmine; Merad, Miriam

    2014-01-01

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (Treg) numbers and impaired oral tolerance. We observed that RORγt+ innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine. PMID:24625929

  3. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  4. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts

    Jing Li Huang

    2016-09-01

    Full Text Available Oncolytic adenoviruses (OAds are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor, interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  5. Showing the Way: Oncolytic Adenoviruses as Chaperones of Immunostimulatory Adjuncts.

    Huang, Jing Li; LaRocca, Christopher J; Yamamoto, Masato

    2016-09-19

    Oncolytic adenoviruses (OAds) are increasingly recognized as vectors for immunotherapy in the treatment of various solid tumors. The myriads of advantages of using adenovirus include targeted specificity upon infection and selective replication, which lead to localized viral burst, exponential spread of OAds, and antitumor effect. OAds can also induce a strong immune reaction due to the massive release of tumor antigens upon cytolysis and the presence of viral antigens. This review will highlight recent advances in adenoviral vectors expressing immunostimulatory effectors, such as GM-CSF (granulocyte macrophage colony-stimulating factor), interferon-α, interleukin-12, and CD40L. We will also discuss the combination of OAds with other immunotherapeutic strategies and describe the current understanding of how adenoviral vectors interact with the immune system to eliminate cancer cells.

  6. Hematopoietic growth factors and human acute leukemia.

    Löwenberg, B; Touw, I

    1988-10-22

    The study of myelopoietic maturation arrest in acute myeloblastic leukemia (AML) has been eased by availability of the human recombinant hemopoietic growth factors, macrophage colony stimulating factor (M-CSF), granulocyte-(G-CSF), granulocyte-macrophage-(GM-CSF) and multilineage stimulating factor (IL-3). Nonphysiological expansion of the leukemic population is not due to escape from control by these factors. Proliferation in vitro of AML cells is dependent on the presence of one or several factors in most cases. The pattern of factor-dependency does not correlate with morphological criteria in individual cases, and may thus offer a new tool for classification of AML. Overproduction of undifferentiated cells is not due to abnormal expression of receptors for the stimulating factors acting at an immature level. Rather, autocrine secretion of early acting lymphokines maintains proliferation of the leukemic clone. When looking at causes of leukemic dysregulation, yet undefined inhibitors of differentiation probably are of equal importance as dysequilibrated stimulation by lymphokines.

  7. Inhibitory effects of Piper betle on production of allergic mediators by bone marrow-derived mast cells and lung epithelial cells.

    Wirotesangthong, Mali; Inagaki, Naoki; Tanaka, Hiroyuki; Thanakijcharoenpath, Witchuda; Nagai, Hiroichi

    2008-03-01

    The leaves of the Piper betle Linn. (Piperaceae) are used in traditional medicine and possess anti-oxidant, anti-bacterial, anti-fungal, anti-diabetic and radioprotective activities. However, little is known about their anti-allergic activity. Therefore, the effects of P. betle ethanolic extract (PE) on the production of histamine and granulocyte macrophage-colony-stimulating factor (GM-CSF) by murine bone marrow mast cells (BMMCs) and on the secretion of eotaxin and IL-8 by the human lung epithelial cell line, BEAS-2B, were investigated in vitro. PE significantly decreased histamine and GM-CSF produced by an IgE-mediated hypersensitive reaction, and inhibited eotaxin and IL-8 secretion in a TNF-alpha and IL-4-induced allergic reaction. The results suggest that P. betle may offer a new therapeutic approach for the control of allergic diseases through inhibition of production of allergic mediators.

  8. Enhanced endotoxin sensitivity in fps/fes-null mice with minimal defects in hematopoietic homeostasis.

    Zirngibl, Ralph A; Senis, Yotis; Greer, Peter A

    2002-04-01

    The fps/fes proto-oncogene encodes a cytoplasmic protein tyrosine kinase implicated in growth factor and cytokine receptor signaling and thought to be essential for the survival and terminal differentiation of myeloid progenitors. Fps/Fes-null mice were healthy and fertile, displayed slightly reduced numbers of bone marrow myeloid progenitors and circulating mature myeloid cells, and were more sensitive to lipopolysaccharide (LPS). These phenotypes were rescued using a fps/fes transgene. This confirmed that Fps/Fes is involved in, but not required for, myelopoiesis and that it plays a role in regulating the innate immune response. Bone marrow-derived Fps/Fes-null macrophages showed no defects in granulocyte-macrophage colony-stimulating factor-, interleukin 6 (IL-6)-, or IL-3-induced activation of signal transducer and activator of transcription 3 (Stat3) and Stat5A or LPS-induced degradation of I kappa B or activation of p38, Jnk, Erk, or Akt.

  9. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis.

    Mortha, Arthur; Chudnovskiy, Aleksey; Hashimoto, Daigo; Bogunovic, Milena; Spencer, Sean P; Belkaid, Yasmine; Merad, Miriam

    2014-03-28

    The intestinal microbiota and tissue-resident myeloid cells promote immune responses that maintain intestinal homeostasis in the host. However, the cellular cues that translate microbial signals into intestinal homeostasis remain unclear. Here, we show that deficient granulocyte-macrophage colony-stimulating factor (GM-CSF) production altered mononuclear phagocyte effector functions and led to reduced regulatory T cell (T(reg)) numbers and impaired oral tolerance. We observed that RORγt(+) innate lymphoid cells (ILCs) are the primary source of GM-CSF in the gut and that ILC-driven GM-CSF production was dependent on the ability of macrophages to sense microbial signals and produce interleukin-1β. Our findings reveal that commensal microbes promote a crosstalk between innate myeloid and lymphoid cells that leads to immune homeostasis in the intestine.

  10. Dinutuximab in the Treatment of High-Risk Neuroblastoma in Children

    Hazal Gur

    2017-06-01

    Full Text Available Neuroblastoma is the most common extracranial tumor derived from neural crest cells in childhood, and treatment of high-risk neuroblastoma is a difficulty in oncology field. The discovery of new treatment strategies to treat pediatric patients with high-risk neuroblastoma is important. Dinutuximab (ch14.18; Unituxin, a chimeric human-mouse monoclonal antibody, is approved by Food and Drug Administration in 2015 to be used specifically in the treatment of high-risk neuroblastoma. It binds the disialoganglioside (GD2 antigen on the surface of neuroblastoma cells and induces lysis of GD2-expressed neuroblastoma cells via antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. To enhance its activity, it is used with a combination of granulocyte-macrophage colony-stimulating factor, interleukin 2, and 13- cis -retinoic acid. In this review, we discuss the use of dinutuximab in the treatment of high-risk neuroblastoma.

  11. Pivotal Roles of GM-CSF in Autoimmunity and Inflammation

    Shiomi, Aoi; Usui, Takashi

    2015-01-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review. PMID:25838639

  12. Effect of cytokine-encoding plasmid delivery on immune response to Japanese encephalitis virus DNA vaccine in mice.

    Bharati, Kaushik; Appaiahgari, Mohan Babu; Vrati, Sudhanshu

    2005-01-01

    We have previously shown that immunization of mice with plasmid pMEa synthesizing Japanese encephalitis virus (JEV) envelope protein induced anti-JEV humoral and cellular immune responses. We now show that intra-muscular co-administration of mice with pMEa and pGM-CSF, encoding murine granulocyte-macrophage colony-stimulating factor or pIL-2, encoding murine interleukin-2 given 4 days after pMEa, augmented anti-JEV antibody titers. This did not enhance the level of protection in immunized mice against JEV. However, intra-dermal co-administration of pMEa and pGM-CSF in mice using the gene gun, enhanced anti-JEV antibody titers resulting in an increased level of protection in mice against lethal JEV challenge.

  13. Development of the PANVAC-VF vaccine for pancreatic cancer.

    Petrulio, Christian A; Kaufman, Howard L

    2006-02-01

    PANVAC-VF is a vaccine regimen composed of a priming dose of recombinant vaccinia virus and booster doses of recombinant fowlpox virus expressing carcinoembryonic antigen, mucin-1 and a triad of costimulatory molecules (TRICOM), which include B7.1, intercellular adhesion molecule-1 and leukocyte function-associated antigen-3. Vaccination is administered by subcutaneous injection followed by 4 days of local recombinant adjuvant granulocyte-macrophage colony-stimulating factor at the vaccination site. The vaccine has been developed for patients with advanced pancreatic cancer and has now entered a randomized Phase III clinical trial. This review will describe the background of recombinant poxvirus technology for tumor vaccine development, detail the key preclinical studies supporting the regimen, review the clinical trials supporting the current Phase III study, and highlight the key challenges and future obstacles to successful implementation of PANVAC-VF for pancreatic cancer.

  14. Generation of blood-derived dendritic cells in dogs with oral malignant melanoma.

    Catchpole, B; Stell, A J; Dobson, J M

    2002-01-01

    Advances in treatment of human melanoma indicate that immunotherapy, particularly dendritic cell (DC) immunization, may prove useful. The aim of this study was to investigate whether blood-derived DCs could be generated from canine melanoma patients. Peripheral blood mononuclear cells were isolated from three such dogs and cultured with recombinant canine granulocyte-macrophage colony stimulating factor (GM-CSF), canine interleukin 4 and human Flt3-ligand for 7 days. The resulting cells demonstrated a typical dendritic morphology, and were enriched for cells expressing CD1a, CD11c and MHC II by flow cytometric analysis. Thus, canine blood-derived DCs can be generated in vitro and DC immunization should be feasible in dogs. Copyright Harcourt Publishers Ltd.

  15. Peripheral blood stem cell harvest in patients with limited stage small-cell lung cancer

    Katakami, Nobuyuki; Takakura, Shunji; Fujii, Hiroshi; Nishimura, Takashi; Umeda, Bunichi [Kobe City General Hospital (Japan)

    2000-06-01

    Chemotherapy plus granulocyte colony-stimulating factor (G-CSF) induced mobilization of peripheral blood stem cells (PBSC) was performed in patients with limited stage small-cell lung cancer. Chemotherapy consisted of cisplatin/etoposide or cisplatin/adriamycin/etoposide. The amounts of CD34 positive cells and granulocyte-macrophage colony forming units (CFU-GM) collected during 2-3 courses of apheresis were 3.1{+-}2.9 x 10{sup 6}/kg (n=10) and 3.1{+-}1.5 x 10{sup 5}/kg (n=8) , respectively. Adequate amounts of PBSC were also harvested even in patients treated with concurrent chemoradiotherapy. Eight patients were successfully treated with high-dose chemotherapy consisting of ifosfamide, carboplatin and etoposide with PBSC transfusion. The patients'-bone marrow reconstruction was rapid and no treatment-related death was observed. (author)

  16. Clinical report of three cases of acute radiation sickness from a 60Co radiation accident in Henan Province in China

    Liu Qiang; Jiang Bo; Jiang Liping; Wu Ying; Wang Xiaoguang; Jiang Enhai; Zhao Fengling; Fu Baohua; Istvan, Turai

    2008-01-01

    On 26 April 1999, three persons were accidentally exposed by high dose 60 Co irradiation. They suffered from severe (one case) or moderate (two cases) hemopoietic form of acute radiation sickness (ARS). As part of the comprehensive treatment, strict reverse isolation and granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy were applied. All the patients recovered after an appropriate treatment for 83 days. In our experience, the correct diagnosis and effective treatment at an early stage proved to be helpful to the patients in pulling out from the critical stage of acute radiation sickness. To avoid menstruation by the female patient just in the critical stage, we modified her menstruation cycle by testosterone. In our view, GM-CSF should be given as early as possible with enough dosage for promoting early hematological reconstruction. The experience obtained from the medical management of these patients is valuable for the treatment of such patients in the future. (author)

  17. Radiotherapy- and chemotherapy-induced normal tissue damage. The role of cytokines and adhesion molecules

    Plevova, P.

    2002-01-01

    Background. Ionising radiation and cytostatic agents used in cancer therapy exert damaging effects on normal tissues and induce a complex response at the cellular and molecular levels. Cytokines and adhesion molecules are involved in this response. Methods. Published data on the given topic have been reviewed. Results and conclusions. Various cytokines and adhesion molecules, including tumor necrosis factor α, interleukins- 1,-2,-4, and -6, interferon γ, granulocyte macrophage- and macrophage- colony stimulating factors, transforming growth factor β, platelet-derived growth factor, insulin-like growth factor I, fibroblast and epidermal growth factors, platelet-activating factor, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E- and P-selectins are involved in the response of normal tissues to ionizing radiation- and chemotherapy- induced normal tissues damage and are co-responsible for some side effects of these treatment modalities, including fever, anorexia and fatigue, suppression of hematopoiesis, both acute and late local tissue response. (author)

  18. Induction of various immune modulatory molecules in CD34(+) hematopoietic cells

    Umland, Oliver; Heine, Holger; Miehe, Michaela

    2004-01-01

    ), and intercellular adhesion molecule-1 (ICAM-1) in SUP(LPS)-stimulated KG-1a cells and up-regulation of interferon (IFN)-inducible T cell-chemoattractant, interleukin (IL)-8, macrophage-inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, RANTES, CD70, granulocyte macrophage-colony stimulating factor, and IL-1beta......, and IL-18 receptor was only detectable in CD34(+) BMCs. More importantly, CD34(+) BMCs stimulated by TNF-alpha also showed enhanced secretion of MCP-1, MIP-1alpha, MIP-1beta, and IL-8, and increased ICAM-1 protein expression could be detected in stimulated KG-1a cells and CD34(+) BMCs. Furthermore, we...

  19. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    Saitou, Mikio; Sirata, Katsutoshi; Yanai, Takanori; Tanaka, Satoshi; Onodera, Junichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Department of Radiobiology, Rokkasho, Aomori (Japan)

    1999-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the dose dependency of the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, specific-pathogen-free (SPF) C3H-HeN female mice were irradiated by {sup 137}Cs {gamma}-rays with the doses of 5-8 Gy at the dose rate of 20 mGy (22 h-day){sup -1}, and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice were measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  20. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    Saitou, Mikio; Yamada, Yutaka; Shirata, Katsutoshi; Yanai, Takanori; Izumi, Jun; Tanaka, Satoshi; Onodera, Jun' ichi; Otsu, Hiroshi; Sato, Fumiaki [Institute for Environmental Sciences, Rokkasho, Aomori (Japan)

    2000-07-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, ten specific-pathogen-free (SPF) C3H/HeN female mice per experimental group were irradiated with {sup 137}Cs {gamma}-rays with the doses of 1-4 Gy at the dose rate of 20 mGy/(22 h-day), and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice was measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  1. Coagulation, inflammatory, and stress responses in a randomized comparison of open and laparoscopic repair of recurrent inguinal hernia

    Rahr, H B; Bendix, J; Ahlburg, P

    2006-01-01

    BACKGROUND: In previous comparisons of inflammatory and stress responses to open (OR) and laparoscopic (LR) hernia repair, all operations were performed under general anesthesia. Since local anesthesia is widely used for OR, a comparison of this approach with LR seemed relevant. METHODS: Patients...... with recurrent inguinal hernia were randomized to OR under local anesthesia (n = 30) or LR under general anesthesia (n = 31). The magnitude of the surgical trauma was assessed by measuring markers of coagulation (prothrombin fragment 1 + 2), endothelial activation (von Willebrand factor), inflammation...... [leukocytes, interleukin-6, -8 and -10, granulocyte macrophage colony-stimulating factor, and C-reactive protein (CRP)], and endocrine stress (cortisol) in blood collected before operation, 4 h postincision, and on postoperative day 2. RESULTS: Leukocyte counts and interleukin-6 and CRP levels increased...

  2. Effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors in murine bone marrow cells

    Saitou, Mikio; Yamada, Yutaka; Shirata, Katsutoshi; Yanai, Takanori; Izumi, Jun; Tanaka, Satoshi; Onodera, Jun'ichi; Otsu, Hiroshi; Sato, Fumiaki

    2000-01-01

    To evaluate effects of prolonged irradiation by low dose-rate ionizing radiation on the production of growth factors of cells, the expression of cytokines, interleukin-6 (IL-6) and granulocyte-macrophage colony stimulating factor (GM-CSF), of mice is being measured at accumulated doses between 1 and 8 Gy, with the dose interval of 1 Gy. In the present work, ten specific-pathogen-free (SPF) C3H/HeN female mice per experimental group were irradiated with 137 Cs γ-rays with the doses of 1-4 Gy at the dose rate of 20 mGy/(22 h-day), and the expression of IL-6 and GM-CSF in bone marrow and spleen cells from the mice was measured semiquantitatively by the reverse transcriptase-polymerase chain reaction (RT-PCR) method. (author)

  3. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model.

    Mukherjee, P; Pathangey, L B; Bradley, J B; Tinder, T L; Basu, G D; Akporiaye, E T; Gendler, S J

    2007-02-19

    A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.

  4. Clinical significance of measurement of changes in serum TNF-α and GM-CSF levels after treatment in children with bronchial asthma

    Liu Heng

    2006-01-01

    Objective: To study the clinical significance of the changes of levels of tumor necrosis factor-α (TNF-α) and granulocyte-macrophage colony stimulating factor (GM-CSF) after treatment in children with bronchial asthma. Methods: Serum TNF-α and GM-CSF levels were measured with RIA in 32 patients with bronchial asthma both before and after treatment as well as in 30 controls. Results: Before treatment the serum TNF-α and GM-CSF levels in patients were significantly higher than those in the controls (P 0.05 ). Conclusion: Changes of serum TNF-α and GM-CSF levels contents after treatment might be of prognostic importance in children with bronchial asthma. (authors)

  5. Immunopotentiation by a new antitumor polysaccharide, DMG, a degraded D-manno-D-glucan from Microellobosporia grisea culture fluid.

    Nakajima, H; Kita, Y; Takashi, T; Akasaki, M; Yamaguchi, F; Ozawa, S; Tsukada, W; Abe, S; Mizuno, D

    1984-03-01

    The immunopharmacological behavior of DMG, an antitumor polysaccharide, was studied in mice. DMG administered ip or sc stimulated peritoneal macrophages to produce high levels of interleukin-1 activity, which can amplify successive immune responses. DMG dose-dependently and schedule-dependently increased the cellular immune response against allogeneic tumor cells and the humoral immune response to sheep erythrocytes. DMG also enhanced nonspecific antitumor effector functions, such as natural killer activity of spleen and peritoneal cells, and the cytostatic activity of peritoneal macrophages. Peritoneal macrophages activated by ip or sc injection of DMG exhibited high cytostatic activity, especially after exposure in vitro to lymphokine supernatants containing macrophage activation factor. Moreover, granulocyte/macrophage colony-stimulating activity in the serum increased 2-10 hr after DMG administration. Thus, DMG potentiated antigen-specific immunological functions and nonspecific functions of host defense systems against cancer both qualitatively and quantitatively.

  6. Anti-tumour therapeutic efficacy of OX40L in murine tumour model.

    Ali, Selman A; Ahmad, Murrium; Lynam, June; McLean, Cornelia S; Entwisle, Claire; Loudon, Peter; Choolun, Esther; McArdle, Stephanie E B; Li, Geng; Mian, Shahid; Rees, Robert C

    2004-09-09

    OX40 ligand (OX40L), a member of TNF superfamily, is a co-stimulatory molecule involved in T cell activation. Systemic administration of mOX40L fusion protein significantly inhibited the growth of experimental lung metastasis and subcutaneous (s.c.) established colon (CT26) and breast (4T1) carcinomas. Vaccination with OX40L was significantly enhanced by combination treatment with intra-tumour injection of a disabled infectious single cycle-herpes simplex virus (DISC-HSV) vector encoding murine granulocyte macrophage-colony stimulating factor (mGM-CSF). Tumour rejection in response to OX40L therapy required functional CD4+ and CD8+ T cells and correlated with splenocyte cytotoxic T lymphocytes (CTLs) activity against the AH-1 gp70 peptide of the tumour associated antigen expressed by CT26 cells. These results demonstrate the potential role of the OX40L in cancer immunotherapy.

  7. H4 histamine receptors mediate cell cycle arrest in growth factor-induced murine and human hematopoietic progenitor cells.

    Anne-France Petit-Bertron

    Full Text Available The most recently characterized H4 histamine receptor (H4R is expressed preferentially in the bone marrow, raising the question of its role during hematopoiesis. Here we show that both murine and human progenitor cell populations express this receptor subtype on transcriptional and protein levels and respond to its agonists by reduced growth factor-induced cell cycle progression that leads to decreased myeloid, erythroid and lymphoid colony formation. H4R activation prevents the induction of cell cycle genes through a cAMP/PKA-dependent pathway that is not associated with apoptosis. It is mediated specifically through H4R signaling since gene silencing or treatment with selective antagonists restores normal cell cycle progression. The arrest of growth factor-induced G1/S transition protects murine and human progenitor cells from the toxicity of the cell cycle-dependent anticancer drug Ara-C in vitro and reduces aplasia in a murine model of chemotherapy. This first evidence for functional H4R expression in hematopoietic progenitors opens new therapeutic perspectives for alleviating hematotoxic side effects of antineoplastic drugs.

  8. Influencia de la hipoxia sobre el metabolismo óseo: rol central del factor inducible por hipoxia

    Elías Ernesto Aguirre Siancas

    2013-10-01

    Full Text Available El conocimiento de la influencia de la hipoxia sobre la fisiología humana dio un salto cualitativo cuando se descubrió al factor inducible por hipoxia (HIF. Las vías moleculares que este factor de transcripción regula son variadas y complejas, cuya comprensión continuamente se sigue profundizando. En la fisiología y en la fisiopatología del tejido óseo se desarrollan varios procesos característicos, como la osificación, la remodelación y la reparación. La disminución en la disposición de oxígeno determina la estabilización del HIF en muchos grupos celulares, entre los cuales destacan las células del linaje osteogénico. Este factor regula la expresión de múltiples genes, siendo, quizás, el más importante el que codifica al factor de crecimiento vascular del endotelio (VEGF, debido a su decisiva implicancia en el proceso de osteogénesis, directamente activando a las células osteoblásticas o indirectamente mediante su potente acción angiogénica. En este artículo, se hace una revisión actualizada sobre el rol central del HIF sobre la fisiología ósea, detallando la regulación de las principales vías moleculares dependientes de dicho factor de transcripción.

  9. Mobilizing stem cells from normal donors: is it possible to improve upon G-CSF?

    Cashen, A F; Lazarus, H M; Devine, S M

    2007-05-01

    Currently, granulocyte colony stimulating factor (G-CSF) remains the standard mobilizing agent for peripheral blood stem cell (PBSC) donors, allowing the safe collection of adequate PBSCs from the vast majority of donors. However, G-CSF mobilization can be associated with some significant side effects and requires a multi-day dosing regimen. The other cytokine approved for stem cell mobilization, granulocyte-macrophage colony stimulating factor (GM-CSF), alters graft composition and may reduce the development of graft-versus-host disease, but a significant minority of donors fails to provide sufficient CD34+ cells with GM-CSF and some experience unacceptable toxicity. AMD3100 is a promising new mobilizing agent, which may have several advantages over G-CSF for donor mobilization. As it is a direct antagonist of the interaction between the chemokine stromal-derived factor-1 and its receptor CXCR4, AMD3100 mobilizes PBSCs within hours rather than days. It is also well tolerated, with no significant side effects reported in any of the clinical trials to date. Studies of autologous and allogeneic transplantation of AMD3100 mobilized grafts have demonstrated prompt and stable engraftment. Here, we review the current state of stem cell mobilization in normal donors and discuss novel strategies for donor stem cell mobilization.

  10. Combination of thalidomide and cisplatin in an head and neck squamous cell carcinomas model results in an enhanced antiangiogenic activity in vitro and in vivo.

