WorldWideScience

Sample records for grande river agriculture

  1. Evaluating Riparian and Agricultural Systems as Sinks for Surface Water Nutrients in the Upper Rio Grande

    Science.gov (United States)

    Oelsner, G. P.; Brooks, P. D.; Hogan, J. F.; Phillips, F. M.; Villinski, J. E.

    2005-12-01

    We have performed five years of biannual synoptic sampling along a 1200km reach of the Rio Grande to develop relationships between discharge, land use, and major water quality parameters. Both total dissolved nitrogen (TDN) and dissolved organic carbon (DOC) concentrations gradually increase with distance downstream, however for TDN and phosphate this trend is punctuated by large, localized inputs primarily from urban wastewater. Somewhat surprisingly, surface water draining from areas of intensive, irrigated agriculture during the growing season often had lower nutrient and DOC concentrations than the river. To better quantify the effects of urban and agricultural systems on water quality we conducted three years of higher spatial resolution sampling of a 250km reach (between Cochiti Dam and Elephant Butte Reservoir) that contains both major agricultural and urban water users. During the higher flow years of 2001 and 2005 TDN concentrations in the river were higher (x = 1.19mg/L, SD = 0.21) than in the drier years 2002-2004 (x = 0.52mg/L, SD = 0.42). TDN concentrations decreased from 1.97mg/L to 0.78 mg/L in a 5km reach below the Albuquerque wastewater treatment plant during the low discharge year of 2004, but there was little to no decrease in TDN concentrations over the 180km below the wastewater treatment plant in years with higher river discharge. In contrast, water diverted to agricultural fields and returned to the river in drains experienced a 60% reduction in TDN concentrations in dry years and a 30% reduction in wet years compared to initial river water. During the dry years, water in the conveyance channel appears to be a mixture of river and drain water whereas in wetter years the conveyance channel has a lower average TDN concentration than either the river or the drains. These data suggest that the river-riparian-hyporheic system of the Rio Grande can serve at best as a weak N sink, while the combination of agricultural fields and drains serve as a

  2. Temporal changes in nitrogen and phosphorus concentrations with comparisons to conservation practices and agricultural activities in the Lower Grand River, Missouri and Iowa, and selected watersheds, 1969–2015

    Science.gov (United States)

    Krempa, Heather M.; Flickinger, Allison K.

    2017-08-01

    This report presents the results of a cooperative study by the U.S. Geological Survey and Missouri Department of Natural Resources to estimate total nitrogen (TN) and total phosphorus (TP) concentrations at monitoring sites within and near the Lower Grand River hydrological unit. The primary objectives of the study were to quantify temporal changes in TN and TP concentrations and compare those concentrations to conservation practices and agricultural activities. Despite increases in funding during 2011–15 for conservation practices in the Lower Grand River from the Mississippi River Basin Healthy Watersheds Initiative, decreases in flow-normalized TN and TP concentrations during this time at the long-term Grand River site were less than at other long-term sites, which did not receive funding from the Mississippi River Basin Healthy Watersheds Initiative. The relative differences in the magnitude of flow-normalized TN and TP concentrations among long-term sites are directly related to the amount of agricultural land use within the watershed. Significant relations were determined between nitrogen from cattle manure and flow-normalized TN concentrations at selected long-term sites, indicating livestock manure may be a substantial source of nitrogen within the selected long-term site watersheds. Relations between flow-normalized TN and TP concentrations with Conservation Reserve Program acres and with nitrogen and phosphorus from commercial fertilizer indicate that changes in these factors alone did not have a substantial effect on stream TN and TP concentrations; other landscape activities, runoff, within-bank nutrients that are suspended during higher streamflows, or a combination of these have had a greater effect on stream TN and TP concentrations; or there is a lag time that is obscuring relations. Temporal changes in flow-adjusted TN and TP concentrations were not substantial at Lower Grand River Mississippi River Basin Healthy Watersheds Initiative sites

  3. Applying the World Water and Agriculture Model to Filling Scenarios for the Grand Ethiopian Renaissance Dam

    Energy Technology Data Exchange (ETDEWEB)

    Villa, Daniel L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Passell, Howard D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roberts, Barry L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-11-01

    The World Water and Agriculture Model has been used to simulate water, hydropower, and food sector effects in Egypt, Sudan, and Ethiopia during the filling of the Grand Ethiopian Renaissance Dam reservoir. This unique capability allows tradeoffs to be made between filling policies for the Grand Ethiopian Renaissance Dam reservoir. This Nile River Basin study is presented to illustrate the capacity to use the World Water and Agriculture Model to simulate regional food security issues while keeping a global perspective. The study uses runoff data from the Intergovernmental Panel for Climate Change Coupled Model Inter-comparison Project Phase 5 and information from the literature in order to establish a reasonable set of hydrological initial conditions. Gross Domestic Product and population growth are modelled exogenously based on a composite projection of United Nations and World Bank data. The effects of the Grand Ethiopian Renaissance Dam under various percentages of water withheld are presented.

  4. Regional economic impacts of Grand Canyon river runners.

    Science.gov (United States)

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  5. Grande Ronde Basin Supplementation Program; Lostine River, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  6. Grande Ronde Basin Supplementation Program; Lostine River, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Onjukka, Sam T. (Oregon Department of Fish and Wildlife, Portland, OR); Harbeck, Jim (Nez Perce Tribe, Department of Fisheries Resource Management, Enterprise, OR)

    2003-03-01

    The Northwest Power Planning Council (NPPC) identified supplementation as a high priority to achieve its goal of increasing runs of anadromous fish in the Columbia Basin. Supplementation activities in the Lostine River and associated monitoring and evaluation conducted by the Nez Perce Tribe relate directly to the needs addressed in the Columbia River Basin Fish and Wildlife Program (NPPC 1994). Measure 7.4L.1 of the Program mandates that appropriate research accompany any proposed supplementation. In addition, measure 7.3B.2 of the Program stresses the need for evaluating supplementation projects to assess their ability to increase production. Finally, Section 7.4D.3 encourages the study of hatchery rearing and release strategies to improve survival and adaptation of cultured fish. In 1997, Oregon Department of Fisheries and Wildlife (ODFW) requested a modification of Permit 1011 to allow the take of adult spring chinook salmon. In 1998, the Nez Perce Tribe also requested a permit specific to activities on Lostine River. The permit was issued in 2000. A special condition in the permits required the development of a long term management plan for the spring chinook salmon of the Grande Ronde Basin. The Nez Perce Tribe, ODFW, and the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) completed a formal long range plan entitled ''Grande Ronde Basin Endemic Spring Chinook Salmon Supplementation Program''. The program proposes to increase the survival of spring chinook salmon in the Grand Ronde Basin through hatchery intervention. Adult salmon from the Lostine River, Catherine Creek, and the Upper Grande Ronde River are used for a conventional supplementation program in the basin. The Nez Perce program currently operates under the ESA Section 10 Permit 1149.

  7. Flood-inundation maps for Grand River, Red Cedar River, and Sycamore Creek near Lansing, Michigan

    Science.gov (United States)

    Whitehead, Matthew; Ostheimer, Chad J.

    2015-08-26

    Digital flood-inundation maps for a total of 19.7 miles of the Grand River, the Red Cedar River, and Sycamore Creek were created by the U.S. Geological Survey (USGS) in cooperation with the City of Lansing, Michigan, and the U.S. Army Corps of Engineers. The flood-inundation maps, which can be accessed through the USGS Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, show estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at three USGS streamgages: Grand River at Lansing, MI (04113000), Red Cedar River at East Lansing, MI (04112500), and Sycamore Creek at Holt Road near Holt, MI (04112850). Near-real-time stages at these streamgages can be obtained on the Internet from the USGS National Water Information System at http://waterdata.usgs.gov/ or the National Weather Service (NWS) Advanced Hydrologic Prediction Service at http:/water.weather.gov/ahps/, which also forecasts flood hydrographs at all of these sites.

  8. Fish research project -- Oregon: Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin. Annual progress report, 1 September 1995--31 August 1996

    International Nuclear Information System (INIS)

    Jonasson, B.C.; Carmichael, R.W.; Keefe, M.

    1997-09-01

    Historically, the Grande Ronde River produced an abundance of salmonids including stocks of spring, summer and fall chinook salmon, sockeye salmon, coho salmon, and summer steelhead. During the past century, numerous factors have caused the reduction of salmon stocks such that only sustainable stocks of spring chinook salmon and summer steelhead remain. The sizes of spring chinook salmon populations in the Grande Ronde River basin also have been declining steadily and are substantially depressed from estimates of historic levels. In addition to a decline in population abundance, a reduction of spring chinook salmon spawning distribution is evident in the Grande Ronde River basin. Numerous factors are thought to contribute to the decline of spring chinook salmon in the Snake River and its tributaries. These factors include passage problems and increased mortality of juvenile and adult migrants at mainstem Columbia and Snake river dams, overharvest, and habitat degradation associated with timber, agricultural, and land development practices. This study was designed to describe aspects of the life history strategies exhibited by spring chinook salmon in the Grande Ronde River basin. During the past year the focus was on rearing and migration patterns of juveniles in the upper Grande Ronde River and Catherine Creek. The study design included three objectives: (1) document the annual in-basin migration patterns for spring chinook salmon juveniles in the upper Grande Ronde River and Catherine Creek, including the abundance of migrants, migration timing and duration; (2) estimate and compare smolt survival indices to mainstem Columbia and Snake river dams for fall and spring migrating spring chinook salmon; and (3) determine summer and winter habitat utilization and preference of juvenile spring chinook salmon in the upper Grande Ronde River and Catherine Creek

  9. Space-based monitoring of land-use/land-cover in the Upper Rio Grande Basin: An opportunity for understanding urbanization trends in a water-scarce transboundary river basin.

    Science.gov (United States)

    Mubako, S. T.; Hargrove, W. L.; Heyman, J. M.; Reyes, C. S.

    2016-12-01

    Urbanization is an area of growing interest in assessing the impact of human activities on water resources in arid regions. Remote sensing techniques provide an opportunity to analyze land cover change over time, and are useful in monitoring areas undergoing rapid urban growth. This case study for the water-scarce Upper Rio Grande River Basin uses a supervised classification algorithm to quantify the rate and evaluate the pattern of urban sprawl. A focus is made on the fast growing El-Paso-Juarez metropolitan area on the US-Mexico border and the City of Las Cruces in New Mexico, areas where environmental challenges and loss of agricultural and native land to urban development are major concerns. Preliminary results show that the land cover is dominantly native with some significant agriculture along the Rio Grande River valley. Urban development across the whole study area expanded from just under 3 percent in 1990, to more than 11 percent in 2015. The urban expansion is occurring mainly around the major urban areas of El Paso, Ciudad Juarez, and Las Cruces, although there is visible growth of smaller urban settlements scattered along the Rio Grande River valley during the same analysis period. The proportion of native land cover fluctuates slightly depending on how much land is under crops each analysis year, but there is a decreasing agricultural land cover trend suggesting that land from this sector is being lost to urban development. This analysis can be useful in planning to protect the environment, preparing for growth in infrastructure such as schools, increased traffic demands, and monitoring availability of resources such as groundwater as the urban population grows.

  10. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    Science.gov (United States)

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  11. 78 FR 30914 - Grand River Dam Authority Notice of Application for Temporary Variance of License and Soliciting...

    Science.gov (United States)

    2013-05-23

    .... Description of Request: Grand River Dam Authority (GRDA) requests a temporary variance, for the year 2013, to... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 1494-416] Grand River Dam Authority Notice of Application for Temporary Variance of License and Soliciting Comments, Motions To...

  12. Geomorphic and vegetation changes in a meandering dryland river regulated by a large dam, Sauce Grande River, Argentina

    Science.gov (United States)

    Casado, Ana; Peiry, Jean-Luc; Campo, Alicia M.

    2016-09-01

    This paper investigates post-dam geomorphic and vegetation changes in the Sauce Grande River, a meandering dryland river impounded by a large water-conservation dam. As the dam impounds a river section with scarce influence of tributaries, sources for fresh water and sediment downstream are limited. Changes were inspected based on (i) analysis of historical photographs/imagery spanning pre- (1961) and post-dam (1981, 2004) channel conditions for two river segments located above and below the dam, and (ii) field survey of present channel conditions for a set of eight reference reaches along the river segments. Whilst the unregulated river exhibited active lateral migration with consequent adjustments of the channel shape and size, the river section below the dam was characterized by (i) marked planform stability (93 to 97%), and by (ii) vegetation encroachment leading to alternating yet localized contraction of the channel width (up to 30%). The present river displays a moribund, stable channel where (i) redistribution of sediment along the river course no longer occurs and (ii) channel forms constitute a remnant of a fluvial environment created before closing the dam, under conditions of higher energy. In addition to providing new information on the complex geomorphic response of dryland rivers to impoundment, this paper represents the very first geomorphic assessment of the regulated Sauce Grande and therefore provides an important platform to underpin further research assessing the geomorphic state of this highly regulated dryland river.

  13. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009

    Science.gov (United States)

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.

    2017-03-23

    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  14. CTUIR Grande Ronde River Watershed Restoration Program McCoy Creek/McIntyre Creek Road Crossing, 1995-1999 Progress Report.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2000-08-01

    The Confederated Tribes of the Umatilla Indian Reservation (CTUIR) and Bonneville Power Administration (BPA) entered into a contract agreement beginning in 1996 to fund watershed restoration and enhancement actions and contribute to recovery of fish and wildlife resources and water quality in the Grande Ronde River Basin. The CTUIR's habitat program is closely coordinated with the Grande Ronde Model Watershed Program and multiple agencies and organizations within the basin. The CTUIR has focused during the past 4 years in the upper portions of the Grande Ronde Subbasin (upstream of LaGrande, Oregon) on several major project areas in the Meadow, McCoy, and McIntyre Creek watersheds and along the mainstem Grande Ronde River. This Annual Report provides an overview of individual projects and accomplishments.

  15. 76 FR 17541 - Drawbridge Operation Regulation; Mermentau River, Grand Chenier, LA

    Science.gov (United States)

    2011-03-30

    ... temporary deviation from the regulation governing the operation of the SR 82 swing span bridge across the... from the operating schedule of the swing span bridge across the Mermentau River at mile 7.1 in Grand... Sea Level. Vessels are able to transit under the bridge during operations. There is an alternate...

  16. Monitoring Fine Sediment; Grande Ronde and John Day Rivers, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, Jonathan J.; Greene, M. Jonas; Purser, Michael D. (Columbia River Inter-Tribal Fish Commission, Portland, OR)

    2001-01-01

    Fine sediment in spawning substrate has a major effect on salmon survival from egg to smolt. Basin-wide restoration plans have established targets for fine sediment levels in spawning habitat. The project was initiated to monitor surface fine sediment levels and overwinter intrusion of fine sediment in spring chinook salmon spawning habitat in the North Fork John Day (NFJDR) and Grande Ronde Rivers, for five years. The project is also investigating the potential relationship between surface fine levels and overwinter sedimentation. It will provide data to assess trends in substrate conditions in monitored reaches and whether trends are consistent with efforts to improve salmon habitat conditions. The data on the magnitude of overwinter sedimentation will also be used to estimate salmon survival from egg to emergence. In Sept. 1998, 1999, and Aug. 2000, sites for monitoring overwinter sedimentation were established in salmon spawning habitat in the upper Grande Ronde River, Catherine Creek (a Grande Ronde tributary), the North Fork John Day River (NFJDR), and Granite Creek (a NFJDR tributary). Surface fine sediment levels were measured in these reaches via the grid method and visually estimated to test the relative accuracy of these two methods. In 1999 and 2000, surface fine sediment was also estimated via pebble counts at selected reaches to allow comparison of results among the methods. Overwintering substrate samples were collected in April 1999 and April-May 2000 to estimate the amount of overwinter sedimentation in clean gravels in spawning habitat. Monitoring methods and locations are described.

  17. Influence of technical maintenance measures on ecological status of agricultural lowland rivers - Systematic review and implications for river management.

