WorldWideScience

Sample records for granular flow encompasses

  1. Granular flow

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing...... on the shear flow of dry granular materials and granule-liquid mixture....

  2. Granular flows: fundamentals and applications

    Cleary, Paul W.

    DEM allows the prediction of complex industrial and geophysical particle flows. The importance of particle shape is demonstrated through a series of simple examples. Shape controls resistance to shear, the magnitude of collision stress, dilation and the angle of repose. We use a periodic flow of a bed of particles to demonstrate the different states of granular matter, the generation of dilute granular flow when granular temperature is high and the flow dependent nature of the granular thermodynamic boundary conditions. A series of industrial case studies examines how DEM can be used to understand and improve processes such as separation, mixing, grinding, excavation, hopper discharge, metering and conveyor interchange. Finally, an example of landslide motion over real topography is presented.

  3. Granular flows in constrained geometries

    Murthy, Tejas; Viswanathan, Koushik

    Confined geometries are widespread in granular processing applications. The deformation and flow fields in such a geometry, with non-trivial boundary conditions, determine the resultant mechanical properties of the material (local porosity, density, residual stresses etc.). We present experimental studies of deformation and plastic flow of a prototypical granular medium in different nontrivial geometries- flat-punch compression, Couette-shear flow and a rigid body sliding past a granular half-space. These geometries represent simplified scaled-down versions of common industrial configurations such as compaction and dredging. The corresponding granular flows show a rich variety of flow features, representing the entire gamut of material types, from elastic solids (beam buckling) to fluids (vortex-formation, boundary layers) and even plastically deforming metals (dead material zone, pile-up). The effect of changing particle-level properties (e.g., shape, size, density) on the observed flows is also explicitly demonstrated. Non-smooth contact dynamics particle simulations are shown to reproduce some of the observed flow features quantitatively. These results showcase some central challenges facing continuum-scale constitutive theories for dynamic granular flows.

  4. Centrifuge modelling of granular flows

    Cabrera, Miguel Angel; Wu, Wei

    2015-04-01

    A common characteristic of mass flows like debris flows, rock avalanches and mudflows is that gravity is their main driving force. Gravity defines the intensity and duration of the main interactions between particles and their surrounding media (particle-particle, particle-fluid, fluid-fluid). At the same time, gravity delimits the occurrence of phase separation, inverse segregation, and mass consolidation, among other phenomena. Therefore, in the understanding of the flow physics it is important to account for the scaling of gravity in scaled models. In this research, a centrifuge model is developed to model free surface granular flows down an incline at controlled gravity conditions. Gravity is controlled by the action of an induced inertial acceleration field resulting from the rotation of the model in a geotechnical centrifuge. The characteristics of the induced inertial acceleration field during flow are discussed and validated via experimental data. Flow heights, velocity fields, basal pressure and impact forces are measured for a range of channel inclinations and gravity conditions. Preliminary results enlighten the flow characteristics at variable gravity conditions and open a discussion on the simulation of large scale processes at a laboratory scale. Further analysis on the flow physics brings valuable information for the validation of granular flows rheology.

  5. A constitutive law for dense granular flows.

    Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier

    2006-06-08

    A continuum description of granular flows would be of considerable help in predicting natural geophysical hazards or in designing industrial processes. However, the constitutive equations for dry granular flows, which govern how the material moves under shear, are still a matter of debate. One difficulty is that grains can behave like a solid (in a sand pile), a liquid (when poured from a silo) or a gas (when strongly agitated). For the two extreme regimes, constitutive equations have been proposed based on kinetic theory for collisional rapid flows, and soil mechanics for slow plastic flows. However, the intermediate dense regime, where the granular material flows like a liquid, still lacks a unified view and has motivated many studies over the past decade. The main characteristics of granular liquids are: a yield criterion (a critical shear stress below which flow is not possible) and a complex dependence on shear rate when flowing. In this sense, granular matter shares similarities with classical visco-plastic fluids such as Bingham fluids. Here we propose a new constitutive relation for dense granular flows, inspired by this analogy and recent numerical and experimental work. We then test our three-dimensional (3D) model through experiments on granular flows on a pile between rough sidewalls, in which a complex 3D flow pattern develops. We show that, without any fitting parameter, the model gives quantitative predictions for the flow shape and velocity profiles. Our results support the idea that a simple visco-plastic approach can quantitatively capture granular flow properties, and could serve as a basic tool for modelling more complex flows in geophysical or industrial applications.

  6. Traffic and Granular Flow ’03

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  7. NMR Measurements of Granular Flow and Compaction

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  8. Traffic and Granular Flow '11

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  9. Simulation of 2D Granular Hopper Flow

    Li, Zhusong; Shattuck, Mark

    2012-02-01

    Jamming and intermittent granular flow are big problems in industry, and the vertical hopper is a canonical example of these difficulties. We simulate gravity driven flow and jamming of 2D disks in a vertical hopper and compare with identical companion experiments presented in this session. We measure and compare the flow rate and probability for jamming as a function of particle properties and geometry. We evaluate the ability of standard Hertz-Mindlin contact mode to quantitatively predict the experimental flow.

  10. 11th Traffic and Granular Flow Conference

    Daamen, Winnie

    2016-01-01

    The Conference on Traffic and Granular Flow brings together international researchers from different fields ranging from physics to computer science and engineering to discuss the latest developments in traffic-related systems. Originally conceived to facilitate new ideas by considering the similarities of traffic and granular flow, TGF'15, organised by Delft University of Technology, now covers a broad range of topics related to driven particle and transport systems. Besides the classical topics of granular flow and highway traffic, its scope includes data transport (Internet traffic), pedestrian and evacuation dynamics, intercellular transport, swarm behaviour and the collective dynamics of other biological systems. Recent advances in modelling, computer simulation and phenomenology are presented, and prospects for applications, for example to traffic control, are discussed. The conference explores the interrelations between the above-mentioned fields and offers the opportunity to stimulate interdisciplinar...

  11. International Workshop on Traffic and Granular Flow

    Herrmann, Hans; Schreckenberg, Michael; Wolf, Dietrich; Social, Traffic and Granular Dynamics

    2000-01-01

    "Are there common phenomena and laws in the dynamic behavior of granular materials, traffic, and socio-economic systems?" The answers given at the international workshop "Traffic and Granular Flow '99" are presented in this volume. From a physical standpoint, all these systems can be treated as (self)-driven many-particle systems with strong fluctuations, showing multistability, phase transitions, non-linear waves, etc. The great interest in these systems is due to several unexpected new discoveries and their practical relevance for solving some fundamental problems of today's societies. This includes intelligent measures for traffic flow optimization and methods from "econophysics" for stabilizing (stock) markets.

  12. Granular flow down a flexible inclined plane

    Sonar Prasad

    2017-01-01

    Full Text Available Discrete and continuous systems are commonly studied individually, but seldom together. Indeed, granular flows are typically studied through flows over a rigid base. Here, we investigate the behaviour of granular flows over an inclined, flexible base. The flexible base is modeled as a rigid platform mounted on springs and has one degree of freedom. The base vibrations are introduced by the flow. We simulate such flows through a discrete element method and compare with experiments. We find that a flexible base increased the upper limit of the inclination up to which a steady flow is possible by at least 3 degrees. This stabilized zone may have important implications in applications such as conveyor belts and chutes.

  13. The Granular Blasius Problem: High inertial number granular flows

    Tsang, Jonathan; Dalziel, Stuart; Vriend, Nathalie

    2017-11-01

    The classical Blasius problem considers the formation of a boundary layer through the change at x = 0 from a free-slip to a no-slip boundary beneath an otherwise steady uniform flow. Discrete particle model (DPM) simulations of granular gravity currents show that a similar phenomenon exists for a steady flow over a uniformly sloped surface that is smooth upstream (allowing slip) but rough downstream (imposing a no-slip condition). The boundary layer is a region of high shear rate and therefore high inertial number I; its dynamics are governed by the asymptotic behaviour of the granular rheology as I -> ∞ . The μ(I) rheology asserts that dμ / dI = O(1 /I2) as I -> ∞ , but current experimental evidence is insufficient to confirm this. We show that `generalised μ(I) rheologies', with different behaviours as I -> ∞ , all permit the formation of a boundary layer. We give approximate solutions for the velocity profile under each rheology. The change in boundary condition considered here mimics more complex topography in which shear stress increases in the streamwise direction (e.g. a curved slope). Such a system would be of interest in avalanche modelling. EPSRC studentship (Tsang) and Royal Society Dorothy Hodgkin Fellowship (Vriend).

  14. Unifying Suspension and Granular flows near Jamming

    DeGiuli Eric

    2017-01-01

    Full Text Available Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we review a theoretical framework that gives a scaling description of stationary flows of frictionless particles. Our analysis applies both to suspensions and inertial flows of hard particles. We report numerical results in support of the theory, and show the phase diagram that results when friction is added, delineating the regime of validity of the frictionless theory.

  15. Traffic and Granular Flow ’07

    Chevoir, François; Gondret, Philippe; Lassarre, Sylvain; Lebacque, Jean-Patrick; Schreckenberg, Michael

    2009-01-01

    This book covers several research fields, all of which deal with transport. Three main topics are treated: road traffic, granular matter, and biological transport. Different points of view, i.e. modelling, simulations, experiments, and phenomenological observations, are considered. Sub-topics include: highway or urban vehicular traffic (dynamics of traffic, macro/micro modelling, measurements, data analysis, security issues, psychological issues), pedestrian traffic, animal traffic (e.g. social insects), collective motion in biological systems (molecular motors...), granular flow (dense flows, intermittent flows, solid/liquid transition, jamming, force networks, fluid and solid friction), networks (biological networks, urban traffic, the internet, vulnerability of networks, optimal transport networks) and cellular automata applied to the various aforementioned fields.

  16. Spatial correlations in compressible granular flows

    Van Noije, T. P. C.; Ernst, M. H.; Brito López, Ricardo

    1998-01-01

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which shifts to smaller wave numbers (growing correlation length). Furthermore, the inclusion of longitudinal velocity fluctuations changes long-range correlations in the flow field qualitatively and exten...

  17. Transient response in granular bounded heap flows

    Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.

    2017-11-01

    Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.

  18. NMRI Measurements of Flow of Granular Mixtures

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  19. Experimental observations of granular debris flows

    Ghilardi, P.

    2003-04-01

    Various tests are run using two different laboratory flumes with rectangular cross section and transparent walls. The grains used in a single experiment have an almost constant grain sizes; mean diameter ranges from 5 mm to 20 mm. In each test various measurements are taken: hydrograms, velocity distribution near the transparent walls and on the free surface, average flow concentration. Concentration values are measured taking samples. Velocity distributions are obtained from movies recorded by high speed video cameras capable of 350 frames per second; flow rates and depth hydrograms are computed from the same velocity distributions. A gate is installed at the beginning of one of the flumes; this gate slides normally to the bed and opens very quickly, reproducing a dam-break. Several tests are run using this device, varying channel slope, sediment concentration, initial mixture thickness before the gate. Velocity distribution in the flume is almost constant from left to right, except for the flow sections near the front. The observed discharges and velocities are less than those given by a classic dam break formula, and depend on sediment concentration. The other flume is fed by a mixture with constant discharge and concentration, and is mainly used for measuring velocity distributions when the flow is uniform, with both rigid and granular bed, and to study erosion/deposition processes near debris flow dams or other mitigation devices. The equilibrium slope of the granular bed is very close to that given by the classical equilibrium formulas for debris flow. Different deposition processes are observed depending on mixture concentration and channel geometry.

  20. A hydrodynamic model for granular material flows including segregation effects

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  1. Viscoinertial regime of immersed granular flows

    Amarsid, L.; Delenne, J.-Y.; Mutabaruka, P.; Monerie, Y.; Perales, F.; Radjai, F.

    2017-07-01

    By means of extensive coupled molecular dynamics-lattice Boltzmann simulations, accounting for grain dynamics and subparticle resolution of the fluid phase, we analyze steady inertial granular flows sheared by a viscous fluid. We show that, for a broad range of system parameters (shear rate, confining stress, fluid viscosity, and relative fluid-grain density), the frictional strength and packing fraction can be described by a modified inertial number incorporating the fluid effect. In a dual viscous description, the effective viscosity diverges as the inverse square of the difference between the packing fraction and its jamming value, as observed in experiments. We also find that the fabric and force anisotropies extracted from the contact network are well described by the modified inertial number, thus providing clear evidence for the role of these key structural parameters in dense suspensions.

  2. Granular flow through an aperture: influence of the packing fraction

    Alejandra Aguirre , Maria; De Schant , Rosario; Géminard , Jean-Christophe

    2014-01-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g. silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains a...

  3. A numerical study of granular dam-break flow

    Pophet, N.; Rébillout, L.; Ozeren, Y.; Altinakar, M.

    2017-12-01

    Accurate prediction of granular flow behavior is essential to optimize mitigation measures for hazardous natural granular flows such as landslides, debris flows and tailings-dam break flows. So far, most successful models for these types of flows focus on either pure granular flows or flows of saturated grain-fluid mixtures by employing a constant friction model or more complex rheological models. These saturated models often produce non-physical result when they are applied to simulate flows of partially saturated mixtures. Therefore, more advanced models are needed. A numerical model was developed for granular flow employing a constant friction and μ(I) rheology (Jop et al., J. Fluid Mech. 2005) coupled with a groundwater flow model for seepage flow. The granular flow is simulated by solving a mixture model using Finite Volume Method (FVM). The Volume-of-Fluid (VOF) technique is used to capture the free surface motion. The constant friction and μ(I) rheological models are incorporated in the mixture model. The seepage flow is modeled by solving Richards equation. A framework is developed to couple these two solvers in OpenFOAM. The model was validated and tested by reproducing laboratory experiments of partially and fully channelized dam-break flows of dry and initially saturated granular material. To obtain appropriate parameters for rheological models, a series of simulations with different sets of rheological parameters is performed. The simulation results obtained from constant friction and μ(I) rheological models are compared with laboratory experiments for granular free surface interface, front position and velocity field during the flows. The numerical predictions indicate that the proposed model is promising in predicting dynamics of the flow and deposition process. The proposed model may provide more reliable insight than the previous assumed saturated mixture model, when saturated and partially saturated portions of granular mixture co-exist.

  4. Blurring the boundary between rapid granular flow and dense granular flow regimes: Evidence from DEM simulations

    Tripathi, Anurag; Prasad, Mahesh; Kumar, Puneet

    2017-11-01

    The saturation of the effective friction coefficient for granular flows at high inertial numbers has been assumed widely by researchers, despite little simulation/experimental evidence. In contrast, a recent simulation study of plane shear flows by Mandal and Khakhar, suggests that the effective friction coefficient becomes maximum and then starts to decrease with increase in the inertial number for I > 0.5 . In order to investigate whether such a dip at higher inertial numbers is indeed a feature of granular rheology, we perform DEM simulations of chute flow of highly inelastic disks. We show that steady, fully developed flows are possible at inclinations much higher than those normally reported in literature. At such high inclinations, the flow is characterised by a significant slip at the base; the height of the layer increases by more than 300 % and kinetic energy of the layer increases by nearly 5 orders of magnitude. We observe, for the first time, steady chute flows at inertial number I 2 and show that the dip at higher inertial numbers can be observed in case of chute flow as well. The predictions of modified μ - I rheology, however, seem to remain valid in the bulk of the layer for packing fractions as low as 0.2. AT acknowledges the funding obtained from IIT Kanpur through the initiation Grant for this study.

  5. Critical phenomenon of granular flow on a conveyor belt.

    De-Song, Bao; Xun-Sheng, Zhang; Guang-Lei, Xu; Zheng-Quan, Pan; Xiao-Wei, Tang; Kun-Quan, Lu

    2003-06-01

    The relationship between the granular wafer movement on a two-dimensional conveyor belt and the size of the exit together with the velocity of the conveyor belt has been studied in the experiment. The result shows that there is a critical speed v(c) for the granular flow when the exit width d is fixed (where d=R/D, D being the diameter of a granular wafers). When vv(c), the flow rate Q is described as Q=Crho(v)(beta)(d-k)(3/2). These are the effects of the interaction among the granular wafers and the change of the states of the granular flow due to the changing of the speed or the exit width d.

  6. Spatial correlations in compressible granular flows

    van Noije, T.P.C.; Ernst, M.H.; Brito, R.

    The clustering instability in freely evolving granular fluids manifests itself in the density-density correlation function and structure factor. These functions are calculated from fluctuating hydrodynamics. As time increases, the structure factor of density fluctuations develops a maximum, which

  7. Granular materials flow like complex fluids

    Kou, Binquan; Cao, Yixin; Li, Jindong; Xia, Chengjie; Li, Zhifeng; Dong, Haipeng; Zhang, Ang; Zhang, Jie; Kob, Walter; Wang, Yujie

    2017-11-01

    Granular materials such as sand, powders and foams are ubiquitous in daily life and in industrial and geotechnical applications. These disordered systems form stable structures when unperturbed, but in the presence of external influences such as tapping or shear they `relax', becoming fluid in nature. It is often assumed that the relaxation dynamics of granular systems is similar to that of thermal glass-forming systems. However, so far it has not been possible to determine experimentally the dynamic properties of three-dimensional granular systems at the particle level. This lack of experimental data, combined with the fact that the motion of granular particles involves friction (whereas the motion of particles in thermal glass-forming systems does not), means that an accurate description of the relaxation dynamics of granular materials is lacking. Here we use X-ray tomography to determine the microscale relaxation dynamics of hard granular ellipsoids subject to an oscillatory shear. We find that the distribution of the displacements of the ellipsoids is well described by a Gumbel law (which is similar to a Gaussian distribution for small displacements but has a heavier tail for larger displacements), with a shape parameter that is independent of the amplitude of the shear strain and of the time. Despite this universality, the mean squared displacement of an individual ellipsoid follows a power law as a function of time, with an exponent that does depend on the strain amplitude and time. We argue that these results are related to microscale relaxation mechanisms that involve friction and memory effects (whereby the motion of an ellipsoid at a given point in time depends on its previous motion). Our observations demonstrate that, at the particle level, the dynamic behaviour of granular systems is qualitatively different from that of thermal glass-forming systems, and is instead more similar to that of complex fluids. We conclude that granular materials can relax

  8. A particle-based method for granular flow simulation

    Chang, Yuanzhang; Bao, Kai; Zhu, Jian; Wu, Enhua

    2012-01-01

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke's law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  9. Oblique shock waves in granular flows over bluff bodies

    Gopan Nandu

    2017-01-01

    Full Text Available Granular flows around an object have been the focus of numerous analytical, experimental and simulation studies. The structure and nature of the oblique shock wave developed when a quasi-two dimensional flow of spherical granular particles streams past an immersed, fixed cylindrical obstacle forms the focus of this study. The binary granular mixture, consisting of particles of the same diameter but different material properties, is investigated by using a modified LIGGGHTS package as the simulation engine. Variations in the solid fraction and granular temperature within the resulting flow are studied. The Mach number is calculated and is used to distinguish between the subsonic and the supersonic regions of the bow shock.

  10. A particle-based method for granular flow simulation

    Chang, Yuanzhang

    2012-03-16

    We present a new particle-based method for granular flow simulation. In the method, a new elastic stress term, which is derived from a modified form of the Hooke\\'s law, is included in the momentum governing equation to handle the friction of granular materials. Viscosity force is also added to simulate the dynamic friction for the purpose of smoothing the velocity field and further maintaining the simulation stability. Benefiting from the Lagrangian nature of the SPH method, large flow deformation can be well handled easily and naturally. In addition, a signed distance field is also employed to enforce the solid boundary condition. The experimental results show that the proposed method is effective and efficient for handling the flow of granular materials, and different kinds of granular behaviors can be well simulated by adjusting just one parameter. © 2012 Science China Press and Springer-Verlag Berlin Heidelberg.

  11. Measurements of granular flow dynamics with high speed digital images

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  12. The behaviour of free-flowing granular intruders

    Wyburn Edward

    2017-01-01

    Full Text Available Particle shape affects both the quasi-static and dynamic behaviour of granular media. There has been significant research devoted to the flowability of systems of irregularly shaped particles, as well as the flow of grains around fixed intruders, however the behaviour of free flowing intruders within granular flows remains comparatively unexplored. Here, the effect of the shape of these intruder particles is studied, looking at the kinematic behaviour of the intruders and in particular their tendency of orientation. Experiments are carried out within the Stadium Shear Device, which is a novel apparatus able to continuously apply simple shear conditions to two-dimensional grain analogues. It is found that the intruder shows different behaviour to that of the bulk flow, and that this behaviour is strongly shape dependent. These insights could lead to the development of admixtures that alter the flowability of granular materials.

  13. How granular vortices can help understanding rheological and mixing properties of dense granular flows

    Rognon Pierre

    2017-01-01

    Full Text Available Dense granular flows exhibit fascinating kinematic patterns characterised by strong fluctuations in grain velocities. In this paper, we analyse these fluctuations and discuss their possible role on macroscopic properties such as effective viscosity, non-locality and shear-induced diffusion. The analysis is based on 2D experimental granular flows performed with the stadium shear device and DEM simulations. We first show that, when subjected to shear, grains self-organised into clusters rotating like rigid bodies. The average size of these so-called granular vortices is found to increase and diverge for lower inertial numbers, when flows decelerate and stop. We then discuss how such a microstructural entity and its associated internal length scale, possibly much larger than a grain, may be used to explain two important properties of dense granular flows: (i the existence of shear-induced diffusion of grains characterised by a shear-rate independent diffusivity and (ii the development of boundary layers near walls, where the viscosity is seemingly lower than the viscosity far from walls.

  14. Friction dependence of shallow granular flows from discrete particle simulations

    Thornton, Anthony Richard; Weinhart, Thomas; Luding, Stefan; Bokhove, Onno

    2011-01-01

    A shallow-layer model for granular flows is completed with a closure relation for the macroscopic bed friction or basal roughness obtained from micro-scale discrete particle simulations of steady flows. We systematically vary the bed friction by changing the contact friction coefficient between

  15. Some exact velocity profiles for granular flow in converging hoppers

    Cox, Grant M.; Hill, James M.

    2005-01-01

    Gravity flow of granular materials through hoppers occurs in many industrial processes. For an ideal cohesionless granular material, which satisfies the Coulomb-Mohr yield condition, the number of known analytical solutions is limited. However, for the special case of the angle of internal friction δ equal to ninety degrees, there exist exact parametric solutions for the governing coupled ordinary differential equations for both two-dimensional wedges and three-dimensional cones, both of which involve two arbitrary constants of integration. These solutions are the only known analytical solutions of this generality. Here, we utilize the double-shearing theory of granular materials to determine the velocity field corresponding to these exact parametric solutions for the two problems of gravity flow through converging wedge and conical hoppers. An independent numerical solution for other angles of internal friction is shown to coincide with the analytical solution.

  16. Assessing continuum postulates in simulations of granular flow

    Rycroft, Chris; Kamrin, Ken; Bazant, Martin

    2008-08-26

    Continuum mechanics relies on the fundamental notion of a mesoscopic volume"element" in which properties averaged over discrete particles obey deterministic relationships. Recent work on granular materials suggests a continuum law may be inapplicable, revealing inhomogeneities at the particle level, such as force chains and slow cage breaking. Here, we analyze large-scale three-dimensional Discrete-Element Method (DEM) simulations of different granular flows and show that an approximate"granular element" defined at the scale of observed dynamical correlations (roughly three to five particle diameters) has a reasonable continuum interpretation. By viewing all the simulations as an ensemble of granular elements which deform and move with the flow, we can track material evolution at a local level. Our results confirm some of the hypotheses of classical plasticity theory while contradicting others and suggest a subtle physical picture of granular failure, combining liquid-like dependence on deformation rate and solid-like dependence on strain. Our computational methods and results can be used to guide the development of more realistic continuum models, based on observed local relationships betweenaverage variables.

  17. Non-spherical granular flows down inclined chutes

    Hidalgo, R.C.; Rubio-Largo, S.M.; Alonso-Marroquin, F.; Weinhart, T.

    2017-01-01

    In this work, we numerically examine the steady-state granular flow of 3D non-spherical particles down an inclined plane. We use a hybrid CPU/GPU implementation of the discrete element method of nonspherical elongated particles. Thus, a systematic study of the system response is performed varying

  18. Non-Steady Oscillatory Flow in Coarse Granular Materials

    Andersen, O. H.; Gent, M. R. A. van; Meer, J. W. van der

    1992-01-01

    Stationary and oscillatory flow through coarse granular materials have been investigated experimentally at Delft Hydraulics in their oscillating water tunnel with the objective of determining the coefficients of the extended Forchheimer equation. Cylinders, spheres and different types of rock have....... Further, for the non-stationary term, the virtual mass coefficient will be derived....

  19. DEM simulation of granular flows in a centrifugal acceleration field

    Cabrera, Miguel Angel; Peng, Chong; Wu, Wei

    2017-04-01

    The main purpose of mass-flow experimental models is abstracting distinctive features of natural granular flows, and allow its systematic study in the laboratory. In this process, particle size, space, time, and stress scales must be considered for the proper representation of specific phenomena [5]. One of the most challenging tasks in small scale models, is matching the range of stresses and strains among the particle and fluid media observed in a field event. Centrifuge modelling offers an alternative to upscale all gravity-driven processes, and it has been recently employed in the simulation of granular flows [1, 2, 3, 6, 7]. Centrifuge scaling principles are presented in Ref. [4], collecting a wide spectrum of static and dynamic models. However, for the case of kinematic processes, the non-uniformity of the centrifugal acceleration field plays a major role (i.e., Coriolis and inertial effects). In this work, we discuss a general formulation for the centrifugal acceleration field, implemented in a discrete element model framework (DEM), and validated with centrifuge experimental results. Conventional DEM simulations relate the volumetric forces as a function of the gravitational force Gp = mpg. However, in the local coordinate system of a rotating centrifuge model, the cylindrical centrifugal acceleration field needs to be included. In this rotating system, the centrifugal acceleration of a particle depends on the rotating speed of the centrifuge, as well as the position and speed of the particle in the rotating model. Therefore, we obtain the formulation of centrifugal acceleration field by coordinate transformation. The numerical model is validated with a series of centrifuge experiments of monodispersed glass beads, flowing down an inclined plane at different acceleration levels and slope angles. Further discussion leads to the numerical parameterization necessary for simulating equivalent granular flows under an augmented acceleration field. The premise of

  20. Scaling of wet granular flows in a rotating drum

    Jarray Ahmed

    2017-01-01

    Full Text Available In this work, we investigate the effect of capillary forces and particle size on wet granular flows and we propose a scaling methodology that ensures the conservation of the bed flow. We validate the scaling law experimentally by using different size glass beads with tunable capillary forces. The latter is obtained using mixtures of ethanol-water as interstitial liquid and by increasing the hydrophobicity of glass beads with an ad-hoc silanization procedure. The scaling methodology in the flow regimes considered (slipping, slumping and rolling yields similar bed flow for different particle sizes including the angle of repose that normally increases when decreasing the particle size.

  1. Bedrock erosion by sliding wear in channelized granular flow

    Hung, C. Y.; Stark, C. P.; Capart, H.; Smith, B.; Maia, H. T.; Li, L.; Reitz, M. D.

    2014-12-01

    Boundary forces generated by debris flows can be powerful enough to erode bedrock and cause considerable damage to infrastructure during runout. Bedrock wear can be separated into impact and sliding wear processes. Here we focus on sliding wear. We have conducted experiments with a 40-cm-diameter grainflow-generating rotating drum designed to simulate dry channelized debris flows. To generate sliding erosion, we placed a 20-cm-diameter bedrock plate axially on the back wall of the drum. The rotating drum was half filled with 2.3-mm-diameter grains, which formed a thin grain-avalanching layer with peak flow speed and depth close to the drum axis. The whole experimental apparatus was placed on a 100g-ton geotechnical centrifuge and, in order to scale up the stress level, spun to a range of effective gravity levels. Rates and patterns of erosion of the bedrock plate were mapped after each experiment using 3d micro-photogrammetry. High-speed video and particle tracking were employed to measure granular flow dynamics. The resulting data for granular velocities and flow geometry were used to estimate impulse exchanges and forces on the bedrock plate. To address some of the complexities of granular flow under variable gravity levels, we developed a continuum model framed around a GDR MiDi rheology. This model allowed us to scale up boundary forcing while maintaining the same granular flow regime, and helped us to understand important aspects of the flow dynamics including e.g. fluxes of momentum and kinetic energy. In order to understand the detailed processes of boundary forcing, we performed numerical simulations with a new contact dynamics model. This model confirmed key aspects of our continuum model and provided information on second-order behavior such as fluctuations in the forces acting on the wall. By combining these measurements and theoretical analyses, we have developed and calibrated a constitutive model for sliding wear that is a threshold function of

  2. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology

    Mandal, Sandip; Khakhar, D. V.

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology—the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  3. Sidewall-friction-driven ordering transition in granular channel flows: Implications for granular rheology.

    Mandal, Sandip; Khakhar, D V

    2017-11-01

    We report a transition from a disordered state to an ordered state in the flow of nearly monodisperse granular matter flowing in an inclined channel with planar slide walls and a bumpy base, using discrete element method simulations. For low particle-sidewall friction coefficients, the flowing particles are disordered, however, for high sidewall friction, an ordered state is obtained, characterized by a layering of the particles and hexagonal packing of the particles in each layer. The extent of ordering, quantified by the local bond-orientational order parameter, varies in the cross section of the channel, with the highest ordering near the sidewalls. The flow transition significantly affects the local rheology-the effective friction coefficient is lower, and the packing fraction is higher, in the ordered state compared to the disordered state. A simple model, incorporating the extent of local ordering, is shown to describe the rheology of the system.

  4. Granular flow through an aperture: Influence of the packing fraction

    Aguirre, M. A.; De Schant, R.; Géminard, J.-C.

    2014-07-01

    For the last 50 years, the flow of a granular material through an aperture has been intensely studied in gravity-driven vertical systems (e.g., silos and hoppers). Nevertheless, in many industrial applications, grains are horizontally transported at constant velocity, lying on conveyor belts or floating on the surface of flowing liquids. Unlike fluid flows, that are controlled by the pressure, granular flow is not sensitive to the local pressure but rather to the local velocity of the grains at the outlet. We can also expect the flow rate to depend on the local density of the grains. Indeed, vertical systems are packed in dense configurations by gravity, but, in contrast, in horizontal systems the density can take a large range of values, potentially very small, which may significantly alter the flow rate. In the present article, we study, for different initial packing fractions, the discharge through an orifice of monodisperse grains driven at constant velocity by a horizontal conveyor belt. We report how, during the discharge, the packing fraction is modified by the presence of the outlet, and we analyze how changes in the packing fraction induce variations in the flow rate. We observe that variations of packing fraction do not affect the velocity of the grains at the outlet, and, therefore, we establish that flow-rate variations are directly related to changes in the packing fraction.

  5. Advances in studies of dense volcanic granular flows

    Bursik, M [University of Buffalo, SUNY, Buffalo, NY 14260 (United States); Patra, A [University of Buffalo, SUNY, Buffalo, NY 14260 (United States); Pitman, E B [University of Buffalo, SUNY, Buffalo, NY 14260 (United States); Nichita, C [University of Buffalo, SUNY, Buffalo, NY 14260 (United States); Macias, J L [Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico D F (Mexico); Saucedo, R [Universidad Nacional Autonoma de Mexico, Coyoacan, Mexico D F (Mexico); Girina, O [Institute of Volcanic Geology and Geochemistry, Russian Academy of Sciences, Petropavlovsk-Kamchatskii (Russian Federation)

    2005-02-01

    The collapse and decrepitation of a lava dome at the summit of a volcano generally results in the generation of dense granular flows, often referred to as block and ash flows. As the dome particles propagate from the source, they break apart by internal pressure as well as collision. The propagation of block and ash flows can be simulated to some accuracy with a depth averaged numerical model of the equations of continuity and momentum for a material with a frictional resistance. However, important features of such flows, such as the influence of remote stress through force chains, erosion of the volcano substrate, and shock formation and pressurization upon particle break up are poorly understood. In the near future, the influence of these factors will be incorporated into depth averaged models. Various numerical techniques based on particles will some day yield results that can be compared not only with bulk flow properties, but to the internal layering of block and ash flow deposits.

  6. Controlling mixing and segregation in time periodic granular flows

    Bhattacharya, Tathagata

    Segregation is a major problem for many solids processing industries. Differences in particle size or density can lead to flow-induced segregation. In the present work, we employ the discrete element method (DEM)---one type of particle dynamics (PD) technique---to investigate the mixing and segregation of granular material in some prototypical solid handling devices, such as a rotating drum and chute. In DEM, one calculates the trajectories of individual particles based on Newton's laws of motion by employing suitable contact force models and a collision detection algorithm. Recently, it has been suggested that segregation in particle mixers can be thwarted if the particle flow is inverted at a rate above a critical forcing frequency. Further, it has been hypothesized that, for a rotating drum, the effectiveness of this technique can be linked to the probability distribution of the number of times a particle passes through the flowing layer per rotation of the drum. In the first portion of this work, various configurations of solid mixers are numerically and experimentally studied to investigate the conditions for improved mixing in light of these hypotheses. Besides rotating drums, many studies of granular flow have focused on gravity driven chute flows owing to its practical importance in granular transportation and to the fact that the relative simplicity of this type of flow allows for development and testing of new theories. In this part of the work, we observe the deposition behavior of both mono-sized and polydisperse dry granular materials in an inclined chute flow. The effects of different parameters such as chute angle, particle size, falling height and charge amount on the mass fraction distribution of granular materials after deposition are investigated. The simulation results obtained using DEM are compared with the experimental findings and a high degree of agreement is observed. Tuning of the underlying contact force parameters allows the achievement

  7. Nonlocal rheological properties of granular flows near a jamming limit.

    Aranson, Igor S; Tsimring, Lev S; Malloggi, Florent; Clément, Eric

    2008-09-01

    We study the rheology of sheared granular flows close to a jamming transition. We use the approach of partially fluidized theory (PFT) with a full set of equations extending the thin layer approximation derived previously for the description of the granular avalanches phenomenology. This theory provides a picture compatible with a local rheology at large shear rates [G. D. R. Midi, Eur. Phys. J. E 14, 341 (2004)] and it works in the vicinity of the jamming transition, where a description in terms of a simple local rheology comes short. We investigate two situations displaying important deviations from local rheology. The first one is based on a set of numerical simulations of sheared soft two-dimensional circular grains. The next case describes previous experimental results obtained on avalanches of sandy material flowing down an incline. Both cases display, close to jamming, significant deviations from the now standard Pouliquen's flow rule [O. Pouliquen, Phys. Fluids 11, 542 (1999); 11, 1956 (1999)]. This discrepancy is the hallmark of a strongly nonlocal rheology and in both cases, we relate the empirical results and the outcomes of PFT. The numerical simulations show a characteristic constitutive structure for the fluid part of the stress involving the confining pressure and the material stiffness that appear in the form of an additional dimensionless parameter. This constitutive relation is then used to describe the case of sandy flows. We show a quantitative agreement as far as the effective flow rules are concerned. A fundamental feature is identified in PFT as the existence of a jammed layer developing in the vicinity of the flow arrest that corroborates the experimental findings. Finally, we study the case of solitary erosive granular avalanches and relate the outcome with the PFT analysis.

  8. Revisiting Johnson and Jackson boundary conditions for granular flows

    Li, Tingwen; Benyahia, Sofiane

    2012-07-01

    In this article, we revisit Johnson and Jackson boundary conditions for granular flows. The oblique collision between a particle and a flat wall is analyzed by adopting the classic rigid-body theory and a more realistic semianalytical model. Based on the kinetic granular theory, the input parameter for the partial-slip boundary conditions, specularity coefficient, which is not measurable in experiments, is then interpreted as a function of the particle-wall restitution coefficient, the frictional coefficient, and the normalized slip velocity at the wall. An analytical expression for the specularity coefficient is suggested for a flat, frictional surface with a low frictional coefficient. The procedure for determining the specularity coefficient for a more general problem is outlined, and a working approximation is provided.

  9. Self-diffusion in dense granular shear flows.

    Utter, Brian; Behringer, R P

    2004-03-01

    Diffusivity is a key quantity in describing velocity fluctuations in granular materials. These fluctuations are the basis of many thermodynamic and hydrodynamic models which aim to provide a statistical description of granular systems. We present experimental results on diffusivity in dense, granular shear flows in a two-dimensional Couette geometry. We find that self-diffusivities D are proportional to the local shear rate gamma; with diffusivities along the direction of the mean flow approximately twice as large as those in the perpendicular direction. The magnitude of the diffusivity is D approximately gamma;a(2), where a is the particle radius. However, the gradient in shear rate, coupling to the mean flow, and strong drag at the moving boundary lead to particle displacements that can appear subdiffusive or superdiffusive. In particular, diffusion appears to be superdiffusive along the mean flow direction due to Taylor dispersion effects and subdiffusive along the perpendicular direction due to the gradient in shear rate. The anisotropic force network leads to an additional anisotropy in the diffusivity that is a property of dense systems and has no obvious analog in rapid flows. Specifically, the diffusivity is suppressed along the direction of the strong force network. A simple random walk simulation reproduces the key features of the data, such as the apparent superdiffusive and subdiffusive behavior arising from the mean velocity field, confirming the underlying diffusive motion. The additional anisotropy is not observed in the simulation since the strong force network is not included. Examples of correlated motion, such as transient vortices, and Lévy flights are also observed. Although correlated motion creates velocity fields which are qualitatively different from collisional Brownian motion and can introduce nondiffusive effects, on average the system appears simply diffusive.

  10. Continuum modelling of segregating tridisperse granular chute flow

    Deng, Zhekai; Umbanhowar, Paul B.; Ottino, Julio M.; Lueptow, Richard M.

    2018-03-01

    Segregation and mixing of size multidisperse granular materials remain challenging problems in many industrial applications. In this paper, we apply a continuum-based model that captures the effects of segregation, diffusion and advection for size tridisperse granular flow in quasi-two-dimensional chute flow. The model uses the kinematics of the flow and other physical parameters such as the diffusion coefficient and the percolation length scale, quantities that can be determined directly from experiment, simulation or theory and that are not arbitrarily adjustable. The predictions from the model are consistent with experimentally validated discrete element method (DEM) simulations over a wide range of flow conditions and particle sizes. The degree of segregation depends on the Péclet number, Pe, defined as the ratio of the segregation rate to the diffusion rate, the relative segregation strength κij between particle species i and j, and a characteristic length L, which is determined by the strength of segregation between smallest and largest particles. A parametric study of particle size, κij, Pe and L demonstrates how particle segregation patterns depend on the interplay of advection, segregation and diffusion. Finally, the segregation pattern is also affected by the velocity profile and the degree of basal slip at the chute surface. The model is applicable to different flow geometries, and should be easily adapted to segregation driven by other particle properties such as density and shape.

  11. PFEM-based modeling of industrial granular flows

    Cante, J.; Dávalos, C.; Hernández, J. A.; Oliver, J.; Jonsén, P.; Gustafsson, G.; Häggblad, H.-Å.

    2014-05-01

    The potential of numerical methods for the solution and optimization of industrial granular flows problems is widely accepted by the industries of this field, the challenge being to promote effectively their industrial practice. In this paper, we attempt to make an exploratory step in this regard by using a numerical model based on continuous mechanics and on the so-called Particle Finite Element Method (PFEM). This goal is achieved by focusing two specific industrial applications in mining industry and pellet manufacturing: silo discharge and calculation of power draw in tumbling mills. Both examples are representative of variations on the granular material mechanical response—varying from a stagnant configuration to a flow condition. The silo discharge is validated using the experimental data, collected on a full-scale flat bottomed cylindrical silo. The simulation is conducted with the aim of characterizing and understanding the correlation between flow patterns and pressures for concentric discharges. In the second example, the potential of PFEM as a numerical tool to track the positions of the particles inside the drum is analyzed. Pressures and wall pressures distribution are also studied. The power draw is also computed and validated against experiments in which the power is plotted in terms of the rotational speed of the drum.

  12. Nonlinear stability, bifurcation and resonance in granular plane Couette flow

    Shukla, Priyanka; Alam, Meheboob

    2010-11-01

    A weakly nonlinear stability theory is developed to understand the effect of nonlinearities on various linear instability modes as well as to unveil the underlying bifurcation scenario in a two-dimensional granular plane Couette flow. The relevant order parameter equation, the Landau-Stuart equation, for the most unstable two-dimensional disturbance has been derived using the amplitude expansion method of our previous work on the shear-banding instability.ootnotetextShukla and Alam, Phys. Rev. Lett. 103, 068001 (2009). Shukla and Alam, J. Fluid Mech. (2010, accepted). Two types of bifurcations, Hopf and pitchfork, that result from travelling and stationary linear instabilities, respectively, are analysed using the first Landau coefficient. It is shown that the subcritical instability can appear in the linearly stable regime. The present bifurcation theory shows that the flow is subcritically unstable to disturbances of long wave-lengths (kx˜0) in the dilute limit, and both the supercritical and subcritical states are possible at moderate densities for the dominant stationary and traveling instabilities for which kx=O(1). We show that the granular plane Couette flow is prone to a plethora of resonances.ootnotetextShukla and Alam, J. Fluid Mech. (submitted, 2010)

  13. Flow and fracture in water-saturated, unconstrained granular beds

    Germán eVaras

    2015-06-01

    Full Text Available The injection of gas in a liquid-saturated granular bed gives rise to a wide variety of invasion patterns. Many studies have focused on constrained porous media, in which the grains are fixed in the bed and only the interstitial fluid flows when the gas invades the system. With a free upper boundary, however, the grains can be entrained by the ascending gas or fluid motion, and the competition between the upward motion of grains and sedimentation leads to new patterns. We propose a brief review of the experimental investigation of the dynamics of air rising through a water-saturated, unconstrained granular bed, in both two and three dimensions. After describing the invasion pattern at short and long time, a tentative regime-diagram is proposed. We report original results showing a dependence of the fluidized zone shape, at long times, on the injection flow rate and grain size. A method based on image analysis makes it possible to detect not only the fluidized zone profile in the stationary regime, but also to follow the transient dynamics of its formation. Finally, we describe the degassing dynamics inside the fluidized zone, in the stationary regime. Depending on the experimental conditions, regular bubbling, continuous degassing, intermittent regime or even spontaneous flow-to-fracture transition are observed.

  14. Granular shear flows of flexible rod-like particles

    Guo, Y.; Curtis, J.; Wassgren, C.; Ketterhagen, W.; Hancock, B.

    2013-06-01

    Flexible particles are widely encountered in nature, e.g., stalks of plants, fiberglass particles, and ceramic nanofibers. Early studies indicated that the deformability of particles has a significant impact on the properties of granular materials and fiber suspensions. In this study, shear flows of flexible particles are simulated using the Discrete Element Method (DEM) to explore the effect of particle flexibility on the flow behavior and constitutive laws. A flexible particle is formed by connecting a number of constituent spheres in a straight line using elastic bonds. The forces/moments due to the normal, tangential, bending, and torsional deformation of a bond resist the relative movement between two bonded constituent spheres. The bond stiffness determines how difficult it is to make a particle deform, and the bond damping accounts for the energy dissipation in the particle vibration process. The simulation results show that elastically bonded particles have smaller coefficients of restitution compared to rigidly connected particles, due to the fact that kinetic energy is partially converted to potential energy in a contact between flexible particles. The coefficient of restitution decreases as the bond stiffness decreases and the bond damping coefficient increases. As a result, smaller stresses are obtained for granular flows of the flexible particles with smaller bond stiffness and larger bond damping coefficient.

  15. Coexistence and transition between shear zones in slow granular flows.

    Moosavi, Robabeh; Shaebani, M Reza; Maleki, Maniya; Török, János; Wolf, Dietrich E; Losert, Wolfgang

    2013-10-04

    We report experiments on slow granular flows in a split-bottom Couette cell that show novel strain localization features. Nontrivial flow profiles have been observed which are shown to be the consequence of simultaneous formation of shear zones in the bulk and at the boundaries. The fluctuating band model based on a minimization principle can be fitted to the experiments over a large variation of morphology and filling height with one single fit parameter, the relative friction coefficient μ(rel) between wall and bulk. The possibility of multiple shear zone formation is controlled by μ(rel). Moreover, we observe that the symmetry of an initial state, with coexisting shear zones at both side walls, breaks spontaneously below a threshold value of the shear velocity. A dynamical transition between two asymmetric flow states happens over a characteristic time scale which depends on the shear strength.

  16. Flow of Dense Granular Suspensions on an Inclined Plane

    Bonnoit, C.; Lanuza, J.; Lindner, A.; Clément, E.

    2008-07-01

    We investigate the flow behavior of dense granular suspensions, by the use of an inclined plane. The suspensions are prepared at high packing fractions and consist of spherical non-Brownian particles density matched with the suspending fluid. On the inclined plane, we perform a systematic study of the surface velocity as a function of the layer thickness for various flow rates and tilt angles. We perform measurements on a classical rheometer (parallel-plate rheometer) that is shown to be in good agreement with existing models, up to a volume fraction of 50%. Comparing these results, we show that the flow on an inclined plane can, up to a volume fraction of 50%, indeed be described by a purely viscous model in agreement with the results from classical rheometry.

  17. Impurity in a granular gas under nonlinear Couette flow

    Vega Reyes, Francisco; Garzó, Vicente; Santos, Andrés

    2008-01-01

    We study in this work the transport properties of an impurity immersed in a granular gas under stationary nonlinear Couette flow. The starting point is a kinetic model for low-density granular mixtures recently proposed by the authors (Vega Reyes et al 2007 Phys. Rev. E 75 061306). Two routes have been considered. First, a hydrodynamic or normal solution is found by exploiting a formal mapping between the kinetic equations for the gas particles and for the impurity. We show that the transport properties of the impurity are characterized by the ratio between the temperatures of the impurity and gas particles and by five generalized transport coefficients: three related to the momentum flux (a nonlinear shear viscosity and two normal stress differences) and two related to the heat flux (a nonlinear thermal conductivity and a cross-coefficient measuring a component of the heat flux orthogonal to the thermal gradient). Second, by means of a Monte Carlo simulation method we numerically solve the kinetic equations and show that our hydrodynamic solution is valid in the bulk of the fluid when realistic boundary conditions are used. Furthermore, the hydrodynamic solution applies to arbitrarily (inside the continuum regime) large values of the shear rate, of the inelasticity, and of the rest of the parameters of the system. Preliminary simulation results of the true Boltzmann description show the reliability of the nonlinear hydrodynamic solution of the kinetic model. This shows again the validity of a hydrodynamic description for granular flows, even under extreme conditions, beyond the Navier–Stokes domain

  18. A Stochastic Description of Transition Between Granular Flow States

    Huang Decai; Sun Gang; Lu Kunquan

    2007-01-01

    Two-dimensional granular flow in a channel with small exit is studied by molecular dynamics simulations. We firstly define a key area near the exit, which is considered to be the choke area of the system. Then we observe the time variation of the local packing fraction and flow rate in this area for several fixed inflow rate, and find that these quantities change abruptly when the transition from dilute flow state to dense flow state happens. A relationship between the local flow rate and the local packing fraction in the key area is also given. The relationship is a continuous function under the fixed particle number condition, and has the characteristic that the flow rate has a maximum at a moderate packing fraction and the packing fraction is terminated at a high value with negative slope. By use of the relationship, the properties of the flow states under the fixed inflow rate condition are discussed in detail, and the discontinuities and the complex time variation behavior observed in the preexisting works are naturally explained by a stochastic process.