    Vasvari, Gergely P; Dyckhoff, Gerhard; Kashfi, Farzaneh; Lemke, Britt; Lohr, Jennifer; Helmke, Burkhard M; Schirrmacher, Volker; Plinkert, Peter K; Beckhove, Philipp; Herold-Mende, Christel C

    2007-10-15

    Thalidomide is an immunomodulatory, antiangiogenic drug. Although there is evidence that it might be more effective in combination with chemotherapy the exact mechanism of action is unclear. Therefore, we investigated its effect in combination with metronomically applied cisplatin in a xenotransplant mouse model characteristic for advanced head and neck squamous cell carcinomas, its possible synergistic action in vitro, and which tumor-derived factors might be targeted by thalidomide. Although thalidomide alone was ineffective, a combined treatment with low-dose cisplatin inhibited significant tumor growth, proliferation and angiogenesis in vivo as well as migration and tube formation of endothelial cells in vitro. Noteworthy, the latter effect was enhanced after coapplication of cisplatin in nontoxic doses. An inhibitory effect on tumor cell migration was also observed suggesting a direct antitumor effect. Although thalidomide alone did not influence cell proliferation, it augmented antiproliferative response after cisplatin application emphasizing the idea of a potentiated effect when both drugs are combined. Furthermore, we could show that antiangiogenic effects of thalidomide are related to tumor-cell derived factors including vascular endothelial growth factor, basic fibroblast growth factor, hepatocyte growth factor and Il-8 some known and with, granulocyte colony stimulating growth factor and granulocyte macrophage colony stimulating growth factor, some new target molecules of thalidomide. Altogether, our findings reveal new insights into thalidomide-mediated antitumor and antiangiogenic effects and its interaction with cytostatic drugs. (c) 2007 Wiley-Liss, Inc.

  11. Opposite cytokine synthesis by fibroblasts in contact co-culture with osteosarcoma cells compared with transwell co-cultures.

    David, Manu S; Kelly, Elizabeth; Zoellner, Hans

    2013-04-01

    We recently reported exchange of membrane and cytoplasm during contact co-culture between human Gingival Fibroblasts (h-GF) and SAOS-2 osteosarcoma cells, a process we termed 'cellular sipping' to reflect the manner in which cells become morphologically diverse through uptake of material from the opposing cell type, independent of genetic change. Cellular sipping is increased by Tumor Necrosis Factor-α (TNF-α), and we here show for the first time altered cytokine synthesis in contact co-culture supporting cellular sipping compared with co-culture where h-GF and SAOS-2 were separated in transwells. SAOS-2 had often undetectably low cytokine levels, while Interleukin-6 (IL-6), Granulocyte Colony Stimulating Factor (G-CSF) and Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) were secreted primarily by TNF-α stimulated h-GF and basic Fibroblast Growth Factor (FGF) was prominent in h-GF lysates (p cultures permitting cellular sipping had lower IL-6, G-CSF and GM-CSF levels, as well as higher lysate FGF levels compared with TNF-α treated h-GF alone (p cultures in transwells, with increased IL-6, G-CSF and GM-CSF levels (p cultures where cellular sipping occurs, potentially contributing to tumor inflammatory responses. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  12. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia

    Skavland, J; Jørgensen, K M [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hadziavdic, K [Department of Informatics, University of Bergen, Bergen (Norway); Hovland, R [Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen (Norway); Jonassen, I [Department of Informatics, University of Bergen, Bergen (Norway); Computational Biology Unit, Bergen Centre for Computational Science, University of Bergen, Bergen (Norway); Bruserud, Ø; Gjertsen, B T, E-mail: bjorn.gjertsen@med.uib.no [Hematology Section, Institute of Medicine, University of Bergen, Bergen (Norway); Hematology Section, Department of Medicine, Haukeland University Hospital, Bergen (Norway)

    2011-02-01

    Acute myeloid leukemia (AML) frequently comprises mutations in genes that cause perturbation in intracellular signaling pathways, thereby altering normal responses to growth factors and cytokines. Such oncogenic cellular signal transduction may be therapeutic if targeted directly or through epigenetic regulation. We treated 24 selected elderly AML patients with all-trans retinoic acid for 2 days before adding theophylline and the histone deacetylase inhibitor valproic acid (ClinicalTrials.gov NCT00175812; EudraCT no. 2004-001663-22), and sampled 11 patients for peripheral blood at day 0, 2 and 7 for single-cell analysis of basal level and signal-transduction responses to relevant myeloid growth factors (granulocyte-colony-stimulating factor, granulocyte/macrophage-colony-stimulating factor, interleukin-3, Flt3L, stem cell factor, erythropoietin, CXCL-12) on 10 signaling molecules (CREB, STAT1/3/5, p38, Erk1/2, Akt, c-Cbl, ZAP70/Syk and rpS6). Pretreatment analysis by unsupervised clustering and principal component analysis divided the patients into three distinguishable signaling clusters (non-potentiated, potentiated basal and potentiated signaling). Signal-transduction pathways were modulated during therapy and patients moved between the clusters. Patients with multiple leukemic clones demonstrated distinct stimulation responses and therapy-induced modulation. Individual signaling profiles together with clinical and hematological information may be used to early identify AML patients in whom epigenetic and signal-transduction targeted therapy is beneficial.

  13. Uso clínico de los factores de crecimiento hematopoyético Clinical use of hematopoietic growth factors

    José Domingo Torres Hernández

    1994-04-01

    Full Text Available

    Los factores de crecimiento hematopoyético (FCH son producto de la excitante y prometedora industria de la biología molecular y la Ingeniería gen ética. Se hace una revisión de la farmacología del Factor Estimulador de Colonias de Granulocitos y del Factor Estimulador de Colonias de Granulocitos-Macrófagos, como también de su uso clínico en neutropenia aguda post-quimioterapia mielotóxica anticancerosa, trasplante de médula ósea, leucemia aguda, síndromes mielodisplásicos, anemia aplástica, síndrome de inmunodeficiencia adquirida y neutropenia crónica.

    Hematopoietic growth factors are one of the products of the exciting and promising molecular biology and genetic engineering industries. Two of these factors are the recombinant human - granulocyte colony-stimulating factor and the recombinant human-granulocyte-macrophage colony-stimulating factor; a review Is presented on their pharmacology and clinical uses in acute neutropenia after myelotoxic anticancer therapy, bone marrow transplantion, acute leukemia, myelodyplastic syndromes, aplastic anemia, AIDS and chronic neutropenia.

  14. Cytokines in therapy of radiation injury

    Neta, R.; Oppenheim, J.J.

    1988-01-01

    Repeated injections or infusion of hematopoietic growth factors, such as interleukin-3 (IL-3), granulocyte macrophage-colony stimulating factor (GM-CSF), or granulocyte-colony stimulating factor (G-CSF), accelerate restoration of hematopoiesis in animals compromised by sublethal doses of cytotoxic drugs or irradiation. Previous work by the investigators has shown that IL-1 induced circulating CSF in normal mice and, when used after sublethal irradiation, accelerated the recovery of endogenous splenic colonies. Therefore, IL-1, as well as IFN-gamma, tumor necrosis factor (TNF), G-CSF, and GM-CSF, were evaluated as potential therapeutic agents in irradiated C3H-HeN mice. A single intraperitoneal injection, administered within three hours after a lethal dose (LD)95/30 of irradiation that would kill 95% of mice within 30 days, protected in a dose-dependent manner up to 100% of mice from radiation-induced death due to hematopoietic syndrome. Significant therapeutic effects were also achieved with a single dose of IFN-gamma or of TNF. In contrast, GM-CSF and G-CSF, administered shortly after irradiation, had no effect in the doses used on mice survival

  15. Human papillomavirus infection is associated with decreased levels of GM-CSF in cervico-vaginal fluid of infected women.

    Comar, Manola; Monasta, Lorenzo; Zanotta, Nunzia; Vecchi Brumatti, Liza; Ricci, Giuseppe; Zauli, Giorgio

    2013-10-01

    Although human papillomavirus (HPV) is the most common sexually transmitted infection, there are very scant data about the influence of this virus on the in vitro fertilization outcome. To assess the presence of HPV in the cervico-vaginal fluid in relationship to the in vitro fertilization (IVF) outcome and to the concentration of selected cytokines, known to affect embryo implantation and gestation: granulocyte-macrophage colony stimulating factor (GM-CSF) and granulocyte colony stimulating factor (G-CSF). Cervico-vaginal samples were collected on the day of oocyte pick-up from 82 women. Vaginas were flushed with 50 mL of sterile water and 3 mL of fluid was collected. Twelve women (15%) were positive for HPV. Interestingly, among HPV(+) women live birth rate was about half of the rate in HPV(-) women, although the differences were not statistically significant due to the low number of cases. Cervico-vaginal samples of a sub-group of 29 (8 HPV(+) and 21 HPV(-)) women were analyzed for GM-CSF and G-CSF by ELISA. GM-CSF but not G-CSF was significantly lower in the cervico-vaginal fluid of HPV(+) than in HPV(-) women. Since GM-CSF plays an important role during pregnancy, the reduced levels of GM-CSF in the cervico-vaginal fluid of HPV(+) women might contribute to explain the reduced live birth rate observed in HPV(+) women. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features.

    Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna

    2015-11-01

    The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. © The Author(s) 2015.

  17. Influence of HMB supplementation and resistance training on cytokine responses to resistance exercise.

    Kraemer, William J; Hatfield, Disa L; Comstock, Brett A; Fragala, Maren S; Davitt, Patrick M; Cortis, Cristina; Wilson, Jacob M; Lee, Elaine C; Newton, Robert U; Dunn-Lewis, Courtenay; Häkkinen, Keijo; Szivak, Tunde K; Hooper, David R; Flanagan, Shawn D; Looney, David P; White, Mark T; Volek, Jeff S; Maresh, Carl M

    2014-01-01

    The purpose of this study was to determine the effects of a multinutritional supplement including amino acids, β-hydroxy-β-methylbutyrate (HMB), and carbohydrates on cytokine responses to resistance exercise and training. Seventeen healthy, college-aged men were randomly assigned to a Muscle Armor™ (MA; Abbott Nutrition, Columbus, OH) or placebo supplement group and 12 weeks of resistance training. An acute resistance exercise protocol was administered at 0, 6, and 12 weeks of training. Venous blood samples at pre-, immediately post-, and 30-minutes postexercise were analyzed via bead multiplex immunoassay for 17 cytokines. After 12 weeks of training, the MA group exhibited decreased interferon-gamma (IFN-γ) and interleukin (IL)-10. IL-1β differed by group at various times. Granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, IL-7, IL-8, IL-12p70, IL-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β) changed over the 12-week training period but did not differ by group. Twelve weeks of resistance training alters the cytokine response to acute resistance exercise, and supplementation with HMB and amino acids appears to further augment this result.

  18. El factor inducible por la hipoxia y la actividad física hypoxia-inducible factor and physical activity

    Juan Camilo Calderón Vélez

    2007-04-01

    Full Text Available Los animales superiores dependen de un adecuado flujo de oxígeno. Los mecanismos involucrados en los procesos de percibir la hipoxia y responder a ella se han ido aclarando, desde hace unos 15 años, con el descubrimiento de las subunidades α y β del factor inducible por la hipoxia (HIF, por su sigla en inglés y de las hidroxilasas involucradas en su regulación. Las especies reactivas de oxígeno (ERO, al parecer, también participan en el proceso de percibir y responder a la hipoxia. Las células musculares podrían ser un modelo útil para estudiar la interrelación hipoxia-ERO-HIF- respuesta celular, con importantes implicaciones básico-clínicas. Sin embargo, apenas comienza el estudio de esta relación en el músculo esquelético. Se revisan en este artículo algunos aspectos interesantes de la investigación en el músculo esquelético y se plantean algunas preguntas e hipótesis que podrían ser evaluadas en este tipo de células. Higher animals depend on an adequate oxygen flux. Mechanisms involved in the process of sensing and responding to hypoxia have become clearer in the last 15 years with the discovery of the y hypoxia-inducible factor (HIF subunits and hydroxylases involved in their regulation. Reactive oxygen species seem to play some role in the process of sensing and responding to hypoxia. Skeletal muscle cells seem to be a suitable model for studying the hypoxia-reactive oxygen species-HIF-cellular response relationship. Its study has important basic and clinic implications. However, the study of this relationship just begins. Some interesting aspects regarding skeletal muscle research are reviewed in this article, and some questions and hypotheses suitable for being evaluated with muscle cells are discussed.

  19. Granulocyte-macrophage stimulating factor (GM-CSF increases circulating dendritic cells but does not abrogate suppression of adaptive cellular immunity in patients with metastatic colorectal cancer receiving chemotherapy

    Martinez Micaela

    2012-01-01

    Full Text Available Abstract Background Advanced cancer and chemotherapy are both associated with immune system suppression. We initiated a clinical trial in patients receiving chemotherapy for metastatic colorectal cancer to determine if administration of GM-CSF in this setting was immunostimulatory. Methods Between June, 2003 and January, 2007, 20 patients were enrolled in a clinical trial (NCT00257322 in which they received 500 ug GM-CSF daily for 4 days starting 24 hours after each chemotherapy cycle. There were no toxicities or adverse events reported. Blood was obtained before chemotherapy/GM-CSF administration and 24 hours following the final dose of GM-CSF and evaluated for circulating dendritic cells and adaptive immune cellular subsets by flow cytometry. Peripheral blood mononuclear cell (PBMC expression of γ-interferon and T-bet transcription factor (Tbx21 by quantitative real-time PCR was performed as a measure of Th1 adaptive cellular immunity. Pre- and post-treatment (i.e., chemotherapy and GM-CSF samples were evaluable for 16 patients, ranging from 1 to 5 cycles (median 3 cycles, 6 biologic sample time points. Dendritic cells were defined as lineage (- and MHC class II high (+. Results 73% of patients had significant increases in circulating dendritic cells of ~3x for the overall group (5.8% to 13.6%, p = 0.02 and ~5x excluding non-responders (3.2% to 14.5%, p Tbx21 levels declined by 75% following each chemotherapy cycle despite administration of GM-CSF (p = 0.02. PBMC γ-interferon expression, however was unchanged. Conclusions This clinical trial confirms the suppressive effects of chemotherapy on Th1 cellular immunity in patients with metastatic colorectal cancer but demonstrates that mid-cycle administration of GM-CSF can significantly increase the proportion of circulating dendritic cells. As the role of dendritic cells in anti-tumor immunity becomes better defined, GM-CSF administration may provide a non-toxic intervention to augment this arm of the immune system for cancer patients receiving cytotoxic therapy. Trial Registration ClinicalTrials.gov: NCT00257322

  20. Adenosine potentiates stimulatory effects on granulocyte-macrophage hematopoietic progenitor cells in vitro of IL-3 and SCF, but not those of G-CSF, GM-CSF and IL-11

    Hofer, Michal; Vacek, Antonín; Pospíšil, Milan; Weiterová, Lenka; Holá, Jiřina; Štreitová, Denisa; Znojil, V.

    2006-01-01

    Roč. 55, č. 5 (2006), s. 591-596 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015 Institutional research plan: CEZ:AV0Z50040507 Keywords : hematopoiesis * adenosine * cytokines Subject RIV: BO - Biophysics Impact factor: 2.093, year: 2006

  1. Comparison of different methods of osmotic shocks for extraction of Human Granulocyte Colony Stimulating Factor produced in periplasm

    Sharareh Peymanfar

    2018-06-01

    Discussion and conclusion: Regarding the results, it is concluded that the MgSO4 with Tris buffer create a good osmotic pressure and accordingly is a more effective way for G-CSF protein extraction. As a result, this method could be used for production and simple separation of recombinant drug proteins.

  2. Hematologic effects of subcutaneous administration of recombinant human granulocyte colony-stimulating factor (filgrastim) in healthy alpacas.

    McKenzie, Erica C; Tornquist, Susan J; Gorman, M Elena; Cebra, Christopher K; Payton, Mark E

    2008-06-01

    To determine the effects of SC administration of filgrastim on cell counts in venous blood and bone marrow of healthy adult alpacas. 10 healthy alpacas. Alpacas were randomly assigned to receive treatment with filgrastim (5 microg/kg, SC; n=5) or an equivalent volume of physiologic saline (0.9% NaCl) solution (5) once a day for 3 days. Blood samples were obtained via jugular venipuncture 1 day prior to treatment and once a day for 5 days commencing 24 hours after the first dose was administered. Complete blood counts were performed for each blood sample. Bone marrow aspirates were obtained from the sternum of each alpaca 48 hours before the first treatment was administered and 72 hours after the third treatment was administered. Myeloid-to-erythroid cell (M:E) ratio was determined via cytologic evaluation of bone marrow aspirates. In filgrastim-treated alpacas, substantial increases in counts of WBCs and neutrophils were detected within 24 hours after the first dose was administered. Band cell count and percentage significantly increased 24 hours after the second dose. Counts of WBCs, neutrophils, and band cells remained high 48 hours after the third dose. Red blood cell counts and PCV were unaffected. The M:E ratio also increased significantly after treatment with filgrastim. Filgrastim induced rapid and substantial increases in numbers of circulating neutrophils and M:E ratios of bone marrow in healthy alpacas. Therefore, filgrastim may be useful in the treatment of camelids with impaired bone marrow function.

  3. Recombinant human granulocyte colony-stimulating factor increases circulating CD34-postive cells in patients with AIDS

    Nielsen, S D; Dam-Larsen, S; Nielsen, C

    1997-01-01

    G-CSF for 3-5 consecutive days. Within 5 days of initiation of G-CSF therapy, an increase in the absolute neutrophil count (ANC) was seen in all patients. There was a median increase in ANC from 0.4 to 3.4 x 10(9)/l. In addition, G-CSF treatment significantly increased the absolute number of CD34...

  4. Alpha-1 antitrypsin and granulocyte colony-stimulating factor as serum biomarkers of disease severity in ulcerative colitis

    Soendergaard, Christoffer; Nielsen, Ole Haagen; Seidelin, Jakob Benedict

    2015-01-01

    BACKGROUND: Initial assessment of patients with ulcerative colitis (UC) is challenging and relies on apparent clinical symptoms and measurements of surrogate markers (e.g., C-reactive protein [CRP] or similar acute phase proteins). As CRP only reliably identifies patients with severe disease, novel...... (Mayo score) and from 40 healthy controls were analyzed by multiplex enzyme-linked immunosorbent assay for 78 potential disease biomarkers. Using the statistical software SIMCA-P+ and GraphPad Prism, multivariate statistical analyses were conducted to identify a limited number of biomarkers to assess...

  5. The effect of long-term treatment with granulocyte colony-stimulating factor on hematopoiesis in HIV-infected individuals

    Nielsen, S D; Sørensen, T U; Aladdin, H

    2000-01-01

    of G-CSF on in vivo function of progenitors the white-blood count was determined. Significant increase in white-blood count was found (P hemoglobin and platelet count decreased (P = 0.001 and P = 0.013, respectively). Significant increase in the CD4 count occurred, but correlation...

  6. Mobilization of hematopoietic progenitor cells with granulocyte colony stimulating factors for autologous transplant in hematologic malignancies: a single center experience

    Gabús, Raul; Borelli, Gabriel; Ferrando, Martín; Bódega, Enrique; Citrín, Estela; Jiménez, Constanza Olivera; Álvarez, Ramón

    2011-01-01

    Background In 2006 the Hematology Service of Hospital Maciel published its experience with peripheral blood progenitor cell harvesting for autologous stem cell transplantation using Filgen JP (Clausen Filgrastim). After mobilization with a mean filgrastim dose of 78 mcg/Kg, 4.7 x 106 CD34+ cells/Kg were obtained by apheresis. Age above 50, multiple myeloma as underlying disease and a malignancy that was not in remission were identified as frequent characteristics among patients showing complex mobilization. Objective The aim of this study was to compare stem cell mobilization using different brands of filgrastim. Methods One hundred and fifty-seven mobilizations performed between 1997 and 2006 were analyzed. This retrospective analysis comparative two groups of patients: those mobilized with different brands of filgrastim (Group A) and those who received Filgen JP (Clausen Filgrastim) as mobilizing agent (Group B). A cluster analysis technique was used to identify four clusters of individuals with different behaviors differentiated by age, total dose of filgrastim required, number of apheresis and harvested CD34+ cells. Results The mean total dose of filgrastim administered was 105 mcg/Kg, the median number of apheresis was 2 procedures and the mean number of harvested stem cells was 4.98 x 106 CD34+ cells/Kg. No significant differences were observed between Groups A and B regarding the number of apheresis, harvested CD34+ cells and number of mobilization failures, however the total dose of filgrastim was significantly lower in Group B. Conclusions Among other factors, the origin of the cytokine used as mobilizing agent is an element to be considered when evaluating CD34+ cell mobilization results. PMID:23049356

  7. Sunlight Triggers Cutaneous Lupus through a Colony Stimulating Factor-1 (CSF-1) Dependent Mechanism in MRL-Faslpr mice

    Menke, Julia; Hsu, Mei-Yu; Byrne, Katelyn T.; Lucas, Julie A.; Rabacal, Whitney A.; Croker, Byron P.; Zong, Xiao-Hua; Stanley, E. Richard; Kelley, Vicki R.

    2008-01-01

    Sunlight (UVB) triggers cutaneous (CLE) and systemic lupus through an unknown mechanism. We tested the hypothesis that UVB triggers CLE through a CSF-1-dependent, macrophage (Mø) -mediated mechanism in MRL-Faslpr mice. By constructing mutant MRL-Faslpr strains expressing varying levels of CSF-1 (high, intermediate, none), and use of an ex-vivo gene transfer to deliver CSF-1 intra-dermally, we determined that CSF-1 induces CLE in lupus-susceptible, MRL-Faslpr mice, but not in lupus-resistant, BALB/c mice. Notably, UVB incites an increase in Mø, apoptosis in the skin and CLE in MRL-Faslpr, but not in CSF-1-deficient MRL-Faslpr mice. Furthermore, UVB did not induce CLE in BALB/c mice. Probing further, UVB stimulates CSF-1 expression by keratinocytes leading to recruitment and activation of Mø that, in turn, release mediators, which induce apoptosis in keratinocytes. Thus, sunlight triggers a CSF-1-dependent, Mø-mediated destructive inflammation in the skin leading to CLE in lupus-susceptible MRL-Faslpr, but not lupus-resistant BALB/c mice. Taken together, we envision CSF-1 as the “match” and lupus-susceptibility as the “tinder” leading to CLE. PMID:18981160

  8. OK-432 reduces mortality and bacterial translocation in irradiated and granulocyte-colony stimulating factor (G-CSF)-treated mice

    Nose, Masako; Uzawa, Akiko; Ogyu, Toshiaki [National Inst. of Radiological Sciences, Chiba (Japan); Suzuki, Gen

    2001-06-01

    Acute radiation induces bacterial translocation from the gut, followed by systemic infection and sepsis. In order to reduce the mortality after acute whole body irradiation, it is essential to control bacterial translocation. In this study, we established a bacterial translocation assay as a sensitive method to detect minor mucosal injury by radiation. By utilizing this assay, we evaluated the adverse effects, if any, of hematopoietic reagents on the mucosal integrity in the respiratory and gastro-intestinal tracts. Bacterial translocation to the liver and spleen occurred after whole-body irradiation if the dose exceeded 6 Gy. The administration of G-CSF unexpectedly increased the bacterial translocation in 8 Gy-irradiated mice. The pharmaceutical preparation of low-virulent Streptococcus pyogenes, OK-432, significantly reduced the endotoxin levels in peripheral blood without any reduction of bacterial translocation. A combined treatment with G-CSF and OK-432 decreased bacterial translocation and prevented death. This result indicates that the early administration of G-CSF has an adverse effect on bacterial translocation, and that a combined treatment of G-CSF and OK-432 attenuates the adverse effect of G-CSF and improves the survival rate after acute irradiation. (author)

  9. Effect of filgrastim (recombinant human granulocyte colony stimulating factor) on IgE responses in human asthma: a case study.