    Science.gov (United States)

    Bączyk, Anna; Wagner, Maciej; Okruszko, Tomasz; Grygoruk, Mateusz

    2018-06-15

    Intensification of agriculture and ongoing urban sprawl exacerbate pressures on rivers. Small rivers in agricultural landscapes are especially exposed to excessive technical actions implemented in order to allow for harvesting river water for irrigation, draining agricultural water and receiving sewage. Regular dredging and macrophyte removal strongly interfere with the global need for preserving river biodiversity that allows agricultural lowland rivers to remain refuges for a variety of species, and-accordingly-to keep water bodies resilient for the benefit of society. In order to provide a comprehensive look at the influence of agricultural lowland river management on the ecological status of these water bodies, we conducted a literature review and a meta-analysis. For the structured literature review we selected 203 papers reflecting on the response of aquatic ecosystems to dredging and macrophyte management actions. The database of scientific contributions developed for our study consists of papers written by the authors from 33 countries (first authorship) addressing dredging, macrophyte removal, status of fish and macroinvertebrates as well as the general ecological status of lowland agricultural rivers. We revealed that 96% of the analyzed papers indicated unilateral, negative responses of aquatic ecosystems, particularly macroinvertebrates, ichthyofauna and macrophyte composition, to maintenance measures. We revealed that studies conducted in the European Union on the ecological status of rivers appeared to significantly increase in quantity after the implementation of the Water Framework Directive. Finally, we concluded that day-to-day management of lowland agricultural rivers requires revision in terms of compliance with environmental conservation requirements and the recurrent implementation of technical measures for river maintenance. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 77 FR 62442 - Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon City, OR

    Science.gov (United States)

    2012-10-15

    ... 1625-AA00 Safety Zone; Oregon City Bridge Grand Opening Fireworks Display; Willamette River, Oregon... establishing a safety zone on the Willamette River between the Oregon City Bridge and the Interstate 205 Bridge... established on the Willamette River from shore to shore between the Oregon City Bridge and the Interstate 205...

  19. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    Science.gov (United States)

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  20. The Vistula River and water management in agriculture

    Directory of Open Access Journals (Sweden)

    Janusz Szablowski

    2013-06-01

    Full Text Available This article attempts to show how much in agriculture depends on appropriate water resources. The Kujawsko-Pomorskie Voivodeship is exposed to a significant deficiency of water resources. In addition, it experiences severe droughts, repeating in the period 1951–2006 on average every two years. The Vistula River flowing across the Voivodeship creates great chances for improved management conditions. These opportunities have been discussed on the example of investments, developed concepts of surface water management, agricultural irrigation programme and the opportunity of using the water resources of a planned second reservoir on the Vistula River below Włocławek.

  1. The development and adaption of early agriculture in Huanghe River Valley, China

    Science.gov (United States)

    Li, X.

    2017-12-01

    The expanding and developing of agriculture are the basic of population growth, the expansions of material cultures and civilization. The Huanghe River valley, as the origin center of millet agriculture, lies between the heartlands of wheat and rice, which gestates the flourishing Neolithic culture based on agriculture. Recent work using botanical remains has greatly expanded the knowledge concerning early agriculture. Here, we report the new progress on the development and adaption of early agriculture in Huanghe River valley and the surrounding areas. Based on the analysis of phytolith from 13 sites in middle reaches of Huanghe River and the survey of crop seeds from 5 sites in Guanzhong Basin, the rice have been cultivated around 7600 cal BP in semi-humid regions dominated by rain-fed agriculture. The mixed agriculture of common millet, foxtail millet, and rice continued to exist between 7600-3500 BP. In semi-arid region of Huanghe River valley, the agriculture was dominated by the production of common and foxtail millet and 3 major changes have taken place around 6500 BP, 5500 BP, and 4000 BP during Neolithic. The cultivating ratio of common and foxtail millet was adjusted by farmer for adapting the climate changes during Holocene. Approximately 5000 yr BP, the rain-fed agriculture continues to break geographical boundaries to expand to west and southwest from Huanghe River valley. Millet agriculture appeared in southern Ganshu and north eastern Tibetan Plateau. The common and foxtail millet spread to the arid-area of Hexi corridor, a major crossroad of the famous Silk Road, around 4500 yr BP. Wheat was added as a new crop to the existing millet based agricultural systems around 4100-4000 cal yr BP in Hexi corridor. Between 3800 and 3400 cal yr BP, the proportion of wheat and barley in agriculture was up to 90%,which have replaced the local millet and become the main crops. And now, some new evidences of wheat agriculture from NW Xijiang have been obtained and

  2. Smolt migration characteristics and mainstem Snake and Columbia River detection rates of pit-tagged Grande Ronde and Imnaha River naturally produced spring chinook salmon. 1993, 1994 and 1995 annual reports

    International Nuclear Information System (INIS)

    Walters, T.R.; Carmichael, R.W.; Keefe, M.L.; Sankovich, P.

    1997-01-01

    This reports on the second, third, and fourth years of a multi-year study to assess smolt migration characteristics and cumulative detection rates of naturally produced spring chinook salmon (Oncorhynchus tshawytscha) from Northeast Oregon streams. The goal of this project is to develop an understanding of interpopulational and interannual variation in several early life history parameters of naturally produced spring and summer chinook salmon in the Grande Ronde and Imnaha River subbasins. This project will provide information to assist chinook salmon population recovery efforts. Specific populations included in the study are: (1) Catherine Creek; (2) Upper Grande Ronde River; (3) Lostine River; (4) Imnaha River; (5) Wenaha River; and (6) Minam River. In this document, the authors present findings and activities from research completed in 1993, 1994, and 1995

  3. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    Science.gov (United States)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also

  4. Agricultural Water Conservation in the Colorado River Basin: Alternatives to Permanent Fallowing Research Synthesis and Outreach Workshops

    Science.gov (United States)

    Udall, B. H.; Peterson, G.

    2017-12-01

    As increasing water scarcity occurs in the Colorado River Basin, water users have been looking for new sources of supply. The default solution is to transfer water from the cheapest and most plentiful source — agriculture — to supply new water demands in the region. However, if pursued in haste, and without sufficient information, the likely outcome may be permanent fallowing, along with serious economic disruption to agricultural communities, loss of valuable farmland, loss of important amenity values, and a loss of a sense of place in many rural communities within the basin. This project was undertaken to explore ways to minimize harm to agriculture if transfers out of agriculture were to occur. Four detailed synthesis reports of the four common methods used to temporarily transfer water from agriculture were produced by the project. The water saving methods covered by the reports are: (1) Deficit Irrigation of Alfalfa and other Forages; (2) Rotational Fallowing; (3) Crop Switching; and (4) Irrigation Efficiency and Water Conservation After the reports were drafted, three workshops were held, one in the Upper Basin in Grand Junction on November 4, 2016, one in the Lower Basin in Tucson on March 29, 2017, and one in Washington, DC on May 16, 2017 to disseminate the findings. Over 100 people attended these workshops.

  5. Influence of Flow Regulation on Summer Water Temperature: Sauce Grande River, Argentina

    Science.gov (United States)

    Casado, A.; Hannah, D. M.; Peiry, J.; Campo, A. M.

    2012-12-01

    This study quantifies the effects of the Paso de las Piedras Dam on the thermal behaviour of the Sauce Grande River, Argentina, during a summer season. A 30-day data set of continuous hourly data was assembled for eight stream temperature gauging sites deployed above and below the impoundment. Time series span the hottest period recorded during summer 2009 to evaluate variations in river water temperature under strong meteorological influence. The methods include: (i) analysis of the time series by inspecting the absolute differences in daily data (magnitude, timing, frequency, duration and rate of change), (ii) classification of diurnal regimes by using a novel regime 'shape' and 'magnitude' classifying method (RSMC), and (ii) quantification of the sensitivity of water temperature regimes to air temperature by computation of a novel sensitivity index (SI). Results showed that fluctuations in daily water temperatures were linked to meteorological drivers; however, spatial variability in the shape and the magnitude of the thermographs revealed the effects of the impoundment in regulating the thermal behaviour of the river downstream. An immediate cooling effect below the dam was evident. Mean daily temperatures were reduced in up to 4 °C, and described a warming trend in the downstream direction over a distance of at least 15 km (up to +2.3 °C). Diurnal cycles were reduced in amplitude and delayed in timing, and revealed a dominance of regime magnitude stability and regime shape climatic insensitivity over a distance of 8 km downstream. These findings provide new information about the water quality of the Sauce Grande River and inform management of flows to maintain the ecological integrity of the river system. Also, they motivate further analysis of potential correlates under varying hydrological and meteorological conditions. The methods presented herein have wider applicability for quantifying river thermal regimes and their sensitivity to climate and other

  6. Landsat Evapotranspiration for Historical Field-scale Water Use (1984-2015) in the Upper Rio Grande River Basin

    Science.gov (United States)

    Senay, G. B.; Schauer, M.; Singh, R. K.; Friedrichs, M.

    2017-12-01

    Field-scale water use maps derived from evapotranspiration (ET) can characterize water use patterns and the impacts of water management decisions. This project generated historical (1984-2015) Landsat-based ET maps for the entire Upper Rio Grande basin which makes this one of the largest regions in the United States with remotely sensed historical ET at Landsat resolution. More than 10,000 Landsat images spanning 32 years were processed using the Operational Simplified Surface Energy Balance (SSEBop) model which integrates weather data and remotely sensed images to estimate monthly and annual ET. Time-series analysis focused on three water-intensive study areas within the basin: the San Luis Valley in Colorado, irrigated fields along the Rio Grande River near Albuquerque, NM, and irrigated fields near Las Cruces, NM. Preliminary analysis suggests land use changes result in declining water use in irrigated areas of the basin which corresponds with increases in land surface temperatures. Time-series analysis of water use patterns at multiple temporal and spatial scales demonstrates the impact of water management decisions on the availability of water in the basin. Comparisons with cropland data from the USDA (NASS CDL) demonstrate how water use for particular crop types changes over time in response to land use changes and shifts in water management. This study illustrates a useful application of "Big Data" earth observation science for quantifying impacts of climate and land use changes on water availability within the United States as well as applications in planning water resource allocation, managing water rights, and sustaining agricultural production in the Upper Rio Grande basin.

  7. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  8. The Impact of Human Encroachment and River Bank Agricultural ...

    African Journals Online (AJOL)

    The impact of human encroachment and river bank Agricultural activities on the habitat of the manatee (Trichechus Senegalensis) was investigated. The method of data collection involved the use of a structured questionnaire administered to farmers and fishermen. Vegetation survey in three selected sites along the river ...

  9. Continuous water-quality monitoring and regression analysis to estimate constituent concentrations and loads in the Red River of the North at Fargo and Grand Forks, North Dakota, 2003-12

    Science.gov (United States)

    Galloway, Joel M.

    2014-01-01

    The Red River of the North (hereafter referred to as “Red River”) Basin is an important hydrologic region where water is a valuable resource for the region’s economy. Continuous water-quality monitors have been operated by the U.S. Geological Survey, in cooperation with the North Dakota Department of Health, Minnesota Pollution Control Agency, City of Fargo, City of Moorhead, City of Grand Forks, and City of East Grand Forks at the Red River at Fargo, North Dakota, from 2003 through 2012 and at Grand Forks, N.Dak., from 2007 through 2012. The purpose of the monitoring was to provide a better understanding of the water-quality dynamics of the Red River and provide a way to track changes in water quality. Regression equations were developed that can be used to estimate concentrations and loads for dissolved solids, sulfate, chloride, nitrate plus nitrite, total phosphorus, and suspended sediment using explanatory variables such as streamflow, specific conductance, and turbidity. Specific conductance was determined to be a significant explanatory variable for estimating dissolved solids concentrations at the Red River at Fargo and Grand Forks. The regression equations provided good relations between dissolved solid concentrations and specific conductance for the Red River at Fargo and at Grand Forks, with adjusted coefficients of determination of 0.99 and 0.98, respectively. Specific conductance, log-transformed streamflow, and a seasonal component were statistically significant explanatory variables for estimating sulfate in the Red River at Fargo and Grand Forks. Regression equations provided good relations between sulfate concentrations and the explanatory variables, with adjusted coefficients of determination of 0.94 and 0.89, respectively. For the Red River at Fargo and Grand Forks, specific conductance, streamflow, and a seasonal component were statistically significant explanatory variables for estimating chloride. For the Red River at Grand Forks, a time

  10. Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California

    Science.gov (United States)

    Sickman, James O.; DiGiorgio, Carol L.; Davisson, M. Lee; Lucero, Delores M.; Bergamaschi, Brian A.

    2010-01-01

    We used radiocarbon measurements of dissolved organic carbon (DOC) to resolve sources of riverine carbon within agriculturally dominated landscapes in California. During 2003 and 2004, average Δ14C for DOC was −254‰ in agricultural drains in the Sacramento–San Joaquin Delta, −218‰ in the San Joaquin River, −175‰ in the California State Water Project and −152‰ in the Sacramento River. The age of bulk DOC transiting the rivers of California’s Central Valley is the oldest reported for large rivers and suggests wide-spread loss of soil organic matter caused by agriculture and urbanization. Using DAX 8 adsorbent, we isolated and measured 14C concentrations in hydrophobic acid fractions (HPOA); river samples showed evidence of bomb-pulse carbon with average Δ14C of 91 and 76‰ for the San Joaquin and Sacramento Rivers, respectively, with older HPOA, −204‰, observed in agricultural drains. An operationally defined non-HPOA fraction of DOC was observed in the San Joaquin River with seasonally computed Δ14C values of between −275 and −687‰; the source of this aged material was hypothesized to be physically protected organic-matter in high clay-content soils and agrochemicals (i.e., radiocarbon-dead material) applied to farmlands. Mixing models suggest that the Sacramento River contributes about 50% of the DOC load in the California State Water Project, and agricultural drains contribute approximately one-third of the load. In contrast to studies showing stabilization of soil carbon pools within one or two decades following land conversion, sustained loss of soil organic matter, occurring many decades after the initial agricultural-land conversion, was observed in California’s Central Valley.

  11. Analyzing the economics of tamarisk in the Pecos, Rio Grande, and Colorado River Watersheds

    Science.gov (United States)

    Joseph W. Lewis; Allen Basala; Erika Zavaleta; Douglas L. Parker; John Taylor; Mark Horner; Christopher Dionigi; Timothy Carlson; Samuel Spiller; Frederick Nibling

    2006-01-01

    The potential economic effects of tamarisk (saltcedar), and the costs and benefits associated with controlling tamarisk infestations are being evaluated on the Pecos, Rio Grande, and Colorado River watersheds. Resource impacts analyzed include water, wildlife habitat, and fire risk. The extent of existing infestations will be quantified and projected over the next 30...

  12. Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?

    International Nuclear Information System (INIS)

    Jarvie, Helen P.; Neal, Colin; Withers, Paul J.A.

    2006-01-01

    Phosphorus (P) concentrations from water quality monitoring at 54 UK river sites across seven major lowland catchment systems are examined in relation to eutrophication risk and to the relative importance of point and diffuse sources. The over-riding evidence indicates that point (effluent) rather than diffuse (agricultural) sources of phosphorus provide the most significant risk for river eutrophication, even in rural areas with high agricultural phosphorus losses. Traditionally, the relative importance of point and diffuse sources has been assessed from annual P flux budgets, which are often dominated by diffuse inputs in storm runoff from intensively managed agricultural land. However, the ecological risk associated with nuisance algal growth in rivers is largely linked to soluble reactive phosphorus (SRP) concentrations during times of ecological sensitivity (spring/summer low-flow periods), when biological activity is at its highest. The relationships between SRP and total phosphorus (TP; total dissolved P + suspended particulate P) concentrations within UK rivers are evaluated in relation to flow and boron (B; a tracer of sewage effluent). SRP is the dominant P fraction (average 67% of TP) in all of the rivers monitored, with higher percentages at low flows. In most of the rivers the highest SRP concentrations occur under low-flow conditions and SRP concentrations are diluted as flows increase, which is indicative of point, rather than diffuse, sources. Strong positive correlations between SRP and B (also TP and B) across all the 54 river monitoring sites also confirm the primary importance of point source controls of phosphorus concentrations in these rivers, particularly during spring and summer low flows, which are times of greatest eutrophication risk. Particulate phosphorus (PP) may form a significant proportion of the phosphorus load to rivers, particularly during winter storm events, but this is of questionable relevance for river eutrophication

  13. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    Science.gov (United States)

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  14. Development of Semi-distributed ecohydrological model in the Rio Grande De Manati River Basin, Puerto Rico

    Science.gov (United States)

    Setegn, S. G.; Ortiz, J.; Melendez, J.; Barreto, M.; Torres-Perez, J. L.; Guild, L. S.