  19. Granular flow in a rotating drum: Experiments and theory

    Hung, C. Y.; Stark, C. P.; Capart, H.; Li, L.; Smith, B.; Grinspun, E.

    2015-12-01

    Erosion at the base of a debris flow fundamentally controls how large the flow will become and how far it will travel. Experimental observations of this important phenomenon are rather limited, and this lack has led theoretical treatments to making ad hoc assumptions about the basal process. In light of this, we carried out a combination of laboratory experiments and theoretical analysis of granular flow in a rotating drum, a canonical example of steady grain motion in which entrainment rates can be precisely controlled. Our main result is that basal sediment is entrained as the velocity profile adjusts to imbalance in the flow of kinetic energy.Our experimental apparatus consisted of a 40cm-diameter drum, 4cm-deep, half-filled with 2.3mm grains. Rotation rates varied from 1-70 rpm. We varied the effective scale by varying effective gravity from 1g to 70g on a geotechnical centrifuge. The field of grain motion was recorded using high-speed video and mapped using particle tracking velocimetry. In tandem we developed a depth-averaged theory using balance equations for mass, momentum and kinetic energy. We assumed a linearized GDR Midi granular rheology [da Cruz, 2005] and a Coulomb friction law along the sidewalls [Jop et al., 2005]. A scaling analysis of our equations yields a dimensionless "entrainment number" En, which neatly parametrizes the flow geometry in the drum for a wide range of variables, e.g., rotation rate and effective gravity. At low En, the flow profile is planar and kinetic energy is balanced locally in the flow layer. At high En, the flow profile is sigmoidal (yin-yang shaped) and the kinetic energy is dominated by longitudinal, streamwise transfer. We observe different scaling behavior under each of these flow regimes, e.g., between En and kinetic energy, surface slope and flow depth. Our theory correctly predicts their scaling exponents and the value of En at which the regime transition takes place. We are also able to make corrections for

  20. Confined granular flow in silos experimental and numerical investigations

    Tejchman, Jacek

    2013-01-01

      During confined flow of bulk solids in silos some characteristic phenomena can be created, such as: —         sudden and significant increase of wall stresses, —         different flow patterns, —         formation and propagation of wall and interior shear zones, —         fluctuation of pressures and, —         strong autogenous dynamic effects. These phenomena have not been described or explained in detail yet. The main intention of the experimental and theoretical research presented in this book is to explain the above mentioned phenomena in granular bulk solids and to describe them with numerical FE models verified by experimental results.

  1. Critical state flow rules for CFD simulations of wet granular flows

    Schwarze, R.; Gladkyy, A.; Luding, Stefan; E. Onate M. Bischoff, E. Ramm; P. Wriggers,

    2013-01-01

    First rheological investigation results of weakly wet granular media are presented. The materials have been examined experimentally and numerically in well- defined shear configurations in steady state, in the intermediate flow regime. For the experiments, a Searl-type ring shear cell with rotating

  2. Averaging processes in granular flows driven by gravity

    Rossi, Giulia; Armanini, Aronne

    2016-04-01

    One of the more promising theoretical frames to analyse the two-phase granular flows is offered by the similarity of their rheology with the kinetic theory of gases [1]. Granular flows can be considered a macroscopic equivalent of the molecular case: the collisions among molecules are compared to the collisions among grains at a macroscopic scale [2,3]. However there are important statistical differences in dealing with the two applications. In the two-phase fluid mechanics, there are two main types of average: the phasic average and the mass weighed average [4]. The kinetic theories assume that the size of atoms is so small, that the number of molecules in a control volume is infinite. With this assumption, the concentration (number of particles n) doesn't change during the averaging process and the two definitions of average coincide. This hypothesis is no more true in granular flows: contrary to gases, the dimension of a single particle becomes comparable to that of the control volume. For this reason, in a single realization the number of grain is constant and the two averages coincide; on the contrary, for more than one realization, n is no more constant and the two types of average lead to different results. Therefore, the ensamble average used in the standard kinetic theory (which usually is the phasic average) is suitable for the single realization, but not for several realization, as already pointed out in [5,6]. In the literature, three main length scales have been identified [7]: the smallest is the particles size, the intermediate consists in the local averaging (in order to describe some instability phenomena or secondary circulation) and the largest arises from phenomena such as large eddies in turbulence. Our aim is to solve the intermediate scale, by applying the mass weighted average, when dealing with more than one realizations. This statistical approach leads to additional diffusive terms in the continuity equation: starting from experimental

  3. Relating water and air flow characteristics in coarse granular materials

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  4. A review on numerical models for granular flow inside hoppers and its applications in PBR

    Tang Yushi; Guo Qiuju; Zhang Liguo

    2015-01-01

    Granular flow is the shearing motion of a collection of discrete solid particles which are commonly seen and widely utilized in various industrial applications. One of the essential applications of dense slow granular flow in engineering is the pebble flow in pebble-bed nuclear reactor (PBR). A number of numerical models have been established for researching the basic physical mechanisms and properties of granular flow. For the purpose of generating an appropriate model for high temperature reactor-pebblebed modules (HTR-PM) in the future, numerical models on granular flow in hoppers and some of their previous applications on PBRs are reviewed. In this paper, basic transport and contact mechanisms of granular flow are firstly introduced, then kinetic theory from gas molecules and plastic theory from metal mechanics approaches give descriptions of the macroscopic behavior of rapid flow and quasistatic flow regimes, respectively, subsequently kinematic continuum method and discrete element method (DEM) are presented to describe the bulk features of dense slow flow in hoppers. Since various kinematic models, DEM models and their modified versions for dense slow granular flow in hoppers have been experimentally verified and applied in prediction of pebble flow in PBRs, a promising model for HTR-PM is expected with further work to generate pebble flow profile in the future. (author)

  5. Experimental and numerical study of granular flow characteristics of absorber sphere pneumatic conveying process

    Zhang He; Li Tianjin; Qi Weiwei; Huang Zhiyong; Bo Hanliang

    2014-01-01

    Absorber sphere pneumatic conveying system is the main part of absorber sphere shutdown system and closely related to granular flow. Granular flow characteristics, such as mass flow rate, angle of repose, contact forces, etc., are crucial important for the optimization of absorber sphere pneumatic conveying process. Mass flow rate of granular flow through the sphere discharge valve and the bend tube are significant for the time of ball dropping and the time of conveying back rate, respectively. Experiments and DEM simulations have been conducted to investigate the granular flow characteristics. Experimental results showed that the relation between average mass flow rate through the sphere discharge valve and the valve stroke was composed of three zones i. e. the idle stroke zone, linearly zone and orifice restriction zone. The Beverloo's law was suitable for the granular flow through the multi-orifice during the orifice restriction zone. The variation of average mass flow rate with the valve stroke could be described by modified Beverloo's law based on the valve stroke. DEM simulation results showed that the drained angle of repose remained 23° at different valve strokes. Mass flow rate during steady granular flow through the sphere discharge valve at different valve strokes kept stable. The variation of mass flow rate through a bend tube was different from that through a circular orifice. (author)

  6. Rheology of granular flows immersed in a viscous fluid

    Amarsid, Lhassan

    2015-01-01

    We investigate the behavior of granular materials immersed in a viscous fluid by means of extensive simulations based on the Discrete Element Method for particle dynamics coupled with the Lattice Boltzmann method for the fluid. We show that, for a broad range of parameters such as shear rate, confining stress and viscosity, the internal friction coefficient and packing fraction are well described by a single 'visco-inertial' dimensionless parameter combining inertial and Stokes numbers. The frictional behavior under constant confining pressure is mapped into a viscous behavior under volume-controlled conditions, leading to the divergence of the effective normal and shear viscosities in inverse square of the distance to the critical packing fraction. The results are in excellent agreement with the experimental data of Boyer et al. (2011). The evolution of the force network in terms of connectivity and anisotropy as a function of the visco-inertial number, indicates that the increase of frictional strength is a direct consequence of structural anisotropy enhanced by both fluid viscosity and grain inertia. In view of application to a potential nuclear accident, we also study the fragmentation and flow of confined porous aggregates in a fluid under the action of local overpressures and pressure gradients as well as gravity-driven flow of immersed particles in an hourglass. (author)

  7. Ill-posedness of Dynamic Equations of Compressible Granular Flow

    Shearer, Michael; Gray, Nico

    2017-11-01

    We introduce models for 2-dimensional time-dependent compressible flow of granular materials and suspensions, based on the rheology of Pouliquen and Forterre. The models include density dependence through a constitutive equation in which the density or volume fraction of solid particles with material density ρ* is taken as a function of an inertial number I: ρ = ρ * Φ(I), in which Φ(I) is a decreasing function of I. This modelling has different implications from models relying on critical state soil mechanics, in which ρ is treated as a variable in the equations, contributing to a flow rule. The analysis of the system of equations builds on recent work of Barker et al in the incompressible case. The main result is the identification of a criterion for well-posedness of the equations. We additionally analyze a modification that applies to suspensions, for which the rheology takes a different form and the inertial number reflects the role of the fluid viscosity.

  8. Segregating photoelastic particles in free-surface granular flows

    Thomas, Amalia; Vriend, Nathalie; Environmental; Industrial Fluid Dynamics Team

    2017-11-01

    We present results from a novel experimental set-up creating 2D avalanches of photoelastic discs. Two distinct hoppers supply either monodisperse or bidisperse particles at adjustable flow-rates into a 2 meter long, narrow acrylic chute inclined at 20°. For 20-40 seconds the avalanche maintains a steady-state that accelerates and thins downstream. The chute basal roughness is variable, allowing for different flow profiles. Using a set of polarizers and a high-speed camera, we visualize and quantify the forces due to dynamic interactions between the discs using photoelastic theory. Velocity and density profiles are derived from particle tracking at different distances from the discharge point and are coarse-grained to obtain continuous fields. With the access to both force information and dynamical properties via particle-tracking, we can experimentally validate existing mu(I) and non-local rheologies. As an extension, we probe the effect of granular segregation in bimodal mixtures by using the two separate inflow hoppers. We derive the state of segregation along the avalanche channel and measure the segregation velocities of each species. This provides insight in, and a unique validation of, the fundamental physical processes that drive segregation in avalanching geometries.

  9. Technological effect of vibroprocessing by flows of organic granular media

    Lebedev, V. A.; Shishkina, A. P.; Davydova, I. V.; Morozova, A. V.

    2018-03-01

    The analysis of approaches to modeling of vibrational processing by granulated media is carried out. The vibroprocessing model which provides effective finishing of the surfaces of the parts due to the stone fruit organic media granules is developed. The model is based on the granule flow energy impact on the surface being treated. As the main characteristic of the organic media processing, a specific volumetric metal scrap is used, the physical meaning of which is the increase rate in the thickness of the material removed from the surface at a given velocity and pressure of the medium. It is shown that the metal scrap depends on the medium flow velocity, the height of the loading column of the granular medium, and the conditions for the formation of a medium stationary circulation motion. Based on the analysis of the results of experimental studies of the influence of amplitude-frequency characteristics on the removal of metal in the process of vibroprocessing with abrasive granules, the dependence of the specific volume metal removal is proposed for organic media processing, taking into account the threshold amplitude and frequency of oscillations of the working chamber, at which the effect of surface treatment is observed. The established set of relationships describing the effective conditions for vibroprocessing with stone organic media was obtained using experimental data, which allows us to assume that the model obtained is valid.

  10. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  11. Experimental and analytical investigations of granular materials: Shear flow and convective heat transfer

    Ahn, Hojin

    1989-12-01

    Granular materials flowing down an inclined chute were studied experimentally and analytically. Characteristics of convective heat transfer to granular flows were also investigated experimentally and numerically. Experiments on continuous, steady flows of granular materials in an inclined chute were conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Existing constitutive equations and governing equations were used to solve for fully developed chute flows of granular materials, and thus the boundary value problem was formulated with two parameters (the coefficient of restitution between particles, and the chute inclination) and three boundary values at the chute base wall (the values of solid fraction, granular temperature, and mean velocity at the wall). The boundary value problem was numerically solved by the shooting method. These analytical results were also compared with the present experimental values and with the computer simulations by other investigators in their literature. Experiments on heat transfer to granular flows over a flat heating plate were conducted with three sizes of glass beads, polystyrene beads, and mustard seeds. A modification on the existing model for the convective heat transfer was made using the effective Nusselt number and the effective Peclet number, which include the effects of solid fraction variations. The slightly modified model could describe the heat transfer characteristics of both fast and slow flows (supercritical and subcritical). A numerical analysis of the transfer to granular flows was also performed. The results were compared with the present experimental data, and reasonable agreement was found in the comparison.

  12. Segregation-mobility feedback for bidisperse shallow granular flows: Towards understanding segregation in geophysical flows

    Thornton, A.; Denissen, I.; Weinhart, T.; Van der Vaart, K.

    2017-12-01

    The flow behaviour of shallow granular chute flows for uniform particles is well-described by the hstop-rheology [1]. Geophysical flows, however, are often composed of highly non-uniform particles that differ in particle (size, shape, composition) or contact (friction, dissipation, cohesion) properties. The flow behaviour of such mixtures can be strongly influenced by particle segregation effects. Here, we study the influence of particle size-segregation on the flow behaviour of bidisperse flows using experiments and the discrete particle method. We use periodic DPM to derive hstop-rheology for the bi-dispersed granular shallow layer equations, and study their dependence on the segregation profile. In the periodic box simulations, size-segregation results in an upward coarsening of the size distribution with the largest grains collecting at the top of the flow. In geophysical flows, the fact the flow velocity is greatest at the top couples with the vertical segregation to preferentially transported large particles to the front. The large grains may be overrun, resegregated towards the surface and recirculated before being shouldered aside into lateral levees. Theoretically it has been suggested this process should lead to a breaking size-segregation (BSS) wave located between a large-particle-rich front and a small-particle-rich tail [2,3]. In the BSS wave large particles that have been overrun rise up again to the free-surface while small particles sink to the bed. We present evidence for the existences of the BSS wave. This is achieved through the study of three-dimensional bidisperse granular flows in a moving-bed channel. Our analysis demonstrates a relation between the concentration of small particles in the flow and the amount of basal slip, in which the structure of the BSS wave plays a key role. This leads to a feedback between the mean bulk flow velocity and the process of size-segregation. Ultimately, these findings shed new light on the recirculation of

  13. Lift on side by side intruders of various geometries within a granular flow

    Acevedo-Escalante, M. F.; Caballero-Robledo, G. A.

    2017-06-01

    Obstacles within fluids have been widely used in engineering and in physics to study hydrodynamic interactions. In granular matter, objects within a granular flow have helped to understand fundamental features of drag and lift forces. In our group, we have studied numerically the flow mediated interaction between two static disks within a vertical granular flow in a two-dimensional container where the flow velocity and the distance between obstacles were varied. Attractive and repulsive forces were found depending on flow velocity and separation between intruders. The simulations evidenced a relationship between the average flow velocity in a specific section ahead of the obstacles and the attractive-repulsive lift. On the other hand, it was showed that the lift force on an object dragged within a granular medium depends on the shape of the intruder. Here we present experimental results of the interaction between two side-by-side intruders of different shapes within a vertical granular flow. We built a quasi-two-dimensional container in which we placed the intruders and using load cells we measured lift and drag forces during the discharge process for different flow velocities.

  14. Physical modelling of granular flows at multiple-scales and stress levels

    Take, Andy; Bowman, Elisabeth; Bryant, Sarah

    2015-04-01

    The rheology of dry granular flows is an area of significant focus within the granular physics, geoscience, and geotechnical engineering research communities. Studies performed to better understand granular flows in manufacturing, materials processing or bulk handling applications have typically focused on the behavior of steady, continuous flows. As a result, much of the research on relating the fundamental interaction of particles to the rheological or constitutive behaviour of granular flows has been performed under (usually) steady-state conditions and low stress levels. However, landslides, which are the primary focus of the geoscience and geotechnical engineering communities, are by nature unsteady flows defined by a finite source volume and at flow depths much larger than typically possible in laboratory experiments. The objective of this paper is to report initial findings of experimental studies currently being conducted using a new large-scale landslide flume (8 m long, 2 m wide slope inclined at 30° with a 35 m long horizontal base section) and at elevated particle self-weight in a 10 m diameter geotechnical centrifuge to investigate the granular flow behavior at multiple-scales and stress levels. The transparent sidewalls of the two flumes used in the experimental investigation permit the combination of observations of particle-scale interaction (using high-speed imaging through transparent vertical sidewalls at over 1000 frames per second) with observations of the distal reach of the landslide debris. These observations are used to investigate the applicability of rheological models developed for steady state flows (e.g. the dimensionless inertial number) in landslide applications and the robustness of depth-averaged approaches to modelling dry granular flow at multiple scales. These observations indicate that the dimensionless inertial number calculated for the flow may be of limited utility except perhaps to define a general state (e.g. liquid

  15. Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows.

    Artoni, Riccardo; Richard, Patrick

    2015-10-09

    We report numerical simulations on granular shear flows confined between two flat but frictional sidewalls. Novel regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the flow. The effective friction at sidewalls is characterized (effective friction coefficient and orientation of the friction force) for each regime, and its interdependence with slip and force fluctuations is pointed out. We propose a simple scaling law linking the slip velocity to the granular temperature in the main flow direction which leads naturally to another scaling law for the effective friction.

  16. A granular refillable filter for glas-flows contaminated by radioactive impurities

    Bonn, J.W.

    1975-01-01

    Description is given of a granular charcoal refillable filter adapted to adsorb the radioactive impurities of a gaseous flow. That flow comprises a number of filtering layers, the consumed charcoal of which can be discharged by a pneumatic device without exposing the personnel to radioactivity. This can be applied to emergency devices in nuclear facilities [fr

  17. Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow

    Bhateja, Ashish; Khakhar, Devang V.

    2018-06-01

    We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.

  18. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  19. Recent advances in understanding deformation and flow of granular matter

    Mesarović Siniša Đ.

    2014-01-01

    Full Text Available By means of graph theory, we analyze the changes in topology of a granular assembly during deformation. The elementary mechanism of diffuse deformation consists of intermittent flips. We show that dilatancy is the direct result of: an increasing number of flips, and, elastic relaxation of particles upon flips. Both are dependent on particles' elastic potential energy prior to flip and after the flip. The latter is the result of non uniform distribution of interparticle forces in force chains. Next, we consider shear bands in granular materials. Formation of shear bands is accompanied by accompanied by massive rolling of particle. Since rolling is constrained by neighbors, a characteristic rolling correlation length appears. The transmission of rotations in a particular direction depends on the strength of the force chain branches in the direction of propagation and across. The maximum propagation distance is comparable to observed widths of shear bands. Finally, we turn to the question of vortex formation within shear bands and argue that vortex pattern minimizes the dissipation/resistance in granular fluid.

  20. The respective roles of bulk friction and slip velocity during a granular mass flow

    Staron, Lydie

    2016-04-01

    Catastrophic granular mass flows form an important natural hazard. Mitigation has motivated numerous studies on the properties of natural granular flows, and in particular, their ability to travel long distances away from the release point. The mobility of granular flows is commonly characterised through the definition of rheological properties and effective friction. Yet, it is widely accepted that the description in term of effective friction may include various lubrication effects, softening at the base of the flow and large slip velocities being a most likely one. In this case, flow bulk properties may obliterate the flow boundary conditions. In this contribution, we investigate how disentangling bulk properties from boundary conditions may improve our understanding of the flow. Using discrete simulations, we induce increasing slip velocities in different flow configurations. We show that increased mobility may be achieved without changing bulk properties. The results are interpreted in terms of a Robin-Navier slip condition and implemented in a continuum Navier-Stokes solver. We quantify the respective role of rheological bulk properties and boundary conditions in the general behaviour of a transient mass flow. We show that omitting the description of boundary conditions leads to misinterpretation of the flow properties. The outcome is discussed in terms of models reliability. References P.-Y. Lagrée et al, The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with the mu(I) rheology, J. Fluid Mech. 686, 378-408 (2011) L. Staron and E. Lajeunesse, Understanding how the volume affects the mobility of dry debris flows, Geophys. Res. Lett. 36, L12402 (2009) L. Staron, Mobility of long-runout rock flows: a discrete numerical investigation, Geophys. J. Int. 172, 455-463 (2008)

  1. Experimental study and DEM simulation of granular flow through a new sphere discharge valve

    Zhang He; Li Tianjin; Huang Zhiyong; Gao Zhi; Qi Weiwei; Bo Hanliang

    2015-01-01

    Experiments and DEM simulation have been conducted to investigate the granular flow through a new type of sphere discharge valve. The new sphere discharge valve was based on the principle of angle of repose. The glass sphere was used in the granular discharge experiments. Experimental results showed that the relation between the averaging sphere discharge mass flow rate and the stroke of the sphere discharge valve were consisted of three zones, i.e. the idle stroke zone, linearly zone and orifice restriction zone. The Beverloo's law was suitable for the granular flow through multi-orifices in the orifice restriction zone. The variation of averaging sphere discharge mass flow rate with the stroke of the sphere discharge valve was described by Beverloo's law with the modification based on the stroke of the sphere discharge valve. DEM simulation results showed that the drained angle of repose during granular flow in the sphere storage vessel remained 23 degrees with different stroke of the sphere discharge valve. (authors)

  2. Granular flows on erodible layers: type and evolution of flow and deposit structures

    Crosta, G.; De Blasio, F.; De Caro, M.; Volpi, G.; Frattini, P.

    2012-04-01

    The interaction of a fast moving landslide mass with the basal layer over which movement takes place has been discussed in previous contributions. Nevertheless, the evolution of the structures within the moving mass and the erodible layer are still to be described in detail (Hungr and Evans, 2004; Crosta et al., 1992, 2006, 2009, 2011; Dufresne et al., 2010; Mangeney et al., 2010) and modeling results (Crosta et al., 2006, 2009, 2011; Mangeney et al., 2010). We present some of the results from a campaign of laboratory experiments aimed at studying the evolution of a granular flow at the impact with and during the successive spreading over a cohesionless erodible layer. We performed these test to study the processes and to collect data and evidences to compare them with the results of numerical simulations and to verify capabilities of numerical codes. The laboratory setup consists of an inclined slope and an horizontal sector where release and transport, and deposition take place, respectively. Materials used for the tests are: a uniform rounded siliceous sand (Hostun sand; 0.125-0.5 mm) commonly adopted in lab tests because free of scale effects, and a gravel made of angular elements (12 mm in ave. size). Both the materials have been tested in dry conditions. Different slope angles have been tested (40, 45, 50, 55, 50, 66°) as well as different thicknesses of the erodible layer (0, 0.5, 1, 2 cm) and volumes of the released material (1.5, 3, 5, 9.6 liters). Tests have been monitored by means of a high speed camera and the pre- and post-failure geometries have been surveyed by means of a laser scanner. Deposit description allowed also the computation of volumes and the characterization of the different structures developed and frozen into the deposit. Experiments allowed us to observe the extreme processes occurring during the movement and the mise en place of the deposits. In particular, we observe the formation of a clear wave-like feature developing during the

  3. Dispersed plug flow model for upflow anaerobic sludge bed reactors with focus on granular sludge dynamics

    Kalyuzhnyi, S.V.; Fedorovich, V.V.; Lens, P.N.L.

    2006-01-01

    A new approach to model upflow anaerobic sludge bed (UASB)-reactors, referred to as a one-dimensional dispersed plug flow model, was developed. This model focusses on the granular sludge dynamics along the reactor height, based on the balance between dispersion, sedimentation and convection using

  4. Rheological Modeling of Macro Viscous Flows of Granular Suspension of Regular and Irregular Particles

    Anna Maria Pellegrino

    2017-12-01

    Full Text Available This paper refers to complex granular-fluid mixtures involved into geophysical flows, such as debris and hyper-concentrated flows. For such phenomena, the interstitial fluids play a role when they are in the viscous regime. Referring to experiments on granular-fluid mixture carried out with pressure imposed annular shear cell, we study the rheological behaviour of dense mixture involving both spheres and irregular-shaped particles. For the case of viscous suspensions with irregular grains, a significant scatter of data from the trend observed for mixtures with spherical particles was evident. In effect, the shape of the particles likely plays a fundamental role in the flow dynamics, and the constitutive laws proposed by the frictional theory for the spheres are no longer valid. Starting from the frictional approach successfully applied to suspension of spheres, we demonstrate that also in case of irregular particles the mixture rheology may be fully characterized by the two relationships involving friction coefficient µ and volume concentration Ф as a function of the dimensionless viscous number Iv. To this goal, we provided a new consistent general model, referring to the volume fraction law and friction law, which accounts for the particle shape. In this way, the fitting parameters reduce just to the static friction angle µ1, and the two parameters, k and fs related to the grain shape. The resulting general model may apply to steady fully developed flows of saturated granular fluid mixture in the viscous regime, no matter of granular characteristics.

  5. Granular-front formation in free-surface flow of concentrated suspensions

    Leonardi, Alessandro; Cabrera, Miguel; Wittel, Falk K.; Kaitna, Roland; Mendoza, Miller; Wu, Wei; Herrmann, Hans J.

    2015-11-01

    A granular front emerges whenever the free-surface flow of a concentrated suspension spontaneously alters its internal structure, exhibiting a higher concentration of particles close to its front. This is a common and yet unexplained phenomenon, which is usually believed to be the result of fluid convection in combination with particle size segregation. However, suspensions composed of uniformly sized particles also develop a granular front. Within a large rotating drum, a stationary recirculating avalanche is generated. The flowing material is a mixture of a viscoplastic fluid obtained from a kaolin-water dispersion with spherical ceramic particles denser than the fluid. The goal is to mimic the composition of many common granular-fluid materials, such as fresh concrete or debris flow. In these materials, granular and fluid phases have the natural tendency to separate due to particle settling. However, through the shearing caused by the rotation of the drum, a reorganization of the phases is induced, leading to the formation of a granular front. By tuning the particle concentration and the drum velocity, it is possible to control this phenomenon. The setting is reproduced in a numerical environment, where the fluid is solved by a lattice-Boltzmann method, and the particles are explicitly represented using the discrete element method. The simulations confirm the findings of the experiments, and provide insight into the internal mechanisms. Comparing the time scale of particle settling with the one of particle recirculation, a nondimensional number is defined, and is found to be effective in predicting the formation of a granular front.

  6. Experimentally determined distribution of granular-flow characteristics in collisional bed load transport

    Matoušek Václav

    2018-01-01

    Full Text Available A series of laboratory experiments on turbulent open-channel two-phase flow in a form of intense bed load transport is reported. Measurements in a laboratory tilting flume included camera based imaging techniques to identify the structure of the flow at the local level. Obtained experimental distributions of two-phase flow related parameters - granular velocity, concentration, and temperature - across a collisional transport layer are discussed. The results are analysed together with additional measured quantities (discharges of mixture and grains, flow depth, bed slope etc. Our major goal is to evaluate the distribution of granular stresses across the transport layer with a special attention paid to the interface between the transport layer and the bed. Furthermore, comparisons are discussed between the experimental results and predictions produced by suitable kinetic-theory based models.

  7. Effective Wall Friction in Wall-Bounded 3D Dense Granular Flows

    Artoni, Riccardo; Richard, Patrick

    2015-01-01

    to be published in Physical Review LettersThe numerical simulations were carried out at theCCIPL (Centre de Calcul Intensif des Pays de la Loire)under the project MTEEGD; We report numerical simulations on granular shear flows confined between two flat but frictional sidewalls. Novel regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the flow. The effective friction at si...

  8. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Algarra Nicolas

    2017-01-01

    Full Text Available We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  9. Flexible fiber in interaction with a dense granular flow close to the jamming transition

    Algarra, Nicolas; Leang, Marguerite; Lazarus, Arnaud; Vandembroucq, Damien; Kolb, Evelyne

    2017-06-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fiber acting as a flexible intruder. We study experimentally the reconfiguration and the forces exerted on the flexible fiber produced by the flow at a constant and low velocity of a two-dimensional disordered packing of grains close but below the jamming transition.

  10. Flow Characteristics and Grain Size Distribution of Granular Gangue Mineral by Compaction Treatment

    Ran Yuan

    2017-01-01

    Full Text Available A test system for water flow in granular gangue mineral was designed to study the flow characteristics by compaction treatment. With the increase of the compaction displacement, the porosity decreases and void in granular gangue becomes less. The main reason causing initial porosity decrease is that the void of larger size is filled with small particles. Permeability tends to decrease and non-Darcy flow factor increases under the compaction treatment. The change trend of flow characteristics shows twists and turns, which indicate that flow characteristics of granular gangue mineral are related to compaction level, grain size distribution, crushing, and fracture structure. During compaction, larger particles are crushed, which in turn causes the weight of smaller particles to increase, and water flow induces fine particles to migrate (weight loss; meanwhile, a sample with more weight of size (0–2.5 mm has a higher amount of weight loss. Water seepage will cause the decrease of some chemical components, where SiO2 decreased the highest in these components; the components decreased are more likely locked at fragments rather than the defect of the minerals. The variation of the chemical components has an opposite trend when compared with permeability.

  11. Relaxation-type nonlocal inertial-number rheology for dry granular flows

    Lee, Keng-lin; Yang, Fu-ling

    2017-12-01

    We propose a constitutive model to describe the nonlocality, hysteresis, and several flow features of dry granular materials. Taking the well-known inertial number I as a measure of sheared-induced local fluidization, we derive a relaxation model for I according to the evolution of microstructure during avalanche and dissipation processes. The model yields a nonmonotonic flow law for a homogeneous flow, accounting for hysteretic solid-fluid transition and intermittency in quasistatic flows. For an inhomogeneous flow, the model predicts a generalized Bagnold shear stress revealing the interplay of two microscopic nonlocal mechanisms: collisions among correlated structures and the diffusion of fluidization within the structures. In describing a uniform flow down an incline, the model reproduces the hysteretic starting and stopping heights and the Pouliquen flow rule for mean velocity. Moreover, a dimensionless parameter reflecting the nonlocal effect on the flow is discovered, which controls the transition between Bagnold and creeping flow dynamics.

  12. NMR studies of granular media and two-phase flow in porous media

    Yang, Xiaoyu

    This dissertation describes two experimental studies of a vibrofluidized granular medium and a preliminary study of two-phase fluid flow in a porous medium using Nuclear Magnetic Resonance (NMR). The first study of granular medium is to test a scaling law of the rise in center of mass in a three-dimensional vibrofluidized granular system. Our granular system consisted of mustard seeds vibrated vertically at 40 Hz from 0g to 14g. We used Magnetic Resonance Imaging (MRI) to measure density profile in vibrated direction. We observed that the rise in center of mass scaled as nu 0alpha/Nlbeta with alpha = 1.0 +/- 0.2 and beta = 0.5 +/- 0.1, where nu 0 is the vibration velocity and Nl is the number of layers of grains in the container. A simple theory was proposed to explain the scaling exponents. In the second study we measured both density and velocity information in the same setup of the first study. Pulsed Field Gradient (PFG)-NMR combined with MRI was used to do this measurement. The granular system was fully fluidized at 14.85g 50 Hz with Nl ≤ 4. The velocity distributions at horizontal and vertical direction at different height were measured. The distributions were nearly-Gaussian far from sample bottom and non-Gaussian near sample bottom. Granular temperature profiles were calculated from the velocity distributions. The density and temperature profile were fit to a hydrodynamic theory. The theory agreed with experiments very well. A temperature inversion near top was also observed and explained by additional transport coefficient from granular hydrodynamics. The third study was the preliminary density measurement of invading phase profile in a two-phase flow in porous media. The purpose of this study was to test an invasion percolation with gradient (IPG) theory in two-phase flow of porous media. Two phases are dodecane and water doped with CuSO4. The porous medium was packed glass beads. The front tail width sigma and front width of invading phase were

  13. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  14. Simulation of granular and gas-solid flows using discrete element method

    Boyalakuntla, Dhanunjay S.

    2003-10-01

    In recent years there has been increased research activity in the experimental and numerical study of gas-solid flows. Flows of this type have numerous applications in the energy, pharmaceuticals, and chemicals process industries. Typical applications include pulverized coal combustion, flow and heat transfer in bubbling and circulating fluidized beds, hopper and chute flows, pneumatic transport of pharmaceutical powders and pellets, and many more. The present work addresses the study of gas-solid flows using computational fluid dynamics (CFD) techniques and discrete element simulation methods (DES) combined. Many previous studies of coupled gas-solid flows have been performed assuming the solid phase as a continuum with averaged properties and treating the gas-solid flow as constituting of interpenetrating continua. Instead, in the present work, the gas phase flow is simulated using continuum theory and the solid phase flow is simulated using DES. DES treats each solid particle individually, thus accounting for its dynamics due to particle-particle interactions, particle-wall interactions as well as fluid drag and buoyancy. The present work involves developing efficient DES methods for dense granular flow and coupling this simulation to continuum simulations of the gas phase flow. Simulations have been performed to observe pure granular behavior in vibrating beds. Benchmark cases have been simulated and the results obtained match the published literature. The dimensionless acceleration amplitude and the bed height are the parameters governing bed behavior. Various interesting behaviors such as heaping, round and cusp surface standing waves, as well as kinks, have been observed for different values of the acceleration amplitude for a given bed height. Furthermore, binary granular mixtures (granular mixtures with two particle sizes) in a vibrated bed have also been studied. Gas-solid flow simulations have been performed to study fluidized beds. Benchmark 2D

  15. Rheology of confined granular flows: scale invariance, glass transition, and friction weakening.

    Richard, P; Valance, A; Métayer, J-F; Sanchez, P; Crassous, J; Louge, M; Delannay, R

    2008-12-12

    We study fully developed, steady granular flows confined between parallel flat frictional sidewalls using numerical simulations and experiments. Above a critical rate, sidewall friction stabilizes the underlying heap at an inclination larger than the angle of repose. The shear rate is constant and independent of inclination over much of the flowing layer. In the direction normal to the free surface, the solid volume fraction increases on a scale equal to half the flowing layer depth. Beneath a critical depth at which internal friction is invariant, grains exhibit creeping and intermittent cage motion similar to that in glasses, causing gradual weakening of friction at the walls.

  16. Dense granular Flows: a conceptual design of high-power neutron source

    Yang Lei

    2017-01-01

    Full Text Available A high-power neutron source system is very useful for multifunctional applications, such as material facilities for advanced nuclear power, space radiation studies, radiography and tomography. Here the idea of inclined dense granular flow is utilized and developed in a new conceptual design of a compact high-power target to produce a high-energy and high-flux neutron irradiation (the flux is up to 1015 n/cm2/s or even 1016. Comparing to the traditional solid and liquid heavy metal targets, this design has advantages in material choice, fluid stability, heat removal, etc. In this paper the natures of the granular flows in an inclined chute are investigated and preliminary experimental and numerical results are reported. Then the feasibility of this design is discussed.

  17. Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall

    Jiang, Yuan-Jun; Towhata, Ikuo

    2013-07-01

    Shallow slope failure in mountainous regions is a common and emergent hazard in terms of its damage to important traffic routes and local communities. The impact of dry granular flows consisting of rock fragments and other particles resulting from shallow slope failures on retaining structures has yet to be systematically researched and is not covered by current design codes. As a preliminary study of the impact caused by dry granular flows, a series of dry granular impact experiments were carried out for one model of a retaining wall. It was indirectly verified that the total normal force exerted on a retaining wall consists of a drag force ( F d), a gravitational and frictional force ( F gf), and a passive earth force ( F p), and that the calculation of F d can be based on the empirical formula defined in NF EN Eurocode 1990 ( Eurocode structuraux. Base de calcul des structures, AFNOR La plaine Saint Denis, 2003). It was also indirectly verified that, for flow with Froude number from 6 to 11, the drag coefficient ( C d) can be estimated using the previously proposed empirical parameters.

  18. A finite area scheme for shallow granular flows on three-dimensional surfaces

    Rauter, Matthias

    2017-04-01

    Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.

  19. Gravity-driven, dry granular flows over a loose bed in stationary and homogeneous conditions

    Meninno, Sabrina; Armanini, Aronne; Larcher, Michele

    2018-02-01

    Flows involving solid particulates have been widely studied in recent years, but their dynamics are still a complex issue to model because they strongly depend on the interaction with the boundary conditions. We report on laboratory investigations regarding homogeneous and steady flows of identical particles over a loose bed in a rectangular channel. Accurate measurements were carried out through imaging techniques to estimate profiles of the mean velocity, solid concentration, and granular temperature for a large set of flow rates and widths. Vertical and transversal structures observed in the flow change as interparticle interactions become more collisional, and they depend on the bottom over which the flow develops. The lateral confinement has a remarkable effect on the flow, especially for narrow channels compared with the grain size, and a hydraulic analogy is able to show how the walls influence the mechanisms of friction and energy dissipation.

  20. Creepy landscapes : river sediment entrainment develops granular flow rheology on creeping bed.

    Prancevic, J.; Chatanantavet, P.; Ortiz, C. P.; Houssais, M.; Durian, D. J.; Jerolmack, D. J.

    2015-12-01

    To predict rates of river sediment transport, one must first address the zeroth-order question: when does sediment move? The concept and determination of the critical fluid shear stress remains hazy, as observing particle motion and determining sediment flux becomes increasingly hard in its vicinity. To tackle this problem, we designed a novel annular flume experiment - reproducing an infinite river channel - where the refractive index of particles and the fluid are matched. The fluid is dyed with a fluorescent powder and a green laser sheet illuminates the fluid only, allowing us to observe particle displacements in a vertical plane. Experiments are designed to highlight the basic granular interactions of sediment transport while suppressing the complicating effects of turbulence; accordingly, particles are uniform spheres and Reynolds numbers are of order 1. We have performed sediment transport measurements close to the onset of particle motion, at steady state, and over long enough time to record averaged rheological behavior of particles. We find that particles entrained by a fluid exhibit successively from top to bottom: a suspension regime, a dense granular flow regime, and - instead of a static bed - a creeping regime. Data from experiments at a range of fluid stresses can be collapsed onto one universal rheologic curve that indicates the effective friction is a monotonic function of a dimensionless number called the viscous number. These data are in remarkable agreement with the local rheology model proposed by Boyer et al., which means that dense granular flows, suspensions and bed-load transport are unified under a common frictional flow law. Importantly, we observe slow creeping of the granular bed even in the absence of bed load, at fluid stresses that are below the apparent critical value. This last observation challenges the classical definition of the onset of sediment transport, and points to a continuous transition from quasi-static deformation to

  1. Bulbous head formation in bidisperse shallow granular flows over inclined planes

    Denissen, I.; Thornton, A.; Weinhart, T.; Luding, S.

    2017-12-01

    Predicting the behaviour of hazardous natural granular flows (e.g. debris-flows and pyroclastic flows) is vital for an accurate assessment of the risks posed by such events. In these situations, an inversely graded vertical particle-size distribution develops, with larger particles on top of smaller particles. As the surface velocity of such flows is larger than the mean velocity, the larger material is then transported to the flow front. This creates a downstream size-segregation structure, resulting in a flow front composed purely of large particles, that are generally more frictional in geophysical flows. Thus, this segregation process reduces the mobility of the flow front, resulting in the formation of, a so-called, bulbous head. One of the main challenges of simulating these hazardous natural granular flows is the enormous number of particles they contain, which makes discrete particle simulations too computationally expensive to be practically useful. Continuum methods are able to simulate the bulk flow- and segregation behaviour of such flows, but have to make averaging approximations that reduce the huge number of degrees of freedom to a few continuum fields. Small-scale periodic discrete particle simulations can be used to determine the material parameters needed for the continuum model. In this presentation, we use a depth-averaged model to predict the flow profile for particulate chute flows, based on flow height, depth-averaged velocity and particle-size distribution [1], and show that the bulbous head structure naturally emerges from this model. The long-time behaviour of this solution of the depth-averaged continuum model converges to a novel travelling wave solution [2]. Furthermore, we validate this framework against computationally expensive 3D particle simulations, where we see surprisingly good agreement between both approaches, considering the approximations made in the continuum model. We conclude by showing that the travelling distance and

  2. DEM study of granular flow around blocks attached to inclined walls

    Samsu Joel

    2017-01-01

    Full Text Available Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i flow analysis in terms of flow patterns and particle velocities, (ii force distributions within the model geometry, and (iii wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  3. DEM study of granular flow around blocks attached to inclined walls

    Samsu, Joel; Zhou, Zongyan; Pinson, David; Chew, Sheng

    2017-06-01

    Damage due to intense particle-wall contact in industrial applications can cause severe problems in industries such as mineral processing, mining and metallurgy. Studying the flow dynamics and forces on containing walls can provide valuable feedback for equipment design and optimising operations to prolong the equipment lifetime. Therefore, solids flow-wall interaction phenomena, i.e. induced wall stress and particle flow patterns should be well understood. In this work, discrete element method (DEM) is used to study steady state granular flow in a gravity-fed hopper like geometry with blocks attached to an inclined wall. The effects of different geometries, e.g. different wall angles and spacing between blocks are studied by means of a 3D DEM slot model with periodic boundary conditions. The findings of this work include (i) flow analysis in terms of flow patterns and particle velocities, (ii) force distributions within the model geometry, and (iii) wall stress vs. model height diagrams. The model enables easy transfer of the key findings to other industrial applications handling granular materials.

  4. Diffusion and mixing in gravity-driven dense granular flows.

    Choi, Jaehyuk; Kudrolli, Arshad; Rosales, Rodolfo R; Bazant, Martin Z

    2004-04-30

    We study the transport properties of particles draining from a silo using imaging and direct particle tracking. The particle displacements show a universal transition from superdiffusion to normal diffusion, as a function of the distance fallen, independent of the flow speed. In the superdiffusive (but sub-ballistic) regime, which occurs before a particle falls through its diameter, the displacements have fat-tailed and anisotropic distributions. In the diffusive regime, we observe very slow cage breaking and Péclet numbers of order 100, contrary to the only previous microscopic model (based on diffusing voids). Overall, our experiments show that diffusion and mixing are dominated by geometry, consistent with long-lasting contacts but not thermal collisions, as in normal fluids.

  5. Water flow exchange characteristics in coarse granular filter media

    Andreasen, Rune Røjgaard; Pugliese, Lorenzo; Poulsen, Tjalfe

    2013-01-01

    Elution of inhibitory metabolites is a key parameter controlling the efficiency of air cleaning bio- and biotrickling filters. To the authors knowledge no studies have yet considered the relationship between specific surface area related elution velocity and physical media characteristics, which...... in this study are performed at a concurrent airflow of 0.3 m s−1, water irrigation rates of 1–21 cm h−1 in materials with particle diameters ranging from 2 to 14 mm to represent media and operation conditions relevant for low flow biotrickling filter design. Specific surface area related elution velocity...... distribution was closely related to the filter water content, water irrigation rate, media specific surface area and particle size distribution. A predictive model linking the specific surface area related elution velocity distribution to irrigation rate, specific surface area and particle size distribution...

  6. Transient response in granular quasi-two-dimensional bounded heap flow.

    Xiao, Hongyi; Ottino, Julio M; Lueptow, Richard M; Umbanhowar, Paul B

    2017-10-01

    We study the transition between steady flows of noncohesive granular materials in quasi-two-dimensional bounded heaps by suddenly changing the feed rate. In both experiments and simulations, the primary feature of the transition is a wedge of flowing particles that propagates downstream over the rising free surface with a wedge front velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The entire transition is well modeled as a moving boundary problem with a diffusionlike equation derived from local mass balance and a local relation between the flux and the surface slope.

  7. Shear localization and effective wall friction in a wall bounded granular flow

    Artoni, Riccardo; Richard, Patrick

    2017-06-01

    In this work, granular flow rheology is investigated by means of discrete numerical simulations of a torsional, cylindrical shear cell. Firstly, we focus on azimuthal velocity profiles and study the effect of (i) the confining pressure, (ii) the particle-wall friction coefficient, (iii) the rotating velocity of the bottom wall and (iv) the cell diameter. For small cell diameters, azimuthal velocity profiles are nearly auto-similar, i.e. they are almost linear with the radial coordinate. Different strain localization regimes are observed : shear can be localized at the bottom, at the top of the shear cell, or it can be even quite distributed. This behavior originates from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. Then we study the effective friction at the cylindrical wall, and point out the strong link between wall friction, slip and fluctuations of forces and velocities. Even if the system is globally below the sliding threshold, force fluctuations trigger slip events, leading to a nonzero wall slip velocity and an effective wall friction coefficient different from the particle-wall one. A scaling law was found linking slip velocity, granular temperature in the main flow direction and effective friction. Our results suggest that fluctuations are an important ingredient for theories aiming to capture the interface rheology of granular materials.

  8. Toward high-efficiency and detailed Monte Carlo simulation study of the granular flow spallation target

    Cai, Han-Jie; Zhang, Zhi-Lei; Fu, Fen; Li, Jian-Yang; Zhang, Xun-Chao; Zhang, Ya-Ling; Yan, Xue-Song; Lin, Ping; Xv, Jian-Ya; Yang, Lei

    2018-02-01

    The dense granular flow spallation target is a new target concept chosen for the Accelerator-Driven Subcritical (ADS) project in China. For the R&D of this kind of target concept, a dedicated Monte Carlo (MC) program named GMT was developed to perform the simulation study of the beam-target interaction. Owing to the complexities of the target geometry, the computational cost of the MC simulation of particle tracks is highly expensive. Thus, improvement of computational efficiency will be essential for the detailed MC simulation studies of the dense granular target. Here we present the special design of the GMT program and its high efficiency performance. In addition, the speedup potential of the GPU-accelerated spallation models is discussed.

  9. Granular flow considerations in the design of a cascade solid breeder reaction chamber

    Walton, O.R.