    Smith-Norowitz, Tamar A; Joks, Rauno; Norowitz, Kevin B; Chice, Seto; Durkin, Helen G; Bluth, Martin H

    2013-10-01

    The role of peripheral blood progenitor cell mobilization on Immunoglobulin E (IgE) responses has not been studied. Distributions of blood lymphocytes (CD4+, CD8+, CD8+CD60+, CD19+, CD23+, CD16/56+, CD25, CD45RA+, CD45RO+, CD34+), and levels of serum immunoglobulins (IgM, IgG, IgA, IgE) were studied in an allergic asthmatic serum IgE+ (181IU/mL) adult (m/45 y/o) donor undergoing routine stem cell mobilization protocol (American Society of Hematology) before (day-30), during (day 4), and after (1 wk post last dose) filgrastim (subcutaneous, 480 mcg, 2qd) treatment (flow cytometry, nephelometry, UniCAP Total IgE Fluoro enzyme immunoassay). On day 4 of filgrastim treatment, numbers of CD8+CD60+T cells and CD23+ blood cells dramatically increased (98% and 240% respectively) compared with pre treatment. In contrast on day 4 of treatment, serum IgE levels decreased (>50%) compared with pre treatment. CD8+CD60+T cells and CD23+ blood cells and serum IgE levels approached pre-treatment levels at 1 week post treatment. Filgrastim treatment transiently increases numbers of CD8+CD60+T and CD23+ expressing cells, which are known to regulate human IgE responses, while also transiently suppressing ongoing IgE responses. These results suggest that filgrastim affects IgE related responses, and may be useful in modulating allergic responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reduced expression of granule proteins during extended survival of eosinophils in splenocyte culture with GM-CSF.

    Ryu, Seul Hye; Na, Hye Young; Sohn, Moah; Han, Sun Murray; Choi, Wanho; In, Hyunju; Hong, Sookyung; Jeon, Hyejin; Seo, Jun-Young; Ahn, Jongcheol; Park, Chae Gyu

    2016-05-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a multifaceted hematopoietic cytokine and the culture of mouse bone marrow with GM-CSF produces a variety of myeloid cells including granulocytes, macrophages, and dendritic cells. In the present study, we cultured mouse splenocytes with GM-CSF and examined the changes in hematopoietic cell populations over a week. Most of the splenic hematopoietic cells disappeared significantly from culture within 6days with or without the presence of GM-CSF. Among the splenic granulocyte populations, only eosinophils fully survived throughout the culture with GM-CSF for more than a week. During 10days of culture with GM-CSF, splenic eosinophils maintained their morphology as well as most of their surface molecules at high levels, including CCR3 and Siglec F. Meanwhile, the expression of mRNAs encoding major basic protein-1 (MBP-1) and eosinophil peroxidase (EPO), two major eosinophil-derived granule proteins, was diminished significantly from the cultured eosinophils. EPO assays also revealed that eosinophils in culture for more than 5days retained 30% or less EPO activity compared to those in uncultured splenocytes. In contrast, culture of splenocytes with GM-CSF did not change the capacity of eosinophils to migrate in response to eotaxin-1. Our results indicate that mouse splenic eosinophils are effectively cultured for lengthy periods while their expression of eosinophil-derived granule proteins is specifically suppressed. The relevance of these findings to eosinophilic inflammatory response is discussed. Copyright © 2016 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  11. Demonstration of immunochemical identity between the nerve growth factor-inducible large external (NILE) glycoprotein and the cell adhesion molecule L1

    Bock, E; Richter-Landsberg, C; Faissner, A

    1985-01-01

    The nerve growth factor-inducible large external (NILE) glycoprotein and the neural cell adhesion molecule L1 were shown to be immunochemically identical. Immunoprecipitation with L1 and NILE antibodies of [3H]fucose-labeled material from culture supernatants and detergent extracts of NGF......-treated rat PC12 pheochromocytoma cells yielded comigrating bands by SDS-PAGE. NILE antibodies reacted with immunopurified L1 antigen, but not with N-CAM and other L2 epitope-bearing glycoproteins from adult mouse brain. Finally, by sequential immunoprecipitation from detergent extracts of [35S......]methionine-labeled early post-natal cerebellar cell cultures or [3H]fucose-labeled NGF-treated PC12 cells, all immunoreactivity for NILE antibody could be removed by pre-clearing with L1 antibody and vice versa....

  12. A clinical study of multiple trauma combined with acute lung injury

    Tao Liang

    2016-11-01

    Full Text Available Objective: To study the changes of the contents of inflammatory mediators in serum of polytrauma patients with acute lung injury (ALI and their correlation with the disease. Methods: Patients suffering from multiple trauma combined with ALI were selected as ALI group (n = 54. Patients suffering from multiple trauma without ALI were considered as the control group (n = 117. The severity of the disease of patients in the two groups was assessed. Arterial blood was extracted for blood gas analysis. Venous blood was extracted to detect the contents of inflammatory mediators tumor necrosis factor-a, interleukin-1b (IL-1b, IL-10, granulocyte-macrophage colony stimulating factor, NO, endothelin-1. Results: The scores of injury severity score [(25.42 ± 3.58 vs. (17.03 ± 2.25], systemic inflammatory response syndrome [(3.85 ± 0.52 vs. (2.20 ± 0.36] and acute physiology and chronic health evaluation II [(92.63 ± 11.04 vs. (60.46 ± 8.87] in patients in ALI group were all significantly higher than those in the control group and its correcting shock time [(8.39 ± 1.05 vs. (5.15 ± 0.72 h] was longer than that of the control group. The amount of blood transfusion [(674.69 ± 93.52 vs. (402.55 ± 57.65 mL] was greater than that in the control group. The contents of the arterial partial pressure of oxygen [(76.65 ± 9.68 vs. (86.51 ± 10.56 mmHg], arterial blood pressure of carbon dioxide [(27.76 ± 4.82 vs. (36.78 ± 5.82 mmHg] and arterial partial pressure of oxygen/fraction of inspired oxygen [(236.94 ± 36.49 vs. (353.95 ± 47.76] were all significantly lower than those in the control group. The contents of serum tumor necrosis factor-a, IL-1b, IL- 10, granulocyte-macrophage colony stimulating factor, NO and endothelin-1 were obviously higher than those of control group and also positively correlated with the scores of injury severity score, systemic inflammatory response syndrome and acute physiology and chronic health evaluation II. Conclusions

  13. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention.

    van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M

    2018-05-01

    Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4

  14. The Mu opioid receptor promotes opioid and growth factor-induced proliferation, migration and Epithelial Mesenchymal Transition (EMT in human lung cancer.

    Frances E Lennon

    Full Text Available Recent epidemiologic studies implying differences in cancer recurrence based on anesthetic regimens raise the possibility that the mu opioid receptor (MOR can influence cancer progression. Based on our previous observations that overexpression of MOR in human non-small cell lung cancer (NSCLC cells increased tumor growth and metastasis, this study examined whether MOR regulates growth factor receptor signaling and epithelial mesenchymal transition (EMT in human NSCLC cells. We utilized specific siRNA, shRNA, chemical inhibitors and overexpression vectors in human H358 NSCLC cells that were either untreated or treated with various concentrations of DAMGO, morphine, fentanyl, EGF or IGF. Cell function assays, immunoblot and immunoprecipitation assays were then performed. Our results indicate MOR regulates opioid and growth factor-induced EGF receptor signaling (Src, Gab-1, PI3K, Akt and STAT3 activation which is crucial for consequent human NSCLC cell proliferation and migration. In addition, human NSCLC cells treated with opioids, growth factors or MOR overexpression exhibited an increase in snail, slug and vimentin and decrease ZO-1 and claudin-1 protein levels, results consistent with an EMT phenotype. Further, these effects were reversed with silencing (shRNA or chemical inhibition of MOR, Src, Gab-1, PI3K, Akt and STAT3 (p<0.05. Our data suggest a possible direct effect of MOR on opioid and growth factor-signaling and consequent proliferation, migration and EMT transition during lung cancer progression. Such an effect provides a plausible explanation for the epidemiologic findings.

  15. Improved viability and activity of neutrophils differentiated from HL-60 cells by co-culture with adipose tissue-derived mesenchymal stem cells

    Park, Yoon Shin; Lim, Goh-Woon [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Cho, Kyung-Ah; Woo, So-Youn; Shin, Meeyoung [Department of Microbiology, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Yoo, Eun-Sun [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of); Chan Ra, Jeong [Stem Cell Research Center, RNL BIO, Seoul 153-768 (Korea, Republic of); Ryu, Kyung-Ha, E-mail: ykh@ewha.ac.kr [Department of Pediatrics, Ewha Womans University, School of Medicine, Ewha Medical Research Center, Seoul (Korea, Republic of)

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Neutropenia is a principal complication of cancer treatment. Black-Right-Pointing-Pointer Co-culture of neutrophils with AD-MSC retained cell survival and proliferation and inhibited neutrophil apoptosis under serum starved conditions. Black-Right-Pointing-Pointer AD-MSC increased functions of neutrophil. Black-Right-Pointing-Pointer AD-MSC promoted the viability of neutrophils by enhancing respiratory burst through the expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Black-Right-Pointing-Pointer AD-MSC can be used to improve immunity for neutropenia treatment. -- Abstract: Neutropenia is a principal complication of cancer treatment. We investigated the supportive effect of adipose tissue-derived mesenchymal stem cells (AD-MSCs) on the viability and function of neutrophils. Neutrophils were derived from HL-60 cells by dimethylformamide stimulation and cultured with or without AD-MSCs under serum-starved conditions to evaluate neutrophil survival, proliferation, and function. Serum starvation resulted in the apoptosis of neutrophils and decreased cell survival. The co-culture of neutrophils and AD-MSCs resulted in cell survival and inhibited neutrophil apoptosis under serum-starved conditions. The survival rate of neutrophils was prolonged up to 72 h, and the expression levels of interferon (IFN)-{alpha}, granulocyte colony-stimulating factor (G-CSF), granulocyte-macrophage colony-stimulating factor, and transforming growth factor (TGF)-{beta} in AD-MSCs were increased after co-culture with neutrophils. AD-MSCs promoted the viability of neutrophils by inhibiting apoptosis as well as enhancing respiratory burst, which could potentially be mediated by the increased expression of IFN-{alpha}, G-CSF, and TGF-{beta}. Thus, we conclude that the use of AD-MSCs may be a promising cell-based therapy for increasing immunity by accelerating neutrophil function.

  16. Immunohematopoietic modulation by oral β-1,3-glucan in mice infected with Listeria monocytogenes.

    Torello, Cristiane O; de Souza Queiroz, Julia; Oliveira, Sueli C; Queiroz, Mary L S

    2010-12-01

    In this study we demonstrated that the oral administration of β-1,3-glucan (Imunoglucan®) protects mice from a lethal dose of Listeria monocytogenes (LM) when administered prophylactically for 10 days at the doses of 150 and 300 mg/kg, with survival rates up to 40%. These doses also prevented the myelosuppression and the splenomegaly caused by a sublethal infection with LM, due to increased numbers of granulocyte-macrophage progenitors (CFU-GM) in the bone marrow. Investigation of the production of colony-stimulating factors revealed an increased colony-stimulating activity (CSA) in the serum of infected mice pre-treated with Imunoglucan®. The treatment also restored the reduced ability of stromal cells to display myeloid progenitors in long-term bone marrow cultures (LTBMC) and up-regulated IL-6 and IL-1α production by these cells in the infected mice, which was consistent with higher number of non-adherent cells. Additional studies to investigate the levels of interferon-gamma (INF-γ) in the supernatant of splenocyte cultures demonstrated a further increase in the level of this cytokine in infected-treated mice, compared to infected controls. In all cases, no differences were observed between the responses of the two optimal biologically effective doses. In contrast, no significant changes were produced by the treatment with the 50mg/kg dose. In addition, no changes were observed in normal mice treated with the three doses used. All together our results suggest that orally given Imunoglucan® indirectly modulates immune activity and probably disengages Listeria induced suppression of these responses by inducing a higher reserve of myeloid progenitors in the bone marrow in consequence of biologically active cytokine release (CSFs, IL-1α, IL-6, and INF-γ). Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Inflammatory Biomarkers Predict Airflow Obstruction After Exposure to World Trade Center Dust

    Nolan, Anna; Naveed, Bushra; Comfort, Ashley L.; Ferrier, Natalia; Hall, Charles B.; Kwon, Sophia; Kasturiarachchi, Kusali J.; Cohen, Hillel W.; Zeig-Owens, Rachel; Glaser, Michelle S.; Webber, Mayris P.; Aldrich, Thomas K.; Rom, William N.; Kelly, Kerry; Prezant, David J.

    2012-01-01

    Background: The World Trade Center (WTC) collapse on September 11, 2001, produced airflow obstruction in a majority of firefighters receiving subspecialty pulmonary evaluation (SPE) within 6.5 years post-September 11, 2001. Methods: In a cohort of 801 never smokers with normal pre-September 11, 2001, FEV1, we correlated inflammatory biomarkers and CBC counts at monitoring entry within 6 months of September 11, 2001, with a median FEV1 at SPE (34 months; interquartile range, 25-57). Cases of airflow obstruction had FEV1 less than the lower limit of normal (LLN) (100 of 801; 70 of 100 had serum), whereas control subjects had FEV1 greater than or equal to LLN (153 of 801; 124 of 153 had serum). Results: From monitoring entry to SPE years later, FEV1 declined 12% in cases and increased 3% in control subjects. Case subjects had elevated serum macrophage derived chemokine (MDC), granulocyte-macrophage colony-stimulating factor (GM-CSF), granulocyte colony-stimulating factor, and interferon inducible protein-10 levels. Elevated GM-CSF and MDC increased the risk for subsequent FEV1 less than LLN by 2.5-fold (95% CI, 1.2-5.3) and 3.0-fold (95% CI, 1.4-6.1) in a logistic model adjusted for exposure, BMI, age on September 11, 2001, and polymorphonuclear neutrophils. The model had sensitivity of 38% (95% CI, 27-51) and specificity of 88% (95% CI, 80-93). Conclusions: Inflammatory biomarkers can be risk factors for airflow obstruction following dust and smoke exposure. Elevated serum GM-CSF and MDC levels soon after WTC exposure were associated with increased risk of airflow obstruction in subsequent years. Biomarkers of inflammation may help identify pathways producing obstruction after irritant exposure. PMID:21998260

  18. The influence of protein malnutrition on the production of GM-CSF and M-CSF by macrophages

    Dalila Cunha de Oliveira

    Full Text Available ABSTRACT It is well established that protein malnutrition (PM impairs immune defenses and increases susceptibility to infection. Macrophages are cells that play a central role in innate immunity, constituting one of the first barriers against infections. Macrophages produce several soluble factors, including cytokines and growth factors, important to the immune response. Among those growth factors, granulocyte-macrophage colony-stimulating factor (GM-CSF and macrophage colony-stimulating factor (M-CSF. GM-CSF and M-CSF are important to monocyte and macrophage development and stimulation of the immune response process. Knowing the importance of GM-CSF and M-CSF, we sought to investigate the influence of PM on macrophage production of these growth factors. Two-month-old male BALB/c mice were subjected to PM with a low-protein diet (2% and compared to a control diet (12% mouse group. Nutritional status, hemogram and the number of peritoneal cells were evaluated. Additionally, peritoneal macrophages were cultured and the production of GM-CSF and M-CSF and mRNA expression were evaluated. To determine if PM altered macrophage production of GM-CSF and M-CSF, they were stimulated with TNF-α. The PM animals had anemia, leukopenia and a reduced number of peritoneal cells. The production of M-CSF was not different between groups; however, cells from PM animals, stimulated with or without TNF-α, presented reduced capability to produce GM-CSF. These data imply that PM interferes with the production of GM-CSF, and consequently would affect the production and maturation of hematopoietic cells and the immune response.

  19. Therapeutic potential of ex vivo expansion of haematopoietic precursors for the treatment of accidental irradiation-induced aplasia

    Nguyen-Neildez, T.M.A.; Vetillard, J.; Thierry, D.; Nenot, J.C.; Parmentier, C.

    1996-01-01

    After whole body overexposure, the key issue is the therapeutic decision, i.e. the choice between bone marrow transplantation and other strategies. The indications of bone marrow transplantation cover only a short range of doses, provided the exposure is distributed uniformly within the body; a rare event in accidental settings. The results of the clinical trials for Granulocyte-Colony Stimulating Factor: G-CSF, Granulocyte/Macrophage Colony Stimulating Factor: GM-CSF or Interleukin 3: IL-3, in vivo and in vitro radiobiology experiments suggest that growth factor therapy could be of use after most accidental overexposures to evidence and to stimulate the remaining haematopoietic stem cells in order to shorten the duration of aplasia, although questions have been raised about growth factor infusion real clinical efficiency. Ex vivo expansion of haematopoietic precursor, stem cells and differentiated cells is a new approach of growth factor therapy, which may be of interest for the treatment of patients with accidental radiation-induced aplasia. These studies aim to expand the pool of progenitors and stem cells for transplantation or to expand differentiated cells (mainly granulocytes but also megakaryocytes) for transfusion. This is made possible due to the development of techniques allowing the selection of a population of haematopoietic progenitors and stem cells from the blood (with stimulation by growth factors prior stem cell harvesting) or bone marrow using immature cell positive selection. The next step consisting in their culture with combination of growth factors or additional stroma cells is also under development. Autologous progenitor cells generated ex vivo has been recently used with some success for reconstitution of haematopoiesis after high-dose chemotherapy. (author)

  20. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Response of Human Skin Equivalents to Sarcoptes scabiei

    MORGAN, MARJORIE S.; ARLIAN, LARRY G.

    2010-01-01

    Studies have shown that molecules in an extract made from bodies of the ectoparasitic mite, Sarcoptes scabiei De Geer, modulate cytokine secretion from cultured human keratinocytes and fibroblasts. In vivo, in the parasitized skin, these cells interact with each other by contact and cytokine mediators and with the matrix in which they reside. Therefore, these cell types may function differently together than they do separately. In this study, we used a human skin equivalent (HSE) model to investigate the influence of cellular interactions between keratinocytes and fibroblasts when the cells were exposed to active/burrowing scabies mites, mite products, and mite extracts. The HSE consisted of an epidermis of stratified stratum corneum, living keratinocytes, and basal cells above a dermis of fibroblasts in a collagen matrix. HSEs were inoculated on the surface or in the culture medium, and their cytokine secretions on the skin surface and into the culture medium were determined by enzyme-linked immunosorbent assay. Active mites on the surface of the HSE induced secretion of cutaneous T cell-attracting chemokine, thymic stromal lymphopoietin, interleukin (IL)-1α, IL-1β, IL-1 receptor antagonist (IL-1ra), IL-6, IL-8, monocyte chemoattractant protein-1, granulocyte/macrophage colony-stimulating factor, and macrophage colony-stimulating factor. The main difference between HSEs and monocultured cells was that the HSEs produced the proinflammatory cytokines IL-1α and IL-1β and their competitive inhibitor IL-1ra, whereas very little of these mediators was previously found for cultured keratinocytes and fibroblasts. It is not clear how the balance between these cytokines influences the overall host response. However, IL-1ra may contribute to the depression of an early cutaneous inflammatory response to scabies in humans. These contrasting results illustrate that cell interactions are important in the host’s response to burrowing scabies mites. PMID:20939384

  2. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  3. Microscale to manufacturing scale-up of cell-free cytokine production--a new approach for shortening protein production development timelines.

    Zawada, James F; Yin, Gang; Steiner, Alexander R; Yang, Junhao; Naresh, Alpana; Roy, Sushmita M; Gold, Daniel S; Heinsohn, Henry G; Murray, Christopher J

    2011-07-01

    Engineering robust protein production and purification of correctly folded biotherapeutic proteins in cell-based systems is often challenging due to the requirements for maintaining complex cellular networks for cell viability and the need to develop associated downstream processes that reproducibly yield biopharmaceutical products with high product quality. Here, we present an alternative Escherichia coli-based open cell-free synthesis (OCFS) system that is optimized for predictable high-yield protein synthesis and folding at any scale with straightforward downstream purification processes. We describe how the linear scalability of OCFS allows rapid process optimization of parameters affecting extract activation, gene sequence optimization, and redox folding conditions for disulfide bond formation at microliter scales. Efficient and predictable high-level protein production can then be achieved using batch processes in standard bioreactors. We show how a fully bioactive protein produced by OCFS from optimized frozen extract can be purified directly using a streamlined purification process that yields a biologically active cytokine, human granulocyte-macrophage colony-stimulating factor, produced at titers of 700 mg/L in 10 h. These results represent a milestone for in vitro protein synthesis, with potential for the cGMP production of disulfide-bonded biotherapeutic proteins. Copyright © 2011 Wiley Periodicals, Inc.

  4. Direct evaluation of radiation damage in human hematopoietic progenitor cells in vivo

    Kyoizumi, Seishi; McCune, J.M.; Namikawa, Reiko

    1994-01-01

    We have developed techniques by which normal functional elements of human bone marrow can be implanted into immunodeficient C.B-17 scid/scid (SCID) mice. Afterward, long-term multilineage human hematopoiesis is sustained in vivo. We evaluated the effect of irradiation on the function of human bone marrow with this in vivo model. After whole-body X irradiation of the engrafted animals, it was determined that the D 0 value of human committed progenitor cells within the human marrow was 1.00 ± 0.09 (SEM) Gy for granulocyte-macrophage colony-forming units (CFU-GM) and 0.74 ± 0.12 Gy for erythroidburst-forming units (BFU-E). The effects of irradiation on the hematopoietic elements were reduced when the radioprotective agent WR-2721 was administered prior to irradiation. After low-dose irradiation, recovery of human granulocyte colony-stimulating factor (G-CSF). This small animal model may prove amenable for the analysis of the risk of the exposure of humans to irradiation as well as for the development of new modalities for the prevention and treatment of radiation-induced hematopoietic damage. 41 refs., 5 figs., 1 tab

  5. Increased levels of inflammatory cytokines in the female reproductive tract are associated with altered expression of proteases, mucosal barrier proteins, and an influx of HIV-susceptible target cells.

    Arnold, Kelly B; Burgener, Adam; Birse, Kenzie; Romas, Laura; Dunphy, Laura J; Shahabi, Kamnoosh; Abou, Max; Westmacott, Garrett R; McCorrister, Stuart; Kwatampora, Jessie; Nyanga, Billy; Kimani, Joshua; Masson, Lindi; Liebenberg, Lenine J; Abdool Karim, Salim S; Passmore, Jo-Ann S; Lauffenburger, Douglas A; Kaul, Rupert; McKinnon, Lyle R

    2016-01-01

    Elevated inflammatory cytokines (EMCs) at mucosal surfaces have been associated with HIV susceptibility, but the underlying mechanisms remain unclear. We characterized the soluble mucosal proteome associated with elevated cytokine expression in the female reproductive tract. A scoring system was devised based on the elevation (upper quartile) of at least three of seven inflammatory cytokines in cervicovaginal lavage. Using this score, HIV-uninfected Kenyan women were classified as either having EMC (n=28) or not (n=68). Of 455 proteins quantified in proteomic analyses, 53 were associated with EMC (5% false discovery rate threshold). EMCs were associated with proteases, cell motility, and actin cytoskeletal pathways, whereas protease inhibitor, epidermal cell differentiation, and cornified envelope pathways were decreased. Multivariate analysis identified an optimal signature of 16 proteins that distinguished the EMC group with 88% accuracy. Three proteins in this signature were neutrophil-associated proteases that correlated with many cytokines, especially GM-CSF (granulocyte-macrophage colony-stimulating factor), IL-1β (interleukin-1β), MIP-3α (macrophage inflammatory protein-3α), IL-17, and IL-8. Gene set enrichment analyses implicated activated immune cells; we verified experimentally that EMC women had an increased frequency of endocervical CD4(+) T cells. These data reveal strong linkages between mucosal cytokines, barrier function, proteases, and immune cell movement, and propose these as potential mechanisms that increase risk of HIV acquisition.

