WorldWideScience

Sample records for granular activated carbons

  1. Sorption of metaldehyde using granular activated carbon

    Directory of Open Access Journals (Sweden)

    S. Salvestrini

    2017-09-01

    Full Text Available In this work, the ability of granular activated carbon (GAC to sorb metaldehyde was evaluated. The kinetic data could be described by an intra-particle diffusion model, which indicated that the porosity of the sorbent strongly influenced the rate of sorption. The analysis of the equilibrium sorption data revealed that ionic strength and temperature did not play any significant role in the metaldehyde uptake. The sorption isotherms were successfully predicted by the Freundlich model. The GAC used in this paper exhibited a higher affinity and sorption capacity for metaldehyde with respect to other GACs studied in previous works, probably as a result of its higher specific surface area and high point of zero charge.

  2. Practical experiences with granular activated carbon (GAC) at the ...

    African Journals Online (AJOL)

    Practical experiences with granular activated carbon (GAC) at the Rietvlei Water Treatment Plant. ... The porosity was found to be 0.69 for the 12 x 40 size carbon and 0.66 for the 8 x 30 size carbon. By using a ... The third part of the study measured the physical changes of the GAC found at different points in the GAC cycle.

  3. Pesticide Removal by Combined Ozonation and Granular Activated Carbon Filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    This research aimed to idendfy and understand mechanisms that underlie the beneficial effect of ozonation on removal of pesdcides and other micropoUutants by Granular Activated Carbon (GAC) filtradon. This allows optimization of the combination of these two processes, termed Biological Activated

  4. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B.; Mishra, I.M.; Wasewar, K.L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  5. Production and characterization of granular activated carbon from activated sludge

    Directory of Open Access Journals (Sweden)

    Z. Al-Qodah

    2009-03-01

    Full Text Available In this study, activated sludge was used as a precursor to prepare activated carbon using sulfuric acid as a chemical activation agent. The effect of preparation conditions on the produced activated carbon characteristics as an adsorbent was investigated. The results indicate that the produced activated carbon has a highly porous structure and a specific surface area of 580 m²/g. The FT-IR analysis depicts the presence of a variety of functional groups which explain its improved adsorption behavior against pesticides. The XRD analysis reveals that the produced activated carbon has low content of inorganic constituents compared with the precursor. The adsorption isotherm data were fitted to three adsorption isotherm models and found to closely fit the BET model with R² equal 0.948 at pH 3, indicating a multilayer of pesticide adsorption. The maximum loading capacity of the produced activated carbon was 110 mg pesticides/g adsorbent and was obtained at this pH value. This maximum loading was found experimentally to steeply decrease as the solution pH increases. The obtained results show that activated sludge is a promising low cost precursor for the production of activated carbon.

  6. IN-SITU REGENERATION OF GRANULAR ACTIVATED CARBON (GAC) USING FENTON'S REAGENTS

    Science.gov (United States)

    Fenton-dependent regeneration of granular activated carbon (GAC) initially saturated with one of several chlorinated aliphatic contaminants was studied in batch and continuous-flow reactors. Homogeneous and heterogeneous experiments were designed to investigate the effects of va...

  7. Adsorption of Volatile Organic Compounds from Aqueous Solution by Granular Activated Carbon in Batch System

    International Nuclear Information System (INIS)

    Zeinali, F.; Ghoreyshi, A. A.; Najafpour, G.

    2011-01-01

    Chlorinated hydrocarbons and aromatics are the major volatile organic compounds that contaminate the ground water and industrial waste waters. The best way to overcome this problem is to recover the dissolved compounds in water. In order to evaluate the potential ability of granular activated carbon for recovery of volatile organic compounds from water, the equilibrium adsorption was investigated. This study deals with the adsorption of dichloromethane as a typical chlorinated volatile organic compound and toluene as the representative of aromatic volatile organic compounds on a commercial granular activated carbon. The adsorption isotherms of these two volatile organic compounds on granular activated carbon were measured at three different temperatures, toluene at 293, 303 and 313 K and dichloromethane at 298, 303 and 313 K within their solubility concentration range in water. The maximum adsorption capacity of dichloromethane and toluene adsorption by granular activated carbon was 4 and 0.2 mol/Kg-1, respectively. The experimental data obtained were correlated with different adsorption isotherm models. The Langmuir model was well adapted to the description of dichloromethane adsorption on granular activated carbon at all three temperatures, while the adsorption of toluene on granular activated carbon was found to be well described by the Langmuir-BET hybrid model at all three temperatures. The heat of adsorption was also calculated based on the thermodynamic equation of Clausius Clapeyron, which indicates the adsorption process is endothermic for both compounds.

  8. Fenton-Driven Regeneration of MTBE-spent Granular Activated Carbon

    Science.gov (United States)

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves the combined, synergistic use of two treatment technologies: adsorption of organic chemicals onto activated carbon and Fenton-driven oxidation regeneration of the spent-GAC...

  9. Fractal analysis of granular activated carbons using isotherm data

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, N.R.; Pan, M. [Illinois Institute of Technology, Chicago, IL (United States). Dept. of Chemical and Environmental Engineering; Sandi, G. [Argonne National Lab., IL (United States)

    1997-08-01

    Utilization of adsorption on solid surfaces was exercised for the first time in 1785. Practical application of unactivated carbon filters, and powdered carbon were first demonstrated in the American water treatment plant, and a municipal treatment plant in New Jersey, in 1883 and 1930, respectively. The use of activated carbon became widespread in the next few decades. At present, adsorption on carbons has a wide spread application in water treatment and removal of taste, odor, removal of synthetic organic chemicals, color-forming organics, and desinfection by-products and their naturally occurring precursors. This paper presents an analysis of the surface fractal dimension and adsorption capacity of a group of carbons.

  10. Kinetics of hydrophobic organic contaminant extraction from sediment by granular activated carbon

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Smit, M.; Koelmans, A.A.; Meent, van de D.

    2014-01-01

    Ex situ solid phase extraction with granular activated carbon (GAC) is a promising technique to remediate contaminated sediments. The methods' efficiency depends on the rate by which contaminants are transferred from the sediment to the surface of GAC. Here, we derive kinetic parameters for

  11. Extraction of sediment-associated polycyclic aromatic hydrocarbons with granular activated carbon

    NARCIS (Netherlands)

    Rakowska, M.I.; Kupryianchyk, D.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.; Koelmans, A.A.

    2013-01-01

    Addition of activated carbon (AC) to sediments has been proposed as a method to reduce ecotoxicological risks of sediment-bound contaminants. The present study explores the effectiveness of granular AC (GAC) in extracting polycyclic aromatic hydrocarbon (PAH) from highly contaminated sediments. Four

  12. Adsorption of peptides produced by cyanobacterium Microcystis aeruginosa onto granular activated carbon

    Czech Academy of Sciences Publication Activity Database

    Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Hnaťuková, Petra; Šafaříková, Jana

    2014-01-01

    Roč. 69, April (2014), s. 595-608 ISSN 0008-6223 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : Microcystis aeruginosa * granular activated carbon * celllular organic matter (COM) Subject RIV: BK - Fluid Dynamics Impact factor: 6.196, year: 2014 http://www.sciencedirect.com/science/article/pii/S000862231301227X

  13. In-Situ Regeneration of Saturated Granular Activated Carbon by an Iron Oxide Nanocatalyst

    Science.gov (United States)

    Granular activated carbon (GAC) can remove trace organic pollutants and natural organic matter (NOM) from industrial and municipal waters. This paper evaluates an iron nanocatalyst approach, based on Fenton-like oxidation reactions, to regenerate spent GAC within a packed bed con...

  14. Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor

    International Nuclear Information System (INIS)

    Mohan, N.; Kannan, G.K.; Upendra, S.; Subha, R.; Kumar, N.S.

    2009-01-01

    The objective of this research was to determine the toluene removal efficiency and breakthrough time using commercially available coconut shell-based granular activated carbon in packed bed reactor. To study the effect of toluene removal and break point time of the granular activated carbon (GAC), the parameters studied were bed lengths (2, 3, and 4 cm), concentrations (5, 10, and 15 mg l -1 ) and flow rates (20, 40, and 60 ml/min). The maximum percentage removal of 90% was achieved and the maximum carbon capacity for 5 mg l -1 of toluene, 60 ml/min flow rate and 3 cm bed length shows 607.14 mg/g. The results of dynamic adsorption in a packed bed were consistent with those of equilibrium adsorption by gravimetric method. The breakthrough time and quantity shows that GAC with appropriate surface area can be utilized for air cleaning filters. The result shows that the physisorption plays main role in toluene removal.

  15. Adsorption of peptides produced by cyanobacterium Microcystis aeruginosa onto granular activated carbon

    Czech Academy of Sciences Publication Activity Database

    Kopecká, Ivana; Pivokonský, Martin; Pivokonská, Lenka; Hnaťuková, Petra; Šafaříková, Jana

    2014-01-01

    Roč. 69, April (2014), s. 595-608 ISSN 0008-6223 R&D Projects: GA ČR GAP105/11/0247 Institutional support: RVO:67985874 Keywords : Microcystis aeruginosa * granular activated carbon * celllular organic matter (COM) Subject RIV: BK - Fluid Dynamics Impact factor: 6.196, year: 2014 http://www. science direct.com/ science /article/pii/S000862231301227X

  16. Concentration of enteric virus indicator from seawater using granular activated carbon.

    Science.gov (United States)

    Cormier, Jiemin; Gutierrez, Miguel; Goodridge, Lawrence; Janes, Marlene

    2014-02-01

    Fecal contamination of shellfish growing seawater with enteric viruses is often associated with human outbreaks of gastroenteritis. Male specific bacteriophage MS2 is correlated with those of enteric viruses in a wide range of water environments and has been used widely as a surrogate for pathogenic waterborne viruses. Since viruses in contaminated water are usually at low levels, the development of methods to concentrate viruses from water is crucial for detection purposes. In the present study, granular activated carbon was evaluated for concentration of MS2 from artificial seawater, and different parameters of the seawater were also compared. Recovery of MS2 from warm seawater (37°C) was found to be significantly greater than from cold seawater (4 and 20°C), and even greater than from fresh water (4, 20 and 37°C); the difference between seawater and fresh water became less profound when the temperatures of both were below 37°C. Although not of statistical significance, recovery of MS2 from low salinity seawater (10 and 20 parts per thousand, ppt) was greater than from high salinity seawater (30 and 40ppt). One gram of granular activated carbon was able to extract 6-log plaque forming units (PFU) of MS2 from 500ml seawater at 37°C. This study demonstrated that granular activated carbon can concentrate an enteric virus indicator from shellfish growing seawater effectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Sierra-Alvarez, Reyes

    2008-08-01

    Perfluorinated surfactants are emerging pollutants of increasing public health and environmental concern due to recent reports of their world-wide distribution, environmental persistence and bioaccumulation potential. Treatment methods for the removal of anionic perfluorochemical (PFC) surfactants from industrial effluents are needed to minimize the environmental release of these pollutants. Removal of PFC surfactants from aqueous solutions by sorption onto various types of granular activated carbon was investigated. Three anionic PFC surfactants, i.e., perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and perfluorobutane sulfonate (PFBS), were evaluated for the ability to adsorb onto activated carbon. Additionally, the sorptive capacity of zeolites and sludge for PFOS was compared to that of granular activated carbon. Adsorption isotherms were determined at constant ionic strength in a pH 7.2 phosphate buffer at 30 degrees C. Sorption of PFOS onto activated carbon was stronger than PFOA and PFBS, suggesting that the length of the fluorocarbon chain and the nature of the functional group influenced sorption of the anionic surfactants. Among all adsorbents evaluated in this study, activated carbon (Freundlich K(F) values=36.7-60.9) showed the highest affinity for PFOS at low aqueous equilibrium concentrations, followed by the hydrophobic, high-silica zeolite NaY (Si/Al 80, K(F)=31.8), and anaerobic sludge (K(F)=0.95-1.85). Activated carbon also displayed a superior sorptive capacity at high soluble concentrations of the surfactant (up to 80 mg l(-1)). These findings indicate that activated carbon adsorption is a promising treatment technique for the removal of PFOS from dilute aqueous streams.

  18. Effects of ozonation and temperature on biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2010-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. Removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and oxygen

  19. Effects of ozonation and temperature on the biodegradation of natural organic matter in biological granular activated carbon filters

    NARCIS (Netherlands)

    Van der Aa, L.T.J.; Rietveld, L.C.; Van Dijk, J.C.

    2011-01-01

    Four pilot (biological) granular activated carbon ((B)GAC) filters were operated to quantify the effects of ozonation and water temperature on the biodegradation of natural organic matter (NOM) in (B)GAC filters. The removal of dissolved organic carbon (DOC), assimilable organic carbon (AOC) and

  20. Evaluation of granular activated carbon reactivation and regeneration alternatives for the 200 West Area carbon tetrachloride Expedited Response Action

    International Nuclear Information System (INIS)

    Green, J.W.; Tranbarger, R.K.

    1996-07-01

    This document presents the results of an engineering study to evaluate alternative technologies for the reactivation or regeneration of granular activated carbon (GAC) resulting from remediation operations in the 200 West Area of the Hanford Site. The objective of the study was to determine whether there is a more cost-effective (onsite or offsite) method of regenerating/reactivating GAC than the present method of shipping the GAC offsite to a commercial reactivation facility in Pennsylvania

  1. Modified granular activated carbon: A carrier for the recovery of nickel ions from aqueous wastes

    Energy Technology Data Exchange (ETDEWEB)

    Satapathy, D.; Natarajan, G.S.; Sen, R. [Central Fuel Research Inst., Nagpur (India)

    2004-07-01

    Granular Activated Carbon (GAC) is widely used for the removal and recovery of toxic pollutants including metals because of its low cost and high affinity towards the scavenging of metal ions. Activated carbon derived from bituminous coal is preferred for wastewater treatment due to its considerable hardness, a characteristic needed to keep down handling losses during re-activation. Commercial grade bituminous coal based carbon, viz. Filtrasorb (F-400), was used in the present work. The scavenging of precious metals such as nickel onto GAC was studied and a possible attempt made to recover the adsorbed Ni{sup 2+} ions through the use of some suitable leaching processes. As part of the study, the role of complexing agents on the surface of the carbon was also investigated. The use of organic complexing agents such as oxine and 2-methyloxine in the recovery process was found to be promising. In addition, the surface of the carbon was modified with suitable oxidising agents that proved to be more effective than chelating agents. Several attempts were made to optimise the recovery of metal ions by carrying out experiments with oxidising agents in order to obtain maximum recovery from the minimum quantity of carbon. Experiments with nitric acid indicated that not only was the carbon surface modified but such modification also helped in carbon regeneration.

  2. Enhanced activation of periodate by iodine-doped granular activated carbon for organic contaminant degradation.

    Science.gov (United States)

    Li, Xiaowan; Liu, Xitao; Lin, Chunye; Qi, Chengdu; Zhang, Huijuan; Ma, Jun

    2017-08-01

    In this study, iodine-doped granular activated carbon (I-GAC) was prepared and subsequently applied to activate periodate (IO 4 - ) to degrade organic contaminants at ambient temperature. The physicochemical properties of GAC and I-GAC were examined using scanning electron microscopy, N 2 adsorption/desorption, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. No significant difference was observed between the two except for the existence of triiodide (I 3 - ) and pentaiodide (I 5 - ) on I-GAC. The catalytic activity of I-GAC towards IO 4 - was evaluated by the degradation of acid orange 7 (AO7), and superior catalytic performance was achieved compared with GAC. The effects of some influential parameters (preparation conditions, initial solution pH, and coexisting anions) on the catalytic ability were also investigated. Based on radical scavenging experiments, it appeared that IO 3 was the predominant reactive species in the I-GAC/IO 4 - system. The mechanism underlying the enhanced catalytic performance of I-GAC could be explained by the introduction of negatively charged I 3 - and I 5 - into I-GAC, which induced positive charge density on the surface of I-GAC. This accelerated the interaction between I-GAC and IO 4 - , and subsequently mediated the increasing generation of iodyl radicals (IO 3 ). Furthermore, a possible degradation pathway of AO7 was proposed according to the intermediate products identified by gas chromatography-mass spectrometry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Adsorptive performance of granular activated carbon in aquaculture and aquaria: a simplified method

    DEFF Research Database (Denmark)

    Taylor, Daniel; Kuhn, David D.; Smith, Stephen

    2017-01-01

    and aquaculture is not well-established due to innate heterogeneity of these waters. The means to completely characterize adsorption between carbon sources are generally not available to end users provided their level of expertise and/or resources at their disposal. This study introduces a relatively simple...... used to comparatively test adsorptive performance between two filter groups (i.e. sources of granular activated carbon) by tracking spectral absorbance with non-linear regression statistics, and validating removal trends against mature aquaculture water. Greater adsorptive capacities were consistently...... observed in one filter group throughout the indicator testing battery. Similar findings were observed between the two indicator tests, thereby confirming the method. This method can be adopted by commercial aquaculture operations or aquarists to assist in comparatively screening particular types, particle...

  4. Comparative potential of black tea leaves waste to granular activated carbon in adsorption of endocrine disrupting compounds from aqueous solution

    Directory of Open Access Journals (Sweden)

    A.O. Ifelebuegu

    2015-07-01

    Full Text Available The adsorption properties and mechanics of selected endocrine disrupting compounds; 17 β-estradiol, 17 α – ethinylestradiol and bisphenol A on locally available black tea leaves waste and granular activated carbon were investigated. The results obtained indicated that the kinetics of adsorption were pH, adsorbent dose, contact time and temperature dependent with equilibrium being reached at 20 to 40 minutes for tea leaves waste and 40 to 60 minutes for granular activated compound. Maximum adsorption capacities of 3.46, 2.44 and 18.35 mg/g were achieved for tea leaves waste compared to granular activated compound capacities of 4.01, 2.97 and 16.26 mg/g for 17 β- estradiol, 17 α-ethinylestradiol and bisphenol A respectively. Tea leaves waste adsorption followed pseudo-first order kinetics while granular activated compound fitted better to the pseudo-second order kinetic model. The experimental isotherm data for both tea leaves waste and granular activated compound showed a good fit to the Langmuir, Freundlich and Temkin isotherm models with the Langmuir model showing the best fit. The thermodynamic and kinetic data for the adsorption indicated that the adsorption process for tea leaves waste was predominantly by physical adsorption while the granular activated compound adsorption was more chemical in nature. The results have demonstrated the potential of waste tea leaves for the adsorptive removal of endocrine disrupting compounds from water.

  5. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.

    Science.gov (United States)

    Tao, Jia; Qin, Lian; Liu, Xiaoying; Li, Bolin; Chen, Junnan; You, Juan; Shen, Yitian; Chen, Xiaoguo

    2017-07-01

    The granulation of activated sludge and effect of granular activated carbon (GAC) was investigated under the alternative anaerobic and aerobic conditions. The results showed that GAC accelerated the granulation, but had no obvious effect on the bacterial community structure of granules. The whole granulation process could be categorized into three phases, i.e. lag, granulation and granule maturation phase. During lag period GAC provided nuclei for sludge to attach, and thus enhanced the morphological regularization of sludge. During granulation period the granule size increased significantly due to the growth of bacteria in granules. GAC reduced the compression caused by the inter-particle collisions and thus accelerate the granulation. GAC has no negative effect on the performance of SBR, and thus efficient simultaneous removal of COD, nitrogen and phosphorus were obtained during most of the operating time. Copyright © 2017. Published by Elsevier Ltd.

  6. Adsorption characteristics of Fe(III) and Fe(III)-NTA complex on granular activated carbon.

    Science.gov (United States)

    Kim, D S

    2004-01-02

    The adsorption of Fe(3+) ion on granular activated carbon has been studied in kinetic and equilibrium conditions taking into account the adsorbate concentration, temperature and solution pH as major influential factors. In addition, the effect of nitrilotriacetic acid on adsorption reaction as a complexing agent has been examined. Kinetic studies showed that the adsorption rate was increased as the initial Fe(3+) concentration was raised. The adsorption reaction was estimated to be first-order at room temperature. The adsorption rate and equilibrium adsorption of Fe(3+) increased as the temperature rose. The activation energy for adsorption was approximately 2.23 kJ mol(-1), which implied that Fe(3+) mainly physically adsorbed on activated carbon. Coexistence of nitrilotriacetic acid with Fe(3+) resulted in a decrease of equilibrium adsorption and the extent of decrease was proportional to the concentration of nitrilotriacetic acid. In the presence of nitrilotriacetic acid, the adsorbability of Fe(3+) decreased with pH. However, the trend was reversed in the absence of nitrilotriacetic acid. When activated carbon was swelled by acetic acid, the specific surface area was increased and maximum swelling was achieved at approximately 48 h of swelling time. Thermodynamic parameters such as DeltaG(o), DeltaH(o) and DeltaS(o) for adsorption reaction were estimated based on equilibrium data and in connection with these results the thermodynamic aspects of adsorption reaction were discussed.

  7. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    International Nuclear Information System (INIS)

    Yang Ji; Cao Limei; Guo Rui; Jia Jinping

    2010-01-01

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m 2 g -1 , the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  8. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Yang Ji, E-mail: yangji@ecust.edu.cn [School of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237 (China); Cao Limei; Guo Rui; Jia Jinping [School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2010-12-15

    Granular activated carbon was modified with dimethyl dichlorosilane to improve its surface hydrophobicity, and therefore to improve the performance of permeable reactive barrier constructed with the modified granular activated carbon and elemental iron. X-ray photoelectron spectroscopy shows that the surface silicon concentration of the modified granular activated carbon is higher than that of the original one, leading to the increased surface hydrophobicity. Although the specific surface area decreased from 895 to 835 m{sup 2} g{sup -1}, the modified granular activated carbon could adsorb 20% more 2,4-dichlorophenol than the original one did in water. It is also proven that the permeable reactive barrier with the modified granular activated carbon is more efficient at 2,4-dichlorophenol dechlorination, in which process 2,4-dichlorophenol is transformed to 2-chlorophenol or 4-chlorophenol then to phenol, or to phenol directly.

  9. Effect of Ultrasound on Bisphenol A Adsorption on the Granular Activated Carbon

    Science.gov (United States)

    Myunghee Lim,; Younggyu Son,; Mingcan Cui,; Jeehyeong Khim,

    2010-07-01

    The aim of this study is to investigate the effects of ultrasound (power, frequency) on bisphenol A (BPA) adsorption on granular activated carbon (GAC). The result of adsorption isotherm in a BPA solution, using sonicated GAC (at 35 kHz) can more successfully adsorb BPA than sonicated GAC (at 300 kHz) and the original GAC. At low frequency GAC has a high cavitation effect. Therefore, the amount of adsorbed BPA at a low frequency was higher than at a high frequency. In isotherm experiments, ultrasound can enhance the adsorption process in GAC in both frequencies (35 and 300 kHz). These results agree with other previous researches. The effect of power intensity in the adsorption of BPA is increased the adsorption of BPA with increasing power. The optimum power exists and differs from frequencies because the cavitation effect is not the same with different frequencies.

  10. Polaromonas and Hydrogenophaga species are the predominant bacteria cultured from granular activated carbon filters in water treatment

    NARCIS (Netherlands)

    Magic-Knezev, A.; Wullings, B.A.; Kooij, van der D.

    2009-01-01

    AIM: Identification of the predominating cultivable bacteria in granular activated carbon (GAC) filters used in a variety of water treatment plants for selecting representative strains to study the role of bacteria in the removal of dissolved organic matter. METHODS AND RESULTS: Bacterial isolates

  11. Development of biomass in a drinking water granular active carbon (GAC) filter.

    Science.gov (United States)

    Velten, Silvana; Boller, Markus; Köster, Oliver; Helbing, Jakob; Weilenmann, Hans-Ulrich; Hammes, Frederik

    2011-12-01

    Indigenous bacteria are essential for the performance of drinking water biofilters, yet this biological component remains poorly characterized. In the present study we followed biofilm formation and development in a granular activated carbon (GAC) filter on pilot-scale during the first six months of operation. GAC particles were sampled from four different depths (10, 45, 80 and 115 cm) and attached biomass was measured with adenosine tri-phosphate (ATP) analysis. The attached biomass accumulated rapidly on the GAC particles throughout all levels in the filter during the first 90 days of operation and maintained a steady state afterward. Vertical gradients of biomass density and growth rates were observed during start-up and also in steady state. During steady state, biomass concentrations ranged between 0.8-1.83 x 10(-6) g ATP/g GAC in the filter, and 22% of the influent dissolved organic carbon (DOC) was removed. Concomitant biomass production was about 1.8 × 10(12) cells/m(2)h, which represents a yield of 1.26 × 10(6) cells/μg. The bacteria assimilated only about 3% of the removed carbon as biomass. At one point during the operational period, a natural 5-fold increase in the influent phytoplankton concentration occurred. As a result, influent assimilable organic carbon concentrations increased and suspended bacteria in the filter effluent increased 3-fold as the direct consequence of increased growth in the biofilter. This study shows that the combination of different analytical methods allows detailed quantification of the microbiological activity in drinking water biofilters. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance.

    Science.gov (United States)

    LaBarge, Nicole; Yilmazel, Yasemin Dilsad; Hong, Pei-Ying; Logan, Bruce E

    2017-02-01

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P>0.4) for GAC acclimated to hydrogen (22±9.3nmolcm -3 d -1 ), methanol (25±9.7nmolcm -3 d -1 ), and a volatile fatty acid (VFA) mix (22±11nmolcm -3 d -1 ). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13±4.1nmolcm -3 d -1 ), and MECs without GAC had the lowest rates (0.7±0.8nmolcm -3 d -1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  14. Catalytic Sorption of (Chloro)Benzene and Napthalene in Aqueous Solutions by Granular Activated Carbon Supported Bimetallic Iron and Palladium Nanoparticles

    Science.gov (United States)

    Adsorption of benzene, chlorobenzene, and naphthalene on commercially available granular activated carbon (GAC) and bimetallic nanoparticle (Fe/Pd) loaded GAC was investigated for the potential use in active capping of contaminated sediments. Freundlich and Langmuir linearizatio...

  15. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon

    Science.gov (United States)

    Lewis, Ariel S.; Huntington, Thomas G.; Marvin-DiPasquale, Mark C.; Amirbahman, Aria

    2016-01-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment.

  16. Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Sohair I. Abou-Elela

    2016-07-01

    Full Text Available The process of retting flax produces a huge amount of wastewater which is characterized with bad unpleasant smell and high concentration of organic materials. Treatment of such waste had always been difficult because of the presence of refractory organic pollutants such as lignin. In this study, treatment of retting wastewater was carried out using combined system of Fenton oxidation process followed by adsorption on granular activated carbon (GAC. The effects of operating condition on Fenton oxidation process such as hydrogen peroxide and iron concentration were investigated. In addition, kinetic study of the adsorption process was elaborated. The obtained results indicated that degradation of organic matters follows a pseudo-first order reaction with regression coefficient of 0.98. The kinetic model suggested that the rate of reaction was highly affected by the concentration of hydrogen peroxide. Moreover, the results indicated that the treatment module was very efficient in removing the organic and inorganic pollutants. The average percentage removal of chemical oxygen demand (COD, total suspended solid (TSS, oil, and grease was 98.60%, 86.60%, and 94.22% with residual values of 44, 20, and 5 mg/L, respectively. The treated effluent was complying with the National Regulatory Standards for wastewater discharge into surface water or reuse in the retting process.

  17. Adsorptive removal of aniline by granular activated carbon from aqueous solutions with catechol and resorcinol.

    Science.gov (United States)

    Suresh, S; Srivastava, V C; Mishrab, I M

    2012-01-01

    In the present paper, the removal of aniline by adsorption process onto granular activated carbon (GAC) is reported from aqueous solutions containing catechol and resorcinol separately. The Taguchi experimental design was applied to study the effect of such parameters as the initial component concentrations (C(0,i)) of two solutes (aniline and catechol or aniline and resorcinol) in the solution, temperature (T), adsorbent dosage (m) and contact time (t). The L27 orthogonal array consisting of five parameters each with three levels was used to determine the total amount of solutes adsorbed on GAC (q(tot), mmol/g) and the signal-to-noise ratio. The analysis of variance (ANOVA) was used to determine the optimum conditions. Under these conditions, the ANOVA shows that m is the most important parameter in the adsorption process. The most favourable levels of process parameters were T = 303 K, m = 10 g/l and t = 660 min for both the systems, qtot values in the confirmation experiments carried out at optimum conditions were 0.73 and 0.95 mmol/g for aniline-catechol and aniline-resorcinol systems, respectively.

  18. Modeling of the adsorption kinetics of zinc onto granular activated carbon and natural zeolite

    Directory of Open Access Journals (Sweden)

    VERA D. MESHKO

    2006-09-01

    Full Text Available The isotherms and kinetics of zinc adsorption from aqueous solution onto granular activated carbon (GAC and natural zeolite were studied using an agitated batch adsorber. The maximum adsorption capacities of GAC and natural zeolite towards zinc(II from Langmuir adsorption isotherms were determined using experimental adsorption equilibrium data. The homogeneous solid diffusion model (HSD-model combined with external mass transfer resistance was applied to fit the experimental kinetic data. The kinetics simulation study was performed using a computer program based on the proposed mathematical model and developed using gPROMS. As the two-mass transfer resistance approach was applied, twomodel parameters were fitted during the simulation study. External mass transfer and solid phase diffusion coefficients were obtained to predict the kinetic curves for varying initial Zn(II concentration at constant agitation speed and constant adsorbent mass. For any particular Zn(II – adsorbent system, kf was constant, except for the lowest initial concentration, while Ds was found to increase with increasing initial Zn(II concentration.

  19. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Chang Qigang; Lin Wei; Ying Weichi

    2010-01-01

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  20. Mercury remediation in wetland sediment using zero-valent iron and granular activated carbon.

    Science.gov (United States)

    Lewis, Ariel S; Huntington, Thomas G; Marvin-DiPasquale, Mark C; Amirbahman, Aria

    2016-05-01

    Wetlands are hotspots for production of toxic methylmercury (MeHg) that can bioaccumulate in the food web. The objective of this study was to determine whether the application of zero-valent iron (ZVI) or granular activated carbon (GAC) to wetland sediment could reduce MeHg production and bioavailability to benthic organisms. Field mesocosms were installed in a wetland fringing Hodgdon Pond (Maine, USA), and ZVI and GAC were applied. Pore-water MeHg concentrations were lower in treated compared with untreated mesocosms; however, sediment MeHg, as well as total Hg (THg), concentrations were not significantly different between treated and untreated mesocosms, suggesting that smaller pore-water MeHg concentrations in treated sediment were likely due to adsorption to ZVI and GAC, rather than inhibition of MeHg production. In laboratory experiments with intact vegetated sediment clumps, amendments did not significantly change sediment THg and MeHg concentrations; however, the mean pore-water MeHg and MeHg:THg ratios were lower in the amended sediment than the control. In the laboratory microcosms, snails (Lymnaea stagnalis) accumulated less MeHg in sediment treated with ZVI or GAC. The study results suggest that both GAC and ZVI have potential for reducing MeHg bioaccumulation in wetland sediment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions.

    Science.gov (United States)

    Ersan, Gamze; Kaya, Yasemin; Apul, Onur G; Karanfil, Tanju

    2016-09-15

    The effect of NOM preloading on the adsorption of phenanthrene (PNT) and trichloroethylene (TCE) by pristine graphene nanosheets (GNS) and graphene oxide nanosheet (GO) was investigated and compared with those of a single-walled carbon nanotube (SWCNT), a multi-walled carbon nanotube (MWCNT), and two coal based granular activated carbons (GACs). PNT uptake was higher than TCE by all adsorbents on both mass and surface area bases. This was attributed to the hydrophobicity of PNT. The adsorption capacities of PNT and TCE depend on the accessibility of the organic molecules to the inner regions of the adsorbent which was influenced from the molecular size of OCs. The adsorption capacities of all adsorbents decreased as a result of NOM preloading due to site competition and/or pore/interstice blockage. However, among all adsorbents, GO was generally effected least from the NOM preloading for PNT, whereas there was not observed any trend of NOM competition with a specific adsorbent for TCE. In addition, SWCNT was generally affected most from the NOM preloading for TCE and there was not any trend for PNT. The overall results indicated that the fate and transport of organic contaminants by GNSs and CNTs type of nanoadsorbents and GACs in different natural systems will be affected by water quality parameters, characteristics of adsorbent, and properties of adsorbate. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems

    Energy Technology Data Exchange (ETDEWEB)

    Paredes, L., E-mail: lidia.paredes@usc.es; Fernandez-Fontaina, E., E-mail: eduardo.fernandez.fontaina@usc.es; Lema, J.M., E-mail: juan.lema@usc.es; Omil, F., E-mail: francisco.omil@usc.es; Carballa, M., E-mail: marta.carballa@usc.es

    2016-05-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2 d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. - Highlights: • OMP removal was comparatively assessed in sand and GAC biofilters. • The contribution of adsorption and biotransformation in OMP removal was identified. • The filtering material did not affect the biological activities in biofilters. • There is no direct correlation between EBCT and OMP removal in biofilters. • The type of secondary effluent determines the lifespan of filtering

  3. Understanding the fate of organic micropollutants in sand and granular activated carbon biofiltration systems

    International Nuclear Information System (INIS)

    Paredes, L.; Fernandez-Fontaina, E.; Lema, J.M.; Omil, F.; Carballa, M.

    2016-01-01

    In this study, sand and granular activated carbon (GAC) biofilters were comparatively assessed as post-treatment technologies of secondary effluents, including the fate of 18 organic micropollutants (OMPs). To determine the contribution of adsorption and biotransformation in OMP removal, four reactors were operated (two biofilters (with biological activity) and two filters (without biological activity)). In addition, the influence of empty bed contact time (EBCT), ranging from 0.012 to 3.2 d, and type of secondary effluent (anaerobic and aerobic) were evaluated. Organic matter, ammonium and nitrate were removed in both biofilters, being their adsorption higher on GAC than on sand. According to the behaviour exhibited, OMPs were classified in three different categories: I) biotransformation and high adsorption on GAC and sand (galaxolide, tonalide, celestolide and triclosan), II) biotransformation, high adsorption on GAC but low or null adsorption on sand (ibuprofen, naproxen, fluoxetine, erythromycin, roxythromycim, sulfamethoxazole, trimethoprim, bisphenol A, estrone, 17β-estradiol and 17α-ethinylestradiol), and, III) only adsorption on GAC (carbamazepine, diazepam and diclofenac). No influence of EBCT (in the range tested) and type of secondary effluent was observed in GAC reactors, whereas saturation and kinetic limitation of biotransformation were observed in sand reactors. Taking into account that most of the organic micropollutants studied (around 60%) fell into category II, biotransformation is crucial for the elimination of OMPs in sand biofilters. - Highlights: • OMP removal was comparatively assessed in sand and GAC biofilters. • The contribution of adsorption and biotransformation in OMP removal was identified. • The filtering material did not affect the biological activities in biofilters. • There is no direct correlation between EBCT and OMP removal in biofilters. • The type of secondary effluent determines the lifespan of filtering

  4. Effect of pre-acclimation of granular activated carbon on microbial electrolysis cell startup and performance

    KAUST Repository

    LaBarge, Nicole

    2016-09-09

    Microbial electrolysis cells (MECs) can generate methane by fixing carbon dioxide without using expensive catalysts, but the impact of acclimation procedures on subsequent performance has not been investigated. Granular activated carbon (GAC) was used to pre-enrich electrotrophic methanogenic communities, as GAC has been shown to stimulate direct transfer of electrons between different microbial species. MEC startup times using pre-acclimated GAC were improved compared to controls (without pre-acclimation or without GAC), and after three fed batch cycles methane generation rates were similar (P > 0.4) for GAC acclimated to hydrogen (22 ± 9.3 nmol cm− 3 d− 1), methanol (25 ± 9.7 nmol cm− 3 d− 1), and a volatile fatty acid (VFA) mix (22 ± 11 nmol cm− 3 d− 1). However, MECs started with GAC but no pre-acclimation had lower methane generation rates (13 ± 4.1 nmol cm− 3 d− 1), and MECs without GAC had the lowest rates (0.7 ± 0.8 nmol cm− 3 d− 1 after cycle 2). Microbes previously found in methanogenic MECs, or previously shown to be capable of exocellular electron transfer, were enriched on the GAC. Pre-acclimation using GAC is therefore a simple approach to enrich electroactive communities, improve methane generation rates, and decrease startup times in MECs. © 2016 Elsevier B.V.

  5. Granular activated carbon with grafted nanoporous polymer enhances nanoscale zero-valent iron impregnation and water contaminant removal

    DEFF Research Database (Denmark)

    Mines, Paul D.; Uthuppu, Basil; Thirion, Damien

    2018-01-01

    Granular activated carbon was customized with a chemical grafting procedure of a nanoporous polymeric network for the purpose of nanoscale zero-valent iron impregnation and subsequent water contaminant remediation. Characterization of the prepared composite material revealed that not only...... water contaminants, nitrobenzene and nitrate, the composite material exploited the qualities of both the activated carbon and the polymeric network to work together in a synergistic manner. In that the increased protection from oxidation allowed for increased reactivity of the nanoscale zero-valent iron...

  6. Comparison of Granular Activated Carbon, Natural Clinoptilolite Zeolite, and Anthracite Packed Columns in Removing Mercury from Drinking Water

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Samadi

    2010-01-01

    Full Text Available Development of effective methods for the removal of such pollutants as heavy metals (e.g., mercury from surface and ground water resources introduced by municipal and industrial wastewaters seems to be inevitable, especially in the face of the importance of water reuse in combating water shortages, limited availability of water resources, and imminent risks of a water crisis in Iran. A number of methods are already available for the removal of mercury from water resources. However, these techniques must be investigated for their practicability and economy, in addition to their not only effectiveness. In this research, granular activated carbon, natural zeolite, and anthracite packed-columns were investigated as cheap and effective adsorbents for the removal of mercury. Moreover, the effects of changes in pH (6-8, influent mercury concentrations (0.25, 0.5, 0.75, and 1 ppm, contact time (0.5, 1, 2, 3 hr were investigated. Mercury concentration in the samples was determined using a ditizon indicator and spectrophotometry at 492 nm. Results showed that decreasing influent mercury concentration from 1 ppm to 0.25 ppm (under constant conditions increased the removal efficiencies of anthracite, granular activated carbon, and zeolite columns from22%, 63%, and 55% to 28%, 72%, and 64%, respectively. Increasing contact time from 0.5 hr to 3 hr caused the removal efficiencies of these columns to increase from 22%, 56%, and 54% to 42%, 86%, and 82%, respectively. Also, increasing pH level led to increased removal efficiencies of the studied columns. It was found that contact time played a more effective role in enhancing mercury removal efficiency in the granular activated carbon column than in the other two columns. The ranges of mercury removal efficiency obtained for the granular activated carbon, natural zeolite, and anthracite columns under various conditions were (51%-92%, (42%-88%, and (16%-52%, respectively. Based on these results, granular

  7. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.

    Science.gov (United States)

    Zhu, Xuan; Tsang, Daniel C W; Chen, Feng; Li, Shiyu; Yang, Xin

    2015-01-01

    Ciprofloxacin (CIP) is a commonly used antibiotic and widely detected in wastewaters and farmlands nowadays. This study evaluated the efficacy of next-generation adsorbent (graphene) and conventional adsorbent (granular activated carbon, GAC) for CIP removal. Batch experiments and characterization tests were conducted to investigate the adsorption kinetics, equilibrium isotherms, thermodynamic properties, and the influences of solution chemistry (pH, ionic strength, natural organic matter (NOM), and water sources). Compared to GAC, graphene showed significantly faster adsorption and reached equilibrium within 3 min, confirming the rapid access of CIP into the macroporous network of high surface area of graphene as revealed by the Brunner-Emmet-Teller measurements analysis. The kinetics was better described by a pseudo-second-order model, suggesting the importance of the initial CIP concentration related to surface site availability of graphene. The adsorption isotherm on graphene followed Langmuir model with a maximum adsorption capacity of 323 mg/g, which was higher than other reported carbonaceous adsorbents. The CIP adsorption was thermodynamically favourable on graphene and primarily occurred through π - π interaction, according to the FTIR spectroscopy. While the adsorption capacity of graphene decreased with increasing solution pH due to the speciation change of CIP, the adverse effects of ionic strength (0.01-0.5 mol L(-1)), presence of NOM (5 mg L⁻¹), and different water sources (river water or drinking water) were less significant on graphene than GAC. These results indicated that graphene can serve as an alternative adsorbent for CIP removal in commonly encountered field conditions, if proper separation and recovery is available in place.

  8. Adsorption of triton X100 and potassium hydrogen phthalate on granular activated carbon from date pits

    Energy Technology Data Exchange (ETDEWEB)

    Merzougui, Z.; Nedjah, S.; Azoudj, Y.; Addoun, F. [Laboratoire d' etude physic-chimique des materiaux et application a l' environnement, Faculte de Chimie, USTHB (Algeria)], E-mail: zmerzougi@yahoo.fr

    2011-07-01

    Activated carbons, thanks to their versatility, are being used in the water treatment sector to absorb pollutants. Several factors influence the adsorption capacity of activated carbon and the aim of this study was to assess the effects of the porous texture and chemical nature of activated carbons on the adsorption of triton X100 and potassium hydrogen phthalate. Activated carbons used in this study were prepared from date pits with ZnCl2, KOH and H3PO4 by carbonization without adjuvant and adsorption of triton X100 and potassium hydrogen phthalate was conducted at 298K. Results showed that activated carbons prepared from date pits have a great potential for removing organic and inorganic pollutants from water and that the adsorption potential depends on the degree of activation of the activated carbons and on the compounds to absorb. This study highlighted that an increase of the carbon surface area and porosity results in a better adsorption capacity.

  9. Removal of copper (II from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions

    Directory of Open Access Journals (Sweden)

    Saeed Almohammadi

    2016-04-01

    Full Text Available In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum adsorption was found to be 4.5 for copper. Equilibrium was evaluated at 144 h at room temperature. The removal efficiency of Cu(II was 71.12% at this time. The kinetics of copper adsorption on activated carbon followed the pseudo second-order model. The experimental equilibrium sorption data were tested using the Langmuir, Freundlich, Temkin and Dubinin–Radushkevich (D-R equations and the Langmuir model was found to be well fitted for copper adsorption onto GAC. The maximum adsorption capacity of the adsorbent for Cu(II was calculated from the Langmuir isotherm and found to be 7.03 mg/g. Subsequently, the removal of copper by granular activated carbon in the presence of Ag1+ and Mn2+ as competitor ions was investigated. The removal efficiency of Cu(II ions without the presence of the competitor ions was 46% at 6 h, while the removal efficiency of Cu(II ions in the presence of competitor ions, Ag1+ and Mn2+ , was 34.76% and 31.73%, respectively.

  10. Performance evaluation of multi-stage filtration with use of granular activated carbon and synthetic non-woven fabrics

    OpenAIRE

    Tangerino, Edson Pereira; Rosa Araujo, Laryssa Melo [UNESP; Borges, Rivea Medri [UNESP; Sanchez Ortiz, Ivan Andres [UNESP

    2013-01-01

    The multi stage filtration (MSF) is an alternative that permits to enlarge the spectrum of application of the slow sand filtration as for the effluent quality and run duration. In this research the use of MSF technology associated to a granular activated carbon (GAC) column as polishing mechanism of the final effluent was evaluated; in the slow sand filters GAC was used as an intermediate layer and non-woven synthetic fabrics were utilized as a first layer of the filter media. Five different ...

  11. Preparation of granular activated carbons from composite of powder activated carbon and modified β-zeolite and application to heavy metals removal.

    Science.gov (United States)

    Seyedein Ghannad, S M R; Lotfollahi, M N

    2018-03-01

    Heavy metals are continuously contaminating the surface and subsurface water. The adsorption process is an attractive alternative for removing the heavy metals because of its low cost, simple operation, high efficiency, and flexible design. In this study, influences of β-zeolite and Cu-modified β-zeolite on preparation of granular activated carbons (GACs) from a composite of powder activated carbon (PAC), methylcellulose as organic binder, bentonite as inorganic binder, and water were investigated. A number of granular samples were prepared by controlling the weight percentage of binder materials, PAC and zeolites as a reinforcing adsorbent. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction techniques were employed to characterize zeolite, modified zeolite and produced GAC. The produced GACs were used as the adsorbent for removal of Zn +2 , Cd 2+ and Pb 2+ ions from aqueous solutions. The results indicated that the adsorption of metals ions depended on the pH (5.5) and contact time (30 min). Maximum adsorption of 97.6% for Pb 2+ , 95.9% for Cd 2+ and 91.1% for Zn +2 occurred with a new kind of GAC made of Cu-modified β-zeolite. The Zn +2 , Cd 2+ and Pb 2+ ions sorption kinetics data were well described by a pseudo-second order model for all sorbents. The Langmuir and Freundlich isotherm models were applied to analyze the experimental equilibrium data.

  12. An innovative treatment concept for future drinking water production : Fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    NARCIS (Netherlands)

    Li, S.; Heijman, S.G.J.; Verberk, J.Q.J.C.; Van Dijk, J.C.

    2009-01-01

    A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX), ultrafiltration (UF), nanofiltration (NF), and granular activated carbon filtration (GAC). The FIEX process removed

  13. Effects of temperature on adsorption and oxidative degradation of bisphenol A in an acid-treated iron-amended granular activated carbon

    Science.gov (United States)

    The present study suggests a combined adsorption and Fenton oxidation using an acid treated Fe-amended granular activated carbon (Fe-GAC) for effective removal of bisphenol A in water. When the Fe-GAC adsorbs and is saturated with BPA in water, Fenton oxidation of BPA occurs in ...

  14. Treatment of arsenic contaminated water in a batch reactor by using Ralstonia eutropha MTCC 2487 and granular activated carbon

    International Nuclear Information System (INIS)

    Mondal, P.; Majumder, C.B.; Mohanty, B.

    2008-01-01

    This paper presents the observations on the bio-removal of arsenic from contaminated water by using Ralstonia eutropha MTCC 2487 and activated carbon in a batch reactor. The effects of agitation time, pH, type of granular activated carbon (GAC) and initial arsenic concentration (As o ) on the % removal of arsenic have been discussed. Under the experimental conditions, optimum removal was obtained at the pH of 6-7 with agitation time of 100 h. The % removal of As(T) increased initially with the increase in As o and after attaining the maximum removal (∼86%) at the As o value of around 15 ppm, it started to decrease. Simultaneous adsorption bioaccumulation (SABA) was observed, when fresh GAC was used as supporting media for bacterial immobilization. In case of SABA, the % removal of As(III) was almost similar (only ∼1% more) to the additive values of individual removal of As(III) obtained by only adsorption and only bio-adsorption. However, for As(V) the % removal was less (∼8%) than the additive value of the individual % removals obtained by only adsorption and bio-adsorption. Percentage removal of Fe, Mn, Cu and Zn were 65.17%, 72.76%, 98.6% and 99.31%, respectively. Maximum regeneration (∼99.4%) of the used bio-adsorbent was achieved by the treatment with 5NH 2 SO 4 followed by 1N NaOH and 30% H 2 O 2 in HNO 3 . The fitness of the isotherms to predict the specific uptake for bio-adsorption/accumulation process has been found to decrease in the following order: Temkin isotherm > Langmuir isotherm > Freundlich isotherm. For the adsorption process with fresh GAC the corresponding order is Freundlich isotherm > Langmuir isotherm > Temkin isotherm for As(V) and As(T). However, for As(III) it was Langmuir > Temkin > Freundlich

  15. Removal of aluminum, iron and manganese ions from industrial wastes using granular activated carbon and Amberlite IR-120H

    Directory of Open Access Journals (Sweden)

    Mohamed E. Goher

    2015-01-01

    Full Text Available The removal of aluminum, iron and manganese from some pollution sources that drain into Ismailia Canal has been investigated using two different sorbents; granular activated carbon (GAC and Amberlite IR-120H (AIR-120H. Batch equilibrium experiments showed that the two sorbents have maximum removal efficiency for aluminum and iron pH 5 and 10 min contact time in ambient room temperature, while pH 7 and 30 min were the most appropriate for manganese removal. Dosage of 2 g/l for both GAC and AIR-120H was established to give the maximum removal capacity. At optimum conditions, the removal trend was in order of Al+3 > Fe+2 > Mn+2 with 99.2, 99.02 and 79.05 and 99.55, 99.42 and 96.65% of metal removal with GAC and AIR-120H, respectively. For the three metals, Langmuir and Freundlich isotherms showed higher R2 values, with a slightly better fitting for the Langmuir model. In addition, separation factors (RL and exponent (n values indicated favorable Langmuir (0 < RL < 1 and Freundlich (1 < n < 10 approach. GAC and AIR-120H can be used as excellent alternative, effective and inexpensive materials to remove high amounts of heavy metals from waste water.

  16. Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system.

    Science.gov (United States)

    Nguyen, Luong N; Hai, Faisal I; Kang, Jinguo; Price, William E; Nghiem, Long D

    2012-06-01

    The removal of trace organics by a membrane bioreactor-granular activated carbon (MBR-GAC) integrated system were investigated. The results confirmed that MBR treatment can be effective for the removal of hydrophobic (log D>3.2) and readily biodegradable trace organics. The data also highlighted the limitation of MBR in removing hydrophilic and persistent compounds (e.g. carbamazepine, diclofenac, and fenoprop) and that GAC could complement MBR very well as a post-treatment process. The MBR-GAC system showed high removal of all selected trace organics including those that are hydrophilic and persistent to biological degradation at up to 406 bed volumes (BV). However, over an extended period, breakthrough of diclofenac was observed after 7320 BV. This suggests that strict monitoring should be applied over the lifetime of the GAC column to detect the breakthrough of hydrophilic and persistent compounds which have low removal by MBR treatment. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  17. Modeling studies on simultaneous adsorption of phenol and resorcinol onto granular activated carbon from simulated aqueous solution.

    Science.gov (United States)

    Kumar, Shashi; Zafar, Mohd; Prajapati, Jitendra K; Kumar, Surendra; Kannepalli, Sivaram

    2011-01-15

    The modelling study on simultaneous adsorption of phenol and resorcinol onto granular activated carbon (GAC) in multicomponent solution was carried out at 303K by conducting batch experiments at initial concentration range of 100-1000 mg/l. Three equilibrium isotherm models for multicomponent adsorption studies were considered. In order to determine the parameters of multicomponent adsorption isotherms, individual adsorption studies of phenol and resorcinol on GAC were also carried out. The experimental data of single and multicomponent adsorption were fitted to these models. The parameters of multicomponent models were estimated using error minimization technique on MATLAB R2007a. It has been observed that for low initial concentration of adsorbate (100-200mg/l), modified Langmuir model represents the data very well with the adsorption constant (Q(0)), 216.1, 0.032 and average relative error (ARE) of 8.34, 8.31 for phenol and resorcinol respectively. Whereas, for high initial concentration of adsorbate (400-1000 mg/l), extended Freundlich model represents the data very well with adsorption constant (K(F)) of 25.41, 24.25 and ARE of 7.0, 6.46 for phenol and resorcinol respectively. The effect of pH of solution, adsorbent dose and initial concentrations of phenol and resorcinol on adsorption behaviour was also investigated. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Adsorption of Cd (II) on Modified Granular Activated Carbons: Isotherm and Column Study.

    Science.gov (United States)

    Rodríguez-Estupiñán, Paola; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-12-20

    In this work, equilibrium and dynamic adsorption tests of cadmium Cd (II) on activated carbons derived from different oxidation treatments (with either HNO₃, H₂O₂, or NaOCl, corresponding to GACoxN, GACoxP, and GACoxCl samples) are presented. The oxidation treatments determined an increase in the surface functional groups (mainly the acidic ones) and a decrease in the pH PZC (except for the GACoxCl sample). A slight alteration of the textural parameters was also observed, which was more significant for the GACoxCl sample, in terms of a decrease of both Brunauer-Emmett-Teller ( BET ) surface area and micropore volume. Adsorption isotherms were determined for all the adsorbents and a significant increase in the adsorption performances of the oxidized samples with respect to the parent material was observed. The performances ranking was GACoxCl > GACoxP > GACoxN > GAC, likely due to the chemical surface properties of the adsorbents. Dynamic tests in a fixed bed column were carried out in terms of breakthrough curves at constant Cd inlet concentration and flow rate. GACoxCl and GACoxN showed a significantly higher value of the breakpoint time, likely due to the higher adsorption capacity. Finally, the dynamic tests were analyzed in light of a kinetic model. In the adopted experimental conditions, the results showed that mass transfer is controlled by internal pore diffusion, in which surface diffusion plays a major role.

  19. Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water. ESTCP Cost and Performance Report

    Science.gov (United States)

    2011-08-01

    carbon layer surfaces are generally uncharged ( hydrophobic ), and they thus repel water and charged inorganic species such as perchlorate. However...cationic surfactants onto graphite, cellulose, clay, quartz, titanium dioxide, zeolites , soils, and membranes. However, the project team is not aware

  20. Enhanced desalination performance of membrane capacitive deionization cells by packing the flow chamber with granular activated carbon.

    Science.gov (United States)

    Bian, Yanhong; Yang, Xufei; Liang, Peng; Jiang, Yong; Zhang, Changyong; Huang, Xia

    2015-11-15

    A new design of membrane capacitive deionization (MCDI) cell was constructed by packing the cell's flow chamber with granular activated carbon (GAC). The GAC packed-MCDI (GAC-MCDI) delivered higher (1.2-2.5 times) desalination rates than the regular MCDI at all test NaCl concentrations (∼ 100-1000 mg/L). The greatest performance enhancement by packed GAC was observed when treating saline water with an initial NaCl concentration of 100 mg/L. Several different GAC materials were tested and they all exhibited similar enhancement effects. Comparatively, packing the MCDI's flow chamber with glass beads (GB; non-conductive) and graphite granules (GG; conductive but with lower specific surface area than GAC) resulted in inferior desalination performance. Electrochemical impedance spectroscopy (EIS) analysis showed that the GAC-MCDI had considerably smaller internal resistance than the regular MCDI (∼ 19.2 ± 1.2 Ω versus ∼ 1222 ± 15 Ω at 100 mg/L NaCl). The packed GAC also decreased the ionic resistance across the flow chamber (∼ 1.49 ± 0.05 Ω versus ∼ 1130 ± 12 Ω at 100 mg/L NaCl). The electric double layer (EDL) formed on the GAC surface was considered to store salt ions during electrosorption, and facilitate the ion transport in the flow chamber because of the higher ion conductivity in the EDLs than in the bulk solution, thereby enhancing the MCDI's desalination rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Experimental Study of Effects of pH, Temperature and H2O2 on Gasoline Removal from Contaminated Water Using Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Hasti Hasheminejad

    2010-01-01

    Full Text Available Contamination of water with petroleum compounds is a serious environmental problem in Iran. Old fuel storage tanks, gasoline stations, and oil refineries are the main sources of gasoline leakage into water resources. In this study, the batch adsorption technique was used to investigate adsorption of petroleum compounds (gasoline on granular activated carbon. Experiments showed that the adsorption capacity of activated carbon is a function of pH, temperature, and H2O2 concentration in solution. Maximum adsorption of petroleum compounds was obtained at pH of 8. Adsorption of petroleum compounds was increased by decreasing temperature (due to decreasing van der Waals forces between the adsorbent and the adsorbate and H2O2 concentration in solution (due to the decrease in the initial concentration of the adsorbate by oxidation . In this experiment, the maximum equilibrium capacity of granular activated carbon was 129.05 mg COD/g GAC at pH 8 and at an ambient temperature of 10˚C. The experimental adsorption data were fitted to the Freundlich and Langmuir adsorption model. The correlation coefficients calculated indicate that the Freundlich model was best fitted. Also, the regression analysis was used with a correlation coefficient of 0.981 to develop a model for describing the relationship between absorption variation in equilibrium state, pH, temperature, and H2O2. On the whole, the correlation coefficient calculated by the proposed model was found to be higher than Freundlich’s.

  2. Pilot-scale removal of pharmaceuticals in municipal wastewater: Comparison of granular and powdered activated carbon treatment at three wastewater treatment plants.

    Science.gov (United States)

    Kårelid, Victor; Larsson, Gen; Björlenius, Berndt

    2017-05-15

    Adsorption with activated carbon is widely suggested as an option for the removal of organic micropollutants including pharmaceutically active compounds (PhACs) in wastewater. In this study adsorption with granular activated carbon (GAC) and powdered activated carbon (PAC) was analyzed and compared in parallel operation at three Swedish wastewater treatment plants with the goal to achieve a 95% PhAC removal. Initially, mapping of the prevalence of over 100 substances was performed at each plant and due to low concentrations a final 22 were selected for further evaluation. These include carbamazepine, clarithromycin and diclofenac, which currently are discussed for regulation internationally. A number of commercially available activated carbon products were initially screened using effluent wastewater. Of these, a reduced set was selected based on adsorption characteristics and cost. Experiments designed with the selected carbons in pilot-scale showed that most products could indeed remove PhACs to the target level, both on total and individual basis. In a setup using internal recirculation the PAC system achieved a 95% removal applying a fresh dose of 15-20 mg/L, while carbon usage rates for the GAC application were much broader and ranged from wastewater treatment plants no considerable differences regarding pharmaceutical removal were observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation.