    2015-12-01

    There are limited studies in Puerto Rico that shows the water resources availability and variability with respect to changing climates and land use. The main goal of the HICE-PR (Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): the Río Loco Watershed (southwest coast PR) project which was funded by NASA is to evaluate the impacts of land use/land cover changes on the quality and extent of coastal and marine ecosystems (CMEs) in two priority watersheds in Puerto Rico (Manatí and Guánica).The main objective of this study is to set up a physically based spatially distributed hydrological model, Soil and Water Assessment Tool (SWAT) for the analysis of hydrological processes in the Rio Grande de Manati river basin. SWAT (soil and water assessment tool) is a spatially distributed watershed model developed to predict the impact of land management practices on water, sediment and agricultural chemical yields in large complex watersheds. For efficient use of distributed models for hydrological and scenario analysis, it is important that these models pass through a careful calibration and uncertainty analysis. The model was calibrated and validated using Sequential Uncertainty Fitting (SUFI-2) calibration and uncertainty analysis algorithms. The model evaluation statistics for streamflows prediction shows that there is a good agreement between the measured and simulated flows that was verified by coefficients of determination and Nash Sutcliffe efficiency greater than 0.5. Keywords: Hydrological Modeling; SWAT; SUFI-2; Rio Grande De Manati; Puerto Rico

  15. Water-quality assessment of the Lower Grand River Basin, Missouri and Iowa, USA, in support of integrated conservation practices

    Science.gov (United States)

    Wilkison, Donald H.; Armstrong, Daniel J.

    2016-01-01

    The effectiveness of agricultural conservation programmes to adequately reduce nutrient exports to receiving streams and to help limit downstream hypoxia issues remains a concern. Quantifying programme success can be difficult given that short-term basin changes may be masked by long-term water-quality shifts. We evaluated nutrient export at stream sites in the 44 months that followed a period of increased, integrated conservation implementation within the Lower Grand River Basin. These short-term responses were then compared with export that occurred in the main stem and adjacent rivers in northern Missouri over a 22-year period to better contextualize any recent changes. Results indicate that short-term (October 2010 through May 2014) total nitrogen (TN) concentrations in the Grand River were 20% less than the long-term average, and total phosphorus (TP) concentrations were 23% less. Nutrient reductions in the short term were primarily the result of the less-than-average precipitation and, consequently, streamflow that was 36% below normal. Therefore, nutrient concentrations measured in tributary streams were likely less than normal during the implementation period. Northern Missouri streamflow-normalized TN concentrations remained relatively flat or declined over the period 1991 through 2013 likely because available sources of nitrogen, determined as the sum of commercial fertilizers, available animal manures and atmospheric inputs, were typically less than crop requirement for much of that time frame. Conversely, flow-normalized stream TP concentrations increased over the past 22 years in northern Missouri streams, likely in response to many years of phosphorus inputs in excess of crop requirements. Stream nutrient changes were most pronounced during periods that coincided with the major tillage, planting and growth phases of row crops and increased streamflow. Nutrient reduction strategies targeted at the period February through June would likely have the

  16. Comparison between agricultural and urban ground-water quality in the Mobile River Basin

    Science.gov (United States)

    Robinson, James L.

    2003-01-01

    The Black Warrior River aquifer is a major source of public water supply in the Mobile River Basin. The aquifer outcrop trends northwest - southeast across Mississippi and Alabama. A relatively thin shallow aquifer overlies and recharges the Black Warrior River aquifer in the flood plains and terraces of the Alabama, Coosa, Black Warrior, and Tallapoosa Rivers. Ground water in the shallow aquifer and the Black Warrior River aquifer is susceptible to contamination due to the effects of land use. Ground-water quality in the shallow aquifer and the shallow subcrop of the Black Warrior River aquifer, underlying an agricultural and an urban area, is described and compared. The agricultural and urban areas are located in central Alabama in Autauga, Elmore, Lowndes, Macon, Montgomery, and Tuscaloosa Counties. Row cropping in the Mobile River Basin is concentrated within the flood plains of major rivers and their tributaries, and has been practiced in some of the fields for nearly 100 years. Major crops are cotton, corn, and beans. Crop rotation and no-till planting are practiced, and a variety of crops are grown on about one-third of the farms. Row cropping is interspersed with pasture and forested areas. In 1997, the average farm size in the agricultural area ranged from 196 to 524 acres. The urban area is located in eastern Montgomery, Alabama, where residential and commercial development overlies the shallow aquifer and subcrop of the Black Warrior River aquifer. Development of the urban area began about 1965 and continued in some areas through 1995. The average home is built on a 1/8 - to 1/4 - acre lot. Ground-water samples were collected from 29 wells in the agricultural area, 30 wells in the urban area, and a reference well located in a predominately forested area. The median depth to the screens of the agricultural and urban wells was 22.5 and 29 feet, respectively. Ground-water samples were analyzed for physical properties, major ions, nutrients, and pesticides

  17. Public safety around dams : Grand River Conservation Authority

    Energy Technology Data Exchange (ETDEWEB)

    Moore, N [Grand River Conservation Authority, Cambridge, ON (Canada)

    2009-07-01

    Ontario's Grand River Conservation Authority (GRCA) is a corporate body, through which municipalities, landowners and other organizations work cooperatively to manage the watershed and outdoor recreation. This involves reducing flood damage; improving water quality; providing adequate water supply; protecting natural areas; watershed planning; and environmental education. This presentation discussed public safety issues regarding a dam in the GRCA that is 5 minutes to downtown Brantford; 5 minutes to several elementary and secondary schools; and a popular area for anglers. The city of Brantford owns the east embankment and the Brant conservation area is located on the west embankment. The safeguards included measures to involve the municipality and local police; install better signage; install better fencing; and public education. Increasing public awareness of the dangers surrounding dams was an important point of the presentation. Results included reduced trespassing and greater community awareness. figs.

  18. Variabilidade espacial e temporal de parâmetros físico-químicos nos rios Turvo, Preto e Grande no estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Mariele B. Campanha

    2010-01-01

    Full Text Available This work aims to study spatial and seasonal variability of some chemical-physical parameters in the Turvo/Grande watershed, São Paulo State, Brazil. Water samples were taken monthly, 2007/07-2008/11, from fourteen sampling stations sited along the Turvo, Preto and Grande Rivers and its main tributaries. The Principal Component Analysis and hierarchical cluster analysis showed two distinct groups in this watershed, the first one associated for the places more impacted by domestic effluent (lower levels of dissolved oxygen in the studied region. The sampling places located to downstream (Turvo and Grande rivers were discriminate by diffuse source of pollutants from flooding and agriculture runoffs in a second group.

  19. Fish Research Project, Oregon, Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin, Annual Progress Report, Project Period: September 1, 1996 - August 31, 1997; ANNUAL

    International Nuclear Information System (INIS)

    Brian C. Jonasson; J. Vincent Tranquilli; MaryLouise Keefe; Richard W. Carmichael

    1998-01-01

    We have documented two general life history strategies utilized by juvenile spring chinook salmon in the Grande Ronde River basin: (1) juveniles migrate downstream out of summer rearing areas in the fall, overwinter in river valley habitats, and begin their seaward migration in the spring, and (2) juveniles remain in summer rearing areas through the winter and begin seaward migration in the spring. In migration year 96-97, the patterns evident from migrant trap data were similar for the three Grande Ronde River populations studied, with 42% of the Lostine River migrants and 76% of the Catherine Creek migrants leaving upper rearing areas in the fall. Contrary to past years, the majority (98%) of upper Grande Ronde River migrants moved out in the fall. Total trap catch for the upper Grande Ronde River was exceedingly low (29 salmon), indicating that patterns seen this year may be equivocal. As in previous years, approximately 99% of chinook salmon juveniles moved past our trap at the lower end of the Grande Ronde River valley in the spring, reiterating that juvenile chinook salmon overwinter within the Grande Ronde valley section of the river. PIT-tagged fish were recaptured at Grande Ronde River traps and mainstem dams. Recapture data showed that fish that overwintered in valley habitats left as smolts and arrived at Lower Granite Dam earlier than fish that overwintered in upstream rearing areas. Fish from Catherine Creek that overwintered in valley habitats were recaptured at the dams at a higher rate than fish that overwintered upstream. In this first year of data for the Lostine River, fish tagged during the fall migration were detected at a similar rate to fish that overwintered upstream. Abundance estimates for migration year 96-97 were 70 for the upper Grande Ronde River, 4,316 for the Catherine Creek, and 4,323 for the Lostine River populations. Although present in most habitats, juvenile spring chinook salmon were found in the greatest abundance in pool

  20. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic

  1. Investigating the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China

    Science.gov (United States)

    Wu, S.; Wei, Y.; Zhao, Y.; Zheng, H.

    2017-12-01

    Human's innovative abilities do not only enable rapid expansion of civilization, but also lead to enormous modifications on the natural environment. Technology, while a key factor embedded in socioeconomic developments, its impacts have been rarely appropriately considered in river basin management. This research aims to examine the evolutionary history of irrigated agricultural technology in the Heihe River Basin, China, and how its characteristics interacted with the river basin environment. It adopts a content analysis approach to collect and summarize quantitative technological information in the Heihe River Basin across a time span of more than 2000 years from the Han Dynasty (206 BC) to 2015. Two Chinese academic research databases: Wan Fang Data and China National Knowledge Infrastructure (CNKI) were chosen as data sources. The results show that irrigated agricultural technologies in Heihe River Basin have shifted from focusing on developing new farming tools and cultivation methods to adapting modernized, water-saving irrigation methods and water diversion infrastructures. In additions, the center of irrigated agricultural technology in the Heihe river basin has moved from downstream to middle stream since the Ming Dynasty (1368AD) as a result of degraded natural environment. The developing trend of technology in the Heihe River Basin thus coincides with the change of societal focus from agricultural production efficiency to the human-water balance and environmental remediation. This research demonstrates that irrigated agricultural technologies had a twisted evolutionary history in the Heihe River Basin, influenced by a diverse range of environmental and socioeconomic factors. It provides insights into the fact that technology exhibits a co-evolutionary characteristic with the social development history in the region, pointing towards the urgent need to maintain the balance between human and environment.

  2. Agricultural Water Use Sustainability Assessment in the Tarim River Basin under Climatic Risks

    Directory of Open Access Journals (Sweden)

    Jun Zhang

    2018-02-01

    Full Text Available Proper agricultural water management in arid regions is the key to tackling climatic risks. However, an effective assessment of the current response to climate change in agricultural water use is the precondition for a group adaptation strategy. The paper, taking the Tarim River basin (TRB as an example, aims to examine the agricultural water use sustainability of water resource increase caused by climatic variability. In order to describe the response result, groundwater change has been estimated based on the Gravity Recovery and Climate Experiment (GRACE and the Global Land Data Assimilation System (GLDAS–Noah land surface model (NOAH data. In order to better understand the relationship between water resource increase and agricultural water consumption, an agricultural water stress index has been established. Agricultural water stress has been in a severe state during the whole period, although it alleviated somewhat in the mid–late period. This paper illustrates that an increase in water supply could not satisfy agricultural production expansion. Thus, seasonal groundwater loss and a regional water shortage occurred. Particularly in 2008 and 2009, the sharp shortage of water supply in the Tarim River basin directly led to a serious groundwater drop by nearly 20 mm from the end of 2009 to early 2010. At the same time, a regional water shortage led to water scarcity for the whole basin, because the water consumption, which was mainly distributed around Source Rivers, resulted in break-off discharge in the mainstream. Therefore, current agricultural development in the Tarim River basin is unsustainable in the context of water supply under climatic risks. Under the control of irrigation, spatial and temporal water allocation optimization is the key to the sustainable management of the basin.

  3. Bird community structure in riparian environments in Cai River, Rio Grande do Sul, Brazil

    OpenAIRE

    Jaqueline Brummelhaus; Marcia Suelí Bohn; Maria Virginia Petry

    2012-01-01

    Urbanization produces changes in riparian environments, causing effects in the structure of bird communities, which present different responses to the impacts. We compare species richness, abundance, and composition of birds in riparian environments with different characteristics in Cai River, Rio Grande do Sul, Brazil. We carried out observations in woodland, grassland, and urban environments, between September 2007 and August 2008. We listed 130 bird species, 29 species unique to woodland e...

  4. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    Energy Technology Data Exchange (ETDEWEB)

    Meixner, Tom (University of Arizona, Tucson, AZ); Tidwell, Vincent Carroll; Oelsner, Gretchen (University of Arizona, Tucson, AZ); Brooks, Paul (University of Arizona, Tucson, AZ); Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  5. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2004 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the eighth season (1997-2004) of adult Chinook salmon broodstock collection in the Lostine River and the sixth season (1999-2004) of acclimation of resulting Lostine River progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progency for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2004

  6. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-07-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  7. The effects of industrial and agricultural activity on the water quality of the Sitnica River (Kosovo

    Directory of Open Access Journals (Sweden)

    Albona Shala

    2015-01-01

    Full Text Available An important issue in Kosovo is water pollution. The use of polluted water has a direct impact on human health and cause long-term consequences. The longest and most polluted river in Kosovo is the Sitnica, a 90 km long river with its source located near the village of Sazli. The river flows into the Ibar River in Northern Kosovo. Agriculture is prevailing activity in the basin of Sitnica which is why agricultural as well as industrial waste are the biggest water pollutants. The purpose of this study was to evaluate water quality of the river and analyse the pollution level along the Sitnica River caused by agricultural activities and industrial discharges. In order to assess the impact of pollutants on this river, a measurements were carried out in four (five monitoring stations: the first station represents the reference station which has not undergone or has not been affected by polluting pressures, two stations in water areas affected by the irrigation of farming land and two monitoring stations in water areas affected by industrial wastewater discharge. Some of the parameters of water quality analysed are temperature, turbidity, electrical conductivity, pH, DO, COD, BOD, P total, nitrates, sulfates, and heavy metals iron, manganese, zinc, nickel. Compared to the reference station the results obtained from the Gracka and Pestova monitoring stations prove that the dominant form of pollution is that from agricultural lands irrigation, while the Plemetin and Mitrovica stations show that the Sitnica River is affected by wastewater discharge which contains significant concentrations of heavy metals, as well as metal ions selected in this paper. It can be concluded that the irrigation of agricultural lands and discharges from mining significantly affect water quality of the Sitnica River.

  8. Grande Ronde Endemic Spring Chinook Salmon Supplementation Project; Lostine River Operations and Maintenance 2003 Smolt Acclimation and Adult Return Report.