    1983-10-01

    Both horizontally and vertically oriented rotating chambers with granular material held on the inner surface by centrifugal action are examined. Modifications to the condition for controlled quasi-static flow on an incline plane, phi/sub w/ 0 +- 10 0 for ceramic particles and metal surfaces. For vertical orientations the maximum half-angle of the top cone is slightly less than the wall friction angle phi/sub w/ while the lower portion can have a half angle as large as (90 0 - phi/sub w). Percolation of fines through shearing granular solids is briefly discussed and recommended experimental and calculational studies to obtain a better understanding of this behavior are described

  10. Erosion by sliding wear in granular flows: Experiments with realistic contact forces

    Stark, C. P.; Hung, C. Y.; Smith, B.; Li, L.; Grinspun, E.; Capart, H.

    2015-12-01

    Debris flow erosion is a powerful and sometimes dominant process in steep channels. Despite its importance, this phenomenon is relatively little studied in the lab. The large drum experiments of Hsu are a notable exception, in which almost-field-scale impact forces were generated at the head of a synthetic debris flow whose properties (grain size, proportion of fines, etc) were varied widely.A key challenge in these and similar experiments is to explore how erosion rate varies as a function of the scale of the flow (thereby varying inertial stresses, impact forces, etc). The geometrical limitations of most lab experiments, and their short run time, severely limit the scope of such explorations.We achieve this scale exploration in a set of drum erosion experiments by varying effective gravity across several orders of magnitude (1g, 10g, 100g) in a geotechnical centrifuge. By half-filling our 40cm-diameter drum with dry 2.3mm grains, placing a synthetic rock plate at the back and a glass plate at the front 3cm apart, and rotating the drum at 1-50rpm, we simulate wear in a channelized dry granular flow. In contrast to Hsu's experiments, we focus on sliding wear erosion at the flow boundary rather than impact/frictional wear at the flow head. By varying effective gravity from 1g-100g we can tune the pressure exerted by the grains at the boundary without having to change the scale of our apparatus. Using a recently developed depth-averaged, kinetic-energy closure theory for granular flow, we can simultaneously tune the drum rotation rate such that the flow dynamics remain invariant. We can thereby explore how changing the scale of a granular flow, and thus the contact forces of grains on the boundary, controls the rate of rock erosion. Using a small apparatus we can simulate the erosion generated by debris flows several meters deep involving grains up to 10cm in diameter.Our results suggest that sliding wear is the main erosion process, and are consistent with Archard

  11. Network flow model of force transmission in unbonded and bonded granular media.

    Tordesillas, Antoinette; Tobin, Steven T; Cil, Mehmet; Alshibli, Khalid; Behringer, Robert P

    2015-06-01

    An established aspect of force transmission in quasistatic deformation of granular media is the existence of a dual network of strongly versus weakly loaded particles. Despite significant interest, the regulation of strong and weak forces through the contact network remains poorly understood. We examine this aspect of force transmission using data on microstructural fabric from: (I) three-dimensional discrete element models of grain agglomerates of bonded subspheres constructed from in situ synchrotron microtomography images of silica sand grains under unconfined compression and (II) two-dimensional assemblies of unbonded photoelastic circular disks submitted to biaxial compression under constant volume. We model force transmission as a network flow and solve the maximum flow-minimum cost (MFMC) problem, the solution to which yields a percolating subnetwork of contacts that transmits the "maximum flow" (i.e., the highest units of force) at "least cost" (i.e., the dissipated energy from such transmission). We find the MFMC describes a two-tier hierarchical architecture. At the local level, it encapsulates intraconnections between particles in individual force chains and in their conjoined 3-cycles, with the most common configuration having at least one force chain contact experiencing frustrated rotation. At the global level, the MFMC encapsulates interconnections between force chains. The MFMC can be used to predict most of the force chain particles without need for any information on contact forces, thereby suggesting the network flow framework may have potential broad utility in the modeling of force transmission in unbonded and bonded granular media.

  12. 2D transient granular flows over obstacles: experimental and numerical work

    Juez, Carmelo; Caviedes-Voullième, Daniel; Murillo, Javier; García-Navarro, Pilar

    2016-04-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field. In addition, as

  13. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  14. A Two-Phase Solid/Fluid Model for Dense Granular Flows Including Dilatancy Effects

    Mangeney, Anne; Bouchut, Francois; Fernandez-Nieto, Enrique; Narbona-Reina, Gladys

    2015-04-01

    We propose a thin layer depth-averaged two-phase model to describe solid-fluid mixtures such as debris flows. It describes the velocity of the two phases, the compression/dilatation of the granular media and its interaction with the pore fluid pressure, that itself modifies the friction within the granular phase (Iverson et al., 2010). The model is derived from a 3D two-phase model proposed by Jackson (2000) based on the 4 equations of mass and momentum conservation within the two phases. This system has 5 unknowns: the solid and fluid velocities, the solid and fluid pressures and the solid volume fraction. As a result, an additional equation inside the mixture is necessary to close the system. Surprisingly, this issue is inadequately accounted for in the models that have been developed on the basis of Jackson's work (Bouchut et al., 2014). In particular, Pitman and Le replaced this closure simply by imposing an extra boundary condition at the surface of the flow. When making a shallow expansion, this condition can be considered as a closure condition. However, the corresponding model cannot account for a dissipative energy balance. We propose here an approach to correctly deal with the thermodynamics of Jackson's equations. We close the mixture equations by a weak compressibility relation involving a critical density, or equivalently a critical pressure. Moreover, we relax one boundary condition, making it possible for the fluid to escape the granular media when compression of the granular mass occurs. Furthermore, we introduce second order terms in the equations making it possible to describe the evolution of the pore fluid pressure in response to the compression/dilatation of the granular mass without prescribing an extra ad-hoc equation for the pore pressure. We prove that the energy balance associated with this Jackson closure is dissipative, as well as its thin layer associated model. We present several numerical tests for the 1D case that are compared to the

  15. Reconfiguration of a flexible fiber immersed in a 2D dense granular flow close to the jamming transition

    Kolb, Evelyne; Algarra, Nicolas; Vandembroucq, Damien; Lazarus, Arnaud

    2015-11-01

    We propose a new fluid/structure interaction in the unusual case of a dense granular medium flowing against an elastic fibre acting as a flexible intruder. We experimentally studied the deflection of a mylar flexible beam clamped at one side, the other free side facing a 2D granular flow in a horizontal cell moving at a constant velocity. We investigated the reconfiguration of the fibre as a function of the fibre's rigidity and of the granular packing fraction close but below the jamming in 2D. Imposing the fibre geometry like its length or thickness sets the critical buckling force the fibre is able to resist if it was not supported by lateral grains, while increasing the granular packing fraction might laterally consolidate the fibre and prevent it from buckling. But on the other side, the approach to jamming transition by increasing the granular packing fraction will be characterized by a dramatically increasing size of the cluster of connected grains forming a solid block acting against the fibre, which might promote the fibre's deflection. Thus, we investigated the granular flow fields, the fibre's deflexion as well as the forces experienced by the fibre and compared them with theoretical predictions from elastica for different loadings along the fibre. PMMH, CNRS UMR 7636, UPMC, ESPCI-ParisTech, 10 rue Vauquelin, 75231 Paris Cedex 05, France.

  16. Slow sedimentary processes on-a-chip: experiments on porous flow effects on granular bed creep

    Houssais, M.; Maldarelli, C.; Shattuck, M.; Morris, J. F.

    2017-12-01

    Steep soils dynamics is hard to catch. they exhibit very slow granular creep most of the time, and sometimes, mostly under or after rain, turn into a landslide, a very fast avalanche flow.The conditions of transition from soil creep to avalanching remains a lot non-understood, and Safe Factor law (empirical criteria, function of rain intensity and duration). On another side, in marine fast deposition environments, compaction drives vertical porous flow, which makes bed shear resistance change, and form over time bed size patterns (pipes, dishes) or mechanical heterogeneities.Capturing how the slow creep dynamics depends on the porous flow would allow for much more accurate landscape evolution modeling.We present here preliminary results of an experimental investigation of one the major triggering condition for soils destabilization: rain infiltration, and more generally porous flow through a tilted granular bed. In a quasi-2D microfluidics channel, a flat sediment bed made of spherical particles is prepared, in fully submerged condition. It is thereafter tilted (at slope under critical slope of avalanching) and simultaneously put under vertical weak porous flow (well under the critical flow of liquefaction regarding positive pressure gradients). The two control parameters are varied, and local particles concentration and motion are measured. Interestingly, although staying in the sub-critical creeping regime, we observe an acceleration of the bed deformation downward, as the porous flow and the bed slope are increased, until the criteria for avalanching is reached. Those results appear to present similitudes with the case of tilted dry sediment bed under controlled vibrations. Consequently it opens the discussion about a potential universal model of landslides triggering due to frequent seismological and rainstorm events.

  17. Discrete Element Method simulations of standing jumps in granular flows down inclines

    Méjean Ségolène

    2017-01-01

    Full Text Available This paper describes a numerical set-up which uses Discrete Element Method to produce standing jumps in flows of dry granular materials down a slope in two dimensions. The grain-scale force interactions are modeled by a visco-elastic normal force and an elastic tangential force with a Coulomb threshold. We will show how it is possible to reproduce all the shapes of the jumps observed in a previous laboratory study: diffuse versus steep jumps and compressible versus incompressible jumps. Moreover, we will discuss the additional measurements that can be done thanks to discrete element modelling.

  18. Computational domain discretization in numerical analysis of flow within granular materials

    Sosnowski, Marcin

    2018-06-01

    The discretization of computational domain is a crucial step in Computational Fluid Dynamics (CFD) because it influences not only the numerical stability of the analysed model but also the agreement of obtained results and real data. Modelling flow in packed beds of granular materials is a very challenging task in terms of discretization due to the existence of narrow spaces between spherical granules contacting tangentially in a single point. Standard approach to this issue results in a low quality mesh and unreliable results in consequence. Therefore the common method is to reduce the diameter of the modelled granules in order to eliminate the single-point contact between the individual granules. The drawback of such method is the adulteration of flow and contact heat resistance among others. Therefore an innovative method is proposed in the paper: single-point contact is extended to a cylinder-shaped volume contact. Such approach eliminates the low quality mesh elements and simultaneously introduces only slight distortion to the flow as well as contact heat transfer. The performed analysis of numerous test cases prove the great potential of the proposed method of meshing the packed beds of granular materials.

  19. Gravity-driven granular flow in a silo: Characterizing local forces and rearrangements

    Thackray Emma

    2017-01-01

    Full Text Available While the gravity-driven flow of a granular material in a silo geometry can be modeled by the Beverloo equation, the mesoscale-level particle rearrangements and interactions that drive this flow are not wellunderstood. We have constructed a quasi-two-dimensional system of bidisperse, millimeter-scale disks with photoelastic properties that make force networks within the material visible. The system is contained in an acrylic box with an adjustable bottom opening. We can approach the clogging transition by adjusting this opening. By placing the system between cross-polarizers, we can obtain high-speed video of this system during flow, and extract intensity signals that can be used to identify and quantify localized, otherwise indeterminate forces. We can simultaneously track individual particle motions, which can be used to identify shear transformation zones in the system. In this paper, we present our results thus far.

  20. The Rolling Transition in a Granular Flow along a Rotating Wall

    Aurélie Le Quiniou

    2011-11-01

    Full Text Available The flow of a dry granular material composed of spherical particles along a rotating boundary has been studied by the discrete element method (DEM. This type of flow is used, among others, as a process to spread particles. The flow consists of several phases. A compression phase along the rotating wall is followed by an elongation of the flow along the same boundary. Eventually, the particles slide or roll independently along the boundary. We show that the main motion of the flow can be characterized by a complex deformation rate of traction/compression and shear. We define numerically an effective friction coefficient of the flow on the scale of the continuum and show a strong decrease of this effective friction beyond a certain critical friction coefficient μ*. We correlate this phenomenon with the apparition of a new transition from a sliding regime to a rolling without sliding regime that we called the rolling transition; this dynamic transition is controlled by the value of the friction coefficient between the particle and the wall. We show that the spherical shape for the particles may represent an optimum for the flow in terms of energetic.

  1. Discharge flow of a granular media from a silo: effect of the packing fraction and of the hopper angle

    Benyamine, Mebirika; Aussillous, Pascale; Dalloz-Dubrujeaud, Blanche

    2017-06-01

    Silos are widely used in the industry. While empirical predictions of the flow rate, based on scaling laws, have existed for more than a century (Hagen 1852, translated in [1] - Beverloo et al. [2]), recent advances have be made on the understanding of the control parameters of the flow. In particular, using continuous modeling together with a mu(I) granular rheology seem to be successful in predicting the flow rate for large numbers of beads at the aperture (Staron et al.[3], [4]). Moreover Janda et al.[5] have shown that the packing fraction at the outlet plays an important role when the number of beads at the apeture decreases. Based on these considerations, we have studied experimentally the discharge flow of a granular media from a rectangular silo. We have varied two main parameters: the angle of the hopper, and the bulk packing fraction of the granular material by using bidisperse mixtures. We propose a simple physical model to describe the effect of these parameters, considering a continuous granular media with a dilatancy law at the outlet. This model predicts well the dependance of the flow rate on the hopper angle as well as the dependance of the flow rate on the fine mass fraction of a bidisperse mixture.

  2. Simulation of the effect of defence structures on granular flows using SPH

    P. Lachamp

    2002-01-01

    Full Text Available This paper presents the SPH (Smoothed Particles Hydrodynamics numerical method adapted to complex rheology and free surface flow. It has been developed to simulate the local effect of a simple obstacle on a granular flow. We have introduced this specific rheology to the classical formalism of the method and thanks to experimental devices, we were able to validate the results. Two viscosity values have been simultaneously computed to simulate "plugs" and "dead zone" with the same code. First, some experiments have been done on a simple inclined slope to show the accuracy of the numerical results. We have fixed the mass flow rate to see the variations of the flow depth according to the channel slope. Then we put a weir to block the flow and we analysed the dependence between the obstacle height and the length of influence upstream from the obstacle. After having shown that numerical results were consistent, we have studied speed profiles and pressure impact on the structure. Also results with any topography will be presented. This will have a great interest to study real flow over natural topography while using the model for decision help.

  3. Implementation and Re nement of a Comprehensive Model for Dense Granular Flows

    Sundaresan, Sankaran [The Trustees Of Princeton University, Princeton, NJ (United States)

    2015-09-30

    Dense granular ows are ubiquitous in both natural and industrial processes. They manifest three di erent ow regimes, each exhibiting its own dependence on solids volume fraction, shear rate, and particle-level properties. This research project sought to develop continuum rheological models for dense granular ows that bridges multiple regimes of ow, implement them in open-source platforms for gas-particle ows and perform test simulations. The rst phase of the research covered in this project involved implementation of a steady- shear rheological model that bridges quasi-static, intermediate and inertial regimes of ow into MFIX (Multiphase Flow with Interphase eXchanges - a general purpose computer code developed at the National Energy Technology Laboratory). MFIX simulations of dense granular ows in hourglass-shaped hopper were then performed as test examples. The second phase focused on formulation of a modi ed kinetic theory for frictional particles that can be used over a wider range of particle volume fractions and also apply for dynamic, multi- dimensional ow conditions. To guide this work, simulations of simple shear ows of identical mono-disperse spheres were also performed using the discrete element method. The third phase of this project sought to develop and implement a more rigorous treatment of boundary e ects. Towards this end, simulations of simple shear ows of identical mono-disperse spheres con ned between parallel plates were performed and analyzed to formulate compact wall boundary conditions that can be used for dense frictional ows at at frictional boundaries. The fourth phase explored the role of modest levels of cohesive interactions between particles on the dense phase rheology. The nal phase of this project focused on implementation and testing of the modi ed kinetic theory in MFIX and running bin-discharge simulations as test examples.

  4. DEM GPU studies of industrial scale particle simulations for granular flow civil engineering applications

    Pizette, Patrick; Govender, Nicolin; Wilke, Daniel N.; Abriak, Nor-Edine

    2017-06-01

    The use of the Discrete Element Method (DEM) for industrial civil engineering industrial applications is currently limited due to the computational demands when large numbers of particles are considered. The graphics processing unit (GPU) with its highly parallelized hardware architecture shows potential to enable solution of civil engineering problems using discrete granular approaches. We demonstrate in this study the pratical utility of a validated GPU-enabled DEM modeling environment to simulate industrial scale granular problems. As illustration, the flow discharge of storage silos using 8 and 17 million particles is considered. DEM simulations have been performed to investigate the influence of particle size (equivalent size for the 20/40-mesh gravel) and induced shear stress for two hopper shapes. The preliminary results indicate that the shape of the hopper significantly influences the discharge rates for the same material. Specifically, this work shows that GPU-enabled DEM modeling environments can model industrial scale problems on a single portable computer within a day for 30 seconds of process time.

  5. Instability-induced ordering, universal unfolding and the role of gravity in granular Couette flow

    Alam, Meheboob; Arakeri, V. H.; Nott, P. R.; Goddard, J. D.; Herrmann, H. J.

    2005-01-01

    Linear stability theory and bifurcation analysis are used to investigate the role of gravity in shear-band formation in granular Couette flow, considering a kinetic-theory rheological model. We show that the only possible state, at low shear rates, corresponds to a "plug" near the bottom wall, in which the particles are densely packed and the shear rate is close to zero, and a uniformly sheared dilute region above it. The origin of such plugged states is shown to be tied to the spontaneous symmetry-breaking instabilities of the gravity-free uniform shear flow, leading to the formation of ordered bands of alternating dilute and dense regions in the transverse direction, via an infinite hierarchy of pitchfork bifurcations. Gravity plays the role of an "imperfection", thus destroying the "perfect" bifurcation structure of uniform shear. The present bifurcation problem admits universal unfolding of pitchfork bifurcations which subsequently leads to the formation of a sequence of a countably infinite number of "isolas", with the solution structures being a modulated version of their gravity-free counterpart. While the solution with a plug near the bottom wall looks remarkably similar to the shear-banding phenomenon in dense slow granular Couette flows, a "floating" plug near the top wall is also a solution of these equations at high shear rates. A two-dimensional linear stability analysis suggests that these floating plugged states are unstable to long-wave travelling disturbances.The unique solution having a bottom plug can also be unstable to long waves, but remains stable at sufficiently low shear rates. The implications and realizability of the present results are discussed in the light of shear-cell experiments under "microgravity" conditions.

  6. Fundamental changes of granular flows dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments.

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2014-05-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect

  7. In situ bioremediation: A network model of diffusion and flow in granular porous media

    Griffiths, S.K.; Nilson, R.H.; Bradshaw, R.W.

    1997-04-01

    In situ bioremediation is a potentially expedient, permanent and cost- effective means of waste site decontamination. However, permeability reductions due to the transport and deposition of native fines or due to excessive microorganism populations may severely inhibit the injection of supplemental oxygen in the contamination zone. To help understand this phenomenon, we have developed a micro-mechanical network model of flow, diffusion and particle transport in granular porous materials. The model differs from most similar models in that the network is defined by particle positions in a numerically-generated particle array. The model is thus widely applicable to computing effective transport properties for both ordered and realistic random porous media. A laboratory-scale apparatus to measure permeability reductions has also been designed, built and tested.

  8. Effect of Bed Depth on Granular Flow and Homogenization in a Vertical Bladed Mixer via Discrete Element Method

    Barczi, T.; Trávníčková, Tereza; Havlica, Jaromír; Kohout, M.

    2015-01-01

    Roč. 38, č. 7 (2015), s. 1195-1202 ISSN 0930-7516 R&D Projects: GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 Keywords : granular mixing * DEM * flow patterns Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.385, year: 2015

  9. Self-Synchronization of Numerical Granular Flows: A Key to Musical Sands?

    Staron, L.

    2011-12-01

    In some rare circumstances, sand flows at the surface of dunes are able to produce a loud sound known as "the song of dunes". The complex mechanisms at the source of these singing properties are far from fully understood. In this study, granular flows are simulated in two dimensions using the discrete Contact Dynamics algorithm. We show that the motion of grains at the surface of the flows exhibits a well-defined oscillation, the frequency of which is not described by the natural frequencies of the system, and does not depend on the rigid or erodible bottom condition. To explain this oscillation, we propose a simple synchronization model based on the existence of coherent structures, or clusters, at the surface of the flow, which yields successful prediction of the numerically observed frequencies. Our analysis gives consistent results when compared with field data from booming dunes, offers a possible explanation for the field observation of sound-generation velocity threshold, and provides new keys to the understanding of musical sands.

  10. Effect of particle stiffness on contact dynamics and rheology in a dense granular flow

    Bharathraj, S.; Kumaran, V.

    2018-01-01

    Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold law should be applicable only in the instantaneous collision regime, where the time between collisions is much larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that there is a rheological threshold between a particle stiffness of 104-105 for the linear contact model and 105-106 for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate) is valid and below which there is a power-law rheology, where all components of the stress and the granular temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle below the rheological threshold. The distribution functions for the interparticle forces and contact energies are also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to 107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows. The Bagnold rheology applies for both the ordered and disordered states, even though

  11. Concentration profiles in the wake of a sphere buried in a granular bed through which fluid flows

    Guedes de Carvalho, J.R.F.; Delgado, J.M.P.Q.; Alves, M.A.

    2005-01-01

    The concentration distribution in the wake of a soluble sphere immersed in a granular bed of inerts has been obtained numerically, for transport by both advection and diffusion/dispersion. Fluid flow in the granular bed around the sphere was assumed to follow Darcy's law and, at each point, dispersion of solute was considered in both the cross-stream and stream-wise directions. The elliptic PDE equation, resulting from a differential material balance on the solute, has been solved numerically over a wide range of values of the relevant parameters. (authors)

  12. Concentration profiles in the wake of a sphere buried in a granular bed through which fluid flows

    Guedes de Carvalho, J.R.F.; Delgado, J.M.P.Q.; Alves, M.A. [Porto Univ., Dpet. de Engenharia Quimica, Faculdade de Engenharia (Portugal)

    2005-07-01

    The concentration distribution in the wake of a soluble sphere immersed in a granular bed of inerts has been obtained numerically, for transport by both advection and diffusion/dispersion. Fluid flow in the granular bed around the sphere was assumed to follow Darcy's law and, at each point, dispersion of solute was considered in both the cross-stream and stream-wise directions. The elliptic PDE equation, resulting from a differential material balance on the solute, has been solved numerically over a wide range of values of the relevant parameters. (authors)

  13. An Investigation of Parallel Post-Laminar Flow through Coarse Granular Porous Media with the Wilkins Equation

    Ashes Banerjee

    2018-02-01

    Full Text Available Behaviour of flow resistance with velocity is still undefined for post-laminar flow through coarse granular media. This can cause considerable errors during flow measurements in situations like rock fill dams, water filters, pumping wells, oil and gas exploration, and so on. Keeping the non-deviating nature of Wilkins coefficients with the hydraulic radius of media in mind, the present study further explores their behaviour to independently varying media size and porosity, subjected to parallel post-laminar flow through granular media. Furthermore, an attempt is made to simulate the post-laminar flow conditions with the help of a Computational Fluid Dynamic (CFD Model in ANSYS FLUENT, since conducting large-scale experiments are often costly and time-consuming. The model output and the experimental results are found to be in good agreement. Percentage deviations between the experimental and numerical results are found to be in the considerable range. Furthermore, the simulation results are statistically validated with the experimental results using the standard ‘Z-test’. The output from the model advocates the importance and applicability of CFD modelling in understanding post-laminar flow through granular media.

  14. Capturing 2D transient surface data of granular flows against obstacles with an RGB-D sensor

    Caviedes-Voullieme, Daniel; Juez, Carmelo; Murillo, Javier; Garcia-Navarro, Pilar

    2014-05-01

    Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field.

  15. Analysis and Modeling of Structure Formation in Granular and Fluid-Solid Flows

    Murphy, Eric

    Granular and multiphase flows are encountered in a number of industrial processes with particular emphasis in this manuscript given to the particular applications in cement pumping, pneumatic conveying, fluid catalytic cracking, CO2 capture, and fast pyrolysis of bio-materials. These processes are often modeled using averaged equations that may be simulated using computational fluid dynamics. Closure models are then required that describe the average forces that arise from both interparticle interactions, e.g. shear stress, and interphase interactions, such as mean drag. One of the biggest hurdles to this approach is the emergence of non-trivial spatio-temporal structures in the particulate phase, which can significantly modify the qualitative behavior of these forces and the resultant flow phenomenology. For example, the formation of large clusters in cohesive granular flows is responsible for a transition from solid-like to fluid-like rheology. Another example is found in gas-solid systems, where clustering at small scales is observed to significantly lower in the observed drag. Moreover, there remains the possibility that structure formation may occur at all scales, leading to a lack of scale separation required for traditional averaging approaches. In this context, several modeling problems are treated 1) first-principles based modeling of the rheology of cement slurries, 2) modeling the mean solid-solid drag experienced by polydisperse particles undergoing segregation, and 3) modeling clustering in homogeneous gas-solid flows. The first and third components are described in greater detail. In the study on the rheology of cements, several sub-problems are introduced, which systematically increase in the number and complexity of interparticle interactions. These interparticle interactions include inelasticity, friction, cohesion, and fluid interactions. In the first study, the interactions between cohesive inelastic particles was fully characterized for the

  16. Startup and oxygen concentration effects in a continuous granular mixed flow autotrophic nitrogen removal reactor.

    Varas, Rodrigo; Guzmán-Fierro, Víctor; Giustinianovich, Elisa; Behar, Jack; Fernández, Katherina; Roeckel, Marlene

    2015-08-01

    The startup and performance of the completely autotrophic nitrogen removal over nitrite (CANON) process was tested in a continuously fed granular bubble column reactor (BCR) with two different aeration strategies: controlling the oxygen volumetric flow and oxygen concentration. During the startup with the control of oxygen volumetric flow, the air volume was adjusted to 60mL/h and the CANON reactor had volumetric N loadings ranging from 7.35 to 100.90mgN/Ld with 36-71% total nitrogen removal and high instability. In the second stage, the reactor was operated at oxygen concentrations of 0.6, 0.4 and 0.2mg/L. The best condition was 0.2 mgO2/L with a total nitrogen removal of 75.36% with a CANON reactor activity of 0.1149gN/gVVSd and high stability. The feasibility and effectiveness of CANON processes with oxygen control was demonstrated, showing an alternative design tool for efficiently removing nitrogen species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A soft-rigid contact model of MPM for granular flow impact on retaining structures

    Li, Xinpo; Xie, Yanfang; Gutierrez, Marte

    2018-02-01

    Protective measures against hazards associated with rapid debris avalanches include a variety of retaining structures such as rock/boulder fences, gabions, earthfill barriers and retaining walls. However, the development of analytical and numerical methods for the rational assessment of impact force generated by granular flows is still a challenge. In this work, a soft-rigid contact model is built under the coding framework of MPM which is a hybrid method with Eulerian-Lagrangian description. The soft bodies are discretized into particles (material points), and the rigid bodies are presented by rigid node-based surfaces. Coulomb friction model is used to implement the modeled contact mechanics, and a velocity-dependent friction coefficient is coupled into the model. Simulations of a physical experiment show that the peak and residual value of impact forces are well captured by the MPM model. An idealized scenario of debris avalanche flow down a hillslope and impacting on a retaining wall are analyzed using the MPM model. The calculated forces can provide a quantitative estimate from which mound design could proceed for practical implementation in the field.

  18. Granular flow in static mixers by coupled DEM/CFD approach

    Pezo Lato

    2016-01-01

    Full Text Available The mixing process greatly influence the mixing efficiency, as well as the quality and the price of the intermediate and/or the final product. Static mixer is used for premixing action before the main mixing process, for significant reduction of mixing time and energy consumption. This type of premixing action is not investigated in detail in the open literature. In this article, the novel numerical approach called Discrete Element Method is used for modelling of granular flow in multiple static mixer applications (1 - 3 Komax or Ross mixing elements were utilized, while the Computational Fluid Dynamic method was chosen for fluid flow modelling, using the Eulerian multiphase model. The main aim of this article is to predict the behaviour of granules being gravitationally transported in different mixer configuration and to choose the best configuration of the mixer taking into account the total particle path, the number of mixing elements and the quality of the obtained mixture. The results of the numerical simulations in the static mixers were compared to experimental results, the mixing quality is examined by RSD (relative standard deviation criterion, and the effects on the mixer type and the number of mixing elements on mixing process were studied. The effects of the mixer type and the number of mixing elements on mixing process were studied using analysis of variance (ANOVA. Mathematical modelling is used for optimization of number of Ross and Komax segments in mixer in order to gain desirable mixing results. [Projekat Ministarstva nauke Republike Srbije, br. TR31055

  19. The Effect of Rotational Speed on Granular Flow in a Vertical Bladed Mixer

    Havlica, Jaromír; Jirounková, K.; Trávníčková, Tereza; Kohout, M.

    2015-01-01

    Roč. 280, AUG (2015), s. 180-190 ISSN 0032-5910 R&D Projects: GA ČR(CZ) GAP105/12/0664 Institutional support: RVO:67985858 Keywords : DEM * granular mixing * granular dynamics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.759, year: 2015

  20. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Li, Yanheng; Ji, Wei

    2013-01-01

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  1. Acceleration of coupled granular flow and fluid flow simulations in pebble bed energy systems

    Li, Yanheng, E-mail: liy19@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States); Ji, Wei, E-mail: jiw2@rpi.edu [Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY (United States)

    2013-05-15

    Highlights: ► Fast simulation of coupled pebble flow and coolant flow in PBR systems is studied. ► Dimension reduction based on axisymmetric geometry shows significant speedup. ► Relaxation of coupling frequency is investigated and an optimal range is determined. ► A total of 80% efficiency increase is achieved by the two fast strategies. ► Fast strategies can be applied to simulating other general fluidized bed systems. -- Abstract: Fast and accurate approaches to simulating the coupled particle flow and fluid flow are of importance to the analysis of large particle-fluid systems. This is especially needed when one tries to simulate pebble flow and coolant flow in Pebble Bed Reactor (PBR) energy systems on a routine basis. As one of the Generation IV designs, the PBR design is a promising nuclear energy system with high fuel performance and inherent safety. A typical PBR core can be modeled as a particle-fluid system with strong interactions among pebbles, coolants and reactor walls. In previous works, the coupled Discrete Element Method (DEM)-Computational Fluid Dynamics (CFD) approach has been investigated and applied to modeling PBR systems. However, the DEM-CFD approach is computationally expensive due to large amounts of pebbles in PBR systems. This greatly restricts the PBR analysis for the real time prediction and inclusion of more physics. In this work, based on the symmetry of the PBR geometry and the slow motion characteristics of the pebble flow, two acceleration strategies are proposed. First, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without loss of accuracy. Pebble flow is simulated by a full 3D DEM, while the coolant flow field is calculated with a 2D CFD simulation by averaging variables along the annular direction in the cylindrical and annular geometries. Second, based on the slow motion of pebble flow, the impact of the coupling frequency on the computation accuracy and efficiency is

  2. Kinematics and statistics of dense, slow granular flow through vertical channels

    Ananda, K. S.; Moka, Sudheshna; Nott, Prabhu R.

    We have investigated the flow of dry granular materials through vertical channels in the regime of dense slow flow using video imaging of the particles adjacent to a transparent wall. Using an image processing technique based on particle tracking velocimetry, the video movies were analysed to obtain the velocities of individual particles. Experiments were conducted in two- and three-dimensional channels. In the latter, glass beads and mustard seeds were used as model granular materials, and their translational velocities were measured. In the former, aluminium disks with a dark diametral stripe were used and their translational velocities and spin were measured. Experiments in the three-dimensional channels were conducted for a range of the channel width W, and for smooth and rough sidewalls. As in earlier studies, we find that shearing takes place predominantly in thin layers adjacent to the walls, while the rest of the material appears to move as a plug. However, there are large velocity fluctuations even in the plug, where the macroscopic deformation rate is negligibly small. The thickness of the shear layer, scaled by the particle diameter dp, increases weakly with W/dp. The experimental data for the velocity field are in good agreement with the Cosserat plasticity model proposed recently. We also measured the mean spin of the particles in the two-dimensional channel, and its deviation from half the vorticity. There is a clear, measurable deviation, which too is in qualitative agreement with the Cosserat plasticity model. The statistics of particle velocity and spin fluctuations in the two-dimensional channel were analysed by determining their probability distribution function, and their spatial and temporal correlation. They were all found to be broadly similar to previous observations for three-dimensional channels, but some differences are evident. The spatial correlation of the velocity fluctuations are much stronger in the two-dimensional channel, implying

  3. Resolved granular debris-flow simulations with a coupled SPH-DCDEM model

    Birjukovs Canelas, Ricardo; Domínguez, José M.; Crespo, Alejandro J. C.; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2016-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research (Takahashi, 2007 and references therein). A complete description of the internal processes of a debris-flow is however still an elusive achievement, explained by the difficulty of accurately measuring important quantities in these flows and developing a comprehensive, generalized theoretical framework capable of describing them. This work addresses the need for a numerical model applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts. This corresponds to a brute-force approach: by applying simple interaction laws at local scales the macro-scale properties of the flow should be recovered by upscaling. This methodology effectively bypasses the complexity of modelling the intermediate scales by resolving them directly. The only caveat is the need of high performance computing, a demanding but engaging research challenge. The DualSPHysics meshless numerical implementation, based on Smoothed Particle Hydrodynamics (SPH), is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The model numerically solves the Navier-Stokes and continuity equations for the liquid phase and Newton's motion equations for solid bodies. The interactions between solids are modelled with classical DEM approaches (Kruggel-Emden et al, 2007). Among other validation tests, an experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced trough a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle undergoing tens of possible contacts, several thousand time-evolving contacts are efficiently treated

  4. Textural evidence for jamming and dewatering of a sub-surface, fluid-saturated granular flow

    Sherry, T. J.; Rowe, C. D.; Kirkpatrick, J. D.; Brodsky, E. E.

    2011-12-01

    Sand injectites are spectacular examples of large-scale granular flows involving migration of hundreds of cubic meters of sand slurry over hundreds of meters to kilometers in the sub-surface. By studying the macro- and microstructural textures of a kilometer-scale sand injectite, we interpret the fluid flow regimes during emplacement and define the timing of formation of specific textures in the injected material. Fluidized sand sourced from the Santa Margarita Fm., was injected upward into the Santa Cruz Mudstone, Santa Cruz County, California. The sand injectite exposed at Yellow Bank Beach records emplacement of both hydrocarbon and aqueous sand slurries. Elongate, angular mudstone clasts were ripped from the wall rock during sand migration, providing evidence for high velocity, turbid flow. However, clast long axis orientations are consistently sub-horizontal suggesting the slurry transitioned to a laminar flow as the flow velocity decreased in the sill-like intrusion. Millimeter to centimeter scale laminations are ubiquitous throughout the sand body and are locally parallel to the mudstone clast long axes. The laminations are distinct in exposure because alternating layers are preferentially cemented with limonite sourced from later groundwater infiltration. Quantitative microstructural analyses show that the laminations are defined by subtle oscillations in grain alignment between limonite and non-limonite stained layers. Grain packing, size and shape distributions do not vary. The presence of limonite in alternating layers results from differential infiltration of groundwater, indicating permeability changes between the layers despite minimal grain scale differences. Convolute dewatering structures deform the laminations. Dolomite-cemented sand, a signature of hydrocarbon saturation, forms irregular bodies that cross-cut the laminations and dewatering structures. Laminations are not formed in the dolomite-cemented sand. The relative viscosity difference

  5. Fundamental change of granular flows dynamics, deposition and erosion processes at sufficiently high slope angles: insights from laboratory experiments

    Farin, M.; Mangeney, A.; Roche, O.

    2013-12-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On slopes greater than θc, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect on

  6. VELOCITY FIELD COMPUTATION IN VIBRATED GRANULAR MEDIA USING AN OPTICAL FLOW BASED MULTISCALE IMAGE ANALYSIS METHOD

    Johan Debayle

    2011-05-01

    Full Text Available An image analysis method has been developed in order to compute the velocity field of a granular medium (sand grains, mean diameter 600 μm submitted to different kinds of mechanical stresses. The differential method based on optical flow conservation consists in describing a dense motion field with vectors associated to each pixel. A multiscale, coarse-to-fine, analytical approach through tailor sized windows yields the best compromise between accuracy and robustness of the results, while enabling an acceptable computation time. The corresponding algorithmis presented and its validation discussed through different tests. The results of the validation tests of the proposed approach show that the method is satisfactory when attributing specific values to parameters in association with the size of the image analysis window. An application in the case of vibrated sand has been studied. An instrumented laboratory device provides sinusoidal vibrations and enables external optical observations of sand motion in 3D transparent boxes. At 50 Hz, by increasing the relative acceleration G, the onset and development of two convective rolls can be observed. An ultra fast camera records the grain avalanches, and several pairs of images are analysed by the proposed method. The vertical velocity profiles are deduced and allow to precisely quantify the dimensions of the fluidized region as a function of G.

  7. Incorporation of velocity-dependent restitution coefficient and particle surface friction into kinetic theory for modeling granular flow cooling.

    Duan, Yifei; Feng, Zhi-Gang

    2017-12-01

    Kinetic theory (KT) has been successfully used to model rapid granular flows in which particle interactions are frictionless and near elastic. However, it fails when particle interactions become frictional and inelastic. For example, the KT is not able to accurately predict the free cooling process of a vibrated granular medium that consists of inelastic frictional particles under microgravity. The main reason that the classical KT fails to model these flows is due to its inability to account for the particle surface friction and its inelastic behavior, which are the two most important factors that need be considered in modeling collisional granular flows. In this study, we have modified the KT model that is able to incorporate these two factors. The inelasticity of a particle is considered by establishing a velocity-dependent expression for the restitution coefficient based on many experimental studies found in the literature, and the particle friction effect is included by using a tangential restitution coefficient that is related to the particle friction coefficient. Theoretical predictions of the free cooling process by the classical KT and the improved KT are compared with the experimental results from a study conducted on an airplane undergoing parabolic flights without the influence of gravity [Y. Grasselli, G. Bossis, and G. Goutallier, Europhys. Lett. 86, 60007 (2009)10.1209/0295-5075/86/60007]. Our results show that both the velocity-dependent restitution coefficient and the particle surface friction are important in predicting the free cooling process of granular flows; the modified KT model that integrates these two factors is able to improve the simulation results and leads to better agreement with the experimental results.

  8. Flow above and within granular media composed of spherical and non-spherical particles - using a 3D numerical model

    Bartzke, Gerhard; Kuhlmann, Jannis; Huhn, Katrin

    2016-04-01

    The entrainment of single grains and, hence, their erosion characteristics are dependent on fluid forcing, grain size and density, but also shape variations. To quantitatively describe and capture the hydrodynamic conditions around individual grains, researchers commonly use empirical approaches such as laboratory flume tanks. Nonetheless, it is difficult with such physical experiments to measure the flow velocities in the direct vicinity or within the pore spaces of sediments, at a sufficient resolution and in a non-invasive way. As a result, the hydrodynamic conditions in the water column, at the fluid-porous interface and within pore spaces of a granular medium of various grain shapes is not yet fully understood. For that reason, there is a strong need for numerical models, since these are capable of quantifying fluid speeds within a granular medium. A 3D-SPH (Smooth Particle Hydrodynamics) numerical wave tank model was set up to provide quantitative evidence on the flow velocities in the direct vicinity and in the interior of granular beds composed of two shapes as a complementary method to the difficult task of in situ measurement. On the basis of previous successful numerical wave tank models with SPH, the model geometry was chosen in dimensions of X=2.68 [m], Y=0.48 [m], and Z=0.8 [m]. Three suites of experiments were designed with a range of particle shape models: (1) ellipsoids with the long axis oriented in the across-stream direction, (2) ellipsoids with the long axis oriented in the along-stream direction, and (3) spheres. Particle diameters ranged from 0.04 [m] to 0.08 [m]. A wave was introduced by a vertical paddle that accelerated to 0.8 [m/s] perpendicular to the granular bed. Flow measurements showed that the flow velocity values into the beds were highest when the grains were oriented across the stream direction and lowest in case when the grains were oriented parallel to the stream, indicating that the model was capable to simulate simultaneously

  9. Three-dimensional granular model of semi-solid metallic alloys undergoing solidification: Fluid flow and localization of feeding

    Sistaninia, M.; Phillion, A.B.; Drezet, J.-M.; Rappaz, M.

    2012-01-01

    A three-dimensional (3-D) granular model which simulates fluid flow within solidifying alloys with a globular microstructure, such as that found in grain refined Al alloys, is presented. The model geometry within a representative volume element (RVE) consists of a set of prismatic triangular elements representing the intergranular liquid channels. The pressure field within the liquid channels is calculated using a finite elements (FEs) method assuming a Poiseuille flow within each channel and flow conservation at triple lines. The fluid flow is induced by solidification shrinkage and openings at grain boundaries due to deformation of the coherent solid. The granular model predictions are validated against bulk data calculated with averaging techniques. The results show that a fluid flow simulation of globular semi-solid materials is able to reproduce both a map of the 3-D intergranular pressure and the localization of feeding within the mushy zone. A new hot cracking sensitivity coefficient is then proposed. Based on a mass balance performed over a solidifying isothermal volume element, this coefficient accounts for tensile deformation of the semi-solid domain and for the induced intergranular liquid feeding. The fluid flow model is then used to calculate the pressure drop in the mushy zone during the direct chill casting of aluminum alloy billets. The predicted pressure demonstrates that deep in the mushy zone where the permeability is low the local pressure can be significantly lower than the pressure predicted by averaging techniques.

  10. A theoretical and numerical study of the flow of granular materials down an inclined plane. [Quarterly progress report, January--March 1995

    Rajagopal, K.R.

    1995-09-01

    The mechanics of the flowing granular materials such as coal, agricultural products, fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the granular materials, and theories developed which can explain the experimentally observed facts. Here we carry out a systematic numerical study of the flow of granular materials down an inclined plane using the models that stem from both the continuum theory approach and the kinetic theory approach. We also look at the existence of solutions, multiplicity and stability of solutions to the governing equations.

  11. Nonlinear theory of nonstationary low Mach number channel flows of freely cooling nearly elastic granular gases.

    Meerson, Baruch; Fouxon, Itzhak; Vilenkin, Arkady

    2008-02-01

    We employ hydrodynamic equations to investigate nonstationary channel flows of freely cooling dilute gases of hard and smooth spheres with nearly elastic particle collisions. This work focuses on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes and employing Lagrangian coordinates, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation becomes exactly soluble, and the solution develops a finite-time density blowup. The blowup has the same local features at singularity as those exhibited by the recently found family of exact solutions of the full set of ideal hydrodynamic equations [I. Fouxon, Phys. Rev. E 75, 050301(R) (2007); I. Fouxon,Phys. Fluids 19, 093303 (2007)]. The heat diffusion, however, always becomes important near the attempted singularity. It arrests the density blowup and brings about previously unknown inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. The ICSs represent exact solutions of the full set of granular hydrodynamic equations. Both the density profile of an ICS and the characteristic relaxation time toward it are determined by a single dimensionless parameter L that describes the relative role of the inelastic energy loss and heat diffusion. At L>1 the intermediate cooling dynamics proceeds as a competition between "holes": low-density regions of the gas. This competition resembles Ostwald

  12. 2D granular flows with the μ(I) rheology and side walls friction: A well-balanced multilayer discretization

    Fernández-Nieto, E. D.; Garres-Díaz, J.; Mangeney, A.; Narbona-Reina, G.

    2018-03-01

    We present here numerical modelling of granular flows with the μ (I) rheology in confined channels. The contribution is twofold: (i) a model to approximate the Navier-Stokes equations with the μ (I) rheology through an asymptotic analysis; under the hypothesis of a one-dimensional flow, this model takes into account side walls friction; (ii) a multilayer discretization following Fernández-Nieto et al. (2016) [20]. In this new numerical scheme, we propose an appropriate treatment of the rheological terms through a hydrostatic reconstruction which allows this scheme to be well-balanced and therefore to deal with dry areas. Based on academic tests, we first evaluate the influence of the width of the channel on the normal profiles of the downslope velocity thanks to the multilayer approach that is intrinsically able to describe changes from Bagnold to S-shaped (and vice versa) velocity profiles. We also check the well-balanced property of the proposed numerical scheme. We show that approximating side walls friction using single-layer models may lead to strong errors. Secondly, we compare the numerical results with experimental data on granular collapses. We show that the proposed scheme allows us to qualitatively reproduce the deposit in the case of a rigid bed (i.e. dry area) and that the error made by replacing the dry area by a small layer of material may be large if this layer is not thin enough. The proposed model is also able to reproduce the time evolution of the free surface and of the flow/no-flow interface. In addition, it reproduces the effect of erosion for granular flows over initially static material lying on the bed. This is possible when using a variable friction coefficient μ (I) but not with a constant friction coefficient.

  13. Force and flow at the onset of drag in plowed granular media.

    Gravish, Nick; Umbanhowar, Paul B; Goldman, Daniel I

    2014-04-01

    We study the transient drag force FD on a localized intruder in a granular medium composed of spherical glass particles. A flat plate is translated horizontally from rest through the granular medium to observe how FD varies as a function of the medium's initial volume fraction, ϕ. The force response of the granular material differs above and below the granular critical state, ϕc, the volume fraction which corresponds to the onset of grain dilatancy. For ϕϕc, FD rapidly rises to a maximum and then decreases over further displacement. The maximum force for ϕ>ϕc increases with increasing drag velocity. In quasi-two-dimensional drag experiments, we use granular particle image velocimetry (PIV) to measure time resolved strain fields associated with the horizontal motion of a plate started from rest. PIV experiments show that the maxima in FD for ϕ>ϕc are associated with maxima in the spatially averaged shear strain field. For ϕ>ϕc the shear strain occurs in a narrow region in front of the plate, a shear band. For ϕϕc, surface particles move only during the formation of the shear band, coincident with the maxima in FD, after which the particles remain immobile until the sheared region reaches the measurement region.

  14. A theoretical and numerical study of the flow of granular materials down an inclined plane. Final report

    Rajagopal, K.R.

    1995-12-31

    The mechanics of the flowing granular materials such as coal, agricultural products, at deal of attention as it has fertilizers, dry chemicals, metal ores, etc. have received a great deal of attention as it has relevance to several important technological problems. Despite wide interest and more than five decades of experimental and theoretical investigations, most aspects of the behavior of flowing granular materials are still not well understood. So Experiments have to be devised which quantify and describe the non-linear behavior of the modular materials, and theories developed which can explain the experimentally observed facts. As many models have been suggested for describing the behavior of granular materials, from both continuum and kinetic theory viewpoints, we proposed to investigate the validity and usefulness of representative models from both the continuum and kinetic theory points of view, by determining the prediction of such a theory, in a representative flow, with respect to existence, non-existence, multiplicity and stability of solutions. The continuum model to be investigated is an outgrowth of a model due to Goodman and Cowin (1971, 1972) and the kinetic theory models being those due to Jenkins and Richman (1985) and Boyle and Massoudi (1989). In this report we present detailed results regarding the same. Interestingly, we find that the predictions of all the theories, in certain parameter space associated with these models, are qualitatively similar. This ofcourse depends on the values assumed for various material parameters in the models, which as yet are unknown, as reliable experiments have not been carried out as yet for their determination.