    Science.gov (United States)

    Darweesh, Teeba M; Ahmed, Muthanna J

    2017-03-01

    Granular activated carbon (KAC) was prepared from abundant Phoenix dactylifera L. stones by microwave- assisted KOH activation. The characteristics of KAC were tested by pore analyses, scanning electron microscopy (SEM) and Fourier transforms infrared spectroscopy (FTIR). The adsorption behavior of levofloxacin (LEV) antibiotic on KAC with surface area of 817m 2 /g and pore volume of 0.638cm 3 /g were analyzed using batch and fixed bed systems. The equilibrium data collected by batch experiments were well fitted with Langmuir compared to Freundlich and Temkin isotherms. The effect of flow rate (0.5-1.5ml/min), bed height (15-25cm), and initial LEV concentration (75-225mg/l) on the behavior of breakthrough curves was explained. The fixed bed analysis showed the better correlation of breakthrough data by both Thomas and Yoon-Nelson models. High LEV adsorption capacity of 100.3mg/g was reported on KAC, thus being an efficient adsorbent for antibiotic pollutants to protect ecological systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Mita, Luigi; Grumiro, Laura; Rossi, Sergio; Bianco, Carmen; Defez, Roberto; Gallo, Pasquale; Mita, Damiano Gustavo; Diano, Nadia

    2015-01-01

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems

  5. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mita, Luigi [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Grumiro, Laura [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Rossi, Sergio [Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Bianco, Carmen; Defez, Roberto [Institute of Biosciences and BioResources, Via P. Castellino, 111, 80131 Naples (Italy); Gallo, Pasquale [Dipartimento di Chimica, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Naples (Italy); Mita, Damiano Gustavo, E-mail: mita@igb.cnr.it [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Institute of Genetic and Biophysics “ABT”, Via P. Castellino, 111, 80131 Naples Italy (Italy); Diano, Nadia [National Laboratory on Endocrine Disruptors, National Institute of Biostructures and Biosystems (INBB), Via P. Castellino, 111, 80131 Naples (Italy); Department of Experimental Medicine, Second University of Naples, Via S.M. di Costantinopoli, 16, 80138 Naples Italy (Italy)

    2015-06-30

    Highlights: • A fluidized bed reactor, filled with a Pseudomonas aeruginosa immobilized on GAC, has been used for BPA removal. • BPA removal resulted from a biological activated carbon (BAC) process. • Equations describing the results have been indicated. • BPA removal was analyzed as a function of time and biofilm reuse. - Abstract: Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems.

  6. Bisphenol A removal by a Pseudomonas aeruginosa immobilized on granular activated carbon and operating in a fluidized bed reactor.

    Science.gov (United States)

    Mita, Luigi; Grumiro, Laura; Rossi, Sergio; Bianco, Carmen; Defez, Roberto; Gallo, Pasquale; Mita, Damiano Gustavo; Diano, Nadia

    2015-06-30

    Serratia rubidiae, Pseudomonas aeruginosa and Escherichia coli K12 have been studied for their ability of Bisphenol A removal from aqueous systems and biofilm formation on activated granule carbon. Mathematical equations for biodegradation process have been elaborated and discussed. P. aeruginosa was found the best strain to be employed in the process of Bisphenol A removal. The yield in BPA removal of a P. aeruginosa biofilm grown on GAC and operating in a fluidized bed reactor has been evaluated. The results confirm the usefulness in using biological activated carbon (BAC process) to remove phenol compounds from aqueous systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II Ions from Wastewater by Using Mangostana garcinia Peel-Based Granular-Activated Carbon

    Directory of Open Access Journals (Sweden)

    Z. Z. Chowdhury

    2013-01-01

    Full Text Available The potential of granular-activated carbon (GAC derived from agrowaste of Mangostene (Mangostana garcinia fruit peel was investigated in batch and fixed bed system as a replacement of current expensive methods for treating wastewater contaminated by manganese, Mn(II cations. Batch equilibrium data was analyzed by Langmuir, Freundlich, and Temkin isotherm models at different temperatures. The effect of inlet metal ion concentration (50 mg/L, 70 mg/L, and 100 mg/L, feed flow rate (1 mL/min and 3 mL/min, and activated carbon bed height (4.5 cm and 3 cm on the breakthrough characteristics of the fixed bed sorption system were determined. The adsorption data were fitted with well-established column models, namely, Thomas, Yoon-Nelson, and Adams-Bohart. The results were best-fitted with Thomas and Yoon-Nelson models rather than Adams-Bohart model for all conditions. The column had been regenerated and reused consecutively for five cycles. The results demonstrated that the prepared activated carbon was suitable for removal of Mn(II ions from wastewater using batch as well as fixed bed sorption system.

  8. Optimization of hexavalent chromium removal from aqueous solution using acid-modified granular activated carbon as adsorbent through response surface methodology

    Energy Technology Data Exchange (ETDEWEB)

    Daoud, Waseem; Ebadi, Taghi; Fahimifar, Ahmad [Amirkabir University of Technology (Tehran Polytechnic), Tehran (Iran, Islamic Republic of)

    2015-06-15

    Response surface methodology (RSM) was applied to evaluate the effect of the main operational variables, including initial pH, initial chromium ion concentration, bulk density of GAC and time on the removal of hexavalent chromium Cr(Ⅵ) from contaminated groundwater by permeable reactive barriers (PRB) with acid-modified granular activated carbon (GAC) as an adsorbent material. The removal rates of Cr(Ⅵ) under different values of these parameters were investigated and results indicated high adsorption capacity at low pH and low initial metal ion concentration of Cr(Ⅵ), but the bulk density of GAC slightly influenced the process efficiency. According to the ANOVA (analysis of variance) results, the model presents high R{sup 2} values of 94.35% for Cr(Ⅵ) removal efficiency, which indicates that the accuracy of the polynomial models was good. Also, quadratic regression models with estimated coefficients were developed to describe the pollutant removals.

  9. The Evaluation of Removal Efficiency of COD Due to Water Contaminated by Gasoline by Granular Active Carbon

    Directory of Open Access Journals (Sweden)

    MH Salmani

    2014-11-01

    Conclusion: We can conclude from this study that the activated carbon is an appropriate adsorbent for decreasing of COD due to gasoline contamination in water. The use of this adsorbent can well decrease COD of water contamination due to gasoline at times of 30 min.

  10. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue.

    Science.gov (United States)

    Jung, Kyung-Won; Choi, Brian Hyun; Hwang, Min-Jin; Jeong, Tae-Un; Ahn, Kyu-Hong

    2016-11-01

    Biomass-based granular activated carbon was successfully prepared by entrapping activated carbon powder derived from spent coffee grounds into calcium-alginate beads (SCG-GAC) for the removal of acid orange 7 (AO7) and methylene blue (MB) from aqueous media. The dye adsorption process is highly pH-dependent and essentially independent of ionic effects. The adsorption kinetics was satisfactorily described by the pore diffusion model, which revealed that pore diffusion was the rate-limiting step during the adsorption process. The equilibrium isotherm and isosteric heat of adsorption indicate that SCG-GAC possesses an energetically heterogeneous surface and operates via endothermic process in nature. The maximum adsorption capacities of SCG-GAC for AO7 (pH 3.0) and MB (pH 11.0) adsorption were found to be 665.9 and 986.8mg/g at 30°C, respectively. Lastly, regeneration tests further confirmed that SCG-GAC has promising potential in its reusability, showing removal efficiency of more than 80% even after seven consecutive cycles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon. Part I. Two-parameter models and equations allowing determination of thermodynamic parameters.

    Science.gov (United States)

    Hamdaoui, Oualid; Naffrechoux, Emmanuel

    2007-08-17

    The adsorption equilibrium isotherms of five phenolic compounds from aqueous solutions onto granular activated carbon (GAC) were studied and modeled. Phenol (Ph), 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,4-dichlorophenol (DCP), and 2,4,6-trichlorophenol (TCP) were chosen for the adsorption tests. To predict the adsorption isotherms and to determine the characteristic parameters for process design, seven isotherm models: Langmuir (five linear forms), Freundlich, Elovich, Temkin, Fowler-Guggenheim, Kiselev, and Hill-de Boer models were applied to experimental data. The results reveal that the adsorption isotherm models fitted the data in the order: Fowler-Guggenheim>Hill-de Boer>Temkin>Freundlich>Kiselev>Langmuir isotherms. Adsorption isotherms modeling shows that the interaction of phenolic compounds with activated carbon surface is localized monolayer adsorption, that is adsorbed molecules are adsorbed at definite, localized sites. Each site can accommodate only one molecule. The interaction among adsorbed molecules is repulsive and there is no association between them, adsorption is carried out on energetically different sites and is an exothermic process. Uptake of phenols increases in the order Phadsorption is directly proportional to their degree of chlorination.

  12. A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions.

    Science.gov (United States)

    Greenwald, Michael J; Redding, Adam M; Cannon, Fred S

    2015-01-01

    The authors have developed a kinetic dye test protocol that aims to predict the competitive adsorption of 2-methylisoborneol (MIB) to granular activated carbons (GACs). The kinetic dye test takes about two hours to perform, and produces a quantitative result, fitted to a model to yield an Intraparticle Diffusion Constant (IDC) during the earlier times of dye sorption. The dye xylenol orange was probed into six coconut-based GACs and five bituminous-based GACs that hosted varied pore distributions. Correlations between xylenol orange IDCs and breakthrough of MIB at 4 ppt in rapid small-scale column tests (RSSCTs) were found with R²s of 0.85 and 0.95 for coconut carbons that processed waters with total organic carbon (TOCs) of 1.9 and 2.2 ppm, respectively, and with an R² of 0.94 for bituminous carbons that processed waters with a TOC of 2.5 ppm. The author sought to study the influence of the pore sizes, which provide the adsorption sites and the diffusion conduits that are necessary for the removal of those compounds. For coconut carbons, a linear correlation was established between the xylenol orange IDCs and the volume of pores in the range of 23.4-31.8 Å widths (R² = 0.98). For bituminous carbons, best correlation was to pores ranging from 74 to 93 Å widths (R² = 0.94). The differences in adsorption between coconut carbons and bituminous carbons have been attributed to the inherently dissimilar graphene layering resulting from the parent materials and the activation processes. When fluorescein dye was employed in the kinetic dye tests, the correlations to RSSCT-MIB performance were not as high as when xylenol orange was used. Intriguingly, it was the same pore size ranges that exhibited the strongest correlation for MIB RSSCT's, xylenol orange kinetics, and fluoroscein kinetics. When methylene blue dye was used, sorption occurred so rapidly as to be out of the scope of the IDC model.

  13. Properties improvement of paper mill sludge-based granular activated carbon fillers for fluidized-bed bioreactor by bentonite (Na) added and acid washing.

    Science.gov (United States)

    Li, Yanjie; Yue, Qinyan; Li, Wenhong; Gao, Baoyu; Li, Jinze; Du, Jiadan

    2011-12-15

    Properties improvement of paper mill sludge (PMS) based granular activated carbon fillers for fluidized-bed bioreactor (FBBR) was investigated in this study. Bentonite (Na) powders were blended in the dewatered paper mill sludge powders to strengthen the abrasion resistance strength of the fillers. Different acid washing treatments were studied to produce FBBR fillers with optimum performance. The results indicated that granulation was easy and the abrasion resistance strength of the fillers increased by 15% with 8 wt% of bentonite (Na) added. Acid washing treatment prior to activation had a better effect on the removal of Fe than post-activation acid washing treatment. HCl was the most appropriate acid during the acid washing treatment. The optimum acid washing treatment was carried out prior to activation with 2M HCl soaking for 6h. After acid washing treatment, the fillers with grain density of 1170 kg/m(3), specific surface area of 176 m(2)/g were obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effects of Humic Acid and Suspended Solids on the Removal of Heavy Metals from Water by Adsorption onto Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Danious P. Sounthararajah

    2015-08-01

    Full Text Available Heavy metals constitute some of the most dangerous pollutants of water, as they are toxic to humans, animals, and aquatic organisms. These metals are considered to be of major public health concern and, therefore, need to be removed. Adsorption is a common physico-chemical process used to remove heavy metals. Dissolved organic carbon (DOC and suspended solids (SS are associated pollutants in water systems that can interact with heavy metals during the treatment process. The interactions of DOC and SS during the removal of heavy metals by granular activated carbon were investigated in batch and fixed-bed column experiments. Batch adsorption studies indicated that Langmuir adsorption maxima for Pb, Cu, Zn, Cd, and Ni at pH 6.5 were 11.9, 11.8, 3.3, 2.0, and 1.8 mg/g, respectively. With the addition of humic acid (HA (DOC representative, they were 7.5, 3.7, 3.2, 1.6, and 2.5 mg/g, respectively. In the column experiment, no breakthrough (complete removal was obtained for Pb and Cu, but adding HA provided a breakthrough in removing these metals. For Zn, Cd and Ni, this breakthrough occurred even without HA being added. Adding kaolinite (representative of SS had no effect on Pb and Cu, but it did on the other metals.

  15. Characterization of dissolved organic matter during landfill leachate treatment by sequencing batch reactor, aeration corrosive cell-Fenton, and granular activated carbon in series

    International Nuclear Information System (INIS)

    Bu Lin; Wang Kun; Zhao Qingliang; Wei Liangliang; Zhang Jing; Yang Junchen

    2010-01-01

    Landfill leachate is generally characterized as a complex recalcitrant wastewater containing high concentration of dissolved organic matter (DOM). A combination of sequencing batch reactor (SBR) + aeration corrosive cell-Fenton (ACF) + granular activated carbon (GAC) adsorption in series was proposed for the purpose of removing pollutants in the leachate. Fractionation was also performed to investigate the composition changes and characteristics of the leachate DOM in each treatment process. Experimental results showed that organic matter, in terms of chemical oxygen demand (COD), 5-day biological oxygen demand (BOD 5 ), and dissolved organic carbon (DOC), was reduced by 97.2%, 99.1%, and 98.7%, respectively. To differentiate the DOM portions, leachates were separated into five fractions by XAD-8 and XAD-4 resins: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N), and hydrophilic fraction (HPI). The predominant fraction in the raw leachate was HPO-A (36% of DOC), while the dominant fraction in the final effluent was HPI (53% of DOC). Accordingly, macromolecules were degraded to simpler ones in a relatively narrow range below 1000 Da. Spectral and chromatographic analyses also showed that most humic-like substances in all fractions were effectively removed during the treatments and led to a simultaneous decrease in aromaticity.

  16. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropollutant and phosphorus removal.

    Science.gov (United States)

    Altmann, Johannes; Rehfeld, Daniel; Träder, Kai; Sperlich, Alexander; Jekel, Martin

    2016-04-01

    Adsorption onto granular activated carbon (GAC) is an established technology in water and advanced wastewater treatment for the removal of organic substances from the liquid phase. Besides adsorption, the removal of particulate matter by filtration and biodegradation of organic substances in GAC contactors has frequently been reported. The application of GAC as both adsorbent for organic micropollutant (OMP) removal and filter medium for solids retention in tertiary wastewater filtration represents an energy- and space saving option, but has rarely been considered because high dissolved organic carbon (DOC) and suspended solids concentrations in the influent of the GAC adsorber put a significant burden on this integrated treatment step and might result in frequent backwashing and unsatisfactory filtration efficiency. This pilot-scale study investigates the combination of GAC adsorption and deep-bed filtration with coagulation as a single advanced treatment step for simultaneous removal of OMPs and phosphorus from secondary effluent. GAC was assessed as upper filter layer in dual-media downflow filtration and as mono-media upflow filter with regard to filtration performance and OMP removal. Both filtration concepts effectively removed suspended solids and phosphorus, achieving effluent concentrations of 0.1 mg/L TP and 1 mg/L TSS, respectively. Analysis of grain size distribution and head loss within the filter bed showed that considerable head loss occurred in the topmost filter layer in downflow filtration, indicating that most particles do not penetrate deeply into the filter bed. Upflow filtration exhibited substantially lower head loss and effective utilization of the whole filter bed. Well-adsorbing OMPs (e.g. benzotriazole, carbamazepine) were removed by >80% up to throughputs of 8000-10,000 bed volumes (BV), whereas weakly to medium adsorbing OMPs (e.g. primidone, sulfamethoxazole) showed removals technologies are still largely unknown. Gabapentin showed

  17. An innovative treatment concept for future drinking water production: fluidized ion exchange – ultrafiltration – nanofiltration – granular activated carbon filtration

    Directory of Open Access Journals (Sweden)

    J. C. van Dijk

    2009-08-01

    Full Text Available A new treatment concept for drinking water production from surface water has been investigated on a pilot scale. The treatment concept consists of fluidized ion exchange (FIEX, ultrafiltration (UF, nanofiltration (NF, and granular activated carbon filtration (GAC. The FIEX process removed calcium and other divalent cations; the UF membrane removed particles and micro-organisms; and the NF membrane and GAC removed natural organic matter (NOM and micro-pollutants. This study focused on the prevention of fouling of the UF and scaling of the NF and investigated the overall removal of micro-pollutants by the treatment concept. The results of the experiments showed that in 14 days of continuous operation at a flux of 65 l/h m2 the UF performance was stable with the FIEX pre-treated feed water without the aid of a coagulant. The scaling of the NF was also not observed even at 97% recovery. Different micro-pollutants were spiked in the NF feed water and their concentrations in the effluent of NF and GAC were measured. The combination of NF and GAC removed most of the micro-pollutants successfully, except for the very polar substances with a molecular weight lower than 100 Daltons.

  18. The effect of metal (hydr)oxide nano-enabling on intraparticle mass transport of organic contaminants in hybrid granular activated carbon.

    Science.gov (United States)

    Garcia, Jose; Markovski, Jasmina; McKay Gifford, J; Apul, Onur; Hristovski, Kiril D

    2017-05-15

    The overarching goal of this study was to ascertain the changes in intraparticle mass transport rates for organic contaminants resulting from nano-enabled hybridization of commercially available granular activated carbon (GAC). Three different nano-enabled hybrid media were fabricated by in-situ synthesizing titanium dioxide nanoparticles inside the pores of GAC sorbent, characterized, and evaluated for removal of two model organic contaminants under realistic conditions to obtain the intraparticle mass transport (pore and surface diffusion) coefficients. The results validated the two hypotheses that: (H1) the pore diffusion rates of organic contaminants linearly decrease with decrease in cumulative pore volume caused by increase in metal (hydr)oxide nanoparticle content inside the pores of the hybrid GAC sorbent; and (H2) introduction of metal (hydr)oxide nanoparticles initially increases surface diffusivity, but additional loading causes its decrease as the increase in metal (hydr)oxide nanoparticles content continues to reduce the porosity of the GAC sorbent. Nano-enabled hybridization of commercially available GAC with metal (hydr)oxides has the potential to significantly increase the intraparticle mass transport limitations for organic contaminants. Introduction of metal (hydr)oxide nanoparticles inside the pores of a pristine sorbent causes the pore diffusion rates of organic contaminants to decrease as the cumulative pore volume is reduced. In contrast, the introduction of limited amounts of metal (hydr)oxide nanoparticles appears to facilitate the surface diffusion rates of these contaminants. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. REMOVAL OF AN ACID DYE FROM AQUEOUS SOLUTIONS BY ADSORPTION ON A COMMERCIAL GRANULAR ACTIVATED CARBON: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDY

    Directory of Open Access Journals (Sweden)

    Marius Sebastian Secula

    2011-12-01

    Full Text Available The present paper approaches the study of the adsorption of an acid dye on a commercial granular activated carbon (GAC. Batch experiments were conducted to study the equilibrium isotherms and kinetics of Indigo Carmine on GAC. The kinetic data were analyzed using the Lagargren, Ho, Elovich, Weber-Morris and Bangham models in order to establish the most adequate model that describes this process, and to investigate the rate of IC adsorption. Equilibrium data were fitted to Langmuir and Freundlich isotherms. Langmuir isotherm equilibrium model and Ho kinetic model fitted best the experimental data.The effects of temperature (25 – 45 °C, initial concentration of dye (7.5 – 150 mg•L−1, GAC dose (0.02 – 1 g•L-1, particle size (2 – 7 mm in diameter, solution pH (3 – 11 on GAC adsorption capacity were established. The adsorption process is found to be favored by a neutral pH, high values of temperature and small particle sizes. The highest adsorption capacity (133.8 mg•g-1 of the GAC is obtained at 45 °C. The removal efficiency increases with GAC dose at relatively low initial concentrations of dye. Thermodynamic parameters such as standard enthalpy (H, standard entropy (S and standard free energy (G were evaluated. The adsorption of Indigo Carmine onto GAC is an endothermic process.

  20. Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater

    International Nuclear Information System (INIS)

    Henke, J.L.; Speitel, G.E.

    1998-08-01

    A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft 2 , and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance

  1. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles.

    Science.gov (United States)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-10-15

    This study investigated the effects of in situ ZrO(2) nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 °C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO(2) nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5mM NaHCO(3) buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C(0) ≈ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal suggested that surface area and GAC type may be the dominant factors controlling the arsenic and organic co-contaminant removal performance of the fabricated Zr-GAC media. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Abundance and diversity of ammonia-oxidizing archaea and bacteria on granular activated carbon and their fates during drinking water purification process.

    Science.gov (United States)

    Niu, Jia; Kasuga, Ikuro; Kurisu, Futoshi; Furumai, Hiroaki; Shigeeda, Takaaki; Takahashi, Kazuhiko

    2016-01-01

    Ammonia is a precursor to trichloramine, which causes an undesirable chlorinous odor. Granular activated carbon (GAC) filtration is used to biologically oxidize ammonia during drinking water purification; however, little information is available regarding the abundance and diversity of ammonia-oxidizing archaea (AOA) and bacteria (AOB) associated with GAC. In addition, their sources and fates in water purification process remain unknown. In this study, six GAC samples were collected from five full-scale drinking water purification plants in Tokyo during summer and winter, and the abundance and community structure of AOA and AOB associated with GAC were studied in these two seasons. In summer, archaeal and bacterial amoA genes on GACs were present at 3.7 × 10(5)-3.9 × 10(8) gene copies/g-dry and 4.5 × 10(6)-4.2 × 10(8) gene copies/g-dry, respectively. In winter, archaeal amoA genes remained at the same level, while bacterial amoA genes decreased significantly for all GACs. No differences were observed in the community diversity of AOA and AOB from summer to winter. Phylogenetic analysis revealed high AOA diversity in group I.1a and group I.1b in raw water. Terminal-restriction fragment length polymorphism analysis of processed water samples revealed that AOA diversity decreased dramatically to only two OTUs in group I.1a after ozonation, which were identical to those detected on GAC. It suggests that ozonation plays an important role in determining AOA diversity on GAC. Further study on the cell-specific activity of AOA and AOB is necessary to understand their contributions to in situ nitrification performance.

  3. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched

  4. Performance of granular activated carbon to remove micropollutants from municipal wastewater-A meta-analysis of pilot- and large-scale studies.

    Science.gov (United States)

    Benstoem, Frank; Nahrstedt, Andreas; Boehler, Marc; Knopp, Gregor; Montag, David; Siegrist, Hansruedi; Pinnekamp, Johannes

    2017-10-01

    For reducing organic micropollutants (MP) in municipal wastewater effluents, granular activated carbon (GAC) has been tested in various studies. We did systematic literature research and found 44 studies dealing with the adsorption of MPs (carbamazepine, diclofenac, sulfamethoxazole) from municipal wastewater on GAC in pilot- and large-scale plants. Within our meta-analysis we plot the bed volumes (BV [m 3 water /m 3 GAC ]) until the breakthrough criterion of MP-BV20% was reached, dependent on potential relevant parameters (empty bed contact time EBCT, influent DOC DOC 0 and manufacturing method). Moreover, we performed statistical tests (ANOVAs) to check the results for significance. Single adsorbers operating time differs i.e. by 2500% until breakthrough of diclofenac-BV20% was reached (800-20,000 BV). There was still elimination of the "very well/well" adsorbable MPs such as carbamazepine and diclofenac even when the equilibrium of DOC had already been reached. No strong statistical significance of EBCT and DOC 0 on MP-BV20% could be found due to lack of data and the high heterogeneity of the studies using GAC of different qualities. In further studies, adsorbers should be operated ≫20,000 BV for exact calculation of breakthrough curves, and the following parameters should be recorded: selected MPs; DOC 0; UVA 254 ; EBCT; product name, manufacturing method and raw material of GAC; suspended solids (TSS); backwash interval; backwash program and pressure drop within adsorber. Based on our investigations we generally recommend using reactivated GAC to reduce the environmental impact and to carry out tests on pilot scale to collect reliable data for process design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Enhanced electrochemical oxidation of synthetic dyeing wastewater using SnO2-Sb-doped TiO2-coated granular activated carbon electrodes with high hydroxyl radical yields

    International Nuclear Information System (INIS)

    Li, Xinyang; Wu, Yue; Zhu, Wei; Xue, Fangqing; Qian, Yi; Wang, Chengwen

    2016-01-01

    Highlights: • We study granular activated carbon (GAC) electrodes coated with catalysts. • GAC coated with ATOT demonstrates an impressive ·OH yield. • This electrode can be used in continuous-flow three-dimensional electrode reactors. • We use Rhodamine B as a model organic compound for removal. • The GAC/ATOT performs better than all other electrodes examined. - Abstract: In this study, granular activated carbon (GAC) coated with SnO 2 -Sb doped TiO 2 (GAC/ATOT) with a high hydroxyl radical (·OH) yield is prepared via the sol-gel method. This material is utilized as a granular electrode in a continuous-flow three-dimensional electrode reactor (CTDER) for the enhanced treatment of synthetic dyeing wastewater containing Rhodamine B (RhB). We then characterize the physical properties, electrochemical properties, and electrochemical oxidation performance of the granular electrode. The results show that using the GAC/ATOT electrode in a CTDER significantly enhances the chemical oxygen demand (COD) removal, decreases the energy consumption, and improves the current efficiency of the wastewater. This is primarily attributed to the higher catalytic activity of GAC/ATOT for ·OH production compared to that of other candidates, such as TiO 2 coated GAC (GAC/T), Sb doped SnO 2 coated GAC (GAC/ATO), and pure GAC. The mechanism of the enhanced electrochemical oxidation afforded by using GAC/ATOT indicates that the high ·OH yield in the reactor packed with GAC/ATOT electrodes contributes to the enhanced electrochemical oxidation performance with respect to organic compounds.

  6. Mineralization of TNT, RDX, and By-Products in an Anaerobic Granular Activated Carbon-Fluidized Bed Reactor

    Science.gov (United States)

    2003-04-01

    eventually can be completely mineralized under anaerobic conditions or subsequent aerobic polishing treatment. Bioconversion of the nitrobodies proceeds to...TANK BIOMASS CONTROL DEVICE INFLUENT PUMP NUTRIENT TANK (S) ETHANOL TANK MEDIA RETURN PUMP SEPARATOR TANK WASTE BIOGAS INFRARED GAS ANALYZER pH...heater loop, and a drop in pH activated the pump to add caustic to the system. The biogas produced was preconditioned for moisture removal in a

  7. Performance evaluation of a granular activated carbon-sequencing batch biofilm reactor pilot plant system used in treating real wastewater from recycled paper industry.

    Science.gov (United States)

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Mohamad, Abu Bakar; Rahman, Rakmi Abdul; Kadhum, Abdul Amir Hasan

    2012-01-01

    A pilot scale granular activated carbon-sequencing batch biofilm reactor with a capacity of 2.2 m3 was operated for over three months to evaluate its performance treating real recycled paper industry wastewater under different operational conditions. In this study, dissolved air floatation (DAF) and clarifier effluents were used as influent sources of the pilot plant. During the course of the study, the reactor was able to biodegrade the contaminants in the incoming recycled paper mill wastewater in terms of chemical oxygen demand (COD), adsorbable organic halides (AOX; specifically 2,4-dichlorophenol (2,4-DCP)) and ammoniacal nitrogen (NH3-N) removal efficiencies at varying hydraulic retention times (HRTs) of 1-3 days, aeration rates (ARs) of 2.1-3.4 m3/min and influent feed concentration of 40-950 mg COD/l. Percentages of COD, 2,4-DCP and NH3-N removals increased with increasing HRT, resulting in more than 90% COD, 2,4-DCP and NH3-N removals at HRT values above two days. Degradation of COD, 2,4-DCP and NH3-N were seriously affected by variation of ARs, which resulted in significant decrease of COD, 2,4-DCP and NH3-N removals by decreasing ARs from 3.4 m3/min to 2.1 m3/min, varying in the ranges of 24-80%, 6-96% and 5-42%, respectively. In comparison to the clarifier effluent, the treatment performance of DAF effluent, containing high COD concentration, resulted in a higher COD removal of 82%. The use of diluted DAF effluent did not improve significantly the COD removal. Higher NH3-N removal efficiency of almost 100% was observed during operation after maintenance shutdown compared to normal operation, even at the same HRT of one day due to the higher dissolved oxygen concentrations (1-7 mg/l), while no significant difference in COD removal efficiency was observed.

  8. Remoção de atrazina e metabólitos pela filtração lenta com leito de areia e carvão ativado granular Removal of atrazine and metabolites through slow filtration by sand and granular activated carbon

    Directory of Open Access Journals (Sweden)

    Edumar Ramos Cabral Coelho

    2012-09-01

    Full Text Available A atrazina (ATZé um herbicida largamente utilizado no mundo, sendo encontrada associada aos seus produtos de degradação em águas superficiais e subterrâneas. Pertence à classe das s-triazinas e, juntamente com os metabólitos clorados deetilatrazina (DEA e deisopropilatrazina (DIA, possui potencial carcinogênico e toxicidade como disruptores endócrinos. A limitação dos processos que empregam a coagulação química na remoção de ATZ, a conhecida capacidade do carvão ativado em remover microcontaminantes em água e o risco que a ATZ e seus metabólitos apresentam à saúde motivaram o estudo da filtração lenta com leito de areia e carvão ativado granular. Os resultados apontaram a eficiência do processo de filtração lenta com camada intermediária de carvão ativado granular na remoção de ATZ e a limitação deste na remoção dos metabólitos DEA, DIA e deetilhidroxiatrazina (DEHA.Atrazine (ATZ is widely used as herbicide, commonly found in association to its degradation products in surface water and groundwater. It belongs to the class of s-triazines and together with the chlorinated metabolites dieethylatrazine (DEA and deisopropilatrazine (DIA have carcinogenic potential and toxicity as endocrine disruptors. The limitation of the processes employing chemical coagulation in the removal of atrazine, the known ability of activated carbon to remove microcontaminants in water and the risk that atrazine and the potential toxicity to human health of its metabolits motivated the study of slow sand filtration bed combined with granular activated carbon. The results showed the high efficiency of the slow filtration process with intermediate layer of granular activated carbon in the removal of atrazine and its limitation on the removal of the metabolites DEA, DIA and diethylhidroxiatrazine (DEHA.

  9. Carbon and nitrogen removal in a granular bed baffled reactor.

    Science.gov (United States)

    Baloch, M I; Akunna, J C; Collier, P J

    2006-02-01

    The application of an anaerobic five compartment granular bed baffled reactor (GRABBR) was investigated with brewery wastewater for combined carbon and nitrate removal, with a separate downstream nitrification unit for converting ammonia to nitrate. The GRABBR was operated at an organic loading rate of 3.57 kg chemical oxygen demand (COD) m(-3) d(-1) and ammoniacal nitrogen (NH4-N) loading rate of 0.13 kg NH4-N m(-3) d(-1) when nitrified effluent from a downstream nitrification unit was recycled to the feed point of the GRABBR. Carbonaceous matter and nitrate were removed simultaneously in the GRABBR at different recycle to influent ratios (from 1 to 2), with nitrogen oxide (nitrate and nitrite nitrogen, NOx-N) loading rates varying from 0.04 to 0.05 kg NOx-N m(-3) d(-1). At all recycle to influent ratios, COD removal efficiency of 97% to 98% were observed in the GRABBR, and over 99% by the two-stage treatment configuration (i.e. GRABBR and nitrification unit). All the nitrates added to the GRABBR were denitrified in the first three compartments of the system. For all the recycle to influent ratios studied, almost all ammonia was converted to nitrate nitrogen with only small traces of nitrite nitrogen in the nitrification unit. Methane production was observed throughout the experimental period with its composition varying from 25% to 50%, showing that simultaneous methanogenesis and denitrification occurred. This study shows that a GRABBR could bring about a high degree of carbon and nitrate removal, with simultaneous methanogenesis and denitrification, due to plug flow granular bed multi-stage characteristics of the bioreactor.

  10. Remoção de diclofenaco, ibuprofeno, naproxeno e paracetamol em filtro ecológico seguido por filtro de carvão granular biologicamente ativado Removal of diclofenac, ibuprofen, naproxen, and paracetamol in ecological filter followed by granular carbon filter biologically active

    Directory of Open Access Journals (Sweden)

    Caroline Moço Erba

    2012-06-01

    Full Text Available O filtro ecológico representa uma promissora tecnologia de tratamento, em razão desta não necessitar da aplicação de produtos químicos, além de sua constatada eficiência. Nele, estabelece-se entre os seres vivos a relação de cadeia alimentar. Inicialmente uma matriz aquosa foi acrescida de quatro fármacos (diclofenaco, naproxeno, ibuprofeno e paracetamol e posteriormente analisada por cromatografia líquida de alta eficiência para avaliar a remoção desses compostos pelo filtro ecológico seguido pelo filtro de carvão granular biologicamente ativado. Parâmetros, entre eles turbidez, coliformes totais e termotolerantes, cor aparente e cor verdadeira, foram mensurados para verificar a eficiência dos filtros. Houve remoção de 97,43% do diclofenaco, 85,03% do ibuprofeno: 94,11% do naproxeno e 84,07% do paracetamol.The ecological filter represents a promising treatment technology, because this doesn't require the application of chemicals and is efficient. In it, is between living beings the relationship of the food chain. Initially an aqueous matrix was added to four drugs (diclofenac, naproxen, ibuprofen and paracetamol, and subsequently analyzed by high performance liquid chromatography to evaluate the removal of these compounds by ecological filter followed by granular activated carbon filter biologically active. The pharmacological compounds and parameters such as turbity, total and fecal coliforms, apparent color and true color were measured to evaluate the effectiveness of filters. There was removal of the drugs applied and the parameters measured. The percentages of removal were 97,43% of diclofenaco,85,03% of ibuprofen, 94,11% of naproxen and 84,07% of paracetamol.

  11. Tratamento de água de reservatórios por dupla filtração, oxidação e adsorção em carvão ativado granular Double filtration, oxidation and granular activated carbon adsorption for treating lake water

    Directory of Open Access Journals (Sweden)

    Giulliano Guimarães Silva

    2012-03-01

    Full Text Available Este trabalho teve como objetivo avaliar o tratamento de água bruta proveniente de um reservatório de água, utilizando instalação piloto de dupla filtração (DF, composta por filtro ascendente de pedregulho (FAP e filtro rápido descendente de areia (FRD, seguida de uma unidade de pós-tratamento com carvão ativado granular (CAG. Adicionalmente, foi verificado o efeito da pré e interoxidação (entre o FAP e o FRD na eficiência global do tratamento e na formação de subprodutos orgânicos halogenados (SOH. Em função dos resultados obtidos, foi observado que a pré-oxidação melhorou a qualidade do efluente do FAP e a interoxidação favoreceu que resultassem valores menores de turbidez e cor no efluente do FRD. O processo de tratamento por adsorção em carvão ativado granular, utilizado como pós-tratamento, mostrou-se eficiente para assegurar a qualidade dos efluentes finais nos ensaios realizados, especialmente, em relação à remoção de matéria orgânica, cianobactérias e cor. As concentrações máximas de SOH encontrados nos efluentes do FRD e do FCAG não ultrapassaram os valores limites da Portaria nº 2.914/2011 do Ministério da Saúde.This study evaluated the treatment of raw lake water using a double filtration (DF pilot plant consisting of an up-flow gravel filter (UGF in series with a down-flow sand filter (DSF and followed by a post-treatment granular activated carbon (GAC unit. Additionally, the study examines the effect of pre and inter-oxidation (between UGF and DSF on overall efficiency in the treatment and the formation of halogenated organic byproducts (HOB. According to the results obtained, it was observed that the pre-oxidation improved the quality of the UGF effluent and the inter-oxidation favored lower values of turbidity and color in the DSF effluent. Also, the treatment process by adsorption on granular activated carbon, used as a post-treatment, was efficient to ensure the quality of final

  12. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Directory of Open Access Journals (Sweden)

    Affam Augustine Chioma

    2018-01-01

    Full Text Available Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal. It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  13. Preparation, Characterization and Adsorption Study of Granular Activated Carbon/Iron oxide composite for the Removal of Boron and Organics from Wastewater

    Science.gov (United States)

    Chioma Affam, Augustine; Chung Wong, Chee; Seyam, Mohammed A. B.; Matt, Chelsea Ann Anak Frederick; Lantan Anak Sumbai, Josephine; Evuti, Abdullahi Mohammed

    2018-03-01

    Boron and organics maybe in high concentration during production of oil and gas, fertilizers, glass, and detergents. In addition, boron added to these industrial processes may require to be removed by the wastewater treatment plant. The preparation, characterization and application of iron oxide-activated carbon composite for removal of boron and COD was studied. The one variable at a time (OVAT) method was implemented to obtain desirable operating conditions (adsorbent dosage 5 g/L, reaction time 2 h, agitation speed 100 rpm, pH 5 for COD removal and pH 9 for boron removal). It was found that boron and organics present in a sample wastewater may require to be treated separately to remove the contaminants. The study achieved 97 and 70% for boron and COD removal, respectively. Adsorption as an alternative cheap source of treatment and its practicability for small communities is recommended as effective in removal of contaminants from river water.

  14. APPLICATION OF ACTIVATED CARBON PREPARED FROM OLIVE ...

    African Journals Online (AJOL)

    Olive stones is produced in large quantities during the manufacture process of the olive oil in the Tunisian oleic industry. This by-product. have been converted to granular activated carbon by carbonisation in the nitrogen atmosphere followed by steam activation. Activated carbon so obtained with 1150 m2/g specific surface ...

  15. Removal of 4-chlorophenol from aqueous solution by granular activated carbon/nanoscale zero valent iron based on Response Surface Modeling

    Directory of Open Access Journals (Sweden)

    Majlesi Monireh

    2017-12-01

    Full Text Available The phenolic compounds are known as priority pollutants, even in low concentrations, as a result of their toxicity and non-biodegradability. For this reason, strict standards have been established for them. In addition, chlorophenols are placed in the 38th to 43th in highest priority order of toxic pollutants. As a consequence, contaminated water or wastewaters with phenolic compounds have to be treated before discharging into the receiving water. In this study, Response Surface Methodology (RSM has been used in order to optimize the effect of main operational variables responsible for the higher 4-chlorophenol removal by Activated Carbon-Supported Nanoscale Zero Valent Iron (AC/NZVI. A Box-Behnken factorial Design (BBD with three levels was applied to optimize the initial concentration, time, pH, and adsorbent dose. The characterization of adsorbents was conducted by using SEM-EDS and XRD analyses. Furthermore, the adsorption isotherm and kinetics of 4-chlorophenol on AC and AC/NZVI under various conditions were studied. The model anticipated 100% removal efficiency for AC/NZVI at the optimum concentration (5.48 mg 4-chlorophenol/L, pH (5.44, contact time (44.7 min and dose (0.65g/L. Analysis of the response surface quadratic model signified that the experiments are accurate and the model is highly significant. Moreover, the synthetic adsorbent is highly efficient in removing of 4-chlorophenol.

  16. Melon husk-based activated carbon for treatment of industrial ...

    African Journals Online (AJOL)

    The adsorption of organic contaminants from industrial effluent using melon husk activated carbon has been investigated. Melon husk was carbonized at 450oC for 20 minutes and activated with sulphuric acid to produce granular activated carbon (AC). The fixed carbon increased with increase in concentration of activating ...

  17. Efficient L-lactic acid fermentation by the mold Rhizopus oryzae using activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Koide, M.; Hirata, M.; Gaw, M.; Takanashi, H.; Hano, T. [Oita Univ, Oita (Japan). Dept. of Applied Chemistry

    2004-11-01

    Batch fermentations of Rhizopus oryzae AHU 6537 in medium containing granular activated carbon from coal, powder activated carbon from coal or granular activated carbon from coconut were carried out in an airlift bioreactor. As a result, fermentation broths were decolorized by activated carbon, and clearer fermentation broths were obtained than in fermentation without activated carbon. With activated carbon from coal, the cells formed smaller pellets than in fermentation without activated carbon, and fermentation performance was improved. Productivity was further improved by increasing the amount of activated carbon from coal. Therefore, the productivity of lactic acid fermentation could be improved by selecting a suitable activated carbon and by controlling the amount of activated carbon.

  18. Removal of pharmaceuticals, perfluoroalkyl substances and other micropollutants from wastewater using lignite, Xylit, sand, granular activated carbon (GAC) and GAC+Polonite® in column tests - Role of physicochemical properties.

    Science.gov (United States)

    Rostvall, Ande; Zhang, Wen; Dürig, Wiebke; Renman, Gunno; Wiberg, Karin; Ahrens, Lutz; Gago-Ferrero, Pablo

    2018-06-15

    This study evaluated the performance of five different sorbents (granular activated carbon (GAC), GAC + Polonite ® (GAC + P), Xylit, lignite and sand) for a set of 83 micropollutants (MPs) (pharmaceuticals, perfluoroalkyl substances (PFASs), personal care products, artificial sweeteners, parabens, pesticide, stimulants), together representing a wide range of physicochemical properties. Treatment with GAC and GAC + P provided the highest removal efficiencies, with average values above 97%. Removal rates were generally lower for Xylit (on average 74%) and lignite (on average 68%), although they proved to be highly efficient for a few individual MPs. The average removal efficiency for sand was only 47%. It was observed that the MPs behaved differently depending on their physicochemical properties. The physicochemical properties of PFASs (i.e. molecular weight, topological molecular surface area, log octanol water partition coefficient (K ow ) and distribution coefficient between octanol and water (log D)) were positively correlated to observed removal efficiency for the sorbents Xylit, lignite and sand (p < 0.05), indicating a strong influence of perfluorocarbon chain length and associated hydrophobic characteristics. In contrast, for the other MPs the ratio between apolar and polar surface area (SA/SP) was positively correlated with the removal efficiency, indicating that hydrophobic adsorption may be a key feature of their sorption mechanisms. GAC showed to be the most promising filter medium to improve the removal of MPs in on-site sewage treatment facilities. However, more studies are needed to evaluate the removal of MPs in field trials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Sustainable Regeneration of Nanoparticle Enhanced Activated Carbon in Water

    Science.gov (United States)

    The regeneration and reuse of exhausted granular activated carbon (GAC) is an appropriate method for lowering operational and environmental costs. Advanced oxidation is a promising environmental friendly technique for GAC regeneration. The main objective of this research was to ...

  20. Granular Activated Carbon Performance Capability and Availability.

    Science.gov (United States)

    1983-06-01

    to be relevant to this project. Although our sources were primarily public databases, the great bulk of publications found were issued by the U.S...Plant Environmental Sci ance 1 7(9) September 1973 Technology F-46 Forsten I Disposal of Hazardous Toxic Fluition Waste (198K Proc ASCE Enviromental

  1. Suitability of granular carbon as an anode material for sediment microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Arends, Jan B.A.; Blondeel, Evelyne; Boon, Nico; Verstraete, Willy [Ghent Univ. (Belgium). Faculty of Bioscience Engineering; Tennison, Steve R. [Mast Carbon International Ltd., Basingstoke, Hampshire (United Kingdom)

    2012-08-15

    Purpose: Sediment microbial fuel cells (S-MFCs) are bio-electrochemical devices that are able to oxidize organic matter directly into harvestable electrical power. The flux of organic matter into the sediment is rather low; therefore, other researchers have introduced plants for a continuous supply of organic matter to the anode electrode. Until now only interconnected materials have been considered as anode materials in S-MFCs. Here, granular carbon materials were investigated for their suitability as an anode material in S-MFCs. Materials and methods: Laboratory microcosms with eight different electrode materials (granules, felts and cloths) were examined with controlled organic matter addition under brackish conditions. Current density, organic matter removal and microbial community composition were monitored using 16S rRNA gene PCR followed by denaturing gradient gel electrophoresis (DGGE). The main parameters investigated were the influence of the amount of electrode material applied to the sediment, the size of the granular material and the electrode configuration. Results and discussion: Felt material had an overall superior performance in terms of current density per amount of applied electrode material; felt and granular anode obtained similar current densities (approx. 50-60 mA m{sup -2}), but felt materials required 29 % less material to be applied. Yet, when growing plants, granular carbon is more suited because it is considered to restore, upon disturbance, the electrical connectivity within the anode compartment. Small granules (0.25-0.5 mm) gave the highest current density compared to larger granules (1-5 mm) of the same material. Granules with a rough surface had a better performance compared to smooth granules of the same size. The different granular materials lead to a selection of distinct microbial communities for each material, as shown by DGGE. Conclusions: Granular carbon is suitable as an anode material for S-MFCs. This opens the possibility

  2. ACTIVATED CARBON (CHARCOAL OBTAINING . APPLICATION

    Directory of Open Access Journals (Sweden)

    Florin CIOFU

    2015-05-01

    Full Text Available The activated carbon is a microporous sorbent with a very large adsorption area that can reach in some cases even 1500sqm / gram. Activated carbon is produced from any organic material with high carbon content: coal, wood, peat or moor coal, coconut shells. The granular activated charcoal is most commonly produced by grinding the raw material, adding a suitable binder to provide the desired hardness and shape. Enabling coal is a complete process through which the raw material is fully exposed to temperatures between 600-900 degrees C, in the absence of oxygen, usually in a domestic atmosphere as gases such as nitrogen or argon; as material that results from this process is exposed in an atmosphere of oxygen and steam at a temperature in the interval from 600 - 1200 degrees C.

  3. Preparation of regenerable granular carbon nanotubes by a simple heating-filtration method for efficient removal of typical pharmaceuticals

    Science.gov (United States)

    Shan, Danna; Deng, Shubo; Zhao, Tianning; Yu, Gang; Winglee, Judith; Wiesner, Mark R.

    2017-04-01

    A simple and convenient method was used to prepare novel granular carbon nanotubes (CNTs) for enhanced adsorption of pharmaceuticals. By heating CNTs powder at 450 degree centigrade in air, followed by filtration, the obtained granular adsorbent exhibited high surface area and pore volume since the heating process produced some oxygen-containing functional groups on CNT surface, making CNTs more dispersible in the formation of granular cake. The porous granular CNTs not only had more available surfaces for adsorption but also were more easily separated from solution than pristine CNTs (p-CNTs) powder. This adsorbent exhibited relatively fast adsorption for carbamazepine (CBZ), tetracycline (TC) and diclofe- nac sodium (DS), and the maximum adsorption capacity on the granular CNTs was 369.5 μmol/g for CBZ, 284.2 μmol/g for TC and 203.1 μmol/g for DS according to the Langmuir fitting, increasing by 42.4%, 37.8% and 38.0% in comparison with the pristine CNTs powder. Moreover, the spent granular CNTs were successfully regenerated at 400 degree centigrade in air without decreasing the adsorption capacity in five regeneration cycles. The adsorbed CBZ and DS were completely degraded, while the adsorbed TC was partially oxidized and the residual was favorable for the subsequent adsorption. This research develops an easy method to prepare and regenerate granular CNT adsorbent for the enhanced removal of organic pollutants from water or wastewater.

  4. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  5. Performance evaluation of a hybrid system for efficient palm oil mill effluent treatment via an air-cathode, tubular upflow microbial fuel cell coupled with a granular activated carbon adsorption.

    Science.gov (United States)

    Tee, Pei-Fang; Abdullah, Mohammad Omar; Tan, Ivy Ai Wei; Mohamed Amin, Mohamed Afizal; Nolasco-Hipolito, Cirilo; Bujang, Kopli

    2016-09-01

    An air-cathode MFC-adsorption hybrid system, made from earthen pot was designed and tested for simultaneous wastewater treatment and energy recovery. Such design had demonstrated superior characteristics of low internal resistance (29.3Ω) and favor to low-cost, efficient wastewater treatment and power generation (55mW/m(3)) with average current of 2.13±0.4mA. The performance between MFC-adsorption hybrid system was compared to the standalone adsorption system and results had demonstrated great pollutants removals of the integrated system especially for chemical oxygen demand (COD), biochemical oxygen demand (BOD3), total organic carbon (TOC), total volatile solids (TVS), ammoniacal nitrogen (NH3-N) and total nitrogen (TN) because such system combines the advantages of each individual unit. Besides the typical biological and electrochemical processes that happened in an MFC system, an additional physicochemical process from the activated carbon took place simultaneously in the MFC-adsorption hybrid system which would further improved on the wastewater quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Activated carbons and gold

    International Nuclear Information System (INIS)

    McDougall, G.J.; Hancock, R.D.

    1980-01-01

    The literature on activated carbon is reviewed so as to provide a general background with respect to the effect of source material and activation procedure on carbon properties, the structure and chemical nature of the surface of the activated carbon, and the nature of absorption processes on carbon. The various theories on the absorption of gold and silver from cyanide solutions are then reviewed, followed by a discussion of processes for the recovery of gold and silver from cyanide solutions using activated carbon, including a comparison with zinc precipitation

  7. Study of lead adsorption on activated carbons | Kouakou ...

    African Journals Online (AJOL)

    Powder and granular activated carbons showed different adsorption capacity. The amount of Pb2+ adsorbed reached44.58, 38.96 and 39.06 mg/g for CPA, CGA 830 and CGA 1230 respectively at 25 °C. Langmuir and Freundlich adsorption models were used to represent the equilibrium data. Despite the high value of ...

  8. Removal of antibiotic sulfamethoxazole by anoxic/anaerobic/oxic granular and suspended activated sludge processes.

    Science.gov (United States)

    Kang, Abbass Jafari; Brown, Alistair K; Wong, Charles S; Yuan, Qiuyan

    2018-03-01

    This study investigates the removal of the antibiotic sulfamethoxazole (SMX) in two sets of anoxic/anaerobic/oxic sequencing batch reactors inoculated with either suspended or granular activated sludge. Continuously, for three months, 2 μg/L SMX was spiked into the reactor feeds in a synthetic municipal wastewater with COD, total nitrogen (TN) and total phosphorous (TP) of 400, 43 and 7 mg/L, respectively. The presence of SMX had no significant impact on treatment performance of the suspended and granular biomass. After 12 h of hydraulic retention time, SMX removal efficiencies of 84 and 73% were obtained for the granular and suspended biomass, respectively. Mixing without aeration did not remove SMX, confirming the insignificance of SMX removal via sorption. The pseudo-first order SMX removal rate constants in the granular and suspended biomass were 2.25 ± 0.30 and 1.34 ± 0.39 L/gVSS·d, respectively. The results suggest that granules with advantages such as elevated biomass retention and greater biomass concentration could be effective for the removal of this class of antibiotics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Regenerable granular carbon nanotubes/alumina hybrid adsorbents for diclofenac sodium and carbamazepine removal from aqueous solution.

    Science.gov (United States)

    Wei, Haoran; Deng, Shubo; Huang, Qian; Nie, Yao; Wang, Bin; Huang, Jun; Yu, Gang

    2013-08-01

    A novel granular carbon nanotubes (CNTs)/alumina (Al2O3) hybrid adsorbent with good sorption and regeneration properties was successfully prepared by mixing CNTs with surfactant Brij 35 and pseudo boehmite, followed by calcining to remove surfactant and form porous granules. Alumina binder increased the mechanical strength, hydrophilicity and porosity of the granular adsorbent, while the dispersed CNTs in the granular adsorbent were responsible for the sorption of diclofenac sodium (DS) and carbamazepine (CBZ). Scanning electron microscopy (SEM) showed that the CNTs and Al2O3 were mixed well and the porous structure was formed in the granular adsorbent. The high surface area and appropriate pore size of granular CNTs/Al2O3 adsorbent were favorable for sorption. The sorption of DS decreased with increasing solution pH, while pH had little effect on CBZ sorption. The maximum sorption capacities of CBZ and DS on the CNTs/Al2O3 adsorbent were 157.4 and 106.5 μmol/g according to the Langmuir fitting. Moreover, the spent CNTs/Al2O3 adsorbent can be thermally regenerated at 400 °C in air due to the thermal stability of CNTs. The removal of CBZ and DS changed a little in the initial reuse cycles and then kept relatively constant until tenth cycles. The adsorbed CBZ and DS were decomposed in the regeneration process. This regenerable adsorbent may find potential application in water or wastewater treatment for the removal of some micropollutants such as pharmaceuticals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Activated carbon regeneration process

    Energy Technology Data Exchange (ETDEWEB)

    Skripnik, K.I.; Burachevskii, I.I.; Tarkovskaya, I.A.; Yarovenko, V.L.

    1981-01-01

    The regeneration process was tested by oxidative treatment of activated carbon, employable in the vodka industry, with an aqueous KMnO/sub 4/ (I) solution. The spent carbon is exposed to a 0.4% solution of for 30-50 min, then washed with water, and blown through for 15-30 min with steam at a temperature of 105-110/sup 0/ C under 0.07 MPa pressure. A check of the activity of the regenerated carbon revealed an increase in pore volume by 29% with respect to benzene adsorption and a higher adsorptive capacity (by a factor of about 2) with respect to fatty acids by comparison with carbon regenerated by the conventional steam procedure. Application of the process in the plant made it possible to use the carbon for 3-4 months additionally because of an increase in activity after regeneration. Iodine comsumption amounts to 5-6 kg per column.

  11. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity

    Directory of Open Access Journals (Sweden)

    Egidio eD‘Angelo

    2013-05-01

    Full Text Available The cerebellar granular layer has been suggested to perform a complex spatiotemporal reconfiguration of incoming mossy fiber signals. Central to this role is the inhibitory action exerted by Golgi cells over granule cells: Golgi cells inhibit granule cells through double feedforward and feedback inhibitory loops and generate a broad lateral inhibition that extends beyond the afferent synaptic field. This characteristic connectivity has recently been investigated in great detail and been correlated with specific functional properties of the neuron. These include theta-frequency pacemaking, network entrainment into coherent oscillations and phase resetting. Important advances have also been made in terms of determining the membrane and synaptic properties of the neuron, and clarifying the mechanisms of activation by input bursts. Moreover, voltage sensitive dye imaging and multi-electrode array recordings, combined with mathematical simulations based on realistic computational models, have improved our understanding of the impact of Golgi cell activity on granular layer circuit computations. These investigations have highlighted the critical role of Golgi cells in: generating dense clusters of granule cell activity organized in center-surround structures, implementing combinatorial operations on multiple mossy fiber inputs, regulating transmission gain and cut-off frequency, controlling spike timing and burst transmission, and determining the sign, intensity and extension of long-term synaptic plasticity at the mossy fiber-granule cell relay. This review considers recent advances in the field, highlighting the functional implications of Golgi cells for granular layer network computation and indicating new challenges for cerebellar research.

  12. Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl2 and H3PO4.

    Science.gov (United States)

    Namane, A; Mekarzia, A; Benrachedi, K; Belhaneche-Bensemra, N; Hellal, A

    2005-03-17

    In order to evaluate the adsorptive capacities of granular activated carbon produced from coffee grounds by chemical activation, the adsorption of different phenols and acid and basic dyes, has been carried out. The comparison with a commercial activated carbon has been made. Adsorption isotherms of phenols and dyes (acid and basic) onto produced and commercial granular activated carbons were experimentally determined by batch tests. Both Freundlich and Langmuir models are well suited to fit the adsorption isotherm data. As a result, the coffee grounds based activated carbon may be promising for phenol and dye removal from aqueous streams.

  13. Granular flow

    DEFF Research Database (Denmark)

    Mitarai, Namiko; Nakanishi, Hiizu

    2012-01-01

    Granular material is a collection of macroscopic particles that are visible with naked eyes. The non-equilibrium nature of the granular materials makes their rheology quite different from that of molecular systems. In this minireview, we present the unique features of granular materials focusing ...... on the shear flow of dry granular materials and granule-liquid mixture....

  14. Acoustical properties of double porosity granular materials.

    Science.gov (United States)

    Venegas, Rodolfo; Umnova, Olga

    2011-11-01

    Granular materials have been conventionally used for acoustic treatment due to their sound absorptive and sound insulating properties. An emerging field is the study of the acoustical properties of multiscale porous materials. An example of these is a granular material in which the particles are porous. In this paper, analytical and hybrid analytical-numerical models describing the acoustical properties of these materials are introduced. Image processing techniques have been employed to estimate characteristic dimensions of the materials. The model predictions are compared with measurements on expanded perlite and activated carbon showing satisfactory agreement. It is concluded that a double porosity granular material exhibits greater low-frequency sound absorption at reduced weight compared to a solid-grain granular material with similar mesoscopic characteristics.