    Energy Technology Data Exchange (ETDEWEB)

    Zollman, Richard L.; Eschler, Russell; Sealey, Shawn [Nez Perce Tribe

    2009-03-31

    The Nez Perce Tribe (NPT), through funding provided by the Bonneville Power Administration (BPA), has implemented a Chinook salmon supplementation program (250,000 smolts) on the Lostine River, a tributary to the Grande Ronde River of Oregon. The Grande Ronde Endemic Spring Chinook Salmon Supplementation project, which involves supplementation of the Upper Grande Ronde River and Catherine Creek in addition to the Lostine River, was established to prevent extirpation and increase the number of threatened Snake River spring/summer Chinook salmon (Oncorhynchus tshawytscha) returning to the Grande Ronde River. This report covers the seventh season (1997-2003) of adult Chinook salmon broodstock collection in the Lostine River and the fifth season (1999-2003) of acclimating the resultant progeny. Production of Lostine River spring Chinook salmon smolts currently occurs at Lookingglass Fish Hatchery (LGH). The Lostine River supplementation program utilizes two strategies to obtain egg source for production of smolts for supplementation: captive broodstock and conventional broodstock. The captive broodstock strategy involves (1) capture of natural juvenile spring Chinook salmon smolts from the Lostine River, (2) rearing those to adult and spawning them, and (3) rearing the resultant progeny for eventual acclimation and release back into the Lostine River. The conventional broodstock strategy involves (1) capture of natural and hatchery origin adults returning to the Lostine River, (2) holding those adults and spawning them, and (3) rearing the resultant progeny for acclimation and release back into the Lostine River. This report focuses on (1) the trapping and collection of adult spring Chinook salmon that return to the Lostine River, which provides the broodstock source for the conventional strategy and (2) the acclimation and release of juvenile spring Chinook salmon produced from the captive broodstock and conventional broodstock strategies. In 2003, acclimation of

  9. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    International Nuclear Information System (INIS)

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  10. Dealing with variability in water availability: the case of the Verde Grande River basin, Brazil

    Directory of Open Access Journals (Sweden)

    B. Collischonn

    2014-09-01

    Full Text Available This paper presents a water resources management strategy developed by the Brazilian National Water Agency (ANA to cope with the conflicts between water users in the Verde Grande River basin, located at the southern border of the Brazilian semi-arid region. The basin is dominated by water-demanding fruit irrigation agriculture, which has grown significantly and without adequate water use control, over the last 30 years. The current water demand for irrigation exceeds water availability (understood as a 95 % percentile of the flow duration curve in a ratio of three to one, meaning that downstream water users are experiencing more frequent water shortages than upstream ones. The management strategy implemented in 2008 has the objective of equalizing risk for all water users and consists of a set of rules designed to restrict water withdrawals according to current river water level (indicative of water availability and water demand. Under that rule, larger farmers have proportionally larger reductions in water use, preserving small subsistence irrigators. Moreover, dry season streamflow is forecasted at strategic points by the end of every rainy season, providing evaluation of shortage risk. Thus, water users are informed about the forecasts and corresponding restrictions well in advance, allowing for anticipated planning of irrigated areas and practices. In order to enforce restriction rules, water meters were installed in all larger water users and inefficient farmers were obligated to improve their irrigation systems’ performance. Finally, increases in irrigated area are only allowed in the case of annual crops and during months of higher water availability (November to June. The strategy differs from convectional approached based only on water use priority and has been successful in dealing with natural variability of water availability, allowing more water to be used in wet years and managing risk in an isonomic manner during dry years.

  11. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S

    2003-08-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  12. Integrated assessment of the impacts of agricultural drainwater in the Salinas River (California, USA)

    International Nuclear Information System (INIS)

    Anderson, B.S.; Hunt, J.W.; Phillips, B.M.; Nicely, P.A.; Vlaming, V. de; Connor, V.; Richard, N.; Tjeerdema, R.S.

    2003-01-01

    Invertebrate mortality was correlated with levels of water and sediment contaminatioin in the Salinas River. - The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the

  13. Gênero e agricultura: a situação da mulher na agricultura do Rio Grande do Sul Gender and agriculture: the situation of women in agriculture in the state of Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Anita Brumer

    2004-04-01

    Full Text Available O texto examina as formas de inserção das mulheres na agricultura familiar, procurando explicar a seletividade de gênero do processo migratório. Primeiramente, aborda a distribuição da população, por sexo e por grupos de idade, em diversas regiões do Estado do Rio Grande do Sul, caracterizando o maior índice de emigração de mulheres jovens do que dos demais grupos etários e de sexo. Depois, trata da divisão do trabalho por sexo e idade, dos efeitos da modernização sobre o trabalho agrícola, da inserção dos jovens no trabalho da unidade produtiva familiar, das atividades fora da agricultura e dos procedimentos utilizados pelos produtores agrícolas para a transmissão da propriedade rural para os filhos. Finalmente, discute o possível efeito do acesso das mulheres rurais à Previdência Rural sobre suas perspectivas de permanecer ou não na atividade agrícola.The paper examines the forms of insertion of women in the agricultural farm, with the purpose of explaining the gender selectivity of migration. Firstly, it deals with the population distribution, by sex and age groups, in different regions of the state of Rio Grande do Sul, in order to characterize the higher emigration of young women in comparison with other groups. Afterwards, it deals with the division of work by sex and age, the effects of modernization upon the agricultural work and the ways in which the farmers transfer their property to the children. Finally it discusses the possible effects of the access of rural women to the Social Security on their perspectives of remaining or not in the agricultural activity.

  14. How Sustainable are Engineered Rivers in Arid Lands?

    Directory of Open Access Journals (Sweden)

    Jurgen Schmandt

    2013-06-01

    Full Text Available Engineered rivers in arid lands play an important role in feeding the world’s growing population. Each continent has rivers that carry water from distant mountain sources to fertile soil downstream where rainfall is scarce. Over the course of the last century most rivers in arid lands have been equipped with large engineering structures that generate electric power and store water for agriculture and cities. This has changed the hydrology of the rivers. In this paper we discuss how climate variation, climate change, reservoir siltation, changes in land use and population growth will challenge the sustainability of engineered river systems over the course of the next few decades. We use the Rio Grande in North America, where we have worked with Mexican and American colleagues, to describe our methodology and results. Similar work is needed to study future water supply and demand in engineered rivers around the world.

  15. Phosphorus losses from agricultural areas in river basins; effects and uncertainties of targeted mitigation measures

    NARCIS (Netherlands)

    Kronvang, B.; Bechmann, M.; Lundekvam, H.; Behrendt, H.; Rubaek, G.H.; Schoumans, O.F.; Syversen, N.; Andersen, H.E.; Hoffmann, C.C.

    2005-01-01

    In this paper we show the quantitative and relative importance of phosphorus (P) losses from agricultural areas within European river basins and demonstrate the importance of P pathways, linking agricultural source areas to surface water at different scales. Agricultural P losses are increasingly

  16. Radioecological studies of agricultural floodplain of the Mulde River on the consequences of the former uranium mining

    International Nuclear Information System (INIS)

    Bister, Stefan

    2012-01-01

    At the time of Warsaw Pact, the former German Democratic Republic (GDR) was one of the largest producer of uranium in the world and the most important supplier of uranium for the USSR. The former Saxon uranium mining areas are drained by the Zwickauer Mulde River. The Mulde River is a left side tributary or the Elbe River and mainly situated in Saxony. The frontal flows, Freiberger Mulde River and Zwickauer Mulde River, merge close to the small village of Sermuth to form the Vereinigte Mulde River, which flows into the Elbe River near Dessau. This research project was established to quantify the long-term effect of the former uranium mining activities on the floodplain ecosystem of the Mulde River. The radiological impact from the agricultural use of the alluvial soils was investigated. More than 280 samples from different environmental compartments (river water, surface sediment from the river, alluvial soils and agricultural crops) were sampled and analysed by radiometric methods. All of the compartments still show an impact from the former uranium mining. However, comparisons with earlier measurements reveal a considerable decrease of the radionuclide contamination. Thus, it is not possible to relate the activities in the soil samples to the activities of the water and sediment samples measured in parallel. Radionuclides originating from the alluvial soils enter the human food chain as a result of the agricultural use of the floodplains. Yet, the radiological effect is small. The uranium contamination of the river water results in activity values lying beyond the threshold of the current German Drinking Water Ordinance. Dose calculations based on the ''Berechnungsgrundlage Bergbau'' [BGB10] do not exceed the guidance level of 1 mSv additional potential radiation exposure per year for the current agricultural use, even assuming most disadvantageous conditions.

  17. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging

  18. Agricultural water conservation programs in the lower Colorado River Authority

    International Nuclear Information System (INIS)

    Kabir, J.

    1993-01-01

    Rice irrigation is the largest user of water within the area served by the Lower Colorado River Authority (LCRA), accounting for approximately 75 percent of total annual surface and ground water demands. In an average year, about 30 percent of surface water supplied to rice irrigation is satisfied with water released from the storage in the Highland Lakes located at the upstream reaches of the Lower Colorado River and its tributaries. During a severe drought, the demand for stored water could be as much as 70 percent of annual rice irrigation demand. LCRA owns and operates two irrigation canal systems which together supply water to irrigate 60,000 acres of rice each year. These irrigation systems are the Lakeside and Gulf Coast Irrigation Divisions. The Lakeside system is located in Colorado and Wharton Counties and the Gulf Coast system is located in Wharton and Matagorda Counties. In the 1987 and 1989, the Lower Colorado River Authority Board of Directors authorized implementation and funding for Canal Rehabilitation Project and Irrigation Water Measurement Project respectively. These two projects are key initiatives to agricultural water conservation goals established in the LCRA Water Management Plan and Water Conservation Policy. In addition LCRA participated actively in agricultural water conservation research projects and technology transfer activities

  19. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    Directory of Open Access Journals (Sweden)

    J. Rozemeijer

    2012-08-01

    Full Text Available Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain a spatial image of the diverted river water propagation into a hydrologically complex polder area, the polder Quarles van Ufford in The Netherlands. We used anthropogenic gadolinium (Gd-anomaly as a tracer for river water that was diverted into the polder. A clear reduction in the river water contribution was found between very dry conditions on 5 August 2010 and very wet conditions on 22 October. Despite the large river water impact on 5 August, the diverted river water did not propagate up into the small agricultural headwater ditches. Gadolinium proved to be an effective tracer for diverted river water in a polder system. We applied our results to upgrade the interpretation of water quality monitoring data and to validate an integrated nutrient transport model.

  20. Effects of urbanization on agricultural lands and river basins: case study of Mersin (South of Turkey).

    Science.gov (United States)

    Duran, Celalettin; Gunek, Halil; Sandal, Ersin Kaya

    2012-04-01

    Largely, Turkey is a hilly and mountainous country. Many rivers rise from the mountains and flow into the seas surrounding the country. Mean while along fertile plains around the rivers and coastal floodplains of Turkey were densely populated than the other parts of the country. These characteristics show that there is a significant relationship between river basins and population or settlements. It is understood from this point of view, Mersin city and its vicinity (coastal floodplain and nearby river basins) show similar relationship. The city of Mersin was built on the southwest comer of Cukurova where Delicay and Efrenk creeks create narrow coastal floodplain. The plain has rich potential for agricultural practices with fertile alluvial soils and suitable climate. However, establishment of the port at the shore have increased commercial activity. Agricultural and commercial potential have attracted people to the area, and eventually has caused rapid spatial expansion of the city, and the urban sprawls over fertile agricultural lands along coastal floodplain and nearby river basins of the city. But unplanned, uncontrolled and illegal urbanization process has been causing degradation of agricultural areas and river basins, and also causing flooding in the city of Mersin and its vicinity. Especially in the basins, urbanization increases impervious surfaces throughout watersheds that increase erosion and runoff of surface water. In this study, the city of Mersin and its vicinity are examined in different ways, such as land use, urbanization, morphology and flows of the streams and given some directions for suitable urbanization.

  1. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows.

    Science.gov (United States)

    Hardie, Scott A; Bobbi, Chris J

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  2. Compounding Effects of Agricultural Land Use and Water Use in Free-Flowing Rivers: Confounding Issues for Environmental Flows

    Science.gov (United States)

    Hardie, Scott A.; Bobbi, Chris J.

    2018-03-01

    Defining the ecological impacts of water extraction from free-flowing river systems in altered landscapes is challenging as multiple stressors (e.g., flow regime alteration, increased sedimentation) may have simultaneous effects and attributing causality is problematic. This multiple-stressor context has been acknowledged in environmental flows science, but is often neglected when it comes to examining flow-ecology relationships, and setting and implementing environmental flows. We examined the impacts of land and water use on rivers in the upper Ringarooma River catchment in Tasmania (south-east Australia), which contains intensively irrigated agriculture, to support implementation of a water management plan. Temporal and spatial and trends in river condition were assessed using benthic macroinvertebrates as bioindicators. Relationships between macroinvertebrate community structure and environmental variables were examined using univariate and multivariate analyses, focusing on the impacts of agricultural land use and water use. Structural changes in macroinvertebrate communities in rivers in the catchment indicated temporal and spatial declines in the ecological condition of some stretches of river associated with agricultural land and water use. Moreover, water extraction appeared to exacerbate impairment associated with agricultural land use (e.g., reduced macroinvertebrate density, more flow-avoiding taxa). The findings of our catchment-specific bioassessments will underpin decision-making during the implementation of the Ringarooma water management plan, and highlight the need to consider compounding impacts of land and water use in environmental flows and water planning in agricultural landscapes.

  3. Raptor Use of the Rio Grande Gorge

    Energy Technology Data Exchange (ETDEWEB)

    Ponton, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    The Rio Grande Gorge is a 115 km long river canyon located in Southern Colorado (15 km) and Northern New Mexico (100 km). The majority of the canyon is under the administration of the Bureau of Land Management {BLM), and 77 km of the canyon south of the Colorado/New Mexico border are designated Wild River under the National Wild and Scenic Rivers Act of 1968. Visits I have made to the Rio Grande Gorge over the past 15 .years disclosed some raptor utilization. As the Snake River Birds of Prey Natural Area gained publicity, its similarity to the Rio Grande Gorge became obvious, and I was intrigued by the possibility of a high raptor nesting density in the Gorge. A survey in 1979 of 20 km of the northern end of the canyon revealed a moderately high density of red-tailed hawks and prairie falcons. With the encouragement of that partial survey, and a need to assess the impact of river-running on nesting birds of prey, I made a more comprehensive survey in 1980. The results of my surveys, along with those of a 1978 helicopter survey by the BLM, are presented in this report, as well as general characterization of the area, winter use by raptors, and an assessment of factors influencing the raptor population.

  4. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  5. Effects of agricultural and urban impacts on macroinvertebrates assemblages in streams (Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Ubiratan Hepp

    2010-02-01

    Full Text Available This study evaluates the effects of agricultural and urban activities on the structure and composition of benthic communities of streams in the state of Rio Grande do Sul, Brazil. Benthic macroinvertebrates were collected in streams influenced by urbanization and agriculture and in streams with no anthropogenic disturbances (reference streams. Organism density was superior in urban streams when compared with streams in the other two areas. The taxonomic richness and Shannon diversity index were higher in reference streams. The benthic fauna composition was significantly different among land uses. The classification and ordination analyses corroborated the results of variance analyses demonstrating the formation of clusters corresponding to streams with similar land use. Seasonality was also found to influence the benthic community, though in a lesser degree than land use.

  6. Valuing tradeoffs between agricultural production and ecosystem services in the Heihe River Basin

    Science.gov (United States)

    Li, Z.; Deng, X.; Wu, F.

    2017-12-01

    Ecosystem services are faced with multiple stress from complex driving factors, such as climate change and human interventions. The Heihe River Basin (HRB), as the second largest inland river basin in China, is a typical semi-arid and arid region with fragile and sensitive ecological environment. For the past decades, agricultural production activities in the basin has affected ecosystem services in different degrees, leading to complex relations among "water-land-climate-ecology-human", in which hydrological process and water resource management is the key. In this context, managing trade-offs among water uses in the river basin to sustain multiple ecosystem services is crucial for healthy ecosystem and sustainable socioeconomic development. In this study, we analyze the trade-offs between different water uses in agricultural production and key ecosystem services in the HRB by applying production frontier analysis, with the aim to explore the potential for managing them. This method traces out joint production frontiers showing the combinations of ecosystem services and agricultural production that can be generated in a given area, and it deals with the economic problem of the allocation of scarce water resources under presumed objective, which aims to highlight synergies and reduce trade-offs between alternative water uses. Thus, management schemes that targets to both sustain agricultural production and increase the provision of key ecosystem services have to consider not only the technological or biological nature of interrelationships, but also the economic interdependencies among them.