  6. Immunotoxicity and environment: immunodysregulation and systemic inflammation in children.

    Calderón-Garcidueñas, Lilian; Macías-Parra, Mercedes; Hoffmann, Hans J; Valencia-Salazar, Gildardo; Henríquez-Roldán, Carlos; Osnaya, Norma; Monte, Ofelia Camacho-Del; Barragán-Mejía, Gerardo; Villarreal-Calderon, Rodolfo; Romero, Lina; Granada-Macías, Margarita; Torres-Jardón, Ricardo; Medina-Cortina, Humberto; Maronpot, Robert R

    2009-02-01

    Environmental pollutants, chemicals, and drugs have an impact on children's immune system development. Mexico City (MC) children exposed to significant concentrations of air pollutants exhibit chronic respiratory inflammation, systemic inflammation, neuroinflammation, and cognitive deficits. We tested the hypothesis that exposure to severe air pollution plays a role in the immune responses of asymptomatic, apparently healthy children. Blood measurements for markers of immune function, inflammatory mediators, and molecules interacting with the lipopolysaccharide recognition complex were obtained from two cohorts of matched children (aged 9.7 +/- 1.2 years) from southwest Mexico City (SWMC) (n = 66) and from a control city (n = 93) with criteria pollutant levels below current standards. MC children exhibited significant decreases in the numbers of natural killer cells (p = .003) and increased numbers of mCD14+ monocytes (p < .001) and CD8+ cells (p = .02). Lower concentrations of interferon gamma (p = .009) and granulocyte-macrophage colony-stimulating factor (p < .001), an endotoxin tolerance-like state, systemic inflammation, and an anti-inflammatory response were also present in the highly exposed children. C-reactive protein and the prostaglandin E metabolite levels were positively correlated with twenty-four- and forty-eight-hour cumulative concentrations of PM(2.5). Exposure to urban air pollution is associated with immunodysregulation and systemic inflammation in children and is a major health threat.

  7. Mammalian melanocytes and radiations

    Hirobe, Tomohisa

    2008-01-01

    Melanocytes (M) decide the skin and hair color through the synthesis of melanine pigment, which is transported via their melanosome to keratinocytes (K) for body color expression in animals. This paper describes mainly author's studies of M concerning effects of ultraviolet (UV), ionizing radiation and heavy ion (carbon ion) beam on their development and differentiation together with its mechanism. In vitro, studies of UV effect on proliferation and differentiation of M and melanoblast (MB) have been greatly advanced since their culturing in serum-free media became possible using cells from author's black-mouse (C57BL/10JHir strain): Their mixed culture with K firstly revealed that their proliferation and differentiation were enhanced by UV irradiation. The important K's factor to regulate M/MB cells was identified to be GMCSF (granulocyte-macrophage colony-stimulating factor). In vivo studies of the skin color of the black-mouse before and after birth were performed using radiations like 60 Co gamma ray and high linear energy transfer (LET) carbon ion beam and have revealed that abnormal proliferation and differentiation of M/MB, which were expressed as white spot formation, death and mal-differentiation of M/MB, were induced dose-, LET- and developmental stage-dependently. (R.T.)

  8. Increased Blood Levels of Growth Factors, Proinflammatory Cytokines, and Th17 Cytokines in Patients with Newly Diagnosed Type 1 Diabetes.

    Alnek, Kristi; Kisand, Kalle; Heilman, Kaire; Peet, Aleksandr; Varik, Karin; Uibo, Raivo

    2015-01-01

    The production of several cytokines could be dysregulated in type 1 diabetes (T1D). In particular, the activation of T helper (Th) type 1 (Th1) cells has been proposed to underlie the autoimmune pathogenesis of the disease, although roles for inflammatory processes and the Th17 pathway have also been shown. Nevertheless, despite evidence for the role of cytokines before and at the onset of T1D, the corresponding findings are inconsistent across studies. Moreover, conflicting data exist regarding the blood cytokine levels in T1D patients. The current study was performed to investigate genetic and autoantibody markers in association with the peripheral blood cytokine profiles by xMap multiplex technology in newly diagnosed young T1D patients and age-matched healthy controls. The onset of young-age T1D was characterized by the upregulation of growth factors, including granulocyte macrophage-colony stimulating factor (GM-CSF) and interleukin (IL)-7, the proinflammatory cytokine IL-1β (but not IL-6 or tumor necrosis factor [TNF]-α), Th17 cytokines, and the regulatory cytokines IL-10 and IL-27. Ketoacidosis and autoantibodies (anti-IA-2 and -ZnT8), but not human leukocyte antigen (HLA) genotype, influenced the blood cytokine levels. These findings broaden the current understanding of the dysregulation of systemic levels of several key cytokines at the young-age onset of T1D and provide a further basis for the development of novel immunoregulatory treatments in this disease.

  9. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages.

    Yu, Xueyang; Buttgereit, Anne; Lelios, Iva; Utz, Sebastian G; Cansever, Dilay; Becher, Burkhard; Greter, Melanie

    2017-11-21

    Alveolar macrophages (AMs) derive from fetal liver monocytes, which colonize the lung during embryonic development and give rise to fully mature AMs perinatally. AM differentiation requires granulocyte macrophage colony-stimulating factor (GM-CSF), but whether additional factors are involved in AM regulation is not known. Here we report that AMs, in contrast to most other tissue macrophages, were also dependent on transforming growth factor-β receptor (TGF-βR) signaling. Conditional deletion of TGF-βR in mice at different time points halted the development and differentiation of AMs. In adult mice, TGF-β was also critical for AM homeostasis. The source of TGF-β was AMs themselves, indicative of an autocrine loop that promotes AM self-maintenance. Mechanistically, TGF-βR signaling resulted in upregulation of PPAR-γ, a signature transcription factor essential for the development of AMs. These findings reveal an additional layer of complexity regarding the guidance cues, which govern the genesis, maturation, and survival of AMs. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Effect of the association of IGF-I, IGF-II, bFGF, TGF-beta1, GM-CSF, and LIF on the development of bovine embryos produced in vitro.

    Neira, J A; Tainturier, D; Peña, M A; Martal, J

    2010-03-15

    This study examined the influence of the following growth factors and cytokines on early embryonic development: insulin-like growth factors I and II (IGF-I, IGF-II), basic fibroblast growth factor (bFGF), transforming growth factor (TGF-beta), granulocyte-macrophage colony-stimulating factor (GM-CSF), and leukemia inhibitory factor (LIF). Synthetic oviduct fluid (SOF) was used as the culture medium. We studied the development of bovine embryos produced in vitro and cultured until Day 9 after fertilization. TGF-beta1, bFGF, GM-CSF, and LIF used on their own significantly improved the yield of hatched blastocysts. IGF-I, bFGF, TGF-beta1, GM-CSF, and LIF significantly accelerated embryonic development, especially the change from the expanded blastocyst to hatched blastocyst stages. Use of a combination of these growth factors and cytokines (GF-CYK) in SOF medium produced higher percentages of blastocysts and hatched blastocysts than did use of SOF alone (45% and 22% vs. 24% and 12%; PGM-CSF, produces similar results to 10% fetal calf serum for the development of in vitro-produced bovine embryos. This entirely synthetic method of embryo culture has undeniable advantages for the biosecurity of embryo transfer. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Use of an oncolytic virus secreting GM-CSF as combined oncolytic and immunotherapy for treatment of colorectal and hepatic adenocarcinomas.

    Malhotra, Sandeep; Kim, Teresa; Zager, Jonathan; Bennett, Joseph; Ebright, Michael; D'Angelica, Michael; Fong, Yuman

    2007-04-01

    Oncolytic cancer therapy using herpes simplex viruses (HSV) that have direct tumoricidal effects and cancer immunotherapy using the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) have each been effective in preclinical testing. NV1034 is a multimutated oncolytic HSV carrying the gene for murine GM-CSF that attempts to combine these 2 anticancer strategies. The purpose of this study was to compare NV1034 to NV1023, the parent HSV mutants lacking GM-CSF, to determine if such combined oncolytic and immunotherapy using a single vector has advantages over oncolytic therapy alone. Expression GM-CSF in vitro did not alter the infectivity, cytotoxicity, or replication of NV1034 compared to the noncytokine-secreting control. Tumors infected with NV1034 produced GM-CSF in picogram quantities. In vivo efficacy of the viruses against murine colorectal carcinoma CT26 and murine hepatoma Hepa l-6 was then tested in subcutaneous tumors in syngeneic Balb/c and C57 L/J mice, respectively. In these immune-competent models, NV1034 and NV1023 each demonstrated potent antitumor activity. Treatment with NV1034 had significantly better antitumor effect compared to treatment with NV1023. Furthermore, there was no difference in the antitumor efficacy of these viruses in mice depleted of CD4+ and CD8+ T lymphocytes. Viral vectors combining oncolytic and immunotherapy are promising agents in treatment of colorectal carcinoma and hepatoma.

  12. Endogenous Circadian Regulation of Pro-inflammatory Cytokines and Chemokines in the Presence of Bacterial Lipopolysaccharide in Humans

    Rahman, Shadab A.; Castanon-Cervantes, Oscar; Scheer, Frank A.J.L.; Shea, Steven A.; Czeisler, Charles A.; Davidson, Alec J.; Lockley, Steven W.

    2015-01-01

    Various aspects of immune response exhibit 24-hour variations suggesting that infection susceptibility and treatment efficacy may vary by time of day. Whether these 24-hour variations are endogenous or evoked by changes in environmental or behavioral conditions is not known. We assessed the endogenous circadian control and environmental and behavioral influences on ex-vivo lipopolysaccharide stimulation of whole blood in thirteen healthy participants under 48 hours of baseline conditions with standard sleep-wake schedules and 40–50 hours of constant environmental and behavioral (constant routine; CR) conditions. Significant 24-hour rhythms were observed under baseline conditions in Monocyte Chemotactic Protein, Granulocyte-Macrophage Colony-Stimulating Factor and Interleukin 8 but not Tumor Necrosis Factor alpha whereas significant 24-hour rhythms were observed in all four immune factors under CR conditions. The rhythm amplitudes, expressed as a percentage of mean, were comparable between immune factors and across conditions. In contrast, the acrophase time (time of the fitted peak) was different between immune factors, and included daytime and nighttime peaks and changes across behavioral conditions. These results suggest that the endogenous circadian system underpins the temporal organization of immune responses in humans with additional effects of external environmental and behavioral cycles. These findings have implications for understanding the adverse effects of recurrent circadian disruption and sleep curtailment on immune function. PMID:25452149

  13. Inhibition of allergic dermal inflammation by the novel imidazopyridazine derivative TAK-427 in a guinea pig experimental model of eczema.

    Fukuda, Shigeru; Midoro, Katsuo; Kamei, Takayuki; Gyoten, Michiyo; Kawano, Yasuhiko; Ashida, Yasuko; Nagaya, Hideaki

    2002-12-01

    Antigen challenge by patch ovalbumin emulsion induced an eczema-like skin lesion in epicutaneously sensitized guinea pigs. Diseased skin sites were macroscopically characterized by manifestations of dermatitis, such as erythema, edema, and papules, and microscopically characterized by acanthosis, spongiosis, and dermal infiltration by eosinophils. Using such lesions as a model of eczema, we evaluated the potential value of TAK-427 [2-[6-[[3-[4-(diphenylmethoxy)piperidino]propyl]amino] imidazo[1,2-b]pyridazin-2-yl]-2-methylpropionic acid dihydrate] as a therapeutic agent for atopic dermatitis by comparing it with dexamethasone and antihistamines. TAK-427 (0.3-30 mg/kg, p.o.) and dexamethasone (3 and 10 mg/kg, p.o.) inhibited eosinophil infiltration into the skin and ameliorated the dermatitis manifestations and epidermal damage. By contrast, none of the antihistamines tested (azelastine, ketotifen, terfenadine, and cetirizine) suppressed the eosinophil infiltration or dermatitis manifestations. To elucidate the mechanism by which TAK-427 inhibited the development of eczema, we investigated cytokine expression in the affected skin. Both TAK-427 and dexamethasone suppressed the increased mRNA expression of interleukin (IL)-13, granulocyte-macrophage colony-stimulating factor, IL-1alpha, tumor necrosis factor-alpha, interferon-gamma, and IL-8, but not IL-10, suggesting that TAK-427 inhibits allergic inflammation of the skin leading to the development of eczema by inhibiting the expression of proinflammatory cytokines after antigen challenge.

  14. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation.

    Pearson, Claire; Thornton, Emily E; McKenzie, Brent; Schaupp, Anna-Lena; Huskens, Nicky; Griseri, Thibault; West, Nathaniel; Tung, Sim; Seddon, Benedict P; Uhlig, Holm H; Powrie, Fiona

    2016-01-18

    Innate lymphoid cells (ILCs) contribute to host defence and tissue repair but can induce immunopathology. Recent work has revealed tissue-specific roles for ILCs; however, the question of how a small population has large effects on immune homeostasis remains unclear. We identify two mechanisms that ILC3s utilise to exert their effects within intestinal tissue. ILC-driven colitis depends on production of granulocyte macrophage-colony stimulating factor (GM-CSF), which recruits and maintains intestinal inflammatory monocytes. ILCs present in the intestine also enter and exit cryptopatches in a highly dynamic process. During colitis, ILC3s mobilize from cryptopatches, a process that can be inhibited by blocking GM-CSF, and mobilization precedes inflammatory foci elsewhere in the tissue. Together these data identify the IL-23R/GM-CSF axis within ILC3 as a key control point in the accumulation of innate effector cells in the intestine and in the spatio-temporal dynamics of ILCs in the intestinal inflammatory response.

  15. NF-kappa B activity in T cells stably expressing the Tax protein of human T cell lymphotropic virus type I

    Lacoste, J.; Cohen, L.; Hiscott, J.

    1991-01-01

    The effect of constitutive Tax expression on the interaction of NF-κ B with its recognition sequence and on NF-κ B-dependent gene expression was examined in T lymphoid Jurkat cell lines (19D and 9J) stably transformed with a Tax expression vector. Tax expressing T cell lines contained a constitutive level of NF-κ B binding activity, detectable by mobility shift assay and uv cross-linking using a palindromic NF-κ B probe homologous to the interferon beta PRDII site. In Jurkat and NC2.10 induction with phorbol esters resulted in the appearance of new DNA binding proteins of 85, 75, and 54 kDa, whereas in Tax expressing cells the 85-kDa protein and a 92-kDa DNA binding protein were constitutively induced. Expression of Tax protein in 19D and 9J resulted in transcription of the endogenous NF-kappa B-dependent granulocyte-macrophage colony stimulating factor gene and increased basal level expression of transfected NF-kappa B-regulated promoters. Nonetheless transcription of both the endogenous and the transfected gene was inducible by PMA treatment. Tax expression in Jurkat T cells may alter the stoichiometry of NF-kappa B DNA binding proteins and thus change the expression of NF-kappa B-regulated promoters

  16. Immune responses of dendritic cells after acquiring antigen from apoptotic hepatocholangioma cells caused by γ-ray

    Wu Gang; Gu Hongguang; Han Benli; Pei Xuetao

    2002-01-01

    Objective: To investigate the induction of cytotoxic T lymphocytes (CTLs) in antitumor responsiveness and therapeutic effects after dendritic cells (DCs) acquired antigen from apoptotic hepatocholangioma cells. Methods: DCs from blood mononuclear cells that maintain the characteristics of immaturity-anti-gen-capturing and-processing capacity were established in vitro by using granulocyte/macrophage colony-stimulating factor (GM-CSF) and interleukin-4. Then, apoptosis in hepatocholangioma cells was induced with γ-radiation. The experimental groups included (1) co-culture of DCs, and apoptotic cancer cells and T cells; (2) co-culture of DCs necrotic cancer cells and T cells; (3) co-culture of DCs-cultured cancer cell and T cells. These cells were co-cultured for 7 days. DCs and T cell were enriched separately. Finally, antitumor response test was carried out. Results: These cells had typical dendritic morphology, expressed high levels of CD1a, B7 and acquired antigen from apoptotic cells caused by γ-rays and induced an increased T cell-stimulatory capacity in MLR. Conclusions: DCs obtained from blood mononuclear cells using GM-CSF and IL-4 and DCs can efficiently present antigen driven from apoptotic cells caused by γ-rays and induce T cells increasing obviously. It can probably become an effective approach of DC transduction with antigen

  17. Acrolein inhibits cytokine gene expression by alkylating cysteine and arginine residues in the NF-kappaB1 DNA binding domain.

    Lambert, Cherie; Li, Jimei; Jonscher, Karen; Yang, Teng-Chieh; Reigan, Philip; Quintana, Megan; Harvey, Jean; Freed, Brian M

    2007-07-06

    Cigarette smoke is a potent inhibitor of pulmonary T cell responses, resulting in decreased immune surveillance and an increased incidence of respiratory tract infections. The alpha,beta-unsaturated aldehydes in cigarette smoke (acrolein and crotonaldehyde) inhibited production of interleukin-2 (IL-2), IL-10, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha by human T cells but did not inhibit production of IL-8. The saturated aldehydes (acetaldehyde, propionaldehyde, and butyraldehyde) in cigarette smoke were inactive. Acrolein inhibited induction of NF-kappaB DNA binding activity after mitogenic stimulation of T cells but had no effect on induction of NFAT or AP-1. Acrolein inhibited NF-kappaB1 (p50) binding to the IL-2 promoter in a chromatin immunoprecipitation assay by >99%. Using purified recombinant p50 in an electrophoretic mobility shift assay, we demonstrated that acrolein was 2000-fold more potent than crotonaldehyde in blocking DNA binding to an NF-kappaB consensus sequence. Matrix-assisted laser desorption/ionization time-of-flight and tandem mass spectrometry demonstrated that acrolein alkylated two amino acids (Cys-61 and Arg-307) in the DNA binding domain. Crotonaldehyde reacted with Cys-61, but not Arg-307, whereas the saturated aldehydes in cigarette smoke did not react with p50. These experiments demonstrate that aldehydes in cigarette smoke can regulate gene expression by direct modification of a transcription factor.

  18. In vivo characterization of fusion protein comprising of A1 subunit of Shiga toxin and human GM-CSF: Assessment of its immunogenicity and toxicity.

    Oloomi, Mana; Bouzari, Saeid; Shariati, Elaheh

    2010-10-01

    Most cancer cells become resistant to anti-cancer agents. In the last few years, a new approach for targeted therapy of human cancer has been developed using immunotoxins which comprise both the cell targeting and the cell killing moieties. In the present study, the recombinant Shiga toxin A1 subunit fused to human granulocyte-macrophage colony stimulating factor (A1-GM-CSF), previously produced in E. coli, was further characterized. The recombinant protein could cause 50% cytotoxicity and induced apoptosis in cells bearing GM-CSF receptors. The non-specific toxicity of the fusion protein was assessed in C57BL/6 and BALB/c mice. No mortality was observed in either group of mice, with different concentration of fusion protein. The lymphocyte proliferation assay, induction of specific IgG response and a mixed (Th1/Th2) response were observed only in BALB/c mice. The mixed response in BALB/c mice (Th1/Th2) could be explained on the basis of the two components of the fusion protein i.e. A1 and GM-CSF.

  19. Effects of prostaglandin E2 and cAMP elevating drugs on GM-CSF release by cultured human airway smooth muscle cells. Relevance to asthma therapy.

    Lazzeri, N; Belvisi, M G; Patel, H J; Yacoub, M H; Chung, K F; Mitchell, J A

    2001-01-01

    Human airway smooth muscle (HASM) cells release granulocyte macrophage-colony stimulating factor (GM-CSF) and express cyclooxygenase (COX)-2 (resulting in the release of prostaglandin [PG] E2) after stimulation with cytokines. Because COX-2 activity can regulate a number of inflammatory processes, we have assessed its effects, as well as those of agents that modulate cyclic adenosine monophosphate (cAMP), on GM-CSF release by HASM cells. Cells stimulated with a combination of proinflammatory cytokines (interleukin-1beta and tumor necrosis factor-alpha each at 10 ng/ml) for 24 h released significant amounts of PGE2 (measured by radioimmunoassay) and GM-CSF (measured by enzyme-linked immunosorbent assay). Indomethacin and other COX-1/COX-2 inhibitors caused concentration-dependent inhibitions of PGE2 concomitantly with increases in GM-CSF formation. Addition of exogenous PGE2 or the beta2-agonist fenoterol, which increase cAMP, to cytokine-treated HASM cells had no effect on GM-CSF release unless COX activity was first blocked with indomethacin. The type 4 phosphodiesterase inhibitors rolipram and SB 207499 both caused concentration-dependent reductions in GM-CSF production. Thus, when HASM cells are activated with cytokines they release PGE2, which acts as a "braking mechanism" to limit the coproduction of GM-CSF. Moreover, agents that elevate cAMP also reduce GM-CSF formation by these cells.

  20. The protumorigenic potential of FTY720 by promoting extramedullary hematopoiesis and MDSC accumulation.

    Li, Y; Zhou, T; Wang, Y; Ning, C; Lv, Z; Han, G; Morris, J C; Taylor, E N; Wang, R; Xiao, H; Hou, C; Ma, Y; Shen, B; Feng, J; Guo, R; Li, Y; Chen, G

    2017-06-29

    FTY720 (also called fingolimod) is recognized as an immunosuppressant and has been approved by the Food and Drug Administration to treat refractory multiple sclerosis. However, long-term administration of FTY720 potentially increases the risk for cancer in recipients. The underlying mechanisms remain poorly understood. Herein, we provided evidence that FTY720 administration potentiated tumor growth. Mechanistically, FTY720 enhanced extramedullary hematopoiesis and massive accumulation of myeloid-derived suppressor cells (MDSCs), which actively suppressed antitumor immune responses. Granulocyte-macrophage colony-stimulating factor (GM-CSF), mainly produced by MDSCs, was identified as a key factor to mediate these effects of FTY720 in tumor microenvironment. Furthermore, we showed that FTY720 triggers MDSCs to release GM-CSF via S1P receptor 3 (S1pr3) through Rho kinase and extracellular signal-regulated kinase-dependent pathway. Thus, our findings provide mechanistic explanation for the protumorigenic potentials of FTY720 and suggest that targeting S1pr3 simultaneously may be beneficial for the patients receiving FTY720 treatment.

  1. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Wada, Satoshi; Harris, Timothy J.; Tryggestad, Erik; Yoshimura, Kiyoshi; Zeng, Jing; Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C.; De Marzo, Angelo M.

    2013-01-01

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting

  2. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    Stephen B. Fleming

    2015-03-01

    Full Text Available Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis.

  3. Epidermal Langerhans' cell induction of immunity against an ultraviolet-induced skin tumour

    Cavanagh, L.L.; Sluyter, R.; Henderson, K.G.; Barnetson, R.St.C.; Halliday, G.M.

    1996-01-01

    Lanerghans' cells (LC) have been shown experimentally to induce immune response against many antigens; however, their role in the initiation of anti-tumour immunity has received little attention. This study examined the ability of murine epidermal LC to induce immunity to an ultraviolet radiation (UV)-induced skin tumour. Freshly prepared epidermal cells (EC) were cultured for 2 or 20 hr with granulocyte-macrophage colony-stimulating factor (GM-CSF), pulsed with an extract of the UV-13-1 tumour, then used to immunize naive syngeneic mice. Delayed type hypersensitivity (DTH) was elicited 10 days after immunization by injection of UV-13-1 tumour cells into the ear pinna, and measured 24 hr later. EC cultured with GM-CSF for 2 hr induced anti-tumour DTH, as did EC cultured for 20 hr without GM-CSF. Conversely, EC cultured for 2 hr without GM-CSF, or EC cultured for 20 hr with GM-CSF were unable to induce a DTH. Induction of immunity required active presentation of tumour antigens by Ia + EC and was tumour specific. Thus Ia + epidermal cells are capable of inducing anti-tumour immunity to UV-induced skin tumours, but only when they contact antigen in particular states of maturation. (author)

  4. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  5. A rare cause of cellulitis (necrotic arachnidism: a report of two cases

    Tugba Sari

    2014-09-01

    Full Text Available Bites from brown recluse spiders (Loxosceles reclusa result in several clinical manifestations, causing painful, disfiguring necrotic ulcers and, uncommonly, severe systemic effects. We report two cases reports with necrotic arachnidism from Turkey. A 21-year-old man was admitted to our clinic with the complaints of pruritis, redness on his neck. He had a history of spider bite one day ago. A 52-year-old woman had a cellulitis with hemorrhagic lesion and superficial necrosis on her arm and had a history of spider bite one day ago. Based on these clinical and epidemiological findings, a diagnosis of necrotic arachnidism was suspected, and the diagnosis of necrotic arachnidism was confirmed with these typical skin lesions and spiders bites in histories of patients. The outcome of our patients were good after antihistaminic, antibiotic, analgesic and anti-inflammatory treatments. The brown recluse spider is notorious for its necrosisinducing bite. Its venom contains a rare toxin, sphingomyelinase D, which activates the vascular endothelium and initiates a cascade of activation of neutrophils and granulocyte macrophage colony-stimulating factor, resulting in tissue destruction. In many cases, diagnosis of spider bite is very difficult. Therefore, clinical and epidemiological findings, as well as a detailed history, may establish the diagnosis.