  15. Mechanistic investigations of Se(VI) treatment in anoxic groundwater using granular iron and organic carbon: An EXAFS study

    International Nuclear Information System (INIS)

    Gibson, Blair D.; Blowes, David W.; Lindsay, Matthew B.J.; Ptacek, Carol J.

    2012-01-01

    Highlights: ► We investigate treatment of aqueous Se(VI) under anoxic conditions. ► We utilize granular Fe 0 and organic carbon to promote Se(VI) removal. ► We characterize Se speciation using X-ray absorption spectroscopy. ► Granular Fe 0 promotes removal of Se(VI) by reduction to Se(0). ► Organic carbon promotes removal through sorption processes without reduction. - Abstract: The removal of aqueous Se(VI) from a simulated groundwater by granular iron (GI), organic carbon (OC), and a mixture of these reactive materials (GI–OC) was evaluated in laboratory batch experiments. The experiments were performed under anoxic conditions to simulate subsurface treatment. A total reaction time of 120 h (5 d) was chosen to investigate the rapid changes in speciation occurring over reaction times that are reasonable for permeable reactive barrier (PRB) systems. After 120 h, concentrations of Se decreased by >90% in the GI system, 15% in the OC system and 35% in the GI–OC mixture. Analysis of the materials after contact with Se using synchrotron-radiation based X-ray absorption spectroscopy (XAS) indicated the presence of Se(IV) and Se(0) on the margins of GI grains after 6 h with evidence of Se-O and Se-Se bonding, whereas Se(VI) was not observed. After 72 h, Se(0) was the only form of Se present in the GI experiments. In the OC batches, the XAS analysis indicated binding consistent with sorption of aqueous Se(VI) onto the OC with only minor reduction to Se(IV) and Se(0) after 120 h. Selenium XAS spectra collected for the GI–OC mixture were consistent with spectra for Se(IV) and Se(0) on both the margins of GI grains and OC particles, suggesting that the presence of dissolved Fe may have mediated the reduction of sorbed Se(VI). The results suggest that the application of granular Fe is effective at inducing aqueous Se removal in anoxic conditions through reductive precipitation processes.

  16. Tailored Granular Activated Carbon Treatment of Perchlorate in Drinking Water

    Science.gov (United States)

    2010-10-01

    regenerated using the conventional process, a brine solution, or another chemical reentrant such as Ferric chloride – hydrogen chloride (HCL) has to be...communication to Chris Lutes of ARCADIS. April 7, 2009. Gzara, L. and M. Dhahbi. 2001. Desalination . 137. 241-250. Haggerty, G. M. and R. S. Bowman...1978. Metastable sulfur Species and Trace Metals (Mn, Fe, Cu, Zn, Cd, Pb) in Hot Brines from French Dogger. Am. J. Sci. 278(10): 1394-1411 Breuer

  17. Practical experiences with granular activated carbon (GAC) at the ...

    African Journals Online (AJOL)

    driniev

    2004-01-01

    Jan 1, 2004 ... The Rietvlei GAC management system is best modelled as two parallel circuits: • The first off-site circuit removes GAC from the filters, trans- ports it in bags .... B. S. V g eq v d or d. S ψ ψ. 6. 6. = ψ = sphericity of media grains ε = predicted porosity. µ = dynamic viscosity of water ρ = density of water (kg/m3) ρs.

  18. Pesticide removal by combined ozonation and granular activated carbon filtration

    NARCIS (Netherlands)

    Orlandini, E.

    1999-01-01

    Since the seventies, new water treatment processes have been introduced in the production of drinking water from surface water. Their major aim was to adequately cope with the disinfection of this water, and/or with the removal of pesticides and other organic micropollutants from it. This

  19. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity

    KAUST Repository

    Fermoso, Fernando G.

    2010-12-01

    The effect of dosing a metal limited anaerobic sludge blanket (UASB) reactor with a metal pulse on the methanogenic activity of granular sludge has thus far not been successfully modeled. The prediction of this effect is crucial in order to optimize the strategy for metal dosage and to prevent unnecessary losses of resources. This paper describes the relation between the initial immobilization of cobalt in anaerobic granular sludge cobalt dosage into the reactor and the evolution of methanogenic activity during the subsequent weeks. An operationally defined parameter (A0· B0) was found to combine the amount of cobalt immobilized instantaneously upon the pulse (B0) and the amount of cobalt immobilized within the subsequent 24. h (A0). In contrast with the individual parameters A0 and B0, the parameter A0· B0 correlated significantly with the methanogenic activity of the sludge during the subsequent 16 or 35. days. This correlation between metal retention and activity evolution is a useful tool to implement trace metal dosing strategies for biofilm-based biotechnological processes. © 2010.

  20. Combining fluidized activated carbon with weak alternating electric fields for disinfection

    NARCIS (Netherlands)

    Racyte, J.; Sharabati, J.; Paulitsch-Fuchs, A.H.; Yntema, D.R.; Mayer, M.J.J.; Bruning, H.; Rijnaarts, H.H.M.

    2011-01-01

    This study presents fluidized bed electrodes as a new device for disinfection. In the fluidized bed electrodes system, granular activated carbon particles were suspended, and an alternating radio frequency electric field was applied over the suspended bed. Proof-of-principle studies with the

  1. Understanding the physical and chemical properties of carbon-based granular fuels

    Science.gov (United States)

    Marchand, David J.

    Coal and oil have been used as fuel sources for centuries, but the way they have been used has not fundamentally changed: coal is ground into pieces then burned, and oil is distilled into various liquid fractions that are then burned. This dissertation explores newer methods of utilizing those fuel sources. Coal gasification is the process where coal is heated in a low oxygen environment so that the solid carbon is converted into a mixture of gaseous products. But some aspects of gasification, such as the role of catalysts and the structural evolution of coal particles throughout the reaction, remain unclear. These aspects were studied by analyzing, ex situ, the physical and chemical changes of coal feedstock samples extracted from a fluidized bed gasifier at various times throughout gasification. The changes in feed particle composition and size distribution composition showed that the gasification reaction rate was slower than the gas diffusion rates inside the coal particle at a typical catalytic gasification temperature of 800oC. Detailed composition analysis of samples with and without added catalyst showed that the catalyst increased the overall reaction rate by promoting the dissociative oxidation of the coal by gas phase oxidants, which provided more active sites for carbon-carbon bond breakage. The conclusions drawn from studying the feedstock can be combined with the data from in situ analysis of the gasification reactor to provide a fuller picture of the gasification process. Petroleum coke, or petcoke, is a carbonaceous solid produced during oil distillation. Though petcoke could be an important energy source, its use is hindered by practical and environmental concerns. Producing a slurry with petcoke and water has been studied as an alternative method for utilizing petcoke, but the effective use of petcoke slurries requires that they have low viscosity while remaining stable against settling of the particles due to gravity. These rheological properties

  2. Activated carbon from peach stones using phosphoric acid activation at medium temperatures.

    Science.gov (United States)

    Kim, Dong-Su

    2004-01-01

    In the present study, the activation features of phosphoric acid have been investigated using waste peach stones as the raw material in the production of granular activated carbon. Thermogravimetry/differential thermal analysis was conducted to characterize the thermal behavior of peach stone and titration method was used to evaluate the adsorption capacity of the produced activated carbon. It was observed that the iodine value of the activated carbon increased with activation temperature. However, temperatures higher than 500 degrees C caused a thermal destruction, which resulted in the decrease of the adsorption capacity. Activation longer than 1.5 h at 500 degrees C resulted in thermal degradation of the porous structure of the activated carbon. The adsorption capacity was enhanced with increasing of amounts of phosphoric acid, however, excessive phosphoric acid caused a decrease in the iodine value. In addition, it was found that the carbon yields generally decreased with activation temperature and activation time. Scanning electron microscopy analysis was conducted to observe the changes in the poros structure of the activated carbon produced in different temperatures. Activation of carbon by phosphoric acid was found to be superior to that by CaCl2 and gas activation. The activated carbon produced from peach stone was applied as an adsorbent in the treatment of synthesized wastewater containing cadmium ion and its adsorption capacity was found to be as good as that of the commercial one.

  3. Optimization of operation conditions for the startup of aerobic granular sludge reactors biologically removing carbon, nitrogen, and phosphorous.

    Science.gov (United States)

    Lochmatter, Samuel; Holliger, Christof

    2014-08-01

    The transformation of conventional flocculent sludge to aerobic granular sludge (AGS) biologically removing carbon, nitrogen and phosphorus (COD, N, P) is still a main challenge in startup of AGS sequencing batch reactors (AGS-SBRs). On the one hand a rapid granulation is desired, on the other hand good biological nutrient removal capacities have to be maintained. So far, several operation parameters have been studied separately, which makes it difficult to compare their impacts. We investigated seven operation parameters in parallel by applying a Plackett-Burman experimental design approach with the aim to propose an optimized startup strategy. Five out of the seven tested parameters had a significant impact on the startup duration. The conditions identified to allow a rapid startup of AGS-SBRs with good nutrient removal performances were (i) alternation of high and low dissolved oxygen phases during aeration, (ii) a settling strategy avoiding too high biomass washout during the first weeks of reactor operation, (iii) adaptation of the contaminant load in the early stage of the startup in order to ensure that all soluble COD was consumed before the beginning of the aeration phase, (iv) a temperature of 20 °C, and (v) a neutral pH. Under such conditions, it took less than 30 days to produce granular sludge with high removal performances for COD, N, and P. A control run using this optimized startup strategy produced again AGS with good nutrient removal performances within four weeks and the system was stable during the additional operation period of more than 50 days. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Sign change of magnetoresistance in Gd-doped amorphous carbon granular films.

    Science.gov (United States)

    Ding, Shihao; Jin, Chao; Fan, Ziwei; Li, Peng; Bai, Haili

    2015-11-11

    Gd/C granular films with 11% Gd were fabricated by facing-target magnetron sputtering at room temperature and then annealed at 300-650 °C for 1.5 h. A magnetoresistance of -82% was obtained in the Gd/C films annealed at 650 °C at 3 K under a magnetic field of 50 kOe. A sign change of the magnetoresistance from negative to positive and then back to negative was observed in all samples as the temperature decreases. Grain boundary scattering effects, wave-function-shrinkage, cotunneling and Gd-Gd interactions account for the mechanisms of the magnetoresistance effects in different temperature regions. The sign of the magnetoresistance also varies as the magnetic field increases. At the transition temperature of 25 K, the wave-function-shrinkage effect competes with cotunneling and Gd-Gd interactions at different magnetic fields. The competition between the wave-function-shrinkage effect and the grain boundary scattering effect is approximately at the transition temperature of 100 K. The temperature range of positive magnetoresistance expands and transition temperatures are changed as the annealing temperature increases. It is related to the expansion of the temperature region for the wave-function-shrinkage effect which occurs in the Mott variable range hopping conduction mechanism.

  5. Granular patterns

    CERN Document Server

    Aranson, Igor S

    2009-01-01

    This title presents a review of experiments and novel theoretical concepts needed to understand the mechanisms of pattern formation in granular materials. An effort is made to connect concepts and ideas developed in granular physics with new emergent fields, especially in biology, such as cytoskeleton dynamics.

  6. An assessment methodology for determining pesticides adsorption on granulated activated carbon

    Directory of Open Access Journals (Sweden)

    Barthélemy J.-P.

    2003-01-01

    Full Text Available In many countries, water suppliers add granular activated carbon reactor in the drinking water treatment notably in order to remove pesticides residues. In Europe, their concentrations must lie below the values imposed by the EU directives (98/83/EC. Acouple of years ago, some mini-column tests were developed to improve the use of the activated carbon reactor in relation with lab experiments. Modelling, which was elaborated to predict the lifetime of reactors, did not bring validated results. Nevertheless, this kind of experiment allows us to assess the adsorption performances of an activated carbon for different pesticides. Because of the lack of comparable available results, we have eveloped a standardized methodology based on the experiment in mini-column of granular activated carbon. The main experimental conditions are activated carbon: Filtrasorb 400 (Chemviron Carbon; water: mineral and organic reconstituted water (humic acid concentration: 0,5 mg/l; influent concentration 500 g . l -1 ; activated carbon weight: 200 mg; EBCT (Empty Bed Contact Time: 0.16 min.; linear speed: 0.15 m . s -1 . In these conditions, it appears that diuron is highly adsorbed in comparison with other active substances like chloridazon, atrazine or MCPA. From the ratio of effluent volume for the breakthrough point with respect to diuron, it is suggested that products of which the difference factor ratio is – (a below 0.40: may be reckoned as weakly adsorbed (MCPA; (b from 0.41 to 0.80: may be reckoned as moderately adsorbed (chloridazon and atrazine; (c above 0.80: as highly adsorbed on granular activated carbon. Active substances that are weakly adsorbed and have to be removed from drinking water, may highly reduce the lifetime of an activated carbon bed. This kind of information is particularly useful for water suppliers and for regulatory authorities.

  7. Condensate water treatment by adsorption onto an activated carbon grade with high-activity and low-silicate leaching

    Energy Technology Data Exchange (ETDEWEB)

    Herzer, J. [NORIT Germany, Kempen (Germany); Ernhofer, R. [BAYERNOIL Refineries, Ingolstadt (Germany); Dikkenberg, J. van den [NORIT Activated Carbon, Amersfoort (Netherlands)

    2006-07-01

    Granular activated carbon (GAC) is frequently used to remove dissolved organic impurities from condensate water. An optimal adsorption capacity and GAC life time are achieved by matching the size of the target organics versus the pore size distribution of the activated carbon. From a product range of over 150 activated carbon grades, eight different NORIT GAC types are available for condensate water polishing. Differences between these grades apply to adsorption properties, hydraulic properties and purity. Guidelines for design and operation of the GAC stage are provided. (orig.)

  8. Anomalous diffusion of a probe in a bath of active granular chains

    Science.gov (United States)

    Jerez, Michael Jade Y.; Confesor, Mark Nolan P.; Carpio-Bernido, M. Victoria; Bernido, Christopher C.

    2017-08-01

    We investigate the dynamics of a passive probe particle in a bath of active granular chains (AGC). The bath and the probe are enclosed in an experimental compartment with a sinusoidal boundary to prevent AGC congestion along the boundary while connected to an electrodynamic shaker. Single AGC trajectory analysis reveals a persistent type of motion compared to a purely Brownian motion as seen in its mean squared displacement (MSD). It was found that at small concentration, Φ ≤ 0.44, the MSD exhibits two dynamical regimes characterized by two different scaling exponents. For small time scales, the dynamics is superdiffusive (1.32-1.63) with the MSD scaling exponent increasing monotonically with increasing AGC concentration. On the other hand, at long time, we recover the Brownian dynamics regime, MSD = DΔt, where the mobility D ∝ Φ. We quantify the probe dynamics at short time scale by modeling it as a fractional Brownian motion. The analytical form of the MSD agrees with experimental results.

  9. Activated carbon for incinerator uses

    International Nuclear Information System (INIS)

    Che Seman Mahmood; Norhayati Alias; Mohd Puad Abu

    2002-01-01

    This paper reports the development of the activated carbon from palm oil kernel shell for use as absorbent and converter for incinerator gas. The procedure is developed in order to prepare the material in bulk quantity and be used in the incinerator. The effect of the use of activating chemicals, physical activation and the preparation parameter to the quality of the carbon products will be discussed. (Author)

  10. Adsorption of aromatic organic contaminants by graphene nanosheets: comparison with carbon nanotubes and activated carbon.

    Science.gov (United States)

    Apul, Onur Guven; Wang, Qiliang; Zhou, Yang; Karanfil, Tanju

    2013-03-15

    Adsorption of two synthetic organic compounds (SOCs; phenanthrene and biphenyl) by two pristine graphene nanosheets (GNS) and one graphene oxide (GO) was examined and compared with those of a coal base activated carbon (HD4000), a single-walled carbon nanotube (SWCNT), and a multi-walled carbon nanotube (MWCNT) in distilled and deionized water and in the presence of natural organic matter (NOM). Graphenes exhibited comparable or better adsorption capacities than carbon nanotubes (CNTs) and granular activated carbon (GAC) in the presence of NOM. The presence of NOM reduced the SOC uptake of all adsorbents. However, the impact of NOM on the SOC adsorption was smaller on graphenes than CNTs and activated carbons. Furthermore, the SOC with its flexible molecular structure was less impacted from NOM preloading than the SOC with planar and rigid molecular structure. The results indicated that graphenes can serve as alternative adsorbents for removing SOCs from water. However, they will also, if released to environment, adsorb organic contaminants influencing their fate and impact in the environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. TESTING GUIDELINES FOR TECHNETIUM-99 ADSORPTION ON ACTIVATED CARBON

    International Nuclear Information System (INIS)

    Byrnes, M.E.

    2010-01-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will

  12. TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON

    Energy Technology Data Exchange (ETDEWEB)

    BYRNES ME

    2010-09-08

    CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs

  13. Paracrystalline structure of activated carbons

    Science.gov (United States)

    Szczygielska, A.; Burian, A.; Dore, J. C.

    2001-06-01

    Structural studies by means of neutron diffraction of activated carbons, prepared from a polymer of phenol formaldehyde resin by carbonization and activation processes, with variable porosity, are presented. The neutron scattering data were recorded over the range of the scattering vector Q from 2.5 to 500 nm-1. The structure of activated carbons has been described in terms of disordered graphite-like layers with very weak interlayer correlations. The model has been generated by computer simulations and its validity has been tested by comparison of the experimental and calculated intensity functions. Modelling studies have shown that the model containing 3-4 layers each about 2 nm in diameter accounts for the experimental data and that graphite layers are randomly translated and rotated, according to the turbostratic structure. Near-neighbour carbon-carbon distances of about 0.139 nm and 0.154 nm have been determined. The Debye-Waller factor exp (-Q2σ2/2) with σ = σ0(r)1/2 suggests a paracrystalline structure within a single layer. The value of the interlayer spacing of 0.36 nm has been found from paracrystalline simulations of the layer arrangement in the c-axis direction. The high quality of the experimental data has enabled determination of the coordination numbers, the interatomic distances and their standard deviations using a curve-fitting procedure over the Q-range from 250 nm to 500 nm, providing structural information about short- and intermediate-range ordering.

  14. TWO-PARAMETER ISOTHERMS OF METHYL ORANGE SORPTION BY PINECONE DERIVED ACTIVATED CARBON

    OpenAIRE

    M. R. Samarghandi ، M. Hadi ، S. Moayedi ، F. Barjasteh Askari

    2009-01-01

    The adsorption of a mono azo dye methyl-orange (MeO) onto granular pinecone derived activated carbon (GPAC), from aqueous solutions, was studied in a batch system. Seven two-parameter isotherm models Langmuir, Freundlich, Dubinin-Radushkevic, Temkin, Halsey, Jovanovic and Hurkins-Jura were used to fit the experimental data. The results revealed that the adsorption isotherm models fitted the data in the order of Jovanovic (X2=1.374) > Langmuir > Dubinin-Radushkevic > Temkin > Freundlich > Hals...

  15. Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media

    Directory of Open Access Journals (Sweden)

    Khomenko Andrei P.

    2018-01-01

    Full Text Available The article deals with the development of mathematical models and evaluation criteria of the vibration field in the dynamic interactions of the elements of the vibrational technological machines for the processes of vibrational strengthening of long-length parts with help of a steel balls working medium. The study forms a theoretical understanding of the modes of motions of material particles in interaction with a vibrating surface of the working body of the vibration machine. The generalized approach to the assessment of the dynamic quality of the work of vibrating machines in multiple modes of tossing, when the period of free flight of particles is a multiple of the period of the surface oscillations of the working body, is developed in the article. For the correction of vibration field of the working body, the characteristics of dynamic interactions of granular elements of the medium are taken into account using original sensors. The sensors that can detect different particularities of interaction of the granular medium elements at different points of the working body are proposed to evaluate the deviation from a homogeneous and one-dimensional mode of vibration field. Specially developed sensors are able to register interactions between a single granule, a system of granules in filamentous structures, and multipoint interactions of the elements in a close-spaced cylindrical structure. The system of regularization of the structure of vibration fields based on the introduction of motion translation devices is proposed using the multi-point sensor locations on the working body. The article refers to analytical approaches of the theory of vibration displacements. For the experimental data assessment, the methods of statistical analysis are applied. It is shown that the peculiar features of the motion of granular medium registered by the sensors can be used to build active control systems of field vibration.

  16. Novel somatic mutations in large granular lymphocytic leukemia affecting the STAT-pathway and T-cell activation

    International Nuclear Information System (INIS)

    Andersson, E I; Rajala, H L M; Eldfors, S; Ellonen, P; Olson, T; Jerez, A; Clemente, M J; Kallioniemi, O; Porkka, K; Heckman, C; Loughran, T P Jr; Maciejewski, J P; Mustjoki, S

    2013-01-01

    T-cell large granular lymphocytic (T-LGL) leukemia is a clonal disease characterized by the expansion of mature CD3+CD8+ cytotoxic T cells. It is often associated with autoimmune disorders and immune-mediated cytopenias. Our recent findings suggest that up to 40% of T-LGL patients harbor mutations in the STAT3 gene, whereas STAT5 mutations are present in 2% of patients. In order to identify putative disease-causing genetic alterations in the remaining T-LGL patients, we performed exome sequencing from three STAT mutation-negative patients and validated the findings in 113 large granular lymphocytic (LGL) leukemia patients. On average, 11 CD8+ LGL leukemia cell-specific high-confidence nonsynonymous somatic mutations were discovered in each patient. Interestingly, all patients had at least one mutation that affects either directly the STAT3-pathway (such as PTPRT) or T-cell activation (BCL11B, SLIT2 and NRP1). In all three patients, the STAT3 pathway was activated when studied by RNA expression or pSTAT3 analysis. Screening of the remaining 113 LGL leukemia patients did not reveal additional patients with same mutations. These novel mutations are potentially biologically relevant and represent rare genetic triggers for T-LGL leukemia, and are associated with similar disease phenotype as observed in patients with mutations in the STAT3 gene

  17. Adsorbed natural gas storage with activated carbons made from Illinois coals and scrap tires

    Science.gov (United States)

    Sun, Jielun; Brady, T.A.; Rood, M.J.; Lehmann, C.M.; Rostam-Abadi, M.; Lizzio, A.A.

    1997-01-01

    Activated carbons for natural gas storage were produced from Illinois bituminous coals (IBC-102 and IBC-106) and scrap tires by physical activation with steam or CO2 and by chemical activation with KOH, H3PO4, or ZnCl2. The products were characterized for N2-BET area, micropore volume, bulk density, pore size distribution, and volumetric methane storage capacity (Vm/Vs). Vm/Vs values for Illinois coal-derived carbons ranged from 54 to 83 cm3/cm3, which are 35-55% of a target value of 150 cm3/cm3. Both granular and pelletized carbons made with preoxidized Illinois coal gave higher micropore volumes and larger Vm/Vs values than those made without preoxidation. This confirmed that preoxidation is a desirable step in the production of carbons from caking materials. Pelletization of preoxidized IBC-106 coal, followed by steam activation, resulted in the highest Vm/Vs value. With roughly the same micropore volume, pelletization alone increased Vm/Vs of coal carbon by 10%. Tire-derived carbons had Vm/Vs values ranging from 44 to 53 cm3/cm3, lower than those of coal carbons due to their lower bulk densities. Pelletization of the tire carbons increased bulk density up to 160%. However, this increase was offset by a decrease in micropore volume of the pelletized materials, presumably due to the pellet binder. As a result, Vm/Vs values were about the same for granular and pelletized tire carbons. Compared with coal carbons, tire carbons had a higher percentage of mesopores and macropores.

  18. Enhancing anaerobic digestion of poultry blood using activated carbon

    Directory of Open Access Journals (Sweden)

    Maria José Cuetos

    2017-05-01

    Full Text Available The potential of using anaerobic digestion for the treatment of poultry blood has been evaluated in batch assays at the laboratory scale and in a mesophilic semi-continuous reactor. The biodegradability test performed on residual poultry blood was carried out in spite of high inhibitory levels of acid intermediaries. The use of activated carbon as a way to prevent inhibitory conditions demonstrated the feasibility of attaining anaerobic digestion under extreme ammonium and acid conditions. Batch assays with higher carbon content presented higher methane production rates, although the difference in the final cumulative biogas production was not as sharp. The digestion of residual blood was also studied under semi-continuous operation using granular and powdered activated carbon. The average specific methane production was 216 ± 12 mL CH4/g VS. This result was obtained in spite of a strong volatile fatty acid (VFA accumulation, reaching values around 6 g/L, along with high ammonium concentrations (in the range of 6–8 g/L. The use of powdered activated carbon resulted in a better assimilation of C3-C5 acid forms, indicating that an enhancement in syntrophic metabolism may have taken place. Thermal analysis and scanning electron microscopy (SEM were applied as analytical tools for measuring the presence of organic material in the final digestate and evidencing modifications on the carbon surface. The addition of activated carbon for the digestion of residual blood highly improved the digestion process. The adsorption capacity of ammonium, the protection this carrier may offer by limiting mass transfer of toxic compounds, and its capacity to act as a conductive material may explain the successful digestion of residual blood as the sole substrate.

  19. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    The results show that the prepared activated carbon has a microstructure and a higher specific surface area (1179 m2/g), suggesting ... wastewater. KEY WORDS: Chemical activation, Adsorption, Activated carbon, Pesticide removal, Waste treatment ..... water by activated carbon prepared from waste rubber tire. Water Res.

  20. Minimizing activated carbons production cost

    International Nuclear Information System (INIS)

    Stavropoulos, G.G.; Zabaniotou, A.A.

    2009-01-01

    A detailed economic evaluation of activated carbons production process from various raw materials is undertaken using the conventional economic indices (ROI, POT, and NPV). The fundamental factors that affect production cost were taken into account. It is concluded that for an attractive investment in activated carbons production one should select the raw material with the highest product yield, adopt a chemical activation production scheme and should base product price on product-surface area (or more generally on product adsorption capacity for the adsorbate in consideration). A raw material that well meets the above-mentioned criteria is petroleum coke but others are also promising (charcoals, and carbon black). Production cost then can be optimized by determining its minimum value of cost that results from the intercept between the curves of plant capacity and raw material cost - if any. Taking into account the complexity of such a techno-economic analysis, a useful suggestion could be to start the evaluations from a plant capacity corresponding to the break-even point, i. e. the capacity at which income equals production cost. (author)

  1. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons.

    Science.gov (United States)

    Bernal, Valentina; Erto, Alessandro; Giraldo, Liliana; Moreno-Piraján, Juan Carlos

    2017-06-22

    Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC) was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo) was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr) was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L -1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  2. Effect of Solution pH on the Adsorption of Paracetamol on Chemically Modified Activated Carbons

    Directory of Open Access Journals (Sweden)

    Valentina Bernal

    2017-06-01

    Full Text Available Paracetamol adsorption in acidic, neutral and basic media on three activated carbons with different chemistry surfaces was studied. A granular activated carbon (GAC was prepared from coconut shell; starting from this sample, an oxidized activated carbon (GACo was obtained by treating the GAC with a boiling solution of 6 M nitric acid, so to generate a greater number of oxygenated surface groups. In addition, a reduced activated carbon (GACr was obtained by heating the GAC at 1173 K, to remove the oxygenated surface groups. Paracetamol adsorption was higher for GACr due to the lower presence of oxygenated surface functional groups. Moreover, adsorption was highest at neutral pH. The magnitude of the interactions between paracetamol molecules and activated carbons was studied by measuring the immersion enthalpies of activated carbons in solution of paracetamol at different concentrations and pH values and by calculating the interaction enthalpy. The highest value was obtained for GACr in a paracetamol solution of 1000 mg L−1 at pH 7, confirming that paracetamol adsorption is favoured on basic activated carbons at pH values near to neutrality. Finally, the Gibbs energy changes confirmed the latter result, allowing explaining the different magnitudes of the interactions between paracetamol and activated carbons, as a function of solution pH.

  3. Design of activated carbon/activated carbon asymmetric capacitors

    Directory of Open Access Journals (Sweden)

    Isabel ePiñeiro-Prado

    2016-03-01

    Full Text Available Supercapacitors are energy storage devices that offer a high power density and a low energy density in comparison with batteries. Their limited energy density can be overcome by using asymmetric configuration in mass electrodes, where each electrode works within their maximum available potential window, rendering the maximum voltage output of the system. Such asymmetric capacitors must be optimized through careful electrochemical characterization of the electrodes for accurate determination of the capacitance and the potential stability limits. The results of the characterization are then used for optimizing mass ratio of the electrodes from the balance of stored charge. The reliability of the design largely depends on the approach taken for the electrochemical characterization. Therefore, the performance could be lower than expected and even the system could break down, if a well thought out procedure is not followed.In this work, a procedure for the development of asymmetric supercapacitors based on activated carbons is detailed. Three activated carbon materials with different textural properties and surface chemistry have been systematically characterized in neutral aqueous electrolyte. The asymmetric configuration of the masses of both electrodes in the supercapacitor has allowed to cover a higher potential window, resulting in an increase of the energy density of the three devices studied when compared with the symmetric systems, and an improved cycle life.

  4. In-situ regeneration of activated carbon with electric potential swing desorption (EPSD) for the H2S removal from biogas

    DEFF Research Database (Denmark)

    Farooq, M.; Almustapha, M. N.; Imran, Muhammad

    2017-01-01

    In-situ regeneration of a granular activated carbon was conducted for the first time using electric potential swing desorption (EPSD) with potentials up to 30 V. The EPSD system was compared against a standard non-potential system using a fixed-bed reactor with a bed of 10 g of activated carbon...... treating a gas mixture with 10,000 ppm H2S. Breakthrough times, adsorption desorption volume, capacities, effect of regeneration and desorption kinetics were investigated. The analysis showed that desorption of H2S using the new EPSD system was 3 times quicker compared with the no potential system. Hence......, physical adsorption using EPSD over activated carbon is efficient, safe and environmental friendly and could be used for the in-situ regeneration of granular activated carbon without using a PSA and/or TSA system. Additionally, adsorption and desorption cycles can be obtained with a classical two column...

  5. Poultry litter-based activated carbon for removing heavy metal ions in water.

    Science.gov (United States)

    Guo, Mingxin; Qiu, Guannan; Song, Weiping

    2010-02-01

    Utilization of poultry litter as a precursor material to manufacture activated carbon for treating heavy metal-contaminated water is a value-added strategy for recycling the organic waste. Batch adsorption experiments were conducted to investigate kinetics, isotherms, and capacity of poultry litter-based activated carbon for removing heavy metal ions in water. It was revealed that poultry litter-based activated carbon possessed significantly higher adsorption affinity and capacity for heavy metals than commercial activated carbons derived from bituminous coal and coconut shell. Adsorption of metal ions onto poultry litter-based carbon was rapid and followed Sigmoidal Chapman patterns as a function of contact time. Adsorption isotherms could be described by different models such as Langmuir and Freundlich equations, depending on the metal species and the coexistence of other metal ions. Potentially 404 mmol of Cu2+, 945 mmol of Pb2+, 236 mmol of Zn2+, and 250-300 mmol of Cd2+ would be adsorbed per kg of poultry litter-derived activated carbon. Releases of nutrients and metal ions from litter-derived carbon did not pose secondary water contamination risks. The study suggests that poultry litter can be utilized as a precursor material for economically manufacturing granular activated carbon that is to be used in wastewater treatment for removing heavy metals.

  6. Volumetric and superficial characterization of carbon activated

    International Nuclear Information System (INIS)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T.

    2000-01-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  7. Composite supercapacitor electrodes made of activated carbon ...

    Indian Academy of Sciences (India)

    In this paper, we report on the high electrical storage capacity of composite electrodes made from nanoscale activated ... doped PEDOT) onto the nanoscale activated carbon backbone, wherein the nanoscale activated carbon was pro- duced by ..... extent, is dependant on the internal resistance/impedance of the active ...

  8. Biological regeneration of para-nitrophenol loaded activated carbon

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.; Martin, R.J.

    1997-01-01

    Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon (GAC). This study deals with in-situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration of a given adsorbate were studied. The research investigated the extent of bio regeneration for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated for para-nitrophenol (PNP) of concentration 50 mg/L. Bio regeneration in he total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initially exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was re-saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the during of regeneration for a fixed initial biomass content of the bioreactor. The bio regeneration efficiency of the totally exhausted (with PNP) GAC the empty bed contact time (EBCT) and the initial concentration of the substrate had a profound effect on the bio regeneration efficiency. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  9. Studies of activated carbon and carbon black for supercapacitor applications

    Energy Technology Data Exchange (ETDEWEB)

    Richner, R.; Mueller, S.; Koetz, R.; Wokaun, A. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    Carbon Black and activated carbon materials providing high surface areas and a distinct pore distribution are prime materials for supercapacitor applications at frequencies < 0.5 Hz. A number of these materials were tested for their specific capacitance, surface and pore size distribution. High capacitance electrodes were manufactured on the laboratory scale with attention to ease of processability. (author) 1 fig., 1 ref.

  10. Application of activated carbon to radiochemical analysis

    International Nuclear Information System (INIS)

    Shibata, Sadao; Watari, Kazuo; Kaneko, Katsumi.

    1990-01-01

    With increasing understanding of physiochemical properties of activated carbons, the use of activated carbons has recently received much attention in the field of radiochemical analysis. In this paper, adsorption phenomena especially for inorganic ions are reviewed. Kinds of activated carbons are briefly given. Surface properties of activated carbons and ionic adsorption properties are referred to according to the physical or chemical properties. Adsorption is discussed in terms of the following ions: (1) inorganic ions and inorganic compounds; (2) metal complex ions; and (3) complexes including organic ligand. (N.K.) 95 refs

  11. Adsorption of cellular peptides of Microcystis aeruginosa and two herbicides onto activated carbon. Effect of surface charge and interactions

    Czech Academy of Sciences Publication Activity Database

    Hnaťuková, Petra; Kopecká, Ivana; Pivokonský, Martin

    2011-01-01

    Roč. 45, č. 11 (2011), s. 3359-3368 ISSN 0043-1354 R&D Projects: GA AV ČR IAA200600902; GA ČR GPP105/10/P515 Institutional research plan: CEZ:AV0Z20600510 Keywords : cellular organic matter * granular activated carbon * molecular weight distribution * surface charge * cyanobacterial peptides Subject RIV: BK - Fluid Dynamics Impact factor: 4.865, year: 2011

  12. Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from EGSB reactors fed with oleic acid

    OpenAIRE

    Pereira, M.A.; Roest, de, K.; Stams, A.J.M.; Akkermans, A.D.L.; Amaral, A.L.; Pons, M.N.; Ferreira, E.C.; Mota, M.; Alves, M.

    2003-01-01

    Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on-the accumulation of adsorbed long chain fatty acid and with the molecular characterization of microbial community gave insight into the mechanisms of sludge disintegration, flotation and washoutMorphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The ...

  13. Physical and Chemical Properties of Pan-Derived Electrospun Activated Carbon Nanofibers and Their Potential for Use As An Adsorbent for Toxic Industrial Chemicals (Postprint)

    Science.gov (United States)

    2012-09-14

    carbon fiber cloth (ACFC) and Calgon BPL™ granular activated carbon (GAC) 2 Methods 2.1 Precursor selection and nonwoven nanofiber material preparation...respirators, re- generative filter systems that can protect against TICs, or perhaps smaller and more energy-efficient pressure-swing- adsorption systems...Peterson, G.W., Karwacki, C.: Novel collective protection filters for emerging TIC requirements: axial- and radial-flow filter de- signs. Edgewood Chemical

  14. (Hevea brasiliensis) SEED PERICARP-ACTIVATED CARBON

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... Abstract. The objective of this study was to produce activated carbon from rubber seed pericarp and to evaluate its performance with commercial activated carbon in the treatment of abattoir wastewater as well as its potential in the adsorption of iron (III) ions from aqueous solution. The rubber seed pericarp ...

  15. Preparation and characterisation of activated carbon

    International Nuclear Information System (INIS)

    Badri bin Muhammad; Karen binti Badri; Mohd Zobir bin Hussein; Zulkarnain bin Zainal; W.M. Daud bin W Yunus; Ramli bin Ibrahim

    1994-01-01

    Activated carbon was prepared from Agricultural wastes, such as coconut shell, Palm oil Shell and mangrove trunk by destructive distillation under vakuum. Chemical and Physical properties of the activated carbon were studied and some potentially useful application in the fields of chemistry was also carried out

  16. Making Activated Carbon by Wet Pressurized Pyrolysis

    Science.gov (United States)

    Fisher, John W.; Pisharody, Suresh; Wignarajah, K.; Moran, Mark

    2006-01-01

    A wet pressurized pyrolysis (wet carbonization) process has been invented as a means of producing activated carbon from a wide variety of inedible biomass consisting principally of plant wastes. The principal intended use of this activated carbon is room-temperature adsorption of pollutant gases from cooled incinerator exhaust streams. Activated carbon is highly porous and has a large surface area. The surface area depends strongly on the raw material and the production process. Coconut shells and bituminous coal are the primary raw materials that, until now, were converted into activated carbon of commercially acceptable quality by use of traditional production processes that involve activation by use of steam or carbon dioxide. In the wet pressurized pyrolysis process, the plant material is subjected to high pressure and temperature in an aqueous medium in the absence of oxygen for a specified amount of time to break carbon-oxygen bonds in the organic material and modify the structure of the material to obtain large surface area. Plant materials that have been used in demonstrations of the process include inedible parts of wheat, rice, potato, soybean, and tomato plants. The raw plant material is ground and mixed with a specified proportion of water. The mixture is placed in a stirred autoclave, wherein it is pyrolized at a temperature between 450 and 590 F (approximately between 230 and 310 C) and a pressure between 1 and 1.4 kpsi (approximately between 7 and 10 MPa) for a time between 5 minutes and 1 hour. The solid fraction remaining after wet carbonization is dried, then activated at a temperature of 500 F (260 C) in nitrogen gas. The activated carbon thus produced is comparable to commercial activated carbon. It can be used to adsorb oxides of sulfur, oxides of nitrogen, and trace amounts of hydrocarbons, any or all of which can be present in flue gas. Alternatively, the dried solid fraction can be used, even without the activation treatment, to absorb

  17. Response of anaerobic granular sludge to iron oxide nanoparticles and multi-wall carbon nanotubes during beet sugar industrial wastewater treatment.

    Science.gov (United States)

    Ambuchi, John J; Zhang, Zhaohan; Shan, Lili; Liang, Dandan; Zhang, Peng; Feng, Yujie

    2017-06-15

    The accelerated use of iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs) in the consumer and industrial sectors has triggered the need to understand their potential environmental impact. The response of anaerobic granular sludge (AGS) to IONPs and MWCNTs during the anaerobic digestion of beet sugar industrial wastewater (BSIW) was investigated in this study. The IONPs increased the biogas and subsequent CH 4 production rates in comparison with MWCNTs and the control samples. This might be due to the utilization of IONPs and MWCNTs as conduits for electron transfer toward methanogens. The MWCNTs majorly enriched the bacterial growth, while IONP enrichment mostly benefitted the archaea population. Furthermore, scanning electron microscopy and confocal laser scanning microscopy revealed that AGS produced extracellular polymeric substances, which interacted with the IONPs and MWCNTs. This provided cell protection and prevented the nanoparticles from piercing through the membranes and thus cytotoxicity. The results provide useful information and insights on the adjustment of anaerobic microorganisms to the natural complex environment based on nanoparticles infiltration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Design and fabrication of carbon fibers with needle-like nano-HA coating to reinforce granular nano-HA composites.

    Science.gov (United States)

    Wang, Xudong; Zhao, Xueni; Zhang, Li; Wang, Wanying; Zhang, Jing; He, Fuzhen; Yang, Jianjun

    2017-08-01

    Carbon fibers (CFs) with needle-like nano-hydroxyapatite (nHA) coating were first used as reinforcing materials named nHA-CFs to improve the mechanical properties of pure HA. A powder mixture containing nHA-CFs and granular nano-HA (gHA) was directly sintered by hot pressing at appropriate sintering pressure and temperature. A three-phase nHA-CFs/gHA composite was designed, fabricated, and used as an artificial bone. Results show that the bending strengths of the nHA-CFs/gHA composite are approximately 41.1% and 59.2% higher than those of CFs/gHA composite and pure HA, respectively. The possible reinforcing mechanism of nHA-CFs in the composite is also proposed at the end. When nHA-CFs are applied for preparation of nHA-CFs/gHA composites, the internal stress on its phase boundary with gHA matrix generated during cooling of sintered is significantly reduced due to the presence of the nHA coatings. It infers that nHA coatings on CFs might act as a bridge to control the forming of interfacial gaps between the gHA matrix and the CFs effectively. Our work provides additional insights into the feasibility of nHA-CFs/gHA composites as load-bearing implant materials in clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Anaerobic fermentation combined with low-temperature thermal pretreatment for phosphorus-accumulating granular sludge: Release of carbon source and phosphorus as well as hydrogen production potential.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei

    2016-10-01

    Releases of organic compounds and phosphorus from phosphorus-accumulating granular sludge (PGS) and phosphorus-accumulating flocculent sludge (PFS) during low-temperature thermal pretreatment and anaerobic fermentation were investigated. Meanwhile, biogas production potential and microbial community structures were explored. The results indicate that much more soluble chemical oxygen demand (SCOD) and phosphorus were released from PGS than from PFS via low-temperature thermal pretreatment because of the higher extracellular polymeric substances (EPS) content in PGS and higher ratio of phosphorus reserved in EPS. Furthermore, PGS contains more anaerobes and dead cells, resulting in much higher SCOD and volatile fatty acids release from PGS than those from PFS during fermentation. PGS fermentation facilitated the n-butyric acid production, and PGS exhibited the hydrogen production potential during fermentation due to the presence of hydrogen-producing bacteria. Therefore, anaerobic fermentation combined with low-temperature thermal pretreatment can facilitate the recovery of carbon and phosphorus as well as producing hydrogen from PGS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Granular media : flow & agitations

    NARCIS (Netherlands)

    Dijksman, Joshua Albert

    2009-01-01

    This thesis is about weakly driven granular flows and suspensions. Chapter 1 is an overview of the current knowledge of slow granular flows in so-called split-bottom geometries, which in essence consist of a disk rotating at the bottom of a container. In chapter 2 we study dry granular flows in this

  1. Large Scale, Long-Term, High Granularity Measurement of Active Travel Using Smartphones Apps

    Directory of Open Access Journals (Sweden)

    Ben W. Heller

    2018-02-01

    Full Text Available Accurate, long-term data are needed in order to determine trends in active travel, to examine the effectiveness of any interventions and to quantify the health, social and economic consequences of active travel. However, most studies of individual travel behaviour have either used self-report (which is limited in detail and open to bias, or provided logging devices for short periods, so lack the ability to monitor long-term trends. We have developed apps using participants’ own smartphones (Android or iOS that monitor and feed-back individual user’s physical activity whilst the phone is carried or worn. The nature, time and location of any physical activity are uploaded to a secure survey and allow researchers to identify large scale behaviour. Pilot data from almost 2000 users have been logged and are reported. This constitutes a natural experiment, collecting long-term physical activity, transport mode and route choice information across a large cross-section of users.

  2. ACTIVATED CARBON FROM LIGNITE FOR WATER TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Daniel J. Stepan

    2000-07-01

    High concentrations of humate in surface water result in the formation of excess amounts of chlorinated byproducts during disinfection treatment. These precursors can be removed in water treatment prior to disinfection using powdered activated carbon. In the interest of developing a more cost-effective method for removal of humates in surface water, a comparison of the activities of carbons prepared from North Dakota lignites with those of commercial carbons was conducted. Previous studies indicated that a commercial carbon prepared from Texas lignite (Darco HDB) was superior to those prepared from bituminous coals for water treatment. That the high alkali content of North Dakota lignites would result in favorable adsorptive properties for the very large humate molecules was hypothesized, owing to the formation of larger pores during activation. Since no standard humate test has been previously developed, initial adsorption testing was performed using smaller dye molecules with various types of ionic character. With the cationic dye, methylene blue, a carbon prepared from a high-sodium lignite (HSKRC) adsorbed more dye than the Darco HDB. The carbon from the low-sodium lignite was much inferior. With another cationic dye, malachite green, the Darco HDB was slightly better. With anionic dyes, methyl red and azocarmine-B, the results for the HSKRC and Darco HDB were comparable. A humate test was developed using Aldrich humic acid. The HSKRC and the Darco HDB gave equally high adsorption capacities for the humate (138 mg/g), consistent with the similarities observed in earlier tests. A carbon prepared from a high-sodium lignite from a different mine showed an outstanding improvement (201 mg/g). The carbons prepared from the low-sodium lignites from both mines showed poor adsorption capacities for humate. Adsorption isotherms were performed for the set of activated carbons in the humate system. These exhibited a complex behavior interpreted as resulting from two types

  3. Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from EGSB reactors fed with oleic acid

    NARCIS (Netherlands)

    Pereira, M.A.; Roest, de K.; Stams, A.J.M.; Akkermans, A.D.L.; Amaral, A.L.; Pons, M.N.; Ferreira, E.C.; Mota, M.; Alves, M.

    2003-01-01

    Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on-the accumulation of adsorbed long chain fatty acid and with the molecular characterization of microbial community gave insight

  4. Removal of nitrate from water by adsorption onto zinc chloride treated activated carbon

    DEFF Research Database (Denmark)

    Bhatnagar, A.; Ji, M.; Choi, Y.H.

    2008-01-01

    Adsorption study with untreated and zinc chloride (ZnCl2) treated coconut granular activated carbon (GAC) for nitrate removal from water has been carried out. Untreated coconut GAC was treated with ZnCl2 and carbonized. The optimal conditions were selected by studying the influence of process...... variables such as chemical ratio and activation temperature. Experimental results reveal that chemical weight ratio of 200% and temperature of 500 degrees C was found to be optimum for the maximum removal of nitrate from water. Both untreated and ZnCl2 treated coconut GACs were characterized by scanning...... electron microscopy (SEM), Brunauer Emmett Teller (BET) N-2-gas adsorption, surface area and Energy Dispersive X-Ray (EDX) analysis. The comparison between untreated and ZnCl2 treated GAC indicates that treatment with ZnCl2 has significantly improved the adsorption efficacy of untreated GAC. The adsorption...

  5. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Las Casas, Alexandre

    2004-01-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  6. Carbon dioxide adsorption in chemically activated carbon from sewage sludge.

    Science.gov (United States)

    de Andrés, Juan Manuel; Orjales, Luis; Narros, Adolfo; de la Fuente, María del Mar; Encarnación Rodríguez, María

    2013-05-01

    In this work, sewage sludge was used as precursor in the production of activated carbon by means of chemical activation with KOH and NaOH. The sludge-based activated carbons were investigated for their gaseous adsorption characteristics using CO2 as adsorbate. Although both chemicals were effective in the development of the adsorption capacity, the best results were obtained with solid NaOH (SBA(T16)). Adsorption results were modeled according to the Langmuir and Freundlich models, with resulting CO2 adsorption capacities about 56 mg/g. The SBA(T16) was characterized for its surface and pore characteristics using continuous volumetric nitrogen gas adsorption and mercury porosimetry. The results informed about the mesoporous character of the SBA(T16) (average pore diameter of 56.5 angstroms). The Brunauer-Emmett-Teller (BET) surface area of the SBA(T16) was low (179 m2/g) in comparison with a commercial activated carbon (Airpel 10; 1020 m2/g) and was mainly composed of mesopores and macropores. On the other hand, the SBA(T16) adsorption capacity was higher than that of Airpel 10, which can be explained by the formation of basic surface sites in the SBA(T16) where CO2 experienced chemisorption. According to these results, it can be concluded that the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2. Adsorption methods are one of the current ways to reduce CO2 emissions. Taking this into account, sewage-sludge-based activated carbons were produced to study their CO2 adsorption capacity. Specifically, chemical activation with KOH and NaOH of previously pyrolyzed sewage sludge was carried out. The results obtained show that even with a low BET surface area, the adsorption capacity of these materials was comparable to that of a commercial activated carbon. As a consequence, the use of sewage-sludge-based activated carbons is a promising option for the capture of CO2 and an interesting application for this waste.

  7. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.

    Science.gov (United States)

    Peláez-Cid, Alejandra-Alicia; Herrera-González, Ana-María; Salazar-Villanueva, Martín; Bautista-Hernández, Alejandro

    2016-10-01

    In this study, three mesoporous activated carbons prepared from vegetable residues were used to remove acid, basic, and direct dyes from aqueous solutions, and reactive and vat dyes from textile wastewater. Granular carbons obtained by chemical activation at 673 K with phosphoric acid from prickly pear peels (CarTunaQ), broccoli stems (CarBrocQ), and white sapote seeds (CarZapQ) were highly efficient for the removal of dyes. Adsorption equilibrium studies were carried out in batch systems and treated with Langmuir and Freundlich isotherms. The maximum adsorption capacities calculated from the Langmuir isotherms ranged between 131.6 and 312.5 mg/g for acid dyes, and between 277.8 and 500.0 mg/g for basic dyes at 303 K. Our objective in this paper was to show that vegetable wastes can serve as precursors for activated carbons that can be used for the adsorption of dyes. Specifically CarBrocQ was the best carbon produced for the removal of textile dyes. The color removal of dyes present in textile wastewaters was compared with that of a commercial powdered carbon, and it was found that the carbons produced using waste material reached similar efficiency levels. Carbon samples were characterized by bulk density, point of zero charge, thermogravimetric analysis, elemental analysis, Fourier transform infrared spectroscopy, scanning electron microscopy, methylene blue adsorption isotherms at 303 K, and nitrogen adsorption isotherms at 77 K (SBET). The results show that the activated carbons possess a large specific surface area (1025-1177 m(2)/g) and high total pore volume (1.06-2.16 cm(3)/g) with average pore size diameters between 4.1 and 8.4 nm. Desorption and regeneration tests were made to test the viability of reusing the activated carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from an EGSB reactor fed with oleic acid.

    Science.gov (United States)

    Pereira, M A; Roest, K; Stams, A J M; Akkermans, A D L; Amaral, A L; Pons, M N; Ferreira, E C; Mota, M; Alves, M M

    2003-01-01

    Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid and with the molecular characterization of microbial community gave insight into the mechanisms of sludge disintegration, flotation and washout. It was found that the bacterial domain was more affected than the archaeal domain during this process. However, no acetoclastic activity and onlya residual hydrogenotrophic activity were detected in the sludge at the end of the operation.

  9. Antimicrobial Activity of Carbon-Based Nanoparticles

    Directory of Open Access Journals (Sweden)

    Solmaz Maleki Dizaj

    2015-03-01

    Full Text Available Due to the vast and inappropriate use of the antibiotics, microorganisms have begun to develop resistance to the commonly used antimicrobial agents. So therefore, development of the new and effective antimicrobial agents seems to be necessary. According to some recent reports, carbon-based nanomaterials such as fullerenes, carbon nanotubes (CNTs (especially single-walled carbon nanotubes (SWCNTs and graphene oxide (GO nanoparticles show potent antimicrobial properties. In present review, we have briefly summarized the antimicrobial activity of carbon-based nanoparticles together with their mechanism of action. Reviewed literature show that the size of carbon nanoparticles plays an important role in the inactivation of the microorganisms. As major mechanism, direct contact of microorganisms with carbon nanostructures seriously affects their cellular membrane integrity, metabolic processes and morphology. The antimicrobial activity of carbon-based nanostructures may interestingly be investigated in the near future owing to their high surface/volume ratio, large inner volume and other unique chemical and physical properties. In addition, application of functionalized carbon nanomaterials as carriers for the ordinary antibiotics possibly will decrease the associated resistance, enhance their bioavailability and provide their targeted delivery.

  10. Comparison between thermal and ozone regenerations of spent activated carbon exhausted with phenol.

    Science.gov (United States)

    Alvarez, P M; Beltrán, F J; Gómez-Serrano, V; Jaramillo, J; Rodríguez, E M

    2004-04-01

    Thermal and ozone regenerations of granular activated carbons (GAC) used in the removal of phenol from aqueous solution have been studied. The phenol isotherms for virgin GAC could be well represented by the Langmuir equation. Direct ozonation of GAC introduced large amounts of acidic surface oxygen groups, which caused a decrease in the phenol uptake. Thermogravimetric methods were used to investigate the mechanism of phenol adsorption onto virgin and ozonated carbons. Thermal regeneration was carried out at 1123K using nitrogen (pyrolysis alone) or nitrogen and carbon dioxide (pyrolysis plus oxidation). Results showed that spent carbons do not recover their adsorption characteristics when heated under inert conditions whereas carbon dioxide regeneration was effective at about 15% wt burn-off. Regeneration of GAC was also carried out with ozone as oxidizing gas at room temperature. Ozone dose and the nature of GAC have much influence on the regeneration performance. For an individual GAC there exits an optimum ozone dose for which phenol is eliminated together with most of its oxidation by-products without incurring in carbon surface chemical alterations. However, if excessive ozone is applied some acidic surface groups are formed on the GAC, thereby decreasing the adsorption capacity for phenol. Results showed that spent carbons can recover most of their adsorption characteristics and specific surface areas when regenerated through a number of adsorption-ozone regeneration cycles.

  11. The use of activated carbons for removing organic matter from groundwater

    Directory of Open Access Journals (Sweden)

    Kaleta Jadwiga

    2017-09-01

    Full Text Available The article presents research results of the introduction of powdery activated carbon to the existing technological system of the groundwater treatment stations in a laboratory, pilot plant and technical scale. The aim of the research was to reduce the content of organic compounds found in the treated water, which create toxic organic chlorine compounds (THM after disinfection with chlorine. Nine types of powdery active carbons were tested in laboratory scale. The top two were selected for further study. Pilot plant scale research was carried out for the filter model using CWZ-30 and Norit Sa Super carbon. Reduction of the organic matter in relation to the existing content in the treated water reached about 30%. Research in technical scale using CWZ-30 carbon showed a lesser efficiency with respect to laboratory and pilot-plant scale studies. The organic matter decreased by 15%. Since filtration is the last process before the individual disinfection, an alternative solution is proposed, i.e. the second stage of filtration with a granular activated carbon bed, operating in combined sorption and biodegradation processes. The results of tests carried out in pilot scale were fully satisfactory with the effectiveness of 70–100%.

  12. Ex situ treatment of sediments with granular activated carbon : a novel remediation technology

    NARCIS (Netherlands)

    Rakowska, M.I.

    2014-01-01

    Over the last decades, industrial and urban development and emisions of many hazardous organic compounds have threatened the ecological quality of marine and freshwater sediments. Sediments accumulate hydrophobic organic compounds (HOCs) such as polycyclic aromatic hydrocarbons (PAHs),

  13. Optimization of Synthesis Condition for Nanoscale Zero Valent Iron Immobilization on Granular Activated Carbon

    DEFF Research Database (Denmark)

    Mines, Paul D.; Andersen, Henrik Rasmus; Hwang, Yuhoon

    2016-01-01

    Nanoscale zero valent iron (nZVI) has been intensively studied for the treatment of a plethora of pollutants through reductive reaction, however, the nano size should be of concern when nZVI is considered for water treatment, due to difficulties in recovery. The loss of nZVI causes not only...

  14. Activated coconut shell charcoal carbon using chemical-physical activation

    Science.gov (United States)

    Budi, Esmar; Umiatin, Nasbey, Hadi; Bintoro, Ridho Akbar; Wulandari, Futri; Erlina

    2016-02-01

    The use of activated carbon from natural material such as coconut shell charcoal as metal absorbance of the wastewater is a new trend. The activation of coconut shell charcoal carbon by using chemical-physical activation has been investigated. Coconut shell was pyrolized in kiln at temperature about 75 - 150 °C for about 6 hours in producing charcoal. The charcoal as the sample was shieved into milimeter sized granule particle and chemically activated by immersing in various concentration of HCl, H3PO4, KOH and NaOH solutions. The samples then was physically activated using horizontal furnace at 400°C for 1 hours in argon gas environment with flow rate of 200 kg/m3. The surface morphology and carbon content of activated carbon were characterized by using SEM/EDS. The result shows that the pores of activated carbon are openned wider as the chemical activator concentration is increased due to an excessive chemical attack. However, the pores tend to be closed as further increasing in chemical activator concentration due to carbon collapsing.