  7. Microbial contamination and chemical toxicity of the Rio Grande

    Directory of Open Access Journals (Sweden)

    Valles Adrian

    2004-04-01

    Full Text Available Abstract Background The Rio Grande River is the natural boundary between U.S. and Mexico from El Paso, TX to Brownsville, TX. and is one of the major water resources of the area. Agriculture, farming, maquiladora industry, domestic activities, as well as differences in disposal regulations and enforcement increase the contamination potential of water supplies along the border region. Therefore, continuous and accurate assessment of the quality of water supplies is of paramount importance. The objectives of this study were to monitor water quality of the Rio Grande and to determine if any correlations exist between fecal coliforms, E. coli, chemical toxicity as determined by Botsford's assay, H. pylori presence, and environmental parameters. Seven sites along a 112-Km segment of the Rio Grande from Sunland Park, NM to Fort Hancock, TX were sampled on a monthly basis between January 2000 and December 2002. Results The results showed great variability in the number of fecal coliforms, and E. coli on a month-to-month basis. Fecal coliforms ranged between 0–106 CFU/100 ml while E. coli ranged between 6 to > 2419 MPN. H. pylori showed positive detection for all the sites at different times. Toxicity ranged between 0 to 94% of inhibition capacity (IC. Since values above 50% are considered to be toxic, most of the sites displayed significant chemical toxicity at different times of the year. No significant correlations were observed between microbial indicators and chemical toxicity. Conclusion The results of the present study indicate that the 112-Km segment of the Rio Grande river from Sunland Park, NM to Fort Hancock, TX exceeds the standards for contact recreation water on a continuous basis. In addition, the presence of chemical toxicity in most sites along the 112-Km segment indicates that water quality is an area of concern for the bi-national region. The presence of H. pylori adds to the potential health hazards of the Rio Grande. Since no

  8. Endangered Species and Irrigated Agriculture, Water Resource Competition in Western River Systems

    OpenAIRE

    United States Department of Agriculture, Economic Research Service

    1995-01-01

    This report characterizes several aspects of water allocation tradeoffs between fish species listed under the Federal Endangered Species Act and agriculture in the American West. The geographic intersection between endangered/threatened (E/T) fish and agricultural production reliant on surface water for irrigation is identified. Three findings are: (1) 235 counties, representing 22 percent of the West's counties, contain irrigated production that relies on water from rivers with E/T fish, ...

  9. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    Science.gov (United States)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  10. Lower Grande Ronde smolt trap monitoring. Annual report 1996

    International Nuclear Information System (INIS)

    Setter, A.; Carmichael, R.W.

    1998-01-01

    The authors sampled downstream migrating salmonids at Boggan's Oasis in the Grande Ronde River with a screw trap during 1995 and a scoop trap during 1996. Sampling began in March and terminated early in June. Wild spring chinook and wild/hatchery steelhead were collected and marked to assess migration patterns and timing. Fish were marked with tags in order to obtain downstream migration data with minimal fish handling. Observations were recorded when a fish swam through an interrogation monitor at hydroelectric facilities downstream. The second year for monitoring smolts leaving the Grande Ronde River was completed in 1995. The authors continued to pursue moving to a permanent location downstream for 1997 because of the limitations for trapping smolts at Boggan's Oasis. This involved reconnaissance surveys of several potential sites near the mouth of the river from 1994--1996. During February of 1996, a water velocity and bottom topography assessment was completed. Results of the assessment were used for siting the anchoring tower structure upstream approximately 1.2 miles from the mouth of the Grande Ronde River

  11. Bathymetric surveys of the Neosho River, Spring River, and Elk River, northeastern Oklahoma and southwestern Missouri, 2016–17

    Science.gov (United States)

    Hunter, Shelby L.; Ashworth, Chad E.; Smith, S. Jerrod

    2017-09-26

    In February 2017, the Grand River Dam Authority filed to relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission. The predominant feature of the Pensacola Hydroelectric Project is Pensacola Dam, which impounds Grand Lake O’ the Cherokees (locally called Grand Lake) in northeastern Oklahoma. Identification of information gaps and assessment of project effects on stakeholders are central aspects of the Federal Energy Regulatory Commission relicensing process. Some upstream stakeholders have expressed concerns about the dynamics of sedimentation and flood flows in the transition zone between major rivers and Grand Lake O’ the Cherokees. To relicense the Pensacola Hydroelectric Project with the Federal Energy Regulatory Commission, the hydraulic models for these rivers require high-resolution bathymetric data along the river channels. In support of the Federal Energy Regulatory Commission relicensing process, the U.S. Geological Survey, in cooperation with the Grand River Dam Authority, performed bathymetric surveys of (1) the Neosho River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, (2) the Spring River from the Oklahoma border to the U.S. Highway 60 bridge at Twin Bridges State Park, and (3) the Elk River from Noel, Missouri, to the Oklahoma State Highway 10 bridge near Grove, Oklahoma. The Neosho River and Spring River bathymetric surveys were performed from October 26 to December 14, 2016; the Elk River bathymetric survey was performed from February 27 to March 21, 2017. Only areas inundated during those periods were surveyed.The bathymetric surveys covered a total distance of about 76 river miles and a total area of about 5 square miles. Greater than 1.4 million bathymetric-survey data points were used in the computation and interpolation of bathymetric-survey digital elevation models and derived contours at 1-foot (ft) intervals. The minimum bathymetric-survey elevation of the Neosho

  12. A multi-dimensional analysis of the upper Rio Grande-San Luis Valley social-ecological system

    Science.gov (United States)

    Mix, Ken

    The Upper Rio Grande (URG), located in the San Luis Valley (SLV) of southern Colorado, is the primary contributor to streamflow to the Rio Grande Basin, upstream of the confluence of the Rio Conchos at Presidio, TX. The URG-SLV includes a complex irrigation-dependent agricultural social-ecological system (SES), which began development in 1852, and today generates more than 30% of the SLV revenue. The diversions of Rio Grande water for irrigation in the SLV have had a disproportionate impact on the downstream portion of the river. These diversions caused the flow to cease at Ciudad Juarez, Mexico in the late 1880s, creating international conflict. Similarly, low flows in New Mexico and Texas led to interstate conflict. Understanding changes in the URG-SLV that led to this event and the interactions among various drivers of change in the URG-SLV is a difficult task. One reason is that complex social-ecological systems are adaptive, contain feedbacks, emergent properties, cross-scale linkages, large-scale dynamics and non-linearities. Further, most analyses of SES to date have been qualitative, utilizing conceptual models to understand driver interactions. This study utilizes both qualitative and quantitative techniques to develop an innovative approach for analyzing driver interactions in the URG-SLV. Five drivers were identified for the URG-SLV social-ecological system: water (streamflow), water rights, climate, agriculture, and internal and external water policy. The drivers contained several longitudes (data aspect) relevant to the system, except water policy, for which only discreet events were present. Change point and statistical analyses were applied to the longitudes to identify quantifiable changes, to allow detection of cross-scale linkages between drivers, and presence of feedback cycles. Agricultural was identified as the driver signal. Change points for agricultural expansion defined four distinct periods: 1852--1923, 1924--1948, 1949--1978 and 1979

  13. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    Science.gov (United States)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  14. 50 CFR Table 3 to Part 226 - Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River...

    Science.gov (United States)

    2010-10-01

    ... Habitat for Snake River Sockeye Salmon and Snake River Spring/Summer and Fall Chinook Salmon 3 Table 3 to... Part 226—Hydrologic Units Containing Critical Habitat for Snake River Sockeye Salmon and Snake River... Snake—Asotin 17060103 17060103 17060103 Upper Grande Ronde 17060104 Wallowa 17060105 Lower Grande Ronde...

  15. Grand Canyon Monitoring and Research Center

    Science.gov (United States)

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  16. a Microgravity Survey to Determine the Extent of AN Andesitic Sill that Intrudes across the Rio Grande River Basin, Rio Grande Rift Valley, Sunland Park, New Mexico

    Science.gov (United States)

    Baker, L. A.; Shinagel, S.; Villalobos, J. I.; Avila, V.; Montana, C. J.; Kaip, G.

    2012-12-01

    In Sunland Park, NM, there is an andesite outcrop near the bank of the Rio Grande (called the River Andesite) which does not match the surrounding sedimentary deposition. Studies of the River Andesite by Garcia (1970) indicate the outcrop is petrologically similar to the Muleros Andesite of Mt. Cristo Rey located several km to the south. A limited GPR and magnetic survey conducted by UTEP students in 2008 suggested the River Andesite was part of a dike, although Garcia mapped smaller outcrops of andesite ~300 m west of the river that may be part of the same body. We have recently (June 2012) found large andesite boulders that may be the outcrops Garcia mapped, although it is uncertain whether these boulders are in-situ. We initially collected microgravity and magnetic data in a small region near the river outcrop in December 2011 to determine the extent of the outcrop. Our preliminary modeling of these data showed the river outcrop appeared to merge with a more extensive igneous body at depth. Ground conductivity data collected near the river outcrop in March 2012 suggested that the outcrop impacts groundwater flow and sediment deposition adjacent to the river. From May through July 2012 we have been collecting additional microgravity data on a grid with 100-200 m spacing extending ~ 500 m from both sides of the river outcrop to better determine the extent of the buried andesite body. We also plan to conduct GPR and magnetic surveys near the recently discovered andesite boulders to determine if these are truly in-situ and part of the same igneous body as the river outcrop. Our eventual goal is to determine how extensive the andesite unit is and how it may impact groundwater flow and flooding in this area of growing urbanization.

  17. Modeling Dissolved Solids in the Rincon Valley, New Mexico Using RiverWare

    Science.gov (United States)

    Abudu, S.; Ahn, S. R.; Sheng, Z.

    2017-12-01

    Simulating transport and storage of dissolved solids in surface water and underlying alluvial aquifer is essential to evaluate the impacts of surface water operations, groundwater pumping, and climate variability on the spatial and temporal variability of salinity in the Rio Grande Basin. In this study, we developed a monthly RiverWare water quantity and quality model to simulate the both concentration and loads of dissolved solids for the Rincon Valley, New Mexico from Caballo Reservoir to Leasburg Dam segment of the Rio Grande. The measured flows, concentration and loads of dissolved solids in the main stream and drains were used to develop RiveWare model using 1980-1988 data for calibration, and 1989-1995 data for validation. The transport of salt is tracked using discretized salt and post-process approaches. Flow and salt exchange between the surface water and adjacent groundwater objects is computed using "soil moisture salt with supplemental flow" method in the RiverWare. In the groundwater objects, the "layered salt" method is used to simulate concentration of the dissolved solids in the shallow groundwater storage. In addition, the estimated local inflows under different weather conditions by using a calibrated Soil Water Assessment Tool (SWAT) were fed into the RiverWare to refine the simulation of the flow and dissolved solids. The results show the salt concentration and loads increased at Leasburg Dam, which indicates the river collects salts from the agricultural return flow and the underlying aquifer. The RiverWare model with the local inflow fed by SWAT delivered the better quantification of temporal and spatial salt exchange patterns between the river and the underlying aquifer. The results from the proposed modeling approach can be used to refine the current mass-balance budgets for dissolved-solids transport in the Rio Grande, and provide guidelines for planning and decision-making to control salinity in arid river environment.

  18. Disentailment and agricultural intensification of river banks: the vega de Aranjuez

    International Nuclear Information System (INIS)

    Lopez Garcia, M. J.; Mateu Belles, J. F.

    2009-01-01

    In Spain, successive appropriations by the state of river flood terraces which had previously been in communal or private hands led to apart from notorious social repercussions-increased pressure on the limited water resources, loss of the diversity of agricultural uses as practices became more uniform, and accelerated destruction of the few remaining fragments or riverside woodlands. later water laws (1866 and 1879) and court rulings permitted the aggregation of adjacent fields on river margins, the disappearance of customary uses (including settled and transhumant grazing) and the expansion of horticulture and other intensive arable crops. (Author) 8 refs.

  19. Investigations into the early life history of naturally produced spring chinook salmon in the Grande Ronde River Basin: annual progress report project period 1 September 1998 to 31 August 1999; ANNUAL

    International Nuclear Information System (INIS)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  20. Tracing the spatial propagation of river inlet water into an agricultural polder area using anthropogenic gadolinium

    NARCIS (Netherlands)

    Rozemeijer, J.; Siderius, C.; Verheul, M.; Pomarius, H.

    2012-01-01

    Diverting river water into agricultural areas or nature reserves is a frequently applied management strategy to prevent fresh water shortage. However, the river water might have negative consequences for chemical and ecological water quality in the receiving water bodies. This study aimed to obtain

  1. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    Science.gov (United States)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora

  2. Special signalizing of the Grande River crossing with the OSBRA pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Adriano C.; Luz, Marcelo Pedroso da; Castro, Newton C. de; Spagnolo, Rodrigo A. [TRANSPETRO, Rio de Janeiro, RJ (Brazil); Silva Junior, Fernando C. Carneiro da [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper presents the experience acquired by PETROBRAS Transporte S.A., TRANSPETRO, signaling the crossing of Sao Paulo - Brasilia Pipeline, OSBRA, with the Grande River, important brazilian river that has in this cross section 400 m in width and 10 m of average depth. In sub aquatic inspections carried through by divers to confirm the pipeline's silting condition, evidences of basin format dredging near the pipeline have been identified and, even though it was not sufficient to expose de pipeline, has reduced its covering significantly. This site is an important area of sand extraction, and although the intense works of awareness of local dredging companies to not operate in the pipeline area, TRANSPETRO was surprised by the evidences. In testimonials, local dredge operators complained about difficulties in identifying the pipeline position in nightly operations. Expecting to improve the operational security in the pipeline crossing, a joint project was developed by TRANSPETRO, Brazilian Navy and the dredging companies, with the intention to signal safe area around the submerged pipeline, avoiding dredge operations with the installation of polyethylene floating buoys equipped with night signaling kits and fixed by concrete anchors. Although it was technically simple, the unprecedented proposal in Brazil increased safety in the pipeline operations and made them much safer for the local population and for the environment, in one of the biggest water resources of the Southeastern region of Brazil. (author)

  3. Simulated effects of surface coal mining and agriculture on dissolved solids in the Redwater River, east-central Montana

    Science.gov (United States)

    Ferreira, R.F.; Lambing, J.H.

    1985-01-01

    Dissolved solids concentrations in five reaches of the Redwater River in east-central Montana were simulated to evaluate the effects of surface coal mining and agriculture. A mass-balance model of streamflow and dissolved solids load developed for the Tongue River in southeastern Montana was modified and applied to the Redwater River. Mined acreages, dissolved solids concentrations in mined spoils, and irrigated acreage can be varied in the model to study relative changes in the dissolved solids concentration in consecutive reaches of the river. Because of extreme variability and a limited amount of data, the model was not consecutively validated. Simulated mean and median monthly mean streamflows and consistently larger than those calculated from streamflow records. Simulated mean and median monthly mean dissolved solids loads also are consistently larger than regression-derived values. These discrepancies probably result from extremely variable streamflow, overestimates of streamflow from ungaged tributaries, and weak correlations between streamflow and dissolved solids concentrations. The largest increases in simulated dissolved solids concentrations from mining and agriculture occur from September through January because of smaller streamflows and dissolved solids loads. Different combinations of agriculture and mining under mean flow conditions resulted in cumulative percentage increases of dissolved solids concentrations of less than 5% for mining and less than 2% for agriculture. (USGS)

  4. Effect of urbanization on bird community in riparian environments in Caí River, Rio Grande do Sul, Brazil

    OpenAIRE

    Brummelhaus, Jaqueline; Bohn, Márcia Sueli; Petry, Maria Virginia

    2012-01-01

    http://dx.doi.org/10.5007/2175-7925.2012v25n2p81 Urbanization produces changes in riparian environments causing effects in the structure of bird communities, which respond differently to impacts. We compare richness, abundance and composition of birds in riparian environments with different urbanization gradients in Caí River, Rio Grande do Sul. We conducted observations in woodland, grassland and urban environments, between September/2007 and August/2008. We recorded 130 bird species, 29...

  5. The water footprint of agricultural products in European river basins

    International Nuclear Information System (INIS)

    Vanham, D; Bidoglio, G

    2014-01-01

    This work quantifies the agricultural water footprint (WF) of production (WF prod, agr ) and consumption (WF cons, agr ) and the resulting net virtual water import (netVW i, agr ) of 365 European river basins for a reference period (REF, 1996–2005) and two diet scenarios (a healthy diet based upon food-based dietary guidelines (HEALTHY) and a vegetarian (VEG) diet). In addition to total (tot) amounts, a differentiation is also made between the green (gn), blue (bl) and grey (gy) components. River basins where the REF WF cons, agr, tot exceeds the WF prod, agr, tot (resulting in positive netVW i, agr, tot values), are found along the London–Milan axis. These include the Thames, Scheldt, Meuse, Seine, Rhine and Po basins. River basins where the WF prod, agr, tot exceeds the WF cons, agr, tot are found in Western France, the Iberian Peninsula and the Baltic region. These include the Loire, Ebro and Nemunas basins. Under the HEALTHY diet scenario, the WF cons, agr, tot of most river basins decreases (max −32%), although it was found to increase in some basins in northern and eastern Europe. This results in 22 river basins, including the Danube, shifting from being net VW importers to being net VW exporters. A reduction (max −46%) in WF cons, agr, tot is observed for all but one river basin under the VEG diet scenario. In total, 50 river basins shift from being net VW importers to being net exporters, including the Danube, Seine, Rhone and Elbe basins. Similar observations are made when only the gn + bl and gn components are assessed. When analysing only the bl component, a different river basin pattern is observed. (letters)

  6. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  7. Agricultural land use doubled sediment yield of western China's rivers

    Science.gov (United States)

    Schmidt, A. H.; Bierman, P. R.; Sosa-Gonzalez, V.; Neilson, T. B.; Rood, D. H.; Martin, J.; Hill, M.