  15. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  16. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  17. Biodegradation of phenol in batch and continuous flow microbial fuel cells with rod and granular graphite electrodes.

    Moreno, Lyman; Nemati, Mehdi; Predicala, Bernardo

    2018-01-01

    Phenol biodegradation was evaluated in batch and continuous flow microbial fuel cells (MFCs). In batch-operated MFCs, biodegradation of 100-1000 mg L -1 phenol was four to six times faster when graphite granules were used instead of rods (3.5-4.8 mg L -1  h -1 vs 0.5-0.9 mg L -1  h -1 ). Similarly maximum phenol biodegradation rates in continuous MFCs with granular and single-rod electrodes were 11.5 and 0.8 mg L -1  h -1 , respectively. This superior performance was also evident in terms of electrochemical outputs, whereby continuous flow MFCs with granular graphite electrodes achieved maximum current and power densities (3444.4 mA m -3 and 777.8 mW m -3 ) that were markedly higher than those with single-rod electrodes (37.3 mA m -3 and 0.8 mW m -3 ). Addition of neutral red enhanced the electrochemical outputs to 5714.3 mA m -3 and 1428.6 mW m -3 . Using the data generated in the continuous flow MFC, biokinetic parameters including μ m , K S , Y and K e were determined as 0.03 h -1 , 24.2 mg L -1 , 0.25 mg cell (mg phenol) -1 and 3.7 × 10 -4  h -1 , respectively. Access to detailed kinetic information generated in MFC environmental conditions is critical in the design, operation and control of large-scale treatment systems utilizing MFC technology.

  18. A study of energy dissipation and critical speed of granular flow in a rotating cylinder

    Dragomir, Sergiu C.; Sinnott, Mathew D.; Semercigil, S. Eren; Turan, Özden F.

    2014-12-01

    Tuned vibration absorbers may improve the safety of flexible structures which are prone to excessive oscillation magnitudes under dynamic loads. A novel absorber design proposes sloshing of granular material in a rotating cylinder where the granular material is the energy dissipating agent. As the conventional dissipative elements require maintenance due to the nature of their function, the new design may represent a virtually maintenance free alternative. The angular speed of the cylinder containing particles has a critical centrifuging speed, after which particles remain permanently in contact with the walls and there can be no further dissipation. Until the critical speed, however, dissipation increases proportionally with the angular speed. It is then vital to know the value of the critical speed as the limit of dissipation. The focus of the present study is on determination of the critical centrifuge speed. This critical speed is also of practical importance in bulk-material handling rotary mills, such as dryers and crushers. Experiments and numerical simulations, using Discrete Element Method, are used to determine the critical centrifuging speed. In addition, predictions are given and guidelines are offered for the choice of material properties to maximize the energy dissipation. As a result of a parametric study, the coefficient of friction is found to have the greatest significance on the centrifuging speed.

  19. Residence-Time Distributions in Laminar Flows and During the Passage of Granular Solids Through Rotary Kilns

    Beek, W. J.; De Ridder, H. J. [Technische Hogeschool, Delft (Netherlands); Houtman, J. P.W.; Kuiper, D. [Reactor Instituut, Delft (Netherlands)

    1967-06-15

    Data on residence-time distributions are important in the design of apparatus for the chemical industry. Radioactive tracers can be useful in many cases, e.g. where a pulse technique is desired. Two examples are given in which a pulse of radioactive tracer is used. The first example deals with the residence-time distribution of a laminar, Newtonian flow in an annulus. This problem arises especially in the extrusion and injection moulding of polymers and in the coating of wires with plastics. In these cases the fractions of polymer with long residence times may have other properties than the polymer that flows fastest, because the polymerization reaction or the degradation reactions go on during the process. Two difficulties are to be considered: (a) the tracer pulse (a radioactive Au-sol suspended in the liquid used) cannot be distributed over the cross-section in proportion to the local flow velocity, and (b) the outflowing liquid must be sampled discontinuously. Both effects have been studied and corrections are indicated. When these corrections are applied to the measured distribution curve, the result is in fair agreement with the calculated residence-time distribution. The second example considers the residence-time distribution in a granular solid (sand) passing through a rotary kiln. The response was measured at the outlet to a pulse at the inlet of radioactive material (sand impregnated with a solution of radioactive AuCl{sub 3}). When calculating the residence-time distribution from the experimental data, difficulties were encountered because the duration of the pulse was of the same order of magnitude as the average residence time. Considering this, it was found that the axial dispersion of the flow of sand could be described by an effective dispersion coefficient. This dispersion coefficient proved to be very low (order of magnitude 10{sup -5} m{sup 2}/s); hence, in practical situations, the flow of granular material through a rotary kiln may often be

  20. Study of performances, stability and microbial characterization of a Sequencing Batch Biofilter Granular Reactor working at low recirculation flow.

    De Sanctis, Marco; Beccari, Mario; Di Iaconi, Claudio; Majone, Mauro; Rossetti, Simona; Tandoi, Valter

    2013-02-01

    The Sequencing Batch Biofilter Granular Reactor (SBBGR) is a promising wastewater treatment technology characterized by high biomass concentration in the system, good depuration performance and low sludge production. Its main drawback is the high energy consumption required for wastewater recirculation through the reactor bed to ensure both shear stress and oxygen supply. Therefore, the effect of low recirculation flow on the long-term (38 months) performance of a laboratory scale SBBGR was studied. Both the microbial components of the granules, and their main metabolic activities were evaluated (heterotrophic oxidation, nitrification, denitrification, fermentation, sulphate reduction and methanogenesis). The results indicate that despite reduced recirculation, the SBBGR system maintained many of its advantageous characteristics. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Computational investigation of the flow field contribution to improve electricity generation in granular activated carbon-assisted microbial fuel cells

    Zhao, Lei; Li, Jian; Battaglia, Francine; He, Zhen

    2016-11-01

    Microbial fuel cells (MFCs) offer an alternative approach to treat wastewater with less energy input and direct electricity generation. To optimize MFC anodic performance, adding granular activated carbon (GAC) has been proved to be an effective way, most likely due to the enlarged electrode surface for biomass attachment and improved mixing of the flow field. The impact of a flow field on the current enhancement within a porous anode medium (e.g., GAC) has not been well understood before, and thus is investigated in this study by using mathematical modeling of the multi-order Butler-Volmer equation with computational fluid dynamics (CFD) techniques. By comparing three different CFD cases (without GAC, with GAC as a nonreactive porous medium, and with GAC as a reactive porous medium), it is demonstrated that adding GAC contributes to a uniform flow field and a total current enhancement of 17%, a factor that cannot be neglected in MFC design. However, in an actual MFC operation, this percentage could be even higher because of the microbial competition and energy loss issues within a porous medium. The results of the present study are expected to help with formulating strategies to optimize MFC with a better flow pattern design.

  2. Torsional shear flow of granular materials: shear localization and minimum energy principle

    Artoni, Riccardo; Richard, Patrick

    2018-01-01

    The rheological properties of granular matter submitted to torsional shear are investigated numerically by means of discrete element method. The shear cell is made of a cylinder filled by grains which are sheared by a bumpy bottom and submitted to a vertical pressure which is applied at the top. Regimes differing by their strain localization features are observed. They originate from the competition between dissipation at the sidewalls and dissipation in the bulk of the system. The effects of the (i) the applied pressure, (ii) sidewall friction, and (iii) angular velocity are investigated. A model, based on the purely local μ (I)-rheology and a minimum energy principle is able to capture the effect of the two former quantities but unable to account the effect of the latter. Although, an ad hoc modification of the model allows to reproduce all the numerical results, our results point out the need for an alternative rheology.

  3. Preliminary study on aerobic granular biomass formation with aerobic continuous flow reactor

    Yulianto, Andik; Soewondo, Prayatni; Handajani, Marissa; Ariesyady, Herto Dwi

    2017-03-01

    A paradigm shift in waste processing is done to obtain additional benefits from treated wastewater. By using the appropriate processing, wastewater can be turned into a resource. The use of aerobic granular biomass (AGB) can be used for such purposes, particularly for the processing of nutrients in wastewater. During this time, the use of AGB for processing nutrients more reactors based on a Sequencing Batch Reactor (SBR). Studies on the use of SBR Reactor for AGB demonstrate satisfactory performance in both formation and use. SBR reactor with AGB also has been applied on a full scale. However, the use use of SBR reactor still posses some problems, such as the need for additional buffer tank and the change of operation mode from conventional activated sludge to SBR. This gives room for further reactor research with the use of a different type, one of which is a continuous reactor. The purpose of this study is to compare AGB formation using continuous reactor and SBR with same operation parameter. Operation parameter are Organic Loading Rate (OLR) set to 2,5 Kg COD/m3.day with acetate as substrate, aeration rate 3 L/min, and microorganism from Hospital WWTP as microbial source. SBR use two column reactor with volumes 2 m3, and continuous reactor uses continuous airlift reactor, with two compartments and working volume of 5 L. Results from preliminary research shows that although the optimum results are not yet obtained, AGB can be formed on the continuous reactor. When compared with AGB generated by SBR, then the characteristics of granular diameter showed similarities, while the sedimentation rate and Sludge Volume Index (SVI) characteristics showed lower yields.

  4. Direct numerical simulation of granular flows with fluid; Simulation numerique directe d'ecoulements granulaires en presence de fluide

    Komiwes, V.

    1999-09-01

    Numerical models applied to simulation of granular flow with fluid are developed. The physical model selected to describe particles flow is a discrete approach. Particle trajectories are calculated by the Newton law and collision is describe by a soft-sphere approach. The fluid flow is modelled by Navier-Stokes equations. The modelling of the momentum transfer depends on the resolution scale: for a scale of the order of the particle diameter, it is modelled by a drag-law and for a scale smaller than the particle diameter, it is directly calculated by stress tensor computation around particles. The direct model is used to find representative elementary volume and prove the local character of the Ergun's law. This application shows the numerical (mesh size), physical (Reynolds number) and computational (CPU time and memory consumptions) limitations. The drag law model and the direct model are validated with analytical and empirical solutions and compared. For the two models, the CPU time and the memory consumptions are discussed. The drag law model is applied to the simulation of gas-solid dense fluidized-beds. In the case of uniform gas distribution, the fluidized-bed simulation heights are compared to experimental data for particle of group A and B of the Geldart classification. (author)

  5. Formation and mechanics of granular waves in gravity and shallow overland flow

    Sediment transport in overland flow is a highly complex process involving many properties relative to the flow regime characteristics, soil surface conditions, and type of sediment. From a practical standpoint, most sediment transport studies are concerned with developing relationships of rates of s...

  6. Compaction and flow of cohesive granular media assisted by vibrations: application to filling press molds

    Mathonnet, Jean-Eric

    2016-01-01

    In the framework of the ASTRID project, the nuclear fuel production process by powder metallurgy, for Fast Neutron Reactors, is revisited in order to be simplified. In particular, we seek to remove the mechanical granulation step of the powder which gives a good flow behavior during the filling of press molds. The aim is to reach a spontaneous and quick powder flow through a hole in which the powder does not flow without external energy. Furthermore, the powder alternates between flow phases during the filling of press molds, and non-flow phases during the compaction and ejection of the pellet. We hence apply horizontal vibrations to ensure the flow of the powder through the press mold. The vibrations help the powder to flow and increase the production rates. However, they have the disadvantage to compact the powder and delay the future flows, during the non-flow phases. The art of filling the press mold assisted by vibrations is to master/control the ambivalent nature of the vibrations. The remarkable packing fraction evolution of actinides powders, during the non-flow phases, allows us to define a simple 1D stochastic model to understand the compaction kinetics. The comparison of the stochastic model with the empirical compaction laws found in the literature helps us to identify the physical meaning of fitting parameters proposed by the empirical models. Furthermore, we have also proposed a new compaction law with two-stretched exponentials. This new law not only reflects the compaction kinetics of actinides powders, but also of all the compaction data we found in the literature. (author) [fr

  7. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An accurate tangential force-displacement model for granular-flow simulations: Contacting spheres with plastic deformation, force-driven formulation

    Vu-Quoc, L.; Lesburg, L.; Zhang, X.

    2004-01-01

    An elasto-plastic frictional tangential force-displacement (TFD) model for spheres in contact for accurate and efficient granular-flow simulations is presented in this paper; the present TFD is consistent with the elasto-plastic normal force-displacement (NFD) model presented in [ASME Journal of Applied Mechanics 67 (2) (2000) 363; Proceedings of the Royal Society of London, Series A 455 (1991) (1999) 4013]. The proposed elasto-plastic frictional TFD model is accurate, and is validated against non-linear finite-element analyses involving plastic flows under both loading and unloading conditions. The novelty of the present TFD model lies in (i) the additive decomposition of the elasto-plastic contact area radius into an elastic part and a plastic part, (ii) the correction of the particles' radii at the contact point, and (iii) the correction of the particles' elastic moduli. The correction of the contact-area radius represents an effect of plastic deformation in colliding particles; the correction of the radius of curvature represents a permanent indentation after impact; the correction of the elastic moduli represents a softening of the material due to plastic flow. The construction of both the present elasto-plastic frictional TFD model and its consistent companion, the elasto-plastic NFD model, parallels the formalism of the continuum theory of elasto-plasticity. Both NFD and TFD models form a coherent set of force-displacement (FD) models not available hitherto for granular-flow simulations, and are consistent with the Hertz, Cattaneo, Mindlin, Deresiewicz contact mechanics theory. Together, these FD models will allow for efficient simulations of granular flows (or granular gases) involving a large number of particles

  9. Mathematical models of granular matter

    Mariano, Paolo; Giovine, Pasquale

    2008-01-01

    Granular matter displays a variety of peculiarities that distinguish it from other appearances studied in condensed matter physics and renders its overall mathematical modelling somewhat arduous. Prominent directions in the modelling granular flows are analyzed from various points of view. Foundational issues, numerical schemes and experimental results are discussed. The volume furnishes a rather complete overview of the current research trends in the mechanics of granular matter. Various chapters introduce the reader to different points of view and related techniques. New models describing granular bodies as complex bodies are presented. Results on the analysis of the inelastic Boltzmann equations are collected in different chapters. Gallavotti-Cohen symmetry is also discussed.

  10. Numerical Investigation of Monodisperse Granular Flow Through an Inclined Rotating Chute

    Shirsath, Sushil S.; Padding, J.T.; Kuipers, J.A.M.; Peeters, Tim W.J.; Clercx, H.J.H.

    2014-01-01

    A discrete element model of spherical glass particles flowing down a rotating chute is validated against high quality experimental data. The simulations are performed in a corotating frame of reference, taking into account Coriolis and centrifugal forces. In view of future extensions aimed at

  11. Modelling of granular flows through inclined rotating chutes using a discrete particle model

    Shirsath, S.S.; Padding, J.T.; Clercx, H.J.H.; Kuipers, J.A.M.

    2012-01-01

    In blast furnaces, particles like coke, sinter and pellets enter from a hopper and are distributed on the burden surface by a rotating chute. Such particulate flows suffer occasionally from chocking and particle segregation at bottlenecks, which hinders efficient throughflow. To get a more

  12. Memory of jamming – multiscale flow in soft and granular matter

    Kumar, Nishant; Luding, Stefan

    2015-01-01

    Soft, disordered, micro-structured materials are ubiquitous in nature and industry, and are different from ordinary fluids or solids, with unusual, interesting static and flow properties. The transition from fluid to solid - at the so-called jamming density - features a multitude of complex

  13. Granular patterns

    Aranson, Igor S

    2009-01-01

    This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.

  14. Improved Characterization of Groundwater Flow in Heterogeneous Aquifers Using Granular Polyacrylamide (PAM) Gel as Temporary Grout

    Klepikova, Maria V.; Roques, Clement; Loew, Simon; Selker, John

    2018-02-01

    The range of options for investigation of hydraulic behavior of aquifers from boreholes has been limited to rigid, cumbersome packers, and inflatable sleeves. Here we show how a new temporary borehole sealing technique using soft grains of polyacrylamide (PAM) gel as a sealing material can be used to investigate natural groundwater flow dynamics and discuss other possible applications of the technology. If no compressive stress is applied, the gel packing, with a permeability similar to open gravel, suppresses free convection, allowing for local temperature measurements and chemical sampling through free-flowing gel packing. Active heating laboratory and field experiments combined with temperature measurements along fiber optic cables were conducted in water-filled boreholes and boreholes filled with soft grains of polyacrylamide gel. The gel packing is shown to minimize the effect of free convection within the well column and enable detection of thin zones of relatively high or low velocity in a highly transmissive alluvial aquifer, thus providing a significant improvement compared to temperature measurements in open boreholes. Laboratory experiments demonstrate that under modest compressive stress to the gel media the permeability transitions from highly permeable to nearly impermeable grouting. Under this configuration the gel packing could potentially allow for monitoring local response pressure from the formation with all other locations in the borehole hydraulically isolated.

  15. Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow

    Alam, Meheboob; Saha, Saikat

    2014-11-01

    The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.

  16. Spreading of a granular droplet

    Clement, Eric; Sanchez, Ivan; Raynaud, Franck; Lanuza, Jose; Andreotti, Bruno; Aranson, Igor

    2008-03-01

    The influence of controlled vibrations on the granular rheology is investigated in a specifically designed experiment in which a granular film spreads under the action of horizontal vibrations. A nonlinear diffusion equation is derived theoretically that describes the evolution of the deposit shape. A self-similar parabolic shape (the``granular droplet'') and a spreading dynamics are predicted that both agree quantitatively with the experimental results. The theoretical analysis is used to extract effective friction coefficients between the base and the granular layer under sustained and controlled vibrations. A shear thickening regime characteristic of dense granular flows is evidenced at low vibration energy, both for glass beads and natural sand. Conversely, shear thinning is observed at high agitation.

  17. A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure

    George, David L.; Iverson, Richard M.

    2011-01-01

    Pore-fluid pressure plays a crucial role in debris flows because it counteracts normal stresses at grain contacts and thereby reduces intergranular friction. Pore-pressure feedback accompanying debris deformation is particularly important during the onset of debrisflow motion, when it can dramatically influence the balance of forces governing downslope acceleration. We consider further effects of this feedback by formulating a new, depth-averaged mathematical model that simulates coupled evolution of granular dilatancy, solid and fluid volume fractions, pore-fluid pressure, and flow depth and velocity during all stages of debris-flow motion. To illustrate implications of the model, we use a finite-volume method to compute one-dimensional motion of a debris flow descending a rigid, uniformly inclined slope, and we compare model predictions with data obtained in large-scale experiments at the USGS debris-flow flume. Predictions for the first 1 s of motion show that increasing pore pressures (due to debris contraction) cause liquefaction that enhances flow acceleration. As acceleration continues, however, debris dilation causes dissipation of pore pressures, and this dissipation helps stabilize debris-flow motion. Our numerical predictions of this process match experimental data reasonably well, but predictions might be improved by accounting for the effects of grain-size segregation.

  18. Challenges of particle flow reconstruction in the CMS High-Granularity Calorimeter at the High-Luminosity LHC

    Chlebana, Frank

    2016-01-01

    The challenges of the High-Luminosity LHC (HL-LHC) are driven by the large number of overlapping proton-proton collisions (pileup) in each bunch-crossing and the extreme radiation dose to detectors positioned at high pseudorapidity. To overcome this challenge CMS is designing and implementing an endcap electromagnetic+hadronic sampling calorimeter employing silicon pad devices in the electromagnetic and front hadronic sections, comprising over 6 million channels, and highly-segmented plastic scintillators in the rear part of the hadronic section. This High-Granularity Calorimeter (HGCAL) will be the first of its kind used in a colliding beam experiment. Clustering deposits of energy over many cells and layers is a complex and challenging computational task, particularly in the high-pileup and high-event-rate environment of HL-LHC. These challenges and their solutions will be discussed in detail, as well as their implementation in the HGCAL offline reconstruction. Baseline detector performance results will be ...

  19. Size-induced axial band structure and directional flow of a ternary-size granular material in a 3-D horizontal rotating drum

    Yang, Shiliang; Sun, Yuhao; Ma, Honghe; Chew, Jia Wei

    2018-05-01

    Differences in the material property of the granular material induce segregation which inevitably influences both natural and industrial processes. To understand the dynamical segregation behavior, the band structure, and also the spatial redistribution of particles induced by the size differences of the particles, a ternary-size granular mixture in a three-dimensional rotating drum operating in the rolling flow regime is numerically simulated using the discrete element method. The results demonstrate that (i) the axial bands of the medium particles are spatially sandwiched in between those of the large and small ones; (ii) the total mass in the active and passive regions is a global parameter independent of segregation; (iii) nearly one-third of all the particles are in the active region, with the small particles having the highest mass fraction; (iv) the axial bands initially appear near the end wall, then become wider and purer in the particular species with time as more axial bands form toward the axial center; and (v) the medium particle type exhibits segregation later and has the narrowest axial bandwidth and least purity in the bands. Compared to the binary-size system, the presence of the medium particle type slightly increases the total mass in the active region, leads to larger mass fractions of the small and large particle types in the active region, and enhances the axial segregation in the system. The results obtained in the current work provide valuable insights regarding size segregation, and band structure and formation in the rotating drum with polydisperse particles.

  20. Tracing Thermal Creep Through Granular Media

    Steinpilz, Tobias; Teiser, Jens; Koester, Marc; Schywek, Mathias; Wurm, Gerhard

    2017-08-01

    A temperature gradient within a granular medium at low ambient pressure drives a gas flow through the medium by thermal creep. We measured the resulting air flow for a sample of glass beads with particle diameters between 290 μ m and 420 μ m for random close packing. Ambient pressure was varied between 1 Pa and 1000 Pa. The gas flow was quantified by means of tracer particles during parabolic flights. The flow varies systematically with pressure between 0.2 cm/s and 6 cm/s. The measured flow velocities are in quantitative agreement to model calculations that treat the granular medium as a collection of linear capillaries.

  1. Mathematical modelling of the transport of a poorly sorted granular mixture as a debris-flow. The case of Madeira Island torrential floods in 2010

    Ferreira, Rui M. L.; Oliveira, Rodrigo P.; Conde, Daniel

    2016-04-01

    On the 20th February 2010, heavy rainfall was registered at Madeira Island, North Atlantic. Stony debris flows, mudflows and mudslides ensued causing severe property loss, 1.5 m thick sediment deposits at downtown Funchal including 16th century monuments, and a death toll of 47 lives. Debris-flow fronts propagated downstream while carrying very high concentrations of solid material. These two-phase solid-fluid flows were responsible for most of the infrastructural damage across the island, due to their significantly increased mass and momentum. The objective of the present modelling work is to validate a 2DH model for torrential flows featuring the transport and interaction of several size fractions of a poorly-sorted granular mixture typical of stony debris flow in Madeira. The module for the transport of poorly-sorted material was included in STAV-2D (CERIS-IST), a shallow-water and morphology solver based on a finite-volume method using a flux-splitting technique featuring a reviewed Roe-Riemann solver, with appropriate source-term formulations to ensure full conservativeness. STAV-2D also includes formulations of flow resistance and bedload transport adequate for debris-flows with natural mobile beds (Ferreira et al., 2009) and has been validated with both theoretical solutions and laboratory data (Soares-Frazão et al., 2012; Canelas et al., 2013). The modelling of the existing natural and built environment is fully explicit. All buildings, streets and channels are accurately represented within the mesh geometry. Such detail is relevant for the reliability of the validation using field data, since the major sedimentary deposits within the urban meshwork of Funchal were identified and characterized in terms of volume and grain size distribution during the aftermath of the 20th February of 2010 event. Indeed, the measure of the quality of the numerical results is the agreement between simulated and estimated volume of deposited sediment and between estimated and

  2. Current challenges for pre-earthquake electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    K. Eftaxias

    2013-10-01

    Full Text Available Are there credible electromagnetic (EM potential earthquake (EQ precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM potential precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i are not observed at the time of EQs occurrence and during the aftershock period, (ii are not accompanied by large precursory strain changes, (iii are not accompanied by simultaneous geodetic or seismological precursors and (iv their traceability is considered problematic. In this work, the detected candidate EM potential precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. We try to contribute to the establishment of strict criteria for the definition of an emerged EM anomaly as a possibly EQ-related one, and to the explanation of potential precursory EM features which have been considered as paradoxes. A three-stage model for EQ generation by means of pre-EQ fracture-induced EM emissions is proposed. The claim that the observed EM potential precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested.

  3. Current challenges for pre-earthquake electromagnetic emissions: shedding light from micro-scale plastic flow, granular packings, phase transitions and self-affinity notion of fracture process

    Eftaxias, K.; Potirakis, S. M.

    2013-10-01

    Are there credible electromagnetic (EM) potential earthquake (EQ) precursors? This a question debated in the scientific community and there may be legitimate reasons for the critical views. The negative view concerning the existence of EM potential precursors is enhanced by features that accompany their observation which are considered as paradox ones, namely, these signals: (i) are not observed at the time of EQs occurrence and during the aftershock period, (ii) are not accompanied by large precursory strain changes, (iii) are not accompanied by simultaneous geodetic or seismological precursors and (iv) their traceability is considered problematic. In this work, the detected candidate EM potential precursors are studied through a shift in thinking towards the basic science findings relative to granular packings, micron-scale plastic flow, interface depinning, fracture size effects, concepts drawn from phase transitions, self-affine notion of fracture and faulting process, universal features of fracture surfaces, recent high quality laboratory studies, theoretical models and numerical simulations. We try to contribute to the establishment of strict criteria for the definition of an emerged EM anomaly as a possibly EQ-related one, and to the explanation of potential precursory EM features which have been considered as paradoxes. A three-stage model for EQ generation by means of pre-EQ fracture-induced EM emissions is proposed. The claim that the observed EM potential precursors may permit a real-time and step-by-step monitoring of the EQ generation is tested.

  4. Grain scale simulation of multiphase flow through porous media; Simulacao em escala granular do escoamento multifasico em meio poroso

    Domingos, Ricardo Golghetto; Cheng, Liang-Yee [Universidade de Sao Paulo (USP), SP (Brazil). Escola Politecnica

    2012-07-01

    Since the grain scale modeling of multi-phase flow in porous media is of great interest for the oil industry, the aim of the present research is to show an implementation of Moving Particle Semi-Implicit (MPS) method for the grain scale simulation of multi-phase flow in porous media. Geometry data obtained by a high-resolution CT scan of a sandstone sample has been used as input for the simulations. The results of the simulations performed considering different resolutions are given, the head loss and permeability obtained numerically, as well as the influence of the wettability of the fluids inside the sample of the reservoir's sandstone. (author)

  5. Storage and discharge of a granular fluid.

    Pacheco-Martinez, Hector; van Gerner, Henk Jan; Ruiz-Suárez, J C

    2008-02-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular discharge through openings at the bottom of the silo in order to search for a Torricelli-like behavior. We show that the flow rate scales with the wall induced shear rate, and at high rates, the granular bed indeed discharges similar to a viscous fluid.

  6. Bubbling in vibrated granular films.

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  7. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  8. Dynamic Deformation and Collapse of Granular Columns

    Uenishi, K.; Tsuji, K.; Doi, S.

    2009-12-01

    Large dynamic deformation of granular materials may be found in nature not only in the failure of slopes and cliffs — due to earthquakes, rock avalanches, debris flows and landslides — but also in earthquake faulting itself. Granular surface flows often consist of solid grains and intergranular fluid, but the effect of the fluid may be usually negligible because the volumetric concentration of grains is in many cases high enough for interparticle forces to dominate momentum transport. Therefore, the investigation of dry granular flow of a mass might assist in further understanding of the above mentioned geophysical events. Here, utilizing a high-speed digital video camera system, we perform a simple yet fully-controlled series of laboratory experiments related to the collapse of granular columns. We record, at an interval of some microseconds, the dynamic transient granular mass flow initiated by abrupt release of a tube that contains dry granular materials. The acrylic tube is partially filled with glass beads and has a cross-section of either a fully- or semi-cylindrical shape. Upon sudden removal of the tube, the granular solid may fragment under the action of its own weight and the particles spread on a rigid horizontal plane. This study is essentially the extension of the previous ones by Lajeunesse et al. (Phys. Fluids 2004) and Uenishi and Tsuji (JPGU 2008), but the striped layers of particles in a semi-cylindrical tube, newly introduced in this contribution, allow us to observe the precise particle movement inside the granular column: The development of slip lines inside the column and the movement of particles against each other can be clearly identified. The major controlling parameters of the spreading dynamics are the initial aspect ratio of the granular (semi-)cylindrical column, the frictional properties of the horizontal plane (substrate) and the size of beads. We show the influence of each parameter on the average flow velocity and final radius

  9. Granular Gases: Probing the Boundaries of Hydrodynamics

    Goldhirsch, I.

    1999-01-01

    The dissipative nature of the particle interactions in granular systems renders granular gases mesoscopic and bearing some similarities to regular gases in the ''continuum transition regime'' where shear rates and/or thermal gradients are very large). The following properties of granular gases support the above claim: (i). Mean free times are of the same order as macroscopic time scales (inverse shear rates); (ii). Mean free paths can be macroscopic and comparable to the system's dimensions; (iii). Typical flows are supersonic; (iv). Shear rates are typically ''large''; (v). Stress fields are scale (resolution) dependent; (vi). Burnett and super-Burnett corrections to both the constitutive relations and the boundary conditions are of importance; (vii). Single particle distribution functions can be far from Gaussian. It is concluded that while hydrodynamic descriptions of granular gases are relevant, they are probing the boundaries of applicability of hydrodynamics and perhaps slightly beyond

  10. Collapse of tall granular columns in fluid

    Kumar, Krishna; Soga, Kenichi; Delenne, Jean-Yves

    2017-06-01

    Avalanches, landslides, and debris flows are geophysical hazards, which involve rapid mass movement of granular solids, water, and air as a multi-phase system. In order to describe the mechanism of immersed granular flows, it is important to consider both the dynamics of the solid phase and the role of the ambient fluid. In the present study, the collapse of a granular column in fluid is studied using 2D LBM - DEM. The flow kinematics are compared with the dry and buoyant granular collapse to understand the influence of hydrodynamic forces and lubrication on the run-out. In the case of tall columns, the amount of material destabilised above the failure plane is larger than that of short columns. Therefore, the surface area of the mobilised mass that interacts with the surrounding fluid in tall columns is significantly higher than the short columns. This increase in the area of soil - fluid interaction results in an increase in the formation of turbulent vortices thereby altering the deposit morphology. It is observed that the vortices result in the formation of heaps that significantly affects the distribution of mass in the flow. In order to understand the behaviour of tall columns, the run-out behaviour of a dense granular column with an initial aspect ratio of 6 is studied. The collapse behaviour is analysed for different slope angles: 0°, 2.5°, 5° and 7.5°.

  11. Granular Materials and Risks In ISRU

    Behringer, Robert P.; Wilkinson, R. Allen

    2004-01-01

    Working with soil, sand, powders, ores, cement and sintered bricks, excavating, grading construction sites, driving off-road, transporting granules in chutes and pipes, sifting gravel, separating solids from gases, and using hoppers are so routine that it seems straightforward to execute these operations on the Moon and Mars as we do on Earth. We discuss how little these processes are understood and point out the nature of trial-and-error practices that are used in today's massive over-design. Nevertheless, such designs have a high failure rate. Implementation and extensive incremental scaling up of industrial processes are routine because of the inadequate predictive tools for design. We present a number of pragmatic scenarios where granular materials play a role, the risks involved, what some of the basic issues are, and what understanding is needed to greatly reduce the risks. This talk will focus on a particular class of granular flow issues, those that pertain to dense materials, their physics, and the failure problems associated with them. In particular, key issues where basic predictability is lacking include stability of soils for the support of vehicles and facilities, ability to control the flow of dense materials (jamming and flooding/unjamming at the wrong time), the ability to predict stress profiles (hence create reliable designs) for containers such as bunkers or silos. In particular, stress fluctuations, which are not accounted for in standard granular design models, can be very large as granular materials flows, and one result is frequent catastrophic failure of granular devices.

  12. Constitutive law of dense granular matter

    Hatano, Takahiro

    2010-01-01

    The frictional properties of dense granular matter under steady shear flow are investigated using numerical simulation. Shear flow tends to localize near the driving boundary unless the coefficient of restitution is close to zero and the driving velocity is small. The bulk friction coefficient is independent of shear rate in dense and slow flow, whereas it is an increasing function of shear rate in rapid flow. The coefficient of restitution affects the friction coefficient only in such rapid flow. Contrastingly, in dense and slow regime, the friction coefficient is independent of the coefficient of restitution and mainly determined by the elementary friction coefficient and the rotation of grains. It is found that the mismatch between the vorticity of flow and the angular frequency of grains plays a key role to the frictional properties of sheared granular matter.

  13. A theoretical framework for an access programme encompassing ...

    A theoretical framework for an access programme encompassing further education training: remedy for educational wastage? ... learners who have dropped out of school without completing their secondary-school education, there are the special needs of adult learners in the workplace that must be taken into consideration.

  14. Encompassing Sexual Medicine within Psychiatry: Pros and Cons

    Segraves, Robert Taylor

    2010-01-01

    Objective: This article examines the positive and negative aspects of psychiatry encompassing sexual medicine within its purview. Methods: MEDLINE searches for the period between 1980 to the present were performed with the terms "psychiatry," "sexual medicine," and "sexual dysfunction." In addition, sexual medicine texts were reviewed for chapters…

  15. Educational NASA Computational and Scientific Studies (enCOMPASS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and

  16. Granular gas dynamics

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  17. Anaerobic granular sludge and biofilm reactors

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    by the immobilization of the biomass, which forms static biofilms, particle-supported biofilms, or granules depending on the reactor's operational conditions. The advantages of the high-rate anaerobic digestion over the conventional aerobic wastewater treatment methods has created a clear trend for the change......-rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  18. Anisotropy in cohesive, frictional granular media

    Luding, Stefan

    2005-01-01

    The modelling of cohesive, frictional granular materials with a discrete particle molecular dynamics is reviewed. From the structure of the quasi-static granular solid, the fabric, stress, and stiffness tensors are determined, including both normal and tangential forces. The influence of the material properties on the flow behaviour is also reported, including relations between the microscopic attractive force and the macroscopic cohesion as well as the dependence of the macroscopic friction on the microscopic contact friction coefficient. Related to the dynamics, the anisotropy of both structure and stress are exponentially approaching the maximum

  19. Granular contact dynamics using mathematical programming methods

    Krabbenhoft, K.; Lyamin, A. V.; Huang, J.

    2012-01-01

    granular contact dynamics formulation uses an implicit time discretization, thus allowing for large time steps. Moreover, in the limit of an infinite time step, the general dynamic formulation reduces to a static formulation that is useful in simulating common quasi-static problems such as triaxial tests...... is developed and it is concluded that the associated sliding rule, in the context of granular contact dynamics, may be viewed as an artifact of the time discretization and that the use of an associated flow rule at the particle scale level generally is physically acceptable. (C) 2012 Elsevier Ltd. All rights...

  20. Production and reception of meaningful sound in Foville's 'encompassing convolution'.

    Schiller, F

    1999-04-01

    In the history of neurology. Achille Louis Foville (1799-1879) is a name deserving to be remembered. In the course of time, his circonvolution d'enceinte of 1844 (surrounding the Sylvian fissure) became the 'convolution encompassing' every aspect of aphasiology, including amusia, ie., the localization in a coherent semicircle of semicircle of cerebral cortext serving the production and perception of language, song and instrumental music in health and disease.

  1. Granular Silo collapse: an experimental study

    Clement, Eric; Gutierriez, Gustavo; Boltenhagen, Philippe; Lanuza, Jose

    2008-03-01

    We present an experimental work that develop some basic insight into the pre-buckling behavior and the buckling transition toward plastic collapse of a granular silo. We study different patterns of deformation generated on thin paper cylindrical shells during granular discharge. We study the collapse threshold for different bed height, flow rates and grain sizes. We compare the patterns that appear during the discharge of spherical beads, with those obtained in the axially compressed cylindrical shells. When the height of the granular column is close to the collapse threshold, we describe a ladder like pattern that rises around the cylinder surface in a spiral path of diamond shaped localizations, and develops into a plastic collapsing fold that grows around the collapsing silo.

  2. Granular computing: perspectives and challenges.

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  3. An automata model of granular materials

    Gutt, G.M.; Haff, P.K.

    1990-01-01

    In this paper a new modeling technique (the Lattice Grain Model) is presented for the simulation of two-dimensional granular systems involving large numbers of grains. These granular systems may include both high shear rate regions as well as static plugs of grains and cannot easily be handled within the framework of existing continuum theories such as soil mechanics. The Lattice Grain Model (LGrM) is similar to the Lattice Gas Model (LBM). This allows large simulations to be programmed onto a hypercube concurrent processor in a straightforward manner. However, it differs from LBM in that it includes the inelastic collisions and volume-filling properties of macroscopic grains. Examples to be presented will include Couette flow, flow through an hourglass, and gravity-driven flows around obstacles

  4. Evaluating Energy Flux in Vibrofluidized Granular Bed

    N. A. Sheikh

    2013-01-01

    Full Text Available Granular flows require sustained input of energy for fluidization. A level of fluidization depends on the amount of heat flux provided to the flow. In general, the dissipation of the grains upon interaction balances the heat inputs and the resultant flow patterns can be described using hydrodynamic models. However, with the increase in packing fraction, the heat fluxes prediction of the cell increases. Here, a comparison is made for the proposed theoretical models against the MD simulations data. It is observed that the variation of packing fraction in the granular cell influences the heat flux at the base. For the elastic grain-base interaction, the predictions vary appreciably compared to MD simulations, suggesting the need to accurately model the velocity distribution of grains for averaging.

  5. Vortex jamming in superconductors and granular rheology

    Yoshino, Hajime; Nogawa, Tomoaki; Kim, Bongsoo

    2009-01-01

    We demonstrate that a highly frustrated anisotropic Josephson junction array (JJA) on a square lattice exhibits a zero-temperature jamming transition, which shares much in common with those in granular systems. Anisotropy of the Josephson couplings along the horizontal and vertical directions plays roles similar to normal load or density in granular systems. We studied numerically static and dynamic response of the system against shear, i.e. injection of external electric current at zero temperature. Current-voltage curves at various strength of the anisotropy exhibit universal scaling features around the jamming point much as do the flow curves in granular rheology, shear-stress versus shear-rate. It turns out that at zero temperature the jamming transition occurs right at the isotropic coupling and anisotropic JJA behaves as exotic fragile vortex matter: it behaves as a superconductor (vortex glass) in one direction, whereas it is a normal conductor (vortex liquid) in the other direction even at zero temperature. Furthermore, we find a variant of the theoretical model for the anisotropic JJA quantitatively reproduces universal master flow-curves of the granular systems. Our results suggest an unexpected common paradigm stretching over seemingly unrelated fields-the rheology of soft materials and superconductivity.

  6. Impact of granular drops

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  7. Impact of granular drops

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  8. Traffic and Granular Flow’05

    Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich

    2007-01-01

    The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...

  9. From Balancing the Numbers to an Encompassing Business Case

    Labucay, Inéz

    2013-01-01

    and Horwitz 2007). The focus of the paper is on further developing and building on theoretical concepts of diversity. It also establishes links to non-mainstream theories like social network theory. After a short introduction to the model, the three stages of the model (Diversity concept, Diversity goals......, Diversity measurement) are presented in more detail, followed by a summary and conclusion on its applicability and relevance for diversity practitioners. An outlook on further research ensues. The paper aims at delineating an approach to building a more encompassing Business Case.......The Business Case of Diversity Management has evolved as the predominant concept underlying many diversity studies and practices in the field. In this line of reasoning, corporate bottom line results like an increased return on investment (ROI) are partially explained by the existence of Diversity...

  10. An all-encompassing study of an authentic court setting

    Christensen, Tina Paulsen

    necessarily be judged from a particular (subjective) perspective on the communicative event. In this paper I shall address the issue of interpreting quality in an all-encompassing perspective on an authentic Danish courtroom setting. The aim of the empirical case-based survey is unlike that of most existing...... but homogeneous. Several empirical studies, which have been carried out on this subject, have shown that different user groups have different expectations about the interpreted communicative event, which ceteris paribus means that user expectations are heterogeneous. The question is, whether the heterogeneity......, which are to be considered as expectancy norms projected and recommended by the specific legal system. In order to be able to answer this question, a questionnaire-based survey on specific quality criteria has been conducted within an authentic interpreter-mediated court setting, because, according...

  11. Aerofractures in Confined Granular Media

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  12. Granular Cell Tumor

    1). Her packed cell volume was 40%, she was system, gastro-intestinal tract, brain, heart, and negative to human immunodeficiency virus. 2 female reproductive . ... histocytes and neurons at various times. They granules. The granules are probably of lysosmal were consequently termed granular cell origin and contain ...

  13. Fracture surfaces of granular pastes.

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  14. Mechanics of a granular skin

    Karmakar, Somnath; Sane, Anit; Bhattacharya, S.; Ghosh, Shankar

    2017-04-01

    Magic sand, a hydrophobic toy granular material, is widely used in popular science instructions because of its nonintuitive mechanical properties. A detailed study of the failure of an underwater column of magic sand shows that these properties can be traced to a single phenomenon: the system self-generates a cohesive skin that encapsulates the material inside. The skin, consisting of pinned air-water-grain interfaces, shows multiscale mechanical properties: they range from contact-line dynamics in the intragrain roughness scale, to plastic flow at the grain scale, all the way to sample-scale mechanical responses. With decreasing rigidity of the skin, the failure mode transforms from brittle to ductile (both of which are collective in nature) to a complete disintegration at the single-grain scale.

  15. Distrofia corneal granular

    Alexeide de la C Castillo Pérez

    Full Text Available Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 años de edad. Presentamos dos casos clínicos de distrofia granular en pacientes hermanos de diferentes sexos, quienes acudieron a la consulta y refirieron visión nublada. El estudio de la historia familiar nos ayuda en el correcto diagnóstico y la biomicroscopia constituye el elemento más importante.

  16. Microfluidics of soft granular gels

    Nixon, Ryan; Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas E.

    Microfluidic methods for encapsulating cells and particles typically involve drop making with two immiscible fluids. The main materials constraint in this approach is surface tension, creating inherent instability between the two fluids. We can eliminate this instability by using miscible inner and outer phases. This is achieved by using granular micro gels which are chemically miscible but physically do not mix. These microgels are yield stress materials, so they flow as solid plugs far from shear gradients, and fluidize where gradients are generated - near an injection nozzle for example. We have found that tuning the yield stress of the material by varying polymer concentration, device performance can be controlled. The solid like behavior of the gel allows us to produces infinitely stable jets that maintain their integrity and configuration over long distances and times. These properties can be combined and manipulated to produce discrete particulate bunches of an inner phase, flowing inside of an outer phase, well enough even to print a Morse code message suspended within flow chambers about a millimeter in diameter moving at millimeters a second.

  17. Microservices: Granularity vs. Performance

    Shadija, Dharmendra; Rezai, Mo; Hill, Richard

    2017-01-01

    Microservice Architectures (MA) have the potential to increase the agility of software development. In an era where businesses require software applications to evolve to support emerging software requirements, particularly for Internet of Things (IoT) applications, we examine the issue of microservice granularity and explore its effect upon application latency. Two approaches to microservice deployment are simulated; the first with microservices in a single container, and the second with micr...

  18. Similitude study of a moving bed granular filter

    Robert C. Brown; Huawei Shi; Gerald Colver; Saw-Choon Soo [Iowa State University, IA (United States)

    2003-12-10

    The goal of this study was to evaluate the performance of a moving bed granular filter designed for hot gas clean up. This study used similitude theory to devise experiments that were conducted at near-ambient conditions while simulating the performance of filters operated at elevated temperatures and pressures (850{sup o}C and 1000 kPa). These experiments revealed that the proposed moving bed granular filter can operate at high collection efficiencies, typically exceeding 99%, and low pressure drops without the need for periodic regeneration through the use of a continuous flow of fresh granular filter media in the filter. In addition, important design constraints were discovered for the successful operation of the proposed moving bed granular filter.

  19. Long runout landslides: a solution from granular mechanics

    Stanislav eParez

    2015-10-01

    Full Text Available Large landslides exhibit surprisingly long runout distances compared to a rigid body sliding from the same slope, and the mechanism of this phenomena has been studied for decades. This paper shows that the observed long runouts can be explained quite simply via a granular pile flowing downhill, while collapsing and spreading, without the need for frictional weakening that has traditionally been suggested to cause long runouts. Kinematics of the granular flow is divided into center of mass motion and spreading due to flattening of the flowing mass. We solve the center of mass motion analytically based on a frictional law valid for granular flow, and find that center of mass runout is similar to that of a rigid body. Based on the shape of deposits observed in experiments with collapsing granular columns and numerical simulations of landslides, we derive a spreading length Rf~V^1/3. Spreading of a granular pile, leading to a deposit angle much lower than the angle of repose or the dynamic friction angle, is shown to be an important, often dominating, contribution to the total runout distance, accounting for the long runouts observed for natural landslides.

  20. Type-2 fuzzy granular models

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  1. Unjamming a granular hopper by vibration

    Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.

    2009-07-01

    We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.

  2. Using a Time Granularity Table for Gradual Granular Data Aggregation

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    solution for data reduction based on gradual granular data aggregation. With the gradual granular data aggregation mechanism, older data can be made coarse-grained while keeping the newest data fine-grained. For instance, when data is 3 months old aggregate to 1 minute level from 1 second level, when data...... and improve query performance, especially on resource-constrained systems with limited storage and query processing capabilities. A number of data reduction solutions have been developed, however an effective solution particularly based on gradual data reduction is missing. This paper presents an effective...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  3. Granular corneal dystrophy

    Castillo Pérez, Alexeide de la C; Vilches Lescaille, Daysi; Noriega, Justo Luis; Martínez Balido, Daneel; León Balbón, Bárbaro Ramón; León Bernal, Danysleidi

    2015-01-01

    Las distrofias corneales constituyen un conjunto de enfermedades que presentan, en su mayoría, una baja incidencia y se caracterizan por acúmulo de material hialino o amiloide que disminuyen la transparencia corneal. La distrofia granular es una enfermedad autosómica dominante que presenta opacidades grises en el estroma superficial central de la córnea y se hacen visibles en la primera y segunda décadas de la vida, lo que provoca disminución de la visión más significativa cerca de los 40 año...