  15. Desorption of uranium from titanium-activated carbon composite adsorbent with acidic eluent, 2

    International Nuclear Information System (INIS)

    Hirotsu, Takahiro; Fujii, Ayako; Sakane, Kohji; Katoh, Shunsaku; Sugasaka, Kazuhiko

    1984-01-01

    The desorption of uranium from the granular titanium-activated carbon composite adsorbent (concentration of uranium: 25.5 mg/1-Ad), which adsorbed uranium from natural sea water, was examined by the column process with acidic eluent at room temperature. The column operation was able to be carried out without destruction of the granular adsorbent by the generation of the carbon dioxide, and free from disturbance of the eluent flow by precipitate of calcium sulfate dihydrate with sulfuric acid eluent. The amount of acid consumption by the adsorbent was 0.87 eq/1-Ad. The alkaline earth metals were eluted in the range of elution volume below 2 1/1-Ad, whereas uranium, iron, and titanium were eluted above 2 1/1-Ad. Therefore, uranium was separable from the alkaline earth metals which were adsorbed in the most quantity in the adsorbent. In the range of elution volume 2 to 12 1/1-Ad, the percentage of desorbed uranium and the concentration ratio of uranium were 80 %, 680 with 0.5 N sulfuric acid, and 59 %, 490 with 0.5 N hydrochloric acid, respectively. The percentage of dissolved titanium (DTI) was 0.3 % with 0.5 N sulfuric acid, 0.26 % with 0.5 N hydrochloric acid in the same range. (author)

  16. Production of activated carbon from cellulosic fibers for environment protection

    International Nuclear Information System (INIS)

    Le Coq, L.; Faur, C.; Le Cloirec, P.; Phan Ngoc, H.

    2005-01-01

    Activated carbon fibers (ACF) have received an increasing attention in recent years as an adsorbent for purifying polluted gaseous and aqueous streams. Their preparation, characterization and application have been reported in many studies [1], which show that the porosity of ACF is dependent on activation conditions, as temperature, time or gas. ACF provide adsorption rates 2 to 50 times higher than Granular Activated Carbon [2], because of their low diameter (∼10 m) providing a larger external surface area in contact with the fluid compared with that of granules. Furthermore, their potential for the removal of various pollutants from water was demonstrated towards micro-organics like phenols [3], pesticides or dyes [4]. Generally, fibrous activated carbons are produced from natural or synthetic precursors by carbonization at 600-1000 C followed by an activation step by CO 2 oe steam at higher temperature [2]. Another way to produce the fibrous activated carbons is chemical activation with H 3 PO 4 , HNO 3 , KOH...[5]. Different types of synthetic or natural fibers have been used as precursors of fibrous activated carbons since 1970: polyacrylonitrile (PAN), polyphenol, rayon, cellulose phosphate, pitch, etc. Each of them has its own applications and limitations. The synthetic fibers being generally expensive, it would be interesting to find out low-cost precursors from local material resources. This work is a part of a research exchange program between the Vietnamese National Center of Natural Sciences and Technology (Vietnam) and the Ecole des Mines de Nantes (Gepea, France), with the aim to find some economical solutions for water treatment. Fibrous activated carbons are produced from natural cellulose fibers, namely jute and coconut fibers, which are abundant in Vietnam as well as in other tropical countries, have a low ash content and a low cost in comparison with synthetic fibers. Two methods are compared to produce activated carbons: 1) a physical

  17. Biological regeneration of phenol-loaded activated carbon (up flow system)

    International Nuclear Information System (INIS)

    Durrani, M.A.Q.J.; Mirajuddin; Martin, R.J.

    1995-01-01

    This paper represents the report on the biological regeneration of totally activated carbon following the experimental studies carried out at the University of Birmingham, U.K. Biological regeneration is one of several methods that may be used to restore the adsorptive capacity of exhausted granular activated carbon. This study deals with in situ biological regeneration on a pilot scale. The principal objective of this research was to ascertain whether biological regeneration of GAC could occur under conditions typical of water treatment. The important parameters which may have the greatest impact on bio regeneration for a given adsorbate were studied. The research investigated the extent of bio regeneration for phenol of concentration 50 mg/l. Bio regeneration in the total exhaustion system was evaluated in terms of regeneration efficiency and the substrate removal. A three mode procedure was followed for each bio regeneration run. The prepared carbon was initialing exhausted with an adsorbate; it was then bio regenerated with a mixed culture of bacteria, and lastly the carbon was saturated. In the totally exhausted GAC system, the bio regeneration was enhanced by increasing the duration of regeneration for a fixed initial biomass content of the bioreactor. The regenerated phenol loaded GAC bed had nearly gained its original adsorption after the 5-day period of regeneration. Bacterial counts in the effluents of regenerated GAC columns were significantly more than those of fresh carbon effluents. (author)

  18. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal.

    Science.gov (United States)

    Li, Lin; Liu, Suqin; Liu, Junxin

    2011-08-30

    In this study, coconut shell based carbons were chemically treated by ammonia, sodium hydroxide, nitric acid, sulphuric acid, and phosphoric acid to determine suitable modification for improving adsorption ability of hydrophobic volatile organic compounds (VOCs) on granular activated carbons (GAC). The saturated adsorption capacities of o-xylene, a hydrophobic volatile organic compound, were measured and adsorption effects of the original and modified activated carbons were compared. Results showed that GAC modified by alkalis had better o-xylene adsorption capacity. Uptake amount was enhanced by 26.5% and reduced by 21.6% after modification by NH(3)H(2)O and H(2)SO(4), respectively. Compared with the original, GAC modified by acid had less adsorption capacity. Both SEM/EDAX and BET were used to identify the structural characteristics of the tested GAC, while IR spectroscopy and Boehm's titration were applied to analysis the surface functional groups. Relationships between physicochemical characteristics of GAC and their adsorption performances demonstrated that o-xylene adsorption capacity was related to surface area, pore volume, and functional groups of the GAC surface. Removing surface oxygen groups, which constitute the source of surface acidity, and reducing hydrophilic carbon surface favors adsorption capacity of hydrophobic VOCs on carbons. The performances of modified GACs were also investigated in the purification of gases containing complex components (o-xylene and steam) in the stream. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Activated Carbon, Carbon Nanofiber and Carbon Nanotube Supported Molybdenum Carbide Catalysts for the Hydrodeoxygenation of Guaiacol

    Directory of Open Access Journals (Sweden)

    Eduardo Santillan-Jimenez

    2015-03-01

    Full Text Available Molybdenum carbide was supported on three types of carbon support—activated carbon; multi-walled carbon nanotubes; and carbon nanofibers—using ammonium molybdate and molybdic acid as Mo precursors. The use of activated carbon as support afforded an X-ray amorphous Mo phase, whereas crystalline molybdenum carbide phases were obtained on carbon nanofibers and, in some cases, on carbon nanotubes. When the resulting catalysts were tested in the hydrodeoxygenation (HDO of guaiacol in dodecane, catechol and phenol were obtained as the main products, although in some instances significant amounts of cyclohexane were produced. The observation of catechol in all reaction mixtures suggests that guaiacol was converted into phenol via sequential demethylation and HDO, although the simultaneous occurrence of a direct demethoxylation pathway cannot be discounted. Catalysts based on carbon nanofibers generally afforded the highest yields of phenol; notably, the only crystalline phase detected in these samples was Mo2C or Mo2C-ζ, suggesting that crystalline Mo2C is particularly selective to phenol. At 350 °C, carbon nanofiber supported Mo2C afforded near quantitative guaiacol conversion, the selectivity to phenol approaching 50%. When guaiacol HDO was performed in the presence of acetic acid and furfural, guaiacol conversion decreased, although the selectivity to both catechol and phenol was increased.

  20. Cystic Granular Cell Ameloblastoma

    OpenAIRE

    Thillaikarasi, Rathnavel; Balaji, Jayaram; Gupta, Bhawna; Ilayarja, Vadivel; Vani, Nandimandalam Venkata; Vidula, Balachander; Saravanan, Balasubramaniam; Ponniah, Irulandy

    2010-01-01

    Ameloblastoma is a locally aggressive benign epithelial odontogenic tumor, while unicystic ameloblastoma is a relatively less aggressive variant. Although rare in unicystic or cystic ameloblastoma, granular cell change in ameloblastoma is a recognized phenomenon. The purpose of the present article is to report a case of cystic granular cell ameloblastoma in 34-year old female.

  1. Hepatoprotective activity of polyherbal formulation against carbon ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... 3Department of Botany, Kongunadu Arts and Science College, Coimbatore – 641 029. India. Accepted 18 June, 2010. The ethanloic extracts of the polyherbal medicinal plants (Asteracantha longifolia, Cyperus rotundus and Bryophyllum pinnatum) were evaluated for hepatoprotective activity in carbon ...

  2. REMOVAL OF IMIDACLOPRID USING ACTIVATED CARBON ...

    African Journals Online (AJOL)

    suggest that this low cost agent is an efficient tool to remove organic pollutants especially imidacloprid from wastewater. KEY WORDS: ..... (A) XRD profiles of ANC and AAC and (B) adsorption kinetic of imidacloprid on. AAC. Each data point ..... water by activated carbon prepared from waste rubber tire. Water Res. 2011, 45 ...

  3. Hepatoprotective activity of polyherbal formulation against carbon ...

    African Journals Online (AJOL)

    hope&shola

    2010-12-06

    Dec 6, 2010 ... The ethanloic extracts of the polyherbal medicinal plants (Asteracantha longifolia, Cyperus rotundus and Bryophyllum pinnatum) were evaluated for hepatoprotective activity in carbon tetrachloride induced liver damage in rats. The ethanolic extract of polyherbal formulation at 250 mg/kg b.w. exhibited a ...

  4. nanoparticles-decorated activated carbon nanocomposite based ...

    Indian Academy of Sciences (India)

    T K APARNA

    2018-02-07

    Feb 7, 2018 ... formance. Recently, Chitravathi and Munichandriah. 42 prepared AC based carbon paste electrode for simulta- neous determination of catecholamines. The activation was done by electrochemical method and the sensor showed better response towards detection. Similarly,. Veeramani et al.,43 reported a ...

  5. Burner Characteristics for Activated Carbon Production

    Directory of Open Access Journals (Sweden)

    zakaria Supaat

    2017-01-01

    Full Text Available Carbonization process has become an important stage in developing activated carbon. However, existing burner are not efficient in time production which take 24 hours to15 days for charcoal production. Therefore, new design of burner/kilns is quite needed in order to produce larger number of charcoal in short time production, to improve charcoal quality regarding to the smooth surface area and pore volume. This research proposed new design burner which divided into two types which are vertical and horizontal types. Vertical is not completed by auto-rotating system while horizontal type is complete by auto-rotating and fume handling system. It developed using several equipment such as welding, oxy-cutting, drilling grinding and cutting machine. From the result of carbonization process shows that coconut shell charcoal need shorter time of 30 minutes as compared to palm shell charcoal of 2 h to completely carbonized. This result claim that the new design better than existing kiln that need longer time up to 24 h. The result of the palm and coconut shell charcoal believe will produce better properties of activated carbon in large surface area and higher total volume of pores. Therefore, this burner is high recommended for producing palm and coconut shell charcoal as well as other bio-based material.

  6. Cobalt toxicity in anaerobic granular sludge: influence of chemical speciation

    NARCIS (Netherlands)

    Bartacek, J.; Fermoso, F.G.; Baldo-Urrutia, A.M.; Hullebusch, van E.D.; Lens, P.N.L.

    2008-01-01

    The influence of cobalt speciation on the toxicity of cobalt to methylotrophic methanogenesis in anaerobic granular sludge was investigated. The cobalt speciation was studied with three different media that contained varying concentrations of complexing ligands [carbonates, phosphates and

  7. High activity carbon sorbents for mercury capture

    Directory of Open Access Journals (Sweden)

    Stavropoulos George G.

    2006-01-01

    Full Text Available High efficiency activated carbons have been prepared for removing mercury from gas streams. Starting materials used were petroleum coke, lignite, charcoal and olive seed waste, and were chemically activated with KOH. Produced adsorbents were primarily characterized for their porosity by N2 adsorption at 77 K. Their mercury retention capacity was characterized based on the breakthrough curves. Compared with typical commercial carbons, they have exhibited considerably enhanced mercury adsorption capacity. An attempt has been made to correlate mercury entrapment and pore structure. It has been shown that physical surface area is increased during activation in contrast to the mercury adsorption capacity that initially increases and tends to decrease at latter stages. Desorption of active sites may be responsible for this behavior.

  8. Carbon sink activity of managed grasslands

    Science.gov (United States)

    Klumpp, Katja; Chabbi, Abad; Gastal, Francois; Senapati, Nimai; Charrier, Xavier; Darsonville, Olivier; Creme, Alexandra

    2017-04-01

    In agriculture, a large proportion of GHG emission saving potential may be achieved by means of soil C sequestration. Recent demonstrations of carbon sink activities however, often questioned the existence of C storing grasslands, as uncertainty surrounding estimates are often larger than the sink itself. Besides climate, key components of the carbon sink activity in grasslands are type and intensity of management practices. Here, we analysed long term data on C flux and soil organic carbon stocks for two long term (>13yrs) national observation sites in France (SOERE-ACBB). These sites comprise a number of grassland fields and managements options (i.e. permanent, sowing, grazing, mowing, and fertilization) offering an opportunity to study carbon offsets (i.e. compensation of CH4 and N2O emissions), climatic-management interactions and trade-offs concerning ecosystem services (e.g. production). Furthermore, for some grassland fields, the carbon sink activity was compared using two methods; repeated soil inventory and estimation of the ecosystem C budget by continuous measurement of CO2 exchange (i.e. eddy covariance) in combination with quantification of other C imports and exports, necessary to estimate net C storage. In general grasslands, were a potential sink of C (i.e. net ecosystem exchange, NEE), where grazed sites had lower NEE compared the cut site. However, when it comes to net C storage (NCS), mowing reduced markedly potential sink leading to very low NCS compared to grazed sites. Including non-CO2 fluxes (CH4 and N2O emission) in the budget, revealed that GHG emissions were offset by C sink activity.

  9. Granular gas dynamics

    CERN Document Server

    Brilliantov, Nikolai

    2003-01-01

    While there is not yet any general theory for granular materials, significant progress has been achieved for dilute systems, also called granular gases. The contributions in this book address both the kinetic approach one using the Boltzmann equation for dissipative gases as well as the less established hydrodynamic description. The last part of the book is devoted to driven granular gases and their analogy with molecular fluids. Care has been taken so as to present the material in a pedagogical and self-contained way and this volume will thus be particularly useful to nonspecialists and newcomers to the field.

  10. Activated Carbon Preparation and Modification for Adsorption

    Science.gov (United States)

    Cao, Yuhe

    Butanol is considered a promising, infrastructure-compatible biofuel. Butanol has a higher energy content than ethanol and can be used in conventional gas engines without modifications. Unfortunately, the fermentation pathway for butanol production is restricted by its toxicity to the microbial strains used in the process. Butanol is toxic to the microbes, and this can slow fermentation rates and reduce butanol yields. Gas stripping technology can efficiently remove butanol from the fermentation broth as it is produced, thereby decreasing its inhibitory effects. Traditional butanol separation heavily depends on the energy intensive distillation method. One of the main issues in acetone-butanol-ethanol fermentation is that butanol concentrations in the fermentation broth are low, ranging from 1 to 1.2 percent in weight, because of its toxicity to the microorganisms. Therefore distillation of butanol is even worse than distillation of corn ethanol. Even new separation methods, such as solid- extraction methods involve adding substances, such as polymer resin and zeolite or activated carbon, to biobutanol fermentatioon broth did not achieve energy efficient separation of butanol due to low adsorption selectivity and fouling in broth. Gas-stripping - condensation is another new butanol recovery method, however, the butanol in gas-stripping stream is too low to be condensed without using expensive and energy intensive liquid nitrogen. Adsorption can then be used to recover butanol from the vapor phase. Activated carbon (AC) samples and zeolite were investigated for their butanol vapor adsorption capacities. Commercial activated carbon was modified via hydrothermal H2O2 treatment, and the specific surface area and oxygen-containing functional groups of activated carbon were tested before and after treatment. Hydrothermal H2O 2 modification increased the surface oxygen content, Brunauer-Emmett-Teller surface area, micropore volume, and total pore volume of active carbon

  11. Production and characterization of activated carbon from leather ...

    African Journals Online (AJOL)

    Powdered activated carbon (PAC) was prepared from leather buffing waste, sawdust and lignite by carbonization at temperatures between 500 – 800oC followed by steam activation. Experimental results reveal a general decrease in yield of carbon residue with increase in temperature of carbonization. Samples of lignite ...

  12. Active carbons from low temperature conversion chars

    International Nuclear Information System (INIS)

    Adebowale, K.O.; Bayer, E.

    2002-05-01

    Hulls obtained from the fruits of five tropical biomass have been subjected to low temperature conversion process and their chars activated by partial physical gasification to produce active carbons. The biomass are T. catappa, B. nitida, L leucophylla, D. regia and O. martiana. The bulk densities of the samples ranged from 0.32 g.cm 3 to 0.52 g.cm 3 . Out of the samples T. catappa recorded the highest cellulose content (41.9 g.100g -1 ), while O. martiana contained the highest lignin content (40.7 g.100g -1 ). The ash of the samples were low (0.5 - 4.4%). The percentage of char obtained after conversion were high (33.7% - 38.6%). Active carbons obtained from T. catappa, D. regia and O. martiana, recorded high methylene blue numbers and iodine values. They also displayed good micro- and mesostructural characteristics. Micropore volume (V micro ) was between 0.33cm 3 .g -1 - 0.40cm 3 .g -1 , while the mesopore volume(V meso ) was between 0.05 cm 3 .g -1 - 0.07 cm 3 .g -1 . The BET specific surface exceeds 1000 m 2 .g -1 . All these values compared favourably with high grade commercial active carbons. (author)

  13. Comparative removal of emerging contaminants from aqueous solution by adsorption on an activated carbon.

    Science.gov (United States)

    Gil, A; Taoufik, N; García, A M; Korili, S A

    2018-04-19

    Batch sorption experiments were performed to study the adsorption of six emerging pollutants from aqueous solutions using a commercial granular activated carbon as adsorbent. Caffeine, clofibric acid, diclofenac, gallic acid, ibuprofen and salicylic acid were selected as representative contaminants. The activated carbon was characterized by nitrogen adsorption at 77 K, and through the determination of point of zero charge. The effects of several operational parameters, such as pH, initial concentration of organic molecules, mass of adsorbent and contact time, on the sorption behaviour were evaluated. The contact time to attain equilibrium for maximum adsorption was found to be 40 min. The kinetic data were correlated to several adsorption models, and the adsorption mechanism found to follow pseudo-second-order and intraparticle-diffusion models with external mass transfer predominating in the first 15 min of the experiment. The equilibrium adsorption data were analysed using the Freundlich, Langmuir and Toth isotherm equation models. The similar chemical structure and molecular weight of the organic pollutants studied to make the adsorption capacity of the activated carbon used very similar for all the molecules.

  14. Combined effect of microwave and activated carbon on the remediation of polychlorinated biphenyl-contaminated soil.

    Science.gov (United States)

    Liu, Xitao; Yu, Gang

    2006-04-01

    The application of microwave and activated carbon for the treatment of polychlorinated biphenyl (PCB) contaminated soil was explored in this study with a model compound of 2,4,5-trichlorobiphenyl (PCB29). PCB-contaminated soil was treated in a quartz reactor by microwave irradiation at 2450MHz with the addition of granular activated carbon (GAC). In this procedure, GAC acted as microwave absorbent for reaching high temperature and reductant for dechlorination. A sheltered type-K thermocouple was applied to record the temperature rising courses. It was shown that the addition of GAC could effectively promote the temperature rising courses. The determination of PCB residues in soil by gas chromatography (GC) revealed that rates of PCB removal were highly dependent on microwave power, soil moisture content, and the amount of GAC added. GC with mass spectrum (MS) detector and ion chromatography were employed for the analysis of degradation intermediates and chlorine ions, respectively. It was suggested that microwave irradiation with the assistance of activated carbon might be a potential technology for the remediation of PCB-contaminated soil.

  15. In vitro adsorption study of fluoxetine in activated carbons and activated carbon fibres

    Energy Technology Data Exchange (ETDEWEB)

    Nabais, J.M. Valente; Mouquinho, A.; Galacho, C.; Carrott, P.J.M.; Ribeiro Carrott, M.M.L. [Centro de Quimica de Evora e Departamento de Quimica da Universidade de Evora, Rua Romao Ramalho no. 59, 7000-671 Evora (Portugal)

    2008-05-15

    We study the in vitro adsorption of fluoxetine hydrochloride by different adsorbents in simulated gastric and intestinal fluid, pH 1.2 and 7.5, respectively. The tested materials were two commercial activated carbons, carbomix and maxsorb MSC30, one activated carbon fibre produced in our laboratory and also three MCM-41 samples, also produced by us. Selected samples were modified by liquid phase oxidation and thermal treatment in order to change the surface chemistry without significant modifications to the porous characteristics. The fluoxetine adsorption follows the Langmuir model. The calculated Q{sub 0} values range from 54 to 1112 mg/g. A different adsorption mechanism was found for the adsorption of fluoxetine in activated carbon fibres and activated carbons. In the first case the most relevant factors are the molecular sieving effect and the dispersive interactions whereas in the activated carbons the mechanism seams to be based on the electrostatic interactions between the fluoxetine molecules and the charged carbon surface. Despite the different behaviours most of the materials tested have potential for treating potential fluoxetine intoxications. (author)

  16. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  17. Production of activated carbon from microalgae

    OpenAIRE

    Hernández Férez, María del Remedio; Valdés Barceló, Francisco Javier; García, Angela N.; Marcilla, Antonio; Chápuli Fernández, Eloy

    2008-01-01

    Presentado como póster en el 11th Mediterranean Congress of Chemical Engineering, Barcelona 2008. Resumen publicado en el libro de actas del congreso. Activated carbon is an important filter material for the removal of different compounds such as hazardous components in exhaust gases, for purification of drinking water, waste water treatment, adsorption of pollution from liquid phases, in catalysis, electrochemistry or for gas storage and present an important demand. Theoretically, activat...

  18. Nitrogen removal from coal gasification wastewater by activated carbon technologies combined with short-cut nitrogen removal process.

    Science.gov (United States)

    Zhao, Qian; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Fang, Fang

    2014-11-01

    A system combining granular activated carbon and powdered activated carbon technologies along with shortcut biological nitrogen removal (GAC-PACT-SBNR) was developed to enhance total nitrogen (TN) removal for anaerobically treated coal gasification wastewater with less need for external carbon resources. The TN removal efficiency in SBNR was significantly improved by introducing the effluent from the GAC process into SBNR during the anoxic stage, with removal percentage increasing from 43.8%-49.6% to 68.8%-75.8%. However, the TN removal rate decreased with the progressive deterioration of GAC adsorption. After adding activated sludge to the GAC compartment, the granular carbon had a longer service-life and the demand for external carbon resources became lower. Eventually, the TN removal rate in SBNR was almost constant at approx. 43.3%, as compared to approx. 20.0% before seeding with sludge. In addition, the production of some alkalinity during the denitrification resulted in a net savings in alkalinity requirements for the nitrification reaction and refractory chemical oxygen demand (COD) degradation by autotrophic bacteria in SBNR under oxic conditions. PACT showed excellent resilience to increasing organic loadings. The microbial community analysis revealed that the PACT had a greater variety of bacterial taxons and the dominant species associated with the three compartments were in good agreement with the removal of typical pollutants. The study demonstrated that pre-adsorption by the GAC-sludge process could be a technically and economically feasible method to enhance TN removal in coal gasification wastewater (CGW). Copyright © 2014. Published by Elsevier B.V.

  19. Highly porous activated carbons prepared from carbon rich Mongolian anthracite by direct NaOH activation

    Energy Technology Data Exchange (ETDEWEB)

    Byamba-Ochir, Narandalai [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of); Shim, Wang Geun [Department of Polymer Science and Engineering, Sunchon National University, 255 Jungang-Ro, Suncheon, Jeollanam-Do 57922 (Korea, Republic of); Balathanigaimani, M.S., E-mail: msbala@rgipt.ac.in [Department of Chemical Engineering, Rajiv Gandhi Institute of Petroleum Technology, Ratapur Chowk, Rae Bareli, 229316 Uttar Pradesh (India); Moon, Hee, E-mail: hmoon@jnu.ac.kr [School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju 61186 (Korea, Republic of)

    2016-08-30

    Highlights: • Highly porous carbon materials from Mongolian anthracite by chemical activation. • Cheaper and eco-friendly activation process has been employed. • Activated carbons with graphitic structure and energetically heterogeneous surface. • Surface hydrophobicity and porosity of the activated carbons can be controlled. - Abstract: Highly porous activated carbons (ACs) were prepared from Mongolian raw anthracite (MRA) using sodium hydroxide as an activation agent by varying the mass ratio (powdered MRA/NaOH) as well as the mixing method of chemical agent and powdered MRA. The specific BET surface area and total pore volume of the prepared MRA-based activated carbons (MACs) are in the range of 816–2063 m{sup 2}/g and of 0.55–1.61 cm{sup 3}/g, respectively. The pore size distribution of MACs show that most of the pores are in the range from large micropores to small mesopores and their distribution can be controlled by the mass ratio and mixing method of the activating agent. As expected from the intrinsic property of the MRA, the highly graphitic surface morphology of prepared carbons was confirmed from Raman spectra and transmission electron microscopy (TEM) studies. Furthermore the FTIR and XPS results reveal that the preparation of MACs with hydrophobic in nature is highly possible by controlling the mixing conditions of activating agent and powdered MRA. Based on all the results, it is suggested that the prepared MACs could be used for many specific applications, requiring high surface area, optimal pore size distribution, proper surface hydrophobicity as well as strong physical strength.

  20. Preparation and characterization of active carbon using palm kernel ...

    African Journals Online (AJOL)

    Activated carbons were prepared from Palm kernel shells. Carbonization temperature was 6000C, at a residence time of 5 min for each process. Chemical activation was done by heating a mixture of carbonized material and the activating agents at a temperature of 700C to form a paste, followed by subsequent cooling and ...

  1. Flexural Properties of Activated Carbon Filled Epoxy Nano composites

    International Nuclear Information System (INIS)

    Khalil, H.P.S.A.; Khalil, H.P.S.A.; Alothman, O.Y.; Paridah, M.T.; Zainudin, E.S.

    2014-01-01

    Activated carbon (AC) filled epoxy nano composites obtained by mixing the desired amount of nano AC viz., bamboo stem, oil palm empty fruit bunch, and coconut shell from agricultural biomass with the epoxy resin. Flexural properties of activated carbons filled epoxy nano composites with 1 %, and 5 % filler loading were measured. In terms of flexural strength and modulus, a significant increment was observed with addition of 1 % vol and 5 % vol nano-activated carbon as compared to neat epoxy. The effect of activated carbon treated by two chemical agents (potassium hydroxide and phosphoric acid) on the flexural properties of epoxy nano composites were also investigated. Flexural strength of activated carbon-bamboo stem, activated carbon-oil palm, and activated carbon-coconut shell reinforced epoxy nano composites showed almost same value in case of 5 % potassium hydroxide activated carbon. Flexural strength of potassium hydroxide activated carbon-based epoxy nano composites was higher than phosphoric acid activated carbon. The flexural toughness of both the potassium hydroxide and phosphoric acid activated carbon reinforced composites range between 0.79 - 0.92 J. It attributed that developed activated carbon filled epoxy nano composites can be used in different applications. (author)

  2. Activated Carbon Prepared in a Novel Gas Fired Static Bed ...

    African Journals Online (AJOL)

    Activated Carbon Prepared in a Novel Gas Fired Static Bed Pyrolysis-Gasification Reactor for Gold Di-Cyanide Adsorption. ... The gold di-cyanide adsorption characteristics of the derived activated carbon compared very well with that of the commercial activated carbon, Norit RO 3515 used in most mines in Ghana.

  3. 78 FR 13894 - Certain Activated Carbon From China

    Science.gov (United States)

    2013-03-01

    ... COMMISSION Certain Activated Carbon From China Determination On the basis of the record \\1\\ developed in the... antidumping duty order on certain activated carbon from China would be likely to lead to continuation or... USITC Publication 4381 (February 2013), entitled Certain Activated Carbon from China: Investigation No...

  4. Interactions of xanthines with activated carbon

    International Nuclear Information System (INIS)

    Navarrete Casas, R.; Garcia Rodriguez, A.; Rey Bueno, F.; Espinola Lara, A.; Valenzuela Calahorro, C.; Navarrete Guijosa, A.

    2006-01-01

    In the present work, we have studied the adsorption of xanthine derivatives by activated carbon sorbents in aqueous solutions. The study comprised both kinetic, equilibrium and thermodynamic aspects. The kinetic results were reported in a previous paper; the equilibrium-related results are discussed here. The two types of carbon used exhibit some differences but the equilibrium isotherms obtained are all of the H-3 type in the classification of Giles. This suggests a high affinity of the sorbents for the sorbates. We also found that the overall adsorption process comprises more than one individual adsorption-desorption process of which one leads to the formation of a 'monolayer' and the other to the 'precipitation' of the sorbate on the sorbent surface (multilayer adsorption); the amount of sorbate adsorbed in monolayer form was seemingly greater in C-A14

  5. production and characterization of activated carbon from leather ...

    African Journals Online (AJOL)

    dell

    39.70%) and sawdust (25.10 – 37.20%). Activated carbon from these precursors, were also evaluated for percentage ash, fixed carbon, pH and bulk density. Adsorption studies carried out with methylene blue indicate that low temperature carbonization of precursors such as leather buffing waste favour production of carbon ...

  6. Granular computing: perspectives and challenges.

    Science.gov (United States)

    Yao, JingTao; Vasilakos, Athanasios V; Pedrycz, Witold

    2013-12-01

    Granular computing, as a new and rapidly growing paradigm of information processing, has attracted many researchers and practitioners. Granular computing is an umbrella term to cover any theories, methodologies, techniques, and tools that make use of information granules in complex problem solving. The aim of this paper is to review foundations and schools of research and to elaborate on current developments in granular computing research. We first review some basic notions of granular computing. Classification and descriptions of various schools of research in granular computing are given. We also present and identify some research directions in granular computing.

  7. Recovery of gold from solutions with ammonia and thiosulfate using activated carbon; Recuperacion de oro a partir de disoluciones de amoniaco y tiosulfato utilizando carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.; Navarro, P.; Araya, E.; Pavez, F.; Alguacil, F. J.

    2006-07-01

    The recovery of gold from solutions containing thiosulfate and ammonia using granular activated carbon was studied,evaluating the adsorption and elution stages. The influence of ammonia and thiosulfate concentration and the presence of impurities such as copper and zinc were also evaluated. In the presence of ammonia there was a concentration which maximized the adsorption of gold, while thiosulfate and impurities presence was harmful for the adsorption of gold. during elution, ammonia and thiosulfate concentration, pH regulator and temperature were evaluated. Ammonia favored the process as long as thiosulfate showed a maximum starting from which the elution diminishes. The effect of the pH regulator was very important; If was revealed that when the pH was regulated with caustic ammonia, a synergic effect appeared which favored the elution. Temperature favored the elution process, with activation energy of 9.13 kJ/mol. (Author) 25 refs.

  8. Activated carbon briquettes from biomass materials.

    Science.gov (United States)

    Amaya, Alejandro; Medero, Natalia; Tancredi, Néstor; Silva, Hugo; Deiana, Cristina

    2007-05-01

    Disposal of biomass wastes, produced in different agricultural activities, is frequently an environmental problem. A solution for such situation is the recycling of these residues for the production of activated carbon, an adsorbent which has several applications, for instance in the elimination of contaminants. For some uses, high mechanical strength and good adsorption characteristics are required. To achieve this, carbonaceous materials are conformed as pellets or briquettes, in a process that involves mixing and pressing of char with adhesive materials prior to activation. In this work, the influence of the operation conditions on the mechanical and surface properties of briquettes was studied. Eucalyptus wood and rice husk from Uruguay were used as lignocellulosic raw materials, and concentrated grape must from Cuyo Region-Argentina, as a binder. Different wood:rice and solid:binder ratios were used to prepare briquettes in order to study their influence on mechanical and surface properties of the final products.

  9. Discrete Element Modeling of Complex Granular Flows

    Science.gov (United States)

    Movshovitz, N.; Asphaug, E. I.

    2010-12-01

    Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes

  10. Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations.

    Science.gov (United States)

    Tang, Yafu; Wang, Xinying; Yang, Yuechao; Gao, Bin; Wan, Yongshan; Li, Yuncong C; Cheng, Dongdong

    2017-07-26

    In this work, lignite, a low-grade coal, was modified using the solid-phase activation method with the aid of a Pd/CeO 2 nanoparticle catalyst to improve its pore structure and nutrient absorption. Results indicate that the adsorption ability of the activated lignite to NO 3 - , NH 4 + , H 2 PO 4 - , and K + was significantly higher than that of raw lignite. The activated lignite was successfully combined with the polymeric slow-release fertilizer, which exhibits typical slow-release behavior, to prepare the super large granular activated lignite slow-release fertilizer (SAF). In addition to the slow-release ability, the SAF showed excellent water-retention capabilities. Soil column leaching experiments further confirmed the slow-release characteristics of the SAF with fertilizer nutrient loss greatly reduced in comparison to traditional and slow-release fertilizers. Furthermore, field tests of the SAF in an orchard showed that the novel SAF was better than other tested fertilizers in improve the growth of young apple trees. Findings from this study suggest that the newly developed SAF has great potential to be used in apple cultivation and production systems in the future.

  11. Biomodification of palm shell activated carbon using Aspergillus ...

    African Journals Online (AJOL)

    High desorption efficiency (90%) was maintained in three consecutive cycles. The results show that the introduction of microbial biomass into the palm shell activated carbon matrix has potential to improve carbon' sorption capacity towards lead ions. Key words: Adsorption, lead, activated carbon, fungi, microorganisms, ...

  12. The regeneration of polluted activated carbon by radiation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Wu Minghong; Bao Borong [Shanghai Institute of Nuclear Research, Academia Sinica, Shanghai (China); Zhou Ruimin; Zhu Jinliang; Hu Longxin [Shanghai University, Shanghai (China)

    1998-10-01

    In this paper, the regeneration of used activated carbon from monosodium glutamate factory was experimented using radiation and acid-alkali chemical cleaning method. Results showed that the activated carbon saturated with pollutants can be wash away easily by flushing with chemical solution prior irradiation. DSC was used to monitor the change of carbon adsorption.

  13. Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon.

    Science.gov (United States)

    Sorlini, Sabrina; Biasibetti, Michela; Collivignarelli, Maria Cristina; Crotti, Barbara Marianna

    2015-01-01

    Chlorine dioxide is one of the most widely employed chemicals in the disinfection process of a drinking water treatment plant (DWTP). The aim of this work was to evaluate the influence of the adsorption process with granular activated carbon (GAC) on the chlorine dioxide consumption in final oxidation/disinfection. A first series of tests was performed at the laboratory scale employing water samples collected at the outlet of the DWTP sand filter of Cremona (Italy). The adsorption process in batch conditions with seven different types of GAC was studied. A second series of tests was performed on water samples collected at the outlet of four GAC columns installed at the outlet of the DWTP sand filter. The results showed that the best chlorine dioxide demand (ClO2-D) reduction yields are equal to 60-80% and are achieved in the first 30 min after ClO2 addition, during the first 16 days of the column operation using a mineral, coal-based, mesoporous GAC. Therefore, this carbon removes organic compounds that are more rapidly reactive with ClO2. Moreover, a good correlation was found between the ClO2-D and UV absorbance at wavelength 254 nm using mineral carbons; therefore, the use of a mineral mesoporous GAC is an effective solution to control the high ClO2-D in the disinfection stage of a DWTP.

  14. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  15. Preparation and characterization of activated carbon foam from phenolic resin.

    Science.gov (United States)

    Zhao, Xuefei; Lai, Shiquan; Liu, Hongzha; Gao, Lijuan

    2009-01-01

    Activated carbon foam was successfully prepared from phenolic resin synthesized with phenol and formaldehyde under alkali condition. The influence of process variables, such as steam rate, carbonization temperature, carbonization time, activation temperature and activation time on the adsorption capacities of the activated carbon foam was studied. Under the optimum experimental conditions, the activated carbon foam with a specific surface area 727.62 m(2)/g was obtained. Moreover, the iodine value and carbon tetrachloride value of the activated carbon foam was 1050.28 mg/g and 401.37 mg/g, respectively. The pore size of the activated carbon foam was in the range of 3.5-5 nm which was determined through the N2 adsorption test. In addition, the yield of the activated carbon foam was 36.24%. The result of scanning electron microscopy (SEM) showed that the activated carbon foam became honeycomb structure, and its pore wall was thinner and smoother compared to the unactivated carbon foam.

  16. Volumetric and superficial characterization of carbon activated; Caracterizacion volumetrica y superficial de carbon activado

    Energy Technology Data Exchange (ETDEWEB)

    Carrera G, L.M.; Garcia S, I.; Jimenez B, J.; Solache R, M.; Lopez M, B.; Bulbulian G, S.; Olguin G, M.T. [Departamento de Quimica, Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    The activated carbon is the resultant material of the calcination process of natural carbonated materials as coconut shells or olive little bones. It is an excellent adsorbent of diluted substances, so much in colloidal form, as in particles form. Those substances are attracted and retained by the carbon surface. In this work is make the volumetric and superficial characterization of activated carbon treated thermically (300 Centigrade) in function of the grain size average. (Author)

  17. Acid-base characteristics of powdered-activated-carbon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Reed, B.E. (West Virginia Univ., Morgantown (United States)); Jensen, J.N.; Matsumoto, M.R. (State Univ. of New York, Buffalo (United States))

    Adsorption of heavy metals onto activated carbon has been described using the surface-complex-formation (SCF) model, a chemical equilibrium model. The SCF model requires a knowledge of the amphoteric nature of activated carbon prior to metal adsorption modeling. In the past, a single-diprotic-acid-site model had been employed to describe the amphoteric nature of activated-carbon surfaces. During this study, the amphoteric nature of two powdered activated carbons were investigated, and a three-monoprotic site surface model was found to be a plausible alternative. The single-diprotic-acid-site and two-monoprotic-site models did not describe the acid-base behavior of the two carbons studied adequately. The two-diprotic site was acceptable for only one of the study carbons. The acid-base behavior of activated carbon surfaces seem to be best modeled as a series of weak monoprotic acids.

  18. The Subcellular Dynamics of the Gs-Linked Receptor GPR3 Contribute to the Local Activation of PKA in Cerebellar Granular Neurons.

    Science.gov (United States)

    Miyagi, Tatsuhiro; Tanaka, Shigeru; Hide, Izumi; Shirafuji, Toshihiko; Sakai, Norio

    2016-01-01

    G-protein-coupled receptor (GPR) 3 is a member of the GPR family that constitutively activates adenylate cyclase. We have reported that the expression of GPR3 in cerebellar granular neurons (CGNs) contributes to neurite outgrowth and modulates neuronal proliferation and survival. To further identify its role, we have analyzed the precise distribution and local functions of GPR3 in neurons. The fluorescently tagged GPR3 protein was distributed in the plasma membrane, the Golgi body, and the endosomes. In addition, we have revealed that the plasma membrane expression of GPR3 functionally up-regulated the levels of PKA, as measured by a PKA FRET indicator. Next, we asked if the PKA activity was modulated by the expression of GPR3 in CGNs. PKA activity was highly modulated at the neurite tips compared to the soma. In addition, the PKA activity at the neurite tips was up-regulated when GPR3 was transfected into the cells. However, local PKA activity was decreased when endogenous GPR3 was suppressed by a GPR3 siRNA. Finally, we determined the local dynamics of GPR3 in CGNs using time-lapse analysis. Surprisingly, the fluorescent GPR3 puncta were transported along the neurite in both directions over time. In addition, the anterograde movements of the GPR3 puncta in the neurite were significantly inhibited by actin or microtubule polymerization inhibitors and were also disturbed by the Myosin II inhibitor blebbistatin. Moreover, the PKA activity at the tips of the neurites was decreased when blebbistatin was administered. These results suggested that GPR3 was transported along the neurite and contributed to the local activation of PKA in CGN development. The local dynamics of GPR3 in CGNs may affect local neuronal functions, including neuronal differentiation and maturation.

  19. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P. [A.V. Topchiev Institute of Petrochemical Synthesis RAS, Leninskiy Prospekt 29, 119991 Moscow Russia (Russian Federation)

    2016-05-18

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  20. Metal-carbon nanocomposites based on activated IR pyrolized polyacrylonitrile

    International Nuclear Information System (INIS)

    Efimov, Mikhail N.; Zhilyaeva, Natalya A.; Vasilyev, Andrey A.; Muratov, Dmitriy G.; Zemtsov, Lev M.; Karpacheva, Galina P.

    2016-01-01

    In this paper we report about new approach to preparation of metal-carbon nanocomposites based on activated carbon. Polyacrylonitrile is suggested as a precursor for Co, Pd and Ru nanoparticles carbon support which is prepared under IR pyrolysis conditions of a precursor. The first part of the paper is devoted to study activated carbon structural characteristics dependence on activation conditions. In the second part the effect of type of metal introduced in precursor on metal-carbon nanocomposite structural characteristics is shown. Prepared AC and nanocomposite samples are characterized by BET, TEM, SEM and X-ray diffraction.

  1. Measurement of carbon activity of sodium using nickel tabs and the Harwell Carbon Meter - Preliminary experience

    International Nuclear Information System (INIS)

    Blundell, A.; Thorley, A.W.

    1980-01-01

    Carbon can have an important effect on the mechanical properties of certain constructional materials likely to be used in the LMFBRs. Transfer of carbon will occur between the metal and the sodium at any particular location to bring the chemical potential of carbon in both components to the sam: value. Thus, in a mixed system containing austenitic stainless steel and unstabilized ferritic steel, carbon could be transferred by the sodium from the high carbon activity ferritic to the lower activity austenitic steel. Loss of carbon from the unstabilized ferritic steel leads to a weaker, more ductile material, while carburization of the stainless steel could lead to its embrittlement. Similarly carbon entering the coolant in the form of oil from leaking mechanical pumps could have similar effects on the mechanical property of stainless steels. In the light of these possibilities it is essential to measure the carbon activity of the sodium so that its effect on materials properties can be predicted

  2. Granular Cell Tumor

    African Journals Online (AJOL)

    Necrosis within the tumor was absent, no mitosis was. Granular cell tumors are seldom diagnosed identified in the section and the edges of the accurately clinically. The lesion in this case was sample were tumor free (Figure 2). mistaken for a sebaceous cyst and following ulceration resembled carcinoma of the vulvar.

  3. Ozonation of benzothiazole saturated-activated carbons: Influence of carbon chemical surface properties

    International Nuclear Information System (INIS)

    Valdes, H.; Zaror, C.A.

    2006-01-01

    The combined or sequential use of ozone and activated carbon to treat toxic effluents has increased in recent years. However, little is known about the influence of carbon surface active sites on ozonation of organic adsorbed pollutants. This paper presents experimental results on the effect of metal oxides and oxygenated surface groups on gaseous ozonation of spent activated carbons. Benzothiazole (BT) was selected as a target organic compound in this study due to its environmental concern. Activated carbons with different chemical surface composition were prepared from a Filtrasorb-400 activated carbon. Pre-treatment included: ozonation, demineralisation, and deoxygenation of activated carbon. Ozonation experiments of BT saturated-activated carbons were conducted in a fixed bed reactor loaded with 2 g of carbon samples. The reactor was fed with an O 2 /O 3 gas mixture (2 dm 3 /min, 5 g O 3 /h), for a given exposure time, in the range 10-120 min, at 298 K and 1 atm. Results show that extended gaseous ozonation of activated carbon saturated with BT led to the effective destruction of the adsorbate by oxidation reactions. Oxidation of BT adsorbed on activated carbon seemed to occur via both direct reaction with ozone molecules, and by oxygen radical species generated by catalytic ozone decomposition on metallic surface sites

  4. Production of activated carbon from acorns and olive seeds

    Energy Technology Data Exchange (ETDEWEB)

    Lafi, W.K. [Amman College for Engineering Technology, Marka (Jordan)

    2001-07-01

    This study has been designed to produce activated carbon from acorns and olive seeds. The starting materials are low in cost and they are the cause of solid waste pollution problems in Jordan. A chemical procedure is used to produce the required activated carbon. The results indicate that activated carbon produced from acorns compares favourably with that from olive seeds which rank second, along side commercial type activated carbon which comes last with respect to adsorption capacity. However, the optimum activated temperature is 800 {sup o}C and the optimum regeneration temperature is also 800 {sup o}C. (Author)

  5. TWO-PARAMETER ISOTHERMS OF METHYL ORANGE SORPTION BY PINECONE DERIVED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    M. R. Samarghandi ، M. Hadi ، S. Moayedi ، F. Barjasteh Askari

    2009-10-01

    Full Text Available The adsorption of a mono azo dye methyl-orange (MeO onto granular pinecone derived activated carbon (GPAC, from aqueous solutions, was studied in a batch system. Seven two-parameter isotherm models Langmuir, Freundlich, Dubinin-Radushkevic, Temkin, Halsey, Jovanovic and Hurkins-Jura were used to fit the experimental data. The results revealed that the adsorption isotherm models fitted the data in the order of Jovanovic (X2=1.374 > Langmuir > Dubinin-Radushkevic > Temkin > Freundlich > Halsey > Hurkins-Jura isotherms. Adsorption isotherms modeling showed that the interaction of dye with activated carbon surface is localized monolayer adsorption. A comparison of kinetic models was evaluated for the pseudo-second order, Elovich and Lagergren kinetic models. Lagergren first order model was found to agree well with the experimental data (X2=9.231. In order to determine the best-fit isotherm and kinetic models, two error analysis methods of Residual Mean Square Error and Chi-square statistic (X2 were used to evaluate the data.

  6. Characteristics of activated carbon fibers concerning 1,1,1-trichloroethane adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tanada, S.; Shinoda, S.; Nakamura, T. (Kinki Univ., Osaka (Japan). Faculty of Pharmaceutical Sciences)

    1992-01-10

    In spite of excellent industrial features, l,l,l-trichloroethane (methylchloroform: MC) together with trichloroethylene(TCE) and perchloroethylene(PCE) is now subject to the criterion for draining set by Government agencies due to their toxicities. It was studied that the performance of adsorption of mc onto activated carbon fibers (ACFs)in gaseous phase for purpose of prevention against the air polution and inhalation of carcinogenic compound by workers. In experiments, in addition to 6 kinds of ACFs, a granular activated carbon (GAC) and 95% MC were used. The adsorption isotherm of MC onto ACF or GAC was determined in an all-glass vacuum system and the amount adsorbed were measured by using a B.E.T. apparatus with a spring balance. And the specific surface area and the pore size distribution of ACF or GAG were measured with a B.E.T. apparatus by using super high purity nitrogen gas. As a result, it was found that the adsorption capacities of ACFs were large according to their grade number and the amount absorbed was so large as lower temperature, which was considered to be a physical adsorption. Furthermore, applying the Dubinin-Radushkevich(D-R) equation to the adsorption isotherms,AGFs could be classified into 2 types according to the adsortion sites of MC.11 refs., 6 figs., 2 tabs.

  7. THE ROLE OF ACTIVATED CARBON IN SOLVING ECOLOGICAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    V. M. Mukhin

    2008-06-01

    Full Text Available The authors present a brief analysis of the current global situation concerning the utilization of activated carbon in various fields. The article presents data concerning the synthesis and adsorption and structure properties of new activated carbons, used for solving ecological problems. The authors investigated the newly obtained activated carbons in comparison with several AC marks known in the world. It has been shown that currently synthesized AC are competitive with foreign marks.

  8. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... Key words: Activated carbons, activation, BET surface area, Fourier Transmittance Infrared Spectroscopy. (FTIR). INTRODUCTION. Activated carbon can be defined as carbonaceous material having high porosity and internal surface area and cannot be characterized by any distinctive chemical formula.

  9. Removal of imidacloprid using activated carbon produced from ...

    African Journals Online (AJOL)

    In this study, Ricinodendron heudelotii (akpi) shells are used as precursor to prepare activated carbon via chemical activation using phosphoric acid. The characterization of the obtained activated carbon is performed using X-ray diffraction (XRD), Boehm titration method and adsorption of acetic acid. The results show that ...

  10. Production and characterization of activated carbon from a ...

    African Journals Online (AJOL)

    In this study, the use of a bituminous coal for the production of activated carbons with chemical activation was investigated. The effects of process variables such as chemical reagents, activation temperature, impregnation ratio and carbonization temperature were investigated to optimize these parameters. The resultant ...

  11. Adsorption of Geosmin and MIB on Activated Carbon Fibers-Single and Binary Solute System

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, Rangesh; Sorial, George A., E-mail: george.sorial@uc.ed [University of Cincinnati, Department of Civil and Environmental Engineering (United States)

    2009-08-15

    The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol-C{sub 11}H{sub 20}O) and geosmin (C{sub 12}H{sub 22}O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry's law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two

  12. Phenol adsorption by activated carbon produced from spent coffee grounds.

    Science.gov (United States)

    Castro, Cínthia S; Abreu, Anelise L; Silva, Carmen L T; Guerreiro, Mário C

    2011-01-01

    The present work highlights the preparation of activated carbons (ACs) using spent coffee grounds, an agricultural residue, as carbon precursor and two different activating agents: water vapor (ACW) and K(2)CO(3) (ACK). These ACs presented the microporous nature and high surface area (620-950 m(2) g(-1)). The carbons, as well as a commercial activated carbon (CAC) used as reference, were evaluated as phenol adsorbent showing high adsorption capacity (≈150 mg g(-1)). The investigation of the pH solution in the phenol adsorption was also performed. The different activating agents led to AC with distinct morphological properties, surface area and chemical composition, although similar phenol adsorption capacity was verified for both prepared carbons. The production of activated carbons from spent coffee grounds resulted in promising adsorbents for phenol removal while giving a noble destination to the residue.

  13. Removal of organic compounds from natural underground water in sorption and sono-sorption processes on selected activated carbons

    Directory of Open Access Journals (Sweden)

    Pietrzyk Andżelika

    2017-01-01

    Full Text Available The article rated removal efficiency of organic matter in the processes of sorption and sono-sorption of underground water grasped for municipal purposes. The studies were conducted in laboratory scale and verified in pilot scale at the Water Treatment Plant Tarnobrzeg-Jeziórko. In the research used granular activated carbons, ie. WD-Extra, WG-12, Norit Row 0.8 and Filtrasorb 300. The processes efficiency was evaluated on the basis of changes in the following parameters, ie.: total organic carbon (TOC, permanganate index, UV absorbance, turbidity and colour. The ultrasounds were generated by means of disintegrator Sonics&Materials VCX 130, using the sonication time of 1 and 5 minutes. The results obtained for the batch tests allowed to observe a beneficial effect of ultrasound on the efficiency of the removal of organic material in the sorption process. The combination of sonication and sorption on activated carbon increased the efficiency of the removal of organic matter by 6–37% for TOC, and 18.6–27.9% for permanganate index, depending on the sorbent used. The positive laboratory results were not confirmed in a pilot scale. In the flow conditions the sonication process did not affect the efficiency of removal of organic matter on the filter model with a bed of activated carbon.

  14. The Adsorption Mechanism of Modified Activated Carbon on Phenol

    Directory of Open Access Journals (Sweden)

    Lin J. Q.

    2016-01-01

    Full Text Available Modified activated carbon was prepared by thermal treatment at high temperature under nitrogen flow. The surface properties of the activated carbon were characterized by Boehm titration, BET and point of zero charge determination. The adsorption mechanism of phenol on modified activated carbon was explained and the adsorption capacity of modified activated carbon for phenol when compared to plain activated carbon was evaluated through the analysis of adsorption isotherms, thermodynamic and kinetic properties. Results shows that after modification the surface alkaline property and pHpzc value of the activated carbon increase and the surface oxygen-containing functional groups decrease. The adsorption processes of the plain and modified carbon fit with Langmuir isotherm equation well, and the maximum adsorption capacity increase from 123.46, 111.11, 103.09mg/g to 192.31, 178.57, 163,93mg/g under 15, 25 and 35°C after modification, respectively. Thermodynamic parameters show that the adsorption of phenol on activated carbon is a spontaneously exothermic process of entropy reduction, implying that the adsorption is a physical adsorption. The adsorption of phenol on activated carbon follows the pseudo-second-order kinetics (R2>0.99. The optimum pH of adsorption is 6~8.

  15. Preparation and Characterization of Activated Carbon from Household Waste Foods

    Directory of Open Access Journals (Sweden)

    Iman Hussein Zainulabdeen

    2018-01-01

    Full Text Available Waste food residues are considered as suitable raw materials for the production of low cost adsorbents. In this work, activated carbons was perpetrating from household waste food (orange peels, banana peels, walnut shells, olive stones and their mixture.  Chemical carbonization at 500?C for 1.5hr was used to prepare carbons and their activation by KOH and CaCl2 solutions for 24h. Then added 0.1g of activated carbons to the solution of blue dyeprepared laboratory to demonstrate the activation of the types of activated carbons prepared toremove the blue dye. The results indicated that characteristics (yield, burn off, density, moisturecontent, ash content, pore volume, porosity percent, Iodine number, methyl blue number andremoval percent of methyl blue for all activated carbons were compared with commercialactivated carbon. It has been found that activated carbon from orange peels and mixturesactivated with CaCl2 had the best adsorption properties reach to the (80, 77.5% removal bluedye respectively and iodine numbers (741, 735mg/g . This low coast activated carbons can beused for wastewater treatment.

  16. Use of Activated Carbon Derived from Maize Cob and Mahogany ...

    African Journals Online (AJOL)

    MBI

    2015-12-28

    Dec 28, 2015 ... Khan et al., 2004; Gregorio, 2006). The aim of the present work is to investigate the adsorption capacity of activated carbon derived from Maize cob and Mahogany seed shells for the removal of Colour from textile effluent. This will be achieved through the production activated carbon from Maize cob and.

  17. Microwave absorbing properties of activated carbon fibre polymer ...

    Indian Academy of Sciences (India)

    absorption characteristics of the ACF composite with one containing unactivated fibres, it is found that carbon fibre activation increases the absorption of the composite. Keywords. Activated carbon fibres; microwave absorbing properties; composite materials. 1. Introduction. The reduction of electromagnetic backscatter with ...

  18. Determination of activities of human carbonic anhydrase II inhibitors ...

    African Journals Online (AJOL)

    Purpose: To evaluate the activities of new curcumin analogs as carbonic anhydrase II (CA-II) inhibitor. Methods: Carbonic anhydrase II (CA-II) inhibition was determined by each ligand capability to inhibit the esterase activity of CA-II using 4-NPA as a substrate in 96-well plates. Dimethyl sulfoxide was used to dissolve each ...

  19. Evaluation of the activated carbon prepared from the algae ...

    African Journals Online (AJOL)

    Evaluation of the activated carbon prepared from the algae Gracilaria for the biosorption of Cu(II) from aqueous solutions. ... African Journal of Biotechnology ... This study shows the benefit of using activated carbon from marine red algae as a low cost sorbent for the removal of copper from aqueous solution wastewater.

  20. Preconcentration and extraction of copper(II) on activated carbon ...

    African Journals Online (AJOL)

    Activated carbon modified method was used for the preconcentration and determination of copper content in real samples such as tap water, wastewater and a synthetic water sample by flame atomic absorption spectrometry. The copper(II) was adsorbed quantitatively on activated carbon due to its complexation with ...

  1. Treatment of ammonia in liquid hospital waste using activated carbon

    Science.gov (United States)

    Riyanto, Hayati, Lena

    2017-12-01

    In this research study of the treatment of ammonia in liquid hospitals waste using activated carbon. This study aims to the effect of activated carbon weight and precipitation time to the treatment of ammonia in liquid hospitals waste. Hospital liquid waste has been taken from Jogja International Hospital (JIH) Yogyakarta, Indonesia. Hospital liquid waste 100 mL is mixed with activated carbon with the varied weight that is 15, 30 and 60 g. After added with activated carbon then stirred with a magnetic stirrer for 15 minutes and a precipitation time of 0.5, 1.0 and 2.0 hours. The next step is the filtrate analyzed ammonia concentrations before and after treatment using UV-Vis Spectrophotometer. The results showed that activated carbon can reduce ammonia concentration in hospital liquid waste. The amount of the active carbon and the time of stirring, the greater the ammonia concentration decreases in hospital liquid waste. The best condition for the decrease of the ammonia concentration was obtained with active carbon and precipitation time is 60 g and 1.0 hours, respectively with ammonia decrease of 95.93%. The conclusion is that activated carbon can reduce ammonia concentration in hospital liquid waste.

  2. Enhanced Fenton-like removal of nitrobenzene via internal microelectrolysis in nano zerovalent iron/activated carbon composite.