    2017-12-01

    Land use changes, such as deforestation and agriculture, increase soil erosion rates on the scale of hillslopes and small drainage basins; however, the effects of these changes on the sediment load in larger rivers is poorly quantified, with a few studies scattered globally, and only 10 data points in the world's most populous nation, China. At 20 different sites in western China, we compare contemporary (1945-1987) fluvial sediment yield data collected daily over 4 to 26 years (median = 19 years) to long-term measures of erosion (sediment generation) based on new isotopic measurements of in situ 10Be in river sediments. We find that median sediment transport at these sites exceeds background sediment generation rates by a factor of two (from 0.13 to 5.79 times, median 1.85 times) and that contemporary sediment yield is statistically significantly different from long-term sediment yield (p measured unsupported 210Pb and 137Cs in 130 detrital samples from throughout the region. We find that only 4 samples (those from high elevation, low relief watersheds) have detectable 137Cs and 31 samples have detectable unsupported 210Pb. The lack of 137Cs in most samples suggests high rates of erosion in the 1950s-1960s when 137Cs would have been delivered to the landscape. Detectable 210Pb in 25% of the watersheds suggests that in some areas erosion rates have slowed since that time allowing 210Pb to accumulate to measurable levels. Together, these data sets demonstrate that upstream agricultural land use has significantly increased sediment supply to rivers in western China, likely increasing turbidity and decreasing ecosystem services such as fisheries.

  8. River water quality management considering agricultural return flows: application of a nonlinear two-stage stochastic fuzzy programming.

    Science.gov (United States)

    Tavakoli, Ali; Nikoo, Mohammad Reza; Kerachian, Reza; Soltani, Maryam

    2015-04-01

    In this paper, a new fuzzy methodology is developed to optimize water and waste load allocation (WWLA) in rivers under uncertainty. An interactive two-stage stochastic fuzzy programming (ITSFP) method is utilized to handle parameter uncertainties, which are expressed as fuzzy boundary intervals. An iterative linear programming (ILP) is also used for solving the nonlinear optimization model. To accurately consider the impacts of the water and waste load allocation strategies on the river water quality, a calibrated QUAL2Kw model is linked with the WWLA optimization model. The soil, water, atmosphere, and plant (SWAP) simulation model is utilized to determine the quantity and quality of each agricultural return flow. To control pollution loads of agricultural networks, it is assumed that a part of each agricultural return flow can be diverted to an evaporation pond and also another part of it can be stored in a detention pond. In detention ponds, contaminated water is exposed to solar radiation for disinfecting pathogens. Results of applying the proposed methodology to the Dez River system in the southwestern region of Iran illustrate its effectiveness and applicability for water and waste load allocation in rivers. In the planning phase, this methodology can be used for estimating the capacities of return flow diversion system and evaporation and detention ponds.

  9. Agricultural Rivers at Risk: Dredging Results in a Loss of Macroinvertebrates. Preliminary Observations from the Narew Catchment, Poland

    OpenAIRE

    Mateusz Grygoruk; Magdalena Frąk; Aron Chmielewski

    2015-01-01

    Ecosystem deterioration in small lowland agricultural rivers that results from river dredging entails a significant threat to the appropriate ecohydrological conditions of these water bodies, expressed as homogenization of habitats and loss of biodiversity. Our study was aimed at a comparison of abundance and taxonomic structure of bottom-dwelling macroinvertebrates in dredged and non-dredged stretches of small lowland rivers and tributaries of the middle Narew River, namely: Czaplinianka, Tu...

  10. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1998 to 31 August 1999.

    Energy Technology Data Exchange (ETDEWEB)

    Jonasson, Brian C.

    2000-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 13,180 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 18% in fall and 82% in spring. We estimated 15,949 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1998 to June 1999; approximately 0.2% of the migrants left in summer, 57% in fall, 2% in winter, and 41% in spring. We estimated 14,537 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1998 to June 1999; approximately 99% of the migrants left in spring. We estimated 31,113 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1998 to June 1999; approximately 4% of the migrants left in summer, 57% in fall, 3% in winter, and 36% in spring. We estimated 42,705 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from August 1998 to June 1999; approximately 46% of the migrants left in fall, 6% in winter, and 47% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 31 March to 20 June 1999, with a median passage date of 5 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 19 April to 9 July 1999, with a median passage date of 24 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 8 July 1999, with a median passage date of 4 May. Juveniles tagged as they left the upper rearing areas of the Grande Ronde River in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher overwinter survival in the

  11. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    Science.gov (United States)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario

  12. Agricultural Rivers at Risk: Dredging Results in a Loss of Macroinvertebrates. Preliminary Observations from the Narew Catchment, Poland

    Directory of Open Access Journals (Sweden)

    Mateusz Grygoruk

    2015-08-01

    Full Text Available Ecosystem deterioration in small lowland agricultural rivers that results from river dredging entails a significant threat to the appropriate ecohydrological conditions of these water bodies, expressed as homogenization of habitats and loss of biodiversity. Our study was aimed at a comparison of abundance and taxonomic structure of bottom-dwelling macroinvertebrates in dredged and non-dredged stretches of small lowland rivers and tributaries of the middle Narew River, namely: Czaplinianka, Turośnianka, Dąb, and Ślina. The experimental setup was (1 to collect samples of the bottom material from the river stretches that either persisted in a non-modified state (dredging was not done there in the last few years or had been subjected to river dredging in the year of sampling; and (2 to analyze the abundance and taxonomic structure of macroinvertebrates in the collected samples. The study revealed that at the high level of statistical significance (from p = 0.025 to p = 0.001, the total abundance of riverbed macroinvertebrates in the dredged stretches of the rivers analyzed was approximately 70% lower than in non-dredged areas. We state that the dredging of small rivers in agricultural landscapes seriously affects their ecological status by negatively influencing the concentrations and species richness of benthic macroinvertebrates.

  13. Influence of agricultural practice on trace metals in soils and vegetation in the water conservation area along the East River (Dongjiang River), South China

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Chunling, E-mail: clluo@gig.ac.cn [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Yang, Renxiu [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Wang, Yan; Li, Jun; Zhang, Gan [Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Li, Xiangdong [Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong)

    2012-08-01

    Dongjiang (East River) is the key resource of potable water for the Pearl River Delta region, South China. Although industrial activities are limited in the water conservation area along this river, agriculture is very intensive. The present study evaluated trace metals in four soils under different cultivation. The total concentrations of trace metals decreased in the order orchard soil > vegetable soil > paddy soil > natural soil, reflecting decreasing inputs of agrochemicals to soils. Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. The {sup 206}Pb/{sup 207}Pb ratio in the above-ground tissues of plant was significantly lower than their corresponding soils. In combination with the low transfer factor of Pb from soil to plant shoots, atmospheric deposition is probably a major pathway for Pb to enter plant leaves. Regular monitoring on the soil quality in this area is recommended for the safety of water resource and agricultural products. - Highlights: Black-Right-Pointing-Pointer Soil Cd exceeded the upper limit of Chinese standard for agricultural soils. Black-Right-Pointing-Pointer Relatively high concentrations of Cd were recorded in the 60-cm soil profiles. Black-Right-Pointing-Pointer Agricultural soil had higher concentrations of metals and lower {sup 206}Pb/{sup 207}Pb ratios. Black-Right-Pointing-Pointer Pb in above-ground tissues of plant was more anthropogenic than soil. Black-Right-Pointing-Pointer Atmospheric deposition may be a major pathway for Pb to enter plant leaves.

  14. Expansion of the agricultural frontier on riparian vegetation of Santa Cruz River, Cuba

    Directory of Open Access Journals (Sweden)

    Felipe Carricarte Rodríguez

    2016-12-01

    Full Text Available The work was developed in the Los Amaros, the Santa Cruz river, Artemisa, Cuba. The objective was to evaluate how it influences the expansion of the agricultural frontier on riparian vegetation where the semi-deciduous mesophytic forest (BsdMe predominates. A floristic characterization was performed, identifying the effects of disturbances on the structure and composition of these forests and their relation to human disturbance. A semi-structured interview was applied to all landowners in the study area. Species richness, dominance, basal area, total number of individuals, width of the strip covered by trees and shrubs, and area without vegetation on both banks of the river, respectively were considered as variables. There are differences in the structure and patterns of diversity of the studied forest, as a result of disturbances, with the consequent reduction of species; also anthropogenic disturbances, are the main factors that explain changes in the structure of these forests. They are identified as major species: Cupania macrophylla A. Rich., Roystonea regia HBK O. F. Cook., Guarea guidonia L. Sleumer and Trichilia hirta  L. It is proposed to deepen the effect of the expansion of agriculture into other sectors of the river in interaction with local communities.

  15. Assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin.

    Science.gov (United States)

    Abah, Roland Clement; Petja, Brilliant Mareme

    2016-12-01

    Agriculture in the Lower Benue River Basin faces several challenges which threaten the future of agricultural development. This study was an assessment of potential impacts of climate change on agricultural development in the Lower Benue River Basin. Through analysis of physical and socioeconomic parameters, the study adapted an impact assessment model to rank potential impacts on agricultural development in the study area. Rainfall intensity seemed to be increasing with a gradual reduction in the number of rainy days. The average discharge at Makurdi hydrological station was 3468.24 cubic metres per second (m 3  s -1 ), and the highest peak flow discharge was 16,400 m 3  s -1 . The daily maximum temperature and annual temperature averages for the study area are gradually rising leading to increased heat stress. Physical and chemical analyses showed that the soils are moderately fertile but require effective application of inorganic and organic fertilisers. The main occupational activities in the study area are agricultural based. The identified potential impacts of climate change on agriculture were categorised under atmospheric carbon dioxides and oxides, rainfall intensity, frequency of floods and droughts, temperature intensity and variation, heat stress, surface water trends, and soil quality and fertility. The identified potential impacts related to population dynamics on agriculture were categorised under population growth, rural-urban migration, household income and infectious diseases and HIV and AIDS. Community-level mitigation strategies were proffered. Policy makers are advised to promote irrigation farming, support farmers with farm inputs and credit facilities and establish active agricultural extension services to support the sustainable development of agriculture.

  16. Achieving Long-Term Protection of Water Quality of Grand Lake St. Marys Through Implementation of Conservation Practices and Control of Phosphorus Input from Agricultural Drainage

    Science.gov (United States)

    Grand Lake St. Marys (GLSM), a 13,000 acre lake in northwestern Ohio, is experiencing toxic levels of algal blooms resulting primarily from phosphorus input from agricultural runoff. The algal blooms are so severe that the Ohio Department of Natural Resources advised against any...

  17. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-07-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2002. The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Project is designed to rapidly increase numbers of salmon in stocks that are in imminent danger of extirpation. Parr are captured in Catherine Creek, upper Grande Ronde River and Lostine River and reared to adulthood in captivity. Upon maturation, they are spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, the Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation.

  18. Investigations into the Early Life History of Naturally Spring Chinook Salmon in the Grande Ronde River Basin : Fish Research Project Oregon : Annual Progress Report Project Period 1 September 1997 to 31 August 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Keefe, MaryLouise; Tranquilli, J. Vincent

    1998-01-01

    We determined migration timing and abundance of juvenile spring chinook salmon from three populations in the Grande Ronde River basin. We estimated 6,716 juvenile chinook salmon left upper rearing areas of the Grande Ronde River from July 1997 to June 1998; approximately 6% of the migrants left in summer, 29% in fall, 2% in winter, and 63% in spring. We estimated 8,763 juvenile chinook salmon left upper rearing areas of Catherine Creek from July 1997 to June 1998; approximately 12% of the migrants left in summer, 37% in fall, 21% in winter, and 29% in spring. We estimated 8,859 juvenile chinook salmon left the Grande Ronde Valley, located below the upper rearing areas in Catherine Creek and the Grande Ronde River, from October 1997 to June 1998; approximately 99% of the migrants left in spring. We estimated 15,738 juvenile chinook salmon left upper rearing areas of the Lostine River from July 1997 to April 1998; approximately 3% of the migrants left in summer, 61% in fall, 2% in winter, and 34% in spring. We estimated 22,754 juvenile spring chinook salmon left the Wallowa Valley, located below the mouth of the Lostine River, from September 1997 to April 1998; approximately 55% of the migrants left in fall, 5% in winter, and 40% in spring. Juvenile chinook salmon PIT-tagged on the upper Grande Ronde River were detected at Lower Granite Dam from 4 April to 26 June 1998, with a median passage date of 1 May. PIT-tagged salmon from Catherine Creek were detected at Lower Granite Dam from 3 April to 26 June 1998, with a median passage date of 8 May. PIT-tagged salmon from the Lostine River were detected at Lower Granite Dam from 31 March through 26 May 1998, with a median passage date of 28 April. Juveniles tagged as they left the upper rearing areas of the Grande Ronde and Lostine rivers in fall and that overwintered in areas downstream were detected in the hydrosystem at a higher rate than fish tagged during winter in the upper rearing areas, indicating a higher

  19. A report upon the Grand Coulee Fish Maintenance Project 1939-1947

    Science.gov (United States)

    Fish, F.F.; Hanavan, Mitchell G.

    1948-01-01

    The construction or Grand Coulee Dam, on the upper Columbia River, involved the loss of 1,140 lineal miles of spawning and rearing stream to the production of anadromous fishes. The fact that the annual value of these fish runs to the nation was estimated at $250,000 justified reasonable expenditures to assure their perpetuation. It was found economically infeasible to safely collect and pass adult fish upstream and fingerling fish downstream at the dam because of the tremendous flow of the river and the 320 foot vertical difference in elevation between forebay and tailrace.The Grand Coulee Fish-Maintenance Project, undertaken by the United States Fish and Wildlife Service in 1939, consisted in relocating the anadroumous runs of the upper Columbia River to four major tributaries entering below the Grand Coulee damsite. These streams were believed capable of supporting several times their existing, badly depleted, run. The plan was predicated upon the assumption that the relocated runs, in conformity with their "homing tendency", would return to the lower tributaries rather than attempt to reach their ancestral spawning grounds above Grand Coulee Dam. This interim report covers the history and accomplishments of the Grand Coulee Fish-Maintenance Project through the initial period of relocating the rune as well as the first four years of the permanent program. Results obtained to date indicate conclusive success in diverting the upper Columbia fish runs into the accessible lower tributaries. The results also indicate, less conclusively, that - in spite of many existing handicaps - the upper Columbia salmon and steelhead runs may be rehabilitated through the integrated program of natural and artificial propagation incorporated in the Grand Coulee Fish-Maintenance Project.

  20. Responses of aquatic communities to physical and chemical parameters in agriculturally impacted coastal river systems

    CSIR Research Space (South Africa)

    Petersen, Chantel

    2017-04-05

    Full Text Available assemblages of macroinvertebrates and algae down a longitudinal gradient and; (ii) to determine the environmental variables that affect assemblage distribution. The study occurs in agriculturally influenced coastal rivers in the southern Cape, South Africa...

  1. Mesohabitats, fish assemblage composition, and mesohabitat use of the Rio Grande silvery minnow over a range of seasonal flow regimes in the Rio Grande/Rio Bravo del Norte, in and near Big Bend National Park, Texas, 2010-11

    Science.gov (United States)

    Moring, J. Bruce; Braun, Christopher L.; Pearson, Daniel K.