  4. Sinking a Granular Raft

    Protière, Suzie; Josserand, Christophe; Aristoff, Jeffrey M.; Stone, Howard A.; Abkarian, Manouk

    2017-03-01

    We report experiments that yield new insights on the behavior of granular rafts at an oil-water interface. We show that these particle aggregates can float or sink depending on dimensionless parameters taking into account the particle densities and size and the densities of the two fluids. We characterize the raft shape and stability and propose a model to predict its shape and maximum length to remain afloat. Finally we find that wrinkles and folds appear along the raft due to compression by its own weight, which can trigger destabilization. These features are characteristics of an elastic instability, which we discuss, including the limitations of our model.

  5. Large granular lymphocyte leukemia

    Terra, Bruno; Maia, Amanda M.

    2010-01-01

    O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG), doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou ...

  6. The influence of the fractal particle size distribution on the mobility of dry granular materials

    Vallejo Luis E.

    2017-01-01

    Full Text Available This study presents an experimental analysis on the influence of the particle size distribution (psd on the mobility of dry granular materials. The psd obeys a power law of the form: N(L>d=kd-Df, where N is the number of particles with diameter L greater than a given diameter d, k is a proportionality constant, and Df is the fractal dimension of the psd. No laboratory or numerical study has been conducted to date analysing how a fractal psd influences the mobility of granular flows as in the case of rock avalanches. In this study, the flow characteristics of poly-dispersed granular materials that have a fractal psd were investigated in the laboratory. Granular mixtures having different fractal psd values were placed in a hollow cylinder. The cylinder was lifted and the distance of flow of the mixture was measured with respect to the original position of the cylinder. It was determined that the distance of flow of the mixtures was directly related to their fractal psd values. That is, the larger the distance of flow of the mixture, the larger is the fractal psd of the granular mixture tested. Thus, the fractal psd in dry granular mixtures seems to have a large influence on the easiness by which dry granular mixtures move in the field.

  7. Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas.

    Kolvin, Itamar; Livne, Eli; Meerson, Baruch

    2010-08-01

    We show that, in dimension higher than one, heat diffusion and viscosity cannot arrest thermal collapse in a freely evolving dilute granular gas, even in the absence of gravity. Thermal collapse involves a finite-time blowup of the gas density. It was predicted earlier in ideal, Euler hydrodynamics of dilute granular gases in the absence of gravity, and in nonideal, Navier-Stokes granular hydrodynamics in the presence of gravity. We determine, analytically and numerically, the dynamic scaling laws that characterize the gas flow close to collapse. We also investigate bifurcations of a freely evolving dilute granular gas in circular and wedge-shaped containers. Our results imply that, in general, thermal collapse can only be arrested when the gas density becomes comparable with the close-packing density of grains. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.

  8. Dynamics of crater formations in immersed granular materials

    Varas, G.; Vidal, V.; Géminard, J.

    2009-12-01

    Craters are part of the widespread phenomena observed in nature. Among the main applications to natural phenomena, aside from meteorite impact craters, are the formation and growth of volcanic edifices, by successive ejecta emplacement and/or erosion. The time evolution and dynamics play a crucial role here, as the competition between volcanic-jet mass-flux (degassing and ejecta) and crater-size evolution may control directly the eruptive regime. Crater morphology in dry granular material has been extensively studied, both experimentally and theoretically. Most of these studies investigate the final, steady crater shape resulting from the collision of solid bodies with the material surface and scaling laws are derived. In immersed granular material, craters generated by an underwater vortex ring, or underwater impact craters generated by landslide, have been reported. In a previous experimental study, Gostiaux et al. [Gran. Matt., 2002] have investigated the dynamics of air flowing through an immersed granular layer. They reported that, depending on the flow rate, the system exhibits two qualitatively different regimes: At small flow rate, the bubbling regime during which bubbles escape the granular layer independently one from another; At large flow rate, the open-channel regime which corresponds to the formation of a channel crossing the whole thickness of the granular bed through which air escapes almost continuously. At intermediate flow rate, a spontaneous alternation between these two regimes is observed. Here, we report the dynamics of crater formations at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. We reproduce the experimental conditions of Gostiaux et al. (2002) in two dimensions: In a vertical Hele-Shaw cell, the crater consists of two sand piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas

  9. Thermal conductivity of granular materials

    Buyevich, Yu A

    1974-01-01

    Stationary heat transfer in a granular material consisting of a continuous medium containing spherical granules of other substances is considered under the assumption that the spatial distribution of granules is random. The effective thermal conductivity characterizing macroscopic heat transfer in such a material is expressed as a certain function of the conductivities and volume fractions of the medium and dispersed substances. For reasons of mathematical analogy, all the results obtained for the thermal conductivity are valid while computing the effective diffusivity of some admixture in granular materials as well as for evaluation of the effective electric conductivity or the mean dielectric and magnetic permeabilities of granular conductors and dielectrics. (23 refs.)

  10. Cahn-Hiliard theory for unstable granular fluids

    van Noije, T.P.C.; Ernst, M.H.

    A Cahn-Hilliard-type theory for hydrodynamic fluctuations is proposed that gives a quantitative description of the slowly evolving spatial correlations and structures in density and flow fields in the early stages of evolution of freely cooling granular fluids. Two mechanisms for pattern selection

  11. Interface stability of granular filter structures under currents

    Verheij, H.J.; Hoffmans, G.; Dorst, K.; Van de Sande, S.

    2012-01-01

    Granular filters are used for protection of structures against scour and erosion. For a proper functioning it is necessary that the interfaces between the filter structure, the subsoil and the water flowing above the filter structure are stable. Stability means that there is no transport of subsoil

  12. Kinetics and mass transfer phenomena in anaerobic granular sludge

    Gonzalez-Gil, G.; Seghezzo, L.; Lettinga, G.; Kleerebezem, R.

    2001-01-01

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (Vup). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (KS) for each

  13. EFFECTS OF REACTOR CONDITIONS ON ELECTROCHEMICAL DECHLORINATION OF TRICHLOROETHYLENE USING GRANULAR-GRAPHITE ELECTRODE.

    Trichloroethylene (TCE) was electrochemically dechlorinated in aqueous environments using granular graphite cathode in a mixed reactor. Effects of pH, current, electrolyte type, and flow rate on TCE dechlorination rate were evaluated. TCE dechlorination rate constant and gas pr...

  14. IN-SITU REGENERATION OF GRANULAR ACTIVATED CARBON (GAC) USING FENTON'S REAGENTS

    Fenton-dependent regeneration of granular activated carbon (GAC) initially saturated with one of several chlorinated aliphatic contaminants was studied in batch and continuous-flow reactors. Homogeneous and heterogeneous experiments were designed to investigate the effects of va...

  15. Erosion of a wet/dry granular interface

    Jop, Pierre; Lefebvre, Gautier

    2013-04-01

    To model the dynamic of landslides, the evolution of the interface between the erodible ground and the flowing material is still studied experimentally or numerically (ie. Mangeney et al. 2010, Iverson 2012). In some cases, the basal material is more cohesive than the flowing one. Such situation arises for example due to cementation or humidity. What are the exchange rates between these phases? What is the coupling between the evolution of the interface and the flow? We studied the erosion phenomenon and performed laboratory experiments to focus on the interaction between a cohesive unsaturated granular material and a dry granular flow. Both materials were spherical grains, the cohesion being induced by adding a given mass of liquid to the grains. Two configurations were explored: a circular aggregate submitted to a dry flow in a rotating drum, and a granular flow eroding a wet granular pile. First, we focused on the influence of the cohesion, controlled by the liquid properties, such as the surface tension and the viscosity. Then the flow characteristics were modified by varying the grain size and density. These results allowed us to present a model for the erosion mechanisms, based on the flow and fluid properties. The main results are the need to take into account the whole probability distribution the stress applied on the wet grains and that both the surface tension and the viscosity are important since they play a different roles. The latter is mainly responsible of the time scale of the dynamic of a wet grain, while the former acts as a threshold on the force distribution. In the second configuration, we could also control the inclination of the slope. This system supported the previous model and moreover revealed an interface instability, leading the formation of steep steps, which is a reminiscence of the cyclic-steps observed during river-channel incision (Parker and Izumi 2000). We will present the dynamics of such granular steps. [1] Mangeney, A., O

  16. Superconductivity in inhomogeneous granular metals

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  17. Voltage fluctuations in granular superconductors in the perpendicular configuration

    Gerashchenko, O V

    2003-01-01

    The spectral density of voltage fluctuations in granular YBa 2 Cu 3 O 7-δ superconductors in the perpendicular configuration has been studied in the flux flow mode. It has been found that, in this case, the 1/f-voltage noise observed depends weakly on temperature and is associated with motion of a magnetic flux in the superconductor. A comparison of the data obtained with the results of previous measurements in parallel configuration has shown that voltage noise is produced by a single common source, which is presumably associated with self-organization of the critical state in granular superconductors

  18. Granular chaos and mixing: Whirled in a grain of sand

    Shinbrot, Troy, E-mail: shinbrot@rutgers.edu [Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2015-09-15

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  19. Granular chaos and mixing: Whirled in a grain of sand.

    Shinbrot, Troy

    2015-09-01

    In this paper, we overview examples of chaos in granular flows. We begin by reviewing several remarkable behaviors that have intrigued researchers over the past few decades, and we then focus on three areas in which chaos plays an intrinsic role in granular behavior. First, we discuss pattern formation in vibrated beds, which we show is a direct result of chaotic scattering combined with dynamical dissipation. Next, we consider stick-slip motion, which involves chaotic scattering on the micro-scale, and which results in complex and as yet unexplained peculiarities on the macro-scale. Finally, we examine granular mixing, which we show combines micro-scale chaotic scattering and macro-scale stick-slip motion into behaviors that are well described by dynamical systems tools, such as iterative mappings.

  20. Rheological Behavior of Dense Assemblies of Granular Materials

    Sundaresan, Sankaran; Tardos, Gabriel I.; Subramaniam, Shankar

    2011-01-01

    Assemblies of granular materials behave differently when they are owing rapidly, from when they are slowly deforming. The behavior of rapidly owing granular materials, where the particle-particle interactions occur largely through binary collisions, is commonly related to the properties of the constituent particles through the kinetic theory of granular materials. The same cannot be said for slowly moving or static assemblies of granular materials, where enduring contacts between particles are prevalent. For instance, a continuum description of the yield characteristics of dense assemblies of particles in the quasistatic ow regime cannot be written explicitly on the basis of particle properties, even for cohesionless particles. Continuum models for this regime have been proposed and applied, but these models typically assume that the assembly is at incipient yield and they are expressed in terms of the yield function, which we do not yet know how to express in terms of particle-level properties. The description of the continuum rheology in the intermediate regime is even less understood. Yet, many practically important flows in nature and in a wide range of technological applications occur in the dense flow regime and at the transition between dilute and dense regimes; the lack of validated continuum rheological models for particle assemblies in these regimes limits predictive modeling of such flows. This research project is aimed at developing such rheological models.

  1. Granular Superconductors and Gravity

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  2. Stretched exponentials and power laws in granular avalanching

    Head, D. A.; Rodgers, G. J.

    1999-02-01

    We introduce a model for granular surface flow which exhibits both stretched exponential and power law avalanching over its parameter range. Two modes of transport are incorporated, a rolling layer consisting of individual particles and the overdamped, sliding motion of particle clusters. The crossover in behaviour observed in experiments on piles of rice is attributed to a change in the dominant mode of transport. We predict that power law avalanching will be observed whenever surface flow is dominated by clustered motion.

  3. Groundwater-Surface water interaction in agricultural watershed that encompasses dense network of High Capacity wells

    Talib, A.; Desai, A. R.

    2017-12-01

    The Central Sands region of Wisconsin is characterized by productive trout streams, lakes, farmland and forest. However, stream channelization, past wetland drainage, and ground water withdrawals have disrupted the hydrology of this Central Sands region. Climatically driven conditions in last decade (2000-2008) alone are unable to account for the severely depressed water levels. Increased interception and evapotranspiration from afforested areas in central sand Wisconsin may also be culprit for reduced water recharge. Hence, there is need to study the cumulative effects of changing precipitation patterns, groundwater withdrawals, and forest evapotranspiration to improve projections of the future of lake levels and water availability in this region. Here, the SWAT-MODFLOW coupled model approach was applied at large spatio-temporal scale. The coupled model fully integrates a watershed model (SWAT) with a groundwater flow model (MODFLOW). Surface water and ground water flows were simulated integratively at daily time step to estimate the groundwater discharge to the stream network in Central Sands that encompasses high capacity wells. The model was calibrated (2010-2013) and validated (2014-2017) based on streamflow, groundwater extraction, and water table elevation. As the long-term trends in some of the primary drivers is presently ambiguous in Central Sands under future climate, as is the case for total precipitation or timing of precipitation, we relied on a sensitivity student to quantitatively access how primary and secondary drivers may influence future net groundwater recharge. We demonstrate how such an approach could then be coupled with decision-making models to evaluate the effectiveness of groundwater withdrawal policies under a changing climate.

  4. Martian gullies: possible formation mechanism by dry granular material..

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  5. Why granular media are thermal after all

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  6. Effects of Noise and Vibration on the Solid to Liquid Fluidization Transition in Small Dense Granular Systems Under Shear

    Melhus, Martin Frederic

    2011-07-01

    Granular materials exhibit bulk properties that are distinct from conventional solids, liq- uids, and gases, due to the dissipative nature of the inter-granular forces. Understanding the fundamentals of granular materials draws upon and gives insight into many fields at the current frontiers of physics, such as plasticity of solids, fracture and friction, com- plex systems such as colloids, foams and suspensions, and a variety of biological systems. Particulate flows are widespread in geophysics, and are also essential to many industries. Despite the importance of these phenomena, we lack a theoretical model that explains most behaviors of granular materials. Since granular assemblies are highly dissipative, they are often far from mechanical equilibrium, making most classical analyses inappli- cable. A theory for dilute granular systems exists, but for dense granular systems (by far the majority of granular systems in the real world) no comparable theory is accepted. We approach this problem by examining the fluidization, or transition from solid to liquid, in dense granular systems. In this study, the separate effects of random noise and vibration on the static to flowing transition of a dense granular assembly under planar shear is studied numerically using soft contact particle dynamics simulations in two dimensions. We focus on small systems in a thin planar Couette cell, examining the bistable region while increasing shear, with varying amounts of random noise or vibration, and determine the statistics of the shear required for the onset of flow. We find that the applied power is the key parameter in determining the magnitude of the effects of the noise or vibration, with vibration frequency also having an influence. Similarities and differences between noise and vibration are determined, and the results compare favorably with a two phase model for dense granular flow.

  7. Uniform shock waves in disordered granular matter

    Gómez, L.R.; Turner, A.M.; Vitelli, V.

    2012-01-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates

  8. Granular filtration for airborne particles : correlation between experiments and models

    Golshahi, L.; Tan, Z. [Calgary Univ., AB (Canada). Schulich School of Engineering, Mechanical and Manufacturing Dept.; Abedi, J. [Calgary Univ., AB (Canada). Schulich School of Engineering, Chemical and Petroleum Engineering Dept.

    2009-10-15

    A new design for a packed bed granular filter was presented. The cylindrical packed bed was designed to filter particles in the range of approximately 10 nm to 15 {mu}m in diameter in different kinetic conditions and configurations. The aim of the study was to develop a precise empirical model to predict the filtration efficiency of the packed beds. A collision-type atomizer was used to generate polydisperse sodium chloride aerosol particles. The effect of flow rates was studied using a thermal mass flow meter. A regression analysis technique was used to determine the correlation between single granule and total packed bed efficiency for the entire granular filter. The experimental data were then compared with results obtained from the theoretical analysis. The least square method was used to correlate experimental data and to develop generalized equations for single granule efficiency. The study showed that the granular filter media has a high filtration efficiency for both micron and submicron particles. It was concluded that the effect of media thickness was more significant at higher flow rates than at lower flow rates. 10 refs., 3 figs.

  9. Acoustic waves in granular materials

    Mouraille, O.J.P.; Luding, Stefan

    2008-01-01

    Dynamic simulations with discrete elements are used to obtain more insight into the wave propagation in dense granular media. A small perturbation is created on one side of a dense, static packing and examined during its propagation until it arrives at the opposite side. The influence of

  10. Granular boycott effect: How to mix granulates

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  11. Defining and testing a granular continuum element

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  12. Structural evolution of a granular medium during simultaneous penetration

    González-Gutiérrez, Jorge; Carreón, Yojana J. P.; Moctezuma, R. E.

    2018-01-01

    Typically, fluidized beds are granular systems composed of solid particles through which a fluid flows. They are relevant to a wide variety of disciplines such as physics, chemistry, engineering, among others. Generally, the fluidized beds are characterized by different flow regimes such as particulate, bubbling, slugging, turbulent, fast fluidization, and pneumatic conveying. Here, we report the experimental study of the structural evolution of a granular system due to simultaneous penetration of intruders in the presence of an upward airflow. We found that the granular medium evolves from the static state to the turbulent regime showing the coexistence of three regions in different flow regimes. Interestingly, the cooperative dynamic of intruders correlate with the formation of such regions. As a non-invasive method, we use lacunarity and fractal dimension to quantitatively describe the patterns arising within the system during the different stages of the penetration process. Finally, we found that our results would allow us to relate the evolution of the visual patterns appearing in the process with different physical properties of the system.

  13. Modelação da perda de carga na filtração direta ascendente em meio granular de areia grossa e pedregulho Modeling of the head loss in up flow coarse sand and gravel direct filtration

    Alexandre Botari

    2009-06-01

    Full Text Available Compreender e quantificar os mecanismos relacionados à perda de carga e à remoção de partículas em um meio filtrante granular é de importância fundamental para o estudo do processo da filtração. Este trabalho apresenta o desenvolvimento dos modelos de perda de carga na filtração em meios porosos e a proposição da modelação matemática semiempírica da perda de carga para meios filtrantes limpos e do desenvolvimento do perfil de perda de carga ao longo do tempo de filtração a partir da equação de Ergun. Objetivou-se a determinação dos valores das constantes da equação de Ergun para meio granular de areia grossa e pedregulho. Alguns exemplos de aplicação dessa modelação matemática são também apresentados e discutidos pelos autores com base em dados experimentais obtidos em uma estação piloto de dupla filtração.To understand and to quantify the head loss due to the particles removal in a porous medium has primary importance to filtration process study. This paper presents the development of the models of head loss used in the filtration in porous media and proposes a mathematical semi-empiric model for head loss in clean beds and head loss increasing profile during the filtration run length, by means of the Ergun equation. The goal was the determination of Ergun’s equation coefficients for granular material constituted of coarse sand and gravel. Examples of application of these mathematical modeling are also presented and discussed by the authors based on experimental data obtained in a double filtration pilot plant.

  14. Strain localisation in granular media

    Desrues , Jacques

    1984-01-01

    This study is devoted to strain localisation in Granular materials. Both experimental and theoretical results have been obtained.The first part of the thesis is a review of the methods and theories about rupture in sols mechanics and more generally, in solid mechanics. The classical framework of Shear Band analysis is presented, and the main results available for different classes of materials are discussed.The second part describes an experimental study of strain localisation in sand specime...

  15. Paediatric laryngeal granular cell tumour

    Dauda Ayuba

    2009-01-01

    Full Text Available Granular cell tumour (GCT affecting the larynx is not common, especially in children. Most cases are apt to be confused with respiratory papilloma and may even be mistaken for a malignant neoplasia. We present a case of laryngeal GCT in a 12-year-old child to emphasize that the tumour should be regarded in the differential of growths affecting the larynx in children.

  16. Pneumatic fractures in confined granular media.

    Eriksen, Fredrik K; Toussaint, Renaud; Turquet, Antoine L; Måløy, Knut J; Flekkøy, Eirik G

    2017-06-01

    We perform experiments where air is injected at a constant overpressure P_{in}, ranging from 5 to 250 kPa, into a dry granular medium confined within a horizontal linear Hele-Shaw cell. The setup allows us to explore compacted configurations by preventing decompaction at the outer boundary, i.e., the cell outlet has a semipermeable filter such that beads are stopped while air can pass. We study the emerging patterns and dynamic growth of channels in the granular media due to fluid flow, by analyzing images captured with a high speed camera (1000 images/s). We identify four qualitatively different flow regimes, depending on the imposed overpressure, ranging from no channel formation for P_{in} below 10 kPa, to large thick channels formed by erosion and fingers merging for high P_{in} around 200 kPa. The flow regimes where channels form are characterized by typical finger thickness, final depth into the medium, and growth dynamics. The shape of the finger tips during growth is studied by looking at the finger width w as function of distance d from the tip. The tip profile is found to follow w(d)∝d^{β}, where β=0.68 is a typical value for all experiments, also over time. This indicates a singularity in the curvature d^{2}d/dw^{2}∼κ∼d^{1-2β}, but not of the slope dw/dd∼d^{β-1}, i.e., more rounded tips rather than pointy cusps, as they would be for the case β>1. For increasing P_{in}, the channels generally grow faster and deeper into the medium. We show that the channel length along the flow direction has a linear growth with time initially, followed by a power-law decay of growth velocity with time as the channel approaches its final length. A closer look reveals that the initial growth velocity v_{0} is found to scale with injection pressure as v_{0}∝P_{in}^{3/2}, while at a critical time t_{c} there is a cross-over to the behavior v(t)∝t^{-α}, where α is close to 2.5 for all experiments. Finally, we explore the fractal dimension of the fully

  17. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia

    Greenberg, Steven A; Pinkus, Jack L; Amato, Anthony A

    2016-01-01

    SEE HOHLFELD AND SCHULZE-KOOPS DOI101093/BRAIN/AWW053 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Inclusion body myositis and T cell large granular lymphocytic leukaemia are rare diseases involving pathogenic cytotoxic CD8+ T cells. After encountering four patients with both disorders, we...... prospectively screened 38 patients with inclusion body myositis for the presence of expanded large granular lymphocyte populations by standard clinical laboratory methods (flow cytometry, examination of blood smears, and T cell receptor gene rearrangements), and performed muscle immunohistochemistry for CD8, CD......57, and TIA1. Most (22/38; 58%) patients with inclusion body myositis had aberrant populations of large granular lymphocytes in their blood meeting standard diagnostic criteria for T cell large granular lymphocytic leukaemia. These T cell populations were clonal in 20/20 patients and stably present...

  18. Impact Compaction of a Granular Material

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  19. Granular packing as model glass formers

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  20. Granular deformation mechanisms in semi-solid alloys

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  1. Friction law and hysteresis in granular materials

    DeGiuli, E.; Wyart, M.

    2017-08-01

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, μ(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs. We build a microscopic theory for the nonmonotonicity of μ(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ, and the sliding velocity, in terms of θs. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  2. Friction law and hysteresis in granular materials.

    DeGiuli, E; Wyart, M

    2017-08-29

    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity weakening, corresponding to a nonmonotonic behavior in the friction law, [Formula: see text], is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent [Formula: see text] We build a microscopic theory for the nonmonotonicity of [Formula: see text], which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts [Formula: see text], and the sliding velocity, in terms of [Formula: see text] Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes experimentally testable predictions.

  3. Pneumatic fractures in Confined Granular Media

    Eriksen, Fredrik K.; Toussaint, Renaud; Jørgen Måløy, Knut; Grude Flekkøy, Eirik; Turkaya, Semih

    2016-04-01

    We will present our ongoing study of the patterns formed when air flows into a dry, non-cohesive porous medium confined in a horizontal Hele-Shaw cell. This is an optically transparent system consisting of two glass plates separated by 0.5 to 1 mm, containing a packing of dry 80 micron beads in between. The cell is rectangular and has an air-permeable boundary (blocking beads) at one short edge, while the other three edges are completely sealed. The granular medium is loosely packed against the semi-permeable boundary and fills about 80 % of the cell volume. This leaves an empty region at the sealed side, where an inlet allows us to set and maintain the air at a constant overpressure (0.1 - 2 bar). For the air trapped inside the cell to relax its overpressure it has to move through the deformable granular medium. Depending on the applied overpressure and initial density of the medium, we observe a range of different behaviors such as seepage through the pore-network with or without an initial compaction of the solid, formation of low density bubbles with rearrangement of particles, granular fingering/fracturing, and erosion inside formed channels/fractures. The experiments are recorded with a high-speed camera at a framerate of 1000 images/s and a resolution of 1024x1024 pixels. We use various image processing techniques to characterize the evolution of the air invasion patterns and the deformations in the surrounding material. The experiments are similar to deformation processes in porous media which are driven by pore fluid overpressure, such as mud volcanoes and hydraulic or pneumatic (gas-induced) fracturing, and the motivation is to increase the understanding of such processes by optical observations. In addition, this setup is an experimental version of the numerical models analyzed by Niebling et al. [1,2], and is useful for comparison with their results. In a directly related project [3], acoustic emissions from the cell plate are recorded during

  4. Theoretical model of granular compaction

    Ben-Naim, E. [Los Alamos National Lab., NM (United States); Knight, J.B. [Princeton Univ., NJ (United States). Dept. of Physics; Nowak, E.R. [Univ. of Illinois, Urbana, IL (United States). Dept. of Physics]|[Univ. of Chicago, IL (United States). James Franck Inst.; Jaeger, H.M.; Nagel, S.R. [Univ. of Chicago, IL (United States). James Franck Inst.

    1997-11-01

    Experimental studies show that the density of a vibrated granular material evolves from a low density initial state into a higher density final steady state. The relaxation towards the final density follows an inverse logarithmic law. As the system approaches its final state, a growing number of beads have to be rearranged to enable a local density increase. A free volume argument shows that this number grows as N = {rho}/(1 {minus} {rho}). The time scale associated with such events increases exponentially e{sup {minus}N}, and as a result a logarithmically slow approach to the final state is found {rho} {infinity} {minus}{rho}(t) {approx_equal} 1/lnt.

  5. Storage and discharge of a granular fluid

    Pacheco-Martinez, Hector; van Gerner, H.J.; Ruiz-Suarez, J.C.

    2008-01-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular

  6. Characterization of Unbound Granular Materials for Pavements

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their

  7. Periurethral granular cell tumor: a case report

    Kim, Jeong Kon; Choi, Hyo Gyeong; Cho, Kyoung Sik

    1998-01-01

    Granular cell tumors are uncommon soft tissue tumors which arise as solitary or multiple masses. Lesions commonly arise in the head, neck, and chest wall, but can occur in any part of the body. To our knowledge, periurethral granular cell tumor has not been previously reported. We report one such case

  8. Viscosity evolution of anaerobic granular sludge

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  9. Hadron showers in a highly granular calorimeter

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  10. Hadron showers in a highly granular calorimeter

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  11. Clogging arches in grains, colloids, and pedestrians flowing through constrictions

    Zuriguel, Iker

    When a group of particles pass through a narrow orifice, the flow might become intermittent due to the development of clogs that obstruct the constriction. This effect has been observed in many different fields such as mining transport, microbial growing, crowd dynamics, colloids, granular and active matter. In this work we introduce a general framework in which research in some of such scenarios can be encompassed. In particular, we analyze the statistical properties of the bottleneck flow in different experiments and simulations: granular media within vibrated silos, colloids, a flock of sheep and pedestrian evacuations. We reveal a common phenomenology that allows us to rigorously define a transition to a clogged state. Using this definition we explore the main variables involved, which are then grouped into three generic parameters. In addition, we will present results of the geometrical characteristics that the clogging arches have which are related with their stability against perturbations. We experimentally analyse the temporal evolution of the arches evidencing important differences among the structures that are easily destroyed and those that seem to resist forever (longer than the temporal window employed in our measurements). Ministerio de Economía y Competitividad (Spanish Government). Project No. FIS2014-57325.

  12. Unsteady non-Newtonian hydrodynamics in granular gases.

    Astillero, Antonio; Santos, Andrés

    2012-02-01

    The temporal evolution of a dilute granular gas, both in a compressible flow (uniform longitudinal flow) and in an incompressible flow (uniform shear flow), is investigated by means of the direct simulation Monte Carlo method to solve the Boltzmann equation. Emphasis is laid on the identification of a first "kinetic" stage (where the physical properties are strongly dependent on the initial state) subsequently followed by an unsteady "hydrodynamic" stage (where the momentum fluxes are well-defined non-Newtonian functions of the rate of strain). The simulation data are seen to support this two-stage scenario. Furthermore, the rheological functions obtained from simulation are well described by an approximate analytical solution of a model kinetic equation. © 2012 American Physical Society

  13. A new solver for granular avalanche simulation: Indoor experiment verification and field scale case study

    Wang, XiaoLiang; Li, JiaChun

    2017-12-01

    A new solver based on the high-resolution scheme with novel treatments of source terms and interface capture for the Savage-Hutter model is developed to simulate granular avalanche flows. The capability to simulate flow spread and deposit processes is verified through indoor experiments of a two-dimensional granular avalanche. Parameter studies show that reduction in bed friction enhances runout efficiency, and that lower earth pressure restraints enlarge the deposit spread. The April 9, 2000, Yigong avalanche in Tibet, China, is simulated as a case study by this new solver. The predicted results, including evolution process, deposit spread, and hazard impacts, generally agree with site observations. It is concluded that the new solver for the Savage-Hutter equation provides a comprehensive software platform for granular avalanche simulation at both experimental and field scales. In particular, the solver can be a valuable tool for providing necessary information for hazard forecasts, disaster mitigation, and countermeasure decisions in mountainous areas.

  14. Granular metamaterials for vibration mitigation

    Gantzounis, G.; Serra-Garcia, M.; Homma, K.; Mendoza, J. M.; Daraio, C.

    2013-09-01

    Acoustic metamaterials that allow low-frequency band gaps are interesting for many practical engineering applications, where vibration control and sound insulation are necessary. In most prior studies, the mechanical response of these structures has been described using linear continuum approximations. In this work, we experimentally and theoretically address the formation of low-frequency band gaps in locally resonant granular crystals, where the dynamics of the system is governed by discrete equations. We investigate the quasi-linear behavior of such structures. The analysis shows that a stopband can be introduced at about one octave lower frequency than in materials without local resonances. Broadband and multi-frequency stopband characteristics can also be achieved by strategically tailoring the non-uniform local resonance parameters.

  15. Shear failure of granular materials

    Degiuli, Eric; Balmforth, Neil; McElwaine, Jim; Schoof, Christian; Hewitt, Ian

    2012-02-01

    Connecting the macroscopic behavior of granular materials with the microstructure remains a great challenge. Recent work connects these scales with a discrete calculus [1]. In this work we generalize this formalism from monodisperse packings of disks to 2D assemblies of arbitrarily shaped grains. In particular, we derive Airy's expression for a symmetric, divergence-free stress tensor. Using these tools, we derive, from first-principles and in a mean-field approximation, the entropy of frictional force configurations in the Force Network Ensemble. As a macroscopic consequence of the Coulomb friction condition at contacts, we predict shear failure at a critical shear stress, in accordance with the Mohr-Coulomb failure condition well known in engineering. Results are compared with numerical simulations, and the dependence on the microscopic geometric configuration is discussed. [4pt] [1] E. DeGiuli & J. McElwaine, PRE 2011. doi: 10.1103/PhysRevE.84.041310

  16. Four-dimensional Hooke's law can encompass linear elasticity and inertia

    Antoci, S.; Mihich, L.

    1999-01-01

    The question is examined whether the formally straightforward extension of Hooke's time-honoured stress-strain relation to the four dimensions of special and of general relativity can make physical sense. The four-dimensional Hooke law is found able to account for the inertia of matter; in the flat-space, slow-motion approximation the field equations for the displacement four-vector field ξ i can encompass both linear elasticity and inertia. In this limit one just recovers the equations of motion of the classical theory of elasticity

  17. Energy decay in a granular gas collapse

    Almazán, Lidia; Serero, Dan; Pöschel, Thorsten; Salueña, Clara

    2017-01-01

    An inelastic hard ball bouncing repeatedly off the ground comes to rest in finite time by performing an infinite number of collisions. Similarly, a granular gas under the influence of external gravity, condenses at the bottom of the confinement due to inelastic collisions. By means of hydrodynamical simulations, we find that the condensation process of a granular gas reveals a similar dynamics as the bouncing ball. Our result is in agreement with both experiments and particle simulations, but disagrees with earlier simplified hydrodynamical description. Analyzing the result in detail, we find that the adequate modeling of pressure plays a key role in continuum modeling of granular matter. (paper)

  18. On inconsistency in frictional granular systems

    Alart, Pierre; Renouf, Mathieu

    2018-04-01

    Numerical simulation of granular systems is often based on a discrete element method. The nonsmooth contact dynamics approach can be used to solve a broad range of granular problems, especially involving rigid bodies. However, difficulties could be encountered and hamper successful completion of some simulations. The slow convergence of the nonsmooth solver may sometimes be attributed to an ill-conditioned system, but the convergence may also fail. The prime aim of the present study was to identify situations that hamper the consistency of the mathematical problem to solve. Some simple granular systems were investigated in detail while reviewing and applying the related theoretical results. A practical alternative is briefly analyzed and tested.

  19. Shock waves in weakly compressed granular media.

    van den Wildenberg, Siet; van Loo, Rogier; van Hecke, Martin

    2013-11-22

    We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.

  20. Granular-relational data mining how to mine relational data in the paradigm of granular computing ?

    Hońko, Piotr

    2017-01-01

    This book provides two general granular computing approaches to mining relational data, the first of which uses abstract descriptions of relational objects to build their granular representation, while the second extends existing granular data mining solutions to a relational case. Both approaches make it possible to perform and improve popular data mining tasks such as classification, clustering, and association discovery. How can different relational data mining tasks best be unified? How can the construction process of relational patterns be simplified? How can richer knowledge from relational data be discovered? All these questions can be answered in the same way: by mining relational data in the paradigm of granular computing! This book will allow readers with previous experience in the field of relational data mining to discover the many benefits of its granular perspective. In turn, those readers familiar with the paradigm of granular computing will find valuable insights on its application to mining r...

  1. Role of gravity or confining pressure and contact stiffness in granular rheology

    Singh, A.; Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2015-01-01

    The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the focus of this study. A series of particle simulations are performed on a weakly frictional

  2. Segregation of a binary granular mixture in a vibrating sawtooth base container

    Mobarakabadi, Shahin; Adrang, Neda; Habibi, Mehdi; Oskoee, Ehsan Nedaaee

    2017-01-01

    Abstract.: A granular mixture of identical particles of different densities can be segregated when the system is shaken. We present an efficient method of continuously segregating a flow of randomly mixed identical spherical particles of different densities by shaking them in a

  3. Advanced Granular System Modeling, Phase I

    National Aeronautics and Space Administration — Spaceports of the future will utilize new granular materials in unique applications including insulation for cryogenic tanks and Lunar regolith processing for usable...

  4. Resistance capability of microaerobic granular sludge for ...

    enoh

    2012-02-08

    Feb 8, 2012 ... The resistance capability to pH shock of microaerobic granular sludge for pentachlorophenol (PCP) ... process with chlorine gas in pulp and paper, leather and spinning ... nitrifying bacteria in the aerobic zone, and then trans-.

  5. Microbiological aspects of granular methanogenic sludge

    Dolfing, J.

    1987-01-01

    The settling characteristics of anaerobic sludge are enhanced by the formation of microbial conglomerates. Various types of conglomerates having different structures, were distinguished in the present study, viz. granules, pellets and flocs (chapter 1). Granular methanogenic sludge, often

  6. Uniform shock waves in disordered granular matter.

    Gómez, Leopoldo R; Turner, Ari M; Vitelli, Vincenzo

    2012-10-01

    The confining pressure P is perhaps the most important parameter controlling the properties of granular matter. Strongly compressed granular media are, in many respects, simple solids in which elastic perturbations travel as ordinary phonons. However, the speed of sound in granular aggregates continuously decreases as the confining pressure decreases, completely vanishing at the jamming-unjamming transition. This anomalous behavior suggests that the transport of energy at low pressures should not be dominated by phonons. In this work we use simulations and theory to show how the response of granular systems becomes increasingly nonlinear as pressure decreases. In the low-pressure regime the elastic energy is found to be mainly transported through nonlinear waves and shocks. We numerically characterize the propagation speed, shape, and stability of these shocks and model the dependence of the shock speed on pressure and impact intensity by a simple analytical approach.

  7. Kinetic Theory of Granular Gases

    Trizac, Emmanuel [Center of Theoretical Biological Physics, UC San Diego, La Jolla, CA 92093-0374 (United States); Laboratoire de Physique Theorique et Modeles Statistiques, Campus Universitaire, 91405 Orsay (France)

    2005-11-25

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution {epsilon} -a central quantity governing the

  8. Kinetic Theory of Granular Gases

    Trizac, Emmanuel

    2005-01-01

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors-who were among the pioneers in the domain- the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ε -a central quantity governing the inelasticity of

  9. Hopper Flow: Experiments and Simulation

    Li, Zhusong; Shattuck, Mark

    2013-03-01

    Jamming and intermittent granular flow are important problems in industry, and the vertical hopper is a canonical example. Clogging of granular hoppers account for significant losses across many industries. We use realistic DEM simulations of gravity driven flow in a hopper to examine flow and jamming of 2D disks and compare with identical companion experiments. We use experimental data to validate simulation parameters and the form of the inter particle force law. We measure and compare flow rate, emptying times, jamming statistics, and flow fields as a function of opening angle and opening size in both experiment and simulations. Suppored by: NSF-CBET-0968013

  10. Small-signal analysis of granular semiconductors

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  11. Small-signal analysis of granular semiconductors

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The small-signal ac response of granular n-type semiconductors is calculated analytically using the drift-diffusion theory when electronic trapping at grain boundaries is present. An electrical equivalent circuit (EEC) model of a granular n-type semiconductor is presented. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is very good in a broad frequency range at low dc bias voltages.

  12. Granular cell tumor: An uncommon benign neoplasm

    Tirthankar Gayen

    2015-01-01

    Full Text Available Granular cell tumor is a distinctly rare neoplasm of neural sheath origin. It mainly presents as a solitary asymptomatic swelling in the oral cavity, skin, and rarely internal organs in the middle age. Histopathology is characteristic, showing polyhedral cells containing numerous fine eosinophilic granules with indistinct cell margins. We present a case of granular cell tumor on the back of a 48-year-old woman which was painful, mimicking an adnexal tumor.

  13. Measurements of Grain Motion in a Dense, Three-Dimensional Granular Fluid

    Yang, Xiaoyu; Huan, Chao; Candela, D.; Mair, R. W.; Walsworth, R. L.

    2002-03-01

    We have used NMR to measure the short-time, three-dimensional displacement of grains in a system of mustard seeds vibrated vertically at 15g. The measurements are in the ballistic regime, giving direct access to the granular temperature profile. The data are compared to a recent hydrodynamic theory developed for high density granular flows. We find that the hydrodynamic theory works well for the dense, lower portion of the sample but breaks down near the free surface, where the mean free path becomes long.

  14. Statistical and visual probing of evolving granular assemblies

    Smith, Laurence M.

    2002-01-01

    The majority of processes in the chemical and allied industries involve the storage and conveyancing of granular material, the physics of which is still not particularly well understood. Whilst some non-invasive techniques have been developed, much experimental work unfortunately interferes with the fields being investigated. For this reason and in conjunction with increasing computing power, there has been an increase in simulation based studies. Granular dynamics simulations, being based upon inter-particle interaction laws, give the potential to investigate assemblies at the 'micro-level' and have been successful in modelling process conditions in a number of granular flow situations. To date, most analyses of these simulations are essentially static in nature involving 'time snapshots'. However, in a granular dynamics simulation there is a wealth of data available on a time referenced basis which has the potential to allow a quantitative analysis of the dynamics of assembly evolution. This dissertation describes the development and application of a toolkit for post-simulation analysis. However, the utilities within the toolkit would be equally applicable to large experimental data sets should such data sets exist. The application of the toolset focuses largely on the dynamics of heap evolution in both 2D and 3D with some supportive 3D work on hopper discharge. A major part of the work involves the application of time series techniques (including the wavelet transform) in the context of variable coupling during avalanching. Segregation by self-diffusion receives particular attention and a new mechanism is proposed by which segregation by particle size takes place in the boundary layer of a low impact feed heap displaying a clear velocity gradient during discrete avalanching. Periodic lateral surging is shown to enforce mixing for a high impact feed, a phenomenon which appears to switch off below a certain feed impact. Segregation by self-diffusion is also shown

  15. Modeling of Hydrodynamics of a Highly Concentrated Granular Medium on the Basis of a Power-Law

    Shvab Alexander

    2016-01-01

    Full Text Available The paper deals with the movement of the granular medium at a high concentration on the basis of the “power” of the liquid. Based on the original partial slip boundary conditions on the walls of protection obtained with experimental and numerical data to flow in the channel at a flow obstacle.

  16. End-to-end network models encompassing terrestrial, wireless, and satellite components

    Boyarko, Chandler L.; Britton, John S.; Flores, Phil E.; Lambert, Charles B.; Pendzick, John M.; Ryan, Christopher M.; Shankman, Gordon L.; Williams, Ramon P.

    2004-08-01

    Development of network models that reflect true end-to-end architectures such as the Transformational Communications Architecture need to encompass terrestrial, wireless and satellite component to truly represent all of the complexities in a world wide communications network. Use of best-in-class tools including OPNET, Satellite Tool Kit (STK), Popkin System Architect and their well known XML-friendly definitions, such as OPNET Modeler's Data Type Description (DTD), or socket-based data transfer modules, such as STK/Connect, enable the sharing of data between applications for more rapid development of end-to-end system architectures and a more complete system design. By sharing the results of and integrating best-in-class tools we are able to (1) promote sharing of data, (2) enhance the fidelity of our results and (3) allow network and application performance to be viewed in the context of the entire enterprise and its processes.

  17. Grain-scale numerical modeling of granular mechanics and fluid dynamics and application in a glacial context

    Damsgaard, Anders; Egholm, David Lundbek; Beem, Lucas H.

    The macroscopic behavior of granular materials is the result of the self-organizing complexity of the constituent grains. Granular materials are known for their ability to change phase, where each phase is characterized by distinct mechanical properties. This rich generic phenomenology has made...... it difficult to constrain generalized and adequate mathematical models for their mechanical behavior. Glaciers and ice streams often move by deformation of underlying melt-water saturated sediments. Glacier flow models including subglacial sediment deformation use simplified a priori assumptions for sediment......, the method imposes intense computational requirements on the computational time step. The majority of steps in the granular dynamics algorithm are massively parallel, which makes the DEM an obvious candidate for exploiting the capabilities of modern GPUs. The granular computations are coupled to a fluid...

  18. Cavitation and multiphase flow forum - 1985

    Hoyt, J.W.; Furuya, O.

    1985-01-01

    This book presents the papers given at a conference on fluid flow. Topics considered at the conference included cavitation inception, bubble growth, cavitation noise, holography, axial flow pumps, vortices, cavitation erosion, two-phase flow in nozzles, coal slurry valves, hopper flows of granular materials, helium bubble transport in a closed vertical duct, and a numerical model for flow in a venturi scrubber

  19. Low-velocity impact cratering experiments in granular slopes

    Hayashi, Kosuke; Sumita, Ikuro

    2017-07-01

    Low-velocity impact cratering experiments are conducted in sloped granular targets to study the effect of the slope angle θ on the crater shape and its scales. We use two types of granular matter, sand and glass beads, former of which has a larger friction coefficient μs = tanθr , where θr is the angle of repose. Experiments show that as θ increases, the crater becomes shallower and elongated in the direction of the slope. Furthermore the crater floor steepens in the upslope side and a thick rim forms in the downslope side, thus forming an asymmetric profile. High-speed images show that these features are results of ejecta being dispersed farther towards the downslope side and the subsequent avalanche which buries much of the crater floor. Such asymmetric ejecta dispersal can be explained by combining the Z-model and a ballistic model. Using the topographic maps of the craters, we classify crater shape regimes I-III, which transition with increasing θ : a full-rim crater (I), a broken-rim crater (II), and a depression (III). The critical θ for the regime transitions are larger for sand compared to glass beads, but collapse to close values when we use a normalized slope θ^ = tanθ / tanθr . Similarly we derive θ^-dependences of the scaled crater depth, length, width and their ratios which collapse the results for different targets and impact energies. We compare the crater profiles formed in our experiments with deep craters on asteroid Vesta and find that some of the scaled profiles nearly overlap and many have similar depth / length ratios. This suggests that these Vestan craters may also have formed in the gravity regime and that the formation process can be approximated by a granular flow with a similar effective friction coefficient.

  20. Deletion 1q43 encompassing only CHRM3 in a patient with autistic disorder.

    Petersen, Andrea Klunder; Ahmad, Ausaf; Shafiq, Mustafa; Brown-Kipphut, Brigette; Fong, Chin-To; Anwar Iqbal, M

    2013-02-01

    Deletions on the distal portion of the long arm of chromosome 1 result in complex and highly variable clinical phenotypes which include intellectual disability, autism, seizures, microcephaly/craniofacial dysmorphology, corpus callosal agenesis/hypogenesis, cardiac and genital anomalies, hand and foot abnormalities and short stature. Genotype-phenotype correlation reported a minimum region of 2 Mb at 1q43-q44. We report on a 3 ½ year old male patient diagnosed with autistic disorder who has social withdrawal, eating problems, repetitive stereotypic behaviors including self-injurious head banging and hair pulling, and no seizures, anxiety, or mood swings. Array comparative genomic hybridization (aCGH) showed an interstitial deletion of 473 kb at 1q43 region (239,412,391-239,885,394; NCBI build37/hg19) harboring only CHRM3 (Acetylcholine Receptor, Muscarinic, 3; OMIM: 118494). Recently, another case with a de novo interstitial deletion of 911 kb at 1q43 encompassing three genes including CHRM3 was reported. The M3 muscarinic receptor influences a multitude of central and peripheral nervous system processes via its interaction with acetylcholine and may be an important modulator of behavior, learning and memory. We propose CHRM3 as a candidate gene responsible for our patient's specific phenotype as well as the overlapping phenotypic features of other patients with 1q43 or 1q43-q44 deletions. Copyright © 2013. Published by Elsevier Masson SAS.