  6. Inflammatory Cytokines: Potential Biomarkers of Immunologic Dysfunction in Autism Spectrum Disorders

    Ningan Xu

    2015-01-01

    Full Text Available Autism is a disorder of neurobiological origin characterized by problems in communication and social skills and repetitive behavior. After more than six decades of research, the etiology of autism remains unknown, and no biomarkers have been proven to be characteristic of autism. A number of studies have shown that the cytokine levels in the blood, brain, and cerebrospinal fluid (CSF of autistic subjects differ from that of healthy individuals; for example, a series of studies suggests that interleukin-6 (IL-6, tumor necrosis factor-α (TNF-α, and interferon-γ (IFN-γ are significantly elevated in different tissues in autistic subjects. However, the expression of some cytokines, such as IL-1, IL-2, transforming growth factor-β (TGF-β, and granulocyte-macrophage colony-stimulating factor (GM-CSF, is controversial, and different studies have found various results in different tissues. In this review, we focused on several types of proinflammatory and anti-inflammatory cytokines that might affect different cell signal pathways and play a role in the pathophysiological mechanism of autistic spectrum disorders.

  7. Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling.

    Queval, Christophe J; Song, Ok-Ryul; Carralot, Jean-Philippe; Saliou, Jean-Michel; Bongiovanni, Antonino; Deloison, Gaspard; Deboosère, Nathalie; Jouny, Samuel; Iantomasi, Raffaella; Delorme, Vincent; Debrie, Anne-Sophie; Park, Sei-Jin; Gouveia, Joana Costa; Tomavo, Stanislas; Brosch, Roland; Yoshimura, Akihiko; Yeramian, Edouard; Brodin, Priscille

    2017-09-26

    Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS) protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH), which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Mycobacterium tuberculosis Controls Phagosomal Acidification by Targeting CISH-Mediated Signaling

    Christophe J. Queval

    2017-09-01

    Full Text Available Pathogens have evolved a range of mechanisms to counteract host defenses, notably to survive harsh acidic conditions in phagosomes. In the case of Mycobacterium tuberculosis, it has been shown that regulation of phagosome acidification could be achieved by interfering with the retention of the V-ATPase complexes at the vacuole. Here, we present evidence that M. tuberculosis resorts to yet another strategy to control phagosomal acidification, interfering with host suppressor of cytokine signaling (SOCS protein functions. More precisely, we show that infection of macrophages with M. tuberculosis leads to granulocyte-macrophage colony-stimulating factor (GM-CSF secretion, inducing STAT5-mediated expression of cytokine-inducible SH2-containing protein (CISH, which selectively targets the V-ATPase catalytic subunit A for ubiquitination and degradation by the proteasome. Consistently, we show that inhibition of CISH expression leads to reduced replication of M. tuberculosis in macrophages. Our findings further broaden the molecular understanding of mechanisms deployed by bacteria to survive.

  9. Optimization of Ex Vivo Murine Bone Marrow Derived Immature Dendritic Cells: A Comparative Analysis of Flask Culture Method and Mouse CD11c Positive Selection Kit Method

    Rahul Ashok Gosavi

    2018-01-01

    Full Text Available 12–14 days of culturing of bone marrow (BM cells containing various growth factors is widely used method for generating dendritic cells (DCs from suspended cell population. Here we compared flask culture method and commercially available CD11c Positive Selection kit method. Immature BMDCs’ purity of adherent as well as suspended cell population was generated in the decreasing concentration of recombinant-murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF in nontreated tissue culture flasks. The expression of CD11c, MHCII, CD40, and CD86 was measured by flow cytometry. We found significant difference (P<0.05 between the two methods in the adherent cells population but no significant difference was observed between the suspended cell populations with respect to CD11c+ count. However, CD11c+ was significantly higher in both adhered and suspended cell population by culture method but kit method gave more CD11c+ from suspended cells population only. On the other hand, using both methods, immature DC expressed moderate level of MHC class II molecules as well as low levels of CD40 and CD86. Our findings suggest that widely used culture method gives the best results in terms of yield, viability, and purity of BMDCs from both adherent and suspended cell population whereas kit method works well for suspended cell population.

  10. Serum levels of innate immunity cytokines are elevated in dogs with metaphyseal osteopathy (hypertrophic osteodytrophy) during active disease and remission.

    Safra, Noa; Hitchens, Peta L; Maverakis, Emanual; Mitra, Anupam; Korff, Courtney; Johnson, Eric; Kol, Amir; Bannasch, Michael J; Pedersen, Niels C; Bannasch, Danika L

    2016-10-15

    Metaphyseal osteopathy (MO) (hypertrophic osteodystrophy) is a developmental disorder of unexplained etiology affecting dogs during rapid growth. Affected dogs experience relapsing episodes of lytic/sclerotic metaphyseal lesions and systemic inflammation. MO is rare in the general dog population; however, some breeds (Weimaraner, Great Dane and Irish Setter) have a much higher incidence, supporting a hereditary etiology. Autoinflammatory childhood disorders of parallel presentation such as chronic recurrent multifocal osteomyelitis (CRMO), and deficiency of interleukin-1 receptor antagonist (DIRA), involve impaired innate immunity pathways and aberrant cytokine production. Given the similarities between these diseases, we hypothesize that MO is an autoinflammatory disease mediated by cytokines involved in innate immunity. To characterize immune dysregulation in MO dogs we measured serum levels of inflammatory markers in 26 MO and 102 control dogs. MO dogs had significantly higher levels (pg/ml) of serum Interleukin-1beta (IL-1β), IL-18, IL-6, Granulocyte-macrophage colony stimulating factor (GM-CSF), C-X-C motif chemokine 10 (CXCL10), tumor necrosis factor (TNF), and IL-10. Notably, recovered MO dogs were not different from dogs during active MO disease, providing a suggestive mechanism for disease predisposition. This is the first documentation of elevated immune markers in MO dogs, uncovering an immune profile similar to comparable autoinflammatory disorders in children. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Local application of GM-CSF for treatment of chemoirradiation-induced mucositis in patients with advanced carcinoma of the head and neck: results of controlled clinical trial

    Reichtomann, K.A.

    2002-01-01

    Purpose: the study was designed to assess prospectively the efficacy of GM-CSF (granulocyte-macrophage colony-stimulating factor) mouthwash solution in the management of chemoirradiation induced oral mucositis for head and neck cancer patients. Methods and materials: thirty-five patients with advanced carcinoma of the head and neck were evaluated for mucositis during the first cycle of chemoirradiation therapy. GM-CSF 400 μg in 250 cc of water for 1 h of mouth washing was prescribed. Active comparator was a conventional mucositis therapy combination. The procedure started once mucositis grade 1 (using the WHO grading) was detected. Patients, examined twice a week, were evaluated for oral mucositis and oral infections. Assessment of subjective pain was provided using a visual analogue scale. Blood tests were taken weekly. Results: the results of statistical evaluation of mucositis using the WHO-grading showed no significant differences between the two treatment groups. Local application of GM-CSF significantly reduced subjective pain during the second week of chemoirradiation therapy. Statistical analysis of the leucocytes-, platelet count, haemoglobin level and development of oral infections revealed no significant differences between the two treatment groups. Conclusion: in combined chemoirradiation therapy schemes the RTOG/EORTC toxicity scale should be used. In selected cases of mucositis attended with severe pain, GM-CSF should be observed within the therapeutic considerations. Controlled clinical trials with larger patient population are required to evaluate the role of GM-CSF in this indication. (author)

  12. Glycoprotein from street rabies virus BD06 induces early and robust immune responses when expressed from a non-replicative adenovirus recombinant.

    Wang, Shuchao; Sun, Chenglong; Zhang, Shoufeng; Zhang, Xiaozhuo; Liu, Ye; Wang, Ying; Zhang, Fei; Wu, Xianfu; Hu, Rongliang

    2015-09-01

    The rabies virus (RABV) glycoprotein (G) is responsible for inducing neutralizing antibodies against rabies virus. Development of recombinant vaccines using the G genes from attenuated strains rather than street viruses is a regular practice. In contrast to this scenario, we generated three human adenovirus type 5 recombinants using the G genes from the vaccine strains SRV9 and Flury-LEP, and the street RABV strain BD06 (nrAd5-SRV9-G, nrAd5-Flury-LEP-G, and nrAd5-BD06-G). These recombinants were non-replicative, but could grow up to ~10(8) TCID50/ml in helper HEK293AD cells. Expression of the G protein was verified by immunostaining, quantitative PCR and cytometry. Animal experiments revealed that immunization with nrAd5-BD06-G can induce a higher seroconversion rate, a higher neutralizing antibody level, and a longer survival time after rabies virus challenge in mice when compared with the other two recombinants. Moreover, the expression of granulocyte-macrophage colony-stimulating factor (GM-CSF) was significantly higher in mice immunized with nrAd5-BD06-G, which might also contribute to the increased protection. These results show that the use of street RABV G for non-replicative systems may be an alternative for developing effective recombinant rabies vaccines.

  13. Recombinant adenovirus expressing the haemagglutinin of Peste des petits ruminants virus (PPRV) protects goats against challenge with pathogenic virus; a DIVA vaccine for PPR.

    Herbert, Rebecca; Baron, Jana; Batten, Carrie; Baron, Michael; Taylor, Geraldine

    2014-02-26

    Peste des petits ruminants virus (PPRV) is a morbillivirus that can cause severe disease in sheep and goats, characterised by pyrexia, pneumo-enteritis, and gastritis. The socio-economic burden of the disease is increasing in underdeveloped countries, with poor livestock keepers being affected the most. Current vaccines consist of cell-culture attenuated strains of PPRV, which induce a similar antibody profile to that induced by natural infection. Generation of a vaccine that enables differentiation of infected from vaccinated animals (DIVA) would benefit PPR control and eradication programmes, particularly in the later stages of an eradication campaign and for countries where the disease is not endemic. In order to create a vaccine that would enable infected animals to be distinguished from vaccinated ones (DIVA vaccine), we have evaluated the immunogenicity of recombinant fowlpox (FP) and replication-defective recombinant human adenovirus 5 (Ad), expressing PPRV F and H proteins, in goats. The Ad constructs induced higher levels of virus-specific and neutralising antibodies, and primed greater numbers of CD8+ T cells than the FP-vectored vaccines. Importantly, a single dose of Ad-H, with or without the addition of Ad expressing ovine granulocyte macrophage colony-stimulating factor and/or ovine interleukin-2, not only induced strong antibody and cell-mediated immunity but also completely protected goats against challenge with virulent PPRV, 4 months after vaccination. Replication-defective Ad-H therefore offers the possibility of an effective DIVA vaccine.

  14. Induction of MAGE-A3 and HPV-16 immunity by Trojan vaccines in patients with head and neck carcinoma.

    Voskens, Caroline J; Sewell, Duane; Hertzano, Ronna; DeSanto, Jennifer; Rollins, Sandra; Lee, Myounghee; Taylor, Rodney; Wolf, Jeffrey; Suntharalingam, Mohan; Gastman, Brian; Papadimitriou, John C; Lu, Changwan; Tan, Ming; Morales, Robert; Cullen, Kevin; Celis, Esteban; Mann, Dean; Strome, Scott E

    2012-12-01

    We performed a pilot study using Trojan vaccines in patients with advanced squamous cell carcinoma of the head and neck (SCCHN). These vaccines are composed of HLA-I and HLA-II restricted melanoma antigen E (MAGE)-A3 or human papillomavirus (HPV)-16 derived peptides, joined by furin-cleavable linkers, and linked to a "penetrin" peptide sequence derived from HIV-TAT. Thirty-one patients with SCCHN were screened for the trial and 5 were enrolled. Enrolled patients were treated with 300 μg of Trojan peptide supplemented with Montanide and granulocyte-macrophage colony-stimulating factor (GM-CSF) at 4-week intervals for up to 4 injections. Following vaccination, peripheral blood mononuclear cells (PBMCs) from 4 of 5 patients recognized both the full Trojan constructs and constituent HLA-II peptides, whereas responses to HLA-I restricted peptides were less pronounced. This treatment regimen seems to have acceptable toxicity and elicits measurable systemic immune responses against HLA-II restricted epitopes in a subset of patients with advanced SCCHN. Copyright © 2012 Wiley Periodicals, Inc.

  15. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    Yin, Shu-Yi; Wang, Chien-Yu; Yang, Ning-Sun

    2011-01-01

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4 + T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  16. Processed Aloe vera Gel Ameliorates Cyclophosphamide-Induced Immunotoxicity

    Sun-A Im

    2014-10-01

    Full Text Available The effects of processed Aloe vera gel (PAG on cyclophosphamide (CP-induced immunotoxicity were examined in mice. Intraperitoneal injection of CP significantly reduced the total number of lymphocytes and erythrocytes in the blood. Oral administration of PAG quickly restored CP-induced lymphopenia and erythropenia in a dose-dependent manner. The reversal of CP-induced hematotoxicity by PAG was mediated by the functional preservation of Peyer’s patch cells. Peyer’s patch cells isolated from CP-treated mice, which were administered PAG, produced higher levels of T helper 1 cytokines and colony-stimulating factors (CSF in response to concanavalin A stimulation as compared with those isolated from CP-treated control mice. PAG-derived polysaccharides directly activated Peyer’s patch cells isolated from normal mice to produce cytokines including interleukin (IL-6, IL-12, interferon-γ, granulocyte-CSF, and granulocyte-macrophage-CSF. The cytokines produced by polysaccharide-stimulated Peyer’s patch cells had potent proliferation-inducing activity on mouse bone marrow cells. In addition, oral administration of PAG restored IgA secretion in the intestine after CP treatment. These results indicated that PAG could be an effective immunomodulator and that it could prevent CP-induced immunotoxic side effects.

  17. Induction and identification of rabbit peripheral blood derived dendritic cells

    Zhou, Jing; Yang, FuYuan; Chen, WenLi

    2012-03-01

    Purpose: To study a method of the induction of dendritic cells (DCs) from rabbit peripheral blood. Methods: Peripheral blood cells were removed from rabbit, filtered through nylon mesh. Peripheral blood mononuclear cells (PBMC) were isolated from the blood cells by Ficoll-Hypaque centrifugation (density of 1.077g/cm3).To obtain DCs, PBMC were cultured in RPMI1640 medium containing 10% fetal calf serum, 50U/mL penicillin and streptomycin, referred to subsequently as complete medium, at 37°C in 5% CO2 atmosphere for 4 hours. Nonadherent cells were aspirated, adherent cells were continued incubated in complete medium, supplemented with granulocyte/macrophage colony-stimulating factor (GM-CSF, 50ng/ml),and interleukin 4 (IL-4, 50ng/ml) for 9 days. Fluorescein labeled antibodies(anti-CD14, anti-HLA-DR, anti-CD86) were used to sign cells cultured for 3,6,9 days respectively, Then flow cytometry was performed. Results: Ratio of anti-HLA-DR and anti-CD86 labeled cells increased with induction time extension, in contrast with anti-CD14. Conclusion: Dendritic cells can be effectively induced by the method of this experiment, cell maturation status increased with induction time extension.

  18. Efficient Secretion of Recombinant Proteins from Rice Suspension-Cultured Cells Modulated by the Choice of Signal Peptide.

    Huang, Li-Fen; Tan, Chia-Chun; Yeh, Ju-Fang; Liu, Hsin-Yi; Liu, Yu-Kuo; Ho, Shin-Lon; Lu, Chung-An

    2015-01-01

    Plant-based expression systems have emerged as a competitive platform in the large-scale production of recombinant proteins. By adding a signal peptide, αAmy3sp, the desired recombinant proteins can be secreted outside transgenic rice cells, making them easy to harvest. In this work, to improve the secretion efficiency of recombinant proteins in rice expression systems, various signal peptides including αAmy3sp, CIN1sp, and 33KDsp have been fused to the N-terminus of green fluorescent protein (GFP) and introduced into rice cells to explore the efficiency of secretion of foreign proteins. 33KDsp had better efficiency than αAmy3sp and CIN1sp for the secretion of GFP from calli and suspension-cultured cells. 33KDsp was further applied for the secretion of mouse granulocyte-macrophage colony-stimulating factor (mGM-CSF) from transgenic rice suspension-cultured cells; approximately 76%-92% of total rice-derived mGM-CSF (rmGM-CSF) was detected in the culture medium. The rmGM-CSF was bioactive and could stimulate the proliferation of a murine myeloblastic leukemia cell line, NSF-60. The extracellular yield of rmGM-CSF reached 31.7 mg/L. Our study indicates that 33KDsp is better at promoting the secretion of recombinant proteins in rice suspension-cultured cell systems than the commonly used αAmy3sp.

  19. Brief report: genotype, phenotype, and clinical course in five patients with PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne).

    Demidowich, Andrew P; Freeman, Alexandra F; Kuhns, Douglas B; Aksentijevich, Ivona; Gallin, John I; Turner, Maria L; Kastner, Daniel L; Holland, Steven M

    2012-06-01

    To describe the genotypes, phenotypes, immunophenotypes, and treatments of PAPA syndrome (pyogenic sterile arthritis, pyoderma gangrenosum, and acne), a rare autoinflammatory disease, in 5 patients. Clinical information was gathered from medical records and through interviews with 5 patients from 4 kindreds. PSTPIP1 (CD2BP1) exon 10 and exon 11 sequencing was performed in each patient. Neutrophil granule content and cytokine levels were determined in plasma and stimulated peripheral blood mononuclear cells (PBMCs) from patients and controls. We identified 2 previously described PAPA syndrome-associated PSTPIP1 mutations, A230T and E250Q, and a novel change, E250K. Disease penetrance was incomplete, with variable expressivity. The cutaneous manifestations included pathergy, cystic acne, and pyoderma gangrenosum. Interleukin-1β (IL-1β) and circulating neutrophil granule enzyme levels were markedly elevated in patients compared to those in controls. PBMC stimulation studies demonstrated impaired production of IL-10 and enhanced production of granulocyte-macrophage colony-stimulating factor. Good resolution of pyoderma gangrenosum was achieved in 3 patients with tumor necrosis factor α (TNFα) blockade treatment. This analysis of 5 patients demonstrates that mutations in PSTPIP1 are incompletely penetrant and variably expressed in the PAPA syndrome. Neutrophil granule proteins are markedly elevated ex vivo and in the plasma, and elevated levels might be compatible with a diagnosis of PAPA syndrome. TNFα blockade appears to be effective in treating the cutaneous manifestations of PAPA syndrome. Copyright © 2012 by the American College of Rheumatology.

  20. Distinct pattern of lesion distribution in multiple sclerosis is associated with different circulating T-helper and helper-like innate lymphoid cell subsets.

    Gross, Catharina C; Schulte-Mecklenbeck, Andreas; Hanning, Uta; Posevitz-Fejfár, Anita; Korsukewitz, Catharina; Schwab, Nicholas; Meuth, Sven G; Wiendl, Heinz; Klotz, Luisa

    2017-06-01

    Distinct lesion topography in relapsing-remitting multiple sclerosis (RRMS) might be due to different antigen presentation and/or trafficking routes of immune cells into the central nervous system (CNS). To investigate whether distinct lesion patterns in multiple sclerosis (MS) might be associated with a predominance of distinct circulating T-helper cell subset as well as their innate counterparts. Flow cytometric analysis of lymphocytes derived from the peripheral blood of patients with exclusively cerebral (n = 20) or predominantly spinal (n = 12) disease manifestation. Patients with exclusively cerebral or preferential spinal lesion manifestation were associated with increased proportions of circulating granulocyte-macrophage colony-stimulating factor (GM-CSF) producing T H 1 cells or interleukin (IL)-17-producing T H 17 cells, respectively. In contrast, proportions of peripheral IL-17/IL-22-producing lymphoid tissue inducer (LTi), the innate counterpart of T H 17 cells, were enhanced in RRMS patients with exclusively cerebral lesion topography. Distinct T-helper and T-helper-like innate lymphoid cell (ILC) subsets are associated with different lesion topography in RRMS.

  1. Adenoviral vector-mediated GM-CSF gene transfer improves anti-mycobacterial immunity in mice - role of regulatory T cells.

    Singpiel, Alena; Kramer, Julia; Maus, Regina; Stolper, Jennifer; Bittersohl, Lara Friederike; Gauldie, Jack; Kolb, Martin; Welte, Tobias; Sparwasser, Tim; Maus, Ulrich A

    2018-03-01

    Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in differentiation, survival and activation of myeloid and non-myeloid cells with important implications for lung antibacterial immunity. Here we examined the effect of pulmonary adenoviral vector-mediated delivery of GM-CSF (AdGM-CSF) on anti-mycobacterial immunity in M. bovis BCG infected mice. Exposure of M. bovis BCG infected mice to AdGM-CSF either applied on 6h, or 6h and 7days post-infection substantially increased alveolar recruitment of iNOS and IL-12 expressing macrophages, and significantly increased accumulation of IFNγ pos T cells and particularly regulatory T cells (Tregs). This was accompanied by significantly reduced mycobacterial loads in the lungs of mice. Importantly, diphtheria toxin-induced depletion of Tregs did not influence mycobacterial loads, but accentuated immunopathology in AdGM-CSF-exposed mice infected with M. bovis BCG. Together, the data demonstrate that AdGM-CSF therapy improves lung protective immunity against M. bovis BCG infection in mice independent of co-recruited Tregs, which however critically contribute to limit lung immunopathology in BCG-infected mice. These data may be relevant to the development of immunomodulatory strategies to limit immunopathology-based lung injury in tuberculosis in humans. Copyright © 2017 Elsevier GmbH. All rights reserved.

  2. MDSCs are involved in the protumorigenic potentials of GM-CSF in colitis-associated cancer.

    Ma, Ning; Liu, Qilin; Hou, Lin; Wang, Yalin; Liu, Ziling

    2017-06-01

    Chronic inflammation is thought to be a major driving force for the development of colitis-associated colorectal cancer (CAC). As one member of proinflammatory cytokine family, granulocyte macrophage colony-stimulating factor (GM-CSF) has been identified to play a key role in CAC pathogenesis recently. The underlying mechanisms, however, remain largely unknown. In this study, we found that myeloid-derived suppressor cells (MDSCs) accumulated increasingly in the lesions during the progression from colitis to cancer, which was critical for CAC formation. Importantly, this MDSC accumulation was controlled by GM-CSF. MDSC number decreased significantly in GM-CSF-deficient mice suffering from CAC induction, and transfusion of MDSCs from wild-type CAC-bearing mice into GM-CSF-deficient counterparts led to recurrence of CAC. Furthermore, the supernatants of CAC lesions or GM-CSF alone was sufficient to differentiate hematopoietic precursors into MDSCs. Addition of neutralizing anti-GM-CSF antibody impaired the MDSC-differentiating effects of the supernatants of CAC lesions. Overall, these findings shed new insights into the mechanisms of GM-CSF underlying CAC development, by inducing/recruiting CAC-promoting MDSCs. Blocking GM-CSF activity or MDSC function may represent new therapeutic strategies for CAC in clinic.

  3. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy

    Bhattacharya, Palash; Budnick, Isadore; Singh, Medha; Thiruppathi, Muthusamy; Alharshawi, Khaled; Elshabrawy, Hatem; Holterman, Mark J.