    2014-01-01

    In 2010–11, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, evaluated the physical characteristics and fish assemblage composition of mapped river mesohabitats at four sites on the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) in and near Big Bend National Park, Texas. The four sites used for the river habitat study were colocated with sites where the U.S. Fish and Wildlife Service has implemented an experimental reintroduction of the Rio Grande silvery minnow (Hybognathus amarus), a federally listed endangered species, into part of the historical range of this species. The four sites from upstream to downstream are USGS station 08374340 Rio Grande at Contrabando Canyon near Lajitas, Tex. (hereinafter the Contrabando site), USGS station 290956103363600 Rio Grande at Santa Elena Canyon, Big Bend National Park, Tex. (hereinafter the Santa Elena site), USGS station 291046102573900 Rio Grande near Ranger Station at Rio Grande Village, Tex. (hereinafter the Rio Grande Village site), and USGS station 292354102491100 Rio Grande above Stillwell Crossing near Big Bend National Park, Tex. (hereinafter the Stillwell Crossing site).

  2. Pesticide residue assessment in three selected agricultural production systems in the Choluteca River Basin of Honduras

    International Nuclear Information System (INIS)

    Kammerbauer, J.; Moncada, J.

    1999-01-01

    There is a basic lack of information about the presence of pesticide residues in the environment in Central America. Over the period of February 1995 to June 1997, river, well, lagoon and spring water samples, as well as soil, fish tissue, lagoon bed sediments and some foodstuffs were taken from the greater Cholutecan River Basin of Honduras and analyzed for pesticide residues. These were collected at three separate sites (La Lima, Zamorano and Choluteca), each characterized by differing agricultural production systems. The main pesticide residues found in soil samples were dieldrin and p,p'-DDT, while river water samples were found to have detectable levels of heptachlor, endosulfan and chlorpyrifos, with lagoon and well water also being shown to contain heptachlor. These pesticides detected were in more than 20% of the samples assessed. In river water samples more pesticide residues at higher concentrations were found to be associated with areas of more intensive agricultural production. The fewest pesticides with lowest concentrations were found in the small subwatershed associated with traditional agricultural production. Although the pesticides found in the soils at the three sites were generally similar they tended to be higher in the southern part of the Cholutecan watershed, followed by the central zone, with the lowest concentrations being found in the more traditional production zone. In lagoon and well water samples more pesticides, but mostly in lower concentrations were detected at the traditional production site than at the others. Ten pesticide compounds were detected in fish tissue, mainly organochlorines, some of which were also found in lagoon sediments. In terms of food products, almost no pesticides were detected in vegetables, but the kidney adipose tissue taken from slaughtered cows was shown to have a tendency to contain some organochlorines. Spring water in the traditional agricultural production zone contained three organochlorine compounds

  3. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention

    International Nuclear Information System (INIS)

    Neal, Colin; Jarvie, Helen; Rowland, Philip; Lawler, Alan; Sleep, Darren; Scholefield, Paul

    2011-01-01

    Operationally defined dissolved Titanium [Ti] (the 1 kDa i.e. > c. 1-2 nm) for the rural areas, but as low as 28% for the urban/industrial rivers. This raises fundamental issues of the pollutant inputs of Ti, with the possibility of significant complexation of Ti in the sewage effluents and subsequent breakdown within the rivers, as well as the physical dispersion of fine colloids down to the macro-molecular scale. Although not directly measured, the particulate Ti can make an important contribution to the net Ti flux. - Research Highlights: → Filtered Ti in agricultural, urban and industrial UK rivers described. → Highest concentrations occur just downstream of STWs. → The urban/industrial inputs increased background [Ti] by up to 11 fold. → Anthropogenic Ti input lowered by within-river retention. → Up to 79% of Ti colloidal/NP for rural, down to 28% for urban/industrial rivers.

  4. Environmental quality of agricultural soils within the Jaguari River Basin - Sao Paulo

    International Nuclear Information System (INIS)

    Ruby, Elaine Cristina

    2009-01-01

    Environmental impacts have occurred in various forms and intensities on soil, water and air media. Consequently, several countries have used legal criteria for soil protection, either by means of generic guiding values or through case-by-case risk assessment. The Sao Paulo Environmental Agency (CETESB) pioneered the publication of guiding values for soils and groundwater in 2001. The aim of this study was to evaluate the environmental quality of agricultural soils in comparison to pristine soils (control areas) within the Jaguari river basin, Sao Paulo. The evaluation was carried out through multielement determination by Neutron Activation Analysis Instrumental (INAA) technique. The analyses were also complemented by Optical Emission Spectrometry Coupled Plasma (ICP OES), Atomic Absorption Spectrometry and Graphite Furnace (GFAAS) techniques. The results obtained in the analyzed soil samples were compared to the guiding values established by the Sao Paulo State environmental legislation and revealed that there were no median concentrations above the prevention values. The median concentrations for the elements Sb, As, Cd, Pb, Co, Cu, Cr, Ni, V and Zn were below the reference values, except for Pb. Taking into account the 34 elements determined, there were statistically significant differences (p <0.05) between agricultural and pristine soils only for the elements Ba, As, U and V. Among these elements, Ba presented the highest concentrations in pristine soils. It was concluded, that the environmental quality of agricultural soils within the Jaguari river basin - SP was slightly changed for the given parameters. The results also pointed out for the utilization of U and As as indicators of potential contamination in soils. (author)

  5. Plants, arthropods, and birds of the Rio Grande [chapter 7

    Science.gov (United States)

    Deborah M. Finch; Gale L. Wolters; Wang Yong; Mary Jean Mund

    1995-01-01

    Human populations have increased dramatically along the Rio Grande since European settlement. Human use of water for irrigation and consumption, and human use of land for agriculture, urban centers, livestock grazing, and recreation have changed Rio Grande ecosystems by altering flood cycles, channel geomorphology, upslope processes, and water quality and quantity....

  6. From agricultural intensification to conservation: sediment transport in the Raccoon River, Iowa, 1916-2009.

    Science.gov (United States)

    Jones, Christopher S; Schilling, Keith E

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Stabilization of the bank upstream on the north shore of the La Grande-1 installation

    International Nuclear Information System (INIS)

    Massiera, M.

    1998-01-01

    As part of the completion of the La Grande-1 project, construction of a 2,444 m long dyke was required on the north bank of the La Grande River. Sensitive marine clay, covered with deltaic and river sand and silt deposits was discovered which required special design features such as stabilization of the river bank, to avoid the possibility of disastrous retrogressive slides. This paper describes the geotechnical conditions of the northern terrace and the options available for stabilizing the river bank. Different phases of the construction of the stabilization dyke, including the excavated trench across the terrace, the instrumentation installed and the control measures taken, are also outlined. 8 refs., 1 tab., 3 figs

  8. Artificial sweeteners in a large Canadian river reflect human consumption in the watershed.

    Directory of Open Access Journals (Sweden)

    John Spoelstra

    Full Text Available Artificial sweeteners have been widely incorporated in human food products for aid in weight loss regimes, dental health protection and dietary control of diabetes. Some of these widely used compounds can pass non-degraded through wastewater treatment systems and are subsequently discharged to groundwater and surface waters. Measurements of artificial sweeteners in rivers used for drinking water production are scarce. In order to determine the riverine concentrations of artificial sweeteners and their usefulness as a tracer of wastewater at the scale of an entire watershed, we analyzed samples from 23 sites along the entire length of the Grand River, a large river in Southern Ontario, Canada, that is impacted by agricultural activities and urban centres. Municipal water from household taps was also sampled from several cities within the Grand River Watershed. Cyclamate, saccharin, sucralose, and acesulfame were found in elevated concentrations despite high rates of biological activity, large daily cycles in dissolved oxygen and shallow river depth. The maximum concentrations that we measured for sucralose (21 µg/L, cyclamate (2.4 µg/L [corrected], and saccharin (7.2 µg/L are the highest reported concentrations of these compounds in surface waters to date anywhere in the world. Acesulfame persists at concentrations that are up to several orders of magnitude above the detection limit over a distance of 300 km and it behaves conservatively in the river, recording the wastewater contribution from the cumulative population in the basin. Acesulfame is a reliable wastewater effluent tracer in rivers. Furthermore, it can be used to assess rates of nutrient assimilation, track wastewater plume dilution, separate human and animal waste contributions and determine the relative persistence of emerging contaminants in impacted watersheds where multiple sources confound the usefulness of other tracers. The effects of artificial sweeteners on aquatic biota

  9. Investigations into the Early Life-history of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin, Annual Report 2001.

    Energy Technology Data Exchange (ETDEWEB)

    Reischauer, Alyssa; Monzyk, Frederick; Van Dyke, Erick

    2003-06-01

    We determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout Oncorhynchus mykiss using rotary screw traps on four streams in the Grande Ronde River basin during the 2001 migratory year (MY 2001) from 1 July 2000 through 30 June 2001. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O. mykiss could be distinguished. An 'early' migrant group left upper rearing areas from 1 July 2000 through 29 January 2001 with a peak in the fall. A 'late' migrant group descended from upper rearing areas from 30 January 2001 through 30 June 2001 with a peak in the spring. The migrant population of juvenile spring chinook salmon in the upper Grande Ronde River in MY 2001 was very low in comparison to previous migratory years. We estimated 51 juvenile spring chinook migrated out of upper rearing areas with approximately 12% of the migrant population leaving as early migrants to overwinter downstream. In the same migratory year, we estimated 16,067 O. mykiss migrants left upper rearing areas with approximately 4% of these fish descending the upper Grande Ronde River as early migrants. At the Catherine Creek trap, we estimated 21,937 juvenile spring chinook migrants in MY 2001. Of these migrants, 87% left upper rearing areas early to overwinter downstream. We also estimated 20,586 O. mykiss migrants in Catherine Creek with 44% leaving upper rearing areas early to overwinter downstream. At the Lostine River trap, we estimated 13,610 juvenile spring chinook migrated out of upper rearing areas with approximately 77% migrating early. We estimated 16,690 O. mykiss migrated out of the Lostine River with approximately 46% descending the river as early migrants. At the Minam River trap, we estimated 28,209 juvenile spring chinook migrated out of the river with 36% migrating early. During the same period, we estimated 28,113 O. mykiss with

  10. Detection of Lyme Disease Bacterium, Borrelia burgdorferi sensu lato, in Blacklegged Ticks Collected in the Grand River Valley, Ontario, Canada

    Science.gov (United States)

    Scott, John D.; Foley, Janet E.; Anderson, John F.; Clark, Kerry L.; Durden, Lance A.

    2017-01-01

    We document the presence of blacklegged ticks, Ixodes scapularis, in the Grand River valley, Centre Wellington, Ontario. Overall, 15 (36%) of 42 I. scapularis adults collected from 41 mammalian hosts (dogs, cats, humans) were positive for the Lyme disease bacterium, Borrelia burgdorferi sensu lato (s.l.). Using real-time PCR testing and DNA sequencing of the flagellin (fla) gene, we determined that Borrelia amplicons extracted from I. scapularis adults belonged to B. burgdorferi sensu stricto (s.s.), which is pathogenic to humans and certain domestic animals. Based on the distribution of I. scapularis adults within the river basin, it appears likely that migratory birds provide an annual influx of I. scapularis immatures during northward spring migration. Health-care providers need to be aware that local residents can present with Lyme disease symptoms anytime during the year. PMID:28260991

  11. Effects of lakes and reservoirs on annual river nitrogen, phosphorus, and sediment export in agricultural and forested landscapes

    Science.gov (United States)

    Powers, Stephen M.; Robertson, Dale M.; Stanley, Emily H.

    2014-01-01

    Recently, effects of lakes and reservoirs on river nutrient export have been incorporated into landscape biogeochemical models. Because annual export varies with precipitation, there is a need to examine the biogeochemical role of lakes and reservoirs over time frames that incorporate interannual variability in precipitation. We examined long-term (~20 years) time series of river export (annual mass yield, Y, and flow-weighted mean annual concentration, C) for total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) from 54 catchments in Wisconsin, USA. Catchments were classified as small agricultural, large agricultural, and forested by use of a cluster analysis, and these varied in lentic coverage (percentage of catchment lake or reservoir water that was connected to river network). Mean annual export and interannual variability (CV) of export (for both Y and C) were higher in agricultural catchments relative to forested catchments for TP, TN, and TSS. In both agricultural and forested settings, mean and maximum annual TN yields were lower in the presence of lakes and reservoirs, suggesting lentic denitrification or N burial. There was also evidence of long-term lentic TP and TSS retention, especially when viewed in terms of maximum annual yield, suggesting sedimentation during high loading years. Lentic catchments had lower interannual variability in export. For TP and TSS, interannual variability in mass yield was often >50% higher than interannual variability in water yield, whereas TN variability more closely followed water (discharge) variability. Our results indicate that long-term mass export through rivers depends on interacting terrestrial, aquatic, and meteorological factors in which the presence of lakes and reservoirs can reduce the magnitude of export, stabilize interannual variability in export, as well as introduce export time lags.

  12. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  13. Titanium in UK rural, agricultural and urban/industrial rivers: Geogenic and anthropogenic colloidal/sub-colloidal sources and the significance of within-river retention

    Energy Technology Data Exchange (ETDEWEB)

    Neal, Colin; Jarvie, Helen [Centre for Ecology and Hydrology, Wallingford, Crowmarsh Gifford, Wallingford, OXON, OX10 8BB (United Kingdom); Rowland, Philip, E-mail: apr@ceh.ac.uk [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Lawler, Alan; Sleep, Darren; Scholefield, Paul [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom)

    2011-04-15

    Operationally defined dissolved Titanium [Ti] (the < 0.45 {mu}m filtered fraction) in rivers draining rural, agricultural, urban and industrial land-use types in the UK averaged 2.1 {mu}g/l with a range in average of 0.55 to 6.48 {mu}g/l. The lowest averages occurred for the upland areas of mid-Wales the highest just downstream of major sewage treatment works (STWs). [Ti] in rainfall and cloud water in mid-Wales averaged 0.2 and 0.7 {mu}g/l, respectively. Average, baseflow and stormflow [Ti] were compared with two markers of sewage effluent and thus human population: soluble reactive phosphorus (SRP) and boron (B). While B reflects chemically conservative mixing, SRP declined downstream of STW inputs due to in-stream physico-chemical and biological uptake. The results are related to colloidal and sub-colloidal Ti inputs from urban/industrial conurbations coupled with diffuse background (geological) sources and within-river removal/retention under low flows as a result of processes of aggregation and sedimentation. The urban/industrial inputs increased background [Ti] by up to eleven fold, but the total anthropogenic Ti input might well have been underestimated owing to within-river retention. A baseline survey using cross-flow ultrafiltration revealed that up to 79% of the [Ti] was colloidal/nanoparticulate (> 1 kDa i.e. > c. 1-2 nm) for the rural areas, but as low as 28% for the urban/industrial rivers. This raises fundamental issues of the pollutant inputs of Ti, with the possibility of significant complexation of Ti in the sewage effluents and subsequent breakdown within the rivers, as well as the physical dispersion of fine colloids down to the macro-molecular scale. Although not directly measured, the particulate Ti can make an important contribution to the net Ti flux. - Research Highlights: {yields} Filtered Ti in agricultural, urban and industrial UK rivers described. {yields} Highest concentrations occur just downstream of STWs. {yields} The urban

  14. ANALYSIS OF THE ROLE OF AGRICULTURAL COOPERATIVES' IN FUNDING PROCESSING MILLS IN CROSS RIVER STATE, NIGERIA

    OpenAIRE

    Adinya, I.B; Odey S.O.; Oniah M.O; Umeh G.N; Agiopu, B.F; Ogbonna ,K.I.

    2008-01-01

    A study was undertaken to determine the role of agricultural co-operative societies as institutional source of finance to processing mills in Cross River State, Nigeria. Data were obtained from a random sample of 150 respondents in the study area by means of structured questionnaire. The first stage involved random selection of fifteen local government areas from eighteen local government areas in Cross River State. This was followed by random selection of one village in each of the fifteen l...

  15. Descriptive summary of the Grande Ronde Basalt type section, Columbia River Basalt Group

    International Nuclear Information System (INIS)

    Camp, V.E.; Price, S.M.; Reidel, S.P.