  1. A new bidirectional heteroassociative memory encompassing correlational, competitive and topological properties.

    Chartier, Sylvain; Giguère, Gyslain; Langlois, Dominic

    2009-01-01

    In this paper, we present a new recurrent bidirectional model that encompasses correlational, competitive and topological model properties. The simultaneous use of many classes of network behaviors allows for the unsupervised learning/categorization of perceptual patterns (through input compression) and the concurrent encoding of proximities in a multidimensional space. All of these operations are achieved within a common learning operation, and using a single set of defining properties. It is shown that the model can learn categories by developing prototype representations strictly from exposition to specific exemplars. Moreover, because the model is recurrent, it can reconstruct perfect outputs from incomplete and noisy patterns. Empirical exploration of the model's properties and performance shows that its ability for adequate clustering stems from: (1) properly distributing connection weights, and (2) producing a weight space with a low dispersion level (or higher density). In addition, since the model uses a sparse representation (k-winners), the size of topological neighborhood can be fixed, and no longer requires a decrease through time as was the case with classic self-organizing feature maps. Since the model's learning and transmission parameters are independent from learning trials, the model can develop stable fixed points in a constrained topological architecture, while being flexible enough to learn novel patterns.

  2. A thermodynamically consistent model for granular-fluid mixtures considering pore pressure evolution and hypoplastic behavior

    Hess, Julian; Wang, Yongqi

    2016-11-01

    A new mixture model for granular-fluid flows, which is thermodynamically consistent with the entropy principle, is presented. The extra pore pressure described by a pressure diffusion equation and the hypoplastic material behavior obeying a transport equation are taken into account. The model is applied to granular-fluid flows, using a closing assumption in conjunction with the dynamic fluid pressure to describe the pressure-like residual unknowns, hereby overcoming previous uncertainties in the modeling process. Besides the thermodynamically consistent modeling, numerical simulations are carried out and demonstrate physically reasonable results, including simple shear flow in order to investigate the vertical distribution of the physical quantities, and a mixture flow down an inclined plane by means of the depth-integrated model. Results presented give insight in the ability of the deduced model to capture the key characteristics of granular-fluid flows. We acknowledge the support of the Deutsche Forschungsgemeinschaft (DFG) for this work within the Project Number WA 2610/3-1.

  3. A trans-phase granular continuum relation and its use in simulation

    Kamrin, Ken; Dunatunga, Sachith; Askari, Hesam

    The ability to model a large granular system as a continuum would offer tremendous benefits in computation time compared to discrete particle methods. However, two infamous problems arise in the pursuit of this vision: (i) the constitutive relation for granular materials is still unclear and hotly debated, and (ii) a model and corresponding numerical method must wear ``many hats'' as, in general circumstances, it must be able to capture and accurately represent the material as it crosses through its collisional, dense-flowing, and solid-like states. Here we present a minimal trans-phase model, merging an elastic response beneath a fictional yield criterion, a mu(I) rheology for liquid-like flow above the static yield criterion, and a disconnection rule to model separation of the grains into a low-temperature gas. We simulate our model with a meshless method (in high strain/mixing cases) and the finite-element method. It is able to match experimental data in many geometries, including collapsing columns, impact on granular beds, draining silos, and granular drag problems.

  4. On the rheology of dilative granular media: Bridging solid- and fluid-like behavior

    Andrade, José E.; Chen, Qiushi; Le, Phong H.; Avila, Carlos F.; Matthew Evans, T.

    2012-06-01

    A new rate-dependent plasticity model for dilative granular media is presented, aiming to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date, solid-like behavior is typically tackled with rate-independent plasticity models emanating from Mohr-Coulomb and Critical State plasticity theory. On the other hand, the fluid-like behavior of granular media is typically treated using constitutive theories amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material strength is composed of a dilation part and a rate-dependent residual strength. The dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-like regime. The residual strength, which in a classical plasticity model is considered constant and rate-independent, is postulated to evolve with strain rate. The main appeal of the model is its simplicity and its ability to reconcile the classic plasticity and rheology camps. The applicability and capability of the model are demonstrated by numerical simulation of granular flow problems, as well as a classical shear banding problem, where the performance of the continuum model is compared to discrete particle simulations and physical experiment. These results shed much-needed light onto the mechanics and physics of granular media at various shear rates.

  5. Wet granular matter a truly complex fluid

    Herminghaus, Stephan

    2013-01-01

    This is a monograph written for the young and advanced researcher who is entering the field of wet granular matter and keen to understand the basic physical principles governing this state of soft matter. It treats wet granulates as an instance of a ternary system, consisting of the grains, a primary, and a secondary fluid. After addressing wetting phenomena in general and outlining the basic facts on dry granular systems, a chapter on basic mechanisms and their effects is dedicated to every region of the ternary phase diagram. Effects of grain shape and roughness are considered as well. Rather than addressing engineering aspects such as existing books on this topic do, the book aims to provide a generalized framework suitable for those who want to understand these systems on a more fundamental basis. Readership: For the young and advanced researcher entering the field of wet granular matter.

  6. Statistical mechanics of dense granular media

    Coniglio, A; Fierro, A; Nicodemi, M; Ciamarra, M Pica; Tarzia, M

    2005-01-01

    We discuss some recent results on the statistical mechanics approach to dense granular media. In particular, by analytical mean field investigation we derive the phase diagram of monodisperse and bidisperse granular assemblies. We show that 'jamming' corresponds to a phase transition from a 'fluid' to a 'glassy' phase, observed when crystallization is avoided. The nature of such a 'glassy' phase turns out to be the same as found in mean field models for glass formers. This gives quantitative evidence for the idea of a unified description of the 'jamming' transition in granular media and thermal systems, such as glasses. We also discuss mixing/segregation transitions in binary mixtures and their connections to phase separation and 'geometric' effects

  7. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases

    Gupta, Ronak; Alam, Meheboob

    2018-01-01

    The nature of particle-wall interactions is shown to have a profound impact on the well-known "Knudsen paradox" [or the "Knudsen minimum" effect, which refers to the decrease of the mass-flow rate of a gas with increasing Knudsen number Kn, reaching a minimum at Kn˜O (1 ) and increasing logarithmically with Kn as Kn→∞ ] in the acceleration-driven Poiseuille flow of rarefied gases. The nonmonotonic variation of the flow rate with Kn occurs even in a granular or dissipative gas in contact with thermal walls. The latter result is in contradiction with recent work [Alam et al., J. Fluid Mech. 782, 99 (2015), 10.1017/jfm.2015.523] that revealed the absence of the Knudsen minimum in granular Poiseuille flow for which the flow rate was found to decrease at large values of Kn. The above conundrum is resolved by distinguishing between "thermal" and "athermal" walls, and it is shown that, for both molecular and granular gases, the momentum transfer to athermal walls is much different than that to thermal walls which is directly responsible for the anomalous flow-rate variation with Kn in the rarefied regime. In the continuum limit of Kn→0 , the athermal walls are shown to be closely related to "no-flux" ("adiabatic") walls for which the Knudsen minimum does not exist either. A possible characterization of athermal walls in terms of (1) an effective specularity coefficient for the slip velocity and (2) a flux-type boundary condition for granular temperature is suggested based on simulation results.

  8. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  9. Surface instabilities in shock loaded granular media

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  10. Leucemia de grandes linfócitos granulares Large granular lymphocyte leukemia

    Bruno Terra

    2010-01-01

    Full Text Available O presente estudo tem como objetivo o estabelecimento de fundamentação teórica atualizada baseada em revisão bibliográfica sobre a leucemia de grandes linfócitos granulares (LGLG, doença onco-hematológica, que, devido à sua relativa raridade, é pouco conhecida e subdiagnosticada. A LGLG é caracterizada pela proliferação clonal de linfócitos T ou NK na medula óssea e/ou no sangue periférico. Dentre as manifestações clínico-laboratoriais, podem ocorrer citopenias (anemia e/ou neutropenia e/ou plaquetopenia, linfocitose (não costuma ser acentuada, linfadenomegalia, hepatoesplenomegalia, alterações imunológicas e sintomas constitucionais (emagrecimento, febre e sudorese. O curso clínico da LGLG é bastante variável, sendo que no subtipo T costuma ser indolente ou oligossintomática, enquanto no subtipo NK a evolução costuma ser desfavorável. O diagnóstico é firmado através de imunofenotipagem por citometria de fluxo e estudo de clonalidade por métodos de biologia molecular. Seu tratamento é bastante diversificado e é definido de acordo com a apresentação clínica da doença.This is a literature review about large granular lymphocyte leukemia (LGLL, a rare and misdiagnosed oncohematological disease, characterized by a clonal expansion of T-cells (T-LGLL or NK-cells (NK-LGLL in the bone marrow and/or peripheral blood. The clinical features of LGLL include cytopenias (anemia, neutropenia and thrombocytopenia, lymphocytosis (usually discrete, lymphadenopathy, hepatomegaly, splenomegaly, immune abnormalities and constitutional symptoms (fever, night sweats and weight loss. The diagnosis is based on the confirmation of the clonality of T-cells or NK-cells (polymerase chain reaction and Southern blot are the two methods most commonly used and typical findings of the immunophenotypic analysis of peripheral blood lymphocytes (flow cytometry analyses for specific surface antigens. In contrast to the chronic and indolent

  11. Granular cells Tumor in the gastrointestinal tract

    Castano LL, Rodrigo; Gaitan B, Maria H; Juliao E, Fabian

    2005-01-01

    Granular cells tumors are ubiquitous lesions in the gastrointestinal tract, are rare and asymptomatic and they are generally an incidental discovery at gastroduodenoscopy or colonoscopy. In the gastrointestinal tract they are more frequently located in the esophagus, right colon and rectum, stomach, appendix, small intestine or biliopancreatic tract. This article describes three patients with four tumors of granular cells in rectum, esophagus (2 lesions) and appendix. It becomes special emphasis in their neural origin, their benign behavior that justifies the endoscopic resections or limited surgical excisions and the necessity of a pursuit for the possibility, although little, of malignant transformation

  12. Familial X/Y Translocation Encompassing ARSE in Two Moroccan Siblings with Sensorineural Deafness.

    Amasdl, Saadia; Smaili, Wiam; Natiq, Abdelhafid; Hassani, Amale; Sbiti, Aziza; Agadr, Aomar; Sanlaville, Damien; Sefiani, Abdelaziz

    2017-01-01

    Unbalanced translocations involving X and Y chromosomes are rare and associated with a contiguous gene syndrome. The clinical phenotype is heterogeneous including mainly short stature, chondrodysplasia punctata, ichthyosis, hypogonadism, and intellectual disability. Here, we report 2 brothers with peculiar gestalt, short stature, and hearing loss, who harbor an X/Y translocation. Physical examination, brainstem acoustic potential evaluation, bone age, hormonal assessment, and X-ray investigations were performed. Because of their dysmorphic features, karyotyping, FISH, and aCGH were carried out. The probands had short stature, hypertelorism, midface hypoplasia, sensorineural hearing loss, normal intelligence as well as slight radial and ulnar bowing with brachytelephalangy. R-banding identified a derivative X chromosome with an abnormally expanded short arm. The mother was detected as a carrier of the same aberrant X chromosome. aCGH disclosed a 3.1-Mb distal deletion of chromosome region Xp22.33pter. This interval encompasses several genes, especially the short stature homeobox (SHOX) and arylsulfatase (ARSE) genes. The final karyotype of the probands was: 46,Y,der(X),t(X;Y)(p22;q12).ish der(X)(DXYS129-,DXYS153-)mat.arr[hg19] Xp22.33(61091_2689408)×1mat,Xp22.33(2701273_3258404)×0mat,Yq11.222q12 (21412851_59310245)×2. Herein, we describe a Moroccan family with a maternally inherited X/Y translocation and discuss the genotype-phenotype correlations according to the deleted genes. © 2017 S. Karger AG, Basel.

  13. Cultural respect encompassing simulation training: being heard about health through broadband

    Phyllis Min-yu Lau

    2016-04-01

    Full Text Available Background. Cultural Respect Encompassing Simulation Training (CREST is a learning program that uses simulation to provide health professional students and practitioners with strategies to communicate sensitively with culturally and linguistically diverse (CALD patients. It consists of training modules with a cultural competency evaluation framework and CALD simulated patients to interact with trainees in immersive simulation scenarios. The aim of this study was to test the feasibility of expanding the delivery of CREST to rural Australia using live video streaming; and to investigate the fidelity of cultural sensitivity – defined within the process of cultural competency which includes awareness, knowledge, skills, encounters and desire – of the streamed simulations. Design and Methods. In this mixed-methods evaluative study, health professional trainees were recruited at three rural academic campuses and one rural hospital to pilot CREST sessions via live video streaming and simulation from the city campus in 2014. Cultural competency, teaching and learning evaluations were conducted. Results. Forty-five participants rated 26 reliable items before and after each session and reported statistically significant improvement in 4 of 5 cultural competency domains, particularly in cultural skills (P<0.05. Qualitative data indicated an overall acknowledgement amongst participants of the importance of communication training and the quality of the simulation training provided remotely by CREST. Conclusions. Cultural sensitivity education using live video-streaming and simulation can contribute to health professionals’ learning and is effective in improving cultural competency. CREST has the potential to be embedded within health professional curricula across Australian universities to address issues of health inequalities arising from a lack of cultural sensitivity training.

  14. The dependence of granular plasticity on particle shape

    Murphy, Kieran; Jaeger, Heinrich

    Granular materials plastically deform through reworking an intricate network of particle-particle contacts. Some particle rearrangements have only a fleeting effect before being forgotten while others set in motion global restructuring. How particle shape affects local interactions and how those, in turn, influence the nature of the aggregate's plasticity is far from clear, especially in three dimensions. Here we investigate the remarkably wide range of behaviors in the yielding regime, from quiescent flow to violent jerks, depending on particle shape. We study this complex dependence via uniaxial compression experiments on aggregates of 3D-printed particles, and complement stress-strain data with simultaneous x-ray videos and volumetric strain measurements. We find power law distributions of the slip magnitudes, and discuss their universality. Our data show that the multitude of small slips serves to gradually dilate the packing whereas the fewer large ones accompany significant compaction events. Our findings provide new insights into general features of granular materials during plastic deformation and highlight how small changes in particle shape can give rise to drastic differences in yielding behavior.

  15. Kinetics and mass-transfer phenomena in anaerobic granular sludge.

    Gonzalez-Gil, G; Seghezzo, L; Lettinga, G; Kleerebezem, R

    2001-04-20

    The kinetic properties of acetate-degrading methanogenic granular sludge of different mean diameters were assessed at different up-flow velocities (V(up)). Using this approach, the influence of internal and external mass transfer could be estimated. First, the apparent Monod constant (K(S)) for each data set was calculated by means of a curve-fitting procedure. The experimental results revealed that variations in the V(up) did not affect the apparent K(S)-value, indicating that external mass-transport resistance normally can be neglected. With regard to the granule size, a clear increase in K(S) was found at increasing granule diameters. The experimental data were further used to validate a dynamic mathematical biofilm model. The biofilm model was able to describe reaction-diffusion kinetics in anaerobic granules, using a single value for the effective diffusion coefficient in the granules. This suggests that biogas formation did not influence the diffusion-rates in the granular biomass. Copyright 2001 John Wiley & Sons, Inc.

  16. DISCHARGE VALVE FOR GRANULAR MATERIAL

    Stoughton, L.D.; Robinson, S.T.

    1962-05-15

    A gravity-red dispenser or valve is designed for discharging the fueled spherical elements used in a pebble bed reactor. The dispenser consists of an axially movable tube terminating under a hood having side walls with openings. When the tube is moved so that its top edge is above the tops of the side openings the elements will not flow. As the tube is moved downwardly, the elements flow into the hood through the side openings and over the top edge into the tube at an increasing rate as the tube is lowered further. The tube is spaced at all times from the hood and side walls a distance greater than the diameter of the largest element to prevent damaging of the elements when the dispenser is closed to flow. (AEC)

  17. Continuum viscoplastic simulation of a granular column collapse on large slopes : μ(I) rheology and lateral wall effects

    Martin, Nathan; Mangeney, Anne; Ionescu, Ioan; Bouchut, Francois

    2016-04-01

    The description of the mechanical behaviour of granular flows and in particular of the static/flowing transition is still an open and challenging issue with strong implication for hazard assessment [{Delannay et al.}, 2016]. In particular, {detailed quantitative} comparison between numerical models and observations is necessary to go further in this direction. We simulate here dry granular flows resulting from the collapse of granular columns on an inclined channel (from horizontal to 22^o) and compare precisely the results with laboratory experiments performed by {Mangeney et al.} [2010] and {Farin et al.} [2014]. Incompressibility is assumed despite the dilatancy observed in the experiments (up to 10%). The 2-D model is based on the so-called μ(I) rheology that induces a Drucker-Prager yield stress and a variable viscosity. A nonlinear Coulomb friction term, representing the friction on the lateral walls of the channel is added to the model. We demonstrate that this term is crucial to accurately reproduce granular collapses on slopes higher than 10o whereas it remains of little effect on horizontal slope [{Martin et al.}, 2016]. We show that the use of a variable or a constant viscosity does not change significantly the results provided that these viscosities are of the same order [{Ionescu et al.}, 2015]. However, only a fine tuning of the constant viscosity (η = 1 Pa.s) makes it possible to predict the slow propagation phase observed experimentally on large slopes. This was not possible when using, without tuning, the variable viscosity calculated from the μ(I) rheology with the parameters estimated from experiments. Finally, we discuss the well-posedness of the model with variable and constant viscosity based in particular on the development of shear bands observed in the numerical simulations. References Delannay, R., Valance, A., Mangeney, A., Roche, O., and Richard, P., 2016. Granular and particle-laden flows: from laboratory experiments to field

  18. Enhancement of antibody-dependent cellular cytotoxicity of cetuximab by a chimeric protein encompassing interleukin-15.

    Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro

    2018-01-01

    Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.

  19. Granular Gas in a Periodic Lattice

    Dorbolo, S.; Brandenbourger, M.; Damanet, F.; Dister, H.; Ludewig, F.; Terwagne, D.; Lumay, G.; Vandewalle, N.

    2011-01-01

    Glass beads are placed in the compartments of a horizontal square grid. This grid is then vertically shaken. According to the reduced acceleration [image omitted] of the system, the granular material exhibits various behaviours. By counting the number of beads in each compartment after shaking, it is possible to define three regimes. At low…

  20. Pion showers in highly granular calorimeters

    New results on properties of hadron showers created by pion beam at 8–80 GeV in high granular electromagnetic and hadron calorimeters are presented. Data were used for the first time to investigate the separation of the neutral and charged hadron showers. The result is important to verify the prediction of the PFA ...

  1. Anomalous infrared absorption in granular superconductors

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  2. Random packing of colloids and granular matter

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  3. Deposition and shaking of dry granular piles

    Hasan, M.

    2003-01-01

    A friction force model describing reversible stick-slip transition during contact has been developed with the special purpose to simulate the deposition of granular material. A test with a mass on a conveyor belt kept in position by a spring shows that a numerical simulation of the dynamics of such

  4. ENGINEERING BULLETIN: GRANULAR ACTIVATED CARBON TREATMENT

    Granular activated carbon (GAC) treatment is a physicochemical process that removes a wide variety of contaminants by adsorbing them from liquid and gas streams [1, p. 6-3]. This treatment is most commonly used to separate organic contaminants from water or air; however, it can b...

  5. Velocity distributions in dilute granular systems

    van Zon, J.S.; Mac Kintosh, F.C.

    2005-01-01

    We investigate the idea that velocity distributions in granular gases are determined mainly by η, the coefficient of restitution and q, which measures the relative importance of heating (or energy input) to collisions. To this end, we study by numerical simulation the properties of inelastic gases

  6. Granular cell tumour of the urinary bladder

    Christoph von Klot

    2012-04-01

    Full Text Available With only 16 cases reported in the literature, the mostly benign granular cell tumour of the urinary bladder is exceptionally rare. We present the case of a 68-year old patient with one of these lesions demonstrating our histological findings including several immunohistochemical stainings used to differentiate between other more common entities.

  7. Nonlinear coherent structures in granular crystals

    Chong, C.; Porter, Mason A.; Kevrekidis, P. G.; Daraio, C.

    2017-10-01

    The study of granular crystals, which are nonlinear metamaterials that consist of closely packed arrays of particles that interact elastically, is a vibrant area of research that combines ideas from disciplines such as materials science, nonlinear dynamics, and condensed-matter physics. Granular crystals exploit geometrical nonlinearities in their constitutive microstructure to produce properties (such as tunability and energy localization) that are not conventional to engineering materials and linear devices. In this topical review, we focus on recent experimental, computational, and theoretical results on nonlinear coherent structures in granular crystals. Such structures—which include traveling solitary waves, dispersive shock waves, and discrete breathers—have fascinating dynamics, including a diversity of both transient features and robust, long-lived patterns that emerge from broad classes of initial data. In our review, we primarily discuss phenomena in one-dimensional crystals, as most research to date has focused on such scenarios, but we also present some extensions to two-dimensional settings. Throughout the review, we highlight open problems and discuss a variety of potential engineering applications that arise from the rich dynamic response of granular crystals.

  8. The critical current of granular superconductor

    Ignat'ev, V.K.

    1998-01-01

    A mechanism of hyper vortex pinning in granular superconductors is proposed to describe the field dependence of the critical current density and pinning potential. The results are in a good agreement with the experiment. The model represents the peak effect and the percolation mechanism of conductivity in ceramic superconductors

  9. Physical test of a particle simulation model in a sheared granular system

    Rycroft, Chris; Orpe, Ashish; Kudrolli, Arshad

    2009-01-15

    We report a detailed comparison of a slow gravity driven sheared granular flow with a computational model performed with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). To our knowledge, this is the first thorough test of the LAMMPS model with a laboratory granular flow. In the experiments, grains flow inside a silo with a rectangular cross-section, and are sheared by a rough boundary on one side and smooth boundaries on the other sides. Individual grain position and motion are measured using a particle index matching imaging technique where a fluorescent dye is added to the interstitial liquid which has the same refractive index as the glass beads. The boundary imposes a packing order, and the grains are observed to flow in layers which get progressively more disordered with distance from the walls. The computations use a Cundall--Strack contact model between the grains, using contact parameters that have been used in many other previous studies, and ignore the hydrodynamic effects of the interstitial liquid. Computations are performed to understand the effect of particle coefficient of friction, elasticity, contact model, and polydispersity on mean flow properties. After appropriate scaling, we find that the mean velocity of the grains and the number density as a function of flow cross-section observed in the experiments and the simulations are in excellent agreement. The mean flow profile is observed to be unchanged over a broad range of coefficient of friction, except near the smooth wall. We show that the flow profile is not sensitive to atleast 10\\percent polydispersity in particle size. Because the grain elasticity used is smaller in the computations as compared with glass grains, wave-like features can be noted over short time scales in the mean velocity and the velocity auto-correlations measured in the simulations. These wave features occur over an intermediate timescale larger than the particle interaction but smaller than the

  10. Acoustic monitoring of a ball sinking in vibrated granular sediments

    van den Wildenberg, Siet; Léopoldès, Julien; Tourin, Arnaud; Jia, Xiaoping

    2017-06-01

    We develop an ultrasound probing to investigate the dynamics of a high density ball sinking in 3D opaque dense granular suspensions under horizontal weak vibrations. We show that the motion of the ball in these horizontally vibrated glass bead packings saturated by water is consistent with the frictional rheology. The extracted stress-strain relation evidences an evolution of flow behaviour from frictional creep to inertial regimes. Our main finding is that weak external vibration primarily affects the yield stress and controls the depth of sinking via vibration-induced sliding at the grain contact. Also, we observe that the extracted rheological parameters depend on the size of the probing ball, suggesting thus a non-local rheology.

  11. The CMS High Granularity Calorimeter for HL-LHC

    Mastrolorenzo, Luca

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with SiPM readout. The intrinsic high-precision timing capabilities of the silicon sensors wi...

  12. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Sauvan, Jean-baptiste

    2017-01-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5 - 1 cm$^2$ cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities...

  13. STUDY OF HYDRODYNAMICS IN FIXED BED OF COMPOSITE GRANULAR MATERIALS

    Stelian Petrescu

    2010-12-01

    Full Text Available This study aims at the experimental determination of pressure drop and friction factor at gas flow through fixed beds of granular silica gel, alumina and activated carbon, and establishment of an equation containing a modified friction factor Fm to calculate pressure drop. In order to calculate the modified friction factor, an equation was suggested.The experimental values for pressure drop and friction factor were determined using spherical grains of silica gel, cylindrical grains of alumina and silica gel, alumina and activated carbon impregnated with calcium chloride. By means of the suggested equation, the values of pressure drop in fixed bed were calculated and compared with the experimental values. A good agreement between the predicted and experimental data is noticed.

  14. Fractal dimension analysis in a highly granular calorimeter

    Ruan, M; Brient, J.C; Jeans, D; Videau, H

    2015-01-01

    The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.

  15. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    Mohan, N.; Kannan, G.K.; Upendra, S.; Subha, R.; Kumar, N.S.

    2009-01-01

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l -1 ) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l -1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  16. Characterization of granular collapse onto hard substrates by acoustic emissions

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; De Rosny, Julien

    2013-04-01

    Brittle deformation in granular porous media can generate gravitational instabilities such as debris flows and rock avalanches. These phenomena constitute a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and rock blocks. The elastic energy emitted by a single bouncing steel bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, two types of acoustic sensors were used to record the signals in a wide frequency range: accelerometers (1 Hz to 56 kHz) and piezoelectric sensors (100 kHz to 1 MHz). The experiments were also monitored optically using fast cameras. We developed a technique to use quantitatively both types of sensors to evaluate the elastic energy emitted by the sources. Eventually, we looked at what

  17. Pore-Scale Flow Simulations: Model Predictions Compared with Experiments on Bi-Dispersed Granular Assemblies Simulation d’écoulements à l’échelle porale : comparaison des prédictions du modèle et d’expériences sur mélanges de billes de verre bi-disperses

    Tong A.-T.

    2012-11-01

    Full Text Available A method is presented for the simulation of pore flow in granular materials. The numerical model uses a combination of the discrete element method for the solid phase and a novel finite volume formulation for the fluid phase. The solid is modeled as an assembly of spherical particles, where contact interactions are governed by elasto-plastic relations. Incompressible Stokes flow is considered, assuming that inertial forces are small in comparison with viscous forces. Pore geometry and pore connections are defined locally through regular triangulation of spheres, from which a tetrahedral mesh arises. The definition of pore-scale hydraulic conductivities is a key aspect of this model. In this sense, the model is similar to a pore-network model. Permeability measurements on bi-dispersed glass beads are reported and compared with model predictions, validating the definition of local conductivities. Une méthode est présentée pour la simulation de l’écoulement porale dans les matériaux granulaires. Le modèle numérique est basé sur la méthode des éléments discrets pour la phase solide et sur une nouvelle méthode de type volumes finis pour la phase fluide. Le solide est modélisé comme un arrangement de particules sphériques avec des interactions de type élasto-plastique aux contacts. On considère un écoulement de Stokes incompressible en supposant que les forces inertielles sont négligeables par rapport aux forces visqueuses. La géométrie des pores et leur connectivité sont définies sur la base d’une triangulation régulière des sphères qui aboutit à un maillage tétraédrique. La définition des conductivités hydrauliques à l’échelle des pores est un point clef du modèle qui se rapproche sur ce point à des modèles de type pore-network. Des mesures de perméabilités sur des assemblages bi-disperses de billes de verre sont présentées et comparées aux prédictions du modèle ce qui valide la définition des

  18. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  19. Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches

    Shearer, M.; Gray, J. M N T; Thornton, A. R.

    2008-01-01

    Dense, dry granular avalanches are very efficient at sorting the larger particles towards the free surface of the flow, and finer grains towards the base, through the combined processes of kinetic sieving and squeeze expulsion. This generates an inversely graded particle-size distribution, which is fundamental to a variety of pattern formation mechanisms, as well as subtle size-mobility feedback effects, leading to the formation of coarse-grained lateral levees that create channels in geophys...

  20. Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions

    Gonzalez-Gil, G.; Lopes, S.I.C.; Saikaly, P.E.; Lens, P.N.L.

    2012-01-01

    The leaching and/or accumulation of trace elements in sulfate reducing granular sludge systems was investigated. Two thermophilic up-flow anaerobic sludge bed (UASB) reactors operated at pH 5 were fed with sucrose (4 g COD l(reactor)(-1) d(-1)) and sulfate at different COD/SO42- ratios. During the

  1. Deformation of a 3D granular media caused by fluid invasion

    Dalbe, M. J.; Juanes, R.

    2016-12-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing (Sandnes et al., Nat. Comm. 2011, Holtzman et al., PRL 2012). Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  2. Computer simulation of hopper flow

    Potapov, A.V.; Campbell, C.S.

    1996-01-01

    This paper describes two-dimensional computer simulations of granular flow in plane hoppers. The simulations can reproduce an experimentally observed asymmetric unsteadiness for monodispersed particle sizes, but also could eliminate it by adding a small amount of polydispersity. This appears to be a result of the strong packings that may be formed by monodispersed particles and is thus a noncontinuum effect. The internal stress state was also sampled, which among other things, allows an evaluation of common assumptions made in granular material models. These showed that the internal friction coefficient is far from a constant, which is in contradiction to common models based on plasticity theory which assume that the material is always at the point of imminent yield. Furthermore, it is demonstrated that rapid granular flow theory, another common modeling technique, is inapplicable to this problem even near the exit where the flow is moving its fastest. copyright 1996 American Institute of Physics

  3. Submammary Granular Parakeratosis Treated With Mastopexy.

    Nelson, Garrett; Lien, Mary H; Messina, Jane L; Ranjit, Sonali; Fenske, Neil Alan

    2017-08-01

    Granular parakeratosis, originally named axillary granular parakeratosis, is an uncommon disease with an unclear etiology. It is thought to result from defective processing of profillagrin to fillagrin, causing retention of keratohyaline granules in the epidermis. A myriad of causative factors has been proposed, including friction, moisture, heat, and contact irritants such as deodorants. We present a case in the inframammary area that resolved with mastopexy, further supporting the role of friction, moisture, and heat. Furthermore, we present electron microscopic evidence demonstrating non-degraded keratohyaline granules upon epidermal maturation. This entity, we believe, is reactive and represents a protective response of the body to moisture and heat. J Drugs Dermatol. 2017;16(8):810-812..

  4. Memory effect in uniformly heated granular gases

    Trizac, E.; Prados, A.

    2014-07-01

    We evidence a Kovacs-like memory effect in a uniformly driven granular gas. A system of inelastic hard particles, in the low density limit, can reach a nonequilibrium steady state when properly forced. By following a certain protocol for the drive time dependence, we prepare the gas in a state where the granular temperature coincides with its long time value. The temperature subsequently does not remain constant but exhibits a nonmonotonic evolution with either a maximum or a minimum, depending on the dissipation and on the protocol. We present a theoretical analysis of this memory effect at Boltzmann-Fokker-Planck equation level and show that when dissipation exceeds a threshold, the response can be called anomalous. We find excellent agreement between the analytical predictions and direct Monte Carlo simulations.

  5. Tumor of granular cells of esophagus

    Gonzalez Fabian, Licet; Diaz Anaya, Amnia; Perez de la Torre, Georgina

    2010-01-01

    Granular cells tumors are rare and asymptomatic lesions and by general, it is an incidental finding en high or low endoscopy. They were described for the first time by Abrikossoff in 1926. The more frequent locations are the buccal mucosa, dermis and subcutaneous cellular tissue, most of these tumors has a benign origin. This is the case of a woman aged 44 with a pyrosis history from a year ago; by high endoscopy it is noted a 8 mm lesion distal to esophagus and confirmed by histological study of granular cells tumor. Elective treatment of this lesion is the endoscopic polypectomy. Despite that the malign potential is low; we suggested a close clinical and endoscopic follow-up.

  6. Granularity controlled irradiation response of cuprate superconductors

    Mishra, N.C.; Behera, D.; Mohanty, T.; Mohanta, D.; Kanjilal, D.; Mehta, G.K.; Pinto, R.

    1999-01-01

    Confining to an energy range where ions can neither create defects through elastic energy loss nor they can create defects through latent track formation, we study the effect of 140 MeV Si-ion irradiation in YBa 2 Cu 3 O 7-x (YBCO). We show that the evolution of superconducting and normal state properties in such situation is largely governed by the initial defects structure, particularly the grain boundary characteristics of the YBCO system. Both intra- and inter-granular defect structure in films of two batches were made widely different by having Ag as composite and substituent in one and by aging the other prior to irradiation. Evolution of the resistivity vs temperature characteristics in these films with ion fluence reveals the importance of Ag in bringing about both inter- and intra-granular modifications and making the films insensitive to ion irradiation

  7. Mathematics and Mechanics of Granular Materials

    Hill, James M

    2005-01-01

    Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.

  8. Slow creep in soft granular packings.

    Srivastava, Ishan; Fisher, Timothy S

    2017-05-14

    Transient creep mechanisms in soft granular packings are studied numerically using a constant pressure and constant stress simulation method. Rapid compression followed by slow dilation is predicted on the basis of a logarithmic creep phenomenon. Characteristic scales of creep strain and time exhibit a power-law dependence on jamming pressure, and they diverge at the jamming point. Microscopic analysis indicates the existence of a correlation between rheology and nonaffine fluctuations. Localized regions of large strain appear during creep and grow in magnitude and size at short times. At long times, the spatial structure of highly correlated local deformation becomes time-invariant. Finally, a microscale connection between local rheology and local fluctuations is demonstrated in the form of a linear scaling between granular fluidity and nonaffine velocity.

  9. Fast spot-based multiscale simulations of granular drainage

    Rycroft, Chris H.; Wong, Yee Lok; Bazant, Martin Z.

    2009-05-22

    We develop a multiscale simulation method for dense granular drainage, based on the recently proposed spot model, where the particle packing flows by local collective displacements in response to diffusing"spots'" of interstitial free volume. By comparing with discrete-element method (DEM) simulations of 55,000 spheres in a rectangular silo, we show that the spot simulation is able to approximately capture many features of drainage, such as packing statistics, particle mixing, and flow profiles. The spot simulation runs two to three orders of magnitude faster than DEM, making it an appropriate method for real-time control or optimization. We demonstrateextensions for modeling particle heaping and avalanching at the free surface, and for simulating the boundary layers of slower flow near walls. We show that the spot simulations are robust and flexible, by demonstrating that they can be used in both event-driven and fixed timestep approaches, and showing that the elastic relaxation step used in the model can be applied much less frequently and still create good results.

  10. Fuzzy batch controller for granular materials

    Zamyatin Nikolaj; Smirnov Gennadij; Fedorchuk Yuri; Rusina Olga

    2018-01-01

    The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy infer...

  11. Arching Structures in Granular Sedimentary Deposits

    Kulaviak, Lukáš; Hladil, Jindřich; Růžička, Marek; Drahoš, Jiří; Saint-Lary, L.

    2013-01-01

    Roč. 246, SEP (2013), s. 269-277 ISSN 0032-5910 R&D Projects: GA ČR GA104/07/1110; GA AV ČR IAAX00130702; GA MŠk(CZ) LG11014 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : wet granulars * deposit * arching structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering; DB - Geology ; Mineralogy (GLU-S) Impact factor: 2.269, year: 2013

  12. Seismic wave propagation in granular media

    Tancredi, Gonzalo; López, Francisco; Gallot, Thomas; Ginares, Alejandro; Ortega, Henry; Sanchís, Johnny; Agriela, Adrián; Weatherley, Dion

    2016-10-01

    Asteroids and small bodies of the Solar System are thought to be agglomerates of irregular boulders, therefore cataloged as granular media. It is a consensus that many asteroids might be considered as rubble or gravel piles.Impacts on their surface could produce seismic waves which propagate in the interior of these bodies, thus causing modifications in the internal distribution of rocks and ejections of particles and dust, resulting in a cometary-type comma.We present experimental and numerical results on the study of propagation of impact-induced seismic waves in granular media, with special focus on behavior changes by increasing compression.For the experiment, we use an acrylic box filled with granular materials such as sand, gravel and glass spheres. Pressure inside the box is controlled by a movable side wall and measured with sensors. Impacts are created on the upper face of the box through a hole, ranging from free-falling spheres to gunshots. We put high-speed cameras outside the box to record the impact as well as piezoelectic sensors and accelerometers placed at several depths in the granular material to detect the seismic wave.Numerical simulations are performed with ESyS-Particle, a software that implements the Discrete Element Method. The experimental setting is reproduced in the numerical simulations using both individual spherical particles and agglomerates of spherical particles shaped as irregular boulders, according to rock models obtained with a 3D scanner. The numerical experiments also reproduces the force loading on one of the wall to vary the pressure inside the box.We are interested in the velocity, attenuation and energy transmission of the waves. These quantities are measured in the experiments and in the simulations. We study the dependance of these three parameters with characteristics like: impact speed, properties of the target material and the pressure in the media.These results are relevant to understand the outcomes of impacts in

  13. Small solar system bodies as granular systems

    Hestroffer, Daniel; Campo Bagatín, Adriano; Losert, Wolfgang; Opsomer, Eric; Sánchez, Paul; Scheeres, Daniel J.; Staron, Lydie; Taberlet, Nicolas; Yano, Hajime; Eggl, Siegfried; Lecomte, Charles-Edouard; Murdoch, Naomi; Radjai, Fahrang; Richardson, Derek C.; Salazar, Marcos; Schwartz, Stephen R.; Tanga, Paolo

    2017-06-01

    Asteroids and other Small Solar System Bodies (SSSBs) are currently of great scientific and even industrial interest. Asteroids exist as the permanent record of the formation of the Solar System and therefore hold many clues to its understanding as a whole, as well as insights into the formation of planetary bodies. Additionally, SSSBs are being investigated in the context of impact risks for the Earth, space situational awareness and their possible industrial exploitation (asteroid mining). In all these aspects, the knowledge of the geophysical characteristics of SSSB surface and internal structure are of great importance. Given their size, constitution, and the evidence that many SSSBs are not simple monoliths, these bodies should be studied and modelled as self-gravitating granular systems in general, or as granular systems in micro-gravity environments in particular contexts. As such, the study of the geophysical characteristics of SSSBs is a multi-disciplinary effort that lies at the crossroads between Granular Mechanics, Celestial Mechanics, Soil Mechanics, Aerospace Engineering and Computer Sciences.

  14. Iodine Gas Trapping using Granular Porous Bismuth

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Yim, Mansung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sup 129}I is a radionuclide with a very long half-life of 1.57 Χ 10{sup 7} years and has negative health effects to the human body. Therefore, the emission of {sup 129}I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous {sup 129}I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing {sup 129}I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping {sup 129}I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling.

  15. Iodine Gas Trapping using Granular Porous Bismuth

    Yang, Jae Hwan; Shin, Jin Myeong; Park, Jang Jin; Park, Geun Il; Yim, Mansung

    2014-01-01

    129 I is a radionuclide with a very long half-life of 1.57 Χ 10 7 years and has negative health effects to the human body. Therefore, the emission of 129 I into the air is closely regulated by the Environmental Protection Agency (EPA). Many methods for trapping gaseous 129 I have been developed thus far, including wet scrubbing and adsorption using silver loaded zeolites. Although wet scrubbing can effectively remove iodine, it suffers from corrosion of the vessel due to high concentration of the scrubbing solution. Silver loaded zeolites also show effectiveness in capturing 129 I gas, yet weak thermal stability of physisorbed iodine remains a challenge. We studied a novel and facile method to trap iodine gas using bismuth. Granular bismuth having many pores was synthesized using bismuth nitrate and polyvinyl alcohol as a bismuth precursor and pore forming agent, respectively. Reaction of iodine and our samples resulted in an iodine capturing capacity of more than 2 times that of the commercial grade silver exchanged zeolite (AgX). Granular porous bismuths synthesized using bismuth nitrate and PVA show a promising performance in capturing iodine gas. The use of bismuth in trapping 129 I gas can reduce the process cost as bismuth is cheap. Further study is going on to improve the mechanical property of granular porous bismuths for their easy handling

  16. Propulsion via flexible flapping in granular media

    Peng, Zhiwei; Ding, Yang; Pietrzyk, Kyle; Elfring, Gwynn; Pak, On Shun

    2017-11-01

    Biological locomotion in nature is often achieved by the interaction between a flexible body and its surrounding medium. The interaction of a flexible body with granular media is less understood compared with viscous fluids partially due to its complex rheological properties. In this work, we explore the effect of flexibility on granular propulsion by considering a simple mechanical model in which a rigid rod is connected to a torsional spring that is under a displacement actuation using a granular resistive force theory. Through a combined numerical and asymptotic investigation, we characterize the propulsive dynamics of such a flexible flapper in relation to the actuation amplitude and spring stiffness, and we compare these dynamics with those observed in a viscous fluid. In addition, we demonstrate that the maximum possible propulsive force can be obtained in the steady propulsion limit with a finite spring stiffness and large actuation amplitude. These results may apply to the development of synthetic locomotive systems that exploit flexibility to move through complex terrestrial media. Funding for Z.P. and Y.D. was partially provided by NSFC 394 Grant No. 11672029 and NSAF-NSFC Grant No. U1530401.

  17. Rough – Granular Computing knowledge discovery models

    Mohammed M. Eissa

    2016-11-01

    Full Text Available Medical domain has become one of the most important areas of research in order to richness huge amounts of medical information about the symptoms of diseases and how to distinguish between them to diagnose it correctly. Knowledge discovery models play vital role in refinement and mining of medical indicators to help medical experts to settle treatment decisions. This paper introduces four hybrid Rough – Granular Computing knowledge discovery models based on Rough Sets Theory, Artificial Neural Networks, Genetic Algorithm and Rough Mereology Theory. A comparative analysis of various knowledge discovery models that use different knowledge discovery techniques for data pre-processing, reduction, and data mining supports medical experts to extract the main medical indicators, to reduce the misdiagnosis rates and to improve decision-making for medical diagnosis and treatment. The proposed models utilized two medical datasets: Coronary Heart Disease dataset and Hepatitis C Virus dataset. The main purpose of this paper was to explore and evaluate the proposed models based on Granular Computing methodology for knowledge extraction according to different evaluation criteria for classification of medical datasets. Another purpose is to make enhancement in the frame of KDD processes for supervised learning using Granular Computing methodology.

  18. Role of hydraulic retention time and granular medium in microbial removal in tertiary treatment reed beds.

    García, Joan; Vivar, Joan; Aromir, Maria; Mujeriego, Rafael

    2003-06-01

    The main objective of this paper is to evaluate the role of hydraulic retention time (HRT) and granular medium in faecal coliform (FC) and somatic coliphage (SC) removal in tertiary reed beds. Experiments were carried out in a pilot plant with four parallel reed beds (horizontal subsurface flow constructed wetlands), each one containing a different type of granular medium. This pilot plant is located in a wastewater treatment plant in Montcada i Reixac, near Barcelona, in northeastern Spain. The microbial inactivation ratios obtained in the different beds are compared as a function of three selected HRTs. Secondary effluent from the wastewater treatment plant was used as the influent of the pilot system. The microbial inactivation ratio ranged between 0.1 and 2.7 log-units for FC and from 0.5 to 1.7 log-units for SC in beds with coarser granular material (5-25mm), while it ranged between 0.7 and 3.4 log-units for FC and from 0.9 to 2.6 log-units for SC in the bed with finer material (2-13mm). HRT and granular medium are both key factors in microbial removal in the tertiary reed beds. The microbial inactivation ratio rises as the HRT increases until it reaches a saturation value (in general at an HRT of 3 days). The value of the microbial inactivation ratio at the saturation level depends on the granular medium contained in the bed. The specific surface area necessary to reach 2-3 log-units of FC and SC is approximately 3m(2)/person-equivalent.

  19. Release of Extracellular Polymeric Substance and Disintegration of Anaerobic Granular Sludge under Reduced Sulfur Compounds-Rich Conditions

    Takuro Kobayashi

    2015-07-01

    Full Text Available The effect of reduced form of sulfur compounds on granular sludge was investigated. Significant release of extracellular polymeric substance (EPS from the granular sludge occurred in the presence of sulfide and methanethiol according to various concentrations. Granular sludge also showed a rapid increase in turbidity and decrease in diameter in accordance with sulfide concentration during the long-term shaking, suggesting that the strength of the granules was reduced with high-concentration sulfide. A continuous experiment of up-flow anaerobic sludge blanket reactors with different concentrations of sulfide (10, 200, 500 mg-S/L influence demonstrated that the reactor fed with higher concentration of sulfide allowed more washout of small particle-suspended solid (SS content and soluble carbohydrate and protein, which were considered as EPS released from biofilm. Finally, the presence of sulfide negatively affected methane production, chemical oxygen demand removal and sludge retention in operational performance.

  20. Measurements of particle dynamics in slow, dense granular Couette flow

    Mueth, Daniel M.

    2003-01-01

    Experimental measurements of particle dynamics on the lower surface of a three-dimensional (3D) Couette cell containing monodisperse spheres are reported. The average radial density and velocity profiles are similar to those previously measured within the bulk and on the lower surface of the 3D cell filled with mustard seeds. Observations of the evolution of particle velocities over time reveal distinct motion events, intervals where previously stationary particles move for a short duration before jamming again. The cross correlation between the velocities of two particles at a given distance r from the moving wall reveals a characteristic length scale over which the particles are correlated. The autocorrelation of a single particle’s velocity reveals a characteristic time scale τ, which decreases with increasing distance from the inner moving wall. This may be attributed to the increasing rarity at which the discrete motion events occur and the reduced duration of those events at large r. The relationship between the rms azimuthal velocity fluctuations, δvθ(r), and average shear rate, γ˙(r), was found to be δvθ∝γ˙α with α=0.52±0.04. These observations are compared with other recent experiments and with the modified hydrodynamic model recently introduced by Bocquet et al.

  1. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  2. The role of fluid viscosity in an immersed granular collapse

    Yang, Geng Chao; Kwok, Chung Yee; Sobral, Yuri Dumaresq

    2017-06-01

    Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM) and discrete element method (DEM). It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  3. The role of fluid viscosity in an immersed granular collapse

    Yang Geng Chao

    2017-01-01

    Full Text Available Instabilities of immersed slopes and cliffs can lead to catastrophic events that involve a sudden release of huge soil mass. The scaled deposit height and runout distance are found to follow simple power laws when a granular column collapses on a horizontal plane. However, if the granular column is submerged in a fluid, the mobility of the granular collapse due to high inertia effects will be reduced by fluid-particle interactions. In this study, the effects of fluid viscosity on granular collapse is investigated qualitatively by adopting a numerical approach based on the coupled lattice Boltzmann method (LBM and discrete element method (DEM. It is found that the granular collapse can be dramatically slowed down due to the presence of viscous fluids. For the considered granular configuration, when the fluid viscosity increases. the runout distance decreases and the final deposition shows a larger deposit angle.