    2015-01-01

    Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them “tolerogenic,” which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility. PMID:25803788

  4. GM-CSF: An Immune Modulatory Cytokine that can Suppress Autoimmunity

    Bhattacharya, Palash; Thiruppathi, Muthusamy; Elshabrawy, Hatem A.; Alharshawi, Khaled; Kumar, Prabhakaran; Prabhakar, Bellur S.

    2015-01-01

    GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases like Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance. PMID:26113402

  5. Targeting the GM-CSF receptor for the treatment of CNS autoimmunity.

    Ifergan, Igal; Davidson, Todd S; Kebir, Hania; Xu, Dan; Palacios-Macapagal, Daphne; Cann, Jennifer; Rodgers, Jane M; Hunter, Zoe N; Pittet, Camille L; Beddow, Sara; Jones, Clare A; Prat, Alexandre; Sleeman, Matthew A; Miller, Stephen D

    2017-11-01

    In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα + myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. ZO-1 expression is suppressed by GM-CSF via miR-96/ERG in brain microvascular endothelial cells.

    Zhang, Hu; Zhang, Shuhong; Zhang, Jilin; Liu, Dongxin; Wei, Jiayi; Fang, Wengang; Zhao, Weidong; Chen, Yuhua; Shang, Deshu

    2018-05-01

    The level of granulocyte-macrophage colony-stimulating factor (GM-CSF) increases in some disorders such as vascular dementia, Alzheimer's disease, and multiple sclerosis. We previously reported that in Alzheimer's disease patients, a high level of GM-CSF in the brain parenchyma downregulated expression of ZO-1, a blood-brain barrier tight junction protein, and facilitated the infiltration of peripheral monocytes across the blood-brain barrier. However, the molecular mechanism underlying regulation of ZO-1 expression by GM-CSF is unclear. Herein, we found that the erythroblast transformation-specific (ETS) transcription factor ERG cooperated with the proto-oncogene protein c-MYC in regulation of ZO-1 transcription in brain microvascular endothelial cells (BMECs). The ERG expression was suppressed by miR-96 which was increased by GM-CSF through the phosphoinositide-3 kinase (PI3K)/Akt pathway. Inhibition of miR-96 prevented ZO-1 down-regulation induced by GM-CSF both in vitro and in vivo. Our results revealed the mechanism of ZO-1 expression reduced by GM-CSF, and provided a potential target, miR-96, which could block ZO-1 down-regulation caused by GM-CSF in BMECs.

  7. Cholesterol Accumulation in Dendritic Cells Links the Inflammasome to Acquired Immunity.

    Westerterp, Marit; Gautier, Emmanuel L; Ganda, Anjali; Molusky, Matthew M; Wang, Wei; Fotakis, Panagiotis; Wang, Nan; Randolph, Gwendalyn J; D'Agati, Vivette D; Yvan-Charvet, Laurent; Tall, Alan R

    2017-06-06

    Autoimmune diseases such as systemic lupus erythematosus (SLE) are associated with increased cardiovascular disease and reduced plasma high-density lipoprotein (HDL) levels. HDL mediates cholesterol efflux from immune cells via the ATP binding cassette transporters A1 and G1 (ABCA1/G1). The significance of impaired cholesterol efflux pathways in autoimmunity is unknown. We observed that Abca1/g1-deficient mice develop enlarged lymph nodes (LNs) and glomerulonephritis suggestive of SLE. This lupus-like phenotype was recapitulated in mice with knockouts of Abca1/g1 in dendritic cells (DCs), but not in macrophages or T cells. DC-Abca1/g1 deficiency increased LN and splenic CD11b + DCs, which displayed cholesterol accumulation and inflammasome activation, increased cell surface levels of the granulocyte macrophage-colony stimulating factor receptor, and enhanced inflammatory cytokine secretion. Consequently, DC-Abca1/g1 deficiency enhanced T cell activation and T h 1 and T h 17 cell polarization. Nlrp3 inflammasome deficiency diminished the enlarged LNs and enhanced T h 1 cell polarization. These findings identify an essential role of DC cholesterol efflux pathways in maintaining immune tolerance. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Summary of bi-shRNA/GM-CSF augmented autologous tumor cell immunotherapy (FANG™) in advanced cancer of the liver.

    Nemunaitis, John; Barve, Minal; Orr, Douglas; Kuhn, Joseph; Magee, Mitchell; Lamont, Jeffrey; Bedell, Cynthia; Wallraven, Gladice; Pappen, Beena O; Roth, Alyssa; Horvath, Staci; Nemunaitis, Derek; Kumar, Padmasini; Maples, Phillip B; Senzer, Neil

    2014-01-01

    Therapies for advanced hepatocellular carcinoma (HCC) are limited. We carried out a phase I trial of a novel autologous whole-cell tumor cell immunotherapy (FANG™), which incorporates a dual granulocyte macrophage colony-stimulating factor (GM-CSF) expressive/bifunctional small hairpin RNA interference (bi-shRNAi) vector. The bi-shRNAi DNA targets furin, which is a proconvertase of transforming growth factors beta (TGFβ) 1 and 2. Safety, mechanism, immunoeffectiveness, and suggested benefit were previously shown [Senzer et al.: Mol Ther 2012;20:679-689; Senzer et al.: J Vaccines Vaccin 2013;4:209]. We now provide further follow-up of a subset of 8 HCC patients. FANG manufacturing was successful in 7 of 8 attempts (one failure due to insufficient cell yield). Median GM-CSF expression was 144 pg/10(6) cells, TGFβ1 knockdown was 100%, and TGFβ2 knockdown was 93% of the vector-transported cells. Five patients were vaccinated (1 or 2.5×10(7) cells/intradermal injection, 6-11 vaccinations). No FANG toxicity was observed. Three of these patients demonstrated evidence of an immune response to the autologous tumor cell sample. Long-term follow-up demonstrated survival of 319, 729, 784, 931+, and 1,043+ days of the FANG-treated patients. In conclusion, evidence supports further assessment of the FANG immunotherapy in HCC. © 2014 S. Karger AG, Basel.

  9. Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH)

    Lai, Kuo-Pao; Huang, Chiung-Kuei; Fang, Lei-Ya; Izumi, Kouji; Lo, Chi-Wen; Wood, Ronald; Kindblom, Jon; Yeh, Shuyuan

    2013-01-01

    Stromal-epithelial interaction plays a pivotal role to mediate the normal prostate growth, the pathogenesis of benign prostatic hyperplasia (BPH), and prostate cancer development. Until now, the stromal androgen receptor (AR) functions in the BPH development, and the underlying mechanisms remain largely unknown. Here we used a genetic knockout approach to ablate stromal fibromuscular (fibroblasts and smooth muscle cells) AR in a probasin promoter-driven prolactin transgenic mouse model (Pb-PRL tg mice) that could spontaneously develop prostate hyperplasia to partially mimic human BPH development. We found Pb-PRL tg mice lacking stromal fibromuscular AR developed smaller prostates, with more marked changes in the dorsolateral prostate lobes with less proliferation index. Mechanistically, prolactin mediated hyperplastic prostate growth involved epithelial-stromal interaction through epithelial prolactin/prolactin receptor signals to regulate granulocyte macrophage-colony stimulating factor expression to facilitate stromal cell growth via sustaining signal transducer and activator of transcription-3 activity. Importantly, the stromal fibromuscular AR could modulate such epithelial-stromal interacting signals. Targeting stromal fibromuscular AR with the AR degradation enhancer, ASC-J9®, led to the reduction of prostate size, which could be used in future therapy. PMID:23893956

  10. Regulation of Spontaneous Eosinophil Apoptosis—A Neglected Area of Importance

    Pinja Ilmarinen

    2014-01-01

    Full Text Available Asthma is characterized by the accumulation of eosinophils in the airways in most phenotypes. Eosinophils are inflammatory cells that require an external survival-prolonging stimulus such as granulocyte macrophage-colony-stimulating factor (GM-CSF, interleukin (IL-5, or IL-3 for survival. In their absence, eosinophils are programmed to die by spontaneous apoptosis in a few days. Eosinophil apoptosis can be accelerated by Fas ligation or by pharmacological agents such as glucocorticoids. Evidence exists for the relevance of these survival-prolonging and pro-apoptotic agents in the regulation of eosinophilic inflammation in inflamed airways. Much less is known about the physiological significance and mechanisms of spontaneous eosinophil apoptosis even though it forms the basis of regulation of eosinophil longevity by pathophysiological factors and pharmacological agents. This review concentrates on discussing the mechanisms of spontaneous eosinophil apoptosis compared to those of glucocorticoid- and Fas-induced apoptosis. We aim to answer the question whether the external apoptotic stimuli only augment the ongoing pathway of spontaneous apoptosis or truly activate a specific pathway.

  11. Anti-Inflammatory Effect of Myristicin on RAW 264.7 Macrophages Stimulated with Polyinosinic-Polycytidylic Acid

    Wansu Park

    2011-08-01

    Full Text Available Myristicin (1-allyl-5-methoxy-3,4-methylenedioxybenzene is an active aromatic compound found in nutmeg (the seed of Myristica fragrans, carrot, basil, cinnamon, and parsley. Myristicin has been known to have anti-cholinergic, antibacterial, and hepatoprotective effects, however, the effects of myristicin on virus-stimulated macrophages are not fully reported. In this study, the anti-inflammatory effect of myristicin on double-stranded RNA (dsRNA-stimulated macrophages was examined. Myristicin did not reduce the cell viability of RAW 264.7 mouse macrophages at concentrations of up to 50 µM. Myristicin significantly inhibited the production of calcium, nitric oxide (NO, interleukin (IL-6, IL-10, interferon inducible protein-10, monocyte chemotactic protein (MCP-1, MCP-3, granulocyte-macrophage colony-stimulating factor, macrophage inflammatory protein (MIP-1α, MIP-1β, and leukemia inhibitory factor in dsRNA [polyinosinic-polycytidylic acid]-induced RAW 264.7 cells (P < 0.05. In conclusion, myristicin has anti-inflammatory properties related with its inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-stimulated macrophages via the calcium pathway.

  12. Molecular Genetic Analysis of Orf Virus: A Poxvirus That Has Adapted to Skin

    Fleming, Stephen B.; Wise, Lyn M.; Mercer, Andrew A.

    2015-01-01

    Orf virus is the type species of the Parapoxvirus genus of the family Poxviridae. It induces acute pustular skin lesions in sheep and goats and is transmissible to humans. The genome is G+C rich, 138 kbp and encodes 132 genes. It shares many essential genes with vaccinia virus that are required for survival but encodes a number of unique factors that allow it to replicate in the highly specific immune environment of skin. Phylogenetic analysis suggests that both viral interleukin-10 and vascular endothelial growth factor genes have been “captured” from their host during the evolution of the parapoxviruses. Genes such as a chemokine binding protein and a protein that binds granulocyte-macrophage colony-stimulating factor and interleukin-2 appear to have evolved from a common poxvirus ancestral gene while three parapoxvirus nuclear factor (NF)-κB signalling pathway inhibitors have no homology to other known NF-κB inhibitors. A homologue of an anaphase-promoting complex subunit that is believed to manipulate the cell cycle and enhance viral DNA synthesis appears to be a specific adaptation for viral-replication in keratinocytes. The review focuses on the unique genes of orf virus, discusses their evolutionary origins and their role in allowing viral-replication in the skin epidermis. PMID:25807056

  13. Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors.

    Miller, Paul H; Cheung, Alice M S; Beer, Philip A; Knapp, David J H F; Dhillon, Kiran; Rabu, Gabrielle; Rostamirad, Shabnam; Humphries, R Keith; Eaves, Connie J

    2013-01-31

    Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.

  14. In vitro and in vivo effects of macrophage-stimulatory polysaccharide from leaves of Perilla frutescens var. crispa.

    Kwon, Ki Han; Kim, Kyung Im; Jun, Woo Jin; Shin, Dong Hoon; Cho, Hong Yon; Hong, Bum Shik

    2002-03-01

    The crude polysaccharide (PFB-1) was isolated from the leaves of Perilla frutescens var. crispa by the sequential procedures with hot-water extraction, methanol reflux, and ethanol precipitation. It was further purified by anion column chromatography in order to obtain the partially purified polysaccharide (PFB-1-0). In the presence of PFB-1-0, strong cellular lysosomal enzyme activity of murine peritoneal macrophages was observed in vitro. Compared to bacterial lipopolysaccharide (LPS), its activity was relatively high. The in vitro phagocytic activity was enhanced by PFB-1-0 as the similar pattern in both gram-negative bacteria, E. coli, and gram-positive bacteria, S. aureus with a time-dependent manner. We also investigated the production of several mediators by murine peritoneal macrophages upon stimulation with PFB-1 (in vivo) or PFB-1-0 (in vitro). The levels of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha were increased in the presence of PFB-1-0 in vitro. The PFB-1 stimulated the production of interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vivo. Results suggest that the polysaccharide from P. frutescens var. crispa represents an immunopotentiator and biological response modifiers in vitro and in vivo levels.

  15. Improved survival and marrow engraftment of mice transplanted with bone marrov of GM-CSF-treated donors

    Ballin, A.; Sagi, O.; Schiby, G.; Meytes, D.

    1993-01-01

    Recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF) administered to bone marrow (BM) transplant recipients is associated with earlier recovery. We have investigated the possibility of stimulating normal donor mice in vivo with GM-CSF. Donor balb/c mice were injected i.p. with GM-CSF (5000 u) or saline. Seventy-two hours later 5 x 105 BM cells from either GM-CSF-treated or control donors were infused into lethally irradiated (850 R) recipients. In the recipients of BM from GM-CSF-treated donors, significantly higher CFU-S and significantly higher survival rate (57% [n = 65]; vs. 30% [n = 63]; p < 0.05) were noted. Donor mice of the GM-CSF group did not differ in bone-marrow cellularity and composition from their controls. However, recipients of BM from GM-CSF-treated mice had higher blood counts of haemoglobin, Leukocytes and platelets compared to controls. These data demonstrate that pretreatment of BM donors with GM-CSF may be of benefit in improving survival and marrow engraftment in mice. (au) (13 refs.)

  16. The impairment of MAGMAS function in human is responsible for a severe skeletal dysplasia.

    Cybel Mehawej

    2014-05-01

    Full Text Available Impairment of the tightly regulated ossification process leads to a wide range of skeletal dysplasias and deciphering their molecular bases has contributed to the understanding of this complex process. Here, we report a homozygous mutation in the mitochondria-associated granulocyte macrophage colony stimulating factor-signaling gene (MAGMAS in a novel and severe spondylodysplastic dysplasia. MAGMAS, also referred to as PAM16 (presequence translocase-associated motor 16, is a mitochondria-associated protein involved in preprotein translocation into the matrix. We show that MAGMAS is specifically expressed in trabecular bone and cartilage at early developmental stages and that the mutation leads to an instability of the protein. We further demonstrate that the mutation described here confers to yeast strains a temperature-sensitive phenotype, impairs the import of mitochondrial matrix pre-proteins and induces cell death. The finding of deleterious MAGMAS mutations in an early lethal skeletal dysplasia supports a key role for this mitochondrial protein in the ossification process.

  17. Hypoxia upregulates neutrophil degranulation and potential for tissue injury

    Hoenderdos, Kim; Lodge, Katharine M; Hirst, Robert A; Chen, Cheng; Palazzo, Stefano G C; Emerenciana, Annette; Summers, Charlotte; Angyal, Adri; Porter, Linsey; Juss, Jatinder K; O'Callaghan, Christopher; Chilvers, Edwin R

    2016-01-01

    Background The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. Methods and results Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. Conclusion Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion. PMID:27581620

  18. High-intensity interval training induces a modest systemic inflammatory response in active, young men

    Zwetsloot, Kevin A; John, Casey S; Lawrence, Marcus M; Battista, Rebecca A; Shanely, R Andrew

    2014-01-01

    The purpose of this study was to determine: 1) the extent to which an acute session of high-intensity interval training (HIIT) increases systemic inflammatory cytokines and chemokines, and 2) whether 2 weeks of HIIT training alters the inflammatory response. Eight recreationally active males (aged 22±2 years) performed 2 weeks of HIIT on a cycle ergometer (six HIIT sessions at 8–12 intervals; 60-second intervals, 75-second active rest) at a power output equivalent to 100% of their predetermined peak oxygen uptake (VO2max). Serum samples were collected during the first and sixth HIIT sessions at rest and immediately, 15, 30, and 45 minutes post-exercise. An acute session of HIIT induced significant increases in interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor-α, and monocyte chemotactic protein-1 compared with rest. The concentrations of interferon-γ, granulocyte macrophage-colony-stimulating factor, and IL-1β were unaltered with an acute session of HIIT Two weeks of training did not alter the inflammatory response to an acute bout of HIIT exercise. Maximal power achieved during a VO2max test significantly increased 4.6%, despite no improvements in VO2max after 2 weeks of HIIT. These data suggest that HIIT exercise induces a small inflammatory response in young, recreationally active men; however, 2 weeks of HIIT does not alter this response. PMID:24520199

  19. The protective effect of Royal Jelly against the hemopoiesis dysfunction in X-irradiated mice

    Emori, Yutaka; Oka, Hideki; Ohya, Osamu; Tamaki, Hajime; Hayashi, Yoshiro [Zeria Pharmaceutical Co., Ltd., Konan, Saitama (Japan). Central Research Laboratories; Nomoto, Kikuo

    1998-02-01

    The protective effect of Royal Jelly (RJ) against the hemopoietic dysfunction in whole body X-irradiated C57BL/6 mice was investigated. When RJ (1.0 g/kg, po or 0.5 g/kg, ip) was administered every day beginning two weeks before X-irradiation (10 Gy), a significant increase in the number of leukocytes and erythrocytes was observed in mice treated with RJ, as compared with X-irradiated control. In addition, the number of colony forming units in culture (CFU-C) of bone marrow cells or splenocytes was significantly increased in mice treated with RJ. Therefore, when granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-3 (IL-3) in peripheral blood was measured by ELISA kit, a significant increase in the amount of GM-CSF and IL-3 was observed. These results suggest that the protective effect of RJ against hemopoietic dysfunction could be expressed through an increase in the number of hemopoietic stem cells by the induction of hemopoietic factor such as GM-CSF and IL-3. (author)

  20. Hematopoietic cytokines as therapeutic players in early stages Parkinson’s disease

    Kyle eFarmer

    2015-07-01

    Full Text Available Parkinson's disease (PD is a devastating age related neurodegenerative disease that is believed to have a lengthy prodromal state. It is critical to find methods of interfering with the progression of this early degenerative stage by inducing compensatory recovery processes to slow or prevent the eventual clinical symptoms. The current perspective article argues that immune system signalling molecules represent such a promising therapeutic approach. Two cytokines of interest are granulocyte macrophage-colony stimulating factor (GM-CSF and erythropoietin (EPO. These hematopoietic cytokines have been protective in models of stroke, neuronal injury, and more recently PD. It is our belief that these trophic cytokines can be used not only for cell protection but also regeneration. However, success is likely dependent on early intervention. This paper will outline our perspective on the development of novel trophic recovery treatments for PD. In particular, we present new data from our lab suggesting that EPO and GM-CSF can foster neural re-innervation in a mild or partial lesion PD model that could be envisioned as reflecting the early stages of the disease.

  1. Cytokine expression in human osteoblasts after antiseptic treatment: a comparative study between polyhexanide and chlorhexidine.

    Röhner, Eric; Hoff, Paula; Gaber, Timo; Lang, Annemarie; Vörös, Pauline; Buttgereit, Frank; Perka, Carsten; Windisch, Christoph; Matziolis, Georg

    2015-02-01

    Chlorhexidine and polyhexanide are frequently used antiseptics in clinical practice and have a broad antimicrobial range. Both antiseptics are helpful medical agents for septic wound treatment with a high potential for defeating joint infections. Their effect on human osteoblasts has, so far, not been sufficiently evaluated. The aim of this study was to investigate the activating potential of polyhexanide and chlorhexidine on inflammatory cytokines/chemokines in human osteoblasts in vitro. Human osteoblasts were isolated and cultivated in vitro and then treated separately with 0.1% and 2% chlorhexidine and 0.04% polyhexanide as commonly applied concentrations in clinical practice. Detection of cell structure and cell morphology was performed by light microscopic inspection. Cytokine and chemokine secretion was determined by using a multiplex suspension array. Cell shrinking, defective cell membrane, and the loss of cell adhesion indicated cell damage of human osteoblasts after treatment with both antiseptics was evaluated by using light microscopy. Polyhexanide, but not chlorhexidine, caused human osteoblasts to secrete various interleukins (1β, 6, and 7), interferon γ, tumor necrosis factor α, vascular endothelial growth factor, eotaxin, fibroblast growth factor basic, and granulocyte macrophage colony-stimulating factor as quantified by multiplex suspension array. Both antiseptics induced morphological cell damage at an optimum exposure between 1 and 10 min. But only polyhexanide mediated a pronounced secretion of inflammatory cytokines and chemokines in human osteoblasts. Therefore, we recommend a preferred usage of chlorhexidine in septic surgery to avoid the induction of an inflammatory reaction.

  2. Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?

    Simona F Spampinato

    Full Text Available The ability of the Blood Brain Barrier (BBB to maintain proper barrier functions, keeping an optimal environment for central nervous system (CNS activity and regulating leukocytes' access, can be affected in CNS diseases. Endothelial cells and astrocytes are the principal BBB cellular constituents and their interaction is essential to maintain its function. Both endothelial cells and astrocytes express the receptors for the bioactive sphingolipid S1P. Fingolimod, an immune modulatory drug whose structure is similar to S1P, has been approved for treatment in multiple sclerosis (MS: fingolimod reduces the rate of MS relapses by preventing leukocyte egress from the lymph nodes. Here, we examined the ability of S1P and fingolimod to act on the BBB, using an in vitro co-culture model that allowed us to investigate the effects of S1P on endothelial cells, astrocytes, and interactions between the two. Acting selectively on endothelial cells, S1P receptor signaling reduced cell death induced by inflammatory cytokines. When acting on astrocytes, fingolimod treatment induced the release of a factor, granulocyte macrophage colony-stimulating factor (GM-CSF that reduced the effects of cytokines on endothelium. In an in vitro BBB model incorporating shear stress, S1P receptor modulation reduced leukocyte migration across the endothelial barrier, indicating a novel mechanism that might contribute to fingolimod efficacy in MS treatment.

  3. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  4. Combined Treatment Effects of Radiation and Immunotherapy: Studies in an Autochthonous Prostate Cancer Model

    Wada, Satoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Harris, Timothy J.; Tryggestad, Erik [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yoshimura, Kiyoshi [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Zeng, Jing [Department of Radiation Oncology and Molecular Radiation Sciences, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Yen, Hung-Rong; Getnet, Derese; Grosso, Joseph F.; Bruno, Tullia C. [Department of Oncology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); De Marzo, Angelo M. [Department of Pathology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland (United States); and others

    2013-11-15

    Purpose: To optimize the combination of ionizing radiation and cellular immunotherapy using a preclinical autochthonous model of prostate cancer. Methods and Materials: Transgenic mice expressing a model antigen under a prostate-specific promoter were treated using a platform that integrates cone-beam CT imaging with 3-dimensional conformal therapy. Using this technology we investigated the immunologic and therapeutic effects of combining ionizing radiation with granulocyte/macrophage colony-stimulating factor-secreting cellular immunotherapy for prostate cancer in mice bearing autochthonous prostate tumors. Results: The combination of ionizing radiation and immunotherapy resulted in a significant decrease in pathologic tumor grade and gross tumor bulk that was not evident with either single-modality therapy. Furthermore, combinatorial therapy resulted in improved overall survival in a preventive metastasis model and in the setting of established micrometastases. Mechanistically, combined therapy resulted in an increase of the ratio of effector-to-regulatory T cells for both CD4 and CD8 tumor-infiltrating lymphocytes. Conclusions: Our preclinical model establishes a potential role for the use of combined radiation-immunotherapy in locally advanced prostate cancer, which warrants further exploration in a clinical setting.