    Science.gov (United States)

    Hu, Sihai; Wu, Yaoguo; Yao, Hairui; Lu, Cong; Zhang, Chengjun

    2016-01-01

    The efficiency of Fenton-like catalysis using nano zerovalent iron (nZVI) is limited by nZVI aggregation and activity loss due to inactive ferric oxide forming on the nZVI surface, which hinders electron transfer. A novel iron-carbon composite catalyst consisting of nZVI and granular activated carbon (GAC), which can undergo internal iron-carbon microelectrolysis spontaneously, was successfully fabricated by the adsorption-reduction method. The catalyst efficiency was evaluated in nitrobenzene (NB) removal via the Fenton-like process (H2O2-nZVI/GAC). The results showed that nZVI/GAC composite was good for dispersing nZVI on the surface of GAC, which permitted much better removal efficiency (93.0%) than nZVI (31.0%) or GAC (20.0%) alone. Moreover, iron leaching decreased from 1.28 to 0.58 mg/L after reaction of 240 min and the oxidation kinetic of the Fenton-like reaction can be described well by the second-order reaction kinetic model (R2=0.988). The composite catalyst showed sustainable catalytic ability and GAC performed as a medium for electron transfer in internal iron-carbon microelectrolysis to promote Fe2+ regeneration and Fe3+/Fe2+ cycles. Therefore, this study represents an important method to design a low cost and high efficiency Fenton-like catalyst in practical application.

  3. EFFECTS OF SODIUM AND CALCIUM IN LIGNITE ON THE PERFORMANCE OF ACTIVATED CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Edwin S. Olson; Kurt E. Eylands; Daniel J. Stepan

    2001-12-01

    New federal drinking water regulations have been promulgated to restrict the levels of disinfection by-products (DBPs) in finished public water supplies. DBPs are suspected carcinogens and are formed when organic material is partially oxidized by disinfectants commonly used in the water treatment industry. Additional federal mandates are expected in the near future that will also affect public water suppliers with respect to DBPs. These new federal drinking water regulations may require public water suppliers to adjust treatment practices or incorporate additional treatment operations into their existing treatment trains. Many options have been identified, including membrane processes, granular activated carbon, powered activated carbon (PAC), enhanced coagulation and/or softening, and alternative disinfectants (e.g., chlorine dioxide, ozone, and chloramines). Of the processes being considered, PAC appears to offer an attractive benefit-to-cost advantage for many water treatment plants, particularly small systems (those serving fewer than 10,000 customers). PAC has traditionally been used by the water treatment industry for the removal of compounds contributing to taste and odor problems. PAC also has the potential to remove naturally occurring organic matter (NOM) from raw waters prior to disinfection, thus controlling the formation of regulated DBPs. Many small water systems are currently using PAC for taste and odor control and have the potential to use PAC for controlling DBPs. Activated carbons can be produced from a variety of raw materials, including wood, peat, coconut husks, and numerous types of coal. The Energy & Environmental Research Center (EERC) has been working on the development of a PAC product to remove NOM from surface water supplies to prevent the formation of carcinogenic DBPs during chlorination. During that study, the sodium and calcium content of the lignites showed a significant effect on the sorption capacity of the activated carbon

  4. Type-2 fuzzy granular models

    CERN Document Server

    Sanchez, Mauricio A; Castro, Juan R

    2017-01-01

    In this book, a series of granular algorithms are proposed. A nature inspired granular algorithm based on Newtonian gravitational forces is proposed. A series of methods for the formation of higher-type information granules represented by Interval Type-2 Fuzzy Sets are also shown, via multiple approaches, such as Coefficient of Variation, principle of justifiable granularity, uncertainty-based information concept, and numerical evidence based. And a fuzzy granular application comparison is given as to demonstrate the differences in how uncertainty affects the performance of fuzzy information granules.

  5. Granular filters for water treatment: heterogeneity and diagnostic tools

    DEFF Research Database (Denmark)

    Lopato, Laure Rose

    in a proactive manner. They can also be used to optimize the filtration process. However, further research is necessary to relate the information obtained through the tools to specific causes. New tools such as the total dissolved gas probe, salt tracers and ammonium profiles are presented. Potential tools from......Rapid granular filters are the most commonly used filters in drinking water treatment plants and are the focus of this PhD study. They are usually constructed with sand, anthracite, activated carbon, garnet sand, and ilmenite and have filtration rates ranging from 3 to 15 m/h. Filters are often...... and reliable filter performance, and water quality compliance. A salt tracer tool is developed to be used in full-scale filters to investigate the heterogeneity of the filter bed. The tool allows the pore velocity to be estimated in different locations of the filter bed during the duration of a filter run...

  6. Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: A review.

    Science.gov (United States)

    Silva, R V; de Brito, J; Lynn, C J; Dhir, R K

    2017-10-01

    This paper presents a literature review on the incorporation of municipal solid waste incinerated bottom ash as raw material in several markets, other than those where it is conventionally used, such as geotechnical applications and road pavement construction. The main findings of an ample selection of experimental investigations on the use of the bottom ash as precursor of alkali-activated materials, as an adsorbent material for the removal of hazardous elements from wastewater and landfill gases, as soil replacement in agricultural activities, as partial or complete substitute of raw materials for the manufacture of ceramic-based products, as landfill cover and as biogas production enhancer, were gathered, collated and analysed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Modification of powdered activated carbon for the production of carbon nano fibers (CNFs)

    International Nuclear Information System (INIS)

    Ahmed, Y.M.; Al-Mamun, A.; Muyibi, S.A.; Al-Khatib, M.F.R.; Jameel, A.T.; Al-Saadi, M.A.

    2009-01-01

    Full text: In the present work, powdered activated carbon (PAC) was modified and used for the production of carbon nano fibers (CNFs). The modification of PAC was done by the impregnation of nickel on the surface of the activated carbon using the wet impregnation method. Variable weight percentage ratios of the catalyst (nickel) ratio were used. The nano fibers were synthesized on the surface of modified PAC by using the Chemical Vapor Deposition (CVD) method at a temperature of ∼680 degree Celsius for one hour in the presence of acetylene as a carbon source. FESEM, TEM, and TGA were used for the characterization of the product. (author)

  8. Superior capacitive performance of active carbons derived from Enteromorpha prolifera

    International Nuclear Information System (INIS)

    Gao, Xiuli; Xing, Wei; Zhou, Jin; Wang, Guiqiang; Zhuo, Shuping; Liu, Zhen; Xue, Qingzhong; Yan, Zifeng

    2014-01-01

    Highlights: • An ocean biomass, Entromorphra prolifera, has been processed into supercapacitor electrodes. • KOH activation can prepare hierarchical porous carbon. • The as-prepared carbons have high capacitance with good rate capability. • This work provided an approach to value-added products from an ocean biomass. - Abstract: Enteromorpha prolifera (E.prolifera), an ocean biomass, was used as raw materials to prepare active carbons by a two-step strategy (pre-carbonization followed by chemical activation). The as-prepared active carbons have been characterized by a variety of means such as N 2 adsorption, field emission scanning electron microscope, transmission electron microscope, Raman spectroscopy. The results showed that the carbons have large surface area and developed porosity with micro-meso hierarchical pore texture. As evidenced by electrochemical measurements, the specific capacitance of the carbons can reach up to 296 F g −1 . More importantly, the carbons can maintain a high capacitance of up to 152 F g −1 at a very high current density of 30 A g −1 , highlighting the promise of the carbons for high power applications

  9. Preparation and characterization of activated carbon produced from pomegranate seeds by ZnCl 2 activation

    Science.gov (United States)

    Uçar, Suat; Erdem, Murat; Tay, Turgay; Karagöz, Selhan

    2009-08-01

    In this study, pomegranate seeds, a by-product of fruit juice industry, were used as precursor for the preparation of activated carbon by chemical activation with ZnCl 2. The influence of process variables such as the carbonization temperature and the impregnation ratio on textural and chemical-surface properties of the activated carbons was studied. When using the 2.0 impregnation ratio at the carbonization temperature of 600 °C, the specific surface area of the resultant carbon is as high as 978.8 m 2 g -1. The results showed that the surface area and total pore volume of the activated carbons at the lowest impregnation ratio and the carbonization temperature were achieved as high as 709.4 m 2 g -1 and 0.329 cm 3 g -1. The surface area was strongly influenced by the impregnation ratio of activation reagent and the subsequent carbonization temperature.

  10. Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge

    Science.gov (United States)

    Wang, Tao; Zhang, Dong; Dai, Lingling; Chen, Yinguang; Dai, Xiaohu

    2016-05-01

    Extensive use of nanoparticles (NPs) in consumer and industrial products has led to concerns about their potential environmental impacts; however, the influences of different NPs (e.g., nZVI (nano zero-valent iron), Ag NPs, Fe2O3 NPs and MgO NPs) on the anaerobic digestion of sludge have not yet been studied in depth. Additionally, a new guideline or the use of different NPs in the anaerobic digestion of sludge should be established to improve the anaerobic digestion of sludge and avoid inhibitory effects. This study investigated the effects of four representative NPs (i.e., nZVI, Ag NPs, Fe2O3 NPs and MgO NPs) on methane production during the anaerobic digestion of waste activated sludge (WAS). The presence of 10 mg/g total suspended solids (TSS) nZVI and 100 mg/g TSS Fe2O3 NPs increased methane production to 120% and 117% of the control, respectively, whereas 500 mg/g TSS Ag NPs and 500 mg/g TSS MgO NPs generated lower levels of methane production (73.52% and 1.08% that of the control, respectively). These results showed that low concentrations of nZVI and Fe2O3 NPs promoted the amount of microbes (Bacteria and Archaea) and activities of key enzymes but that higher concentrations of Ag NPs and MgO NPs inhibited them.

  11. On the effect of addition of carbon nanotubes on the electric conductivity of alkali-activated slag mortars

    Science.gov (United States)

    Kusak, I.; Lunak, M.

    2017-09-01

    This paper presents basic electric properties of laboratory prepared alkali-activated composite materials on the basis of finely ground granular high furnace slag to which various quantities of carbon nanotubes (CNT) have been added. Impedance spectroscopy in the frequency range from 40 Hz to 1 MHz was used to measure the specimens. Electric resistivity ρ versus frequency and electric resistivity ρ versus CNT content relationships were examined on our specimens R&S ZNC vector analyser with DAK-12 coaxial probe (made by Speag) was used to carry out the measurements at higher frequencies (from 100 MHz to 3 GHz). Electric conductivity σ as a function of the frequency and as a function of the specimen CNT content was studied in this frequency range. Up-to-date instruments and a unique approach have evidently been employed to carry out non-destructive measurement of mortar materials.

  12. Adsorption of Selected Pharmaceutical Compounds onto Activated Carbon in Dilute Aqueous Solutions Exemplified by Acetaminophen, Diclofenac, and Sulfamethoxazole

    Science.gov (United States)

    Chang, E.-E.; Wan, Jan-Chi; Liang, Chung-Huei; Dai, Yung-Dun; Chiang, Pen-Chi

    2015-01-01

    The adsorption of three pharmaceuticals, namely, acetaminophen, diclofenac, and sulfamethoxazole onto granular activated carbon (GAC), was investigated. To study competitive adsorption, both dynamic and steady-state adsorption experiments were conducted by careful selection of pharmaceuticals with various affinities and molecular size. The effective diffusion coefficient of the adsorbate was increased with decease in particle size of GAC. The adsorption affinity represented as Langmuir was consistent with the ranking of the octanol-water partition coefficient, K ow. The adsorption behavior in binary or tertiary systems could be described by competition adsorption. In the binary system adsorption replacement occurred, under which the adsorbate with the smaller K ow was replaced by the one with larger K ow. Results also indicated that portion of the micropores could be occupied only by the small target compound, but not the larger adsorbates. In multiple-component systems the competition adsorption might significantly be affected by the macropores and less by the meso- or micropores. PMID:26078989

  13. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  14. Activated carbon from sugarcane bagasse ash for melanoidins recovery.

    Science.gov (United States)

    Kaushik, A; Basu, S; Singh, K; Batra, V S; Balakrishnan, M

    2017-09-15

    This work investigates the value added utilization of two sugar-distillery wastes: (i) melanoidins, which are complex Maillard reaction products in molasses distillery wastewater, and (ii) unburnt carbon in sugarcane bagasse ash. Activated unburnt carbon (AUC), prepared by deashing and steam activation, had properties comparable to commercial activated carbon (CAC). Both carbons are suitable for melanoidins adsorption followed by desorption using 25% pyridine solution. For AUC, the equilibrium adsorption data is well described by Langmuir isotherm up to 35 °C while Freundlich model fits better at higher temperature. Adsorption using CAC followed Freundlich isotherm at all temperatures. Both carbons followed pseudo second order kinetics and displayed endothermic physisorption. Recovery of melanoidins from AUC (78%) was close to that observed with CAC (80%). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Granular flows : fluidization and anisotropy

    NARCIS (Netherlands)

    Wortel, Gerrit Herman

    2014-01-01

    This work discusses the flow of granular materials (e.g. sand). Even though a single particle is a simple object, the collective behavior of billions of particles can be very complex. In a surprisingly large amount of cases, it is not exactly known how a granular material behaves, and this while

  16. JV Task 90 - Activated Carbon Production from North Dakota Lignite

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

    2008-03-31

    The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest

  17. Nickel adsorption by sodium polyacrylate-grafted activated carbon

    International Nuclear Information System (INIS)

    Ewecharoen, A.; Thiravetyan, P.; Wendel, E.; Bertagnolli, H.

    2009-01-01

    A novel sodium polyacrylate grafted activated carbon was produced by using gamma radiation to increase the number of functional groups on the surface. After irradiation the capacity for nickel adsorption was studied and found to have increased from 44.1 to 55.7 mg g -1 . X-ray absorption spectroscopy showed that the adsorbed nickel on activated carbon and irradiation-grafted activated carbon was coordinated with 6 oxygen atoms at 2.04-2.06 A. It is proposed that this grafting technique could be applied to other adsorbents to increase the efficiency of metal adsorption.

  18. ADSORPTION OF STRONTIUM IONS FROM WATER ON MODIFIED ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    Mihai Ciobanu

    2016-12-01

    Full Text Available Adsorption of strontium ions from aqueous solutions on active carbons CAN-7 and oxidized CAN-8 has been studied. It has been found that allure of the adsorption isotherms for both studied active carbons are practically identical. Studies have shown that the adsorption isotherms for strontium ions from aqueous solutions are well described by the Langmuir and Dubinin-Radushkevich equations, respectively. The surface heterogeneity of activated carbons CAN-7 and oxidized CAN-8 has been assessed by using Freundlich equation.

  19. Carbon fiber/SiC composite for reduced activation

    International Nuclear Information System (INIS)

    Noda, T.; Araki, H.; Abe, F.; Okada, M.

    1991-01-01

    A carbon fiber/SiC composite fabricated by a chemical vapor infiltration process at 1173-1623 K was studied to develop a low-activation material. A high-purity composite was obtained with the total amount of impurities less than 0.02 wt%. The microstructure and the mechanical properties using a bend test were examined. A composite with woven carbon yarn showed both high strength and toughness. Further, the induced activity of the material was evaluated by calculations simulating fusion neutron irradiation. The carbon fiber/SiC composite shows an excellent low-activation behavior. (orig.)

  20. Activated carbon fibers and engineered forms from renewable resources

    Science.gov (United States)

    Baker, Frederick S

    2013-02-19

    A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

  1. Adsorption of light alkanes on coconut nanoporous activated carbon

    Directory of Open Access Journals (Sweden)

    K. S. Walton

    2006-12-01

    Full Text Available This paper presents experimental results for adsorption equilibrium of methane, ethane, and butane on nanoporous activated carbon obtained from coconut shells. The adsorption data were obtained gravimetrically at temperatures between 260 and 300K and pressures up to 1 bar. The Toth isotherm was used to correlate the data, showing good agreement with measured values. Low-coverage equilibrium constants were estimated using virial plots. Heats of adsorption at different loadings were also estimated from the equilibrium data. Adsorption properties for this material are compared to the same properties for BPL activated carbon and BAX activated carbon.

  2. Ion from Aqueous Solution using Magnetite, Activated Carbon

    African Journals Online (AJOL)

    ADOWIE PERE

    investigated using batch adsorption experiment at room temperature. The effects of initial metal ion concentration, contact time, adsorbent dosage, and temperature were evaluated. The activated carbon shows a structure like a honeycomb with a pattern of hollows and ridges, while the EDX shows an abundance of carbon.

  3. Preparation and characterization of activated carbons from tobacco stem by chemical activation.

    Science.gov (United States)

    Chen, Ruofei; Li, Liqing; Liu, Zheng; Lu, Mingming; Wang, Chunhao; Li, Hailong; Ma, Weiwu; Wang, Shaobin

    2017-06-01

    Activated carbons were prepared from tobacco stem by chemical activation using potassium hydroxide (KOH), potassium carbonate (K 2 CO 3 ), and zinc chloride (ZnCl 2 ). The effects of the impregnation ratio (activating agent/precursor) and activating agents on the physical and chemical properties of activated carbons were investigated. The textual structure and surface properties of activated carbons were characterized by nitrogen (N 2 ) adsorption isotherm, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), x-ray photoelectron spectroscopy (XPS), and thermogravimetry (TG). ZnCl 2 , acting as a superior activating agent compared to the others, produced much more porosity. The maximum specific surface area reached 1347 m 2 /g, obtained by ZnCl 2 activation with an impregnation ratio of 4.0. Moreover, ZnCl 2 activation yielded products with an excellent thermostability, attributed to different activation mechanisms. Various oxygen functions were detected on the activated carbon surface, and hydroxyl and ester groups were found to be in the majority. Tobacco stem, the residue from cigarette manufacturing, is usually discarded as waste, leading to serious resource waste and environmental problems. This study provides an effective utilization available for this solid residue by using it as the starting material in the preparation of activated carbon with chemical activation. Activated carbons with high specific area and various surface functions have been prepared, and the effects of the amount and type of activating agents on the physical and chemical properties of activated carbon were investigated as well.

  4. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  5. Treatment of HMX-production wastewater in an aerobic granular reactor.

    Science.gov (United States)

    Zhang, Jin-Hua; Wang, Min-Hui; Zhu, Xiao-Meng

    2013-04-01

    Aerobic granules were applied to the treatment of HMX-production wastewater using a gradual domestication method in a SBR. During the process, the granules showed a good settling ability, a high biomass retention rate, and high biological activity. After 40 days of stable operation, aerobic granular sludge performed very effectively in the removal of carbon and nitrogen compounds from HMX-production wastewater. Organic matter removal rates up to 97.57% and nitrogen removal efficiencies up to 80% were achieved during the process. Researchers conclude that using aerobic granules to treat explosive wastewater has good prospects for success.

  6. Application of biological activated carbon as a low pH biofilter medium for gas mixture treatment.

    Science.gov (United States)

    Liang, Juan; Chiaw, Lawrence Koe Choon; Ning, Xiaogang

    2007-04-15

    Packing material is a crucial component of a bioreactor as it is the microbial population's habitat. This study assessed potential improvements to current biofiltration processes by investigating use of a novel support medium. Biological activated carbon (BAC) with microorganisms growing on granular activated carbon can produce a novel medium in which both adsorption and biodegradation contribute to pollutants removal. Investigation of carbon characteristics demonstrated that BAC was an ideal packing medium for biofiltration. The application of the novel packing medium for gas mixture treatment was evaluated in a low pH biofilter. Results demonstrated that BAC biofilter obtained high removal efficiency for both H(2)S and toluene. The removal mechanisms of BAC were investigated after the biofilter operation and it demonstrated that the performance of the BAC system was mainly controlled by the additive contributions of two removal mechanisms - adsorption and biodegradation. This study also indicated the potential for simultaneous treatment of hydrogen sulfide and toluene at low pH condition. (c) 2006 Wiley Periodicals, Inc.

  7. Composite supercapacitor electrodes made of activated carbon ...

    Indian Academy of Sciences (India)

    C. The resulting solution containing carbon particles is washed sufficiently with de-ionized water to remove traces of acid and air dried. 2.2 Electropolymerization of PEDOT:PSS. PEDOT monomer and PSS was purchased from M/s Sigma-. Aldrich. PEDOT was not distilled before use. Electropoly- merization was carried out ...

  8. Cesium carbonate mediated exclusive dialkylation of active methylene compounds

    Directory of Open Access Journals (Sweden)

    Ulaganathan Sankar

    2012-07-01

    Full Text Available Active methylene compounds are regioselectively dialkylated by variety of alkyl halides using cesium carbonate in quantitative yield. The reaction yielded exclusively dialkylated products with no intermediate monoalkyaltion or mixture of products.

  9. Design of Low Cost, Highly Adsorbent Activated Carbon Fibers

    National Research Council Canada - National Science Library

    Mangun, Christian

    2003-01-01

    .... EKOS has developed a novel activated carbon fiber - (ACF) that combines the low cost and durability of GAC with tailored pore size and pore surface chemistry for improved defense against chemical agents...

  10. Electrothermal Desorption of CWA Simulants From Activated Carbon Cloth

    National Research Council Canada - National Science Library

    Sullivan, Patrick D; Wander, Joseph D; Newsome, Kolin C

    2004-01-01

    The use of activated carbon fabrics (ACEs) that are desorbed electrothermally, also known as the Joule effect, is explored as a potential method to create a regenerating chemical warfare agent (CWA) filter...

  11. Electrothermal Desorption of CWA Simulants from Activated Carbon Cloth

    National Research Council Canada - National Science Library

    Sullivan, Patrick D; Wander, Joseph D; Newsome, Kolin C

    2006-01-01

    The use of activated carbon fabrics (ACFs) that are desorbed electrothermally, also known as the Joule effect, is explored as a potential method to create a regenerating chemical warfare agent (CWA) filter...

  12. Electrochemical activation of carbon dioxide for synthesis of dimethyl carbonate in an ionic liquid

    International Nuclear Information System (INIS)

    Yuan Dandan; Yan Cuihong; Lu Bin; Wang Hongxia; Zhong Chongmin; Cai Qinghai

    2009-01-01

    The direct synthesis of dimethyl carbonate from methanol and carbon dioxide is challenging due to the thermodynamic stability and kinetic inertness of CO 2 . Electrochemical technique can overcome this challenge by providing a method for preliminary activation of CO 2 . Electrocatalytic activation and conversion of carbon dioxide to dimethyl carbonate with platinum electrodes in a dialkylimidazolium ionic liquids-basic compounds-methanol system was conducted under ambient conditions. Among the basic compounds and ionic liquids, CH 3 OK acts as a co-catalyst and 1-butyl-3-methylimidazolium bromide (bmimBr) acts as an electrolyte. In the bmimBr-CH 3 OK-methanol system, the absence of CH 3 I and/or any other organic additives allows dimethyl carbonate to be effectively synthesized. The reaction mechanism proposed here is different from those previously reported

  13. Nitrate sorption on activated carbon modified with CaCl2: Equilibrium, isotherms and kinetics

    Directory of Open Access Journals (Sweden)

    Zanella Odivan

    2015-01-01

    Full Text Available In this study, nitrate (NO3- removal from aqueous solutions was investigated using granular activated carbon (GAC modified with CaCl2. Batch sorption studies were performed as a function of sorbent dose, initial nitrate concentration and pH. Sorption was maximized between pH 3 and 9. Studies on the effect of pH showed that the ion exchange mechanism might be involved in the sorption process. The percentage of nitrate removed increased with increasing sorbent concentration, and the ideal sorbent dose was found to be 20 g•L-1. Four isotherm models-Langmuir, Freundlich, Redlich-Peterson and Sips-were used to fit the experimental data. The Redlich-Peterson isotherm model explained the sorption process well and showed the best coefficient of determination (0.9979 and Chi-square test statistic (0.0079. Using the Sips isotherm model, the sorption capacity (qe was found to be 1.93 mg nitrate per g of sorbent. Kinetic experiments indicated that sorption was a fast process, reaching equilibrium within 120 min. The nitrate sorption kinetic data were successfully fitted to a pseudo-second-order kinetic model. The overall results demonstrated potential applications of modified GAC for nitrate removal from aqueous solutions.

  14. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    Science.gov (United States)

    Qu, Guangzhou; Liang, Dongli; Qu, Dong; Huang, Yimei; Li, Jie

    2014-06-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O3) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O3 regeneration. O3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O3 regeneration has a lower weight loss than DBD plasma regeneration.

  15. Comparison Between Dielectric Barrier Discharge Plasma and Ozone Regenerations of Activated Carbon Exhausted with Pentachlorophenol

    International Nuclear Information System (INIS)

    Qu Guangzhou; Liang Dongli; Qu Dong; Huang Yimei; Li Jie

    2014-01-01

    In this study, two regeneration methods (dielectric barrier discharge (DBD) plasma and ozone (O 3 ) regeneration) of saturated granular activated carbon (GAC) with pentachlorophenol (PCP) were compared. The results show that the two regeneration methods can eliminate contaminants from GAC and recover its adsorption properties to some extent. Comparing the DBD plasma with O 3 regeneration, the adsorption rate and the capacity of the GAC samples after DBD plasma regeneration are greater than those after O 3 regeneration. O 3 regeneration decreases the specific surface area of GAC and increases the acidic surface oxygen groups on the surface of GAC, which causes a decrease in PCP on GAC uptake. With increasing regeneration cycles, the regeneration efficiencies of the two methods decrease, but the decrease in the regeneration efficiencies of GAC after O 3 regeneration is very obvious compared with that after DBD plasma regeneration. Furthermore, the equilibrium data were fitted by the Freundlich and Langmuir models using the non-linear regression technique, and all the adsorption equilibrium isotherms fit the Langmuir model fairly well, which demonstrates that the DBD plasma and ozone regeneration processes do not appear to modify the adsorption process, but to shift the equilibrium towards lower adsorption concentrations. Analyses of the weight loss of GAC show that O 3 regeneration has a lower weight loss than DBD plasma regeneration

  16. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    The majority of today’s systems increasingly require sophisticated data management as they need to store and to query large amounts of data for analysis and reporting purposes. In order to keep more “detailed” data available for longer periods, “old” data has to be reduced gradually to save space...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  17. Using a Time Granularity Table for Gradual Granular Data Aggregation

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2014-01-01

    The majority of today’s systems increasingly require sophisticated data management as they need to store and to query large amounts of data for analysis and reporting purposes. In order to keep more “detailed” data available for longer periods, “old” data has to be reduced gradually to save space...... is 6 months old aggregate to 2 minutes level from 1 minute level and so on. The proposed solution introduces a time granularity based data structure, namely a relational time granularity table that enables long term storage of old data by maintaining it at different levels of granularity and effective...

  18. The investment funds in carbon actives: state of the art

    International Nuclear Information System (INIS)

    Dominicis, A. de

    2005-01-01

    Since the beginning in 1999 of the first funds by the World Bank, the purchase mechanisms of carbon actives, developed and reached today more than 1,5 milliards of euros. The landscape is relatively concentrated, in spite of the numerous initiatives. The author presents the situation since 1999, the importance of the european governmental investors, the purchase mechanisms management and an inventory of the carbon actives purchases. (A.L.B.)

  19. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  20. Image analysis, methanogenic activity measurements, and molecular biological techniques to monitor granular sludge from an EGSB reactor fed with oleic acid

    OpenAIRE

    Pereira, M. A.; Roest, K.; Stams, Alfons Johannes Maria; Akkermans, A. D. L.; Amaral, A. L.; Pons, M. N.; Ferreira, E. C.; Mota, M.; Alves, M. M.

    2003-01-01

    Morphological changes in anaerobic granular sludge fed with increasing loads of oleic acid were quantified by image analysis. The combination of this technique with data on the accumulation of adsorbed long chain fatty acid and with the molecular characterization of microbial community gave insight into the mechanisms of sludge disintegration, flotation and washout. It was found that the bacterial domain was more affected than the archaeal domain during this process. However, no acetoclastic ...

  1. Removal of dye by immobilised photo catalyst loaded activated carbon

    International Nuclear Information System (INIS)

    Zulkarnain Zainal; Chan, Sook Keng; Abdul Halim Abdullah

    2008-01-01

    The ability of activated carbon to adsorb and titanium dioxide to photo degrade organic impurities from water bodies is well accepted. Combination of the two is expected to enhance the removal efficiency due to the synergistic effect. This has enabled activated carbon to adsorb more and at the same time the lifespan of activated carbon is prolonged as the workload of removing organic pollutants is shared between activated carbon and titanium dioxide. Immobilisation is selected to avoid unnecessary filtering of adsorbent and photo catalyst. In this study, mixture of activated carbon and titanium dioxide was immobilised on glass slides. Photodegradation and adsorption studies of Methylene Blue solution were conducted in the absence and presence of UV light. The removal efficiency of immobilised TiO 2 / AC was found to be two times better than the removal by immobilised AC or immobilised TiO 2 alone. In 4 hours and with the concentration of 10 ppm, TiO 2 loaded activated carbon prepared from 1.5 g/ 15.0 mL suspension produced 99.50 % dye removal. (author)

  2. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas

    Science.gov (United States)

    Bachrun, Sutrisno; AyuRizka, Noni; Annisa, SolichaHidayat; Arif, Hidayat

    2016-01-01

    A series of experiments have been conducted to study the effects of different carbonization temperatures (400, 600, and 800oC) on characteristics of porosity in activated carbon derived from carbonized sugarcane bagassechar at activation temperature of 800oC. The results showed that the activated carbon derived from high carbonized temperature of sugarcane bagassechars had higher BET surface area, total volume, micropore volume and yield as compared to the activated carbon derived from low carbonized temperature. The BET surface area, total volume and micropore volume of activated carbon prepared from sugarcane bagassechars obtained at 800oC of carbonized temperature and activation time of 120 min were 661.46m2/g, 0.2455cm3/g and 0.1989cm3/g, respectively. The high carbonization temperature (800oC) generated a highly microporous carbonwith a Type-I nitrogen adsorption isotherm, while the low carbonization temperature (400 and 600oC) generated a mesoporous one with an intermediate between types I and IInitrogen adsorption isotherm.

  3. Removal of novel antiandrogens identified in biological effluents of domestic wastewater by activated carbon.

    Science.gov (United States)

    Ma, Dehua; Chen, Lujun; Liu, Rui

    2017-10-01

    Environmental antiandrogenic (AA) contaminants in effluents from wastewater treatment plants have the potential for negative impacts on wildlife and human health. The aim of our study was to identify chemical contaminants with likely AA activity in the biological effluents and evaluate the removal of these antiandrogens (AAs) during advanced treatment comprising adsorption onto granular activated carbon (GAC). In this study, profiling of AA contaminants in biological effluents and tertiary effluents was conducted using effect-directed analysis (EDA) including high performance liquid chromatography (HPLC) fractionation, a recombinant yeast screen containing androgen receptor (YAS), in combination with mass spectrometry analyses. Analysis of a wastewater secondary effluent from a membrane bioreactor revealed complex profiles of AA activity comprising 14 HPLC fractions and simpler profiles of GAC effluents with only 2 to 4 moderately polar HPLC fractions depending on GAC treatment conditions. Gas chromatography-mass spectrometry and ultra-high performance liquid chromatography-nanospray mass spectrometry analyses of AA fractions in the secondary effluent resulted in detection of over 10 chemical contaminants, which showed inhibition of YAS activity and were potential AAs. The putative AAs included biocides, food additives, flame retardants, pharmaceuticals and industrial contaminants. To our knowledge, it is the first time that the AA properties of N-ethyl-2-isopropyl-5-methylcyclohexanecarboxamide (WS3), cetirizine, and oxcarbazepine are reported. The EDA used in this study was proven to be a powerful tool to identify novel chemical structures with AA activity in the complex aquatic environment. The adsorption process to GAC of all the identified antiandrogens, except WS3 and triclosan, fit well with the pseudo-second order kinetics models. Adsorption to GAC could further remove most of the AAs identified in the biological effluents with high efficiencies. Copyright

  4. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation.

    Science.gov (United States)

    Wei, Mingyu; Gao, Long; Li, Jun; Fang, Jia; Cai, Wenxuan; Li, Xiaoxia; Xu, Aihua

    2016-10-05

    Graphitic carbon nitride supported on activated carbon (g-C3N4/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C3N4 was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C3N4 to CO was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C3N4/AC catalyst within 20min with PMS, while g-C3N4+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C3N4 loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO and SO4(-)) in AO7 oxidation was proposed in the system. The CO groups play a key role in the process; while the exposure of more N-(C)3 group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Production of activated carbon from peanut hill using phosphoric acid and microwave activation

    Directory of Open Access Journals (Sweden)

    Weerawat Clowutimon

    2015-06-01

    Full Text Available The optimum conditions for preparing activated carbon from peanut hulls by phosphoric acid and microwave activation were studied. Factors investigated in this study were temperature of carbonization at 300, 350, 400 and 450๐ C, and time of carbonization at 30, 60 and 90 minutes. The optimum yield was observed that carbonization temperature of 400๐ C and time at 60 minutes, respectively. The yield of charcoal was 39% and the f ix carbon was 69%. Then the charcoal was activated by phosphoric acid and microwave irradiation, respectively. The effect of the weight per volume ratios of charcoal to activating acid (1:1, 1:2 and 2:1(W/V, microwave power at (activated 300, 500 and 700 watts, and activated time (30, 60 and 90 seconds were studied. The results showed that the optimum conditions for activating peanut charcoal were 1:2 (W/V charcoal per activating acid, microwave power 700 watts for 90 seconds. The results yielding maximum surface area by BET method was 303.1 m2 /g and pore volume was 0.140 cm3 /g. An efficiency of maximum iodine adsorption was 418 mg iodine/g activated carbon. Comparing the adsorption efficiency of non- irradiated and irradiated activated carbon, the efficiency of irradiated activated carbon improved up to 31%, due to its larger surface area and pore volume.

  6. Mathematics and Mechanics of Granular Materials

    CERN Document Server

    Hill, James M

    2005-01-01

    Granular or particulate materials arise in almost every aspect of our lives, including many familiar materials such as tea, coffee, sugar, sand, cement and powders. At some stage almost every industrial process involves a particulate material, and it is usually the cause of the disruption to the smooth running of the process. In the natural environment, understanding the behaviour of particulate materials is vital in many geophysical processes such as earthquakes, landslides and avalanches. This book is a collection of current research from some of the major contributors in the topic of modelling the behaviour of granular materials. Papers from every area of current activity are included, such as theoretical, numerical, engineering and computational approaches. This book illustrates the numerous diverse approaches to one of the outstanding problems of modern continuum mechanics.

  7. Anaerobic removal of the brl direct blue dye in Upflow Anaerobic Sludge Blanket (UASB with activated carbon

    Directory of Open Access Journals (Sweden)

    Christian Zavala-Rivera

    2015-07-01

    Full Text Available In this research the brl direct blue dye was used for anaerobic removal with a bacterial consortium of industrial effluents from Industrial Park Río Seco (IPRS, Arequipa, Peru; in an anaerobic reactor of UASB Upflow with activated carbon. The reactor had a capacity of 14.4 L with sludge and activated carbon of 40% of volume, with an organic load of 6 Kg COD/m3•dia and a hydraulic retention time of 1 day with an upward flow. The objective was to measure the efficiency of the anaerobic removal of coloring in a time of 28 days. The results showed an increase of 41% of the solids suspended volatile (SSV 12894 mg•L-1 up to 21546 mg•L-1 under the conditions of the experiment, with a removal of 57% of the chemical demand of oxygen (COD from 484 mg•L-1 to 122 mg•L-1 and a removal of 87% of the dye Blue direct the 69.61 brl mg•L-1 to 9 mg•L-1. Results with activated charcoal granular only, they showed a removal of 61% of the dye Blue direct 70.67 brl mg•L-1 to 27.83 mg•L-1 at 28 days.

  8. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  9. Catalytic oxidation of NO to NO2 on activated carbon

    International Nuclear Information System (INIS)

    Zhancheng Guo; Yusheng Xie

    2001-01-01

    Catalytic oxidation of NO to NO 2 over activated carbons PAN-ACF, pitch-ACF and coconut-AC at room temperature (30 o C) were studied to develop a method based on oxidative removal of NO from flue gases. For a dry gas, under the conditions of a gas space flow rate 1500 h -1 in the presence of oxygen of 2-20% in volume concentration, the activated coconut carbon with a surface area 1200 m 2 /g converted about 81-94% of NO with increasing oxygen concentration, the pitch based activated carbon fiber with a surface area 1000 m 2 /g about 44-75%, and the polyacrylonitrile-based activated carbon fiber with a surface area 1810 m 2 /g about 25-68%. The order of activity of the activated carbons was PAN-ACF c P NO P O2 β (F/W), where β is 0.042, 0.16, 0.31 for the coconut-AC, the pitch-ACF and the PAN-ACF respectively, and k c is 0.94 at 30 o C. (author)

  10. Adsorption Properties of Lignin-derived Activated Carbon Fibers (LACF)

    Energy Technology Data Exchange (ETDEWEB)

    Contescu, Cristian I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gallego, Nidia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thibaud-Erkey, Catherine [United Technologies Research Center (UTRC), East Hartford, CT (United States); Karra, Reddy [United Technologies Research Center (UTRC), East Hartford, CT (United States)

    2016-04-01

    The object of this CRADA project between Oak Ridge National Laboratory (ORNL) and United Technologies Research Center (UTRC) is the characterization of lignin-derived activated carbon fibers (LACF) and determination of their adsorption properties for volatile organic compounds (VOC). Carbon fibers from lignin raw materials were manufactured at Oak Ridge National Laboratory (ORNL) using the technology previously developed at ORNL. These fibers were physically activated at ORNL using various activation conditions, and their surface area and pore-size distribution were characterized by gas adsorption. Based on these properties, ORNL did down-select five differently activated LACF materials that were delivered to UTRC for measurement of VOC adsorption properties. UTRC used standard techniques based on breakthrough curves to measure and determine the adsorption properties of indoor air pollutants (IAP) - namely formaldehyde and carbon dioxide - and to verify the extent of saturated fiber regenerability by thermal treatments. The results are summarized as follows: (1) ORNL demonstrated that physical activation of lignin-derived carbon fibers can be tailored to obtain LACF with surface areas and pore size distributions matching the properties of activated carbon fibers obtained from more expensive, fossil-fuel precursors; (2) UTRC investigated the LACF potential for use in air cleaning applications currently pursued by UTRC, such as building ventilation, and demonstrated their regenerability for CO2 and formaldehyde, (3) Both partners agree that LACF have potential for possible use in air cleaning applications.

  11. Biofuel intercropping effects on soil carbon and microbial activity.

    Science.gov (United States)

    Strickland, Michael S; Leggett, Zakiya H; Sucre, Eric B; Bradford, Mark A

    2015-01-01

    Biofuels will help meet rising demands for energy and, ideally, limit climate change associated with carbon losses from the biosphere to atmosphere. Biofuel management must therefore maximize energy production and maintain ecosystem carbon stocks. Increasingly, there is interest in intercropping biofuels with other crops, partly because biofuel production on arable land might reduce availability and increase the price of food. One intercropping approach involves growing biofuel grasses in forest plantations. Grasses differ from trees in both their organic inputs to soils and microbial associations. These differences are associated with losses of soil carbon when grasses become abundant in forests. We investigated how intercropping switchgrass (Panicum virgalum), a major candidate for cellulosic biomass production, in loblolly pine (Pinus taeda) plantations affects soil carbon, nitrogen, and microbial dynamics. Our design involved four treatments: two pine management regimes where harvest residues (i.e., biomass) were left in place or removed, and two switchgrass regimes where the grass was grown with pine under the same two biomass scenarios (left or removed). Soil variables were measured in four 1-ha replicate plots in the first and second year following switchgrass planting. Under switchgrass intercropping, pools of mineralizable and particulate organic matter carbon were 42% and 33% lower, respectively. These declines translated into a 21% decrease in total soil carbon in the upper 15 cm of the soil profile, during early stand development. The switchgrass effect, however, was isolated to the interbed region where switchgrass is planted. In these regions, switchgrass-induced reductions in soil carbon pools with 29%, 43%, and 24% declines in mineralizable, particulate, and total soil carbon, respectively. Our results support the idea that grass inputs to forests can prime the activity of soil organic carbon degrading microbes, leading to net reductions in stocks

  12. Submicron and Nanoparticulate Matter Removal by HEPA-Rated Media Filters and Packed Beds of Granular Materials

    Science.gov (United States)

    Perry, J. L.; Agui, J. H.; Vijayakimar, R

    2016-01-01

    Contaminants generated aboard crewed spacecraft by diverse sources consist of both gaseous chemical contaminants and particulate matter. Both HEPA media filters and packed beds of granular material, such as activated carbon, which are both commonly employed for cabin atmosphere purification purposes have efficacy for removing nanoparticulate contaminants from the cabin atmosphere. The phenomena associated with particulate matter removal by HEPA media filters and packed beds of granular material are reviewed relative to their efficacy for removing fine (less than 2.5 micrometers) and ultrafine (less than 0.01 micrometers) sized particulate matter. Considerations are discussed for using these methods in an appropriate configuration to provide the most effective performance for a broad range of particle sizes including nanoparticulates.

  13. Assessment and Comparison of New and Old Carbon Filters for ...

    African Journals Online (AJOL)

    Bheema

    ... end of one steam regeneration cycle for EBCT of 2.41. This suggests that steam regeneration is only partially recovering THMs adsorption capacity. . Key words: Granular activated carbon (GAC), Multi-component Adsorption, Treatment Plant,. Bromoform, De-chlorination and Trihalomethanes (THMs). 1. INTRODUCTION.

  14. Activated carbon-supported CuO nanoparticles: a hybrid material for carbon dioxide adsorption

    Science.gov (United States)

    Boruban, Cansu; Esenturk, Emren Nalbant

    2018-03-01

    Activated carbon-supported copper(II) oxide (CuO) nanoparticles were synthesized by simple impregnation method to improve carbon dioxide (CO2) adsorption capacity of the support. The structural and chemical properties of the hybrid material were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), X-ray diffraction (https://www.google.com.tr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCsQFjAC&url=http%3A%2F%2Fwww.intertek.com%2Fanalytical-laboratories%2Fxrd%2F&ei=-5WZVYSCHISz7Aatqq-IAw&usg=AFQjCNFBlk-9wqy49foh8tskmbD-GGbG9g&sig2=eKrhYjO75rl_Id2sLGpq4w&bvm=bv.96952980,d.bGg) (XRD), X-ray photoelectron spectroscopy (XPS), atomic absorption spectroscopy (AAS), and Brunauer-Emmett-Teller (BET) analyses. The analyses showed that CuO nanoparticles are well-distributed on the activated carbon surface. The CO2 adsorption behavior of the activated carbon-supported CuO nanoparticles was observed by thermogravimetric analysis (TGA), temperature programmed desorption (TPD), Fourier transform infrared (FTIR), and BET analyses. The results showed that CuO nanoparticle loading on activated carbon led to about 70% increase in CO2 adsorption capacity of activated carbon under standard conditions (1 atm and 298 K). The main contributor to the observed increase is an improvement in chemical adsorption of CO2 due to the presence of CuO nanoparticles on activated carbon.

  15. Applicability and trends of anaerobic granular sludge treatment processes

    International Nuclear Information System (INIS)

    Lim, Seung Joo; Kim, Tak-Hyun

    2014-01-01

    Anaerobic granular sludge treatment processes have been continuously developed, although the anaerobic sludge granulation process was not clearly understood. In this review, an upflow anaerobic sludge blanket (UASB), an expanded granule sludge blanket (EGSB), and a static granular bed reactor (SGBR) were introduced as components of a representative anaerobic granular sludge treatment processes. The characteristics and application trends of each reactor were presented. The UASB reactor was developed in the late 1970s and its use has been rapidly widespread due to the excellent performance. With the active granules, this reactor is able to treat various high-strength wastewaters as well as municipal wastewater. Most soluble industrial wastewaters can be efficiently applied using a UASB. The EGSB reactor was developed owing to give more chance to contact between wastewater and the granules. Dispersed sludge is separated from mature granules using the rapid upward velocity in this reactor. The EGSB reactor shows the excellent performance in treating low-strength and/or high-strength wastewater, especially under low temperatures. The SGBR, developed at Iowa State University, is one of anaerobic granular sludge treatment processes. Although the configuration of the SGBR is very simple, the performance of this system is similar to that of the UASB or EGSB reactor. The anaerobic sludge granulation processes showed excellent performance for various wastewaters at a broad range of organic loading rate in lab-, pilot-scale tests. This leads to erect thousands of full-scale granular processes, which has been widely operated around the world. -- Highlights: • Anaerobic sludge granulation is a key parameter for maintaining granular processes. • Anaerobic granular digestion processes are applicable for various wastewaters. • The UASB is an economic high-rate anaerobic granular process. • The EGSB can treat high-strength wastewater using expanding granules. • The SGBR is

  16. A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-12-23

    A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

  17. The effectiveness of resistive force theory in granular locomotiona)

    Science.gov (United States)

    Zhang, Tingnan; Goldman, Daniel I.

    2014-10-01

    Resistive force theory (RFT) is often used to analyze the movement of microscopic organisms swimming in fluids. In RFT, a body is partitioned into infinitesimal segments, each of which generates thrust and experiences drag. Linear superposition of forces from elements over the body allows prediction of swimming velocities and efficiencies. We show that RFT quantitatively describes the movement of animals and robots that move on and within dry granular media (GM), collections of particles that display solid, fluid, and gas-like features. RFT works well when the GM is slightly polydisperse, and in the "frictional fluid" regime such that frictional forces dominate material inertial forces, and when locomotion can be approximated as confined to a plane. Within a given plane (horizontal or vertical) relationships that govern the force versus orientation of an elemental intruder are functionally independent of the granular medium. We use the RFT to explain features of locomotion on and within granular media including kinematic and muscle activation patterns during sand-swimming by a sandfish lizard and a shovel-nosed snake, optimal movement patterns of a Purcell 3-link sand-swimming robot revealed by a geometric mechanics approach, and legged locomotion of small robots on the surface of GM. We close by discussing situations to which granular RFT has not yet been applied (such as inclined granular surfaces), and the advances in the physics of granular media needed to apply RFT in such situations.

  18. Activation of peroxymonosulfate by graphitic carbon nitride loaded on activated carbon for organic pollutants degradation

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Mingyu; Gao, Long; Li, Jun [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Fang, Jia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Cai, Wenxuan [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Li, Xiaoxia [School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073 (China); Xu, Aihua, E-mail: xahspinel@sina.com [School of Environmental Engineering, Wuhan Textile University, Wuhan 430073 (China); Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan 430073 (China)

    2016-10-05

    Highlights: • Supported g-C{sub 3}N{sub 4} on AC catalysts with different loadings were prepared. • The metal free catalysts exhibited high efficiency for dyes degradation with PMS. • The catalyst presented a long-term stability for multiple runs. • The C=O groups played a key role in the oxidation process. - Abstract: Graphitic carbon nitride supported on activated carbon (g-C{sub 3}N{sub 4}/AC) was prepared through an in situ thermal approach and used as a metal free catalyst for pollutants degradation in the presence of peroxymonosulfate (PMS) without light irradiation. It was found that g-C{sub 3}N{sub 4} was highly dispersed on the surface of AC with the increase of surface area and the exposition of more edges and defects. The much easier oxidation of C species in g-C{sub 3}N{sub 4} to C=O was also observed from XPS spectra. Acid Orange 7 (AO7) and other organic pollutants could be completely degraded by the g-C{sub 3}N{sub 4}/AC catalyst within 20 min with PMS, while g-C{sub 3}N{sub 4}+PMS and AC+PMS showed no significant activity for the reaction. The performance of the catalyst was significantly influenced by the amount of g-C{sub 3}N{sub 4} loaded on AC; but was nearly not affected by the initial solution pH and reaction temperature. In addition, the catalysts presented good stability. A nonradical mechanism accompanied by radical generation (HO· and SO{sub 4}·{sup −}) in AO7 oxidation was proposed in the system. The C=O groups play a key role in the process; while the exposure of more N-(C){sub 3} group can further increase its electron density and basicity. This study can contribute to the development of green materials for sustainable remediation of aqueous organic pollutants.

  19. Properties of Activated Carbon Prepared from Coconut Shells in ...

    African Journals Online (AJOL)

    Materials commonly used for preparation of activated carbons include coal and coconut shells. Ghana generates over 30,000 tonnes of coconut shells annually from coconut oil processing activities but apart from a small percentage of the shells, which is burned as fuel, the remaining is usually dumped as waste.

  20. Adsorptive Removal of Malachite Green with Activated Carbon ...

    African Journals Online (AJOL)

    The adsorptive potential of activated carbon prepared by chemical activation from oil palm fruit fibre (OPFAC) to remove malachite green (MG) dye from its aqueous solution was investigated in this study. The OPFAC prepared was characterized by means of BET, TGA, FTIR, pHpzc, elemental analysis and Boehm titration.

  1. A Review on Adsorption of Cationic Dyes using Activated Carbon

    Directory of Open Access Journals (Sweden)

    Corda Nikita Chrishel

    2018-01-01

    Full Text Available In this article efficiency of activated carbon as a potent adsorbent of cationic dyes has been reviewed. Non-biodegradable nature of pollutants and their removal in the present generation is a great challenge. Therefore, extensive study on adsorption of these classes of pollutants from water bodies is being carried out. Methylene blue (majorly a dye seen in the effluent streams of textile, printing, paper industries along with some of the commonly used cationic dyes in process industries and their sorption on activated carbon are reviewed here. High cost of commercially activated carbon which is a limitation to its extensive use have paved way for study of adsorption by naturally obtained and extracted activated carbon from agricultural wastes and various other sources. The purpose of this review paper is to summarize the available information on the removal of cationic dyes using naturally extracted and commercially obtained activated carbon. Various parameters such as temperature, initial dye concentration, pH, contact time, adsorbent dosage, particle size, stirring, agitation etc. were studied and the optimum parameters were determined based on the experimental outcomes. Equilibrium data was examined using Langmuir, Freundlich, Temkin and Dubinin–Radushkevich and few other isotherm models. Kinetic studies also have been carried out to find the most suitable way of expressing the adsorption process.

  2. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon.

    Science.gov (United States)

    Hernández-Leal, L; Temmink, H; Zeeman, G; Buisman, C J N

    2011-04-01

    Ozonation and adsorption onto activated carbon were tested for the removal micropollutants of personal care products from aerobically treated grey water. MilliQ water spiked with micropollutants (100-1600 μgL(-1)) was ozonated at a dosing rate of 1.22. In 45 min, this effectively removed (>99%): Four parabens, bisphenol-A, hexylcinnamic aldehyde, 4-methylbenzylidene-camphor (4MBC), benzophenone-3 (BP3), triclosan, galaxolide and ethylhexyl methoxycinnamate. After 60 min, the removal efficiency of benzalkonium chloride was 98%, tonalide and nonylphenol 95%, octocrylene 92% and 2-phenyl-5-benzimidazolesulfonic acid (PBSA) 84%. Ozonation of aerobically treated grey water at an applied ozone dose of 15 mgL(-1), reduced the concentrations of octocrylene, nonylphenol, triclosan, galaxolide, tonalide and 4-methylbenzylidene-camphor to below limits of quantification, with removal efficiencies of at least 79%. Complete adsorption of all studied micropollutants onto powdered activated carbon (PAC) was observed in batch tests with milliQ water spiked with 100-1600 μgL(-1) at a PAC dose of 1.25 gL(-1) and a contact time of 5 min. Three granular activated carbon (GAC) column experiments were operated to treat aerobically treated grey water. The operation of a GAC column with aerobically treated grey water spiked with micropollutants in the range of 0.1-10 μgL(-1) at a flow of 0.5 bed volumes (BV)h(-1) showed micropollutant removal efficiencies higher than 72%. During the operation time of 1728 BV, no breakthrough of TOC or micropollutants was observed. Removal of micropollutants from aerobically treated grey water was tested in a GAC column at a flow of 2 BVh(-1). Bisphenol-A, triclosan, tonalide, BP3, galaxolide, nonylphenol and PBSA were effectively removed even after a stable TOC breakthrough of 65% had been reached. After spiking the aerobically treated effluent with micropollutants to concentrations of 10-100 μgL(-1), efficient removal to below limits of quantification

  3. Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth

    International Nuclear Information System (INIS)

    Mohan, Dinesh; Singh, Kunwar P.; Singh, Vinod K.

    2006-01-01

    An efficient adsorption process is developed for the decontamination of trivalent chromium from tannery effluents. A low cost activated carbon (ATFAC) was prepared from coconut shell fibers (an agricultural waste), characterized and utilized for Cr(III) removal from water/wastewater. A commercially available activated carbon fabric cloth (ACF) was also studied for comparative evaluation. All the equilibrium and kinetic studies were conducted at different temperatures, particle size, pHs, and adsorbent doses in batch mode. The Langmuir and Freundlich isotherm models were applied. The Langmuir model best fit the equilibrium isotherm data. The maximum adsorption capacities of ATFAC and ACF at 25 deg. C are 12.2 and 39.56 mg/g, respectively. Cr(III) adsorption increased with an increase in temperature (10 deg. C: ATFAC-10.97 mg/g, ACF-36.05 mg/g; 40 deg. C: ATFAC-16.10 mg/g, ACF-40.29 mg/g). The kinetic studies were conducted to delineate the effect of temperature, initial adsorbate concentration, particle size of the adsorbent, and solid to liquid ratio. The adsorption of Cr(III) follows the pseudo-second-order rate kinetics. From kinetic studies various rate and thermodynamic parameters such as effective diffusion coefficient, activation energy and entropy of activation were evaluated. The sorption capacity of activated carbon (ATFAC) and activated carbon fabric cloth is comparable to many other adsorbents/carbons/biosorbents utilized for the removal of trivalent chromium from water/wastewater

  4. Breakthrough CO₂ adsorption in bio-based activated carbons.

    Science.gov (United States)

    Shahkarami, Sepideh; Azargohar, Ramin; Dalai, Ajay K; Soltan, Jafar

    2015-08-01

    In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide (KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25-65°C and inlet CO2 concentration range of 10-30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively. Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm(3)/g and surface area of 1400 m(2)/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after 50 cycles with low temperature (160°C) regeneration. Copyright © 2015. Published by Elsevier B.V.

  5. ECONOMIC COMPARATIVE EVALUATION OF COMBINATION OF ACTIVATED CARBON GENERATION AND SPENT ACTIVATED CARBON REGENERATION PLANTS

    Directory of Open Access Journals (Sweden)

    TINNABHOP SANTADKHA

    2017-12-01

    Full Text Available The purpose of this study was to investigate the maximum annual profit of proposed three project plants as follows: (i a generation process of activated carbon (AC prepared from coconut shells; (ii a regeneration process of spent AC obtained from petrochemical industries; and (iii a project combined the AC generation process with the regeneration process. The maximum annual profit obtained from the sole regeneration plant was about 1.2- and 15.4- fold higher than that obtained from the integrated and the generation plants, respectively. The sensitivity of selected variables to net present value (NPV, AC sales price was the most sensitive to NPV while fixed costs of generation and regeneration, and variable cost of regeneration were the least sensitive to NPV. Based on the optimal results of each project plant, the economic indicators namely NPV, return on investment (ROI, internal rate of return (IRR, and simple payback period (SPP were determined. Applying a rule of thumb of 12% IRR and 7-year SPP, the AC sales prices for the generation, regeneration, and integrated plants were 674.31, 514.66 and 536.66 USD/ton of product, respectively. The economic analysis suggested that the sole regeneration project yields more profitable.

  6. 76 FR 58246 - Certain Activated Carbon From the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2011-09-20

    ... Tongfu Coking Co., Ltd.; Ningxia Weining Active Carbon Co., Ltd.; Ningxia Xingsheng Coal and Active... Huanqing Activated Carbon Co., Ltd.; Datong Huaxin Activated Carbon; Datong Huibao Active Carbon Co., Ltd... Kaneng Carbon Co. Ltd.; Datong Locomotive Coal & Chemicals Co., Ltd.; Datong Tianzhao Activated Carbon Co...

  7. Novel Activated Carbons from Agricultural Wastes and their Characterization

    Directory of Open Access Journals (Sweden)

    S. Karthikeyan

    2008-01-01

    Full Text Available Solid waste disposal has become a major problem in India, Either it has to be disposed safely or used for the recovery of valuable materials as agricultural wastes like turmeric waste, ferronia shell waste, jatropha curcus seed shell waste, delonix shell waste and ipomea carnia stem. Therefore these wastes have been explored for the preparation of activated carbon employing various techniques. Activated carbons prepared from agricultural solid wastes by chemical activation processes shows excellent improvement in the surface characteristics. Their characterization studies such as bulk density, moisture content, ash content, fixed carbon content, matter soluble in water, matter soluble in acid, pH, decolourising power, phenol number, ion exchange capacity, ion content and surface area have been carried out to assess the suitability of these carbons as absorbents in the water and wastewater. For anionic dyes (reactive, direct, acid a close relationship between the surface area and surface chemical groups of the modified activated carbon and percentage of dye removal by adsorption can be observed. Cationic dyes large amount of surface chemical groups present in the sample (mainly carboxylic, anhydrides, lactones and phenols etc. are good anchoring sites for adsorption. The present study reveals the recovery of valuable adsorbents from readily and cheaply available agriculture wastes.