  4. Tunneling magnetoresistance in granular cermet films with particle size distribution

    Vovk, A.Ya.; Golub, V.O.; Malkinski, L.; Kravets, A.F.; Pogorily, A.M.; Shypil', O.V.

    2004-01-01

    The correlation between tunneling magnetoresistance (TMR) and field sensitivity (dMR/dH) for granular films (Co 50 Fe 50 ) x -(Al 2 O 3 ) 1-x was studied. The position of TMR maximum is shifted towards the lower x in the higher applied magnetic fields. Such a behavior was observed for metal granular nanocomposites but is first reported for granular cermets. However the highest dMR/dH was found for the compositions just below the percolation threshold

  5. A 3D coupled hydro-mechanical granular model for the prediction of hot tearing formation

    Sistaninia, M; Drezet, J-M; Rappaz, M; Phillion, A B

    2012-01-01

    A new 3D coupled hydro-mechanical granular model that simulates hot tearing formation in metallic alloys is presented. The hydro-mechanical model consists of four separate 3D modules. (I) The Solidification Module (SM) is used for generating the initial solid-liquid geometry. Based on a Voronoi tessellation of randomly distributed nucleation centers, this module computes solidification within each polyhedron using a finite element based solute diffusion calculation for each element within the tessellation. (II) The Fluid Flow Module (FFM) calculates the solidification shrinkage and deformation-induced pressure drop within the intergranular liquid. (III) The Semi-solid Deformation Module (SDM) is used to simulate deformation of the granular structure via a combined finite element / discrete element method. In this module, deformation of the solid grains is modeled using an elasto-viscoplastic constitutive law. (IV) The Failure Module (FM) is used to simulate crack initiation and propagation with the fracture criterion estimated from the overpressure required to overcome the capillary forces at the liquid-gas interface. The FFM, SDM, and FM are coupled processes since solid deformation, intergranular flow, and crack initiation are deeply linked together. The granular model predictions have been validated against bulk data measured experimentally and calculated with averaging techniques.

  6. Deletion of Xpter encompassing the SHOX gene and PAR1 region in familial patients with Leri-Weill Dyschondrosteosis syndrome.

    Mutesa, L; Vanbellinghen, J F; Hellin, A C; Segers, K; Jamar, M; Pierquin, G; Bours, V

    2009-01-01

    Heterozygote deletions or mutations of pseudoautosomal 1 region (PAR1) encompassing the short stature homeobox-containing (SHOX) gene cause Leri-Weill Dyschondrosteosis (LWD), which is a dominantly inherited osteochondroplasia characterized by short stature with mesomelic shortening of the upper and lower limbs and Madelung deformity of the wrists. SHOX is expressed by both sex chromosomes in males and females and plays an important role in bone growth and development. Clinically, the LWD expression is variable and more severe in females than males due to sex differences in oestrogen levels. Here, we report two familial cases of LWD with a large Xp terminal deletion (approximately 943 kb) of distal PAR1 encompassing the SHOX gene. In addition, the proband had mental retardation which appeared to be from recessive inheritance in the family.

  7. Concepts and design of the CMS high granularity calorimeter Level-1 trigger

    Sauvan, Jean-Baptiste

    2016-01-01

    The CMS experiment has chosen a novel high granularity calorimeter for the forward region as part of its planned upgrade for the high luminosity LHC. The calorimeter will have a fine segmentation in both the transverse and longitudinal directions and will be the first such calorimeter specifically optimised for particle flow reconstruction to operate at a colliding beam experiment. The high granularity results in around six million readout channels in total and so presents a significant challenge in terms of data manipulation and processing for the trigger; the trigger data volumes will be an order of magnitude above those currently handled at CMS. In addition, the high luminosity will result in an average of 140 to 200 interactions per bunch crossing, giving a huge background rate in the forward region that needs to be efficiently reduced by the trigger algorithms. Efficient data reduction and reconstruction algorithms making use of the fine segmentation of the detector have been simulated and evaluated. The...

  8. "EGM" (Electrostatics of Granular Matter): A Space Station Experiment to Examine Natural Particulate Systems

    Marshall, J.; Sauke, T.; Buehler, M.; Farrell, W.; Green, R.; Birchenough, A.

    1999-09-01

    A granular-materials experiment is being developed for a 2002 launch for Space Station deployment. The experiment is funded by NASA HQ and managed through NASA Lewis Research Center. The experiment will examine electrostatic aggregation of coarse granular materials with the goals of (a) obtaining proof for an electrostatic dipole model of grain interactions, and (b) obtaining knowledge about the way aggregation affects the behavior of natural particulate masses: (1) in unconfined dispersions (clouds such as nebulae, aeolian dust palls, volcanic plumes), (2) in semi-confined, self-loaded masses as in fluidized flows (pyroclastic surges, avalanches) and compacted regolith, or (3) in semi-confined non-loaded masses as in dust layers adhering to solar cells or space suits on Mars. The experiment addresses both planetary/astrophysical issues as well as practical concerns for human exploration of Mars or other solar system bodies. Additional information is contained in the original.

  9. Hierarchical self-assembly of PDMA-b-PS chains into granular nanoparticles: genesis and fate.

    Bianchi, Alberto; Mauri, Michele; Bonetti, Simone; Koynov, Kaloian; Kappl, Michael; Lieberwirth, Ingo; Butt, Hans-Jürgen; Simonutti, Roberto

    2014-12-01

    The hierarchical self-assembly of an amphiphilic block copolymer, poly(N,N-dimethylacrylamide)-block-polystyrene with a very short hydrophilic block (PDMA10 -b-PS62 ), in large granular nanoparticles is reported. While these nanoparticles are stable in water, their disaggregation can be induced either mechanically (i.e., by applying a force via the tip of the cantilever of an atomic force microscope (AFM)) or by partial hydrolysis of the acrylamide groups. AFM force spectroscopy images show the rupture of the particle as a combination of collapse and flow, while scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of partly hydrolyzed nanoparticles provide a clear picture of the granular structure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Segregation of a binary granular mixture in a vibrating sawtooth base container.

    Mobarakabadi, Shahin; Adrang, Neda; Habibi, Mehdi; Oskoee, Ehsan Nedaaee

    2017-09-01

    A granular mixture of identical particles of different densities can be segregated when the system is shaken. We present an efficient method of continuously segregating a flow of randomly mixed identical spherical particles of different densities by shaking them in a quasi-two-dimensional container with a sawtooth-shaped base. Using numerical simulation we study the effect of direction of shaking (horizontal/vertical), geometry of the sawtooth, and the friction coefficient between the grains and the container walls on the segregation quality. Finally by performing experiments on the same system we compare our simulation results with the experimental results. The good agreement between our simulation and experiment indicates the validity of our simulation approach and will provide a practical way for granular segregation in industrial applications.

  11. Granular avalanches on the Moon: Mass-wasting conditions, processes, and features

    Kokelaar, B. P.; Bahia, R. S.; Joy, K. H.; Viroulet, S.; Gray, J. M. N. T.

    2017-09-01

    Seven lunar crater sites of granular avalanches are studied utilizing high-resolution images (0.42-1.3 m/pixel) from the Lunar Reconnaissance Orbiter Camera; one, in Kepler crater, is examined in detail. All the sites are slopes of debris extensively aggraded by frictional freezing at their dynamic angle of repose, four in craters formed in basaltic mare and three in the anorthositic highlands. Diverse styles of mass wasting occur, and three types of dry-debris flow deposit are recognized: (1) multiple channel-and-lobe type, with coarse-grained levees and lobate terminations that impound finer debris, (2) single-surge polylobate type, with subparallel arrays of lobes and fingers with segregated coarse-grained margins, and (3) multiple-ribbon type, with tracks reflecting reworked substrate, minor levees, and no coarse terminations. The latter type results from propagation of granular erosion-deposition waves down slopes dominantly of fine regolith, and it is the first recognized natural example. Dimensions, architectures, and granular segregation styles of the two coarse-grained deposit types are like those formed in natural and experimental avalanches on Earth, although the timescale of motion differs due to the reduced gravity. Influences of reduced gravity and fine-grained regolith on dynamics of granular flow and deposition appear slight, but we distinguish, for the first time, extensive remobilization of coarse talus by inundation with finer debris. The (few) sites show no clear difference attributable to the contrasting mare basalt and highland megaregolith host rocks and their fragmentation. This lunar study offers a benchmarking of deposit types that can be attributed to formation without influence of liquid or gas.

  12. Multiscale modeling of transport of grains through granular assemblies

    Tejada Ignacio G

    2017-01-01

    Full Text Available We investigate the transport of moderately large passive particles through granular assemblies caused by seeping flows. This process can only be described by highly nonlinear continuum models, since the local permeability, the advection and dispersion mechanisms are strongly determined by the concentration of transported particles. Particles may sometimes get temporally trapped and thus proper kinetic mass transfer models are required. The mass transfer depends on the complexity of the porous medium, the kind of interaction forces and the concentration of transported particles. We study these two issues by means of numerical and laboratory experiments. In the laboratory we use an oedo-permeameter to force sand grains to move through a gravel bed under conditions of constant hydraulic pressure drop. To understand the process, numerical experiments were performed to approach particle transport at the grain scale with a fully coupled method. The DEM-PFV combines the discrete element method with a pore scale finite volume formulation to solve the interstitial fluid flow and particle transport problems. These experiments help us to set up a continuum transport model that can be used in a boundary value problem.

  13. Determination of the attrition resistance of granular charcoals

    Dietz, V.R.

    1979-01-01

    A laboratory procedure has been developed to evaluate the attrition of granular adsorbent charcoals on passing an air flow through the bed. Two factors observed in plant operations were selected as relevant: (1) the characteristic structural vibrations in plant scale equipment (motors, fans, etc.) that are transmitted to charcoal particles and cause the particles to move and rub each other, and (2) the rapid air flow that results in the movement of the attrited dust. In the test a container for charcoal [50 mm diameter and 50 mm high] was vibrated at a frequency of 60 Hz and at a constant energy input manually controlled using a vibration meter in the acceleration mode. Simultaneously, air was applied and exited through glass fiber filter paper. The quantity of dust trapped on the exit filter was then determined, either optically or gravimetrically. The dust formed per minute (attrition coefficient) was found to approach a constant value. The plateau-values from sequential determinations varied with the source of the charcoal; a 5-fold difference was found among a large variety of commercial products. The first testing of a sample released the excess dust accumulated in previous handling of the charcoal. The plateau values were then attained in the succeeding tests and these were characteristic of the material. The results were compared with those obtained for the same charcoals using older test methods such as the Ball and Pan Hardness Test described in RDTM16-1T

  14. Electricity as (Big Data: Metering, spatiotemporal granularity and value

    Mette Kragh-Furbo

    2018-02-01

    Full Text Available Electricity is hidden within wires and networks only revealing its quantity and flow when metered. The making of its properties into data is therefore particularly important to the relations that are formed around electricity as a produced and managed phenomenon. We propose approaching all metering as a situated activity, a form of quantification work in which data is made and becomes mobile in particular spatial and temporal terms, enabling its entry into data infrastructures and schemes of evaluation and value production. We interrogate the transition from the pre-digital into the making of bigger, more spatiotemporally granular electricity data, through focusing on those actors selling and materialising new metering technologies, data infrastructures and services for larger businesses and public sector organisations in the UK. We examine the claims of truth and visibility that accompany these shifts and their enrolment into management techniques that serve to more precisely apportion responsibility for, and evaluate the status of, particular patterns and instances of electricity use. We argue that whilst through becoming Big Data electricity flow is now able to be known and given identity in significantly new terms, enabling new relations to be formed with the many heterogeneous entities implicated in making and managing energy demand, it is necessary to sustain some ambivalence as to the performative consequences that follow for energy governance. We consider the wider application of our conceptualisation of metering, reflecting on comparisons with the introduction of new metering systems in domestic settings and as part of other infrastructural networks.

  15. Sensors for the CMS High Granularity Calorimeter

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  16. Modelling of dc characteristics for granular semiconductors

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey

    2010-01-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  17. Modelling of dc characteristics for granular semiconductors

    Varpula, Aapo; Sinkkonen, Juha; Novikov, Sergey, E-mail: aapo.varpula@tkk.f [Department of Micro and Nanosciences, Aalto University, PO Box 13500, FI-00076 Aalto, Espoo (Finland)

    2010-11-01

    The dc characteristics of granular n-type semiconductors are calculated analytically with the drift-diffusion theory. Electronic trapping at the grain boundaries (GBs) is taken into account. The use of quadratic and linear GB potential profiles in the calculation is compared. The analytical model is verified with numerical simulation performed by SILVACO ATLAS. The agreement between the analytical and numerical results is excellent in a large voltage range. The results show that electronic trapping at the GBs has a remarkable effect on the highly nonlinear I-V characteristics of the material.

  18. Special relativity induced by granular space

    Jizba, Petr; Scardigli, Fabio

    2013-01-01

    We show that the special relativistic dynamics, when combined with quantum mechanics and the concept of superstatistics, can be interpreted as arising from two interlocked non-relativistic stochastic processes that operate at different energy scales. This framework leads to Feynman amplitudes that are, in the Euclidean regime, identical to the transition probability of a Brownian particle propagating through a granular space. For illustration we consider the dynamics and the propagator of a Klein-Gordon particle. Implications for deformed special relativity, quantum field theory, quantum gravity and cosmology are also discussed. (orig.)

  19. Brine Transport Experiments in Granular Salt

    Jordan, Amy B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Caporuscio, Florie Andre [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stauffer, Philip H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-06

    To gain confidence in the predictive capability of numerical models, experimental validation must be performed to ensure that parameters and processes are correctly simulated. The laboratory investigations presented herein aim to address knowledge gaps for heat-generating nuclear waste (HGNW) disposal in bedded salt that remain after examination of prior field and laboratory test data. Primarily, we are interested in better constraining the thermal, hydrological, and physicochemical behavior of brine, water vapor, and salt when moist salt is heated. The target of this work is to use run-of-mine (RoM) salt; however during FY2015 progress was made using high-purity, granular sodium chloride.

  20. Shock propagation in locally driven granular systems

    Joy, Jilmy P.; Pathak, Sudhir N.; Das, Dibyendu; Rajesh, R.

    2017-09-01

    We study shock propagation in a system of initially stationary hard spheres that is driven by a continuous injection of particles at the origin. The disturbance created by the injection of energy spreads radially outward through collisions between particles. Using scaling arguments, we determine the exponent characterizing the power-law growth of this disturbance in all dimensions. The scaling functions describing the various physical quantities are determined using large-scale event-driven simulations in two and three dimensions for both elastic and inelastic systems. The results are shown to describe well the data from two different experiments on granular systems that are similarly driven.

  1. On the velocity distributions of granular gases

    Polito, A.M.M.; Rocha Filho, T.M.; Figueiredo, A.

    2009-01-01

    We present a new approach to determine velocity distributions in granular gases to improve the Sonine polynomial expansion of the velocity distribution function, at higher inelasticities, for the homogeneous cooling regime of inelastic hard spheres. The perturbative consistency is recovered using a new set of dynamical variables based on the characteristic function and we illustrate our approach by computing the first four Sonine coefficients for moderate and high inelasticities. The analytical coefficients are compared with molecular dynamics simulations results and with a previous approach by Huthmann et al.

  2. Tap density equations of granular powders based on the rate process theory and the free volume concept.

    Hao, Tian

    2015-02-28

    The tap density of a granular powder is often linked to the flowability via the Carr index that measures how tight a powder can be packed, under an assumption that more easily packed powders usually flow poorly. Understanding how particles are packed is important for revealing why a powder flows better than others. There are two types of empirical equations that were proposed to fit the experimental data of packing fractions vs. numbers of taps in the literature: the inverse logarithmic and the stretched exponential. Using the rate process theory and the free volume concept under the assumption that particles will obey similar thermodynamic laws during the tapping process if the "granular temperature" is defined in a different way, we obtain the tap density equations, and they are reducible to the two empirical equations currently widely used in literature. Our equations could potentially fit experimental data better with an additional adjustable parameter. The tapping amplitude and frequency, the weight of the granular materials, and the environmental temperature are grouped into this parameter that weighs the pace of the packing process. The current results, in conjunction with our previous findings, may imply that both "dry" (granular) and "wet" (colloidal and polymeric) particle systems are governed by the same physical mechanisms in term of the role of the free volume and how particles behave (a rate controlled process).

  3. Origin of the resistivity minima in granular superconductors

    Simanek, E.

    1982-01-01

    The recently observed minima in the temperature dependence of the electrical resistivity of a granular superconductor are explained with use of a percolation model of a disordered granular array, which takes into account the electrostatic charging energy. The thermally activated tunneling of Cooper pairs is shown to play an important role in the interpretation of the experimental data on tin films

  4. Granular motor in the non-Brownian limit

    Oyarte Galvez, Loreto Alejandra; van der Meer, Roger M.

    2016-01-01

    In this work we experimentally study a granular rotor which is similar to the famous Smoluchowski–Feynman device and which consists of a rotor with four vanes immersed in a granular gas. Each side of the vanes can be composed of two different materials, creating a rotational asymmetry and turning

  5. Nonlinear instability and convection in a vertically vibrated granular bed

    Shukla, P.; Ansari, I.H.; van der Meer, Roger M.; Lohse, Detlef; Alam, M.

    2014-01-01

    The nonlinear instability of the density-inverted granular Leidenfrost state and the resulting convective motion in strongly shaken granular matter are analysed via a weakly nonlinear analysis of the hydrodynamic equations. The base state is assumed to be quasi-steady and the effect of harmonic

  6. Granular Leidenfrost effect: Experiment and theory of floating particle clusters

    Eshuis, Peter; Eshuis, P.G.; van der Meer, Roger M.; van der Weele, J.P.; Lohse, Detlef

    2005-01-01

    Granular material is vertically vibrated in a 2D container: above a critical shaking strength, and for a sufficient number of beads, a crystalline cluster is elevated and supported by a dilute gaseous layer of fast beads underneath. We call this phenomenon the granular Leidenfrost effect. The

  7. USE OF GRANULAR GRAPHITE FOR ELECTROLYTIC DECHLORINATION OF TRICHLOROETHYLENE

    Granular graphite is a potential electrode material for the electrochemical remediation of refractory chlorinated organic compounds such as trichloroethylene (TCE). However, the use of granular graphite can complicate the experimental results. On one hand, up to 99% of TCE was re...

  8. Surface effects in the acetylation of granular potato starch

    Steeneken, P.A.M.; Woortman, A.J.J.

    2008-01-01

    The occurrence of surface effects in the acetylation of granular potato starch with acetic anhydride to degrees of substitution 0.04-0.2 was studied by two different approaches. The first approach involved the fractionation of granular starch acetates into five different size classes and analysis of

  9. Long-range interactions in dilute granular systems

    Müller, M.K

    2008-01-01

    In this thesis, on purpose, we focussed on the most challenging, longest ranging potentials. We analyzed granular media of low densities obeying 1/r long-range interaction potentials between the granules. Such systems are termed granular gases and differ in their behavior from ordinary gases by

  10. Influence of granular strontium chloride as additives on some ...

    Influence of granular strontium chloride as additives on some electrical and mechanical properties for pure polyvinyl alcohol. A B Elaydy M Hafez ... Keywords. Polyvinyl-alcohol (PVA); granular strontium chloride, SrCl2; a.c. electrical conductivity; dielectric constant; dielectric loss; Young's modulus; creep relaxation curve.

  11. Large mid-esophageal granular cell tumor: benign versus malignant

    Prarthana Roselil Christopher

    2015-06-01

    Full Text Available Granular cell tumors are rare soft tissue neoplasms, among which only 2% are malignant, arising from nervous tissue. Here we present a case of a large esophageal granular cell tumor with benign histopathological features which metastasized to the liver, but showing on positron emission tomography-computerized tomography standardized uptake value suggestive of a benign lesion.

  12. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    Y. V. Hete; S. B. Gholase; R. U. Khope

    2012-01-01

    This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  13. Adsorption Study of Cobalt on Treated Granular Activated Carbon

    Y. V. Hete

    2012-01-01

    Full Text Available This study is carried out for the removal of cobalt from aqueous solution using granular activated carbon in combination with p-nitro benzoic acid at temperature 25±1 °C. The adsorption isotherm of cobalt on granular activated carbon has been determined and the data fitted reasonably well to the Langmuir and Freundlich isotherm for activated carbon.

  14. Density-Driven segregation in Binary and Ternary Granular Systems

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  15. Lizard locomotion in heterogeneous granular media

    Schiebel, Perrin; Goldman, Daniel

    2014-03-01

    Locomotion strategies in heterogeneous granular environments (common substrates in deserts), are relatively unexplored. The zebra-tailed lizard (C. draconoides) is a useful model organism for such studies owing to its exceptional ability to navigate a variety of desert habitats at impressive speed (up to 50 body-lengths per second) using both quadrapedal and bidepal gaits. In laboratory experiments, we challenge the lizards to run across a field of boulders (2.54 cm diameter glass spheres or 3.8 cm 3D printed spheres) placed in a lattice pattern and embedded in a loosely packed granular medium of 0.3 mm diameter glass particles. Locomotion kinematics of the lizard are recorded using high speed cameras, with and without the scatterers. The data reveals that unlike the lizard's typical quadrupedal locomotion using a diagonal gait, when scatterers are present the lizard is most successful when using a bipedal gait, with a raised center of mass (CoM). We propose that the kinematics of bipedal running in conjunction with the lizard's long toes and compliant hind foot are the keys to this lizard's successful locomotion in the presence of such obstacles. NSF PoLS

  16. Wrinkles, folds, and plasticity in granular rafts

    Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie

    2017-09-01

    We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.

  17. Large granular lymphocytic leukaemia pathogenesis and management.

    Dearden, Claire

    2011-02-01

    The WHO classification recognises three distinct disorders of large granular lymphocytes: T-cell large granular lymphocytic leukaemia (T-LGL), chronic lymphoproliferative disorders of NK-cells (CLPD-NK) and agressive NK-cell leukaemia. Despite the different cell of origin, there is considerable overlap between T-LGL and CLPD-NK in terms of clinical presentation and therapy. Many patients are asymptomatic and do not require treatment. Therapy, with immunosuppressant agents such as low dose methotrexate or ciclosporin, is usually indicated to correct cytopenias. In contrast, aggressive NK-cell leukaemia and the rare CD56(+) aggressive T-LGL leukaemia follow a fulminant clinical course, affect younger individuals and require more intensive combination chemotherapy followed by allogeneic stem cell transplant in eligible patients. The relative rarity of these disorders means that there have been few clinical trials to inform management. However, there is now considerable interest in the pathogenesis of the chronic LGL leukaemias and this has stimulated early trials to evaluate novel agents which target the dysregulated apoptotic pathways characteristic of this disease. © 2010 Blackwell Publishing Ltd.

  18. Characterizing granular networks using topological metrics

    Dijksman, Joshua A.; Kovalcinova, Lenka; Ren, Jie; Behringer, Robert P.; Kramar, Miroslav; Mischaikow, Konstantin; Kondic, Lou

    2018-04-01

    We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range from microscopic through mesoscopic to systemwide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between microscales and macroscales. We report two main findings: (1) The number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress-tensor-derived measures and contact numbers depend in a universal manner on the fraction of nonrattler particles, fNR. (2) The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both fNR and topological metrics are useful measures to consider when quantifying the state of a granular system.

  19. Collisional model for granular impact dynamics.

    Clark, Abram H; Petersen, Alec J; Behringer, Robert P

    2014-01-01

    When an intruder strikes a granular material from above, the grains exert a stopping force which decelerates and stops the intruder. Many previous studies have used a macroscopic force law, including a drag force which is quadratic in velocity, to characterize the decelerating force on the intruder. However, the microscopic origins of the force-law terms are still a subject of debate. Here, drawing from previous experiments with photoelastic particles, we present a model which describes the velocity-squared force in terms of repeated collisions with clusters of grains. From our high speed photoelastic data, we infer that "clusters" correspond to segments of the strong force network that are excited by the advancing intruder. The model predicts a scaling relation for the velocity-squared drag force that accounts for the intruder shape. Additionally, we show that the collisional model predicts an instability to rotations, which depends on the intruder shape. To test this model, we perform a comprehensive experimental study of the dynamics of two-dimensional granular impacts on beds of photoelastic disks, with different profiles for the leading edge of the intruder. We particularly focus on a simple and useful case for testing shape effects by using triangular-nosed intruders. We show that the collisional model effectively captures the dynamics of intruder deceleration and rotation; i.e., these two dynamical effects can be described as two different manifestations of the same grain-scale physical processes.

  20. Advances in the simulation and automated measurement of well-sorted granular material: 1. Simulation

    Daniel Buscombe,; Rubin, David M.

    2012-01-01

    1. In this, the first of a pair of papers which address the simulation and automated measurement of well-sorted natural granular material, a method is presented for simulation of two-phase (solid, void) assemblages of discrete non-cohesive particles. The purpose is to have a flexible, yet computationally and theoretically simple, suite of tools with well constrained and well known statistical properties, in order to simulate realistic granular material as a discrete element model with realistic size and shape distributions, for a variety of purposes. The stochastic modeling framework is based on three-dimensional tessellations with variable degrees of order in particle-packing arrangement. Examples of sediments with a variety of particle size distributions and spatial variability in grain size are presented. The relationship between particle shape and porosity conforms to published data. The immediate application is testing new algorithms for automated measurements of particle properties (mean and standard deviation of particle sizes, and apparent porosity) from images of natural sediment, as detailed in the second of this pair of papers. The model could also prove useful for simulating specific depositional structures found in natural sediments, the result of physical alterations to packing and grain fabric, using discrete particle flow models. While the principal focus here is on naturally occurring sediment and sedimentary rock, the methods presented might also be useful for simulations of similar granular or cellular material encountered in engineering, industrial and life sciences.

  1. Large granular lymphocytosis in a patient infected with HTLV-II.

    Martin, M P; Biggar, R J; Hamlin-Green, G; Staal, S; Mann, D

    1993-08-01

    HTLV-II has been associated with a variety of lymphoproliferative disorders, including atypical hairy cell leukemia, chronic T cell leukemia, T prolymphocytic leukemia, and large granular lymphocytic leukemia. However, a direct or indirect role for HTLV-II in these disorders is not yet firmly established. We studied a patient diagnosed as having leukemia of the large granular lymphocyte (LGL) type who was HTLV-II seropositive, to determine if the expanded cell population was infected. Two populations of CD3-CD16+ LGL were identified; one was CD8+, the other CD8-. Populations of cells with these surface markers as well as normal CD3+CD4+ and CD3+CD8+ cells were separated by flow cytometric methods, DNA extracted, and gene regions of HTLV-II pol and tax amplified, using the polymerase chain reaction, and probed after Southern blotting. HTLV-II was detected in the CD3+CD8+ population, and not in the CD3-CD16+ large granular lymphocyte population. This finding indicates that the role of HTLV-II, if any, in LGL proliferation is indirect.

  2. Granular fingering as a mechanism for ridge formation in debris avalanche deposits: Laboratory experiments and implications for Tutupaca volcano, Peru

    Valderrama, P.; Roche, O.; Samaniego, P.; van Wyk des Vries, B.; Araujo, G.

    2018-01-01

    The origin of subparallel, regularly-spaced longitudinal ridges often observed at the surface of volcanic and other rock avalanche deposits remains unclear. We addressed this issue through analogue laboratory experiments on flows of bi-disperse granular mixtures, because this type of flow is known to exhibit granular fingering that causes elongated structures resembling the ridges observed in nature. We considered four different mixtures of fine (300-400 μm) glass beads and coarse (600-710 μm to 900-1000 μm) angular crushed fruit stones, with particle size ratios of 1.9-2.7 and mass fractions of the coarse component of 5-50 wt%. The coarse particles segregated at the flow surface and accumulated at the front where flow instabilities with a well-defined wavelength grew. These formed granular fingers made of coarse-rich static margins delimiting fines-rich central channels. Coalescence of adjacent finger margins created regular spaced longitudinal ridges, which became topographic highs as finger channels drained at final emplacement stages. Three distinct deposit morphologies were observed: 1) Joined fingers with ridges were formed at low (≤ 1.9) size ratio and moderate (10-20 wt%) coarse fraction whereas 2) separate fingers or 3) poorly developed fingers, forming series of frontal lobes, were created at larger size ratios and/or higher coarse contents. Similar ridges and lobes are observed at the debris avalanche deposits of Tutupaca volcano, Peru, suggesting that the processes operating in the experiments can also occur in nature. This implies that volcanic (and non-volcanic) debris avalanches can behave as granular flows, which has important implications for interpretation of deposits and for modeling. Such behaviour may be acquired as the collapsing material disaggregates and forms a granular mixture composed by a right grain size distribution in which particle segregation can occur. Limited fragmentation and block sliding, or grain size distributions

  3. Identification of the first PAR1 deletion encompassing upstream SHOX enhancers in a family with idiopathic short stature.

    Benito-Sanz, Sara; Aza-Carmona, Miriam; Rodríguez-Estevez, Amaya; Rica-Etxebarria, Ixaso; Gracia, Ricardo; Campos-Barros, Angel; Heath, Karen E

    2012-01-01

    Short stature homeobox-containing gene, MIM 312865 (SHOX) is located within the pseudoautosomal region 1 (PAR1) of the sex chromosomes. Mutations in SHOX or its downstream transcriptional regulatory elements represent the underlying molecular defect in ~60% of Léri-Weill dyschondrosteosis (LWD) and ~5-15% of idiopathic short stature (ISS) patients. Recently, three novel enhancer elements have been identified upstream of SHOX but to date, no PAR1 deletions upstream of SHOX have been observed that only encompass these enhancers in LWD or ISS patients. We set out to search for genetic alterations of the upstream SHOX regulatory elements in 63 LWD and 100 ISS patients with no known alteration in SHOX or the downstream enhancer regions using a specifically designed MLPA assay, which covers the PAR1 upstream of SHOX. An upstream SHOX deletion was identified in an ISS proband and her affected father. The deletion was confirmed and delimited by array-CGH, to extend ~286 kb. The deletion included two of the upstream SHOX enhancers without affecting SHOX. The 13.3-year-old proband had proportionate short stature with normal GH and IGF-I levels. In conclusion, we have identified the first PAR1 deletion encompassing only the upstream SHOX transcription regulatory elements in a family with ISS. The loss of these elements may result in SHOX haploinsufficiency because of decreased SHOX transcription. Therefore, this upstream region should be included in the routine analysis of PAR1 in patients with LWD, LMD and ISS.

  4. Controlling wave propagation through nonlinear engineered granular systems

    Leonard, Andrea

    We study the fundamental dynamic behavior of a special class of ordered granular systems in order to design new, structured materials with unique physical properties. The dynamic properties of granular systems are dictated by the nonlinear, Hertzian, potential in compression and zero tensile strength resulting from the discrete material structure. Engineering the underlying particle arrangement of granular systems allows for unique dynamic properties, not observed in natural, disordered granular media. While extensive studies on 1D granular crystals have suggested their usefulness for a variety of engineering applications, considerably less attention has been given to higher-dimensional systems. The extension of these studies in higher dimensions could enable the discovery of richer physical phenomena not possible in 1D, such as spatial redirection and anisotropic energy trapping. We present experiments, numerical simulation (based on a discrete particle model), and in some cases theoretical predictions for several engineered granular systems, studying the effects of particle arrangement on the highly nonlinear transient wave propagation to develop means for controlling the wave propagation pathways. The first component of this thesis studies the stress wave propagation resulting from a localized impulsive loading for three different 2D particle lattice structures: square, centered square, and hexagonal granular crystals. By varying the lattice structure, we observe a wide range of properties for the propagating stress waves: quasi-1D solitary wave propagation, fully 2D wave propagation with tunable wave front shapes, and 2D pulsed wave propagation. Additionally the effects of weak disorder, inevitably present in real granular systems, are investigated. The second half of this thesis studies the solitary wave propagation through 2D and 3D ordered networks of granular chains, reducing the effective density compared to granular crystals by selectively placing wave

  5. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-04-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass (M/C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/C ratio, with larger M/C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  6. Terminal velocity of liquids and granular materials dispersed by a high explosive

    Loiseau, J.; Pontalier, Q.; Milne, A. M.; Goroshin, S.; Frost, D. L.

    2018-05-01

    The explosive dispersal of a layer of solid particles or a layer of liquid surrounding a spherical high-explosive charge generates a turbulent, multiphase flow. Shock compression of the material layer during the initial acceleration may partially consolidate the material, leading to the formation of jet-like structures when the layer fragments and sheds particles upon release. Similarly, release of a shock-compressed liquid shell causes the nucleation of cavitation sites, leading to the radial breakup of the shell and the formation of jets upon expansion. In the current study, a wide variety of granular materials and liquids were explosively dispersed. The maximum terminal jet tip or shell velocity was measured using high-speed videography. Charges were constructed using thin-walled glass bulbs of various diameters and contained a central C-4 charge surrounded by the material to be dispersed. This permitted variation of the ratio of material mass to charge mass ( M/ C) from 4 to 300. Results indicated that material velocity broadly correlates with predictions of the Gurney model. For liquids, the terminal velocity was accurately predicted by the Gurney model. For granular materials, Gurney over-predicted the terminal velocity by 25-60%, depending on the M/ C ratio, with larger M/ C values exhibiting larger deficits. These deficits are explained by energy dissipation during the collapse of voids in the granular material bed. Velocity deficits were insensitive to the degree of jetting and granular material properties. Empirical corrections to the Gurney model are presented with improved agreement with the dry powder experimental velocities.

  7. Tsunamis generated by long and thin granular landslides in a large flume

    Miller, Garrett S.; Andy Take, W.; Mulligan, Ryan P.; McDougall, Scott

    2017-01-01

    In this experimental study, granular material is released down slope to investigate landslide-generated waves. Starting with a known volume and initial position of the landslide source, detailed data are obtained on the velocity and thickness of the granular flow, the shape and location of the submarine landslide deposit, the amplitude and shape of the near-field wave, the far-field wave evolution, and the wave runup elevation on a smooth impermeable slope. The experiments are performed on a 6.7 m long 30° slope on which gravity accelerates the landslides into a 2.1 m wide and 33.0 m long wave flume that terminates with a 27° runup ramp. For a fixed landslide volume of 0.34 m3, tests are conducted in a range of still water depths from 0.05 to 0.50 m. Observations from high-speed cameras and measurements from wave probes indicate that the granular landslide moves as a long and thin train of material, and that only a portion of the landslide (termed the "effective mass") is engaged in activating the leading wave. The wave behavior is highly dependent on the water depth relative to the size of the landslide. In deeper water, the near-field wave behaves as a stable solitary-like wave, while in shallower water, the wave behaves as a breaking dissipative bore. Overall, the physical model observations are in good agreement with the results of existing empirical equations when the effective mass is used to predict the maximum near-field wave amplitude, the far-field amplitude, and the runup of tsunamis generated by granular landslides.

  8. Modelling transient 3D multi-phase criticality in fluidised granular materials - the FETCH code

    Pain, C.C.; Gomes, J.L.M.A.; Eaton, M.D.; Ziver, A.K.; Umpleby, A.P.; Oliveira, C.R.E. de; Goddard, A.J.H.

    2003-01-01

    The development and application of a generic model for modelling criticality in fluidised granular materials is described within the Finite Element Transient Criticality (FETCH) code - which models criticality transients in spatial and temporal detail from fundamental principles, as far as is currently possible. The neutronics model in FETCH solves the neutron transport in full phase space with a spherical harmonics angle of travel representation, multi-group in neutron energy, Crank Nicholson based in time stepping, and finite elements in space. The fluids representation coupled with the neutronics model is a two-fluid-granular-temperature model, also finite element fased. A separate fluid is used to represent the liquid/vapour gas and the solid fuel particle phases, respectively. Particle-particle, particle-wall interactions are modelled using a kinetic theory approach on an analogy between the motion of gas molecules subject to binary collisions and granular flows. This model has been extensively validated by comparison with fluidised bed experimental results. Gas-fluidised beds involve particles that are often extremely agitated (measured by granular temperature) and can thus be viewed as a particularly demanding application of the two-fluid model. Liquid fluidised systems are of criticality interest, but these can become demanding with the production of gases (e.g. radiolytic and water vapour) and large fluid/particle velocities in energetic transients. We present results from a test transient model in which fissile material ( 239 Pu) is presented as spherical granules subsiding in water, located in a tank initially at constant temperature and at two alternative over-pressures in order to verify the theoretical model implemented in FETCH. (author)

  9. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Marshall, J. R.

    1999-01-01

    . It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.

  10. "Coulombic Viscosity" In Granular Materials: Planetary and Astrophysical Implications

    Marshall, J. R.

    1999-09-01

    . It is predicted that this will lead to an increase with time of both the aerodynamic and bed-dilatancy thresholds (3). Because of Paschen discharge effects in the martian atmosphere, the electrostatic charging in a saltation cloud may be partially abated, but this will lead to greater grain mobility, more charging, and thus to a charge-discharge steady state mediated by mechanical interactions. II. Dry colluvial systems: Sand avalanches on dunes, dry debris flows, talus flows, avalanches, and pyroclastic surges are examples of gravity-driven, dense granular flows where rock/grain fragmentation and grain-to-grain interactions cause triboelectrification (sometimes augmented by other electrical charging processes), and where the grain densities of the systems are such that strong dipole-dipole interactions between grains might be expected to be present. Because it is expected that the Coulombic forces between grains will cause a sluggishness or enhanced granular-flow viscosity, the motion of a grain mass will be retarded or damped so that this will assist, ultimately, in terminating the flow. The greatest Coulombic viscosity will be created in the most highly charged systems, which will also be the most energetic. Thus, grain flows have some tendency to be self-limiting by internal energy partitioning; gravitational potential is converted to Coulombic potential, which manifests itself as a drag force between the grains. III. Volcanic eruption plumes and impact ejecta curtains: The violence of these systems leads to powerful electrical charging of particulates. Lightning storms emanating from volcanic plumes are a testimony to the levels of charging. As pyroclastic grains interact forcefully and frequently within eruption plumes, it is reasonable to predict that the internal turbulent motions of the plume will be significantly damped by the Coulombic viscosity exerted by grain charges. Additional information is contained in the original.

  11. The CMS High Granularity Calorimeter for the High Luminosity LHC

    Sauvan, J.-B.

    2018-02-01

    The High Luminosity LHC (HL-LHC) will integrate 10 times more luminosity than the LHC, posing significant challenges for radiation tolerance and event pileup on detectors, especially for forward calorimetry, and hallmarks the issue for future colliders. As part of its HL-LHC upgrade program, the CMS collaboration is designing a High Granularity Calorimeter to replace the existing endcap calorimeters. It features unprecedented transverse and longitudinal segmentation for both electromagnetic (ECAL) and hadronic (HCAL) compartments. This will facilitate particle-flow calorimetry, where the fine structure of showers can be measured and used to enhance pileup rejection and particle identification, whilst still achieving good energy resolution. The ECAL and a large fraction of HCAL will be based on hexagonal silicon sensors of 0.5-1 cm2 cell size, with the remainder of the HCAL based on highly-segmented scintillators with silicon photomultiplier (SiPM) readout. The intrinsic high-precision timing capabilities of the silicon sensors will add an extra dimension to event reconstruction, especially in terms of pileup rejection.

  12. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications.

    Nancharaiah, Y V; Kiran Kumar Reddy, G

    2018-01-01

    Aerobic granular sludge (AGS) is a novel microbial community which allows simultaneous removal of carbon, nitrogen, phosphorus and other pollutants in a single sludge system. AGS is distinct from activated sludge in physical, chemical and microbiological properties and offers compact and cost-effective treatment for removing oxidized and reduced contaminants from wastewater. AGS sequencing batch reactors have shown their utility in the treatment of abattoir, live-stock, rubber, landfill leachate, dairy, brewery, textile and other effluents. AGS is extensively researched for wide-spread implementation in sewage treatment plants. However, formation of AGS takes relatively much longer time while treating low-strength wastewaters like sewage. Strategies like increased volumetric flow by means of short cycles and mixing of sewage with industrial wastewaters can promote AGS formation while treating low-strength sewage. This article reviewed the state of research on AGS formation mechanisms, bioremediation capabilities and biotechnological applications of AGS technology in domestic and industrial wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Examination of Granular Tumbling by Magnetic Resonance Imaging

    Graham, Lachlan; Metcalfe, Guy

    1998-11-01

    The focus for the present work has been to investigate the granular flow in a rotating tumbler. Tumblers are used industrially in areas such as calcining kilns and have issues such as product throughput and recycling. A model tumbler was made from acrylic tube supported at each end to allow the working section to coincide with the MRI magnet imaging region. A removable hatch allowed the tumbler to be filled with particles. The particles used were polystyrene beads and yellow mustard seeds. The aspect ratio of the tumbler could be varied by moving the end plates and the surface roughness was also varied by gluing various grades of abrasive paper to the internal surfaces. The abrasive paper had discernable effect on the quality of the MRI signals. The tumbler was rotated slowly to simulate operation in the avalanche regime. Images were taken up to 128 revolutions. Results showed that the mustard seeds and polystyrene beads segregated with the seeds moving to the wall of the tumbler except for an unmixed core region. This core region formed in the first few revolutions and persisted for the full 128 revolutions investigated. The size of the unmixed core appeared to asymptote by 128 revolutions. Measurements of the final core size relative to the initial size showed that the final core size decreased with increasing aspect ratio.

  14. On the submerging of a spherical intruder into granular beds

    Wu Chuan-Yu

    2017-01-01

    Full Text Available Granular materials are complex systems and their mechanical behaviours are determined by the material properties of individual particles, the interaction between particles and the surrounding media, which are still incompletely understood. Using an advanced discrete element method (DEM, we simulate the submerging process of a spherical projectile (an intruder into granular materials of various properties with a zero penetration velocity (i.e. the intruder is touching the top surface of the granular bed and released from stationary and examine its settling behaviour. By systematically changing the density and size of the intruder and the particle density (i.e. the density of the particles in the granular bed, we find that the intruder can sink deep into the granular bed even with a zero penetration velocity. Furthermore, we confirm that under certain conditions the granular bed can behave like a Newtonian liquid and the submerging intruder can reach a constant velocity, i.e. the terminal velocity, identical to the settling of a sphere in a liquid, as observed experimentally. A mathematical model is also developed to predict the maximum penetration depth of the intruder. The model predictions are compared with experimental data reported in the literature,good agreement was obtained, demonstrating the model can accurately predict the submerging behaviour of the intruder in the granular media.

  15. WET SOLIDS FLOW ENHANCEMENT; SEMIANNUAL

    Hugo S. Caram; Natalie Foster

    1997-01-01

    The objective was to visualize the flow of granular materials in flat bottomed silo. This was done by for dry materials introducing mustard seeds and poppy seeds as tracer particles and imaging them using Nuclear Magnetic Resonance. The region sampled was a cylinder 25 mm in diameter and 40 mm in length. Eight slices containing 128*128 to 256*256 pixels were generated for each image. The size of the silo was limited by the size of the high resolution NMR imager available. Cross-sections of 150mm flat bottomed silos, with the tracer layers immobilized by a gel, showed similar qualitative patterns for both dry and wet granular solids

  16. Consideration of reinforcement mechanism in the short fiber mixing granular materials by granular element simulations

    Mori, Kentaro; Kaneko, Kenji; Hashizume, Yutaka

    2017-06-01

    The short fiber mixing method is well known as one of the method to improve the strength of gran- ular soils in geotechnical engineering. Mechanical properties of the short fiber mixing granular materials are influenced by many factors, such as the mixture ratio of the short fiber, the material of short fiber, the length, and the orientation. In particular, the mixture ratio of the short fibers is very important in mixture design. In the past study, we understood that the strength is reduced by too much short fiber mixing by a series of tri-axial compression experiments. Namely, there is "optimum mixture ratio" in the short fiber mixing granular soils. In this study, to consider the mechanism of occurrence of the optimum mixture ratio, we carried out the numerical experiments by granular element method. As the results, we can understand that the strength decrease when too much grain-fiber contact points exist, because a friction coefficient is smaller than the grain-grain contact points.

  17. Information granularity, big data, and computational intelligence

    Chen, Shyi-Ming

    2015-01-01

    The recent pursuits emerging in the realm of big data processing, interpretation, collection and organization have emerged in numerous sectors including business, industry, and government organizations. Data sets such as customer transactions for a mega-retailer, weather monitoring, intelligence gathering, quickly outpace the capacities of traditional techniques and tools of data analysis. The 3V (volume, variability and velocity) challenges led to the emergence of new techniques and tools in data visualization, acquisition, and serialization. Soft Computing being regarded as a plethora of technologies of fuzzy sets (or Granular Computing), neurocomputing and evolutionary optimization brings forward a number of unique features that might be instrumental to the development of concepts and algorithms to deal with big data. This carefully edited volume provides the reader with an updated, in-depth material on the emerging principles, conceptual underpinnings, algorithms and practice of Computational Intelligenc...

  18. Multiple impacts in dissipative granular chains

    Nguyen, Ngoc Son

    2014-01-01

    The extension of collision models for single impacts between two bodies, to the case of multiple impacts (which take place when several collisions occur at the same time in a multibody system) is a challenge in Solid Mechanics, due to the complexity of such phenomena, even in the frictionless case. This monograph aims at presenting the main multiple collision rules proposed in the literature. Such collisions typically occur in granular materials, the simplest of which are made of chains of aligned balls. These chains are used throughout the book to analyze various multiple impact rules which extend the classical Newton (kinematic restitution), Poisson (kinetic restitution) and Darboux-Keller (energetic or kinetic restitution) approaches for impact modelling. The shock dynamics in various types of chains of aligned balls (monodisperse, tapered, decorated, stepped chains) is carefully studied and shown to depend on several parameters: restitution coefficients, contact stiffness ratios, elasticity coefficients (...

  19. Fuzzy batch controller for granular materials

    Zamyatin Nikolaj

    2018-01-01

    Full Text Available The paper focuses on batch control of granular materials in production of building materials from fluorine anhydrite. Batching equipment is intended for smooth operation and timely feeding of supply hoppers at a required level. Level sensors and a controller of an asynchronous screw drive motor are used to control filling of the hopper with industrial anhydrite binders. The controller generates a required frequency and ensures required productivity of a feed conveyor. Mamdani-type fuzzy inference is proposed for controlling the speed of the screw that feeds mixture components. As related to production of building materials based on fluoride anhydrite, this method is used for the first time. A fuzzy controller is proven to be effective in controlling the filling level of the supply hopper. In addition, the authors determined optimal parameters of the batching process to ensure smooth operation and production of fluorine anhydrite materials of specified properties that can compete with gypsum-based products.