  5. Interleukin-4 enhances trafficking and functional activities of GM-CSF-stimulated mouse myeloid-derived dendritic cells at late differentiation stage

    Yin, Shu-Yi, E-mail: in_shuyi@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China); Wang, Chien-Yu, E-mail: sallywang1973@hotmail.com [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Yang, Ning-Sun, E-mail: nsyang@gate.sinica.edu.tw [Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan, ROC (China); Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan, ROC (China); Taiwan International Graduate Program (TIGP), Molecular and Biological Agricultural Sciences Program, Academia Sinica, Taipei, Taiwan, ROC (China)

    2011-09-10

    Mouse bone marrow-derived dendritic cells (BMDCs) are being employed as an important model for translational research into the development of DC-based therapeutics. For such use, the localization and specialized mobility of injected BMDCs within specific immune tissues are known to define their immunity and usefulness in vivo. In this study, we demonstrate that IL-4, a key driving factor for in vitro propagation and differentiation of BMDCs, when added during a late culture stage can enhance the in vivo trafficking activity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced BMDCs. It suggests that the temporal control of IL-4 stimulation during the in vitro generation of DCs drastically affects the DC trafficking efficiency in vivo. With this modification of IL-4 stimulation, we also show that much less cytokine was needed to generate BMDCs with high purity and yield that secrete a high level of cytokines and possess a good capacity to induce proliferation of allogeneic CD4{sup +}T cells, as compared to the conventional method that uses a continuous supplement of GM-CSF and IL-4 throughout cultivation. These results provide us with an important know-how for differentiation of BMDCs from myeloid stem cells, and for use of other immune cells in related medical or stem cell applications.

  6. Identification of specific gene expression profiles in fibroblasts derived from middle ear cholesteatoma.

    Yoshikawa, Mamoru; Kojima, Hiromi; Wada, Kota; Tsukidate, Toshiharu; Okada, Naoko; Saito, Hirohisa; Moriyama, Hiroshi

    2006-07-01

    To investigate the role of fibroblasts in the pathogenesis of cholesteatoma. Tissue specimens were obtained from our patients. Middle ear cholesteatoma-derived fibroblasts (MECFs) and postauricular skin-derived fibroblasts (SFs) as controls were then cultured for a few weeks. These fibroblasts were stimulated with interleukin (IL) 1alpha and/or IL-1beta before gene expression assays. We used the human genome U133A probe array (GeneChip) and real-time polymerase chain reaction to examine and compare the gene expression profiles of the MECFs and SFs. Six patients who had undergone tympanoplasty. The IL-1alpha-regulated genes were classified into 4 distinct clusters on the basis of profiles differentially regulated by SF and MECF using a hierarchical clustering analysis. The messenger RNA expressions of LARC (liver and activation-regulated chemokine), GMCSF (granulocyte-macrophage colony-stimulating factor), epiregulin, ICAM1 (intercellular adhesion molecule 1), and TGFA (transforming growth factor alpha) were more strongly up-regulated by IL-1alpha and/or IL-1beta in MECF than in SF, suggesting that these fibroblasts derived from different tissues retained their typical gene expression profiles. Fibroblasts may play a role in hyperkeratosis of middle ear cholesteatoma by releasing molecules involved in inflammation and epidermal growth. These fibroblasts may retain tissue-specific characteristics presumably controlled by epigenetic mechanisms.

  7. In vivo changes of hemopoietic progenitors and the expression of the interleukin 5 gene in eosinophilic mice infected with Toxocara canis.

    Yamaguchi, Y; Matsui, T; Kasahara, T; Etoh, S; Tominaga, A; Takatsu, K; Miura, Y; Suda, T

    1990-12-01

    It has been demonstrated that purified recombinant interleukin 5 (rIL-5) supports the terminal differentiation and proliferation of eosinophilic precursors in vitro and plays an important role in increasing the functional activities of eosinophils. In this study, we examined the hemopoietic changes and analyzed murine (m) IL-5 mRNA expression in eosinophilic mice infected with the helminth Toxocara canis. In eosinophilic mice, eosinophils increased in number in both bone marrow and spleen. However, the number of eosinophilic precursors increased markedly in spleen cells of eosinophilic mice but remained relatively constant in the bone marrow. In the presence of granulocyte colony-stimulating factor (G-CSF), the number of granulocytic precursors increased in the spleen cells of eosinophilic mice. From these findings, the condition of eosinophilopoiesis in eosinophilic mice is accompanied by an increase in granulocyte-macrophage progenitors as well as eosinophil progenitors. Using Northern blot analysis, a weak but definite band corresponding to mIL-5 mRNA was detected in spleen cells of mice 4 and 5 days after helminthic infection. In addition, these data were confirmed by in vitro polymerase chain reaction (PCR) amplification of mRNA obtained from these spleen cells. Finally, injections of a monoclonal antibody against mIL-5 completely suppressed the blood eosinophilia in mice infected with T. canis. In conclusion, IL-5 is suggested to play a major role in eosinophilopoiesis in vivo.

  8. The production of lymphokines by primary alloreactive T-cell clones: a co-ordinate analysis of 233 clones in seven lymphokine assays.

    Sanderson, C J; Strath, M; Warren, D J; O'Garra, A; Kirkwood, T B

    1985-01-01

    A total of 233 primary alloreactive T-cell clones have been tested for the production of interleukin-2 (IL-2), interleukin-3 (IL-3), immune(gamma) interferon (IFN) and granulocyte-macrophage colony-stimulating factor (CSF-2), B-cell growth factor I and II (BCGFI, BCGFII), and eosinophil differentiation factor (EDF). EDF was assayed by means of the eosinophil differentiation assay (EDA). Two principal correlations were observed: IL-3 was shown to be the major lymphokine detected in the bone marrow proliferation assay (BMPA) used to detect CSF-2, and there was a high correlation between the EDA and BCGFII. Subsequent work has suggested that this latter correlation is because a single factor is responsible for both activities. Apart from these two exceptions, and low level correlations probably due to the fact that different assays detect more than one lymphokine, there was no evidence for co-ordinate expression of lymphokines. There was a large variation in amounts of individual lymphokines produced. More clones produced multiple lymphokines than would be expected from independent control. Taken together, this pattern of regulation is consistent with the hypothesis that antigen stimulation of T cells results in the activation of all the lymphokine genes, but the amount of each produced is determined by secondary controlling mechanisms. PMID:3935571

  9. Dual Mechanism of Interleukin-3 Receptor Blockade by an Anti-Cancer Antibody

    Sophie E. Broughton

    2014-07-01

    Full Text Available Interleukin-3 (IL-3 is an activated T cell product that bridges innate and adaptive immunity and contributes to several immunopathologies. Here, we report the crystal structure of the IL-3 receptor α chain (IL3Rα in complex with the anti-leukemia antibody CSL362 that reveals the N-terminal domain (NTD, a domain also present in the granulocyte-macrophage colony-stimulating factor (GM-CSF, IL-5, and IL-13 receptors, adopting unique “open” and classical “closed” conformations. Although extensive mutational analyses of the NTD epitope of CSL362 show minor overlap with the IL-3 binding site, CSL362 only inhibits IL-3 binding to the closed conformation, indicating alternative mechanisms for blocking IL-3 signaling. Significantly, whereas “open-like” IL3Rα mutants can simultaneously bind IL-3 and CSL362, CSL362 still prevents the assembly of a higher-order IL-3 receptor-signaling complex. The discovery of open forms of cytokine receptors provides the framework for development of potent antibodies that can achieve a “double hit” cytokine receptor blockade.

  10. Alveolar proteinosis associated with aluminium dust inhalation.

    Chew, R; Nigam, S; Sivakumaran, P

    2016-08-01

    Secondary alveolar proteinosis is a rare lung disease which may be triggered by a variety of inhaled particles. The diagnosis is made by detection of anti-granulocyte-macrophage colony-stimulating factor antibodies in bronchoalveolar lavage fluid, which appears milky white and contains lamellar bodies. Aluminium has been suggested as a possible cause, but there is little evidence in the literature to support this assertion. We report the case of a 46-year-old former boilermaker and boat builder who developed secondary alveolar proteinosis following sustained heavy aluminium exposure. The presence of aluminium was confirmed both by histological examination and metallurgical analysis of a mediastinal lymph node. Despite cessation of exposure to aluminium and treatment with whole-lung lavage which normally results in improvements in both symptoms and lung function, the outcome was poor and novel therapies are now being used for this patient. It may be that the natural history in aluminium-related alveolar proteinosis is different, with the metal playing a mediating role in the disease process. Our case further supports the link between aluminium and secondary alveolar proteinosis and highlights the need for measures to prevent excessive aluminium inhalation in relevant industries. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Soluble HLA-G Molecules Are Increased during Acute Leukemia, Especially in Subtypes Affecting Monocytic and Lymphoid Lineages'

    Frédéric Gros

    2006-03-01

    Full Text Available Human leukocyte antigen G (HLA-G molecules corresponding to nonclassic class I genes of the major histocompatibility complex exhibit immunomodulatory properties. They are either membrane-bound or solubly expressed during certain tumoral malignancies. Soluble human leukocyte antigen G (sHLA-G molecules seem more frequently expressed than membranebound isoforms during hematologic malignancies, such as lymphoproliferative disorders. Assay of these molecules by enzyme-linked immunosorbent assay in patients suffering from another hematologic disorder (acute leukemia highlights increased sHLA-G secretion. This increased secretion seems more marked in acute leukemia subtypes affecting monocytic and lymphoid lineages such as FABM4 and FABM5, as well as both B and T acute lymphoblastic leukemia (ALL. Moreover, this study uses in vitro cytokine stimulations and reveals the respective potential roles of granulocyte-macrophage colony-stimulating factor and interferon-γ in increasing this secretion in FABM4 and ALL. Correlations between sHLA-G plasma level and clinical biologic features suggest a link between elevated sHLA-G level and 1 the absence of anterior myelodysplasia and 2 high-level leukocytosis. All these findings suggest that sHLA-G molecules could be a factor in tumoral escape from immune survey during acute leukemia.

  12. Successful topical respiratory tract immunization of primates against Ebola virus.

    Bukreyev, Alexander; Rollin, Pierre E; Tate, Mallory K; Yang, Lijuan; Zaki, Sherif R; Shieh, Wun-Ju; Murphy, Brian R; Collins, Peter L; Sanchez, Anthony

    2007-06-01

    Ebola virus causes outbreaks of severe viral hemorrhagic fever with high mortality in humans. The virus is highly contagious and can be transmitted by contact and by the aerosol route. These features make Ebola virus a potential weapon for bioterrorism and biological warfare. Therefore, a vaccine that induces both systemic and local immune responses in the respiratory tract would be highly beneficial. We evaluated a common pediatric respiratory pathogen, human parainfluenza virus type 3 (HPIV3), as a vaccine vector against Ebola virus. HPIV3 recombinants expressing the Ebola virus (Zaire species) surface glycoprotein (GP) alone or in combination with the nucleocapsid protein NP or with the cytokine adjuvant granulocyte-macrophage colony-stimulating factor were administered by the respiratory route to rhesus monkeys--in which HPIV3 infection is mild and asymptomatic--and were evaluated for immunogenicity and protective efficacy against a highly lethal intraperitoneal challenge with Ebola virus. A single immunization with any construct expressing GP was moderately immunogenic against Ebola virus and protected 88% of the animals against severe hemorrhagic fever and death caused by Ebola virus. Two doses were highly immunogenic, and all of the animals survived challenge and were free of signs of disease and of detectable Ebola virus challenge virus. These data illustrate the feasibility of immunization via the respiratory tract against the hemorrhagic fever caused by Ebola virus. To our knowledge, this is the first study in which topical immunization through respiratory tract achieved prevention of a viral hemorrhagic fever infection in a primate model.

  13. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  14. Clinical Application of Growth Factors and Cytokines in Wound Healing

    Barrientos, Stephan; Brem, Harold; Stojadinovic, Olivera; Tomic-Canic, Marjana

    2016-01-01

    Wound healing is a complex and dynamic biological process that involves the coordinated efforts of multiple cell types and is executed and regulated by numerous growth factors and cytokines. There has been a drive in the past two decades to study the therapeutic effects of various growth factors in the clinical management of non-healing wounds (e.g. pressure ulcers, chronic venous ulcers, diabetic foot ulcers). For this review, we conducted a nonline search of Medline and Pub Medical and critically analyzed the literature regarding the role of growth factors and cytokines in the management of these wounds. We focused on currently approved therapies, emerging therapies and future research possibilities. In this review we discuss four growth factors and cytokines currently being used on and off label for the healing of wounds. These include: granulocyte-macrophage colony stimulating factor (GM-CSF), platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF). While the clinical results of using growth factors and cytokines are encouraging, many studies involved a small sample size and are disparate in measured endpoints. Therefore, further research is required to provide definitive evidence of efficacy. PMID:24942811

  15. Zoledronic acid enhances antitumor efficacy of liposomal doxorubicin.

    Hattori, Yoshiyuki; Shibuya, Kazuhiko; Kojima, Kaori; Miatmoko, Andang; Kawano, Kumi; Ozaki, Kei-Ichi; Yonemochi, Etsuo

    2015-07-01

    Previously, we found that the injection of zoledronic acid (ZOL) into mice bearing tumor induced changes of the vascular structure in the tumor. In this study, we examined whether ZOL treatment could decrease interstitial fluid pressure (IFP) via change of tumor vasculature, and enhance the antitumor efficacy of liposomal doxorubicin (Doxil®). When ZOL solution was injected at 40 µg/mouse per day for three consecutive days into mice bearing murine Lewis lung carcinoma LLC tumor, depletion of macrophages in tumor tissue and decreased density of tumor vasculature were observed. Furthermore, ZOL treatments induced inflammatory cytokines such as interleukin (IL)-10 and -12, granulocyte-macrophage colony-stimulating factor (GM-CSF) and tumor necrosis factor (TNF)-α in serum of LLC tumor-bearing mice, but not in normal mice, indicating that ZOL treatments might induce an inflammatory response in tumor tissue. Furthermore, ZOL treatments increased antitumor activity by Doxil in mice bearing a subcutaneous LLC tumor, although they did not significantly increase the tumor accumulation of doxorubicin (DXR). These results suggest that ZOL treatments might increase the therapeutic efficacy of Doxil via improvement of DXR distribution in a tumor by changing the tumor vasculature. ZOL treatment can be an alternative approach to increase the antitumor effect of liposomal drugs.

  16. Combination immunotherapy with prostate GVAX and ipilimumab: safety and toxicity.

    Karan, Dev; Van Veldhuizen, Peter

    2012-06-01

    Evaluation of: van den Eertwegh AJ, Versluis J, van den Berg HP et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a Phase 1 dose-escalation trial. Lancet Oncol. 13(5), 509 – 517 (2012). A significant interest in the development of therapeutic cancer vaccines over the last decade has led to an improvement in overall survival of cancer patients in several clinical trials. As a result, two active immunotherapy agents, sipuleucel-T and ipilimumab, have been approved by the US FDA for the treatment of prostate cancer and melanoma, respectively. GVAX(®) cellular vaccine (Cell Genesysis, Inc., CA, USA) is another active immunotherapy agent targeting prostate cancer and it has been well studied in various clinical trials. The current publication, by van den Eertwegh et al., demonstrated a combination of two active immunotherapy approaches, using GVAX and ipilimumab for the treatment of metastatic castration-resistant prostate cancer. While GVAX is designed to amplify the antitumor response specific to prostate cancer cells, ipilimumab contributes to T-cell activation. Thus, the authors presented the possibility of augmenting antitumor T-cell activity in two different ways. They successfully demonstrated a tolerable dose and safety profile of ipilimumab in combination with GVAX for patients with metastatic castration-resistant prostate cancer. However, further studies of such immunotherapy combinations and detailed analysis of their immunological effects are needed to observe clinical benefit.

  17. Effect of Egg White Combined with Chalcanthite on Lipopolysaccharide induced Inflammatory Cytokine Expression in RAW 264.7 cells

    Choi Eun-A

    2012-03-01

    Full Text Available Historically, mineral compound herbal medicines have long been used in treatments of immune-related diseases in Korea, China and other Asian countries. In this study, we inv-estigated the anti-inflammatory effect of egg white combined with chalcanthite (IS4 on lipopolysaccharide (LPS-stimulated RAW 264.7 cells. RAW 264.7 cells cultured with LPS and various con-centrations of IS4 were analyzed to determine the production of pro-inflammatory cytokines and mediators by using enzyme-linked immune sorbent assays (ELISAs. IS4 concentration inhibited the production of interleukin-1beta (IL-1β, interleukin-6 (IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF induced by LPS. IS4 at high concentrations (25 and 50`㎍/ml inhibited, in concentration-dependent manner, the expression of tumor necrosis factor-alpha (TNF–α stimulated by LPS. IS4 has shown an anti-inflammatory effect in RAW 264.7 cells.

  18. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J. [Institute of Biophysics, Academy of Sciences of the Czech Republic (Czech Republic)

    1997-03-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 {mu}g/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  19. Cryopreservation of adenovirus-transfected dendritic cells (DCs) for clinical use.

    Gülen, D; Maas, S; Julius, H; Warkentin, P; Britton, H; Younos, I; Senesac, J; Pirruccello, Samuel M; Talmadge, J E

    2012-05-01

    In this study, we examined the effects of cryoprotectant, freezing and thawing, and adenovirus (Adv) transduction on the viability, transgene expression, phenotype, and function of human dendritic cells (DCs). DCs were differentiated from cultured peripheral blood (PB) monocytes following Elutra isolation using granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4) for 6 days and then transduced using an Adv vector with an IL-12 transgene. Fresh, cryopreserved, and thawed transduced immature DCs were examined for their: 1) cellular concentration and viability; 2) antigenicity using an allogeneic mixed lymphocyte reaction (MLR); 3) phenotype (HLA-DR and CD11c) and activation (CD83); and 4) transgene expression based on IL-12 secretion. Stability studies revealed that transduced DCs could be held in cryoprotectant for as long as 75 min at 2-8°C prior to freezing with little effect on their viability and cellularity. Further, cryopreservation, storage, and thawing reduced the viability of the transduced DCs by an average of 7.7%; and had no significant impact on DC phenotype and activation. In summary, cryopreservation, storage, and thawing had no significant effect on DC viability, function, and transgene expression by Adv-transduced DCs. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Current clinical trials testing combinations of immunotherapy and radiation.

    Crittenden, Marka; Kohrt, Holbrook; Levy, Ronald; Jones, Jennifer; Camphausen, Kevin; Dicker, Adam; Demaria, Sandra; Formenti, Silvia

    2015-01-01

    Preclinical evidence of successful combinations of ionizing radiation with immunotherapy has inspired testing the translation of these results to the clinic. Interestingly, the preclinical work has consistently predicted the responses encountered in clinical trials. The first example came from a proof-of-principle trial started in 2001 that tested the concept that growth factors acting on antigen-presenting cells improve presentation of tumor antigens released by radiation and induce an abscopal effect. Granulocyte-macrophage colony-stimulating factor was administered during radiotherapy to a metastatic site in patients with metastatic solid tumors to translate evidence obtained in a murine model of syngeneic mammary carcinoma treated with cytokine FLT-3L and radiation. Subsequent clinical availability of vaccines and immune checkpoint inhibitors has triggered a wave of enthusiasm for testing them in combination with radiotherapy. Examples of ongoing clinical trials are described in this report. Importantly, most of these trials include careful immune monitoring of the patients enrolled and will generate important data about the proimmunogenic effects of radiation in combination with a variety of immune modulators, in different disease settings. Results of these studies are building a platform of evidence for radiotherapy as an adjuvant to immunotherapy and encourage the growth of this novel field of radiation oncology. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Transformation of human mesenchymal cells and skin fibroblasts into hematopoietic cells.

    David M Harris

    Full Text Available Patients with prolonged myelosuppression require frequent platelet and occasional granulocyte transfusions. Multi-donor transfusions induce alloimmunization, thereby increasing morbidity and mortality. Therefore, an autologous or HLA-matched allogeneic source of platelets and granulocytes is needed. To determine whether nonhematopoietic cells can be reprogrammed into hematopoietic cells, human mesenchymal stromal cells (MSCs and skin fibroblasts were incubated with the demethylating agent 5-azacytidine (Aza and the growth factors (GF granulocyte-macrophage colony-stimulating factor and stem cell factor. This treatment transformed MSCs to round, non-adherent cells expressing T-, B-, myeloid-, or stem/progenitor-cell markers. The transformed cells engrafted as hematopoietic cells in bone marrow of immunodeficient mice. DNA methylation and mRNA array analysis suggested that Aza and GF treatment demethylated and activated HOXB genes. Indeed, transfection of MSCs or skin fibroblasts with HOXB4, HOXB5, and HOXB2 genes transformed them into hematopoietic cells. Further studies are needed to determine whether transformed MSCs or skin fibroblasts are suitable for therapy.

  2. Molecular cloning, nucleotide sequence, and expression of the gene encoding human eosinophil differentiation factor (interleukin 5)

    Campbell, H.D.; Tucker, W.Q.J.; Hort, Y.; Martinson, M.E.; Mayo, G.; Clutterbuck, E.J.; Sanderson, C.J.; Young, I.G.

    1987-01-01

    The human eosinophil differentiation factor (EDF) gene was cloned from a genomic library in λ phage EMBL3A by using a murine EDF cDNA clone as a probe. The DNA sequence of a 3.2-kilobase BamHI fragment spanning the gene was determined. The gene contains three introns. The predicted amino acid sequence of 134 amino acids is identical with that recently reported for human interleukin 5 but shows no significant homology with other known hemopoietic growth regulators. The amino acid sequence shows strong homology (∼ 70% identity) with that of murine EDF. Recombinant human EDF, expressed from the human EDF gene after transfection into monkey COS cells, stimulated the production of eosinophils and eosinophil colonies from normal human bone marrow but had no effect on the production of neutrophils or mononuclear cells (monocytes and lymphoid cells). The apparent specificity of human EDF for the eosinophil lineage in myeloid hemopoiesis contrasts with the properties of human interleukin 3 and granulocyte/macrophage and granulocyte colony-stimulating factors but is directly analogous to the biological properties of murine EDF. Human EDF therefore represents a distinct hemopoietic growth factor that could play a central role in the regulation of eosinophilia

  3. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Marian Kacerovsky

    Full Text Available OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  4. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Kacerovsky, Marian; Celec, Peter; Vlkova, Barbora; Skogstrand, Kristin; Hougaard, David M; Cobo, Teresa; Jacobsson, Bo

    2013-01-01

    This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  5. Elevation of extracellular adenosine enhances haemopoiesis-stimulating effects of G-CSF in normal and gamma-irradiated mice

    Hofer, M.; Pospisil, M.; Netikiva, J.; Hola, J.

    1997-01-01

    Effects of combined treatment with drugs elevating extracellular adenosine (dipyridamole /DP/, inhibiting the extracellular uptake of adenosine, and adenosine monophosphate /AMP/, an adenosine pro-drug), and G-CSF (granulocyte colony-stimulating factor) on haemopoiesis of normal and gamma-irradiated mice were ascertained. The agents were administered alone or in combination in a 4-day regimen. In normal, unirradiated animals, the haematological endpoints were determined 24 hours after the completion of the treatment. It was shown that the effects of G-CSF, i.e., increases in peripheral blood neutrophils, granulocyte-macrophage progenitor cells (GM-CFC) and morphologically recognizable granulocyte cells in femoral marrow and a decrease in the marrow erythroid cells, can be enhanced by the combination of DP plus AMP administrated 30 minutes before G-CSF. Furthermore, it was found that the stimulatory action of DP plus AMP was expressed particularly at lower doses of G-CSF (1.5, 3, and 4.5 μg/d). In experiments with irradiated mice, when the 4-day therapeutic regimen was applied on days 3 to 6 following irradiation with the dose of 4 Gy, analogical stimulation of granulopoiesis was observed in the recovery phase on days 14 and 18 after irradiation. As example, see Fig. 1 for counts of granulocyte cells in femoral bone marrow. (authors)

  6. Comparison of cytokine immune responses to Brucella abortus and Yersinia enterocolitica serotype O:9 infections in BALB/c mice.