  8. An open prospective study evaluating efficacy and safety of a new medical device for rectal application of activated carbon in the treatment of chronic, uncomplicated perianal fistulas

    DEFF Research Database (Denmark)

    Zawadzki, Antoni; Johnson, Louis Banka; Bohe, Måns

    2017-01-01

    PURPOSE: It has been proposed that biological/chemical substances in the intestine might play a role in the occurrence and deterioration of perianal fistulas. Elimination of such unidentified factors from the lower gastrointestinal tract might offer a new strategy for the management of anal...... fistulas. The aim of this study was to evaluate the clinical effects on non-Crohn's disease perianal fistula healing, and the safety and tolerability of a new medical device that applies high-purity, high-activity granular activated carbon locally into the rectum twice daily of patients with perianal...... fistulas without any concomitant medication. METHODS: An open, single-arm, prospective study with active treatment for 8 weeks and an optional follow-up until week 24 ( ClinicalTrial.gov identifier NCT01462747) among patients with chronic, uncomplicated perianal fistulas scheduled for surgery was conducted...

  9. Removal of benzocaine from water by filtration with activated carbon

    Science.gov (United States)

    Howe, G.E.; Bills, T.D.; Marking, L.L.

    1990-01-01

    Benzocaine is a promising candidate for registration with the U.S. Food and Drug Administration for use as an anesthetic in fish culture, management, and research. A method for the removal of benzocaine from hatchery effluents could speed registration of this drug by eliminating requirements for data on its residues, tolerances, detoxification, and environmental hazards. Carbon filtration effectively removes many organic compounds from water. This study tested the effectiveness of three types of activated carbon for removing benzocaine from water by column filtration under controlled laboratory conditions. An adsorptive capacity was calculated for each type of activated carbon. Filtrasorb 400 (12 x 40 mesh; U.S. standard sieve series) showed the greatest capacity for benzocaine adsorption (76.12 mg benzocaine/g carbon); Filtrasorb 300 (8 x 30 mesh) ranked next (31.93 mg/g); and Filtrasorb 816 (8 x 16 mesh) absorbed the least (1.0 mg/g). Increased adsorptive capacity was associated with smaller carbon particle size; however, smaller particle size also impeded column flow. Carbon filtration is a practical means for removing benzocaine from treated water.

  10. The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator

    OpenAIRE

    Setianingsih, Tutik; Kartini, Indriana; Arryanto, Yateman

    2014-01-01

    Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS) activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C). The carbon-ZBS composite were washed by using HF ...

  11. Chemotaxis of large granular lymphocytes

    International Nuclear Information System (INIS)

    Pohajdak, B.; Gomez, J.; Orr, F.W.; Khalil, N.; Talgoy, M.; Greenberg, A.H.

    1986-01-01

    The hypothesis that large granular lymphocytes (LGL) are capable of directed locomotion (chemotaxis) was tested. A population of LGL isolated from discontinuous Percoll gradients migrated along concentration gradients of N-formyl-methionyl-leucyl-phenylalanine (f-MLP), casein, and C5a, well known chemoattractants for polymorphonuclear leukocytes and monocytes, as well as interferon-β and colony-stimulating factor. Interleukin 2, tuftsin, platelet-derived growth factor, and fibronectin were inactive. Migratory responses were greater in Percoll fractions with the highest lytic activity and HNK-1 + cells. The chemotactic response to f-MLP, casein, and C5a was always greater when the chemoattractant was present in greater concentration in the lower compartment of the Boyden chamber. Optimum chemotaxis was observed after a 1 hr incubation that made use of 12 μm nitrocellulose filters. LGL exhibited a high degree of nondirected locomotion when allowed to migrate for longer periods (> 2 hr), and when cultured in vitro for 24 to 72 hr in the presence or absence of IL 2 containing phytohemagluttinin-conditioned medium. LGL chemotaxis to f-MLP could be inhibited in a dose-dependent manner by the inactive structural analog CBZ-phe-met, and the RNK tumor line specifically bound f-ML( 3 H)P, suggesting that LGL bear receptors for the chemotactic peptide

  12. Effect of the physical properties of activated carbon in the gold adsorption from cyanide media; Efecto de las propiedades fisicas del carbon activado en la adsorcion de oro desde medio cianuro

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, P.; Vargas, C.

    2010-07-01

    The effect of the physical properties of an activated carbon such as pore size distribution, specific surface, pore average diameter, in the gold adsorption from cyanide solution with the gold to the Au (CN){sup -}{sub 2} form, was studied. To meet the proposed objectives two carbons were studied: carbon A with specific surface of 985 m{sup 2} / g, 57 % of micropores and 1.85 nm as average diameter of pores and carbon B with specific surface of 786 m{sup 2} / g, 27 % and pores of 2.35 nm as average diameter of pores; both granular carbons made from coconut shell. Batch adsorption tests were performed in a reactor of 500 ml of capacity with mechanical stirring at constant temperature. The effect of cations present in the aqueous solutions such as Ca{sup 2}+, Na+, K+ and Li+, the effect of pore size distribution, the effect of average pore diameter and surface area were evaluated in function of the rate and amount of gold adsorbed on the activated carbons denominated as A and B. The results to indicate that the physical properties of an activated carbon are an important factor in the gold adsorption process in terms of rate and amount of adsorbed gold. The carbon B with 786 m{sup 2} / g of specific surface area reached a higher load per unit area (0.02 mg Au/m{sup 2}) in relation to the carbon B of 985 m{sup 2} / g which had a load of 0.01 mg Au / m{sup 2}, after 6 h of contact carbon-solution. The rate adsorption of gold in both carbons is controlled by mass transfer in the liquid film surrounding the carbon particles to short times or small loads of gold in the particles, far from equilibrium. Applying a first order kinetic model, it was obtained that the ratio of the kinetic constants for carbons A and B, ie (kB / kA), fluctuates in a value of 3 for the different cations in study. In general it is possible to say that the rate adsorption and the amount of adsorbed gold increased with the increase in macropores and with the increasing pore average diameter. The

  13. Carbon-based supercapacitors produced by activation of graphene.

    Science.gov (United States)

    Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ganesh, K J; Cai, Weiwei; Ferreira, Paulo J; Pirkle, Adam; Wallace, Robert M; Cychosz, Katie A; Thommes, Matthias; Su, Dong; Stach, Eric A; Ruoff, Rodney S

    2011-06-24

    Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp(2)-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

  14. Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results

    Energy Technology Data Exchange (ETDEWEB)

    Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

    2010-12-01

    CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 µg/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests

  15. Nucleophilic β-Carbon Activation of Propionic Acid as a 3-Carbon Synthon by Carbene Organocatalysis.

    Science.gov (United States)

    Jin, Zhichao; Jiang, Ke; Fu, Zhenqian; Torres, Jaume; Zheng, Pengcheng; Yang, Song; Song, Bao-An; Chi, Yonggui Robin

    2015-06-22

    Direct β-carbon activation of propionic acid (C2H5CO2H) by carbene organocatalysis has been developed. This activation affords the smallest azolium homoenolate intermediate (without any substituent) as a 3-carbon nucleophile for enantioselective reactions. Propionic acid is an excellent raw material because it is cheap, stable, and safe. This approach provides a much better solution to azolium homoenolate synthesis than the previously established use of acrolein (enal without any substituent), which is expensive, unstable, and toxic. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. ACTIVATED CARBONS FROM VEGETAL RAW MATERIALS TO SOLVE ENVIRONMENTAL PROBLEMS

    Directory of Open Access Journals (Sweden)

    Viktor Mukhin

    2014-06-01

    Full Text Available Technologies for active carbons obtaining from vegetable byproducts such as straw, nut shells, fruit stones, sawdust, hydrolysis products of corn cobs and sunflower husks have been developed. The physico-chemical characteristics, structural parameters and sorption characteristics of obtained active carbons were determined. The ability of carbonaceous adsorbents for detoxification of soil against pesticides, purification of surface waters and for removal of organic pollutants from wastewaters has been evaluated. The obtained results reveal the effectiveness of their use in a number of environmental technologies.

  17. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  18. Ammonia Activation of Carbonized Polysaccharides and their Application for the Carbon Capture

    International Nuclear Information System (INIS)

    Han, Tae Youl; Park, Seo Kyoung; Lee, Je Seung

    2016-01-01

    Porous carbons derived from polysaccharides (cellulose, chitosan, and alginic acid) have been prepared by heat treatment under N 2 atmosphere and activated at high temperature under ammonia gas atmosphere. The CO 2 adsorption capacities of prepared porous carbon materials and their dependence on the surface area and pore volume were investigated. The surface area of pristine carbon from cellulose, chitosan, and alginic acid at 800 .deg. C was measured as 406.5, 206.8, and 258.2 m 2 /g with the pore volume of 0.27, 0.14, and 0.15 cm 3 /g, respectively. The surface area and pore volume of carbons derived from cellulose, chitosan, and alginic acid further increased up to 976.6, 883.4, and 1031.9 m 2 /g and 0.54, 0.45, and 0.65 cm 3 /g, respectively, after the activation at high temperature under ammonia gas environment. The CO 2 adsorption capacities of pristine carbons were measured as high as 1.85 mmol/g and further increased up to 2.44 mmol/g by ammonia activation.

  19. Pore structure of the activated coconut shell charcoal carbon

    Science.gov (United States)

    Budi, E.; Nasbey, H.; Yuniarti, B. D. P.; Nurmayatri, Y.; Fahdiana, J.; Budi, A. S.

    2014-09-01

    The development of activated carbon from coconut shell charcoal has been investigated by using physical method to determine the influence of activation parameters in term of temperature, argon gas pressure and time period on the pore structure of the activated carbon. The coconut shell charcoal was produced by pyrolisis process at temperature of about 75 - 150 °C for 6 hours. The charcoal was activated at various temperature (532, 700 and 868 °C), argon gas pressure (6.59, 15 and 23.4 kgf/cm2) and time period of (10, 60 and 120 minutes). The results showed that the pores size were reduced and distributed uniformly as the activation parameters are increased.

  20. Activity of catalase adsorbed to carbon nanotubes: effects of carbon nanotube surface properties.

    Science.gov (United States)

    Zhang, Chengdong; Luo, Shuiming; Chen, Wei

    2013-09-15

    Nanomaterials have been studied widely as the supporting materials for enzyme immobilization. However, the interactions between enzymes and carbon nanotubes (CNT) with different morphologies and surface functionalities may vary, hence influencing activities of the immobilized enzyme. To date how the adsorption mechanisms affect the activities of immobilized enzyme is not well understood. In this study the adsorption of catalase (CAT) on pristine single-walled carbon nanotubes (SWNT), oxidized single-walled carbon nanotubes (O-SWNT), and multi-walled carbon nanotubes (MWNT) was investigated. The adsorbed enzyme activities decreased in the order of O-SWNT>SWNT>MWNT. Fourier transforms infrared spectroscopy (FTIR) and circular dichrois (CD) analyses reveal more significant loss of α-helix and β-sheet of MWNT-adsorbed than SWNT-adsorbed CAT. The difference in enzyme activities between MWNT-adsorbed and SWNT-adsorbed CAT indicates that the curvature of surface plays an important role in the activity of immobilized enzyme. Interestingly, an increase of β-sheet content was observed for CAT adsorbed to O-SWNT. This is likely because as opposed to SWNT and MWNT, O-SWNT binds CAT largely via hydrogen bonding and such interaction allows the CAT molecule to maintain the rigidity of enzyme structure and thus the biological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of Paper Containing Activated Carbon.

    Science.gov (United States)

    1984-06-01

    development of charcoal paper. RESUME On a obtenu du papier contenant du charbon actif en dispersant du charbon r~duit en poudre et en versant des agents de...sa capaciti d’adsorption et de ritention du charbon . Ce papier pourrait servir d𔄀crans dans une salle de contr~le de contamination pour le balayage...contenant du charbon . "l-ii:: . ---:.-o * *** * *. .. t C Cd. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 S 2 INTRODUCTION . Activated

  2. Characteristics of activated carbon and carbon nanotubes as adsorbents to remove annatto (norbixin) in cheese whey.

    Science.gov (United States)

    Zhang, Yue; Pan, Kang; Zhong, Qixin

    2013-09-25

    Removing annatto from cheese whey without bleaching has potential to improve whey protein quality. In this work, the potential of two activated carbon products and multiwalled carbon nanotubes (CNT) was studied for extracting annatto (norbixin) in aqueous solutions. Batch adsorption experiments were studied for the effects of solution pH, adsorbent mass, contact duration, and ionic strength. The equilibrium adsorption data were observed to fit both Langmuir and Freundlich isotherm models. The thermodynamic parameters estimated from adsorption isotherms demonstrated that the adsorption of norbixin on three adsorbents is exothermic, and the entropic contribution differs with adsorbent structure. The adsorption kinetics, with CNT showing a higher rate than activated carbon, followed the pseudo first order and second order rate expressions and demonstrated the significance of intraparticle diffusion. Electrostatic interactions were observed to be significant in the adsorption. The established adsorption parameters may be used in the dairy industry to decolorize cheese whey without applying bleaching agents.

  3. Carbon monoxide and methane adsorption of crude oil refinery using activated carbon from palm shells as biosorbent

    Science.gov (United States)

    Yuliusman; Afdhol, M. K.; Sanal, Alristo

    2018-03-01

    Carbon monoxide and methane gas are widely present in oil refineries. Off-potential gas is used as raw material for the petrochemical industry. In order for this off-gas to be utilized, carbon monoxide and methane must be removed from off-gas. This study aims to adsorb carbon monoxide and methane using activated carbon of palm shells and commercial activated carbon simultaneously. This research was conducted in 2 stages: 1) Preparation and characterization of activated carbon, 2) Carbon monoxide and methane adsorption test. The activation experiments using carbon dioxide at a flow rate of 150 ml/min yielded a surface area of 978.29 m2/g, Nitrogen at flow rate 150 ml/min yielded surface area 1241.48 m2/g, and carbon dioxide and nitrogen at a flow rate 200 ml/min yielded a surface area 300.37 m2/g. Adsorption of carbon monoxide and methane on activated carbon of palm shell systems yielded results in the amount of 0.5485 mg/g and 0.0649 mg/g and using commercial activated carbon yielded results in the amount of 0.5480 mg/g and 0.0650 mg/g

  4. Authigenic carbonates from active methane seeps offshore southwest Africa

    Science.gov (United States)

    Pierre, Catherine; Blanc-Valleron, Marie-Madeleine; Demange, Jérôme; Boudouma, Omar; Foucher, Jean-Paul; Pape, Thomas; Himmler, Tobias; Fekete, Noemi; Spiess, Volkhard

    2012-12-01

    The southwest African continental margin is well known for occurrences of active methane-rich fluid seeps associated with seafloor pockmarks at water depths ranging broadly from the shelf to the deep basins, as well as with high gas flares in the water column, gas hydrate accumulations, diagenetic carbonate crusts and highly diverse benthic faunal communities. During the M76/3a expedition of R/V METEOR in 2008, gravity cores recovered abundant authigenic carbonate concretions from three known pockmark sites—Hydrate Hole, Worm Hole, the Regab pockmark—and two sites newly discovered during that cruise, the so-called Deep Hole and Baboon Cluster. The carbonate concretions were commonly associated with seep-benthic macrofauna and occurred within sediments bearing shallow gas hydrates. This study presents selected results from a comprehensive analysis of the mineralogy and isotope geochemistry of diagenetic carbonates sampled at these five pockmark sites. The oxygen isotope stratigraphy obtained from three cores of 2-5 m length indicates a maximum age of about 60,000-80,000 years for these sediments. The authigenic carbonates comprise mostly magnesian calcite and aragonite, associated occasionally with dolomite. Their very low carbon isotopic compositions (-61.0 Hole and Worm Hole pockmarks which were interpreted to reflect spatiotemporal variations in AOM related to subsurface gas hydrate formation-decomposition.

  5. Three-phase fracturing in granular material

    Science.gov (United States)

    Campbell, James; Sandnes, Bjornar

    2015-04-01

    There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.

  6. Influence of resorcinol chemical oxidation on the removal of resulting organic carbon by activated carbon adsorption.

    Science.gov (United States)

    Rodríguez, Eva; Encinas, Angel; Masa, Francisco J; Beltrán, Fernando J

    2008-02-01

    Activated carbon adsorption and chemical oxidation followed by activated carbon adsorption of resorcinol in water has been studied. Three chemical oxidants have been used: hypochlorite, permanganate and Fenton's reagent. The influence of concentrations of resorcinol and activated carbon on adsorption removal rates has been investigated. Both isotherm and adsorption kinetics have been studied. Results are fit well by Freundlich isotherms and adsorption rates of resorcinol were found to follow a pseudo-second-order kinetic model. However, pyrogallol, an intermediate of resorcinol oxidation with permanganate and Fenton's reagent, showed an unfavourable isotherm type. At the conditions investigated, chemical oxidation allows slight reductions of TOC and intermediates formed were found to inhibit the adsorption rate of TOC in the case of permanganate and Fenton's reagent oxidation, likely due to formation of some polymer pyrogallol product. The adsorption process was found to be controlled by pore internal diffusion, which justifies the poor affinity of oxidation intermediates toward activated carbon since molecules of larger size should diffuse rapidly for the adsorption to be effective.

  7. Magnetically Responsive Activated Carbons for Bio - and Environmental Applications

    Czech Academy of Sciences Publication Activity Database

    Šafařík, Ivo; Horská, Kateřina; Popisková, K.; Šafaříková, Miroslava

    2012-01-01

    Roč. 4, č. 3 (2012), s. 346-352 ISSN 2035-1755 R&D Projects: GA ČR(CZ) GAP503/11/2263; GA MŠk LH12190 Institutional support: RVO:67179843 Keywords : Activated Carbon * Magnetic Modification * Magnetic Separation Subject RIV: EH - Ecology, Behaviour

  8. Sorption of lead from aqueous solution by modified activated carbon ...

    African Journals Online (AJOL)

    They were based on using powdered activated carbon (PACI), which was prepared from olive stones generated, as plant wastes, and modified with aqueous oxidizing agent such as (NH 4)2S2O8. The main parameters (pH, sorbent, lead concentrations, stirring times and temperature) influencing the sorption process in ...

  9. Electricity generation from wetlands with activated carbon bioanode

    Science.gov (United States)

    Sudirjo, E.; Buisman, C. J. N.; Strik, D. P. B. T. B.

    2018-03-01

    Paddy fields are potential non-tidal wetlands to apply Plant Microbial Fuel Cell (PMFC) technology. World widely they cover about 160 million ha of which 13.3 million ha is located in Indonesia. With the PMFC, in-situ electricity is generated by a bioanode with electrochemically active bacteria which use primary the organic matter supplied by the plant (e.g. as rhizodeposits and plant residues). One of limitations when installing a PMFC in a non-tidal wetland is the usage of “expensive” large amounts of electrodes to overcome the poor conductivity of wet soils. However, in a cultivated wetland such as rice paddy field, it is possible to alter soil composition. Adding a conductive carbon material such as activated carbon is believed to improve soil conductivity with minimum impact on plant vitality. The objective of this research was to study the effect of activated carbon as an alternative bioanode material on the electricity output and plants vitality. Lab result shows that activated carbon can be a potential alternative for bioanode material. It can continuously deliver current on average 1.54 A/m3 anode (0.26 A/m2 PGA or 66 mW/m2 PGA) for 98 days. Based on this result the next step is to do a test of this technology in the real paddy fields.

  10. Tertiary activated carbon treatment of paper and board industry wastewater

    NARCIS (Netherlands)

    Temmink, B.G.; Grolle, K.C.F.

    2005-01-01

    The feasibility of activated carbon post-treatment of (biologically treated) wastewater from the paper and board industry was investigated, the goal being to remove refractory organic pollutants and produce water that can be re-used in the production process. Because closing water-circuits in the

  11. Adsorption efficiency of coconut shell-based activated carbons on ...

    African Journals Online (AJOL)

    A colour comparator was used to determine the colour of the molassess, volumetric analysis was used to determine oxygen and related parameters while oil and grease were determined by gravimetry. The results showed that the activated carbons used in this study are capable of reducing the level of colour present in ...

  12. Column removal of methylene blue using activated carbon derived ...

    African Journals Online (AJOL)

    This study investigated column and batch sorption of methylene blue from solution using activated carbon produced from water spinach. The equilibrium data of the batch sorption process was analyzed using Langmuir and Freundlich isotherm models and the monolayer sorption capacity (441 mg/g) obtained from the ...

  13. Preparation and characterization of activated carbons from albizia ...

    African Journals Online (AJOL)

    Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ...

  14. Application of activated carbon from empty fruit bunch (EFB) for ...

    African Journals Online (AJOL)

    Mercury is a heavy metal and is used widely in the industry, making it a global problem. It accounts for approximately 70% of man-made emissions. Activated carbon was found to be efficient for the adsorption of Hg(ll) in aqueous solution. The characterization of Hg(ll) uptake showed that the mercury binding is dependent ...

  15. Preparation of activated carbon from a renewable agricultural ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-10

    May 10, 2010 ... many fast growing trees and perennial herbaceous energy crops (Akbulut and Ozcan, 2009). However ... Mulberry shoot is a key part of mulberry tree; B: Cutting mulberry shoot is a normal work in mulberry field ..... and white oak by H3PO4 activation. Carbon 36: 1085-1097. Kandylis K, Hadjigeorgiou I, ...

  16. Activated Carbon Prepared in a Novel Gas Fired Static Bed ...

    African Journals Online (AJOL)

    Michael O. Mensah

    2015-12-02

    Dec 2, 2015 ... from coal-fired utility boilers vary in total amount and speciation ... such as coal, bones, sawdust, palm kernel shells and coconut shells .... solid/liquid contact. A similar test was run using the commercial activated carbon for the purpose of comparison. All experiments were conducted at room temperature ...

  17. Physicochemical effect of activation temperature on the sorption properties of pine shell activated carbon.

    Science.gov (United States)

    Wasim, Agha Arslan; Khan, Muhammad Nasiruddin

    2017-03-01

    Activated carbons produced from a variety of raw materials are normally selective towards a narrow range of pollutants present in wastewater. This study focuses on shifting the selectivity of activated carbon from inorganic to organic pollutants using activation temperature as a variable. The material produced from carbonization of pine shells substrate was activated at 250°C and 850°C. Both adsorbents were compared with commercial activated carbon for the sorption of lead, cadmium, methylene blue, methyl blue, xylenol orange, and crystal violet. It was observed that carbon activated at 250°C was selective for lead and cadmium whereas the one activated at 850°C was selective for the organic dyes. The Fourier transform infrared spectroscopy study revealed that AC850 had less surface functional groups as compared to AC250. Point of zero charge and point of zero salt effect showed that AC250 had acidic groups at its surface. Scanning electron microscopy depicted that increase in activation temperature resulted in an increase in pore size of activated carbon. Both AC250 and AC850 followed pseudo-second-order kinetics. Temkin isotherm model was a best fit for empirical data obtained at equilibrium. The model also showed that sorption process for both AC250 and AC850 was physisorption.

  18. Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity

    Energy Technology Data Exchange (ETDEWEB)

    Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

    2007-05-01

    Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

  19. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    International Nuclear Information System (INIS)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-01-01

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers' performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding K d values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding K d values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and K d values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and K d values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine sorption.

  20. Iodine adsorption on ion-exchange resins and activated carbons: batch testing

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Kent E.; Golovich, Elizabeth C.; Wellman, Dawn M.

    2014-09-30

    Iodine sorption onto seven resins and six carbon materials was evaluated using water from well 299-W19-36 on the Hanford Site. These materials were tested using a range of solution-to-solid ratios. The test results are as follows. The efficacy of the resin and granular activated carbon materials was less than predicted based on manufacturers’ performance data. It is hypothesized that this is due to the differences in speciation previously determined for Hanford groundwater. The sorption of iodine is affected by the iodine species in the source water. Iodine loading on resins using source water ranged from 1.47 to 1.70 µg/g with the corresponding Kd values from 189.9 to 227.0 mL/g. The sorption values when the iodine is converted to iodide ranged from 2.75 to 5.90 µg/g with the corresponding Kd values from 536.3 to 2979.6 mL/g. It is recommended that methods to convert iodine to iodide be investigated in fiscal year (FY) 2015. The chemicals used to convert iodine to iodate adversely affected the sorption of iodine onto the carbon materials. Using as-received source water, loading and Kd values ranged from 1.47 to 1.70 µg/g and 189.8 to 226.3 mL/g respectively. After treatment, loading and Kd values could not be calculated because there was little change between the initial and final iodine concentration. It is recommended the cause of the decrease in iodine sorption be investigated in FY15. In direct support of CH2M HILL Plateau Remediation Company, Pacific Northwest National Laboratory has evaluated samples from within the 200W pump and treat bioreactors. As part of this analysis, pictures taken within the bioreactor reveal a precipitate that, based on physical properties and known aqueous chemistry, is hypothesized to be iron pyrite or chalcopyrite, which could affect iodine adsorption. It is recommended these materials be tested at different solution-to-solid ratios in FY15 to determine their effect on iodine

  1. Why granular media are thermal after all

    Science.gov (United States)

    Liu, Mario; Jiang, Yimin

    2017-06-01

    Two approaches exist to account for granular behavior. The thermal one considers the total entropy, which includes microscopic degrees of freedom such as phonons; the athermal one (as with the Edward entropy) takes grains as elementary. Granular solid hydrodynamics (GSH) belongs to the first, DEM, granular kinetic theory and athermal statistical mechanics (ASM) to the second. A careful discussion of their conceptual differences is given here. Three noteworthy insights or results are: (1) While DEM and granular kinetic theory are well justified to take grains as elementary, any athermal entropic consideration is bound to run into trouble. (2) Many general principles are taken as invalid in granular media. Yet within the thermal approach, energy conservation and fluctuation-dissipation theorem remain valid, granular temperatures equilibrate, and phase space is well explored in a grain at rest. Hence these are abnormalities of the athermal approximation, not of granular media as such. (3) GSH is a wide-ranged continuum mechanical description of granular dynamics.

  2. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.

    Science.gov (United States)

    Clack, Herek L

    2012-07-03

    The behavior of mercury sorbents within electrostatic precipitators (ESPs) is not well-understood, despite a decade or more of full-scale testing. Recent laboratory results suggest that powdered activated carbon exhibits somewhat different collection behavior than fly ash in an ESP and particulate filters located at the outlet of ESPs have shown evidence of powdered activated carbon penetration during full-scale tests of sorbent injection for mercury emissions control. The present analysis considers a range of assumed differential ESP collection efficiencies for powdered activated carbon as compared to fly ash. Estimated emission rates of submicrometer powdered activated carbon are compared to estimated emission rates of particulate carbon on submicrometer fly ash, each corresponding to its respective collection efficiency. To the extent that any emitted powdered activated carbon exhibits size and optical characteristics similar to black carbon, such emissions could effectively constitute an increase in black carbon emissions from coal-based stationary power generation. The results reveal that even for the low injection rates associated with chemically impregnated carbons, submicrometer particulate carbon emissions can easily double if the submicrometer fraction of the native fly ash has a low carbon content. Increasing sorbent injection rates, larger collection efficiency differentials as compared to fly ash, and decreasing sorbent particle size all lead to increases in the estimated submicrometer particulate carbon emissions.

  3. The determination of chromium in water samples by neutron activation analysis after preconcentration on activated carbon

    International Nuclear Information System (INIS)

    Sloot, H.A. van der

    1977-01-01

    A method is presented for the determination of chromium in sea- and fresh water. Chromium is concentrated on activated carbon from a neutral solution after a previous reduction of chromate with sodium sulfite at pH 1.5. The adsorption conditions, acidity, concentrations, amount of carbon, stirring-time, sample-volume, salinity, the influence of storage on the ratio of tervalent to hexavalent chromium, were investigated. The final determination of the total chromium content is performed by instrumental neutron-activation analysis. By preconcentration on activated carbon, a differentiation between tervalent and hexavalent chromium is possible. A separate determination of both species is not yet feasible due to the high carbon blank and to the necessity of measuring the adsorption percentage on carbon. The lower limit of determination, which depends on the value of the carbon blank, is 0.05 μg Cr/l with a precision of 20%. The determination is hampered by the considerable blank from the carbon. The use of activated carbon prepared from recrystallized sugar will probably improve the lower limit of determination and possibly allow the determination of chromate. (T.G.)

  4. Gas cleaning with Granular Filters

    OpenAIRE

    Natvig, Ingunn Roald

    2007-01-01

    The panel bed filter (PBF) is a granular filter patented by A. M. Squires in the late sixties. PBFs consist of louvers with stationary, granular beds. Dust is deposited in the top layers and on the bed surface when gas flows through. PBFs are resistant to high temperatures, variations in the gas flow and hot particles. The filter is cleaned by releasing a pressure pulse in the opposite direction of the bulk flow (a puff back pulse). A new louver geometry patented by A. M. Squires is the filte...

  5. Granular cell ameloblastoma of mandible.

    Science.gov (United States)

    Jansari, Trupti R; Samanta, Satarupa T; Trivedi, Priti P; Shah, Manoj J

    2014-01-01

    Ameloblastoma is a neoplasm of odontogenic epithelium, especially of enamel organ-type tissue that has not undergone differentiation to the point of hard tissue formation. Granular cell ameloblastoma is a rare condition, accounting for 3-5% of all ameloblastoma cases. A 30-year-old female patient presented with the chief complaint of swelling at the right lower jaw region since 1 year. Orthopantomogram and computed tomography scan was suggestive of primary bone tumor. Histopathologically, diagnosis of granular cell ameloblastoma of right mandible was made.

  6. Traffic and Granular Flow '11

    CERN Document Server

    Buslaev, Alexander; Bugaev, Alexander; Yashina, Marina; Schadschneider, Andreas; Schreckenberg, Michael; TGF11

    2013-01-01

    This book continues the biannual series of conference proceedings, which has become a classical reference resource in traffic and granular research alike. It addresses new developments at the interface between physics, engineering and computational science. Complex systems, where many simple agents, be they vehicles or particles, give rise to surprising and fascinating phenomena.   The contributions collected in these proceedings cover several research fields, all of which deal with transport. Topics include highway, pedestrian and internet traffic, granular matter, biological transport, transport networks, data acquisition, data analysis and technological applications. Different perspectives, i.e. modeling, simulations, experiments and phenomenological observations, are considered.

  7. Carbon nanofibers grown on activated carbon fiber fabrics as electrode of supercapacitors

    International Nuclear Information System (INIS)

    Ko, T-H; Hung, K-H; Tzeng, S-S; Shen, J-W; Hung, C-H

    2007-01-01

    Carbon nanofibers (CNFs) were grown directly on activated carbon fiber fabric (ACFF), which was then used as the electrode of supercapacitors. Cyclic voltammetry and ac impedance were used to characterize the electrochemical properties of ACFF and CNF/ACFF electrodes in both aqueous and organic electrolytes. ACFF electrodes show higher specific capacitance than CNF/ACFF electrodes due to larger specific surface area. However, the spaces formed between the CNFs in the CNF/ACFF electrodes are more easily accessed than the slit-type pores of ACFF, and much higher electrical-double layer capacitance was obtained for CNF/ACFF electrodes

  8. DETOXIFICATION OF PESTICIDES POLLUTED SOIL BY ADSORBTION ON ACTIVATED CARBONS

    Directory of Open Access Journals (Sweden)

    V.M. Mukhin

    2009-06-01

    Full Text Available The paper emphasizes a very severe social-ecological problem, related to the contamination of soils by pesticides and fodder micotoxins. The authors suggest the utilization of a carbon adsorption based method of purification of soils contaminated with traces of pesticides. It is demonstrated that this method of soil rehabilitation leads to an 80% crop increase, allowing the production of environmentally clean plant products. The utilization of special activated carbons “Ptitsesorb” leads to a 30-40% decrease of necessary combined fodder in chickens breeding.

  9. Sensors for the CMS High Granularity Calorimeter

    CERN Document Server

    Maier, Andreas Alexander

    2017-01-01

    The CMS experiment is currently developing high granularity calorimeter endcapsfor its HL-LHC upgrade. The design foresees silicon sensors as the active material for the high radiation region close to the beampipe. Regions of lower radiation are additionally equipped with plastic scintillator tiles. This technology is similar to the calorimeter prototypes developed in the framework of the Linear Collider by the CALICE collaboration. The current status of the silicon sensor development is presented. Results of single diode measurements are shown as well as tests of full 6-inch hexagonal sensor wafers. A short summary of test beam results concludes the article.

  10. Préparation et modification de carbones activés pour l'adsorption de polluants organiques émergents : molécules pharmaceutiques et liquides ioniques

    OpenAIRE

    Guedidi, Hanen

    2015-01-01

    In this work, two activated carbons (granular AC and fabric T0) were modified either by chemical treatment (H2O2, NaOCl and thermal treatment under N2) or by ultrasonic irradiation at 20 kHz or 500 kHz in different solvents (UHQ water, H2O2 and HCOOH). The raw and modified materials were characterized by different methods. We studied the ibuprofen (IBP) adsorption at different pH and temperatures. The adsorption of IBP by (AC or T0) was an endothermic process at pH 3. Oxidation with NaOCl cre...

  11. Adsorption of Rhodamine B on activated carbon obtained from pericarp of rubber fruit in comparison with the commercial activated carbon

    Directory of Open Access Journals (Sweden)

    Fareeda Hayeeye

    2014-04-01

    Full Text Available Adsorption of the dye, Rhodamine B, on activated carbon obtained from pericarp of rubber fruit (PrAC was investigated in comparison with the commercial activated carbon (CAC. Both activated carbons were characterized by scanning electron microscopy (SEM, specific surface area, and pH at point of zero charge (pHpzc. The effects of various experimental parameters such as contact time, dye concentration, amount of activated carbon, pH and temperature were analysed. The adsorption isotherm fitted well into the Langmuir model. By keeping pH constant at 4.0 and varying temperatures at 30, 40, 50, and 60°C, the maximum adsorption were 0.2306, 0.2356, 0.2756, and 0.2981 mmol g-1 for PrAC and 0.8957, 0.9588, 0.9841, and 1.0263 mmol g-1 for CAC, respectively. Study of the effect of temperature dependence of these adsorptions indicated that they were endothermic processes. The adsorption efficiency of Rhodamine B on PrAC is about 80-90%.

  12. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro

  13. Reduction of organic carbon in demineralized make-up water with activated carbon filtration

    Energy Technology Data Exchange (ETDEWEB)

    Luukkonen, Tero [Oulu Univ. (Finland). Dept. of Chemistry; Hukkanen, Reijo [Stora Enso Fine Paper Oulu Mill, Oulu (Finland); Pellinen, Jaakko [JP-ANALYSIS, Revonlahti (Finland); Raemoe, Jaakko [VTT Technical Research Centre of Finland (Finland); Lassi, Ulla [Oulu Univ. (Finland). Research Unit of Applied Chemistry and Process Chemistry

    2012-02-15

    Organic compounds in the water-steam cycle are an emerging issue at recovery boiler plants. Decomposition products of organic compounds, mainly organic acids with low molecular weight and carbon dioxide, are often related to corrosion. Removal of organics from recovery boiler make-up water with activated carbon (AC) was investigated both in pilot and full scale experiments. AC was used in a novel way to remove organic compounds from demineralized water. AC is conventionally used before demineralization, but when implemented later in the process the lifetime of AC can be extended. Total organic carbon (TOC), conductivity, silica concentration and composition of organic compounds were monitored during the experiments. Results show that AC filtration is a suitable technology for TOC removal from demineralized water. A TOC reduction of 38-70 % was achieved. Mixed-bed ion exchange after the AC filters proved to be necessary to remove conductivity, which was increased in the AC bed. (orig.)

  14. Irreversible adsorption of phenolic compounds by activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs.

  15. Waste management activities and carbon emissions in Africa

    International Nuclear Information System (INIS)

    Couth, R.; Trois, C.

    2011-01-01

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  16. Irreversible adsorption of phenolic compounds by activated carbons

    International Nuclear Information System (INIS)

    Grant, T.M.; King, C.J.

    1988-12-01

    Studies were undertaken to determine the reasons why phenolic sorbates can be difficult to remove and recover from activated carbons. The chemical properties of the sorbate and the adsorbent surface, and the influences of changes in the adsorption and desorption conditions were investigated. Comparison of isotherms established after different contact times or at different temperatures indicated that phenolic compounds react on carbon surfaces. The reaction rate is a strong function of temperature. Regeneration of carbons by leaching with acetone recovered at least as much phenol as did regeneration with other solvents or with displacers. The physiochemical properties of adsorbents influences irreversible uptakes. Sorbates differed markedly in their tendencies to undergo irreversible adsorption. 64 refs., 47 figs., 32 tabs

  17. A comparative study of carbon dioxide adsorption on multi-walled carbon nanotubes versus activated charcoal

    Science.gov (United States)

    Khalili, S.; Ghoreyshi, A. A.; Jahanshahi, M.; Davoodi, M.

    2012-09-01

    In this study, the quilibrium adsorption of CO2 on activated charcoal and multi-walled carbon nanotube (MWCNT) were experimentally investigated at temperature range of 298-318 K and pressures up to 40 bars. The maximum storage capacity for both materials was obtained at lowest temperature and highest pressure under study. The amount of CO2 adsorbed on MWCNT is 2 times higher than that of activated Charcoal whereas the specific surface area of activated carbon is aboute 2 times higher than MWNT. The experimental data of CO2 adsorption have been analyzed using different model isotherms such as the Freundlich and Langmuir. Heat of adsorption evaluated from a set of isotherms based on the Clausius-Clapeyron equation indicated physical nature of adsorption mechanism.

  18. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  19. PERFORMANCE OF ACTIVATED SLUDGE-POWDERED ACTIVATED CARBON-WET AIR REGENERATION SYSTEMS

    Science.gov (United States)

    The investigation summarized in the report was undertaken to evaluate the performance of powdered activated carbon (PAC) technology used in conjunction with wet air regeneration (WAR) at municipal wastewater treatment plants. Excessive ash concentrations accumulated in the mixed ...

  20. Activated sludge and activated carbon treatment of a wood preserving effluent containing pentachlorophenol

    National Research Council Canada - National Science Library

    Guo, P. H. M

    1980-01-01

    ...; however, PCP removal averaged only 35% and the effluent was toxic to rainbow trout. Treatment of the activated sludge effluent by carbon adsorption resulted in effective PCP removal and non-toxic effluents...

  1. 1/f Noise in Ceramic Superconductors and Granular Resistors

    OpenAIRE

    Takagi, Keiji; Mizunami, Toru; Okayama, Hideyuki; Shiyuan, Yang

    1990-01-01

    The authors have measured the current noise in some components of granular structure. The samples are ceramic superconductors, carbon-black graft-polymer resistors, and positive temperature coefficient(PTe) ceramics. All noise spectra are of the 1/! type. The temperature dependence of the noise level is measured and compared with the temperature dependence of the resistance, It is shown that in these components the temperature coefficient of the resistance is related to the noise level as pre...

  2. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  3. Synthesis of carbon nanofibers on impregnated powdered activated carbon as cheap substrate

    Directory of Open Access Journals (Sweden)

    A.A. Mamun

    2016-07-01

    Full Text Available The catalysis and characterization of carbon nanofibers (CNFs composite are reported in this work. Carbon nanofibers were produced on oil palm shell powdered activated carbon (PAC, which was impregnated with nickel. Chemical Vapor Deposition (CVD of C2H2 was used in the presence of hydrogen at ∼650 °C. The flow rates of carbon source and hydrogen were fixed. The CNFs formed directly on the surface of the impregnated PAC. Variable weight percentages (1%, 3%, 5%, 7% and 9% of the catalyst salt (Ni+2 were used for the impregnation. However, the best catalysis was observed on the substrate with 3% Ni+2. The product displayed a relatively high surface area, essentially constituted by the external surface. New functional groups also appeared compared to those in the PAC. Field Emission Scanning Microscopy (FESEM, Transmission Electron Microscopy (TEM, Fourier Transform Infrared (FTIR, BET surface area analysis and energy dispersive X-ray (EDX were used for the characterization of the new carbon nano product, which was produced through a clean novel process.

  4. Comparative study of different activation treatments for the preparation of activated carbon: a mini-review.

    Science.gov (United States)

    Din, Muhammad Imran; Ashraf, Sania; Intisar, Azeem

    2017-09-01

    In this review, various methods of preparation of activated carbon from agricultural and commercial waste material are reviewed. In addition, we also discuss various activation treatments using a comparative approach. The data are organised in tabulated form for ease of comparative study. A review of numerous characterisation techniques is also provided. The effect of time and temperature, activation conditions, carbonisation conditions and impregnation ratios are explained and several physical and chemical activation treatments of raw materials and their impact on the micro- and mesoporous volumes and surface area are discussed. Lastly, a review of adsorption mechanisms of activated carbon (AC) is also provided.

  5. Activated carbons obtained from sewage sludge by chemical activation: gas-phase environmental applications.

    Science.gov (United States)

    Boualem, T; Debab, A; Martínez de Yuso, A; Izquierdo, M T

    2014-07-01

    The objective of this study was to evaluate the adsorption capacity for toluene and SO2 of low cost activated carbons prepared from sewage sludge by chemical activation at different impregnation ratios. Samples were characterized by proximate and ultimate analyses, thermogravimetry, infrared spectroscopy and N2 adsorption. Because of the low carbon content of the raw material, the development of porosity in the activated carbons was mainly of a mesoporous nature, with surface areas lower than 300 m(2)/g. The study of gas-phase applications for activated carbons from sewage sludge was carried out using both an organic and an inorganic compound in order to screen for possible applications. Toluene adsorption capacity at saturation was around 280 mg/g, which is a good level of performance given the high ash content of the activated carbons. However, dynamic experiments at low toluene concentration presented diffusion problems resulting from low porosity development. SO2 adsorption capacity is associated with average micropore size, which can be controlled by the impregnation ratio used to prepare the activated carbons. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Synthesis and characterization of carbon nanotube from coconut shells activated carbon

    Science.gov (United States)

    Melati, A.; Hidayati, E.

    2016-03-01

    Carbon nanotubes (CNTs) have been explored in almost every single cancer treatment modality, including drug delivery, lymphatic targeted chemotherapy, photodynamic therapy, and gene therapy. They are considered as one of the most promising nanomaterial with the capability of both detecting the cancerous cells and delivering drugs or small therapeutic molecules to the cells. CNTs have unique physical and chemical properties such as high aspect ratio, ultralight weight, high mechanical strength, high electrical conductivity, and high thermal conductivity. Coconut Shell was researched as active carbon source on 500 - 600°C. These activated carbon was synthesized becomes carbon nanotube and have been proposed as a promising tool for detecting the expression of indicative biological molecules at early stage of cancer. Clinically, biomarkers cancer can be detected by CNT Biosensor. We are using pyrolysis methods combined with CVD process or Wet Chemical Process on 600°C. Our team has successfully obtained high purity, and aligned MWCNT (Multi Wall Nanotube) bundles on synthesis CNT based on coconut shells raw materials. CNTs can be used to cross the mammalian cell membrane by endocytosis or other mechanisms. SEM characterization of these materials have 179 nm bundles on phase 83° and their materials compound known by using FTIR characterization.

  7. Modeling equilibrium adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2010-05-01

    Solute hydrophobicity, polarizability, aromaticity and the presence of H-bond donor/acceptor groups have been identified as important solute properties that affect the adsorption on activated carbon. However, the adsorption mechanisms related to these properties occur in parallel, and their respective dominance depends on the solute properties as well as carbon characteristics. In this paper, a model based on multivariate linear regression is described that was developed to predict equilibrium carbon loading on a specific activated carbon (F400) for solutes reflecting a wide range of solute properties. In order to improve prediction accuracy, groups (bins) of solutes with similar solute properties were defined and solute removals were predicted for each bin separately. With these individual linear models, coefficients of determination (R2) values ranging from 0.61 to 0.84 were obtained. With the mechanistic approach used in developing this predictive model, a strong relation with adsorption mechanisms is established, improving the interpretation and, ultimately, acceptance of the model. © 2010 Elsevier Ltd.

  8. APPLICATION OF POWDERY ACTIVATED CARBONS FOR REMOVAL IBUPROFEN FROM WATER

    Directory of Open Access Journals (Sweden)

    Alicja Puszkarewicz

    2017-07-01

    Full Text Available The paper presents results of studies on the use of adsorptive properties of selected powdered activated carbons (Norit SA Super and Carbopol MB5 for removal of ibuprofen from water. The tests were performed on non-flow conditions, series depending on the type and dose of powdered adsorbents. The research was carried out on a model solution of ibuprofen at initial concentration C0 = 20 mg/dm3, at 200 C. Froundlich and Langmuir adsorption isotherms were used. Lagergrene kinetic models (PFO and Ho (PSO were used to describe adsorption kinetics. Both carbons exhibited a higher affinity for the adsorbent at a pH above 7. The better adsorbent was the Norit SA Super, for which, the highest adsorption capacity q = 0.448 g/g was achieved with dose D = 35 mg/dm3. The effectiveness of adsorption (decrease of ibuprofen in water was 78%. Total removal of ibuprofen was obtained for a dose of carbon D = 200 mg/dm3. With respect to Carbopol, the highest adsorption capacity (q = 0.353 g / g was achieved at a dose of 30 mg / dm3, resulting in a 53% efficiency. Studies have shown that both tested powdered activated carbons have contributed to effective cleaning of aqueous solutions containing ibuprofen.

  9. Martian gullies: possible formation mechanism by dry granular material..

    Science.gov (United States)

    Cedillo-Flores, Y.; Durand-Manterola, H. J.

    section Some of the geomorphological features in Mars are the gullies Some theories developed tried explain its origin either by liquid water liquid carbon dioxide or flows of dry granular material We made a comparative analysis of the Martian gullies with the terrestrial ones We propose that the mechanism of formation of the gullies is as follows In winter CO 2 snow mixed with sand falls in the terrain In spring the CO 2 snow sublimate and gaseous CO 2 make fluid the sand which flows like liquid eroding the terrain and forming the gullies By experimental work with dry granular material we simulated the development of the Martian gullies injecting air in the granular material section We present the characteristics of some terrestrial gullies forms at cold environment sited at Nevado de Toluca Volcano near Toluca City M e xico We compare them with Martian gullies choose from four different areas to target goal recognize or to distinguish to identify possible processes evolved in its formation Also we measured the lengths of those Martian gullies and the range was from 24 m to 1775 meters Finally we present results of our experimental work at laboratory with dry granular material

  10. Performance evaluation of ALCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH) for arsenic removal in the presence of competitive ions in an active well :Kirtland field trial - initial studies.

    Energy Technology Data Exchange (ETDEWEB)

    Neidel, Linnah L.; Krumhansl, James Lee; Siegel, Malcolm Dean; Khandaker, Nadim Reza

    2006-01-01

    This report documents a field trial program carried out at Well No.15 located at Kirtland Air Force Base, Albuquerque, New Mexico, to evaluate the performance of two relatively new arsenic removal media, ALCAN-AASF50 (ferric coated activated alumina) and granular ferric hydroxide (US Filter-GFH). The field trial program showed that both media were able to remove arsenate and meet the new total arsenic maximum contaminant level (MCL) in drinking water of 10 {micro}g/L. The arsenate removal capacity was defined at a breakthrough effluent concentration of 5 {micro}g/L arsenic (50% of the arsenic MCL of 10 {micro}g/L). At an influent pH of 8.1 {+-} 0.4, the arsenate removal capacity of AASF50 was 33.5 mg As(V)/L of dry media (29.9 {micro}g As(V)/g of media on a dry basis). At an influent pH of 7.2 {+-} 0.3, the arsenate removal capacity of GFH was 155 mg As(V)/L of wet media (286 {micro}g As(V)/g of media on a dry basis). Silicate, fluoride, and bicarbonate ions are removed by ALCAN AASF50. Chloride, nitrate, and sulfate ions were not removed by AASF50. The GFH media also removed silicate and bicarbonate ions; however, it did not remove fluoride, chloride, nitrate, and sulfate ions. Differences in the media performance partly reflect the variations in the feed-water pH between the 2 tests. Both the exhausted AASF50 and GFH media passed the Toxicity Characteristic Leaching Procedure (TCLP) test with respect to arsenic and therefore could be disposed as nonhazardous waste.

  11. Preparation of activated carbons from olive-tree wood revisited. II. Physical activation with air

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Idriss, A.; Cuerda-Correa, E.M.; Fernandez-Gonzalez, C.; Alexandre-Franco, M.F.; Gomez-Serrano, V. [Extremadura Univ., Badajoz (Spain). Dept. of Organic and Inorganic Chemistry; Stitou, M. [Univ. Abdelmalek Esaadi, Tetouan (Morocco). Dept. de Chimie; Macias-Garcia, A. [Extremadura Univ., Badajoz (Spain). Dept. of Mechanical, Energetic and Materials Engineering

    2011-02-15

    Olive-tree has been grown in the Mediterranean countries for centuries. For an adequate development of the tree it must be subjected to different treatments such as trimming, large amounts of a woody residue being produced. Such a residue has been traditionally used as a domestic fuel or simply burnt in the landfield. In both cases greenhouse gases are generated to a large extent. Thus, the preparation of activated carbons from olive-tree wood appears as an attractive alternative to valorize this by-product. Commonly, two activation strategies are used with such an aim, namely chemical and physical activation. In this study, the optimization of the physical activation method with air for the production of activated carbon has been analyzed. The results obtained clearly show that if the preparation conditions are adequately controlled, it is possible to prepare activated carbons showing tailored properties in terms of micro- or mesoporous texture and surface area. (author)

  12. Iron oxide nanoparticles embedded in activated carbons prepared from hydrothermally treated waste biomass.

    Science.gov (United States)

    Hao, Wenming; Björkman, Eva; Yun, Yifeng; Lilliestråle, Malte; Hedin, Niklas

    2014-03-01

    Particles of iron oxide (Fe3O4 ; 20–40 nm) were embedded within activated carbons during the activation of hydrothermally carbonized (HTC) biomasses in a flow of CO2. Four different HTC biomass samples (horse manure, grass cuttings, beer production waste, and biosludge) were used as precursors for the activated carbons. Nanoparticles of iron oxide formed from iron catalyst included in the HTC biomasses. After systematic optimization, the activated carbons had specific surface areas of about 800 m2g1. The pore size distributions of the activated carbons depended strongly on the degree of carbonization of the precursors. Activated carbons prepared from highly carbonized precursors had mainly micropores, whereas those prepared from less carbonized precursors contained mainly mesopores. Given the strong magnetism of the activated carbon–nano-Fe3O4 composites, they could be particularly useful for water purification.

  13. Granular boycott effect: How to mix granulates

    Science.gov (United States)

    Duran, J.; Mazozi, T.

    1999-11-01

    Granular material can display the basic features of the Boycott effect in sedimentation. A simple experiment shows that granular material falls faster in an inclined tube than in a vertical tube, in analogy with the Boycott effect. As long as the inclination of the tube is above the avalanche threshold, descent of granular material in the tube causes internal convection which in turn results in an efficient mixture of the granular components. By contrast, as in analogous experiments in two dimensions, a vertical fall of granular material occurs via successive block fragmentation, resulting in poor mixing.

  14. From Numeric Models to Granular System Modeling

    Directory of Open Access Journals (Sweden)

    Witold Pedrycz

    2015-03-01

    To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.

  15. Activated carbon from flash pyrolysis of eucalyptus residue

    Directory of Open Access Journals (Sweden)

    Grima-Olmedo C

    2016-09-01

    Full Text Available Forestry waste (eucalyptus sp was converted into activated carbon by initial flash pyrolysis followed carbonization and CO2 activation. These residues were obtained from a pilot plant in Spain that produces biofuel, the biochar represented 10–15% in weight. It was observed that the highest activation was achieved at a temperature of 800 °C, the specific surface increased with time but, on the contrary, high loss of matter was observed. At 600 °C, although there was an important increase of the specific surface and the volume of micropores, at this temperature it was observed that the activation time was not an influential parameter. Finally, at 400 °C it was observed that the activation process was not very significant. Assessing the average pore diameter it was found that the lowest value corresponded to the activation temperature of 600 °C, which indicated the development of microporosity. When the activation temperature increases up to 800 °C the pore diameter increased developing mesoporosity.

  16. Advanced purification of carbonization wastewater by activated sludge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Moerman, W.H.; Bamelis, D.R.; Vanholle, P.M.; Vergote, H.L.; Verstraete, W.H. [State University of Ghent, Ghent (Belgium)

    1995-12-31

    A full scale activated sludge plant has been developed treating 960 m{sup 3} of carbonization wastewater daily. Results and process parameters from the first three years of operation are described. In spite of intense physical-chemical pretreatment, the carbonization wastewater must still be diluted by 50% prior to biological processing due to the presence of inhibitory organic compounds. The activated sludge plant consists of four serially connected aeration tanks. The influent is distributed following a step load regime. Other specific process characteristics are: pure oxygen aeration, high mixed liquor volatile suspended soils (MLVSS) levels of 10-15 kg MLVSS/m{sup 3}, and a high sludge age of 100-150 days. The first aeration tank is kept anoxic, making it possible to implement combined nitrification and denitrification.

  17. Study of adsorption properties on lithium doped activated carbon materials

    International Nuclear Information System (INIS)

    Los, S.; Daclaux, L.; Letellier, M.; Azais, P.

    2005-01-01

    A volumetric method was applied to study an adsorption coefficient of hydrogen molecules in a gas phase on super activated carbon surface. The investigations were focused on getting the best possible materials for the energy storage. Several treatments on raw samples were used to improve adsorption properties. The biggest capacities were obtain after high temperature treatment at reduced atmosphere. The adsorption coefficient at 77 K and 2 MPa amounts to 3.158 wt.%. The charge transfer between lithium and carbon surface groups via the doping reaction enhanced the energy of adsorption. It was also found that is a gradual decrease in the adsorbed amount of H 2 molecules due to occupation active sites by lithium ions. (author)

  18. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites

    International Nuclear Information System (INIS)

    Xue Gang; Liu Huanhuan; Chen Quanyuan; Hills, Colin; Tyrer, Mark; Innocent, Francis

    2011-01-01

    A photocatalyst comprising nano-sized TiO 2 particles on granular activated carbon (GAC) was prepared by a sol-dipping-gel process. The TiO 2 /GAC composite was characterized by scanning electron microscopy (SEM), X-ray diffractiometry (XRD) and nitrogen sorptometry, and its photocatalytic activity was studied through the degradation of humic acid (HA) in a quartz glass reactor. The factors influencing photocatalysis were investigated and the GAC was found to be an ideal substrate for nano-sized TiO 2 immobilization. A 99.5% removal efficiency for HA from solution was achieved at an initial concentration of 15 mg/L in a period of 3 h. It was found that degradation of HA on the TiO 2 /GAC composite was facilitated by the synergistic relationship between surface adsorption characteristics and photocatalytic potential. The fitting of experimental results with the Langmuir-Hinshelwood (L-H) model showed that the reaction rate constant and the adsorption constant values were 0.1124 mg/(L min) and 0.3402 L/mg. The latter is 1.7 times of the calculated value by fitting the adsorption equilibrium data into the Langmuir equation.

  19. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support.

    Science.gov (United States)

    Kwon, Jae H; Wilson, Lee D; Sammynaiken, Ramaswami

    2014-03-05

    Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone) was evaluated with synthetic magnetite (Mag-P), commercial magnetite (Mag-C), magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32) that contains granular activated carbon (GAC), and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g) > goethite (418 mg/g) > CM-10 (377 mg/g) CM-19 (254 mg/g) > CM-32 (227 mg/g) > Mag-P (132 mg/g) > Mag-C (29.5 mg/g). The As (V) moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  20. Sorptive Uptake Studies of an Aryl-Arsenical with Iron Oxide Composites on an Activated Carbon Support

    Directory of Open Access Journals (Sweden)

    Jae H. Kwon

    2014-03-01

    Full Text Available Sorption uptake kinetics and equilibrium studies for 4-hydroxy-3-nitrobenzene arsonic acid (roxarsone was evaluated with synthetic magnetite (Mag-P, commercial magnetite (Mag-C, magnetite 10%, 19%, and 32% composite material (CM-10, -19, -32 that contains granular activated carbon (GAC, and synthetic goethite at pH 7.00 in water at 21 °C for 24 h. GAC showed the highest sorptive removal of roxarsone and the relative uptake for each sorbent material with roxarsone are listed in descending order as follows: GAC (471 mg/g > goethite (418 mg/g > CM-10 (377 mg/g CM-19 (254 mg/g > CM-32 (227 mg/g > Mag-P (132 mg/g > Mag-C (29.5 mg/g. The As (V moiety of roxarsone is adsorbed onto the surface of the iron oxide/oxyhydrate and is inferred as inner-sphere surface complexes; monodentate-mononuclear, bidentate-mononuclear, and bidentate-binuclear depending on the protolytic speciation of roxarsone. The phenyl ring of roxarsone provides the primary driving force for the sorptive interaction with the graphene surface of GAC and its composites. Thus, magnetite composites are proposed as multi-purpose adsorbents for the co-removal of inorganic and organic arsenicals due to the presence of graphenic and iron oxide active adsorption sites.

  1. Evaluation of single-step steam pyrolysis-activated carbons

    African Journals Online (AJOL)

    Mgina

    415m2/g), iodine number (52.2 to 100.3 g/100g), solubility (2 to 5%) and pH (8.34 to 9.76), all the four investigated agro- forestry wastes – AS, MS, PC and PS – gave ACs of good quality by simple steam pyrolysis process. With the exception of. MS, all the other raw materials gave relatively high yields of activated carbon, up.