  20. Capturing gas in soft granular media

    MacMinn, Chris; Lee, Jeremy; Xu, Feng; Lee, Sungyon

    2017-11-01

    Bubble migration through soft granular materials involves a strong coupling between the bubble dynamics and the deformation of the material. This process is relevant to a variety of natural and industrial systems, from fluidized-bed reactors to the migration and venting of biogenic gas in sediments. Here, we study this process experimentally by injecting air into a quasi-2D, liquid-saturated packing of soft particles and measuring the morphology of the bubbles as they invade and then rise due to buoyancy. By systematically varying the confining stress, we show that the competition between buoyancy, capillarity, and elasticity leads to complex bubble-migration dynamics that transition from fluidization to pathway opening to pore invasion, with a strong and surprising impact on the amount of air trapped in the system. The authors are grateful for support from the Royal Society (IE150885), the John Fell Oxford University Press Research Fund, and the Maurice Lubbock Memorial Fund.

  1. Particle filtration in consolidated granular systems

    Schwartz, L.M.; Wilkinson, D.J.; Bolsterli, M.; Hammond, P.

    1993-01-01

    Grain-packing algorithms are used to model the mechanical trapping of dilute suspensions of particles by consolidated granular media. We study the distribution of filtrate particles, the formation of a damage zone (internal filter cake), and the transport properties of the host--filter-cake composite. At the early stages of filtration, our simulations suggest simple relationships between the structure of the internal filter cake and the characteristics of the underlying host matrix. These relationships are then used to describe the dynamics of the filtration process. Depending on the grain size and porosity of the host matrix, calculated filtration rates may either be greater than (spurt loss) or less than (due to internal clogging) those predicted by standard surface-filtration models

  2. Granular neural networks, pattern recognition and bioinformatics

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  3. Granular Segregation by an Oscillating Ratchet Mechanism

    Igarashi, A.; Horiuchi, Ch.

    2004-01-01

    We report on a method to segregate granular mixtures which consist of two kinds of particles by an oscillating ''ratchet'' mechanism. The segregation system has an asymmetrical sawtooth-shaped base which is vertically oscillating. Such a ratchet base produces a directional current of particles owing to its transport property. It is a counterintuitive and interesting phenomenon that a vertically vibrated base transports particles horizontally. This system is studied with numerical simulations, and it is found that we can apply such a system to segregation of mixtures of particles with different properties (radius or mass). Furthermore, we find out that an appropriate inclination of the ratchet-base makes the quality of segregation high. (author)

  4. Solitary Wave Interactions in Granular Media

    WEN Zhen-Ying; WANG Shun-Jin; ZHANG Xiu-Ming; LI Lei

    2007-01-01

    We numerically study the interactions of solitary waves in granular media, by considering a chain of beads, which repel upon contact via the Hertz-type potential, V ∝δn, with 5/2 ≤n≤3 and δ≥0,δbeing the bead-bead overlap. There are two collision types of solitary waves, overtaking collision and head-on collision, in the chain of beads. Our quantitative results show that after collision the large solitary wave gains energy and the small one loses energy for overtaking type while the large one loses energy, and the small one gains energy for head-on type. The scattering effects decrease with n for overtaking collision whereas increase with n for head-on collision.

  5. Two methods to measure granular gas temperature

    Chastaing, J.-Y.; Géminard, J.-C.; Naert, A.

    2017-07-01

    Grains are vibrated so as to achieve a granular gas, here regarded as an archetype of a dissipative non equilibrium steady state (NESS). We report on two distinct and concordant experimental measures of the system effective temperature. To do so, a blade fastened to the shaft of a small DC-motor, immersed in the grains, behaves as a driven 1D Brownian rotator, which is used as both actuator and sensor simultaneously. On the one hand, the Gallavotti-Cohen fluctuation theorem, which involves a measure of the asymmetry of the energy exchanges between the rotator and the NESS reservoir, provides a first effective temperature. On the other hand, the fluctuation-dissipation theorem, which involves the relation between the spontaneous fluctuations and the response to a weak perturbation, defines a second, independent, effective temperature. Both methods, even though they are based on drastically different ideas, give nicely concordant results.

  6. Thermal energy storage in granular deposits

    Ratuszny, Paweł

    2017-10-01

    Energy storage technology is crucial for the development of the use of renewable energy sources. This is a substantial constraint, however it can, to some extent, be solved by storing energy in its various forms: electrical, mechanical, chemical and thermal. This article presents the results of research in thermal properties of granular deposits. Correlation between temperature changes in the stores over a period of time and their physical properties has been studied. The results of the research have practical application in designing thermal stores based on bulk materials and ground deposits. Furthermore, the research results are significant for regeneration of the lower ground sources for heat pumps and provide data for designing ground heat exchangers for ventilation systems.

  7. Frictional granular mechanics: A variational approach

    Holtzman, R.; Silin, D.B.; Patzek, T.W.

    2009-10-16

    The mechanical properties of a cohesionless granular material are evaluated from grain-scale simulations. Intergranular interactions, including friction and sliding, are modeled by a set of contact rules based on the theories of Hertz, Mindlin, and Deresiewicz. A computer generated, three-dimensional, irregular pack of spherical grains is loaded by incremental displacement of its boundaries. Deformation is described by a sequence of static equilibrium configurations of the pack. A variational approach is employed to find the equilibrium configurations by minimizing the total work against the intergranular loads. Effective elastic moduli are evaluated from the intergranular forces and the deformation of the pack. Good agreement between the computed and measured moduli, achieved with no adjustment of material parameters, establishes the physical soundness of the proposed model.

  8. Sorption of metaldehyde using granular activated carbon

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  9. Hyperstaticity and loops in frictional granular packings

    Tordesillas, Antoinette; Lam, Edward; Metzger, Philip T.

    2009-06-01

    The hyperstatic nature of granular packings of perfectly rigid disks is analyzed algebraically and through numerical simulation. The elementary loops of grains emerge as a fundamental element in addressing hyperstaticity. Loops consisting of an odd number of grains behave differently than those with an even number. For odd loops, the latent stresses are exterior and are characterized by the sum of frictional forces around each loop. For even loops, the latent stresses are interior and are characterized by the alternating sum of frictional forces around each loop. The statistics of these two types of loop sums are found to be Gibbsian with a "temperature" that is linear with the friction coefficient μ when μ<1.

  10. Steady state of tapped granular polygons

    Carlevaro, Carlos M; Pugnaloni, Luis A

    2011-01-01

    The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares

  11. Multi-scale kinetic description of granular clusters: invariance, balance, and temperature

    Capriz, Gianfranco; Mariano, Paolo Maria

    2017-12-01

    We discuss a multi-scale continuum representation of bodies made of several mass particles flowing independently each other. From an invariance procedure and a nonstandard balance of inertial actions, we derive the balance equations introduced in earlier work directly in pointwise form, essentially on the basis of physical plausibility. In this way, we analyze their foundations. Then, we propose a Boltzmann-type equation for the distribution of kinetic energies within control volumes in space and indicate how such a distribution allows us to propose a definition of (granular) temperature along processes far from equilibrium.

  12. Fine-granularity electromagnetic calorimeter using plastic scintillator strip-array

    Nagano, A.; Yamauchi, S.; Matsunaga, H.; Kim, S.; Matsumoto, T.; Sekiguchi, K.; Uchida, N.; Yamada, Y.; Yamamoto, S.; Evtoukhovitch, P.; Fujii, Y.; Garutti, E.; Iba, S.; Itoh, S.; Kajino, F.; Kalinnikov, V.; Kallies, W.; Kanzaki, J.; Kawagoe, K.; Kishimoto, S.; Miyata, H.; Mzavia, D.; Nakajima, N.; Nakamura, R.; Ono, H.; Samoilov, V.; Sanchez, A.L.C.; Takeshita, T.; Tamura, Y.; Tsamalaidze, Z.

    2006-01-01

    For the future linear collider calorimetry, fine-granularity is indispensable for energy measurements based on particle flow algorithm, which could achieve better energy resolution for jets than the conventional method. To explore the possibility for such a calorimeter using scintillator, an electromagnetic calorimeter test module, made of scintillator-strips and lead plates, was constructed and tested with test beams. Performance of the test module is presented in this article, in terms of the shower profile studies as well as energy and spatial measurements

  13. Dynamics of electrostatically driven granular media: Effects of humidity

    Howell, D. W.; Aronson, Igor S.; Crabtree, G. W.

    2001-01-01

    We performed experimental studies of the effect of humidity on the dynamics of electrostatically driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles

  14. Applications of granular-dynamics numerical simulations to asteroid surfaces

    Richardson, D. C.; Michel, P.; Schwartz, S. R.; Yu, Y.; Ballouz, R.-L.; Matsumura, S.

    2014-07-01

    Spacecraft images and indirect observations including thermal inertia measurements indicate most small bodies have surface regolith. Evidence of granular flow is also apparent in the images. This material motion occurs in very low gravity, therefore in a totally different gravitational environment than on the Earth. Upcoming sample-return missions to small bodies, and possible future manned missions, will involve interaction with the surface regolith, so it is important to develop tools to predict the surface response. We have added new capabilities to the N-body gravity tree code pkdgrav [1,2] that permit the simulation of granular dynamics, including multi-contact physics and friction forces, using the soft-sphere discrete-element method [3]. The numerical approach has been validated through comparison with laboratory experiments (e.g., [3,4]). (1) We carried out impacts into granular materials using different projectile shapes under Earth's gravity [5] and compared the results to laboratory experiments [6] in support of JAXA's Hayabusa 2 asteroid sample-return mission. We tested different projectile shapes and confirmed that the 90-degree cone was the most efficient at excavating mass when impacting 5-mm-diameter glass beads. Results are sensitive to the normal coefficient of restitution and the coefficient of static friction. Preliminary experiments in micro-gravity for similar impact conditions show both the amount of ejected mass and the timescale of the impact process increase, as expected. (2) It has been found (e.g., [7,8]) that ''fresh'' (unreddened) Q-class asteroids have a high probability of recent planetary encounters (˜1 Myr; also see [9]), suggesting that surface refreshening may have occurred due to tidal effects. As an application of the potential effect of tidal interactions, we carried out simulations of Apophis' predicted 2029 encounter with the Earth to see whether regolith motion might occur, using a range of plausible material parameters

  15. Granular mixing and segregation in a horizontal rotating drum: A simulation study on the impact of rotational speed and fill level

    Arntz, M.M.H.D.; Otter, W.K. den; Briels, W.J.; Bussmann, P.J.T.; Beeltink, H.H.; Boom, R.M.

    2008-01-01

    The rich phase behavior of granular beds of bidisperse hard spherical particles in a rotating horizontal drum is studied by Discrete Element Method (DEM) simulations. Several flow regimes and various forms of radial segregation, as well as mixing, are observed by systematically varying the

  16. Development of granular powder manufacturing technology by spray pyrolysis

    Katoh, Yoshiyuki; Kawase, Keiichi; Takahashi, Yoshiharu; Todokoro, Akio

    1996-01-01

    For shortening of mixed-oxide (MOX) fuel manufacturing process and improvement in treatment of MOX-powder, we have been developing the granular powder production technology. Since the granular powders have excellent fluidity owing to the spherical shape, there is the possibility of modifying scattering and adcering of the powder in the process equipment. In this paper, spray pyrolysis process in adopted as the process of manufacturing the granular powders and the basic feasibility study has been carried out. The experimental results show that the manufactured granular powders have excellent fluidity and the diameter of the powders is controllable. Furthermore, high density pellets are formed by sintering the powders. Thus, it is clarified that this process is promising for the actual MOX fuel fabrication. (author)

  17. Investigation of granular impact using positron emission particle tracking

    Marston, Jeremy O.

    2015-04-01

    We present results from an experimental study of granular impact using a combination of high-speed video and positron emission particle tracking (PEPT). The PEPT technique exploits the annihilation of photons from positron decay to determine the position of tracer particles either inside a small granular bed or attached to the object which impacts the bed. We use dense spheres as impactors and the granular beds are comprised of glass beads which are fluidised to achieve a range of different initial packing states. For the first time, we have simultaneously investigated both the trajectory of the sphere, the motion of particles in a 3-D granular bed and particles which jump into the resultant jet, which arises from the collapse of the cavity formed by the impacting sphere.

  18. Massive granular cell ameloblastoma with dural extension and atypical morphology

    Vandana Raghunath

    2014-01-01

    Full Text Available Ameloblastomas are rare histologically benign, locally aggressive tumors arising from the oral ectoderm that occasionally reach a gigantic size. Giant ameloblastomas are a rarity these days with the advent of panoramic radiography in routine dental practice. Furthermore, the granular cell variant is an uncommon histological subtype of ameloblastoma where the central stellate reticulum like cells in tumor follicles is replaced by granular cells. Although granular cell ameloblastoma (GCA is considered to be a destructive tumor with a high recurrence rate, the significance of granular cells in predicting its biologic behavior is debatable. However, we present a rare case of giant GCA of remarkable histomorphology showing extensive craniofacial involvement and dural extension that rendered a good prognosis following treatment.

  19. An Emotional Agent Model Based on Granular Computing

    Jun Hu

    2012-01-01

    Full Text Available Affective computing has a very important significance for fulfilling intelligent information processing and harmonious communication between human being and computers. A new model for emotional agent is proposed in this paper to make agent have the ability of handling emotions, based on the granular computing theory and the traditional BDI agent model. Firstly, a new emotion knowledge base based on granular computing for emotion expression is presented in the model. Secondly, a new emotional reasoning algorithm based on granular computing is proposed. Thirdly, a new emotional agent model based on granular computing is presented. Finally, based on the model, an emotional agent for patient assistant in hospital is realized, experiment results show that it is efficient to handle simple emotions.

  20. Micro origins for macro behavior in granular media

    Zhao, J.; Jiang, M.; Soga, K.; Luding, Stefan

    2016-01-01

    We report the latest advances in understanding, characterization and modeling of key micro mechanisms and origins underpinning the interesting and complex macroscopic behavior of granular matter. Included in this Topical Collection are novel theories, innovative experimental tools and new numerical

  1. REPEATED REDUCTIVE AND OXIDATIVE TREATMENTS ON GRANULAR ACTIVATED CARBON

    Fenton oxidation and Fenton oxidation preceded by reduction solutions were applied to granular activated carbon (GAC) to chemically regenerate the adsorbent. No adsorbate was present on the GAC so physicochemical effects from chemically aggressive regeneration of the carbon coul...

  2. The Regeneration of Granular Activated Carbon Using Hydrothermal Technology

    Sufnarski, Michael

    1999-01-01

    The economic feasibility of using granular activated carbon (GAC) to remove organic contaminants from industrial and municipal wastewater is contingent upon its reuse during multiple adsorption-regeneration cycles (Van Vliet, 1991...

  3. GRANULAR ACTIVATED CARBON ADSORPTION AND INFRARED REACTIVATION: A CASE STUDY

    A study evaluated the effectiveness and cost of removing trace organic contaminants and surrogates from drinking water by granular activated carbon (GAC) adsorption. The effect of multiple reactivations of spent GAC was also evaluated. Results indicated that reactivated GAC eff...

  4. Wave propagation of spectral energy content in a granular chain

    Shrivastava, Rohit Kumar; Luding, Stefan

    2017-01-01

    A mechanical wave is propagation of vibration with transfer of energy and momentum. Understanding the spectral energy characteristics of a propagating wave through disordered granular media can assist in understanding the overall properties of wave propagation through inhomogeneous materials like

  5. Mechanical Behavior of Granular/Particulate Media Reinforced with Fibers

    Michalowski, Radoslw

    1999-01-01

    ... out. This investigation was built on the results of a previous study. Fiber-reinforced granular material was considered as a composite, and a mathematical homogenization scheme was used to arrive at its macroscopic properties...

  6. Jetting and flooding of granular backfill materials : [summary].

    2015-03-01

    Granular backfill materials on highway projects are often compacted by mechanical methods. : This requires the contractor to place backfill material into loose lifts of varying thickness : and use compaction equipment to reduce air voids and increase...

  7. Tuning strain of granular matter by basal assisted Couette shear

    Zhao Yiqiu

    2017-01-01

    Full Text Available We present a novel Couette shear apparatus capable of generating programmable azimuthal strain inside 2D granular matter under Couette shear. The apparatus consists of 21 independently movable concentric rings and two boundary wheels with frictional racks. This makes it possible to quasistatically shear the granular matter not only from the boundaries but also from the bottom. We show that, by specifying the collective motion of wheels and rings, the apparatus successfully generates the desired strain profile inside the sample granular system, which is composed of about 2000 photoelastic disks. The motion and stress of each particle is captured by an imaging system utilizing reflective photoelasticimetry. This apparatus provides a novel method to investigate shear jamming properties of granular matter with different interior strain profiles and unlimited strain amplitudes.

  8. Factors influencing the density of aerobic granular sludge.

    Winkler, M.K.; Kleerebezem, R.; Strous, M.; Chandran, K.; Loosdrecht, M.C. van

    2013-01-01

    In the present study, the factors influencing density of granular sludge particles were evaluated. Granules consist of microbes, precipitates and of extracellular polymeric substance. The volume fractions of the bacterial layers were experimentally estimated by fluorescent in situ hybridisation

  9. Resilient Modulus Characterization of Alaskan Granular Base Materials

    2010-08-01

    Resilient modulus (MR) of base course material is an important material input for : pavement design. In Alaska, due to distinctiveness of local climate, material source, : fines content and groundwater level, resilient properties of D-1 granular base...

  10. Applicability and trends of anaerobic granular sludge treatment processes

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  11. Effective elasticity coefficients of native rocks and consolidated granular matter

    Schulz, Beatrix M.; Schulz, Michael

    2008-01-01

    The elastic coefficients of binary heterogeneous materials, such as several native rock materials or consolidated granular matter will be determined in terms of a perturbation expansion. Furthermore, in order to check the validity of the obtained results, these are compared with numerical investigations using Boole's model of randomly distributed spheres. Finally, we apply the results on several classes of native rocks and consolidated granular materials

  12. Granular cell tumor of the esophagus. Report of three cases.

    Cohle, S D; McKechnie, J C; Truong, L; Jurco, S

    1981-06-01

    Granular cell tumors, (formerly called myoblastomas) involving the esophagus were encountered in three patients. In all three the tumors were asymptomatic and in two they were multiple. The first published endoscopic photographs of such a tumor are presented. The successful total removal of this neoplasm using the endoscope is described. The pathologic, radiologic and therapeutic aspects of previously reported cases of granular cell tumor of the esophagus are reviewed and compared with the three reported herein.

  13. Editorial: Modelling and computational challenges in granular materials

    Weinhart, Thomas; Thornton, Anthony Richard; Einav, Itai

    2015-01-01

    This is the editorial for the special issue on “Modelling and computational challenges in granular materials” in the journal on Computational Particle Mechanics (CPM). The issue aims to provide an opportunity for physicists, engineers, applied mathematicians and computational scientists to discuss the current progress and latest advancements in the field of advanced numerical methods and modelling of granular materials. The focus will be on computational methods, improved algorithms and the m...

  14. Self-assembly and speed distributions of active granular particles

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  15. Experimental investigation of granular dynamics close to the jamming transition

    Caballero, G.; Kolb, E.; Lindner, A.; Lanuza, J.; Clément, E.

    2005-06-01

    We present different experiments on dense granular assemblies with the aim of clarifying the notion of 'jamming transition' for these assemblies of non-Brownian particles. The experimental set-ups differ in the way in which external perturbations are applied in order to unjam the systems. The first experiment monitors the response to a locally applied deformation of a model packing at rest. The two other experiments study local and collective dynamics in a granular assembly weakly excited by vibration.

  16. Experimental study of energy exchanges between two coupled granular gases

    Chastaing , J.-Y; Géminard , J.-C; Naert , A

    2016-01-01

    International audience; We report on the energy exchanges between two granular gases of different densities coupled electrome-chanically by immersed blades attached to dc motors. Zeroing the energy flux between the two subsystems, we demonstrate that an immersed blade is a convenient way to assess the properties of the granular gases, provided that the dissipation in the motor is properly taken into account. In addition, when the two gases have different densities, the fluctuations of the ene...

  17. Planning for the Collection and Analysis of Samples of Martian Granular Materials Potentially to be Returned by Mars Sample Return

    Carrier, B. L.; Beaty, D. W.

    2017-12-01

    NASA's Mars 2020 rover is scheduled to land on Mars in 2021 and will be equipped with a sampling system capable of collecting rock cores, as well as a specialized drill bit for collecting unconsolidated granular material. A key mission objective is to collect a set of samples that have enough scientific merit to justify returning to Earth. In the case of granular materials, we would like to catalyze community discussion on what we would do with these samples if they arrived in our laboratories, as input to decision-making related to sampling the regolith. Numerous scientific objectives have been identified which could be achieved or significantly advanced via the analysis of martian rocks, "regolith," and gas samples. The term "regolith" has more than one definition, including one that is general and one that is much more specific. For the purpose of this analysis we use the term "granular materials" to encompass the most general meaning and restrict "regolith" to a subset of that. Our working taxonomy includes the following: 1) globally sourced airfall dust (dust); 2) saltation-sized particles (sand); 3) locally sourced decomposed rock (regolith); 4) crater ejecta (ejecta); and, 5) other. Analysis of martian granular materials could serve to advance our understanding areas including habitability and astrobiology, surface-atmosphere interactions, chemistry, mineralogy, geology and environmental processes. Results of these analyses would also provide input into planning for future human exploration of Mars, elucidating possible health and mechanical hazards caused by the martian surface material, as well as providing valuable information regarding available resources for ISRU and civil engineering purposes. Results would also be relevant to matters of planetary protection and ground-truthing orbital observations. We will present a preliminary analysis of the following, in order to generate community discussion and feedback on all issues relating to: What are the

  18. Can one ``Hear'' the aggregation state of a granular system?

    Kruelle, Christof A.; Sánchez, Almudena García

    2013-06-01

    If an ensemble of macroscopic particles is mechanically agitated the constant energy input is dissipated into the system by multiple inelastic collisions. As a result, the granular material can exhibit, depending on the magnitude of agitation, several physical states - like a gaseous phase for high energy input or a condensed state for low agitation. Here we introduce a new method for quantifying the acoustical response of the granular system. Our experimental system consists of a monodisperse packing of glass beads with a free upper surface, which is confined inside a cylindrical container. An electro-mechanical shaker exerts a sinusoidal vertical vibration at normalized accelerations well above the fluidization threshold for a monolayer of particles. By increasing the number of beads the granular gas suddenly collapses if a critical threshold is exceeded. The transition can be detected easily with a microphone connected to the soundcard of a PC. From the recorded audio track a FFT is calculated in real-time. Depending on either the number of particles at a fixed acceleration or the amount of energy input for a given number of particles, the resulting rattling noise exhibits a power spectrum with either the dominating (shaker) frequency plus higher harmonics for a granular crystal or a high-frequency broad-band noise for a granular gas, respectively. Our new method demonstrates that it is possible to quantify analytically the subjective audio impressions of a careful listener and thus to distinguish easily between different aggregation states of an excited granular system.

  19. Survivable integrated grooming in multi-granularity optical networks

    Wu, Jingjing; Guo, Lei; Wei, Xuetao; Liu, Yejun

    2012-05-01

    Survivability is an important issue to ensure the service continuity in optical network. At the same time, with the granularity of traffic demands ranging from sub-wavelength-level to wavelength-level, traffic demands need to be aggregated and carried over the network in order to utilize resources effectively. Therefore, multi-granularity grooming is proposed to save the cost and reduce the number of switching ports in Optical-Cross Connects (OXCs). However, current works mostly addressed the survivable wavelength or waveband grooming. Therefore, in this paper, we propose three heuristic algorithms called Multi-granularity Dedicated Protection Grooming (MDPG), Multi-granularity Shared Protection Grooming (MSPG) and Multi-granularity Mixed Protection Grooming (MMPG), respectively. All of them are performed based on the Survivable Multi-granularity Integrated Auxiliary Graph (SMIAG) that includes one Wavelength Integrated Auxiliary Graph (WIAG) for wavelength protection and one waveBand Integrated Auxiliary Graph (BIAG) for waveband protection. Numerical results show that MMPG has the lowest average port-cost, the best resource utilization ratio and the lowest blocking probability among these three algorithms. Compared with MDPG, MSPG has lower average port-cost, better resource utilization ratio and lower blocking probability.

  20. Stability of parallel flows

    Betchov, R

    2012-01-01

    Stability of Parallel Flows provides information pertinent to hydrodynamical stability. This book explores the stability problems that occur in various fields, including electronics, mechanics, oceanography, administration, economics, as well as naval and aeronautical engineering. Organized into two parts encompassing 10 chapters, this book starts with an overview of the general equations of a two-dimensional incompressible flow. This text then explores the stability of a laminar boundary layer and presents the equation of the inviscid approximation. Other chapters present the general equation

  1. Erosion onset of a cohesionless granular medium by an immersed impinging round jet

    Brunier-Coulin, Florian; Cuéllar, Pablo; Philippe, Pierre

    2017-03-01

    Among different devices developed quite recently to quantify the resistance to erosion of natural soil within the broader context of dyke safety, the most commonly used is probably the jet erosion test in which a scouring crater is induced by impingement of an immersed water jet. A comprehensive experimental investigation on the jet erosion in the specific situation of a cohesionless granular material is presented here. The tests were performed by combining special optical techniques allowing for an accurate measurement of the scouring onset and evolution inside an artificially translucent granular sample. The impinging jet hydrodynamics are also analyzed, empirically validating the use of a self-similar theoretical framework for the laminar round jet. The critical conditions at the onset of erosion appear to be best described by a dimensionless Shields number based on the inertial drag force created by the fluid flow on the eroded particles rather than on the pressure gradients around them. To conclude, a tentative empirical model for the maximal flow velocity initiating erosion at the bottom of the scoured crater is put forward and discussed in the light of some preliminary results.

  2. The ATLAS High-Granularity Timing Detector

    Sacerdoti, Sabrina; The ATLAS collaboration

    2018-01-01

    In the high luminosity phase of the LHC, scheduled to start in 2026, the instantaneous luminosity will be increased to up to $\\mathcal{L} = 7.5 × 10^{34} cm^{−2}s^{−1}$. As a consequence, the detectors will be faced with challenging conditions, in particular the increase of pile-up: an average of 200 interactions per bunch crossing are expected, corresponding to an average interaction density of 1.8 collisions/mm. The reconstruction performance will be severely degraded in the end-cap and forward region of the ATLAS detector, especially for jets and transverse missing energy. The addition of timing information in forward objects through the High-Granularity Timing Detector will help to recover the performance of these regions to levels similar to the ones expected in the central region of the detector. It will also provide a bunch-by-bunch luminosity measurement. This talk will be focused on the developments surrounding the LGAD sensors and front-end electronics, which are aimed to achieve a low time res...

  3. Granular packings with moving side walls

    Landry, James W.; Grest, Gary Stephen

    2004-01-01

    The effects of movement of the side walls of a confined granular packing are studied by discrete element, molecular dynamics simulations. The dynamical evolution of the stress is studied as a function of wall movement both in the direction of gravity as well as opposite to it. For all wall velocities explored, the stress in the final state of the system after wall movement is fundamentally different from the original state obtained by pouring particles into the container and letting them settle under the influence of gravity. The original packing possesses a hydrostaticlike region at the top of the container which crosses over to a depth-independent stress. As the walls are moved in the direction opposite to gravity, the saturation stress first reaches a minimum value independent of the wall velocity, then increases to a steady-state value dependent on the wall velocity. After wall movement ceases and the packing reaches equilibrium, the stress profile fits the classic Janssen form for high wall velocities, while some deviations remain for low wall velocities. The wall movement greatly increases the number of particle-wall and particle-particle forces at the Coulomb criterion. Varying the wall velocity has only small effects on the particle structure of the final packing so long as the walls travel a similar distance.

  4. Emergent Strain Stiffening in Interlocked Granular Chains

    Dumont, Denis; Houze, Maurine; Rambach, Paul; Salez, Thomas; Patinet, Sylvain; Damman, Pascal

    2018-02-01

    Granular chain packings exhibit a striking emergent strain-stiffening behavior despite the individual looseness of the constitutive chains. Using indentation experiments on such assemblies, we measure an exponential increase in the collective resistance force F with the indentation depth z and with the square root of the number N of beads per chain. These two observations are, respectively, reminiscent of the self-amplification of friction in a capstan or in interleaved books, as well as the physics of polymers. The experimental data are well captured by a novel model based on these two ingredients. Specifically, the resistance force is found to vary according to the universal relation log F ˜μ √{N }Φ11 /8z /b , where μ is the friction coefficient between two elementary beads, b is their size, and Φ is the volume fraction of chain beads when semidiluted in a surrounding medium of unconnected beads. Our study suggests that theories normally confined to the realm of polymer physics at a molecular level can be used to explain phenomena at a macroscopic level. This class of systems enables the study of friction in complex assemblies, with practical implications for the design of new materials, the textile industry, and biology.

  5. Collision Statistics of Driven Polydisperse Granular Gases

    Chen Zhiyuan; Zhang Duanming; Yang Fengxia; Guo Xinping; Li Zhongming

    2008-01-01

    We present a dynamical model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension d f . By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentially with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statistical properties. With the increase of the fractal dimension d f , the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with d f , but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior

  6. Deflagration to detonation experiments in granular HMX

    Burnside, N.J.; Son, S.F.; Asay, B.W.; Dickson, P.M.

    1998-03-01

    In this paper the authors report on continuing work involving a series of deflagration-to-detonation transition (DDT) experiments in which they study the piston-initiated DDT of heavily confined granular cyclotetramethylenetetranitramine (HMX). These experiments were designed to he useful in model development and evaluation. A main focus of these experiments is the effect of density on the DDT event. Particle size distribution and morphology are carefully characterized. In this paper they present recent surface area analysis. Earlier studies demonstrated extensive fracturing and agglomeration in samples at densities as low as 75% TMD as evidenced by dramatic decreases in particle size distribution due to mild stimulus. This is qualitatively confirmed with SEM images and quantitatively studied with gas absorption surface area analysis. Also, in this paper they present initial results using a microwave interferometer technique. Dynamic calibration of the technique was performed, a 35 GHz signal is used to increase resolution, and the system has been designed to be inexpensive for repeated experiments. The distance to where deformation of the inner wall begins for various densities is reported. This result is compared with the microwave interferometer measurements.

  7. Granular discharge rate for submerged hoppers

    T. J. Wilson

    2014-10-01

    Full Text Available The discharge of spherical grains from a hole in the bottom of a right circular cylinder is measured with the entire system underwater. We find that the discharge rate depends on filling height, in contrast to the well-known case of dry non-cohesive grains. It is further surprising that the rate increases up to about twenty five percent, as the hopper empties and the granular pressure head decreases. For deep filling, where the discharge rate is constant, we measure the behavior as a function of both grain and hole diameters. The discharge rate scale is set by the product of hole area and the terminal falling speed of isolated grains. But there is a small-hole cutoff of about two and half grain diameters, which is larger than the analogous cutoff in the Beverloo equation for dry grains. Received: 11 September 2014, Accepted: 10 October 2014; Reviewed by: L. Staron, CNRS, Universite Pierre et Marie Curie, Institut Le Rond d'Alembert, Paris, France; Edited by: L. A. Pugnaloni; DOI: http://dx.doi.org/10.4279/PIP.060009 Cite as: T J Wilson, C R Pfeifer, N Meysingier, D J Durian, Papers in Physics 6, 060009 (2014

  8. Granular cell tumors of the urinary bladder

    Kayani Naila

    2007-03-01

    Full Text Available Abstract Background Granular cell tumors (GCTs are extremely rare lesions of the urinary bladder with only nine cases being reported in world literature of which one was malignant. Generally believed to be of neural origin based on histochemical, immunohistochemical, and ultrastructural studies; they mostly follow a clinically benign course but are commonly mistaken for malignant tumors since they are solid looking, ulcerated tumors with ill-defined margins. Materials and methods We herein report two cases of GCTs, one benign and one malignant, presenting with gross hematuria in a 14- and a 47-year-old female, respectively. Results Histopathology revealed characteristic GCTs with positive immunostaining for neural marker (S-100 and negative immunostaining for epithelial (cytokeratin, Cam 5.2, AE/A13, neuroendocrine (neuron specific enolase, chromogranin A, and synaptophysin and sarcoma (desmin, vimentin markers. The benign tumor was successfully managed conservatively with transurethral resection alone while for the malignant tumor, radical cystectomy, hysterectomy with bilateral salpingo-oophorectomy, anterior vaginectomy, plus lymph node dissection was done. Both cases show long-term disease free survival. Conclusion We recommend careful pathologic assessment for establishing the appropriate diagnosis and either a conservative or aggressive surgical treatment for benign or localized malignant GCT of the urinary bladder, respectively.

  9. Penetration in bimodal, polydisperse granular material

    Kouraytem, Nadia; Thoroddsen, Sigurdur T; Marston, J. O.

    2016-01-01

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  10. Modeling of interaction effects in granular systems

    El-Hilo, M.; Shatnawy, M.; Al-Rsheed, A.

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(ΔE) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(ΔE) can easily give a temperature-independent behavior of S(T) when these changes give a 1/ΔE behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur and the loops are only predicted when the interaction field is positive. From these predictions, minor loops will form when the interaction field is strong enough to magnetize some moments during the recoil process back to zero field. Thus, these minor loops are originated from interaction driving irreversible changes along the recoil curve and the irreversible component of magnetization has no direct influence on the formation of these minor loops

  11. Modeling of interaction effects in granular systems

    El-Hilo, M; Al-Rsheed, A

    2000-01-01

    Interaction effects on the magnetic behavior of granular solid systems are examined using a numerical model which is capable of predicting the field, temperature and time dependence of magnetization. In this work, interaction effects on the temperature dependence of time viscosity coefficient S(T) and formation of minor hysteresis loops have been studied. The results for the time- and temperature dependence of remanence ratio have showed that the distribution of energy barriers f(DELTA E) obtained depend critically on the strength and nature of interactions. These interactions-based changes in f(DELTA E) can easily give a temperature-independent behavior of S(T) when these changes give a 1/DELTA E behavior to the distribution of energy barriers. Thus, conclusions about macroscopic quantum tunneling must be carefully drawn when the temperature dependence of S(T) is used to probe for MQT effects. For minor hysteresis effects, the result shows that for the non-interacting case, no minor hysteresis loops occur an...

  12. Penetration in bimodal, polydisperse granular material

    Kouraytem, N.

    2016-11-07

    We investigate the impact penetration of spheres into granular media which are compositions of two discrete size ranges, thus creating a polydisperse bimodal material. We examine the penetration depth as a function of the composition (volume fractions of the respective sizes) and impact speed. Penetration depths were found to vary between delta = 0.5D(0) and delta = 7D(0), which, for mono-modal media only, could be correlated in terms of the total drop height, H = h + delta, as in previous studies, by incorporating correction factors for the packing fraction. Bimodal data can only be collapsed by deriving a critical packing fraction for each mass fraction. The data for the mixed grains exhibit a surprising lubricating effect, which was most significant when the finest grains [d(s) similar to O(30) mu m] were added to the larger particles [d(l) similar to O(200 - 500) mu m], with a size ratio, epsilon = d(l)/d(s), larger than 3 and mass fractions over 25%, despite the increased packing fraction. We postulate that the small grains get between the large grains and reduce their intergrain friction, only when their mass fraction is sufficiently large to prevent them from simply rattling in the voids between the large particles. This is supported by our experimental observations of the largest lubrication effect produced by adding small glass beads to a bed of large sand particles with rough surfaces.

  13. Clinical and molecular characterization of duplications encompassing the human SHOX gene reveal a variable effect on stature.

    Thomas, N Simon; Harvey, John F; Bunyan, David J; Rankin, Julia; Grigelioniene, Giedre; Bruno, Damien L; Tan, Tiong Y; Tomkins, Susan; Hastings, Robert

    2009-07-01

    Deletions of the SHOX gene are well documented and cause disproportionate short stature and variable skeletal abnormalities. In contrast interstitial SHOX duplications limited to PAR1 appear to be very rare and the clinical significance of the only case report in the literature is unclear. Mapping of this duplication has now shown that it includes the entire SHOX gene but little flanking sequence and so will not encompass any of the long-range enhancers required for SHOX transcription. We now describe the clinical and molecular characterization of three additional cases. The duplications all included the SHOX coding sequence but varied in the amount of flanking sequence involved. The probands were ascertained for a variety of reasons: hypotonia and features of Asperger syndrome, Leri-Weill dyschondrosteosis (LWD), and a family history of cleft palate. However, the presence of a duplication did not correlate with any of these features or with evidence of skeletal abnormality. Remarkably, the proband with LWD had inherited both a SHOX deletion and a duplication. The effect of the duplications on stature was variable: height appeared to be elevated in some carriers, particularly in those with the largest duplications, but was still within the normal range. SHOX duplications are likely to be under ascertained and more cases need to be identified and characterized in detail in order to accurately determine their phenotypic consequences.

  14. Clogging in constricted suspension flows

    Marin, Alvaro; Lhuissier, Henri; Rossi, Massimiliano; Kähler, Christian J.

    2018-02-01

    The flow of a charged-stabilized suspension through a single constricted channel is studied experimentally by tracking the particles individually. Surprisingly, the behavior is found to be qualitatively similar to that of inertial dry granular systems: For small values of the neck-to-particle size ratio (D /d reported for granular systems and agree for moderate particle volume fraction (ϕ ≈20 % ) with a simple stochastic model for the number of particles at the neck. For larger neck sizes (D /d >3 ), even at the largest ϕ (≈60 %) achievable in the experiments, an uninterrupted particle flow is observed, which resembles that of an hourglass. This particularly small value of D /d (≃3 ) at the transition to a practically uninterrupted flow is attributed to the low effective friction between the particles, achieved by the particle's functionalization and lubrication.

  15. Effect of horizontal vibration on pile of cylinder avalanches as a pseudo-two dimensional granular system

    Mardiansyah, Y; Yulia; Khotimah, S N; Viridi, S; Suprijadi

    2016-01-01

    Dynamics of pseudo-two dimensional granular material consisted of two layers cylinder piles positioned on top of a horizontally vibrated plate is reported in this work. It is aimed to observe structural change of the cylinder pile vibrated in certain frequency and amplitude. Dimensionless acceleration Γ= 4π 2 f 2 A/g (with g is gravitational acceleration), which is generally used in granular materials to observe transition between states, e.g. stable, rotating without slipping, rolling and slipping in Γ-f plane, does not work well for this system. For this system additional states for the piles can also be observed, e.g. stable and flowing states. Observations parameters are frequency f (measured in Hz) and amplitude A (measured in cm). These parameters are used to construct the A-f plane instead of Γ-f one. (paper)

  16. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Zouheir Habbal, Mohammad; Bou-Assi, Tarek; Zhu, Jun; Owen, Renius; Chehab, Farid F

    2014-01-01

    Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD). Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb), one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  17. Can Static Habitat Protection Encompass Critical Areas for Highly Mobile Marine Top Predators? Insights from Coastal East Africa.

    Sergi Pérez-Jorge

    Full Text Available Along the East African coast, marine top predators are facing an increasing number of anthropogenic threats which requires the implementation of effective and urgent conservation measures to protect essential habitats. Understanding the role that habitat features play on the marine top predator' distribution and abundance is a crucial step to evaluate the suitability of an existing Marine Protected Area (MPA, originally designated for the protection of coral reefs. We developed species distribution models (SDM on the IUCN data deficient Indo-Pacific bottlenose dolphin (Tursiops aduncus in southern Kenya. We followed a comprehensive ecological modelling approach to study the environmental factors influencing the occurrence and abundance of dolphins while developing SDMs. Through the combination of ensemble prediction maps, we defined recurrent, occasional and unfavourable habitats for the species. Our results showed the influence of dynamic and static predictors on the dolphins' spatial ecology: dolphins may select shallow areas (5-30 m, close to the reefs (< 500 m and oceanic fronts (< 10 km and adjacent to the 100 m isobath (< 5 km. We also predicted a significantly higher occurrence and abundance of dolphins within the MPA. Recurrent and occasional habitats were identified on large percentages on the existing MPA (47% and 57% using presence-absence and abundance models respectively. However, the MPA does not adequately encompass all occasional and recurrent areas and within this context, we propose to extend the MPA to incorporate all of them which are likely key habitats for the highly mobile species. The results from this study provide two key conservation and management tools: (i an integrative habitat modelling approach to predict key marine habitats, and (ii the first study evaluating the effectiveness of an existing MPA for marine mammals in the Western Indian Ocean.

  18. First report of a deletion encompassing an entire exon in the homogentisate 1,2-dioxygenase gene causing alkaptonuria.

    Mohammad Zouheir Habbal

    Full Text Available Alkaptonuria is often diagnosed clinically with episodes of dark urine, biochemically by the accumulation of peripheral homogentisic acid and molecularly by the presence of mutations in the homogentisate 1,2-dioxygenase gene (HGD. Alkaptonuria is invariably associated with HGD mutations, which consist of single nucleotide variants and small insertions/deletions. Surprisingly, the presence of deletions beyond a few nucleotides among over 150 reported deleterious mutations has not been described, raising the suspicion that this gene might be protected against the detrimental mechanisms of gene rearrangements. The quest for an HGD mutation in a proband with AKU revealed with a SNP array five large regions of homozygosity (5-16 Mb, one of which includes the HGD gene. A homozygous deletion of 649 bp deletion that encompasses the 72 nucleotides of exon 2 and surrounding DNA sequences in flanking introns of the HGD gene was unveiled in a proband with AKU. The nature of this deletion suggests that this in-frame deletion could generate a protein without exon 2. Thus, we modeled the tertiary structure of the mutant protein structure to determine the effect of exon 2 deletion. While the two β-pleated sheets encoded by exon 2 were missing in the mutant structure, other β-pleated sheets are largely unaffected by the deletion. However, nine novel α-helical coils substituted the eight coils present in the native HGD crystal structure. Thus, this deletion results in a deleterious enzyme, which is consistent with the proband's phenotype. Screening for mutations in the HGD gene, particularly in the Middle East, ought to include this exon 2 deletion in order to determine its frequency and uncover its origin.

  19. Particle-size segregation and diffusive remixing in shallow granular avalanches

    Gray, J. M. N. T.; Chugunov, V. A.

    2006-12-01

    Segregation and mixing of dissimilar grains is a problem in many industrial and pharmaceutical processes, as well as in hazardous geophysical flows, where the size-distribution can have a major impact on the local rheology and the overall run-out. In this paper, a simple binary mixture theory is used to formulate a model for particle-size segregation and diffusive remixing of large and small particles in shallow gravity-driven free-surface flows. This builds on a recent theory for the process of kinetic sieving, which is the dominant mechanism for segregation in granular avalanches provided the density-ratio and the size-ratio of the particles are not too large. The resulting nonlinear parabolic segregation remixing equation reduces to a quasi-linear hyperbolic equation in the no-remixing limit. It assumes that the bulk velocity is incompressible and that the bulk pressure is lithostatic, making it compatible with most theories used to compute the motion of shallow granular free-surface flows. In steady-state, the segregation remixing equation reduces to a logistic type equation and the ‘S’-shaped solutions are in very good agreement with existing particle dynamics simulations for both size and density segregation. Laterally uniform time-dependent solutions are constructed by mapping the segregation remixing equation to Burgers equation and using the Cole Hopf transformation to linearize the problem. It is then shown how solutions for arbitrary initial conditions can be constructed using standard methods. Three examples are investigated in which the initial concentration is (i) homogeneous, (ii) reverse graded with the coarse grains above the fines, and, (iii) normally graded with the fines above the coarse grains. Time-dependent two-dimensional solutions are also constructed for plug-flow in a semi-infinite chute.

  20. Synthesis of Biodiesel in Batch and Packed-Bed Reactors Using Powdered and Granular Sugar Catalyst

    Janaun, J.; Lim, P. M.; Balan, W. S.; Yaser, A. Z.; Chong, K. P.

    2017-06-01

    Increasing world production of palm oil warrants effective utilization of its waste. In particular, conversion of waste cooking oil into biodiesel has obtained global interest because of renewable energy need and reduction of CO2 emission. In this study, oleic acid used as a model compound for waste cooking oil conversion using esterification reaction catalysed by sugar catalyst (SC) in powdered (P-SC) and granular (G-SC) forms. The catalysts were synthesized via incomplete carbonization of D-glucose followed by functionalization with concentrated sulphuric acid. Catalysts characterizations were done for their physical and chemical properties using modern tools. Batch and packed-bed reactor systems were used to evaluate the reactivity of the catalysts. The results showed that G-SC had slightly higher total acidity and more porous than P-SC. The experimental conditions for batch reaction were temperature of 60°C, molar ratio of 1:20 (Oleic Acid:Methanol) and 2 wt. catalyst with respect to oleic acid. The results showed the maximum oleic acid conversion using G-SC and P-SC were 52 and 48, respectively. Whereas, the continuous reaction with varying feed flow rate as a function of retention time was studied by using 3 g of P-SC in 60 °C and 1:20 molar ratio in a packed-bed reactor. The results showed that a longer retention time which was 6.48 min and feed flow rate 1.38 ml/min, achieved higher average conversion of 9.9 and decreased with further increasing flow rate. G-SC showed a better average conversion of 10.8 at lowest feed flow rate of 1.38 ml/min in continuous reaction experiments. In a broader perspective, large scale continuous biodiesel production is feasible using granular over powdered catalyst mainly due to it lower pressure drop.

  1. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-01-01

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH 4 /h g VSS) and aerobic activity (SOUR: 2.21 mMO 2 /h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and

  2. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro

  3. Granular Corneal Dystrophy Manifesting after Radial Keratotomy

    Sepehr Feizi

    2008-12-01

    Full Text Available

    PURPOSE: To report manifestation of granular corneal dystrophy after radial keratotomy (RK. CASE REPORT: A 32-year-old man presented with white radial lines in both corneas. He had undergone uncomplicated RK in both eyes 8 years ago. Preoperative refraction had been OD: -3.5 -0.75@180 and OS: -3.0 -0.5@175. Uncorrected visual acuity was OD: 8/10 and OS: 7/10; best corrected visual acuity was 9/10 in both eyes with OD: -0.5 -0.5@60 and OS: -0.75 -0.5@80. Slit lamp examination revealed discrete well-demarcated whitish lesions with clear intervening stroma in the central anterior cornea consistent with granular dystrophy. Similar opacities were present within the RK incisions. CONCLUSION: Granular dystrophy deposits may appear within RK incisions besides other previously reported locations.