    Gu, Wenpeng; Wang, Xin; Qiu, Haiyan; Cui, Buyun; Zhao, Shiwen; Zheng, Han; Xiao, Yuchun; Liang, Junrong; Duan, Ran; Jing, Huaiqi

    2013-12-01

    Brucella abortus and Yersinia enterocolitica serotype O:9 serologically cross-react in the immune response with the host; therefore, our aim was to compare the immune responses to these two pathogens. We selected typical B. abortus and Y. enterocolitica O:9 strains to study the cytokine immune response and the histopathological changes in livers and spleens of BALB/c mice. The data showed the cytokine responses to the two strains of pathogens were different, where the average levels of granulocyte-macrophage colony-stimulating factor (GM-CSF), gamma interferon (IFN-γ), interleukin-12 (IL-12), and tumor necrosis factor alpha (TNF-α) were higher with B. abortus infections than with Y. enterocolitica O:9 infections, especially for IFN-γ, while the IL-10 level was lower and the levels of IL-1β, IL-4, IL-5, and IL-6 were similar. The histopathological effects in the livers and spleens of the BALB/c mice with B. abortus and Y. enterocolitica O:9 infections were similar; however, the pathological changes in the liver were greater with B. abortus infections, while damage in the spleen was greater with Y. enterocolitica O:9 infections. These observations show that different cytokine responses and histopathological changes occur with B. abortus and Y. enterocolitica O:9 infections.

  7. Epidermal growth factor induces HCCR expression via PI3K/Akt/mTOR signaling in PANC-1 pancreatic cancer cells

    Xu, Zekuan; Zhang, Guoxin; Zhang, Yi; Jiang, Jiakai; Yang, Yang; Shi, Ruihua; Hao, Bo; Zhang, Zhihong; Huang, Zuhu; Kim, Jin W

    2010-01-01

    Human cervical cancer oncoprotein 1 (HCCR-1), reported as a negative regulator of p53, is over-expressed in a variety of human cancers. However, it is yet unknown whether HCCR-1 plays any role in pancreatic cancer development. The aim of this study was to investigate the effect of epidermal growth factor on the expression of HCCR in pancreatic cancer cells, and to explore if PI3K/Akt/mTOR signaling pathway mediated this expression. A polyclonal antibody against HCCR protein was raised by immunizing Balb/c mice with the purified recombinant protein pMBPc-HCCR. Tissue samples were constructed on a tissue chip, and the expression of HCCR was investigated by immunohistochemistry assay and Western blotting. Pancreatic cell line, PANC-1 cells were stably transfected with plasmids containing sense-HCCR-1 fragment and HCCR siRNA fragment. MTT and transwell assay were used to investigate the proliferation and invasion of stable tansfectants. The specific inhibitor of PI3K and mTOR was used to see if PI3K/mTOR signal transduction was involved in the induction of HCCR gene expression. A Luciferase assay was used to see if Akt can enhance the HCCR promoter activity. HCCR was up-regulated in pancreatic tumor tissues (mean Allred score 4.51 ± 1.549 vs. 2.87 ± 2.193, P < 0.01), especially with high expression in poorly differentiated pancreatic cancer. The growth of cells decreased in HCCR-1 siRNA transfected cells compared with vector transfectants. The number of invasion cells was significantly lower in HCCR-1 siRNA transfected cells (24.4 ± 9.9) than that in vector transfectants (49.1 ± 15.4). Treatment of PANC-1 cells with epidermal growth factor increased HCCR protein level in a dose- and time-dependent manner. However, application of LY294002 and rapamycin caused a dramatic reduction of epidermal growth factor-induced HCCR expression. Over-expression of exogenous constitutively active Akt increased the HCCR promoter activity; in contrast, dominant negative Akt decreased

  8. Factores de Crescimento Hematopoiético

    Maria De Fátima Miguel Rodrigues

    1995-03-01

    colony-stimulating factor (GM-CSF. We discuss the standard doses, side effects and the international accepted indications of its use in clinical practice. Key-words: Hematopoietic cell growth factors, erythropoietin, granulocyte colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, Palavras-chave: Factores de crescimento hematopoiético, eritropoietina, factor estimulante de colónias de granulocitos, factor estimulante de colónias de granulocitos e macrófagos

  9. Granulocyte-colony stimulating factor (G-CSF)-primed, delayed marrow harvests as a source of hematopoietic stem and progenitor cells for allogeneic transplantation.

    Phillips, G L; Davey, D D; Hale, G A; Marshall, K W; Munn, R K; Nath, R; Reece, D E; Van Zant, G

    1999-10-01

    We evaluated the ability of G-CSF to increase the number of hematopoietic stem cells obtained by "delayed" BM harvest for allogeneic transplantation. Five normal donors received G-CSF @ 10 mcg/kg/day x 5 followed by repeat PB and BM assays at day 6 and 16, and BM harvest at day 16. Stem cells were not increased in the BM at day 16. Five patients underwent BMT and engrafted at +10 to +19 days. While the tested strategy offers no intrinsic advantages, its potential cannot be evaluated fully without alternative timing and/or additional, "early acting" growth factors.

  10. Bid truncation, Bid/Bax targeting to the mitochondria, and caspase activation associated with neutrophil apoptosis are inhibited by granulocyte colony-stimulating factor

    Maianski, Nikolai A.; Roos, Dirk; Kuijpers, Taco W.

    2004-01-01

    Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after

  11. Factor estimulante de colonias de granulocitos en pacientes con cáncer Granulocyte-colony stimulating factor in patients with cancer

    María Cristina Céspedes Quevedo

    2013-01-01

    Full Text Available Se efectuó un estudio descriptivo, longitudinal y prospectivo de 26 pacientes con cáncer en diferentes localizaciones asociado a leucopenia y neutropenia inducidas por citotóxicos, atendidos en el Servicio de Quimioterapia del Hospital Oncológico Docente "Conrado Benítez" de Santiago de Cuba, de mayo del 2011 a igual mes del 2012, con vistas a determinar el efecto del factor de colonias granulocítica recombinante Ior® LeukoCIM --producido por el Centro de Inmunología Molecular de Ciudad de La Habana-- en ellos mediante la realización de conteos globales de leucocitos y neutrófilos, antes y después de aplicar el tratamiento. En la serie predominaron el sexo femenino, el cáncer de mama y el estadio clínico II; también se obtuvo que 92,3 % de los pacientes respondieron satisfactoriamente a la terapia, el estadio clínico del cáncer no modificó el efecto mielodepresor de los citotóxicos ni el mieloestimulador de la hormona, y el cisplatino y la adriamicina se relacionaron con las neutropenias mayores y la falta de reacción al factor. Para finalizar, el Ior® LeukoCIM estimuló el sistema granulopoyético de la mayoría de los afectados.A descriptive, longitudinal and prospective study was conducted in 26 patients with cancer in different locations associated with leukopenia and neutropenia induced by cytotoxic drugs, treated at the Chemotherapy Department of "Conrado Benítez" Teaching Oncology Hospital of Santiago de Cuba, from May 2011 to the same month of 2012, with the purpose of determining the effect of the recombinant granulocyte-colony factor Ior® LeukoCIM --produced by the Center of Molecular Immunology in Havana city-- in them by means of global counts of leukocytes and neutrophils before and after applying the treatment. Female sex, breast cancer and clinical stage II prevailed in the series. It was also found that 92.3% of patients responded successfully to the therapy, the clinical stage of cancer did not modify the myelosuppressive effect of cytotoxic drugs nor the myelostimulating effect of hormone, and cisplatin and adriamycin were related to higher neutropenia and lack of reaction to the factor. Finally, the Ior® LeukoCIM stimulated the granulopoietic system of most patients.

  12. [Use of filgrastim, granulocyte colony stimulating factor (G-CSF), in radiotherapy to reduce drop-outs because of radiogenic leukopenia].

    Gava, A; Bertossi, L; Ferrarese, F; Coghetto, F; Marazzato, G; Andrulli, A D; Zorat, P L

    1998-03-01

    Radiotherapy patients are at risk of developing leukopenia, which risk depends on the irradiated volume, the rate of irradiated bone marrow and the radiation dose. Radiogenic leukopenia may cause radiotherapy drop-out, with consequent effects, on local tumor control and clinical outcome. The introduction of granulocyte growth factors, such as filgrastim, has permitted to accelerate normal neutrophil count recovery in irradiation-related neutropenia both in vitro and animal models; clinical experience in humans is still lacking, relative to both indications and scheduling. In the Oncologic Radiotherapy Department of Treviso Hospital, 31 patients irradiated for Hodgkin disease, rectal cancer and other malignancies, who presented leukopenia requiring treatment discontinuation, were given filgrastim to assess its actual effect in avoiding further drop-outs and to compare two administration schedules (2 or 3 vials, 30 MIU, weekly). Filgrastim treatment was continued throughout the radiotherapy cycles, for 1 to 5 weeks. Eighteen patients had received previous chemotherapy and 11 were undergoing concurrent 5-fluorouracil chemotherapy-irradiation. A mean 203% increase in leukocyte count was observed (136% in the patients treated with 2 vials/week and 274% in those receiving 3 vials/week); this increase was more apparent in women that in men (256% versus 91%) and slightly higher in patients 50 years old and with target volumes < 5000 ml. Filgrastin treatment was well tolerated by all patients, with no discontinuations due to adverse effects; 9 patients (29%) reported skeletal pain, which was marked in 2 of them only. Eighty percent of patients completed all the radiotherapy cycles with no discontinuation, while 6 patients dropped out because leukopenia persisted. Biweekly filgrastim administration was effective to prevent unscheduled radiotherapy discontinuation in 75% of patients and triweekly administration was effective in 86% of patients. In our experience, filgrastim administration was well tolerated and effective in decreasing the irradiation drop-outs caused by treatment-related leukopenia. Since this drug is rather expensive, we decided to use routinely the lower dosage of biweekly administration (with one vial given on Friday and Saturday, to permit neutrophil recovery during the day off) and to reserve the higher dosage (3 vials a week) to the patients with large body areas, big target volumes and persistent leukopenia during previous chemotherapy.

  13. Flt3 ligand synergizes with granulocyte-colony-stimulating factor in bone marrow mobilization to improve functional outcome after spinal cord injury in the rat

    Urdzíková, Lucia; Mašínová, Katarína; Vaněček, Václav; Růžička, Jiří; Šedý, Jiří; Syková, Eva; Jendelová, Pavla

    2011-01-01

    Roč. 13, č. 9 (2011), s. 1090-1104 ISSN 1465-3249 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554 Grant - others:GA MŠk(CZ) 1M0538 Program:1M Institutional research plan: CEZ:AV0Z50390703 Keywords : axonal sprouting * bone marrow mobilization * Flt3 ligand Subject RIV: FH - Neurology Impact factor: 3.627, year: 2011

  14. Influence of the joint treatment with granulocyte colony-stimulating factor and drugs elevating extracellular adenosine on erythropoietic recovery following 5-fluorouracil-induced haematotoxicity in mice

    Weiterová, Lenka; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Vácha, J.; Vacek, Antonín; Pipalová, Iva

    2000-01-01

    Roč. 65, - (2000), s. 310-316 ISSN 0902-4441 R&D Projects: GA ČR GA306/99/0027; GA AV ČR KSK2039602 Institutional research plan: CEZ:AV0Z5004920 Subject RIV: BO - Biophysics Impact factor: 1.665, year: 2000

  15. Elevation of extracellular adenosine mobilizes haematopoietic progenitor cells and granulocytes into peripheral blood and enhances the mobilizing effects of granulocyte colony-stimulating factor

    Hofer, Michal; Weiterová, Lenka; Vacek, Antonín; Znojil, V.; Pospíšil, Milan; Vácha, J.

    2003-01-01

    Roč. 71, č. 3 (2003), s. 204-210 ISSN 0902-4441 R&D Projects: GA ČR GA305/02/0423; GA AV ČR IBS5004009; GA AV ČR KSK5011112 Institutional research plan: CEZ:AV0Z5004920 Keywords : extracellular adenosine * dipyridamole * adenosine monophosphate Subject RIV: BO - Biophysics Impact factor: 1.714, year: 2003

  16. A role for granulocyte–macrophage colony-stimulating factor in the regulation of CD8+ T cell responses to rabies virus

    Wanjalla, Celestine N.; Goldstein, Elizabeth F.; Wirblich, Christoph; Schnell, Matthias J.

    2012-01-01

    Inflammatory cytokines have a significant role in altering the innate and adaptive arms of immune responses. Here, we analyzed the effect of GM-CSF on a RABV-vaccine vector co-expressing HIV-1 Gag. To this end, we immunized mice with RABV expressing HIV-1 Gag and GM-CSF and analyzed the primary and recall CD8 + T cell responses. We observed a statistically significant increase in antigen presenting cells (APCs) in the spleen and draining lymph nodes in response to GM-CSF. Despite the increase in APCs, the primary and memory anti HIV-1 CD8 + T cell response was significantly lower. This was partly likely due to lower levels of proliferation in the spleen. Animals treated with GM-CSF neutralizing antibodies restored the CD8 + T cell response. These data define a role of GM-CSF expression, in the regulation of the CD8 + T cell immune responses against RABV and has implications in the use of GM-CSF as a molecular adjuvant in vaccine development.

  17. Prevention of febrile leucopenia after chemotherapy in high-risk breast cancer patients : no significant difference between granulocyte-colony stimulating growth factor or ciprofloxacin plus amphotericin B

    Schroder, CP; de Vries, EGE; Muder, NH; Willemse, PHB; Sleijfer, DT; Hospers, GAP; van der Graaf, WTA

    In a prospective randomized trial, 40 stage IV breast cancer patients undergoing intermediate high-dose chemotherapy (cyclophosphamide, 5-fluorouracil plus epirubicin or methotrexate), received either recombinant human G-CSF (rhG-CSF, group I) or ciprofloxacin and amphotericin B (CAB, group II) for

  18. Feasibility of a dose-intensive CMF regimen with granulocyte colony-stimulating factor as adjuvant therapy in premenopausal patients with node-positive breast cancer

    Bos, AME; de Graaf, H; de Vries, EGE; Piersma, H; Willemse, PHB

    Our aim was to study the feasibility of an intensified intravenous CMF (cyclophosphamide, methotrexate and 5-fluorouracil) schedule with the aim to escalate dose intensity (DI). Twenty-three premenopausal breast cancer patients received 6 cycles of adjuvant CMF intravenously on days 1. and 8 every 3

  19. Epstein-Barr virus-encoded BARF1 protein is a decoy receptor for macrophage colony stimulating factor and interferes with macrophage differentiation and activation

    Hoebe, Eveline K.; Le Large, Tessa Y. S.; Tarbouriech, Nicolas; Oosterhoff, Dinja; de Gruijl, Tanja D.; Middeldorp, Jaap M.; Greijer, Astrid E.

    2012-01-01

    Epstein-Barr virus (EBV), like many other persistent herpes viruses, has acquired numerous mechanisms for subverting or evading immune surveillance. This study investigates the role of secreted EBV-encoded BARF1 protein (sBARF1) in creating an immune evasive microenvironment. Wild-type consensus

  20. Mutually potentiating effects of drugs elevating extracellular adenosine and granulocyte colony-stimulating factor on erythropoietic recovery following 5-fluorouracil-induced haematotoxicity in mice

    Weiterová, L.; Hofer, Michal; Pospíšil, Milan; Znojil, V.; Vácha, J.; Vacek, Antonín; Pipalová, Iva

    2000-01-01

    Roč. 50, č. 1 (2000), s. 89 ISSN 0272-4391. [International Symposium Promoted by the Spanish Purine Club. 09.07.2000-13.07.2000, Madrid] Institutional research plan: CEZ:A17/98:Z5-004-9-ii Subject RIV: ED - Physiology

  1. Combination of Drugs Elevating Extracellular Adenosine with Granulocyte Colony-Stimulating Factor Promotes Granulopoietic Recovery in the Murine Bone Marrow after 5-Fluorouracil Treatment

    Hofer, Michal; Pospíšil, Milan; Weiterová, Lenka; Znojil, V.; Vácha, J.; Holá, Jiřina; Vacek, Antonín; Pipalová, Iva

    2001-01-01

    Roč. 50, č. 5 (2001), s. 521-524 ISSN 0862-8408 R&D Projects: GA ČR GA306/99/0027; GA AV ČR IBS5004009 Institutional research plan: CEZ:AV0Z5004920 Keywords : 5-fluorouracil * granulopoiesis * extracellular adenosine Subject RIV: BO - Biophysics Impact factor : 1.027, year: 2001

  2. Activation of adenosine A3 receptors supports hematopoiesis-stimulating effects of granulocyte colony-stimulating factor in sublethally irradiated mice

    Hofer, Michal; Pospíšil, Milan; Šefc, L.; Dušek, L.; Vacek, Antonín; Holá, Jiřina; Hoferová, Zuzana; Štreitová, Denisa

    2010-01-01

    Roč. 86, č. 8 (2010), s. 649-656 ISSN 0955-3002 R&D Projects: GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : ionising radiation * hematopoiesis * adenosine A3 receptors Subject RIV: BO - Biophysics Impact factor: 1.861, year: 2010

  3. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma - A critical appraisal

    van Haaften-Day, C; Shen, Y; Xu, FJ; Yu, YH; Berchuck, A; Havrilesky, LJ; de Bruijn, HWA; van der Zee, AGJ; Bast, RC; Hacker, NF

    2001-01-01

    BACKGROUND. Ovarian carcinoma remains the leading cause of death from gynecologic malignancy in Australia, the Netherlands, and the United States. CA-125-II, the most widely used serum marker, has limited sensitivity and specificity for detecting small-volume, early-stage disease. Therefore, a panel

  4. Progressive transfusion and growth factor independence with adjuvant sertraline in low risk myelodysplastic syndrome treated with an erythropoiesis stimulating agent and granulocyte-colony stimulating factor

    Kirtan Nautiyal

    2015-01-01

    Full Text Available Refractoriness to growth factor therapy is commonly associated with inferior outcome in patients with low-risk myelodysplastic syndrome (LR-MDS who require treatment for cytopenias. However, the mechanisms leading to refractoriness are unknown. Here we describe a clinically depressed 74-year-old male with refractory cytopenia with multilineage dysplasia (RCMD and documented growth factor refractory anemia after erythropoeisis stimulating agent (ESA therapy, who attained transfusion and growth factor independence after the addition of sertraline to his medication regimen. Our case demonstrates hematological improvement-erythroid (HI-E in growth factor refractory, low risk MDS and highlights a potential mechanistic link between common inflammatory diseases and LR-MDS.

  5. Combination Therapy for Radiation-Induced Bone Marrow Aplasia in Nonhuman Primates Using Synthokine SC-55494 and Recombinant Human Granulocyte Colony-Stimulating Factor

    MacVittle, Thomas J; Farese, Ann M; Herodin, Francis; Grab, Lisa B; Baum, Charles M; McKearn, John P

    1996-01-01

    .... After irradiation on day (d) 0, cohorts of animals subcutaneously received single-agent protocols of either human serum albumin (HSA; every day [OD], 15 microng/kg/d. n = 10). Synthokine (twice daily [BID...

  6. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Forget, Mary A; Voorhees, Jeffrey L; Cole, Sara L; Dakhlallah, Duaa; Patterson, Ivory L; Gross, Amy C; Moldovan, Leni; Mo, Xiaokui; Evans, Randall; Marsh, Clay B; Eubank, Tim D

    2014-01-01

    Reports demonstrate the role of M-CSF (CSF1) in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2), the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs) with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  7. Macrophage colony-stimulating factor augments Tie2-expressing monocyte differentiation, angiogenic function, and recruitment in a mouse model of breast cancer.

    Mary A Forget

    Full Text Available Reports demonstrate the role of M-CSF (CSF1 in tumor progression in mouse models as well as the prognostic value of macrophage numbers in breast cancer patients. Recently, a subset of CD14+ monocytes expressing the Tie2 receptor, once thought to be predominantly expressed on endothelial cells, has been characterized. We hypothesized that increased levels of CSF1 in breast tumors can regulate differentiation of Tie2- monocytes to a Tie2+ phenotype. We treated CD14+ human monocytes with CSF1 and found a significant increase in CD14+/Tie2+ positivity. To understand if CSF1-induced Tie2 expression on these cells improved their migratory ability, we pre-treated CD14+ monocytes with CSF1 and used Boyden chemotaxis chambers to observe enhanced response to angiopoietin-2 (ANG2, the chemotactic ligand for the Tie2 receptor. We found that CSF1 pre-treatment significantly augmented chemotaxis and that Tie2 receptor upregulation was responsible as siRNA targeting Tie2 receptor abrogated this effect. To understand any augmented angiogenic effect produced by treating these cells with CSF1, we cultured human umbilical vein endothelial cells (HUVECs with conditioned supernatants from CSF1-pre-treated CD14+ monocytes for a tube formation assay. While supernatants from CSF1-pre-treated TEMs increased HUVEC branching, a neutralizing antibody against the CSF1R abrogated this activity, as did siRNA against the Tie2 receptor. To test our hypothesis in vivo, we treated PyMT tumor-bearing mice with CSF1 and observed an expansion in the TEM population relative to total F4/80+ cells, which resulted in increased angiogenesis. Investigation into the mechanism of Tie2 receptor upregulation on CD14+ monocytes by CSF1 revealed a synergistic contribution from the PI3 kinase and HIF pathways as the PI3 kinase inhibitor LY294002, as well as HIF-1α-deficient macrophages differentiated from the bone marrow of HIF-1αfl/fl/LysMcre mice, diminished CSF1-stimulated Tie2 receptor expression.

  8. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity.

    Leonhardt, Ines; Spielberg, Steffi; Weber, Michael; Albrecht-Eckardt, Daniela; Bläss, Markus; Claus, Ralf; Barz, Dagmar; Scherlach, Kirstin; Hertweck, Christian; Löffler, Jürgen; Hünniger, Kerstin; Kurzai, Oliver

    2015-03-17

    Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be

  9. Differential transfection efficiency rates of the GM-CSF gene into human renal cell carcinoma lines by lipofection.

    Hernández, A; Zöller, K; Enczmann, J; Ebert, T; Schmitz-Draeger, B; Ackermann, R; Wernet, P

    1997-01-01

    One of the major questions in any gene therapy approach is the selection of the appropriate vector system. Here, the optimization of a gene transfer protocol for renal cell carcinoma using lipofection as a nonviral gene transduction system was evaluated. To select the promoter which gives the highest expression, different plasmids which are able to express Escherichia coli beta-galactosidase gene as a reporter gene under the control of different promoters were tested: human cytomegalovirus promoter (pCMVbeta), simian virus 40 promoter (pSVbeta), adenovirus promoter (ADbeta), and herpes simplex virus thymidine kinase promoter (TKbeta). The pCMVbeta revealed the highest expression of the beta-gal gene in the renal cell carcinoma (RCC) lines. Thus this CMV promoter was selected for the expression of the granulocyte-macrophage colony stimulator factor (GM-CSF) gene. Three different lipids (LipofectAmine, LipofectAce, and Lipofectin) were compared for their transduction efficiency, and the optimal conditions for quantitatively high lipofection rates were established. The consistently best results regarding gene expression as well as viability of the RCC lines were obtained when Lipofectin was used. Gene expression was monitored by a specific enzyme-linked immunosorbent assay and functionally validated by a cell proliferation test. The GM-CSF expression profile showed a peak at 48 hours after transfection and was still detectable after 5 days. Here the feasibility of efficient lipofection of the GM-CSF gene into RCC lines is demonstrated. Most importantly, considerable differences in the relative quantity of GM-CSF gene transfer into the different RCC lines was observed here. This may be of critical relevance for the design of any clinical gene transduction protocol in tumor cell vaccination attempts.

  10. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care

    Lidia Łysenko

    2017-08-01

    Full Text Available Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt “bedside” diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.