  2. Supercapacitors Based on Activated Carbon and Polymer Electrolyte

    OpenAIRE

    M. A. Hashim; Lawal Sa’adu; Karsono A. Dasuki

    2012-01-01

    The supercapacitors are characterized by faster discharge rate and easy for maintenance. Their demand is predicted to be most extensive in frequency regulation applications. The other area for significant growth is in regenerative braking for grid, connected light rail systems. In this research we fabricated a Supercapacitor using a commercially prepared Activated carbon which was sized to an area of 1 cm2 and combinations of two electrolytes solutions; polymer electrolyte polyvinyl alcohol (...

  3. Adsorptivity of uranium by aluminium-activated carbon composite adsorbent

    International Nuclear Information System (INIS)

    Katoh, Shunsaku; Sugasaka, Kazuhiko; Fujii, Ayako; Takagi, Norio; Miyai, Yoshitaka

    1976-01-01

    To research the adsorption process of uranium from sea water by aluminium-activated carbon composite adsorbent (C-Al-OH), the authors examined the effects of temperature, pH and carbonate ion concentration of the solution upon the adsorption of uranium, using sodium chloride solution and natural sea water. The continued mixing of the solution for the duration of two to four hours was required to attain the apparent equilibrium of adsorption. The adsorption velocity at an early stage and the uptake of uranium at the final stage showed an increase in proportion to a rise in the adsorption temperature. In the experiment of adsorption for which sodium chloride solution was used, the linear relationship between the logarithm of the distribution coefficient (K sub(d)) and the pH of the solution was recognized. The uptake of the uranium from the solution at the pH of 12 increased as the carbonate ion concentration in the solution decreased. The uranyl ion in the natural sea water was assumed to be uranyl carbonate complex ion (UO 2 (CO 3 ) 3 4- ). As the result of the calculation conducted by using the formation constants for uranyl complexes in literature, it was found that uranyl hydroxo complex ion (UO 2 (OH) 3 - ) increased in line with a decrease of the carbonate ion concentration in the solution. The above results of the experiment suggested that the adsorption of uranium by the adsorbent (C-Al-OH) was cationic adsorption or hydrolysis adsorption being related with the active proton on the surface of the adsorbent. (auth.)

  4. Activation and micropore structure determination of activated carbon-fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  5. Sand transport, erosion and granular electrification

    DEFF Research Database (Denmark)

    Merrison, J.P.

    2012-01-01

    The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate and impac......The transport of granular materials by wind has a major impact on our environment through sand/soil erosion and the generation and transport of atmospheric dust aerosols. Terrestrially the transport of dust involves billions of tons of material every year, influencing the global climate...... can affect grain transport through the generation of intense electric fields and processes of electrostatic assembly. Importantly the transport of sand is characterized by saltation, which is known to be an active process for erosion and therefore a source for dust and sand formation. Using novel...... erosion simulation techniques the link between grain transport rates and erosion rates has been quantified. Furthermore this can be linked to production rates for dust and has been associated with chemical and mineral alteration through a process of mechanical activation of fractured surfaces. This work...

  6. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  7. Segregation induced fingering instabilities in granular avalanches

    Science.gov (United States)

    Woodhouse, Mark; Thornton, Anthony; Johnson, Chris; Kokelaar, Pete; Gray, Nico

    2013-04-01

    the governing equations, are linearly unstable to arbitrarily small perturbations. It should be noted similar stability characteristics are found for shallow layer fluid flows on an inclined plane, with small wavelength perturbations stabilised by the inclusion of empirical frictional drag and viscous dissipation. Furthermore, depth-averaged models for roll waves on a monodisperse, shallow granular layer released on an inclined plane have a similar problem with high wave-number modes remaining linearly unstable. In this case the high wavenumber instability can be suppressed by the inclusion of (phenomenological) viscous dissipation. It is possible that by including similar rheological terms in our depth-averaged model the small wavelength modes can be stabilised and a well defined finger width can be predicted. This is the first model to describe the break-up of a uniform front of granular material, and it represents a crucial step forward in obtaining a mathematical model of this process. However, the current model is not complete and remains linearly unstable to arbitrarily small wavelength perturbations. We anticipate that these small wavelength instabilities can be stabilised by including additional physical effects, and this remains an active avenue of investigation. Reference: Woodhouse, M; Thornton, A. R.; Johnson, C.G.; Kokelaar, P, and Gray, J.M.N.T. Segregation-induced fingering instabilities in granular free surface flows. Journal of Fluids Mechanics. (2012). 709 543-580

  8. Microbiological Analysis of an Active Pilot-Scale Mobile Bioreactor Treating Organic Contaminants

    International Nuclear Information System (INIS)

    Brigmon, R.L.

    1997-01-01

    Samples were obtained for microbiological analysis from a granular activated carbon fluidized bed bioreactor (GAC-FBR). This GAC-FBR was in operation at a former manufactured gas plant (MGP) Site in Augusta Georgia for in situ groundwater bioremediation of organics. The samples included contaminated site groundwater, GAC-FBR effluent, and biofilm coated granular activated carbon at 5, 9, and 13 feet within the GAC-FBR column. The objective of this analysis was to correlate contaminant removal with microbiological activity within the GAC-FBR

  9. Adsorption dynamics of copper ion by low cost activated carbon

    International Nuclear Information System (INIS)

    Arivoli, S.; Saravanan, S.; Nandhakumar, V.; Nagarajan, Sulochana

    2009-01-01

    The activated carbon was prepared using solid waste called Terminalia Catappa Linn shell and the physicochemical properties of carbon were investigated to explore the adsorption process. The effectiveness of such carbon in adsorbing copper ion from aqueous solution has been studied as a function of agitation time, adsorbent dosage, initial metal ion concentration, temperature, pH, and desorption. Adsorption equilibrium studies were carried out in order to optimize the experimental conditions. The adsorption of copper ion onto carbon followed a first order kinetic model. Adsorption data were modeled using both Langmuir and Freundlich classical adsorption isotherms. The adsorption capacity Qm was 30.60, 33.85, 35.87, and 38.35 at initial PH 7.0. The equilibrium time was found to be 40 min for all initial concentrations studied. Desorption studies were performed with dilute HCl and show that ion exchange is the predominant copper ion adsorption mechanism. The adsorbent was found to be both effective and economically viable. (author)

  10. Kinetic and equilibrium studies of urea adsorption onto activated carbon: Adsorption mechanism

    OpenAIRE

    Kameda, Tomohito; Ito, Saya; Yoshioka, Toshiaki

    2017-01-01

    We found that activated carbon effectively removed urea from solution and that urea adsorption onto activated carbon followed a pseudo-second-order kinetic model. We classified the urea adsorption on activated carbon as physical adsorption and found that it was best described by the Halsey adsorption isotherm, suggesting that the multilayer adsorption of urea molecules on the adsorption sites of activated carbon best characterized the adsorption system. The mechanism of adsorption of urea by ...

  11. Biological decolorization of xanthene dyes by anaerobic granular biomass.

    Science.gov (United States)

    Apostol, Laura Carmen; Pereira, Luciana; Pereira, Raquel; Gavrilescu, Maria; Alves, Maria Madalena

    2012-09-01

    Biodegradation of a xanthene dyes was investigated for the first time using anaerobic granular sludge. On a first screening, biomass was able to decolorize, at different extents, six azo dye solutions: acid orange 7, direct black 19, direct blue 71, mordant yellow 10, reactive red 2 and reactive red 120 and two xanthene dyes--Erythrosine B and Eosin Y. Biomass concentration, type of electron donor, induction of biomass with dye and mediation with activated carbon (AC) were variables studied for Erythrosine B (Ery) as model dye. Maximum color removal efficiency was achieved with 4.71 g VSS L⁻¹, while the process rates were independent of the biomass concentration above 1.89 g VSS L⁻¹. No considerable effects were observed when different substrates were used as electron donors (VFA, glucose or lactose). Addition of Ery in the incubation period of biomass led to a fivefold increase of the decolorization rate. The rate of Ery decolorization almost duplicated in the presence of commercial AC (0.1 g L⁻¹ AC₀). Using different modified AC samples (from the treatment of AC₀), a threefold higher rate was obtained with the most basic one, AC(H₂), as compared with non-mediated reaction. Higher rates were obtained at pH 6.0. Chemical reduction using Na₂S confirmed the recalcitrant nature of this dye. The results attest that decolorization of Ery is essentially due to enzymatic and adsorption phenomena.

  12. Entropy of jammed granular matter

    Science.gov (United States)

    Briscoe, Christopher

    Granular matter can be considered a non-equilibrium system, such that equilibrium statistics is insufficient to describe the dynamics. A phase transition occurs when granular materials are compressed such that a nonzero stress develops in response to a strain deformation. This transition, referred to as the jamming transition, occurs at a critical volume fraction, φc depending on friction and preparation protocol. Analysis of the jamming transition produces a phase diagram of jammed granular matter for identical spheres, characterized by the critical volume fraction, φc and the average coordination number, Z. The boundaries of the phase diagram are related to well-defined upper and lower limits in the density of disordered packings; random close packing (RCP) and random loose packing (RLP). Frictional systems, such as granular matter, exhibit an inherent path dependency resulting in the loss of energy conservation, an important facet of equilibrium statistics. It has been suggested Edwards that the volume-force (V-F) ensemble, wherein volume replaces energy as the conservative quantity, may provide a sufficient framework to create a statistical ensemble for jammed granular matter. Treating a jammed system via the V-F ensemble introduces an analogue to temperature in equilibrium systems. This analogue, "compactivity", measures how compact a system could be and governs fluctuation in the volume statistics. Randomness in statistical systems is typically characterized by entropy, the equation of state derived from the number of microstates available to the system. In equilibrium statistical mechanics, entropy provides the link between these microstates and the macroscopic thermodynamic properties of the system. Therefore, calculating the entropy within the V-F ensemble can relate the available microscopic volume for each grain to the macroscopic system properties. The entropy is shown to be minimal at RCP and maximal at the minimum RLP limit, via several methods

  13. HYPERELASTIC MODELS FOR GRANULAR MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Humrickhouse, Paul W; Corradini, Michael L

    2009-01-29

    A continuum framework for modeling of dust mobilization and transport, and the behavior of granular systems in general, has been reviewed, developed and evaluated for reactor design applications. The large quantities of micron-sized particles expected in the international fusion reactor design, ITER, will accumulate into piles and layers on surfaces, which are large relative to the individual particle size; thus, particle-particle, rather than particle-surface, interactions will determine the behavior of the material in bulk, and a continuum approach is necessary and justified in treating the phenomena of interest; e.g., particle resuspension and transport. The various constitutive relations that characterize these solid particle interactions in dense granular flows have been discussed previously, but prior to mobilization their behavior is not even fluid. Even in the absence of adhesive forces between particles, dust or sand piles can exist in static equilibrium under gravity and other forces, e.g., fluid shear. Their behavior is understood to be elastic, though not linear. The recent “granular elasticity” theory proposes a non-linear elastic model based on “Hertz contacts” between particles; the theory identifies the Coulomb yield condition as a requirement for thermodynamic stability, and has successfully reproduced experimental results for stress distributions in sand piles. The granular elasticity theory is developed and implemented in a stand- alone model and then implemented as part of a finite element model, ABAQUS, to determine the stress distributions in dust piles subjected to shear by a fluid flow. We identify yield with the onset of mobilization, and establish, for a given dust pile and flow geometry, the threshold pressure (force) conditions on the surface due to flow required to initiate it. While the granular elasticity theory applies strictly to cohesionless granular materials, attractive forces are clearly important in the interaction of

  14. Preparation of creating active carbon from cigarette filter waste using microwave-induced KOH activation

    Science.gov (United States)

    Hamzah, Yanuar; Umar, Lazuardi

    2017-05-01

    For the first time, cigarette filter waste, which is an environmental hazardous material, is used as basic material prepared for creating activated carbon (AC) via KOH chemical activation using a microwave input power of 630 W and irradiation time of 20 minutes. Active carbon was characterized by TGA, x-ray diffraction, scanning electron microscopy, energy dispersive x-ray, nitrogen adsorption-desorption, and absorption of methylene blue (MB). The results of x-ray diffraction showed that active carbon has a semi-crystalline structure with peaks of 2θ of 22.87° and 43.70°. Active carbon microstructure analysis showed that the layer height (Lc ) is inversely proportional to the width of the layer (La ), and the distance between the two layers is d002 and d100 , which depends significantly on the ratio of AC: KOH. It was found that the optimum BET surface area and adsorption capacity for MB were 328.13 m2 / g and 88.76 m2 / g, respectively. The results revealed the potential to prepare activated carbon from cigarette filter waste using microwave irradiation.

  15. Preparation of mesoporous carbon from fructose using zinc-based activators

    OpenAIRE

    Tutik Setianingsih; Indriana Kartini; Yateman Arryanto

    2015-01-01

    Mesoporous carbons were synthesized from fructose using activators of zinc silicate (ZS), zinc borate (ZB), and zinc borosilicate (ZBS). The synthesis involves 3 steps, including caramelization of sugar, carbonization of caramel, and washing of carbon to separate the activator from the carbon. The solid products were characterized by N2 gas adsorption-desorption, X-ray diffraction, FTIR spectrophotometry, and Transmission Electron Microscopy. The pore characterizations of the carbons in...

  16. Speculative and hedging activities in the European carbon market

    International Nuclear Information System (INIS)

    Lucia, Julio J.; Mansanet-Bataller, Maria; Pardo, Ángel

    2015-01-01

    We explore the dynamics of the speculative and hedging activities in European futures carbon markets by using volume and open interest data. A comparison of the three phases in the European Union Emission Trading Scheme (EU ETS) reveals that (i) Phase II of the EU ETS seems to be the most speculative phase to date and (ii) the highest degree of speculative activity for every single phase occurs at the moment of listing the contracts for the first time. A seasonality analysis identifies a higher level of speculation in the first quarter of each year, related to the schedule of deadlines of the EU ETS. In addition, a time series analysis confirms that most of the speculative activity each year occurs in the front contract, whereas the hedging demand concentrates in the second-to-deliver futures contract. -- Highlights: •This study explores the evolution of speculative and hedging activities in futures carbon markets by using volume and open interest data. •Phase II of the EU ETS seems to be the most speculative phase to date. •A seasonality analysis identifies a higher level of speculation in the first quarter of each year. •Most of the speculative activity occurs in the front contract. •The hedging demand concentrates in the second-to-deliver futures contract

  17. Role of Zinc in Catalytic Activity of Carbonic Anhydrase IX

    Science.gov (United States)

    Tu, Chingkuang; Foster, Lauren; Alvarado, Andrea; McKenna, Robert; Silverman, David N.; Frost, Susan C.

    2012-01-01

    The carbonic anhydrases (CAs) in the α class are zinc-dependent metalloenzymes. Previous studies have reported that recombinant forms of carbonic anhydrase IX (CAIX), a membrane-bound form of CA expressed in solid tumors, appear to be activated by low levels of zinc independent of its well-studied role at the catalytic site. In this study, we sought to determine if CAIX is stimulated by zinc in its native environment. MDA-MB-231 breast cancer cells express CAIX in response to hypoxia. We compared CAIX activity associated with membrane ghosts isolated from hypoxic cells with that in intact hypoxic cells. We measured CA activity directly using 18O exchange from 13CO2 into water determined by membrane inlet mass spectrometry. In membrane ghosts, there was little effect of zinc at low concentrations on CAIX activity, although at high concentration zinc was inhibitory. In intact cells, zinc had no significant effect on CAIX activity. This suggests that there is an appreciable decrease in sensitivity to zinc when CAIX is in its natural membrane milieu compared to the purified forms. PMID:22465027

  18. Binding of nickel and zinc ions with activated carbon prepared from ...

    African Journals Online (AJOL)

    Activated carbon was prepared from sugar cane fibre by carbonizing at 500 oC for 30 minutes. This was followed by activation with ammonium chloride. The activated carbon was characterised in terms of pH, bulk density, ash content, surface area and surface charge. Equilibrium sorption of nickel and zinc ions by the ...

  19. System and method for coproduction of activated carbon and steam/electricity

    Science.gov (United States)

    Srinivasachar, Srivats [Sturbridge, MA; Benson, Steven [Grand Forks, ND; Crocker, Charlene [Newfolden, MN; Mackenzie, Jill [Carmel, IN

    2011-07-19

    A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

  20. Oncoidal granular iron formation in the Mesoarchaean Pongola Supergroup, southern Africa: Textural and geochemical evidence for biological activity during iron deposition.

    Science.gov (United States)

    Smith, A J B; Beukes, N J; Gutzmer, J; Czaja, A D; Johnson, C M; Nhleko, N

    2017-11-01

    We document the discovery of the first granular iron formation (GIF) of Archaean age and present textural and geochemical results that suggest these formed through microbial iron oxidation. The GIF occurs in the Nconga Formation of the ca. 3.0-2.8 Ga Pongola Supergroup in South Africa and Swaziland. It is interbedded with oxide and silicate facies micritic iron formation (MIF). There is a strong textural control on iron mineralization in the GIF not observed in the associated MIF. The GIF is marked by oncoids with chert cores surrounded by magnetite and calcite rims. These rims show laminated domal textures, similar in appearance to microstromatolites. The GIF is enriched in silica and depleted in Fe relative to the interbedded MIF. Very low Al and trace element contents in the GIF indicate that chemically precipitated chert was reworked above wave base into granules in an environment devoid of siliciclastic input. Microbially mediated iron precipitation resulted in the formation of irregular, domal rims around the chert granules. During storm surges, oncoids were transported and deposited in deeper water environments. Textural features, along with positive δ 56 Fe values in magnetite, suggest that iron precipitation occurred through incomplete oxidation of hydrothermal Fe 2+ by iron-oxidizing bacteria. The initial Fe 3+ -oxyhydroxide precipitates were then post-depositionally transformed to magnetite. Comparison of the Fe isotope compositions of the oncoidal GIF with those reported for the interbedded deeper water iron formation (IF) illustrates that the Fe 2+ pathways and sources for these units were distinct. It is suggested that the deeper water IF was deposited from the evolved margin of a buoyant Fe 2+ aq -rich hydrothermal plume distal to its source. In contrast, oncolitic magnetite rims of chert granules were sourced from ambient Fe 2+ aq -depleted shallow ocean water beyond the plume. © 2017 John Wiley & Sons Ltd.

  1. Plasma Treated Active Carbon for Capacitive Deionization of Saline Water

    Directory of Open Access Journals (Sweden)

    Aiping Zeng

    2017-01-01

    Full Text Available The plasma treatment on commercial active carbon (AC was carried out in a capacitively coupled plasma system using Ar + 10% O2 at pressure of 4.0 Torr. The RF plasma power ranged from 50 W to 100 W and the processing time was 10 min. The carbon film electrode was fabricated by electrophoretic deposition. Micro-Raman spectroscopy revealed the highly increased disorder of sp2 C lattice for the AC treated at 75 W. An electrosorption capacity of 6.15 mg/g was recorded for the carbon treated at 75 W in a 0.1 mM NaCl solution when 1.5 V was applied for 5 hours, while the capacity of the untreated AC was 1.01 mg/g. The plasma treatment led to 5.09 times increase in the absorption capacity. The jump of electrosorption capacity by plasma treatment was consistent with the Raman spectra and electrochemical double layer capacitance. This work demonstrated that plasma treatment was a potentially efficient approach to activating biochar to serve as electrode material for capacitive deionization (CDI.

  2. Activated carbon derived from carbon residue from biomass gasification and its application for dye adsorption: Kinetics, isotherms and thermodynamic studies.

    Science.gov (United States)

    Maneerung, Thawatchai; Liew, Johan; Dai, Yanjun; Kawi, Sibudjing; Chong, Clive; Wang, Chi-Hwa

    2016-01-01

    In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Mott transition in granular aluminum

    Science.gov (United States)

    Bachar, N.; Lerer, S.; Levy, A.; Hacohen-Gourgy, S.; Almog, B.; Saadaoui, H.; Salman, Z.; Morenzoni, E.; Deutscher, G.

    2015-01-01

    A Mott transition in granular Al films is observed by probing the increase of the spin-flip scattering rate of conduction electrons as the nanosize metallic grains are being progressively decoupled. The presence of free spins in granular Al films is directly demonstrated by μ SR measurements. Analysis of the magnetoresistance in terms of an effective Fermi energy shows that it becomes of the order of the grains electrostatic charging energy at a room temperature resistivity ρ300 K≈50000 μ Ω cm , at which a metal to insulator transition is known to exist. As this transition is approached the magnetoresistance exhibits a heavy-fermion-like behavior, consistent with an increased electron effective mass.

  4. Dilatancy in Slow Granular Flows

    Science.gov (United States)

    Kabla, Alexandre J.; Senden, Tim J.

    2009-06-01

    When walking on wet sand, each footstep leaves behind a temporarily dry impression. This counterintuitive observation is the most common illustration of the Reynolds principle of dilatancy: that is, a granular packing tends to expand as it is deformed, therefore increasing the amount of porous space. Although widely called upon in areas such as soil mechanics and geotechnics, a deeper understanding of this principle is constrained by the lack of analytical tools to study this behavior. Using x-ray radiography, we track a broad variety of granular flow profiles and quantify their intrinsic dilatancy behavior. These measurements frame Reynolds dilatancy as a kinematic process. Closer inspection demonstrates, however, the practical importance of flow induced compaction which competes with dilatancy, leading more complex flow properties than expected.

  5. Granular rheology in zero gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bossis, G [LPMC UMR 6622, Universite de Nice, Parc Valrose, 06108 Nice Cedex 2 (France); Grasselli, Y [EAI Tech CERAM, Rue A Einstein, BP 085, 06902 Sophia Antipolis Cedex (France); Volkova, O [LPMC UMR 6622, Universite de Nice, Parc Valrose, 06108 Nice Cedex 2 (France)

    2004-05-12

    We present an experimental investigation on the rheological behaviour of model granular media made of nearly elastic spherical particles. The experiments are performed in a cylindrical Couette geometry and the experimental device is placed inside an aeroplane undergoing parabolic flights to cancel the effect of gravity. The corresponding curves, shear stress versus shear rate, are presented, and a comparison with existing theories is proposed. The quadratic dependence on the shear rate is clearly shown, and the behaviour as a function of the solid volume fraction of particles exhibits a power law function. It is shown that theoretical predictions overestimate the experimental results. We observe, at intermediate volume fractions, the formation of rings of particles regularly spaced along the height of the cell. The differences observed between experimental results and theoretical predictions are discussed and related to the structures formed in the granular medium submitted to the external shear.

  6. Dynamic similarity in granular locomotion

    Science.gov (United States)

    Kamrin, Ken; Slonaker, James; Zhang, Qiong

    2017-11-01

    To model the flow of granular media with high accuracy, a number of subtleties arise and complex constitutive relations are needed to address them. However, making certain rheological simplifications produces a framework that is simple enough to obtain global rule-sets that can be used to aid in design without having to solve any partial differential equations or perform discrete element simulations. This talk will show how reduced-order rule-sets such as the Resistive Force Theory can be obtained from a basic frictional plasticity model, and how plasticity can further be used to produce a family of scaling laws in granular locomotion reminiscent of `wind tunnel' scaling laws in fluid dynamics. These are verified with experiments and numerical simulations.

  7. Strain localisation in granular media

    OpenAIRE

    Desrues , Jacques

    1984-01-01

    This study is devoted to strain localisation in Granular materials. Both experimental and theoretical results have been obtained.The first part of the thesis is a review of the methods and theories about rupture in sols mechanics and more generally, in solid mechanics. The classical framework of Shear Band analysis is presented, and the main results available for different classes of materials are discussed.The second part describes an experimental study of strain localisation in sand specime...

  8. Sorption of organic compounds to activated carbons. Evaluation of isotherm models

    NARCIS (Netherlands)

    Pikaar, I.; Koelmans, A.A.; Noort, van P.C.M.

    2006-01-01

    Sorption to 'hard carbon' (black carbon, coal, kerogen) in soils and sediments is of major importance for risk assessment of organic pollutants. We argue that activated carbon (AC) may be considered a model sorbent for hard carbon. Here, we evaluate six sorption models on a literature dataset for

  9. Activated Carbon-Supported Tetrapropylammonium Perruthenate Catalysts for Acetylene Hydrochlorination

    Directory of Open Access Journals (Sweden)

    Xing Li

    2017-10-01

    Full Text Available The Ru-based catalysts, including Ru/AC (activated carbon, TPAP (tetrapropylammonium perruthenate/AC, TPAP/AC-HNO3, and TPAP/AC-HCl, were prepared and assessed for the direct synthesis of vinyl chloride monomer. The results indicate that the TPAP/AC-HCl catalyst exhibits the best performance with the conversion falling from 97% to 91% in 48 hours’ reaction under the conditions of 180 °C, a GHSV(C2H2 of 180 h−1, and the feed ratio VHCl/VC2H2 of 1.15. The substitution of RuCl3 precursor with high valent TPAP species leads to more ruthenium oxides active species in the catalysts; the acidification treatment of carrier in TPAP/AC catalyst can produce an enhanced interaction between the active species and the modified functional groups on the carrier, and it is beneficial to inhibit the carbon deposition and sintering of ruthenium species in the reaction process, greatly increase the adsorption ability of reactants, and further increase the amount of dominating active species in the catalysts, thus improving the catalytic performance. This also provides a promising strategy to explore high efficient and economic mercury-free catalysts for the hydrochlorination of acetylene.

  10. Preparation of activated carbon fabrics from cotton fabric precursor

    Science.gov (United States)

    Salehi, R.; Dadashian, F.; Abedi, M.

    2017-10-01

    The preparation of activated carbon fabrics (ACFs) from cotton fabric was performed by chemical activation with phosphoric acid (H3PO4). The operation conditions for obtaining the ACFs with the highest the adsorption capacity and process yield, proposed. Optimized conditions were: impregnation ratio of 2, the rate of temperature rising of 7.5 °C min-1, the activation temperature of 500 °C and the activation time of 30 min. The ACFs produced under optimized conditions was characterized by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX). The surface area and pore volume of carbon nanostructures was characterized by BET nitrogen adsorption isotherm at 77 °K. The pore size distribution calculated from the desorption branch according to BJH method. The iodine number of the prepared ACFs was determined by titration at 30 °C based on the ASTM D4607-94. The results showed the improvement of porous structure, fabric shape, surface area (690 m2/g), total pore volume (0.3216 cm3/g), and well-preserved fibers integrity.

  11. Treatment of mature landfill leachate using hybrid processes of hydrogen peroxide and adsorption in an activated carbon fixed bed column.

    Science.gov (United States)

    Eljaiek-Urzola, Monica; Guardiola-Meza, Luis; Ghafoori, Samira; Mehrvar, Mehrab

    2018-02-23

    In this study, the treatment of mature landfill leachate is evaluated by oxidation with hydrogen peroxide (H 2 O 2 ) combined with adsorption in a granular activated carbon (GAC) fixed bed column to determinate the increase in the biodegradability index, the reduction of chemical oxygen demand (COD) as well as the increase in the useful life of the GAC bed. The sample leachate from Loma de Los Cocos Landfill (Cartagena de Indias, Colombia) has a very low biodegradability ratio ranging from 0.034 to 0.048 that makes it difficult to meet the required water quality level according to the regulations. The COD removal is initially monitored in the H 2 O 2 oxidation treatment process. The operating conditions such as pH, H 2 O 2 dosage, and the reaction time are optimized in this process based on the percentage of COD removal. A maximum COD removal of 29.9% is achieved at an initial H 2 O 2 concentration of 5000 mg L -1 with a pH of 8 and the reaction time of 60 min. The hybrid treatment by H 2 O 2 -GAC achieved 97.3% COD removal and 116% increase in the biodegradability ratio (from 0.072 to 0.134) while this ratio was increased by 6.5% with H 2 O 2 alone. Moreover, the useful life of the GAC bed is increased from 45 min in the column fed with raw leachate to 170 min in the column fed with pretreated leachate and 5000 mg L -1 of H 2 O 2 at pH of 8 that subsequently increased the activated carbon adsorption capacity. An adsorption model for leachate treated with H 2 O 2 is also developed.

  12. FACTORS AFFECTING THE REMOVAL OF A BASIC AND AN AZO DYE FROM ARTIFICIAL SOLUTIONS BY ADSORPTION USING ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    H Albroomi

    2014-10-01

    Full Text Available Decolourisation of wastewater, particularly from textile industries, is one of the major environmental concerns these days. Current methods for removing dyes from wastewater are costly and cannot effectively be used to treat wide range of such wastewater. This work describes the use of commercial available granular activated carbon (GAC as an efficient adsorbent material for dyes removal. Aqueous solutions of various basic dye Methylene Blue (MB and azo-dye Tartrazine with concentrations 5-20 mg l–1 and 10-100 mg l–1, respectively, were shaken with certain amount of GAC to determine the adsorption capacity and removal efficiencies. The effects of adsorbent dose, initial pH, initial dye concentration, agitation speed and contact time on dyes removal efficiencies have been studied. Maximum dye concentration was removed from the solution within 60-90 min after the beginning of every experiment. Adsorption parameters were found to fit well into Langmuir and Freundlich adsorption isotherms models with correlation coefficient (R2 > 0.99 in the concentration range of MB and TZ studied.

  13. Using Space for a Better Foundation on Earth: Mechanics of Granular Materials. Educational Brief. Grades 5-8.

    Science.gov (United States)

    Alshibli, Khalid

    This publication presents a science activity and instructional information on mechanics of granular materials, interparticle friction and geometric interlocking between particles which is a fundamental concept in many fields like earthquakes. The activity described in this document focuses on the principal strength of granular materials,…

  14. Evaluating the effects of granular and membrane filtrations on chlorine demand in drinking water.

    Science.gov (United States)

    Jegatheesan, Veeriah; Kim, Seung Hyun; Joo, C K; Gao, Baoyu

    2009-01-01

    In this study, chlorine decay experiments were conducted for the raw water from Nakdong River that is treated by Chilseo Water Treatment Plant (CWTP) situated in Haman, Korea as well as the effluents from sand and granular activated carbon (GAC) filters of CWTP and fitted using a chlorine decay model. The model estimated the fast and slow reacting nitrogenous as well as organic/inorganic compounds that were present in the water. It was found that the chlorine demand due to fast and slow reacting (FRA and SRA) organic/inorganic substances was not reduced significantly by sand as well as GAC filters. However, the treated effluents from those filters contained FRA and SRA that are less reactive and had small reaction rate constants. For the effluents from microfiltration, ultrafiltration, and nanofiltration the chlorine demand because FRA and SRA were further reduced but the reaction rate constants were larger compared to those of sand and GAC filter effluents. This has implications in the formation of disinfection by products (DBPs). If DBPs are assumed to form due to the interactions between chlorine and SRA, then it is possible that the DBP formation potential in the effluents from membrane filtrations could be higher than that in the effluents from granular media filters.

  15. Investigating effectiveness of activated carbons of natural sources on various supercapacitors

    Science.gov (United States)

    Faisal, Md. Shahnewaz Sabit; Rahman, Muhammad M.; Asmatulu, Ramazan

    2016-04-01

    Activated carbon can be produced from natural sources, such as pistachio and acorn shells, which can be an inexpensive and sustainable sources of natural wastes for the energy storage devices, such as supercapacitors. The carbonaceous materials used in this study were carbonized at the temperatures of 700°C and 900°C after the stabilization process at 240°C for two hours. These shells showed approximately 60% carbon yield. Carbonized nutshells were chemically activated using1wt% potassium hydroxide (KOH). Activated carbon powders with polyvinylidene fluoride (PVdF) were used to construct carbon electrodes. A 1M of tetraethylammonium tetrafluoroborate (TEABF4) and propylene carbonate (PC) were used as electrolytes. Electrochemical techniques, such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used for the characterization of the supercapacitors. Scanning electron microscopy (SEM) was used to inspect the surface texture of the activated carbons. Activated pistachio shells carbonized at 700°C showed more porous surface texture than those carbonized at 900°C. Effects of the carbonization temperatures were studied for their electrochemical characteristics. The shells carbonized at 700°C showed better electrochemical characteristics compared to those carbonized at 900°C. The test results provided about 27,083 μF/g specific capacitance at a scan rate of 10mV/s. This study showed promising results for using these activated carbons produced from the natural wastes for supercapacitor applications.

  16. Characterization and restoration of performance of 'aged' radioiodine removing activated carbons

    International Nuclear Information System (INIS)

    Freeman, W.P.

    1997-01-01

    The degradation of radioiodine removal performance for impregnated activated carbons because of ageing is well established. However, the causes for this degradation remain unclear. One theory is that this reduction in performance from the ageing process results from an oxidation of the surface of the carbon. Radioiodine removing activated carbons that failed radioiodine removal tests showed an oxidized surface that had become hydrophilic compared with new carbons. We attempted to restore the performance of these 'failed' carbons with a combination of thermal and chemical treatment. The results of these investigations are presented and discussed with the view of extending the life of radioiodine removing activated carbons. 4 refs., 2 tabs

  17. Fluidized bed gasification of select granular biomaterials.

    Science.gov (United States)

    Subramanian, P; Sampathrajan, A; Venkatachalam, P

    2011-01-01

    Biomaterials can be converted into solid, liquid and gaseous fuels through thermochemical or biochemical conversion processes. Thermochemical conversion of granular biomaterials is difficult because of its physical nature and one of the suitable processes is fluidized bed gasification. In this study, coir pith, rice husk and saw dust were selected and synthetic gas was generated using a fluidized bed gasifier. Gas compositions of product gas were analyzed and the percentage of carbon monoxide and carbon dioxide was in the range of 8.24-19.55 and 10.21-17.14, respectively. The effect of equivalence ratio (0.3, 0.4 and 0.5) and reaction time (at 10 min interval) on gas constituents was studied. The gas yield for coir pith, rice husk and sawdust were found to be in the range of 1.98-3.24, 1.79-2.81 and 2.18-3.70 Nm3 kg(-1), respectively. Models were developed to study the influence of biomaterial properties and operating conditions on molar concentration of gas constituents and energy output. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Impact Compaction of a Granular Material

    Science.gov (United States)

    Fenton, Gregg; Asay, Blaine; Todd, Steve; Grady, Dennis

    2017-06-01

    The dynamic behavior of granular materials has importance to a variety of engineering applications. Although, the mechanical behavior of granular materials have been studied extensively for several decades, the dynamic behavior of these materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This paper describes how an instrumented plunger impact system can be used to measure the compaction process for granular materials at high and controlled strain rates and subsequently used for computational modelling. The experimental technique relies on a gas-gun driven plunger system to generate a compaction wave through a volume of granular material. This volume of material has been redundantly instrumented along the bed length to track the progression of the compaction wave, and the piston displacement is measured with Photon Doppler Velocimetry (PDV). Using the gathered experimental data along with the initial material tap density, a granular material equation of state can be determined.

  19. The Influence of Calcium Carbonate Composition and Activated Carbon in Pack Carburizing Low Carbon Steel Process in The Review of Hardness and Micro Structure

    Science.gov (United States)

    Hafni; Hadi, Syafrul; Edison

    2017-12-01

    Carburizing is a way of hardening the surface by heating the metal (steel) above the critical temperature in an environment containing carbon. Steel at a temperature of the critical temperature of affinity to carbon. Carbon is absorbed into the metal form a solid solution of carbon-iron and the outer layer has high carbon content. When the composition of the activator and the activated charcoal is right, it will perfect the carbon atoms to diffuse into the test material to low carbon steels. Thick layer of carbon Depending on the time and temperature are used. Pack carburizing process in this study, using 1 kg of solid carbon derived from coconut shell charcoal with a variation of 20%, 10% and 5% calcium carbonate activator, burner temperature of 950 0C, holding time 4 hours. The test material is low carbon steel has 9 pieces. Each composition has three specimens. Furnace used in this study is a pack carburizing furnace which has a designed burner box with a volume of 1000 x 600 x 400 (mm3) of coal-fired. Equipped with a circulation of oxygen from the blower 2 inches and has a wall of refractory bricks. From the variation of composition CaCO3, microstructure formed on the specimen with 20% CaCO3, better diffusion of carbon into the carbon steel, it is seen by the form marten site structure after quenching, and this indicates that there has been an increase of or adding carbon to in the specimen. This led to the formation of marten site specimen into hard surfaces, where the average value of hardness at one point side (side edge) 31.7 HRC

  20. Kinetic and Thermodynamics Studies the Adsorption of Phenol on Activated Carbon from Rice Husk Activated by ZnCl2

    Directory of Open Access Journals (Sweden)

    Andi Muhammad Anshar

    2016-05-01

    Full Text Available The purpose of this study was to investigate the adsorption ability of activated carbon from rice husk in adsorbing phenol. Activated carbon used was in this studies burning risk husk at 300 and 400oC and then activated by 10% of ZnCl2. The from activated carbon was characterized using an Infrared Spectrometer, an X-ray diffraction, an Scanning Electron Microscope, and a gas sorption analyzer. The best activated carbon for adsorbing phenol was the activated carbon that prodused from the burning of rice husk at a temperature 400oC and activated with 10% of ZnCl2 for 24 hours. Adsorption capacity of the best activated carbon was 3.9370 mg/g adsorbent with Gibbs free energy of -25.493 kJ/mol.

  1. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents.

    Science.gov (United States)

    Sethupathi, Sumathi; Bashir, Mohammed Jk; Akbar, Zinatizadeh Ali; Mohamed, Abdul Rahman

    2015-04-01

    Lignocellulosic biomass has been widely recognised as a potential low-cost source for the production of high added value materials and proved to be a good precursor for the production of activated carbons. One of such valuable biomasses used for the production of activated carbons is palm shell. Palm shell (endocarp) is an abundant by-product produced from the palm oil industries throughout tropical countries. Palm shell activated carbon and palm shell carbon molecular sieve has been widely applied in various environmental pollution control technologies, mainly owing to its high adsorption performance, well-developed porosity and low cost, leading to potential applications in gas-phase separation using adsorption processes. This mini-review represents a comprehensive overview of the palm shell activated carbon and palm shell carbon molecular sieve preparation method, physicochemical properties and feasibility of palm shell activated carbon and palm shell carbon molecular sieve in gas separation processes. Some of the limitations are outlined and suggestions for future improvements are pointed out. © The Author(s) 2015.

  2. Comparison of Novel Carboneous Structures to Treat Nitroaromatic Impacted Water

    Science.gov (United States)

    2015-12-01

    34 Fluidized - bed system : activated activated of a using anaerobic reactors reactors granular and aerobic carbon sludge." Water Environment Research 67(7...3 Figure 2. SEM images of the grinded GAC granules ...................................................... 30 Figure 3. SEM images of...their pristine states after receipt. However, GAC was pulverized with a mortar and pestle in order to increase homogeneity of the granules , and reduce

  3. Electrochemical performances and capacity fading behaviors of activated carbon/hard carbon lithium ion capacitor

    International Nuclear Information System (INIS)

    Sun, Xianzhong; Zhang, Xiong; Liu, Wenjie; Wang, Kai; Li, Chen; Li, Zhao; Ma, Yanwei

    2017-01-01

    Highlights: • Three-electrode pouch cell is used to investigate the capacity fading of AC/HC LIC. • the electrode potential swing is critical for the cycleability of a LIC cell. • Different capacity fading behaviors are discussed. • A large-capacity LIC pouch cell has been assembled with a specific energy of 18.1 Wh kg −1 based on the total weight. - Abstract: Lithium ion capacitor (LIC) is one of the most promising electrochemical energy storage devices, which offers rapid charging-discharging capability and long cycle life. We have fabricated LIC pouch cells using an electrochemically-driven lithium pre-doping method through a three-electrode pouch cell structure. The active materials of cathode and anode of LIC cell are activated carbon and pre-lithiated hard carbon, respectively. The electrochemical performances and the capacity fading behaviors of LICs in the voltage range of 2.0 − 4.0 V have been studied. The specific energy and specific power reach 73.6 Wh kg −1 and 11.9 kW kg −1 based on the weight of the active materials in both cathode and anode, respectively. Since the cycling performance is actually determined by hard carbon anode, the anode potential swings are emphasized. The capacity fading of LIC upon cycling is proposed to be caused by the increases of internal resistance and the consumption of lithium stored in anode. Finally, a large-capacity LIC pouch cell has been assembled with a maximum specific energy of 18.1 Wh kg −1 and a maximum specific power of 3.7 kW kg −1 based on the weight of the whole cell.

  4. Hydrogen storage capacity of lithium-doped KOH activated carbons

    International Nuclear Information System (INIS)

    Minoda, Ai; Oshima, Shinji; Iki, Hideshi; Akiba, Etsuo

    2014-01-01

    Highlights: • The hydrogen adsorption of lithium-doped KOH activated carbons has been studied. • Lithium doping improves their hydrogen adsorption affinity. • Lithium doping is more effective for materials with micropores of 0.8 nm or smaller. • Lithium reagent can alter the pore structure, depending on the raw material. • Optimizing the pore size and functional group is needed for better hydrogen uptake. - Abstract: The authors have studied the hydrogen adsorption performance of several types of lithium-doped KOH activated carbons. In the case of activated cokes, lithium doping improves their hydrogen adsorption affinity from 5.02 kg/m 3 to 5.86 kg/m 3 at 303 K. Hydrogen adsorption density increases by around 17% after lithium doping, likely due to the fact that lithium doping is more effective for materials with micropores of 0.8 nm or smaller. The effects of lithium on hydrogen storage capacity vary depending on the raw material, because the lithium reagent can react with the material and alter the pore structure, indicating that lithium doping has the effect of plugging or filling the micropores and changing the structures of functional groups, resulting in the formation of mesopores. Despite an observed decrease in hydrogen uptake, lithium doping was found to improve hydrogen adsorption affinity. Lithium doping increases hydrogen uptake by optimizing the pore size and functional group composition

  5. Granular packing as model glass formers

    International Nuclear Information System (INIS)

    Wang Yujie

    2017-01-01

    Static granular packings are model hard-sphere glass formers. The nature of glass transition has remained a hotly debated issue. We review recent experimental progresses in using granular materials to study glass transitions. We focus on the growth of glass order with five-fold symmetry in granular packings and relate the findings to both geometric frustration and random first-order phase transition theories. (paper)

  6. Adsorption Equilibria of Acetic Acid on Activated Carbon

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyong-Mok; Nam, Hee-Geun; Mun, Sungyong [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    In this study, the adsorption equilibria of acetic acid on activated carbon were investigated at the temperatures of 313.15 K and 323.15 K. The obtained adsorption data were then fitted by Langmuir, Bi-Langmuir, and Freundlich models, in which the relevant model parameters were determined by minimizing the sum of the squares of deviations between experimental data and calculated values. The comparison results revealed that Bi-Langmuir model could account for the adsorption equilibrium data of acetic acid with the highest accuracy among the three adsorption models considered.

  7. Characteristics of activated carbon remove sulfur particles against smog.

    Science.gov (United States)

    Ge, Shengbo; Liu, Zhenling; Furuta, Yuzo; Peng, Wanxi

    2017-09-01

    Sulfur particles, which could cause diseases, were the main powder of smog. And activated carbon had the very adsorption characteristics. Therefore, five sulfur particles were adsorbed by activated carbon and were analyzed by FT-IR. The optimal adsorption time were 120 min of Na 2 SO 3 , 120 min of Na 2 S 2 O 8 , 120 min of Na 2 SO 4 , 120 min of Fe 2 (SO 4 ) 3 and 120 min of S. FT-IR spectra showed that activated carbon had the eight characteristic absorption of S-S stretch, H 2 O stretch, O-H stretch, -C-H stretch, conjugated C 000000000000 000000000000 000000000000 111111111111 000000000000 111111111111 000000000000 000000000000 000000000000 O stretch or CC stretch, CH 2 bend, C-O stretch and acetylenic C-H bend vibrations at 3850 cm -1 , 3740 cm -1 , 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 , respectively. For Na 2 SO 3 , the peaks at 2920 cm -1 , 1630 cm -1 , 1390 cm -1 and 1110 cm -1 achieved the maximum at 20 min. For Na 2 S 2 O 8 , the peaks at 3850 cm -1 , 3740 cm -1 and 2920 cm -1 achieved the maximum at 60 min. The peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 40 min. For Na 2 SO 4 , the peaks at 3430 cm -1 , 2920 cm -1 , 1630 cm -1 , 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 60 min. For Fe 2 (SO 4 ) 3 , the peaks at 1390 cm -1 , 1110 cm -1 and 600 cm -1 achieved the maximum at 20 min. For S, the peaks at 1630 cm -1 , 1390 cm -1 and 600 cm -1 achieved the maximum at 120 min. It provided that activated carbon could remove sulfur particles from smog air to restrain many anaphylactic diseases.

  8. Lithium carbonate tablets. Preparation techniques influence over active ingredient liberation

    International Nuclear Information System (INIS)

    Bueno, J.H.F.; Oliveira, A.G. de; Toledo Salgado, P.E. de

    1989-01-01

    Lithium carbonate tablets, prepared using wet and dry granulation, were assessed in vitro so as to determine the active ingredient dissolution. In this study, standardized formulations were used and developed with usual adjuvants (lactose - maize starch). Parallel to the dissolution testing. The influence of the preparation process over some physical characteristics (hardness, friability and disintegration) was also analysed. Although a better performance was observed of tables prepared using dry granulation, the authors concluded that the wet process is more suitable in preparing tables with the mentioned drug. (author)

  9. Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon

    KAUST Repository

    De Ridder, David J.

    2013-03-01

    The adsorption efficacy of 16 pharmaceuticals on six different activated carbons is correlated to the thermodynamic work of adhesion, which was derived following the surface tension component approach. Immersion calorimetry was used to determine the surface tension components of activated carbon, while contact angle measurements on compressed plates were used to determine these for solutes. We found that the acid-base surface tension components of activated carbon correlated to the activated carbon oxygen content. Solute-water interaction correlated well to their solubility, although four solutes deviated from the trend. In the interaction between solute and activated carbon, van der Waals interactions were dominant and explained 65-94% of the total interaction energy, depending on the hydrophobicity of the activated carbon and solute. A reasonable relationship (r2 > 70) was found between the calculated work of adhesion and the experimentally determined activated carbon loading. © 2012 Elsevier Ltd. All rights reserved.

  10. Hydrogen Adsorption on Activated Carbon an Carbon Nanotubes Using Volumetric Differential Pressure Technique

    International Nuclear Information System (INIS)

    Sanip, S. M.; Saidin, M. A. R.; Aziz, M.; Ismail, A. F.

    2010-01-01

    A simple hydrogen adsorption measurement system utilizing the volumetric differential pressure technique has been designed, fabricated and calibrated. Hydrogen adsorption measurements have been carried out at temperatures 298 K and 77 K on activate carbon and carbon nanotubes with different surface areas. The adsorption data obtained will be helpful in understanding the adsorption property of the studied carbon materials using the fundamentals of adsorption theory. The principle of the system follows the Sievert-type method. The system measures a change in pressure between the reference cell, R1 and the sample cell S1, S2, S3 over a certain temperature range, R1, S1, S2, and S3 having known fixed volume. The sample temperatures will be monitored by thermocouple TC while the pressures in R1 an S1, S2, S3 will be measured using a digital pressure transducer. The maximum operating pressure of the pressure transducer is 20 bar and calibrated with an accuracy of ±0.01 bar. High purity hydrogen is being used in the system and the amount of samples for the study is between 1.0-2.0 grams. The system was calibrated using helium gas without any samples in S1, S2 an S3. This will provide a correction factor during the adsorption process providing an adsorption free reference point when using hydrogen gas resulting in a more accurate reading of the adsorption process by eliminating the errors caused by temperature expansion effects and other non-adsorption related phenomena. The ideal gas equation of state is applied to calculate the hydrogen adsorption capacity based on the differential pressure measurements. Activated carbon with a surface area of 644.87 m 2 /g showed a larger amount of adsorption as compared to multiwalled nanotubes (commercial) with a surface area of 119.68 m 2 /g. This study als indicated that there is a direct correlation between the amounts of hydrogen adsorbed an surface area of the carbon materials under the conditions studied and that the adsorption

  11. Remediation of organochlorine pesticides contaminated lake sediment using activated carbon and carbon nanotubes.

    Science.gov (United States)

    Hua, Shan; Gong, Ji-Lai; Zeng, Guang-Ming; Yao, Fu-Bing; Guo, Min; Ou, Xiao-Ming

    2017-06-01

    Organochlorine pesticides (OCPs) in sediment were a potential damage for humans and ecosystems. The aim of this work was to determine the effectiveness of carbon materials remedy hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethanes (DDTs) in sediment. Two different carbon materials including activated carbon (AC) and multi-walled carbon nanotubes (MWCNTs) were used in the present research. Sediment treated with 2 wt% AC and MWCNTs after 150 d contact showed 97%, and 75% reduction for HCH, and 93% and 59% decrease for DDTs in aqueous equilibrium concentration, respectively. Similarly, the reduction efficiencies of DDT and HCH uptake by semipermeable membrane devices (SPMDs) treated with AC (MWCNTs) were 97% (75%) and 92% (63%), respectively under the identical conditions. Furthermore, for 2 wt% AC (MWCNTs) system, a reduction of XAD beads uptake up to 87% (52%) and 73% (67%) was obtained in HCH and DDT flux to overlying water in quiescent system. Adding MWCNTs to contaminated sediment did not significantly decrease aqueous equilibrium concentration and DDTs and HCH availability in SPMDs compared to AC treatment. A series of results indicated that AC had significantly higher remediation efficiency towards HCH and DDTs in sediment than MWCNTs. Additionally, the removal efficiencies of two organic pollutants improved with increasing material doses and contact times. The greater effectiveness of AC was attributed to its greater specific surface area, which was favorable for binding contaminants. These results highlighted the potential for using AC as in-situ sorbent amendments for sediment remediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Significance of the carbonization of volatile pyrolytic products on the properties of activated carbons from phosphoric acid activation of lignocellulosic material

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Songlin; Yang, Jianxiao; Cai, Xuan [Faculty of Chemical Engineering, Nanjing Forestry University, Nanjing 210037 (China); Liu, Junli [Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042 (China)

    2009-07-15

    Two series of activated carbons derived from China fir (Cunninghamia lanceolata) wood impregnated with phosphoric acid were prepared in a cylindrical container that was kept in a closed state covered with a lid (the covered case) or in an open state. The effects of the carbonization of volatile pyrolytic products of starting materials on the properties of activated carbon were investigated in the process of phosphoric acid activation. Elemental analysis and SEM observation showed that both activating in the covered case and increasing the mass of starting material used favored the carbonization of volatile pyrolytic products. An investigation of N{sub 2} adsorption isotherms revealed that the carbonization of volatile pyrolytic products significantly enhanced mesopore development in the final carbons, especially pores with a size range from 2.5 to 30 nm, with little influence on micropores, and therefore produced a large increase in the adsorption capacity to Vitamin B12 (with a molecular size of 2.09 nm). Activated carbons with highly developed mesopores could be obtained in the covered case. The carbonization mechanism of volatiles was discussed and two different carbonization pathways (in solid and gas phases) were proposed during phosphoric acid activation. (author)

  13. Influence of adhesion to activated carbon particles on the viability of waterborne pathogenic bacteria under flow

    NARCIS (Netherlands)

    van der Mei, Henny C.; Atema-Smit, Jelly; Jager, Debbie; Langworthy, Don E.; Collias, Dimitris I.; Mitchell, Michael D.; Busscher, Henk J.

    2008-01-01

    In rural areas around the world, people often rely on water filtration plants using activated carbon particles for safe water supply. Depending on the carbon surface, adhering microorganisms die or grow to form a biofilm. Assays to assess the efficacy of activated carbons in bacterial removal do not

  14. Evaluation of GLUT-1 in the granular cell tumour and congenital granular cell epulis.

    Science.gov (United States)

    Souto, Giovanna Ribeiro; Caldeira, Patrícia Carlos; Johann, Aline Cristina Batista Rodrigues; Andrade Marigo, Helenicede; Souza, Suzana Cantanhede Orsini Machadode; Mesquita, Ricardo Alves

    2013-07-01

    The glucose transporter type 1 (GLUT-1) protein is a useful marker for perineurial cells. Because of the possible neuroectodermal histogenesis of the granular cell tumour and congenital granular cell epulis, the aim of this study was to assess the immunoexpression of GLUT-1 protein in granular cell tumour and congenital granular cell epulis to aid in clarifying their histogenesis. The protocol of this study was approved by the Committee of Bioethics in Research at Universidade Federal Minas Gerais. Six cases of granular cell tumour and three cases of congenital granular cell epulis were submitted to immunohistochemistry for GLUT-1 and S-100 using the streptavidin-biotin standard protocol. Five cases of granular cell tumour were located on the tongue and one case on the upper lip. All cases of congenital granular cell epulis were observed in the alveolar ridge of newborns. All lesions evaluated proved to be immunonegative for GLUT-1. S-100 was found to be positive in all granular cell tumours and negative in congenital granular cell epulis. Neither granular cell tumour nor congenital granular cell epulis is directly related to perineurial cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Development of an Activated Carbon-Based Electrode for the Capture and Rapid Electrolytic Reductive Debromination of Methyl Bromide from Postharvest Fumigations.

    Science.gov (United States)

    Li, Yuanqing; Liu, Chong; Cui, Yi; Walse, Spencer S; Olver, Ryan; Zilberman, David; Mitch, William A

    2016-10-18

    Due to concerns surrounding its ozone depletion potential, there is a need for technologies to capture and destroy methyl bromide (CH 3 Br) emissions from postharvest fumigations applied to control agricultural pests. Previously, we described a system in which CH 3 Br fumes vented from fumigation chambers could be captured by granular activated carbon (GAC). The GAC was converted to a cathode by submergence in a high ionic strength solution and connection to the electrical grid, resulting in reductive debromination of the sorbed CH 3 Br. The GAC bed was drained and dried for reuse to capture and destroy CH 3 Br fumes from the next fumigation. However, the loose GAC particles and slow kinetics of this primitive electrode necessitated improvements. Here, we report the development of a cathode containing a thin layer of small GAC particles coating carbon cloth as a current distributor. Combining the high sorption potential of GAC for CH 3 Br with the conductivity of the carbon cloth current distributor, the cathode significantly lowered the total cell resistance and achieved 96% reductive debromination of CH 3 Br sorbed at 30% by weight to the GAC within 15 h at -1 V applied potential vs standard hydrogen electrode, a time scale and efficiency suitable for postharvest fumigations. The cathode exhibited stable performance over 50 CH 3 Br capture and destruction cycles. Initial cost estimates indicate that this technique could treat CH 3 Br fumes at ∼$5/kg, roughly one-third of the cost of current alternatives.

  16. Mesoporous activated carbon from corn stalk core for lithium ion batteries

    Science.gov (United States)

    Li, Yi; Li, Chun; Qi, Hui; Yu, Kaifeng; Liang, Ce

    2018-04-01

    A novel mesoporous activated carbon (AC) derived from corn stalk core is prepared via a facile and effective method which including the decomposition and carbonization of corn stalk core under an inert gas atmosphere and further activation process with KOH solution. The mesoporous activated carbon (AC) is characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. These biomass waste derived from activated carbon is proved to be promising anode materials for high specific capacity lithium ion batteries. The activated carbon anode possesses excellent reversible capacity of 504 mAh g-1 after 100 cycles at 0.2C. Compared with the unactivated carbon (UAC), the electrochemical performance of activated carbon is significantly improved due to its mesoporous structure.

  17. FLUORIDE SORPTION USING MORRINGA INDICA-BASED ACTIVATED CARBON

    Directory of Open Access Journals (Sweden)

    G. Karthikeyan, S. Siva Ilango

    2007-01-01

    Full Text Available Batch adsorption experiments using activated carbon prepared from Morringa Indica bark were conducted to remove fluoride from aqueous solution. A minimum contact time of 25 min was required for optimum fluoride removal. The influence of adsorbent, dose, pH, co-ions (cations and anions on fluoride removal by the activated carbon has been experimentally verified. The adsorption of fluoride was studied at 30 C, 40 C and 50 C. The kinetics of adsorption and adsorption isotherms at different temperatures were studied. The fluoride adsorption obeyed both Langmuir and Freundlich isotherms and followed a pseudo first order kinetic model. The thermodynamic studies revealed that the fluoride adsorption by Morringa Indica is an endothermic process indicating an increase in sorption rate at higher temperatures. The negative values of G indicate the spontaneity of adsorption. SEM and XRD studies confirmed the surface morphological characteristics of the adsorbent and the deposition of fluoride on the surface of the material.

  18. Post treatment of antibiotic wastewater by adsorption on activated carbon

    Science.gov (United States)

    Mullai, P.; Rajesh, V.

    2018-02-01

    The most common method of treating industrial wastewater involves biomethanation in anaerobic digesters. This biological treatment process is ineffective in color removal and it requires post-treatment methods. The color is the first contaminant in wastewater which affects the water bodies in several ways. As the anaerobically digested antibiotic wastewater was found with color, an attempt was made to remove color using granulated activated carbon as an adsorbent. Experiments were carried out in batch reactors to find out the color removal efficiency of the wastewater at four different dosages such as 25, 50, 75 and 100 mg of adsorbent material at each of the four different initial concentrations of effluent like 1956, 1450, 1251 and 1040 mg COD/L. The steady state values of color removal efficiencies were 96.6, 97.64, 98.64 and 99.63%, respectively, using 100 mg of activated carbon under shaking condition at the end of the 120th min. The effect of contact time on the percentage of color removal was also studied. It was observed that the adsorption of effluent obtained equilibrium at 120 minutes. The equilibrium data fitted well with the Langmuir and Freundlich isotherms.

  19. Activated polyaniline-based carbon nanoparticles for high performance supercapacitors

    International Nuclear Information System (INIS)

    Zhou, Jin; Zhu, Tingting; Xing, Wei; Li, Zhaohui; Shen, Honglong; Zhuo, Shuping

    2015-01-01

    Polyaniline (PANI) nanoparticles have been prepared by disperse polymerization of aniline in the presence of poly(4-styrenesulfonate). The PANI nanoparticles are further subjected to pyrolysis treatment and chemical-activation to prepare the activated nitrogen-doped carbon nanoparticles (APCNs). The porosity, structure and nitrogen-doped surface chemistry are analyzed by a varies of means, such as scanning electron microscopy, transition electron microscopy, N 2 sorption, X-ray diffraction and X-ray photoelectron spectroscopy. The capacitive performance of the APCNs materials are test in 6 M KOH electrolyte. Benefitting from the abundant micropores with short length, large specific surface area, hierarchical porosity and heteroatom-doped polar pore surface, the APCNs materials exhibit v exhibit very high specific capacitance up to 341 F g −1 , remarkable power capability and excellent long-term cyclic stability (96.6% after 10 000 cycles). At 40 A g −1 , APCN-2 carbon shows a capacitance of 164 F g −1 , responding to a high energy and power densities of 5.7 Wh kg −1 and 10 000 W kg −1

  20. Comparative study of activated carbon, natural zeolite, and green sand supports for CuOX and ZnO sites as ozone decomposition catalyst

    Science.gov (United States)

    Azhariyah, A. S.; Pradyasti, A.; Dianty, A. G.; Bismo, S.

    2018-03-01

    This research was based on ozone decomposition in industrial environment. Ozone is harmful to human. Therefore, catalysts were made as a mask filter to decompose ozone. Comparison studies of catalyst supports were done using Granular Activated Carbon (GAC), Natural Zeolite (NZ), and Green Sand (GS). GAC showed the highest catalytic activity compared to other supports with conversion of 98%. Meanwhile, the conversion using NZ was only 77% and GS had been just 27%. GAC had the highest catalytic activity because it had the largest pore volume, which is 0.478 cm3/g. So GAC was used as catalyst supports. To have a higher conversion in ozone decomposition, GAC was impregnated with metal oxide as the active site of the catalyst. Active site comparison was made using CuOX and ZnO as the active site. Morphology, composition, and crystal phase were analyzed using SEM-EDX, XRF, and XRD methods. Mask filter, which contained catalysts for ozone decomposition, was tested using a fixed bed reactor at room temperature and atmospheric pressure. The result of conversion was analyzed using iodometric method. CuOX/GAC and ZnO/GAC 2%-w showed the highest catalytic activity and conversion reached 100%. From the durability test, CuOX/GAC 2%-w was better than ZnO/GAC 2%-w because the conversion of ozone to oxygen reached 100% with the lowest conversion was 70% for over eight hours.

  1. Experimental study on adsorption kinetics of activated carbon/R134a and activated carbon/R507A pairs

    Energy Technology Data Exchange (ETDEWEB)

    Habib, Khairul; Koyama, Shigeru [Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga-shi, Fukuoka 816-8580 (Japan); Saha, Bidyut B. [Mechanical Engineering Department, Kyushu University, 744 Motooka, Fukuoka-shi, Fukuoka 819-0395 (Japan); Rahman, Kazi A.; Chakraborty, Anutosh; Ng, Kim Choon [Mechanical Engineering Department, National University of Singapore, 10 Kent Ridge Crescent (Singapore)

    2010-06-15

    The objective of this article is to evaluate adsorption kinetics of R134a and R507A on pitch based activated carbon experimentally by a constant volume variable pressure method at different adsorption temperatures ranging from 20 to 60 C. These data are useful for the design of adsorption cooling and refrigeration systems and are unavailable in the literature. Data obtained from the kinetic studies were analyzed with various kinetic models and the Fickian diffusion model is found to be the most suitable overall. Guided by the experimental measurements, the surface diffusion is also estimated and is found that it follows the classical Arrhenius law within the experimental range. (author)

  2. Estimation of adsorption energies using VOCs' molecular properties and activated carbons' physical characteristics

    International Nuclear Information System (INIS)

    Giraudet, S.; Pre, P.; Le Cloirec, P.

    2005-01-01

    Adsorption of Volatile Organic Compounds (VOCs) by Granular Activated Carbon (GAC) is a conventional process for recovery of solvents from gas effluents. Such a treatment is achieved in cyclic batch adsorption systems, in which the adsorbent bed is alternately saturated and regenerated. However, the exothermal nature of adsorption causes a reduction in the dynamic adsorption capacity of the bed, and thus a decrease in the overall efficiency of the recovery process. Furthermore, the local temperature rises may become hazardous at high levels of pollutant concentrations, bringing about safety risk with bed ignition. This study points out the properties of VOCs and GACs that play a major role on the heat flux released during adsorption. For that purpose, a statistical analysis was conducted on a database representative of the changes in the molar integral adsorption enthalpies measured on 8 different commercials GACs, for a wide variety of VOCs. The adsorption enthalpies were determined by TG-DSC (thermal gravimetry analysis coupled to differential scanning calorimetry), by flowing helium loaded with 50 g.m 3 of solvent through the adsorbent sample. Afterwards, two statistical models were applied on the database so generated and were compared in terms of prediction skill: Multi-Linear Regression (MLR) and Neural Network (NN). From the MLR approach, the polarizability, the heat of vaporization, the ionization potential, and the surface tension of the VOC were discriminated among other molecular properties, whilst the average micropore radius was shown to be the most influent adsorbent characteristic on the potential energy of the interactions with an organic molecule. The major influence of these properties was explained in the light of the mechanisms that are involved during progressive coverage of the adsorbent. Physisorption, i.e. dispersion forces between the adsorbate and the pore walls, and capillary condensation occurring in meso-pores were put forward. The MLR

  3. Nucleation in Sheared Granular Matter

    Science.gov (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L.; Schröter, Matthias

    2018-02-01

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  4. Nucleation in Sheared Granular Matter.

    Science.gov (United States)

    Rietz, Frank; Radin, Charles; Swinney, Harry L; Schröter, Matthias

    2018-02-02

    We present an experiment on crystallization of packings of macroscopic granular spheres. This system is often considered to be a model for thermally driven atomic or colloidal systems. Cyclically shearing a packing of frictional spheres, we observe a first order phase transition from a disordered to an ordered state. The ordered state consists of crystallites of mixed fcc and hcp symmetry that coexist with the amorphous bulk. The transition, initiated by homogeneous nucleation, overcomes a barrier at 64.5% volume fraction. Nucleation consists predominantly of the dissolving of small nuclei and the growth of nuclei that have reached a critical size of about ten spheres.

  5. Extramitochondrial domain rich in carbonic anhydrase activity improves myocardial energetics.

    Science.gov (United States)

    Schroeder, Marie A; Ali, Mohammad A; Hulikova, Alzbeta; Supuran, Claudiu T; Clarke, Kieran; Vaughan-Jones, Richard D; Tyler, Damian J; Swietach, Pawel

    2013-03-05

    CO2 is produced abundantly by cardiac mitochondria. Thus an efficient means for its venting is required to support metabolism. Carbonic anhydrase (CA) enzymes, expressed at various sites in ventricular myocytes, may affect mitochondrial CO2 clearance by catalyzing CO2 hydration (to H(+) and HCO3(-)), thereby changing the gradient for CO2 venting. Using fluorescent dyes to measure changes in pH arising from the intracellular hydration of extracellularly supplied CO2, overall CA activity in the cytoplasm of isolated ventricular myocytes was found to be modest (2.7-fold above spontaneous kinetics). Experiments on ventricular mitochondria demonstrated negligible intramitochondrial CA activity. CA activity was also investigated in intact hearts by (13)C magnetic resonance spectroscopy from the rate of H(13)CO3(-) production from (13)CO2 released specifically from mitochondria by pyruvate dehydrogenase-mediated metabolism of hyperpolarized [1-(13)C]pyruvate. CA activity measured upon [1-(13)C]pyruvate infusion was fourfold higher than the cytoplasm-averaged value. A fluorescent CA ligand colocalized with a mitochondrial marker, indicating that mitochondria are near a CA-rich domain. Based on immunoreactivity, this domain comprises the nominally cytoplasmic CA isoform CAII and sarcoplasmic reticulum-associated CAXIV. Inhibition of extramitochondrial CA activity acidified the matrix (as determined by fluorescence measurements in permeabilized myocytes and isolated mitochondria), impaired cardiac energetics (indexed by the phosphocreatine-to-ATP ratio measured by (31)P magnetic resonance spectroscopy of perfused hearts), and reduced contractility (as measured from the pressure developed in perfused hearts). These data provide evidence for a functional domain of high CA activity around mitochondria to support CO2 venting, particularly during elevated and fluctuating respiratory activity. Aberrant distribution of CA activity therefore may reduce the heart's energetic

  6. Influence of physical properties of activated carbons on characteristics of electric double-layer capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Mitsuhiro [FDK Corp., Shizuoka (Japan). Research and Development Div.; Nakanishi, Masanori [FDK Corp., Shizuoka (Japan). Research and Development Div.; Yamamoto, Kohei [FDK Corp., Shizuoka (Japan). Research and Development Div.

    1996-06-01

    Electrochemical characterization has been carried out for several activated carbons used as polarizable electrodes of electric double-layer capacitors in an aqueous electrolytic solution. The rest potential of the activated carbon was proportional to the logarithm of the oxygen content or to the concentration of the acidic surface functional groups of the activated carbon. The result of triangular voltage-sweep cyclic voltammetry was the same as that of the residual current measurement. The oxygen content and concentration of the acidic surface groups of activated carbon influenced the electrochemical characteristics of the activated carbon. Under anodic polarization, gas evolution was observed at the electrode surface of activated carbon with high oxygen content at 0.8 V versus saturated calomel electrode (SCE). Gas evolution was not observed at the electrode surface of activated carbon with low oxygen content even to 1.0 V versus SCE. Under cathodic polarization of activated carbon with high oxygen content, the peak was observed at approximately -0.2 V versus SCE, but there was no gas evolution at the electrode surface of the activated carbon. Bubbles were not observed at the electrode surface of activated carbon with low oxygen content at -0.5 V versus SCE. Electric double-layer capacitors were made from activated carbons used for electrochemical measurements; load-life tests have been carried out. Thickness and internal resistance of the capacitor composed of activated carbon with high oxygen content increased. The changes in thickness and internal resistance of the capacitor composed of activated carbon with low oxygen content were small. (orig.)

  7. Carbonic anhydrase activators: Activation of the β-carbonic anhydrase from Malassezia globosa with amines and amino acids.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The β-carbonic anhydrase (CA, EC 4.2.1.1) from the dandruff producing fungus Malassezia globosa, MgCA, was investigated for its activation with amines and amino acids. MgCA was weakly activated by amino acids such as L-/D-His, L-Phe, D-DOPA, D-Trp, L-/D-Tyr and by the amine serotonin (KAs of 12.5-29.3μM) but more effectively activated by d-Phe, l-DOPA, l-Trp, histamine, dopamine, pyridyl-alkylamines, and 4-(2-aminoethyl)-morpholine, with KAs of 5.82-10.9μM. The best activators were l-adrenaline and 1-(2-aminoethyl)piperazine, with activation constants of 0.72-0.81μM. This study may help a better understanding of the activation mechanisms of β-CAs from pathogenic fungi as well as the design of tighter binding ligands for this enzyme which is a drug target for novel types of anti-dandruff agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon

    International Nuclear Information System (INIS)

    Kuratani, Kentaro; Yao, Masaru; Senoh, Hiroshi; Takeichi, Nobuhiko; Sakai, Tetsuo; Kiyobayashi, Tetsu

    2012-01-01

    We assembled a sodium-ion capacitor (Na-IC) by combining sodium pre-doped hard carbon (HC) as the negative- and activated carbon (AC) as the positive-electrode. The electrochemical properties were compared with two lithium-ion capacitors (Li-ICs) in which the negative electrodes were prepared with Li pre-doped HC and mesocarbon microbeads (MCMB). The positive and negative electrodes were prepared using the established doctor blade method. The negative electrodes were galvanostatically pre-doped with Na or Li to 80% of the full capacity of carbons. The potential of the negative electrodes after pre-doping was around 0.0 V vs. Na/Na + or Li/Li + , which resulted in the higher output potential difference of the Na-IC and Li-ICs than that of the conventional electrochemical double-layer capacitors (EDLCs) because AC positive electrode works in the same principle both in the ion capacitors and in the EDLC. The state-of-charge of the negative electrode varied 80 ± 10% during the electrochemical charging and discharging. The capacity of the cell was evaluated using galvanostatic charge–discharge measurement. At the discharge current density of 10 mA cm −2 , the Na-IC maintained 70% of the capacity that obtained at the current density of 0.5 mA cm −2 , which was comparable to the Li-ICs. At 50 mA cm −2 , the capacities of the Li-IC(MCMB) and the Na-IC dropped to 20% whereas the Li-IC(HC) retained 30% of the capacity observed at 0.5 mA cm −2 . The capacities of the Na-IC and Li-ICs decreased by 9% and 3%, respectively, after 1000 cycles of charging and discharging.

  9. Activated Carbon from the Chinese Herbal Medicine Waste by H3PO4 Activation

    Directory of Open Access Journals (Sweden)

    Tie Mi

    2015-01-01

    Full Text Available Large amounts of Chinese herbal medicine wastes produced by the medicinal factories have been mainly landfilled as waste. In this study, via phosphoric acid activation, a Chinese herbal medicine waste from Magnolia officinalis (CHMW-MO was prepared for activated carbon (CHMW-MO-AC. The effect of preparation conditions (phosphoric acid/CHMW-MO impregnation ratio, activation temperature, and time of activated carbon on yield of CHMW-MO-AC was investigated. The surface area and porous texture of the CHMW-MO-ACs were characterized by nitrogen adsorption at 77 K. The SBET and pore volume were achieved in their highest value of 920 m2/g and 0.703 cm3/g, respectively. Thermal gravity analysis and scanning electron microscope images showed that CHMW-MO-ACs have a high thermal resistance and pore development. The results indicated that CHMW-MO is a good precursor material for preparing activated carbon, and CHMW-MO-AC with well-developed mesopore volume can be prepared by H3PO4 activation.

  10. Using Space for a Better Foundation on Earth: Mechanics of Granular Materials. Educational Brief. Grades 9-12.

    Science.gov (United States)

    Alshibli, Khalid

    This publication presents a science activity and instructional information on the mechanics of granular materials, interparticle friction and geometric interlocking between particles which is a fundamental concept in many fields like in the study of earthquakes. This document describes the Mechanics of Granular Materials (MGM) experiments which…

  11. Anaerobic granular sludge and biofilm reactors

    DEFF Research Database (Denmark)

    Skiadas, Ioannis V.; Gavala, Hariklia N.; Schmidt, Jens Ejbye

    2003-01-01

    -rate anaerobic treatment systems based on anaerobic granular sludge and biofilm are described in this chapter. Emphasis is given to a) the Up-flow Anaerobic Sludge Blanket (UASB) systems, b) the main characteristics of the anaerobic granular sludge, and c) the factors that control the granulation process...

  12. Storage and discharge of a granular fluid

    NARCIS (Netherlands)

    Pacheco-Martinez, Hector; van Gerner, H.J.; Ruiz-Suarez, J.C.

    2008-01-01

    Experiments and computational simulations are carried out to study the behavior of a granular column in a silo whose walls are able to vibrate horizontally. The column is brought to a steady fluidized state and it behaves similar to a hydrostatic system. We study the dynamics of the granular

  13. Viscosity evolution of anaerobic granular sludge

    NARCIS (Netherlands)

    Pevere, A.; Guibaud, G.; Hullebusch, van E.D.; Lens, P.N.L.; Baudu, M.

    2006-01-01

    The evolution of the apparent viscosity at steady shear rate of sieved anaerobic granular sludge (20¿315 ¿m diameter) sampled from different full-scale anaerobic reactors was recorded using rotation tests. The ¿limit viscosity¿ of sieved anaerobic granular sludge was determined from the apparent

  14. Characterization of Unbound Granular Materials for Pavements

    NARCIS (Netherlands)

    Araya, A.A.

    2011-01-01

    This research is focused on the characterization of the mechanical behavior of unbound granular road base materials (UGMs). An extensive laboratory investigation is described, in which various methods for determination of the mechanical properties of granular materials are examined for their

  15. Textural, surface, thermal and sorption properties of the functionalized activated carbons and carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Nowicki Piotr

    2015-12-01

    Full Text Available Two series of functionalised carbonaceous adsorbents were prepared by means of oxidation and nitrogenation of commercially available activated carbon and multi-walled carbon nanotubes. The effect of nitrogen and oxygen incorporation on the textural, surface, thermal and sorption properties of the adsorbents prepared was tested. The materials were characterized by elemental analysis, low-temperature nitrogen sorption, thermogravimetric study and determination of the surface oxygen groups content. Sorptive properties of the materials obtained were characterized by the adsorption of methylene and alkali blue 6B as well as copper(II ions. The final products were nitrogen- and oxygen-enriched mesoporous adsorbents of medium-developed surface area, showing highly diverse N and O-heteroatom contents and acidic-basic character of the surface. The results obtained in our study have proved that through a suitable choice of the modification procedure of commercial adsorbents it is possible to produce materials with high sorption capacity towards organic dyes as well as copper(II ions.

  16. Synthesis and Characterization of Carbon Nano fibers Grown on Powdered Activated Carbon

    International Nuclear Information System (INIS)

    Ahmed, Y. M.; Al-Mamun, A.; Jameel, A. T.; AlKhatib, M. F. R.; Amosa, M. K.; AlSaadi, M. A.

    2016-01-01

    Carbon nano fibers (CNFs) were synthesized through nickel ion (Ni 2+ ) impregnation of powdered activated carbon (PAC). Chemical Vapor Deposition (CVD) using acetylene gas, in the presence of hydrogen gas, was employed for the synthesis process. Various percentages (1, 3, 5, and 7 wt. %) of Ni 2+ catalysts were used in the impregnation of Ni 2+ into PAC. Field Emission Scanning Electron Microscope (FESEM), Fourier Transform Infrared (FTIR) Spectroscopy, Energy Dispersive X-Ray Analyzer (EDX), Transmission Electron Microscopy (TEM), Thermal Gravimetric Analysis (TGA), zeta potential, and Brunauer, Emmett, and Teller (BET) were utilized for the characterization of the novel composite, which possessed micro and nano dimensions. FESEM and TEM images revealed that the carbonaceous structure of the nano materials was fibrous instead of tubular with average width varying from 100 to 200 nanometers. The PAC surface area increased from 101 m2/g to 837 m 2 /g after the growth of CNF. TGA combustion temperature range was within 400°C and 570°C, while the average zeta potential of the nano composite materials was −24.9 mV, indicating its moderate dispersive nature in water.

  17. Enhanced CO2 Adsorption on Activated Carbon Fibers Grafted with Nitrogen-Doped Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Yu-Chun Chiang

    2017-05-01

    Full Text Available In this paper, multiscale composites formed by grafting N-doped carbon nanotubes (CNs on the surface of polyamide (PAN-based activated carbon fibers (ACFs were investigated and their adsorption performance for CO2 was determined. The spaghetti-like and randomly oriented CNs were homogeneously grown onto ACFs. The pre-immersion of cobalt(II ions for ACFs made the CNs grow above with a large pore size distribution, decreased the oxidation resistance, and exhibited different predominant N-functionalities after chemical vapor deposition processes. Specifically, the CNs grafted on ACFs with or without pre-immersion of cobalt(II ions were characterized by the pyridine-like structures of six-member rings or pyrrolic/amine moieties, respectively. In addition, the loss of microporosity on the specific surface area and pore volume exceeded the gain from the generation of the defects from CNs. The adsorption capacity of CO2 decreased gradually with increasing temperature, implying that CO2 adsorption was exothermic. The adsorption capacities of CO2 at 25 °C and 1 atm were between 1.53 and 1.92 mmol/g and the Freundlich equation fit the adsorption data well. The isosteric enthalpy of adsorption, implying physical adsorption, indicated that the growth of CNTs on the ACFs benefit CO2 adsorption.

  18. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    Science.gov (United States)

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Active chemisorption sites in functionalized ionic liquids for carbon capture.

    Science.gov (United States)

    Cui, Guokai; Wang, Jianji; Zhang, Suojiang

    2016-07-25

    Development of novel technologies for the efficient and reversible capture of CO2 is highly desired. In the last decade, CO2 capture using ionic liquids has attracted intensive attention from both academia and industry, and has been recognized as a very promising technology. Recently, a new approach has been developed for highly efficient capture of CO2 by site-containing ionic liquids through chemical interaction. This perspective review focuses on the recent advances in the chemical absorption of CO2 using site-containing ionic liquids, such as amino-based ionic liquids, azolate ionic liquids, phenolate ionic liquids, dual-functionalized ionic liquids, pyridine-containing ionic liquids and so on. Other site-containing liquid absorbents such as amine-based solutions, switchable solvents, and functionalized ionic liquid-amine blends are also investigated. Strategies have been discussed for how to activate the existent reactive sites and develop novel reactive sites by physical and chemical methods to enhance CO2 absorption capacity and reduce absorption enthalpy. The carbon capture mechanisms of these site-containing liquid absorbents are also presented. Particular attention has been paid to the latest progress in CO2 capture in multiple-site interactions by amino-free anion-functionalized ionic liquids. In the last section, future directions and prospects for carbon capture by site-containing ionic liquids are outlined.

  20. Carbon Dioxide Information Analysis Center: FY 1992 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

    1993-03-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  1. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

  2. Carbon Dioxide Information Analysis Center: FY 1991 activities

    Energy Technology Data Exchange (ETDEWEB)

    Cushman, R.M.; Stoss, F.W.

    1992-06-01

    During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

  3. Traffic and Granular Flow’05

    CERN Document Server

    Pöschel, Thorsten; Kühne, Reinhart; Schreckenberg, Michael; Wolf, Dietrich

    2007-01-01

    The conference series Tra?c and Granular Flow has been established in 1995 and has since then been held biannually. At that time, the investigation of granular materials and tra?c was still somewhat exotic and was just starting to become popular among physicists. Originally the idea behind this conference series was to facilitate the c- vergence of the two ?elds, inspired by the similarities of certain phenomena and the use of similar theoretical methods. However, in recent years it has become clear that probably the di?erences between the two systems are much more interesting than the similarities. Nevertheless, the importance of various interrelations among these ?elds is still growing. The workshop continues to o?er an opportunity to stimulate this interdisciplinary research. Over the years the spectrum of topics has become much broader and has included also problems related to topics ranging from social dynamics to - ology. The conference manages to bring together people with rather di?erent background, r...

  4. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells.

    Science.gov (United States)

    Rahman, Mokhlesur M; Adil, Mohd; Yusof, Alias M; Kamaruzzaman, Yunus B; Ansary, Rezaul H

    2014-05-07

    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  5. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Directory of Open Access Journals (Sweden)

    Mokhlesur M. Rahman

    2014-05-01

    Full Text Available In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II, lead(II and chromium(VI. Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II and lead(II were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II and lead(II. The removal of chromium(VI was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II, Pb(II and Cr(VI by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model.

  6. Removal of Heavy Metal Ions with Acid Activated Carbons Derived from Oil Palm and Coconut Shells

    Science.gov (United States)

    Rahman, Mokhlesur M.; Adil, Mohd; Yusof, Alias M.; Kamaruzzaman, Yunus B.; Ansary, Rezaul H.

    2014-01-01

    In this work, batch adsorption experiments were carried out to investigate the suitability of prepared acid activated carbons in removing heavy metal ions such as nickel(II), lead(II) and chromium(VI). Acid activated carbons were obtained from oil palm and coconut shells using phosphoric acid under similar activation process while the differences lie either in impregnation condition or in both pretreatment and impregnation conditions. Prepared activated carbons were modified by dispersing hydrated iron oxide. The adsorption equilibrium data for nickel(II) and lead(II) were obtained from adsorption by the prepared and commercial activated carbons. Langmuir and Freundlich models fit the data well. Prepared activated carbons showed higher adsorption capacity for nickel(II) and lead(II). The removal of chromium(VI) was studied by the prepared acid activated, modified and commercial activated carbons at different pH. The isotherms studies reveal that the prepared activated carbon performs better in low concentration region while the commercial ones in the high concentration region. Thus, a complete adsorption is expected in low concentration by the prepared activated carbon. The kinetics data for Ni(II), Pb(II) and Cr(VI) by the best selected activated carbon fitted very well to the pseudo-second-order kinetic model. PMID:28788640

  7. Traffic and Granular Flow ’03

    CERN Document Server

    Luding, Stefan; Bovy, Piet; Schreckenberg, Michael; Wolf, Dietrich

    2005-01-01

    These proceedings are the fifth in the series Traffic and Granular Flow, and we hope they will be as useful a reference as their predecessors. Both the realistic modelling of granular media and traffic flow present important challenges at the borderline between physics and engineering, and enormous progress has been made since 1995, when this series started. Still the research on these topics is thriving, so that this book again contains many new results. Some highlights addressed at this conference were the influence of long range electric and magnetic forces and ambient fluids on granular media, new precise traffic measurements, and experiments on the complex decision making of drivers. No doubt the “hot topics” addressed in granular matter research have diverged from those in traffic since the days when the obvious analogies between traffic jams on highways and dissipative clustering in granular flow intrigued both c- munities alike. However, now just this diversity became a stimulating feature of the ...

  8. PRN 2001-2: Acute Toxicity Data Requirements For Granular Pesticide Products, Including Those With Granular Fertilizers in the Product.

    Science.gov (United States)

    This PR Notice announces guidance intended to streamline the acute toxicity review and classification process for certain granular pesticide products, including those products that contain granular fertilizers.

  9. Porous carbon with a large surface area and an ultrahigh carbon purity via templating carbonization coupling with KOH activation as excellent supercapacitor electrode materials

    International Nuclear Information System (INIS)

    Sun, Fei; Gao, Jihui; Liu, Xin; Pi, Xinxin; Yang, Yuqi; Wu, Shaohua

    2016-01-01

    Highlights: • Simple templating carbonization method was developed to obtain porous carbons. • Surface etching by KOH activation greatly boosts surface area and carbon purity. • The as-obtained porous carbon delivers a high capacitance of 275 F g −1 . • Symmetric supercapacitor can achieved high energy density and power density. - Abstract: Large surface area and good structural stability, for porous carbons, are two crucial requirements to enable the constructed supercapacitors with high capacitance and long cycling lifespan. Herein, we successfully prepare porous carbon with a large surface area (3175 m 2 g −1 ) and an ultrahigh carbon purity (carbon atom ratio of 98.25%) via templating carbonization coupling with KOH activation. As-synthesized MTC-KOH exhibits excellent performances as supercapacitor electrode materials in terms of high specific capacitance and ultrahigh cycling stability. In a three electrode system, MTC-KOH delivers a high capacitance of 275 F g −1 at 0.5 A g −1 and still 120 F g −1 at a high rate of 30 A g −1 . There is almost no capacitance decay even after 10,000 cycles, demonstrating outstanding cycling stability. In comparison, pre-activated MTC with a hierarchical pore structure shows a better rate capability than microporous MTC-KOH. Moreover, the constructed symmetric supercapacitor using MTC-KOH can achieve high energy densities of 8.68 Wh kg −1 and 4.03 Wh kg −1 with the corresponding power densities of 108 W kg −1 and 6.49 kW kg −1 , respectively. Our work provides a simple design strategy to prepare highly porous carbons with high carbon purity for supercapacitors application.

  10. Preparation of activated Carbons from extracted waste biomass by chemical activation

    International Nuclear Information System (INIS)

    Toteva, V.; Nickolov, R.

    2013-01-01

    Full text: Novel biomass precursors for the production of activated carbons (ACs) were studied. ACs were prepared from extracted coffee husks and extracted spent ground coffee - separately or as mixtures with 10, 20 and 30 mass % Bulgarian lignite coal. Activation by potassium hydroxide was employed for all samples. The results obtained show that the surface and porous parameters of the ACs depend on the nature of the initial materials used. The specific surface areas (BET) and the microporosities of ACs obtained from extracted spent ground coffee mixed with 20 mass % Bulgarian lignite coals, are greater than those of the ACs from extracted coffee husks. It is likely that the reason for this result is the chemical composition of the precursors. The coffee husks have less lignin and more holocellulose. The latter undergoes more significant destructive changes in the process of chemical activation. On the contrary, waste ground coffee precursors contain more lignin and less holocellulose. As a result, after the chemical activation, the carbons prepared from extracted spent ground coffee exhibit better porous parameters and higher specific surface areas. key words: activated carbons, extraction, waste biomass

  11. Modification of activated carbon using nitration followed by reduction for carbon dioxide capture

    Energy Technology Data Exchange (ETDEWEB)

    Shafeeyan, Mohammad Saleh; Houshmand, Amirhossein; Arami-Niya, Arash; Daud, Wan Mohd AshiWan [Dept. of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur (Malaysia); Razaghizadeh, Hosain [Dept. of Faculty of Environment and Energy, Research and Science Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2015-02-15

    Activated carbon (AC) samples were modified using nitration followed by reduction to enhance their CO{sub 2} adsorption capacities. Besides characterization of the samples, investigation of CO{sub 2} capture performance was conducted by CO{sub 2} isothermal adsorption, temperature-programmed (TP) CO{sub 2} adsorption, cyclic CO{sub 2} adsorption–desorption, and dynamic CO{sub 2} adsorption tests. Almost all modified samples showed a rise in the amount of CO{sub 2} adsorbed when the comparison is made in unit surface area. On the other hand, some of the samples displayed a capacity superior to that of the parent material when compared in mass unit, especially at elevated temperatures. Despite ⁓65% decrease in the surface area, TP-CO{sub 2} adsorption of the best samples exhibited increases of ⁓10 and 70% in CO{sub 2} capture capacity at 30 and 100 °C, respectively.

  12. Adsorption performance of silver-loaded activated carbon fibers

    Directory of Open Access Journals (Sweden)

    Yan Xue-Feng

    2018-01-01

    Full Text Available Silver-loaded activated carbon fiber is prepared, and its adsorption performance is studied experimentally using five methylene blue solutions with different concentrations under three different temperature conditions. The adsorption tests show that fibers adsorption increase as the increase of temperature, and there is an optimal value for solution concentration, beyond which its adsorption will de-crease. Fibers isothermal adsorption to methylene blue is different from those by the monolayer adsorption by Langmuir model and the multilayer adsorption by Freundlich model. Through the analysis of thermodynamic parameters, Gibbs free energy, standard entropy, and standard enthalpy, it is found that the fibers adsorption to methylene blue is an exothermic process of physical adsorption.

  13. Improved Isotherm Data for Adsorption of Methane on Activated Carbons

    KAUST Repository

    Loh, Wai Soong

    2010-08-12

    This article presents the adsorption isotherms of methane onto two different types of activated carbons, namely, Maxsorb III and ACF (A-20) at temperatures from (5 to 75) °C and pressures up to 2.5 MPa. The volumetric technique has been employed to measure the adsorption isotherms. The experimental results presented herein demonstrate the improved accuracy of the uptake values compared with previous measurement techniques for similar adsorbate-adsorbent combinations. The results are analyzed with various adsorption isotherm models. The heat of adsorption, which is concentration and temperature dependent, has been calculated from the measured isotherm data. Henry\\'s law coefficients for these adsorbent-methane pairs are also evaluated at various temperatures. © 2010 American Chemical Society.

  14. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  15. Effect of activated carbon in PSF-PEI-Ag symmetric membrane

    OpenAIRE

    Said Khairul Anwar Mohamad; George Genevieve Gadung; Alipah Nurul Ain Mohamed; Ismail Nor Zakirah; Jama’in Ramizah Liyana

    2017-01-01

    Polysulfone (Psf) composite membrane consist of activated carbon, polyethyleneimine and silver nitrate was prepared by phase inversion. The activated carbon (AC) act as adsorbent to adsorb heavy metal present in synthetic waste water while polysulfone membrane act as support. Phase inversion was carried out on different composition of activated carbon from 0 to 0.9% while other component are remain constant. The surface morphology of composite membrane was characterized by scanning electron m...

  16. Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam.

    Science.gov (United States)

    Fu, Heyun; Yang, Liuyan; Wan, Yuqiu; Xu, Zhaoyi; Zhu, Dongqiang

    2011-01-01

    Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Carbonation Resistance of Alkali-Activated Slag Under Natural and Accelerated Conditions

    NARCIS (Netherlands)

    Nedeljkovic, M.; Zuo, Y.; Arbi, Kamel; Ye, G.

    2018-01-01

    In this paper, carbonation resistance of alkali-activated slag (AAS) pastes exposed to natural and accelerated conditions up to 1 year was investigated. Two aspects of carbonation mechanism were evaluated. The first was the potential carbonation of the main binding phases in finely powdered AAS

  18. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    Science.gov (United States)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  19. Characterization of Activated Carbon from Coal and Its Application as Adsorbent on Mine Acid Water Treatment

    Directory of Open Access Journals (Sweden)

    Siti Hardianti

    2017-06-01

    Full Text Available Anthracite and Sub-bituminous as activated carbon raw material had been utilized especially in mining field as adsorbent of dangerous heavy metal compound resulted in mining activity. Carbon from coal was activated physically and chemically in various temperature and particle sizes. Characterization was carried out in order to determine the adsorbent specification produced hence can be used and applied accordingly. Proximate and ultimate analysis concluded anthracite has fixed carbon 88.91% while sub-bituminous 49.05%. NaOH was used in chemical activation while heated at 400-500°C whereas physical activation was conducted at 800-1000°C. Activated carbon has high activity in adsorbing indicated by high iodine number resulted from analysis. SEM-EDS result confirmed that activated carbon made from coal has the quality in accordance to SNI and can be used as adsorbent in acid water treatment.

  20. Optimization of activated carbon from sewage sludge using response surface methodology

    International Nuclear Information System (INIS)

    Muhammad Salleh Abustan; Hamidi Abdul Aziz; Mohd Azmier Ahmad

    2010-01-01

    Wastewater sludge cake was used to prepare activated carbon using physical activation method. The effects of three preparation variables; the activation temperature, activation time and carbon dioxide gas flow rate on chemical oxygen demand (COD) and ammonia removal from leachate solutions were investigated. Based on the central composite design (CCD), two quadratic models were developed to correlate the preparation variables to the COD and ammonia removal. From the analysis of variance (ANOVA), the significant factors on each experimental design response were identified. The optimum activated carbon prepared from wastewater sludge cake was obtained by using activation temperature of 510 degree Celsius, activation time of 30 min and carbon dioxide flow rate of 500 ml/ min. The optimum activated carbon showed COD and ammonia removal of 26 and 13 %, respectively. (author)

  1. Adaptability of activated carbon from palm oil kernel shell in the development of brake friction materials

    Science.gov (United States)

    Talib, R. J.; Amri, M. H.; Selamat, M. A.; Basri, M. Hisyam; Ismail, N. I.; Sulaiman, Z. S.; Jumahat, A.

    2017-12-01

    Four friction material formulations composed of binder, reinforcing fiber, friction modifier and filler have been prepared through powder metallurgy route. The objective of this study is to investigate the possibility of palm oil kernel shell (PKS carbon) to replace the commercial carbon in the fabrication of brake friction materials. Sample H and HB are composed of the same vol. % of ingredients, except that sample H was utilizing commercial carbon (C Carbon) while sample HB was utilizing activated carbon from PKS carbon as their carbon ingredient. Selecting sample HB as based formulation, vol. % of PKS carbon was decreased by 50 % (sample HA) and increased by 50 % (sample HC). The other ingredients in the compositions are proportionally decreased and increased, accordingly. The samples were examined for their porosity, hardness, COF and thickness loss. The three samples which composed of PKS carbon had higher COF than sample which composed of commercial carbon. However, their thickness loss is higher than sample which composed of commercial carbon, particularly sample HC which composed of highest vol. % of PKS carbon. It was observed that sample HB which composed of 20 vol. % of PKS recorded the highest COF and slightly higher thickness loss than sample composed of commercial carbon. Thus, it could be postulated that PKS carbon can be used to replace the commercial carbon in developing a new brake friction material with the best formulation containing 20 vol. % PKS.

  2. Physical properties of activated carbon from fibers of oil palm empty fruit bunches by microwave assisted potassium hydroxide activation

    Science.gov (United States)

    Farma, Rakhmawati; Fatjrin, Delika; Awitdrus, Deraman, Mohamad

    2017-01-01

    The activated carbon adsorption was influenced by the quality of activated carbon. The activated carbon quality can be improved by chemical activation and microwave irradiation. In this study, activated carbon has been made using biomass from fibers of oil palm empty fruit bunches. The microwave irradiation was applied at various irradiation times of 5, 10, 15 and 20 minutes, and at output power of 630 Watt. The physical properties of activated carbon were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray, and methylene blue adsorption. Analysis of microstructure showed that the activated carbon was semicrystalline with two peaks of 002 and 100 at 2θ around of 22° and 44°, respectively. The values of stack height (Lc) before and after irradiation increased from 2,799 nm to 3,860 nm, which indicated increasing surface area. Characteristics of surface morphology of activated carbon showed the pores number increased after microwave irradiation. Microwave irradiation time of 15 minutes resulted the highest pores number justified in the activated carbon with their surface area of 319,60 m2/g and adsorption of methylene blue of 86,07 mg/g.

  3. The performance of activated carbons from sugarcane bagasse, babassu, and coconut shells in removing residual chlorine

    Directory of Open Access Journals (Sweden)

    E. F. Jaguaribe

    2005-03-01

    Full Text Available The capacity of activated carbons obtained from different raw materials, such as sugarcane bagasse, babassu (Orbygnia speciosa, and coconut (Cocus nucifera shells, to remove residual chlorine is studied. The influence of particle size and time of contact between particles of activated carbon and the chlorinated solution were taken into account. The adsorptive properties of the activated carbons were measured by gas adsorption (BET method, using an ASAP 2010 porosimeter, and liquid phase adsorption, employing iodine and methylene blue adsorbates. The activated carbon from sugarcane bagasse was the only adsorbent capable of removing 100% of the residual chlorine.

  4. Response of Aerobic Granular Sludge to the Long-Term Presence of CuO NPs in A/O/A SBRs: Nitrogen and Phosphorus Removal, Enzymatic Activity, and the Microbial Community.

    Science.gov (United States)

    Zheng, Xiao-Ying; Lu, Dan; Chen, Wei; Gao, Ya-Jie; Zhou, Gan; Zhang, Yuan; Zhou, Xiang; Jin, Meng-Qi

    2017-09-19

    The increasing use of cupric oxide nanoparticles (CuO NPs) has raised concerns about their potential environmental toxicity. Aerobic granular sludge (AGS) is a special form of microbial aggregates. In this study, the removal efficiencies of nitrogen and phosphorus, enzyme activities and microbial community of AGS under long-term exposure to CuO NPs (at concentrations of 5, 20, 50 mg/L) in aerobic/oxic/anoxic (A/O/A) sequencing batch reactors (SBRs) were investigated. The results showed the chronic toxicity caused by different concentrations of CuO NPs (5, 20, 50 mg/L) resulted in increases in the production of ROS of 110.37%, 178.64%, and 188.93% and in the release of lactate dehydrogenase (LDH) of 108.33%, 297.05%, 335.94%, respectively, compared to the control. Besides, CuO NPs decreased the activities of polyphosphate kinase (PPK) and exophosphatase (PPX), leading to lower phosphorus removal efficiency. However, the NH 4 + -N removal rates remained stable, and the removal efficiencies of TN increased due to the synthesis of nitrite and nitrous oxide (N 2 O) reductases. In addition, CuO NPs at concentrations of 0, 5, 20 mg/L increased the secretion of protein (PN) to 90, 91, 105 mg/gVSS, respectively, which could alleviate the toxicity of CuO NPs. High-throughput sequencing showed that CuO NPs increased the abundance of nitrogen-removal bacteria and reduced the abundance of phosphorus-removal bacteria, which is consistent with the results of pollutant removal upon long-term exposure to CuO NPs.

  5. Production of activated carbon from Victorian brown coal and its application in gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Jobson, G.; Swinbourne, D.

    1985-01-01

    A research grant was awarded by the Coal Council of Victoria to support investigations into the manufacture of a Victorian brown coal-based activated carbon suitable for Carbon-in-Pulp (CIP) gold recovery operations. This project was started on 31.1.84 and was completed by 27.9.85. The general aim of this study was to develop the technology needed for production of an indigenous activated carbon which could be a substitute for the carbons presently imported for use in CIP operations. There was a considerable economic incentive to achieve a carbon based on an inexpensive resource such as Victorian brown coal.

  6. Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review

    Directory of Open Access Journals (Sweden)

    Tingting eZhu

    2016-01-01

    Full Text Available Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation (MCP, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnology such as metal remediation, carbon sequestration, enhanced oil recovery and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.

  7. Activated carbon derived from marine Posidonia Oceanica for electric energy storage

    Directory of Open Access Journals (Sweden)

    N. Boukmouche

    2014-07-01

    Full Text Available In this paper, the synthesis and characterization of activated carbon from marine Posidonia Oceanica were studied. The activated carbon was prepared by a simple process namely pyrolysis under inert atmosphere. The activated carbon can be used as electrodes for supercapacitor devices. X-ray diffraction result revealed a polycrystalline graphitic structure. While scanning electron microscope investigation showed a layered structure with micropores. The EDS analysis showed that the activated carbon contains the carbon element in high atomic percentage. Electrochemical impedance spectroscopy revealed a capacitive behavior (electrostatic phenomena. The specific capacity per unit area of the electrochemical double layer of activated carbon electrode in sulfuric acid electrolyte was 3.16 F cm−2. Cyclic voltammetry and galvanostatic chronopotentiometry demonstrated that the electrode has excellent electrochemical reversibility. It has been found that the surface capacitance was strongly related to the specific surface area and pore size.

  8. 75 FR 48644 - Certain Activated Carbon From the People's Republic of China: Notice of Partial Rescission of...

    Science.gov (United States)

    2010-08-11

    ...: Effective Date: August 11, 2010. FOR FURTHER INFORMATION CONTACT: Catherine Bertrand, AD/CVD Operations....; Fuzhou Taking Chemical; Fuzhou Yihuan Carbon; Great Bright Industrial; Hangzhou Hengxing Activated Carbon...

  9. The Effect of Caramelization and Carbonization Temperatures toward Structural Properties of Mesoporous Carbon from Fructose with Zinc Borosilicate Activator

    Directory of Open Access Journals (Sweden)

    Tutik Setianingsih

    2014-10-01

    Full Text Available Mesoporous carbon was prepared from fructose using zinc borosilicate (ZBS activator. The synthesis involves caramelization and carbonization processes. The effect of both process temperature toward porosity and functional group of carbon surface are investigated in this research. The caramelization was conducted hydrothermally at 85 and 100 °C, followed by thermally 130 °C. The carbonization was conducted at various temperatures (450–750 °C. The carbon-ZBS composite were washed by using HF 48% solution, 1M HCl solution, and aquadest respectively to remove ZBS from the carbon. The carbon products were characterized with nitrogen gas adsorption-desorption method, FTIR spectrophotometry, X-ray diffraction, and Transmission Electron Microscopy. The highest mesopore characteristics is achieved at 100 °C (caramelization and 450 °C (carbonization, including Vmeso about 2.21 cm3/g (pore cage and 2.32 cm3/g (pore window with pore uniformity centered at 300 Å (pore cage and 200 Å (pore window, containing the surface functional groups of C=O and OH, degree of graphitization about 57% and aromaticity fraction about 0.68.

  10. Granular gases under extreme driving

    Science.gov (United States)

    Kang, W.; Machta, J.; Ben-Naim, E.

    2010-08-01

    We study inelastic gases in two dimensions using event-driven molecular-dynamics simulations. Our focus is the nature of the stationary state attained by rare injection of large amounts of energy to balance the dissipation due to collisions. We find that under such extreme driving, with the injection rate much smaller than the collision rate, the velocity distribution has a power-law high-energy tail. The numerically measured exponent characterizing this tail is in excellent agreement with predictions of kinetic theory over a wide range of system parameters. We conclude that driving by rare but powerful energy injection leads to a well-mixed gas and constitutes an alternative mechanism for agitating granular matter. In this distinct nonequilibrium steady state, energy cascades from large to small scales. Our simulations also show that when the injection rate is comparable with the collision rate, the velocity distribution has a stretched exponential tail.

  11. Aerofractures in Confined Granular Media

    Science.gov (United States)

    Eriksen, Fredrik K.; Turkaya, Semih; Toussaint, Renaud; Måløy, Knut J.; Flekkøy, Eirik G.

    2015-04-01

    We will present the optical analysis of experimental aerofractures in confined granular media. The study of this generic process may have applications in industries involving hydraulic fracturing of tight rocks, safe construction of dams, tunnels and mines, and in earth science where phenomena such as mud volcanoes and sand injectites are results of subsurface sediment displacements driven by fluid overpressure. It is also interesting to increase the understanding the flow instability itself, and how the fluid flow impacts the solid surrounding fractures and in the rest of the sample. Such processes where previously studied numerically [Niebling 2012a, Niebling 2012b] or in circular geometries. We will here explore experimentally linear geometries. We study the fracturing patterns that form when air flows into a dense, non-cohesive porous medium confined in a Hele-Shaw cell - i.e. into a packing of dry 80 micron beads placed between two glass plates separated by ~1mm. The cell is rectangular and fitted with a semi-permeable boundary to the atmosphere - blocking beads but not air - on one short edge, while the other three edges are impermeable. The porous medium is packed inside the cell between the semi-permeable boundary and an empty volume at the sealed side where the air pressure can be set and kept at a constant overpressure (1-2bar). Thus, for the air trapped inside the cell to release the overpressure it has to move through the solid. At high enough overpressures the air flow deforms the solid and increase permeability in some regions along the air-solid interface, which results in unstable flow and aerofracturing. Aerofractures are thought to be an analogue to hydrofractures, and an advantage of performing aerofracturing experiments in a Hele-Shaw cell is that the fracturing process can easily be observed in the lab. Our experiments are recorded with a high speed camera with a framerate of 1000 frames per second. In the analysis, by using various image

  12. APPLICATION AND PERSPECTIVES OF DEVELOPMENT OF AEROBIC GRANULAR SLUDGE TECHNOLOGY IN WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Agnieszka Cydzik-Kwiatkowska

    2014-10-01

    Full Text Available Recently an extensive studies have been carried out on aerobic granular sludge technology in both laboratory and technical scale. Aerobic granules are compact, spherical microbial consortia created by a spontaneous immobilization. Amongst their advantages are a very good settling ability, long biomass age and simultaneous pollutant removal in the granule structure that enables full biological treatment of wastewater in a single reactor. This review outlines up-to-date information on granule formation, morphology, microbial structure as well as on the applications of aerobic granular sludge technology for wastewater treatment including the treatment of high-nitrogen wastewater with a low COD/N ratio and wastewater of high toxicity. Aerobic granular sludge technology is presented as both environmentally and financially attractive alternative to wastewater treatment systems based on activated sludge or biofilm. This paper also reports on already existing full-scale installations in world and seeks to explore the potential of aerobic granular sludge within the Polish conditions.

  13. Activation of glassy carbon electrodes by photocatalytic pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Dumanli, Onur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey); Onar, A. Nur [Department of Chemistry, Faculty of Science and Art, Ondokuz Mayis University, Kurupelit, 55139 Samsun (Turkey)], E-mail: nonar@omu.edu.tr

    2009-11-01

    This paper describes a simple and rapid photocatalytic pretreatment procedure that removes contaminants from glassy carbon (GC) surfaces. The effectiveness of TiO{sub 2} mediated photocatalytic pretreatment procedure was compared to commonly used alumina polishing procedure. Cyclic voltammetric and chronocoulometric measurements were carried out to assess the changes in electrode reactivity by using four redox systems. Electrochemical measurements obtained on photocatalytically treated GC electrodes showed a more active surface relative to polished GC. In cyclic voltammograms of epinephrine, Fe(CN){sub 6}{sup 3-/4-} and ferrocene redox systems, higher oxidation and reduction currents were observed. The heterogeneous electron transfer rate constants (k{sup o}) were calculated for Fe(CN){sub 6}{sup 3-/4-} and ferrocene which were greater for photocatalytic pretreatment. Chronocoulometry was performed in order to find the amount of adsorbed methylene blue onto the electrode and was calculated as 0.34 pmol cm{sup -2} for photocatalytically pretreated GC. The proposed photocatalytic GC electrode cleansing and activating pretreatment procedure was more effective than classical alumina polishing.

  14. Antimicrobial activity, cytotoxicity and DNA binding studies of carbon dots

    Science.gov (United States)

    Jhonsi, Mariadoss Asha; Ananth, Devanesan Arul; Nambirajan, Gayathri; Sivasudha, Thilagar; Yamini, Rekha; Bera, Soumen; Kathiravan, Arunkumar

    2018-05-01

    In recent years, quantum dots (QDs) are one of the most promising nanomaterials in life sciences community due to their unexploited potential in biomedical applications; particularly in bio-labeling and sensing. In the advanced nanomaterials, carbon dots (CDs) have shown promise in next generation bioimaging and drug delivery studies. Therefore the knowledge of the exact nature of interaction with biomolecules is of great interest to designing better biosensors. In this study, the interaction between CDs derived from tamarind and calf thymus DNA (ct-DNA) has been studied by vital spectroscopic techniques, which revealed that the CDs could interact with DNA via intercalation. The apparent association constant has been deduced from the absorption spectral changes of ct-DNA-CDs using the Benesi-Hildebrand equation. From the DNA induced emission quenching experiments the apparent DNA binding constant of the CDs (Kapp) have also been evaluated. Furthermore, we have analyzed the antibacterial and antifungal activity of CDs using disc diffusion assay method which exhibited excellent activity against E. coli and C. albicans with inhibition zone in the range of 7-12 mm. The biocompatible nature of CDs was confirmed by an in vitro cytotoxicity test on L6 normal rat myoblast cells by using MTT assay. The cell viability is not affected till the high dosage of CDs (200 μg/mL) for >48 h. As a consequence of the work, future development of CDs for microbial control and DNA sensing among the various biomolecules is possible in view of emerging biofields.

  15. Impact of mooring activities on carbon stocks in seagrass meadows

    KAUST Repository

    Serrano, O.

    2016-03-16

    Boating activities are one of the causes that threaten seagrass meadows and the ecosystem services they provide. Mechanical destruction of seagrass habitats may also trigger the erosion of sedimentary organic carbon (Corg) stocks, which may contribute to increasing atmospheric CO2. This study presents the first estimates of loss of Corg stocks in seagrass meadows due to mooring activities in Rottnest Island, Western Australia. Sediment cores were sampled from seagrass meadows and from bare but previously vegetated sediments underneath moorings. The Corg stores have been compromised by the mooring deployment from 1930s onwards, which involved both the erosion of existing sedimentary Corg stores and the lack of further accumulation of Corg. On average, undisturbed meadows had accumulated ~6.4 Kg Corg m−2 in the upper 50 cm-thick deposits at a rate of 34 g Corg m−2 yr−1. The comparison of Corg stores between meadows and mooring scars allows us to estimate a loss of 4.8 kg Corg m−2 in the 50 cm-thick deposits accumulated over ca. 200 yr as a result of mooring deployments. These results provide key data for the implementation of Corg storage credit offset policies to avoid the conversion of seagrass ecosystems and contribute to their preservation.

  16. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment

    Science.gov (United States)

    Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou

    2018-03-01

    This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.

  17. Production of activated carbons from waste tyres for low temperature NOx control.

    Science.gov (United States)

    Al-Rahbi, Amal S; Williams, Paul T

    2016-03-01

    Waste tyres were pyrolysed in a bench scale reactor and the product chars were chemically activated with alkali chemical agents, KOH, K2CO3, NaOH and Na2CO3 to produce waste tyre derived activated carbons. The activated carbon products were then examined in terms of their ability to adsorb NOx (NO) at low temperature (25°C) from a simulated industrial process flue gas. This study investigates the influence of surface area and porosity of the carbons produced with the different alkali chemical activating agents on NO capture from the simulated flue gas. The influence of varying the chemical activation conditions on the porous texture and corresponding NO removal from the flue gas was studied. The activated carbon sorbents were characterized in relation to BET surface area, micropore and mesopore volumes and chemical composition. The highest NO removal efficiency for the waste tyre derived activated carbons was ∼75% which was obtained with the adsorbent treated with KOH which correlated with both the highest BET surface area and largest micropore volume. In contrast, the waste tyre derived activated carbons prepared using K2CO3, NaOH and Na2CO3 alkali activating agents appeared to have little influence on NO removal from the flue gases. The results suggest problematic waste tyres, have the potential to be converted to activated carbons with NOx removal efficiency comparable with conventionally produced carbons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characteristics of activated carbon resulted from pyrolysis of the oil palm fronds powder

    Science.gov (United States)

    Maulina, S.; Iriansyah, M.

    2018-02-01

    Activated carbon is the product of a charcoal impregnation process that has a higher absorption capacity and has more benefits than regular char. Therefore, this study aims to cultivate the powder of oil palm fronds into activated carbon that meets the requirements of Standard National Indonesia 06-3730-1995. To do so, the carbonization process of the powder of oil palm fronds was carried out using a pyrolysis reactor for 30 minutes at a temperature of 150 °C, 200 °C, and 250 °C in order to produce activated char. Then, the char was impregnated using Phosphoric Acid activator (H3PO4) for 24 hours. Characteristics of activated carbon indicate that the treatment of char by chemical activation of oil palm fronds powder has an effect on the properties of activated carbon. The activated carbons that has the highest absorption properties to Iodine (822.91 mg/g) were obtained from the impregnation process with 15% concentration of Phosphoric Acid (H3PO4) at pyrolysis temperature of 200 °C. Furthermore, the activation process resulted in activated carbon with water content of 8%, ash content of 4%, volatile matter 39%, and fixed carbon 75%, Iodine number 822.91 mg/g.

  19. Onset of Convection in Strongly Shaken Granular Matter

    NARCIS (Netherlands)

    Eshuis, Peter; Eshuis, P.G.; van der Meer, Roger M.; Alam, Meheboob; van Gerner, H.J.; van der Weele, J.P.; Lohse, Detlef

    2010-01-01

    Strongly vertically shaken granular matter can display a density inversion: A high-density cluster of beads is elevated by a dilute gaslike layer of fast beads underneath (“granular Leidenfrost effect”). For even stronger shaking the granular Leidenfrost state becomes unstable and granular

  20. SU-E-J-144: Low Activity Studies of Carbon 11 Activation Via GATE Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Elmekawy, A; Ewell, L [Hampton University, Hampton, VA (United States); Butuceanu, C; Qu, L [Hampton University Proton Therapy Institute, Hampton, VA (United States)

    2015-06-15

    Purpose: To investigate the behavior of a Monte Carlo simulation code with low levels of activity (∼1,000Bq). Such activity levels are expected from phantoms and patients activated via a proton therapy beam. Methods: Three different ranges for a therapeutic proton radiation beam were examined in a Monte Carlo simulation code: 13.5, 17.0 and 21.0cm. For each range, the decay of an equivalent length{sup 11}C source and additional sources of length plus or minus one cm was studied in a benchmark PET simulation for activities of 1000, 2000 and 3000Bq. The ranges were chosen to coincide with a previous activation study, and the activities were chosen to coincide with the approximate level of isotope creation expected in a phantom or patient irradiated by a therapeutic proton beam. The GATE 7.0 simulation was completed on a cluster node, running Scientific Linux Carbon 6 (Red Hat©). The resulting Monte Carlo data were investigated with the ROOT (CERN) analysis tool. The half-life of{sup 11}C was extracted via a histogram fit to the number of simulated PET events vs. time. Results: The average slope of the deviation of the extracted carbon half life from the expected/nominal value vs. activity showed a generally positive value. This was unexpected, as the deviation should, in principal, decrease with increased activity and lower statistical uncertainty. Conclusion: For activity levels on the order of 1,000Bq, the behavior of a benchmark PET test was somewhat unexpected. It is important to be aware of the limitations of low activity PET images, and low activity Monte Carlo simulations. This work was funded in part by the Philips corporation.