    1978-10-01

    The Grande Ronde Basalt type section, located in extreme southeastern Washington, was measured, sampled, and characterized. The section is 800 meters thick and is comprised of 35 Grande Ronde Basalt flows. These flows are divisible into 3 magnetostratiographic units termed, in ascending order, the R 1 , the N 1 , and the R 2 . The R 1 unit is represented by 13 reversely polarized flows; the N 1 unit, by 13 normally polarized flows; and the R 2 , by 9 reversely polarized flows. Chemically, the Grande Ronde Basalt flows are divided into 2 major groups, termed A and B. The compositions of the lower 9 flows, members of Group A, are similar to either the high-Mg Grande Ronde chemical type, the high-Ti Grande Ronde chemical type, or the Pomona chemical type. The compositions of the upper 25 flows, members of Group B, are predominantly similar to the low-Mg Grande Ronde chemical type. Petrographically, the Grande Ronde Basalt flows are generally fine grained and aphyric, and have a intergranular or intersertal micro-texture. Major mineral phases include plagioclase (An/sub 40-60/) and augite; minor mineral phases include pigeonite, orthopyroxene, ilmenite, titanomagnetite, and olivine. Group A flows generally contain more olivine and less pigeonite than do Group B flows. 6 figures, 6 tables

  16. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Science.gov (United States)

    These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership is co-chaired by the U.S. Dept. of Housing and Urban Development and the U.S. Environmental Protection Agency. There are also a number of other federal agencies engaged in projects with Tribal, State, and local officials, and community stakeholders. Like many western river ecosystems, the Middle Rio Grande faces numerous challenges in balancing competing needs within a finite water supply and other resource constrains. Historical practices by our ancestors and immigrants to the Middle Rio Grande have established the conditions that we have inherited. Long-term drought exacerbated by climate change is changing conditions that affect natural and human communities as we strive to improve our precious Rio Grande.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will reconnect our urban communities, particularly those that are overburdened or economically distressed, with the waterway by improving coordination among federal agencies and collaborating with community-led revitalization efforts. Our projects will improve our community water systems and promote their economic, environmental and social benefits. Specifically, the Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will support the development of the Valle de Oro

  17. Amazon river flow regime and flood recessional agriculture: Flood stage reversals and risk of annual crop loss

    Science.gov (United States)

    Coomes, Oliver T.; Lapointe, Michel; Templeton, Michael; List, Geneva

    2016-08-01

    The annual flood cycle is an important driver of ecosystem structure and function in large tropical rivers such as the Amazon. Riparian peasant communities rely on river fishing and annual floodplain agriculture, closely adapted to the recession phase of the flood pulse. This article reports on a poorly documented but important challenge facing farmers practicing flood recessional agriculture along the Amazon river: frequent, unpredictable stage reversals (repiquetes) which threaten to ruin crops growing on channel bars. We assess the severity of stage reversals for rice production on exposed river mud bars (barreales) near Iquitos, Peru. Crop loss risk is estimated based on a quantitative analysis of 45 years of daily Amazon stage data and field data from floodplain communities nearby in the Muyuy archipelago, upstream of Iquitos. Rice varieties selected, elevations of silt rich bars where rice is sown, as well as planting and harvest dates are analyzed in the light of the timing, frequencies and amplitudes of observed stage reversals that have the potential to destroy growing rice. We find that unpredictable stage reversals can produce substantial crop losses and shorten significantly the length of average growing seasons on lower elevation river bars. The data reveal that local famers extend planting down to lower bar elevations where the mean probabilities of re-submergence before rice maturity (due to reversals) approach 50%, below which they implicitly consider that the risk of crop loss outweighs the potential reward of planting.

  18. Pesticides in storm runoff from agricultural and urban areas in the Tuolumne River basin in the vicinity of Modesto, California

    Science.gov (United States)

    Kratzer, Charles R.

    1998-01-01

    The occurrence, concentrations, and loads of dissolved pesticides in storm runoff were compared for two contrasting land uses in the Tuolumne River Basin, California, during two different winter storms: agricultural areas (February 1994) and the Modesto urban area (February 1995). Both storms followed the main application period of pesticides on dormant almond orchards. Eight samples of runoff from agricultural areas were collected from a Tuolumne River site, and 10 samples of runoff from urban areas were collected from five storm drains. All samples were analyzed for 46 pesticides. Six pesticides were detected in runoff from agricultural areas, and 15 pesticides were detected in runoff from urban areas. Chlorpyrifos, diazinon, dacthal (DCPA), metolachlor, and simazine were detected in almost every sample. Median concentrations were higher in the runoff from urban areas for all pesticides except napropamide and simazine. The greater occurrence and concentrations in storm drains is partly attributed to dilution of agricultural runoff by nonstorm base-flow in the Tuolumne River and by storm runoff from nonagricultural and nonurban land. In most cases, the occurrence and relative concentrations of pesticides found in storm runoff from agricultural and urban areas were related to reported pesticide application. Pesticide concentrations in runoff from agricultural areas were more variable during the storm hydrograph than were concentrations in runoff from urban areas. All peak pesticide concentrations in runoff from agricultural areas occurred during the rising limb of the storm hydrograph, whereas peak concentrations in the storm drains occurred at varying times during the storm hydrograph. Transport of pesticides from agricultural areas during the February 1994 storm exceeded transport from urban areas during the February 1995 storm for chlorpyrifos, diazinon, metolachlor, napropamide, and simazine. Transport of DCPA was about the same from agricultural and urban

  19. Seasonal variations of nitrogen and phosphorus retention in an agricultural drainage river in East China.

    Science.gov (United States)

    Chen, Dingjiang; Lu, Jun; Wang, Hailong; Shen, Yena; Kimberley, Mark O

    2010-02-01

    Riverine retention decreases loads of nitrogen (N) and phosphorus (P) in running water. It is an important process in nutrient cycling in watersheds. However, temporal riverine nutrient retention capacity varies due to changes in hydrological, ecological, and nutrient inputs into the watershed. Quantitative information of seasonal riverine N and P retention is critical for developing strategies to combat diffuse source pollution and eutrophication in riverine and coastal systems. This study examined seasonal variation of riverine total N (TN) and total P (TP) retention in the ChangLe River, an agricultural drainage river in east China. Water quality, hydrological parameters, and hydrophyte coverage were monitored along the ChangLe River monthly during 2004-2006. Nutrient export loads (including chemical fertilizer, livestock, and domestic sources) entering the river from the catchment area were computed using an export coefficient model based on estimated nutrient sources. Riverine TN and TP retention loads (RNRL and RPRL) were estimated using mass balance calculations. Temporal variations in riverine nutrient retention were analyzed statistically. Estimated annual riverine retention loads ranged from 1,538 to 2,127 t year(-1) for RNRL and from 79.4 to 90.4 t year(-1) for RPRL. Monthly retention loads varied from 6.4 to 300.8 t month(-1) for RNRL and from 1.4 to 15.3 t month(-1) for RPRL. Both RNRL and RPRL increased with river flow, water temperature, hydrophyte coverage, monthly sunshine hours, and total TN and TP inputs. Dissolved oxygen concentration and the pH level of the river water decreased with RNRL and RPRL. Riverine nutrient retention ratios (retention as a percentage of total input) were only related to hydrophyte coverage and monthly sunshine hours. Monthly variations in RNRL and RPRL were functions of TN and TP loads. Riverine nutrient retention capacity varied with environmental conditions. Annual RNRL and RPRL accounted for 30.3-48.3% and 52

  20. Upper Rio Grande water operations model: A tool for enhanced system management

    Science.gov (United States)

    Gail Stockton; D. Michael Roark

    1999-01-01

    The Upper Rio Grande Water Operations Model (URGWOM) under development through a multi-agency effort has demonstrated capability to represent the physical river/reservoir system, to track and account for Rio Grande flows and imported San Juan flows, and to forecast flows at various points in the system. Testing of the Rio Chama portion of the water operations model was...

  1. Estimating the Natural Flow Regime of Rivers With Long-Standing Development: The Northern Branch of the Rio Grande

    Science.gov (United States)

    Blythe, Todd L.; Schmidt, John C.

    2018-02-01

    An estimate of a river's natural flow regime is useful for water resource planning and ecosystem rehabilitation by providing insight into the predisturbance form and function of a river. The natural flow regime of most rivers has been perturbed by development during the 20th century and in some cases, before stream gaging began. The temporal resolution of natural flows estimated using traditional methods is typically not sufficient to evaluate cues that drive native ecosystem function. Additionally, these traditional methods are watershed specific and require large amounts of data to produce accurate results. We present a mass balance method that estimates natural flows at daily time step resolution for the northern branch of the Rio Grande, upstream from the Rio Conchos, that relies only on easily obtained streamflow data. Using an analytical change point method, we identified periods of the measured flow regime during the 20th century for comparison with the estimated natural flows. Our results highlight the significant deviation from natural conditions that occurred during the 20th century. The total annual flow of the northern branch is 95% lower than it would be in the absence of human use. The current 2 year flood has decreased by more than 60%, is shorter in duration, and peaks later in the year. When compared to unregulated flows estimated using traditional mass balance accounting methods, our approach provides similar results.

  2. Consumptive Water Use Analysis of Upper Rio Grande Basin in Southern Colorado.

    Science.gov (United States)

    Dubinsky, Jonathan; Karunanithi, Arunprakash T

    2017-04-18

    Water resource management and governance at the river basin scale is critical for the sustainable development of rural agrarian regions in the West. This research applies a consumptive water use analysis, inspired by the Water Footprint methodology, to the Upper Rio Grande Basin (RGB) in south central Colorado. The region is characterized by water stress, high dessert conditions, declining land health, and a depleting water table. We utilize region specific data and models to analyze the consumptive water use of RGB. The study reveals that, on an average, RGB experiences three months of water shortage per year due to the unsustainable extraction of groundwater (GW). Our results show that agriculture accounts for 77% of overall water consumption and it relies heavily on an aquifer (about 50% of agricultural consumption) that is being depleted over time. We find that, even though potato cultivation provides the most efficient conversion of groundwater resources into economic value (m 3 GW/$) in this region, it relies predominantly (81%) on the aquifer for its water supply. However, cattle, another important agricultural commodity produced in the region, provides good economic value but also relies significantly less on the aquifer (30%) for water needs. The results from this paper are timely to the RGB community, which is currently in the process of developing strategies for sustainable water management.

  3. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Facility Operation and Maintenance and Monitoring and Evaluation, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Lofy, Peter T. (Confederated Tribes of the Umatilla Indian Reservation, Pendleton, OR)

    2003-03-01

    This is the third annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Supplementation using conventional and captive broodstock techniques is being used to restore fisheries in these streams. Statement of Work Objectives for 2000: (1) Participate in implementation of the comprehensive multiyear operations plan for the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCP). (2) Plan for recovery of endemic summer steelhead populations in Catherine Creek and the upper Grande Ronde River. (3) Ensure proper construction and trial operation of semi-permanent adult and juvenile facilities for use in 2000. (4) Collect summer steelhead. (5) Collect adult endemic spring chinook salmon broodstock. (6) Acclimate juvenile spring chinook salmon prior to release into the upper Grande Ronde River and Catherine Creek. (7) Document accomplishments and needs to permitters, comanagers, and funding agency. (8) Communicate project results to the scientific community. (9) Plan detailed GRESCP Monitoring and Evaluation for future years. (10) Monitor adult population abundance and characteristics of Grande Ronde River spring chinook salmon populations and incidentally-caught summer steelhead and bull trout. (11) Monitor condition, movement, and mortality of spring chinook salmon acclimated at remote facilities. (12) Monitor water quality at facilities. (13) Participate in Monitoring & Evaluation of the captive brood component of the Program to document contribution to the Program.

  4. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    Science.gov (United States)

    Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  5. Hydrogeology and deformation of sandbars in response to fluctuations in flow of the Colorado River in the Grand Canyon, Arizona

    Science.gov (United States)

    Carpenter, M.C.; Carruth, R.L.; Fink, J.B.; Boling, J.K.; Cluer, B.L.

    1995-01-01

    Rill erosion, slumping, and fissuring develop on seepage faces of many sandbars along the Colorado River in the Grand Canyon. These processes, observed at low river stage, are a response to residual head gradients in the sandbars caused by the river-stage fluctuation. Three sandbars were instrumented with sensors for continual monitoring of pore pressure and ground-water temperature within the sandbars and river stage. Two of the sandbars also had tilt sensors to aid in determining the relation between ground-water flow within and out of the sandbars and sandbar deformation. Tilting at sandbar 43.1L occurred on the downward limb of the hydrograph in the absence of scour, indicating slumping or a slump-creep sequence. The deformation was caused by outward-flowing bank storage, oversteepening of the lower part of the slope in the zone of fluctuating river stage by filling, and increased effective stress. At sandbar 172.3L, tilts were probably all related to scour and occurred on the rising limb of a hydrograph. Tilt occurred on April 17, May 7, May 13, June 18, and September 1, 1991. On September 1, the entire face of sandbar 172.3L was scoured. Rill erosion and slumping accompanied by measured tilts continued in reduced magnitude on sandbar 43.1L during interim flows. Thus, reduction in the range of discharge does not eliminate degradation caused by rill erosion, slumping, and fissuring. The importance of the ground-water processes is that they occur on every sandbar and become increasingly important on all sandbars in the absence of sandbar-building flows.

  6. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2000.

  7. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Endangered Species Permit Number 1011 (formerly Permit No. 973) authorizes ODFW to take listed spring chinook salmon juveniles from Catherine Creek (CC), Lostine River (LR) and Grande Ronde River (GR) for research and enhancement purposes. Modification 2 of this permit authorizes ODFW to take adults for spawning and the production and release of smolts for the Captive and Conventional broodstock programs. This report satisfies the requirement that an annual report be submitted. Herein we report on activities conducted and provide cursory data analyses for the Grande Ronde spring chinook salmon Captive and Conventional broodstock projects from 1 January-31 December 2001.

  8. Using large-scale flow experiments to rehabilitate Colorado River ecosystem function in Grand Canyon: Basis for an adaptive climate-resilient strategy: Chapter 17

    Science.gov (United States)

    Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.

    2016-01-01

    Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a

  9. An Empirical Study on Sustainable Agriculture Land Use Right Transfer in the Heihe River Basin

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2018-02-01

    Full Text Available Agriculture land use right transfer (ALURT is a new policy designed to meet the demand of the sustainable development of agriculture in China. In the Heihe river basin (HRB, ALURT has also recently been introduced to cope with the emerging challenges in agriculture. In this paper, we empirically study the long-term viability of this new policy in HRB using a sustainability assessment. We collect the documents of ALURT contracts, statistical data of ALURT performance, and conduct interviews with its users. The main finding is that the centralized institutional structure of ALURT in HRB compromises its long-term viability. In particular, the power imbalance under the regulation of the intermediate agency, which causes the dissatisfaction of the participants, is threatening the application of the ALURT policy in the long run. Therefore, we suggest that the role of the intermediate agency in ALURT needs to be redefined, to better serve the sustainable development of agriculture in HRB.

  10. Mitigation measures for the La Grande 1 hydroelectric development

    International Nuclear Information System (INIS)

    Faucher, O.; Gagnon, R.

    1992-01-01

    Measures to mitigate environmental impacts of the La Grande 1 hydroelectric development are described. An overview is presented of the La Grande 1 project, its surrounding environment, and the principle environmental repercussions of the reservoir, hydrological changes between the dam and river mouth, construction activities and permanent and temporary structures, and presence of workers. Mitigation measures including compensation, corrective measures (deforestation, selective cutting, fish populations, wildlife populations, land rehabilitation, access roads, fisheries, and erosion control), protective measures, enhancement measures, and contract and employment opportunities for the Cree population are described. 10 refs., 2 figs

  11. Distribution of heavy metals (Pb, Cd, and Zn) in sediment profiles associated to Rhizophora mangle in Sevilla River - Cienaga Grande de Santa Marta, Colombia

    International Nuclear Information System (INIS)

    Parra, Juan Pablo; Espinosa, Luisa Fernanda

    2008-01-01

    In order to evaluate the vertical distribution of the heavy metals Pb, Cd, and Zn in sediments associated to Rhizophora mangle plants, potentially bioavailable and not bioavailable concentrations of these metals were determined in three sediment cores collected in the Sevilla River, Cienaga Grande de Santa Marta. Measurements were carried out by inductively coupled plasma-atomic emission spectrometry. The results showed that in Sevilla River mangrove ecosystem these metals are accumulated principally in non-bioavailable forms, this means that a great part or them are retained in the sediment. The retention of Pb, Cd, and Zn in the sediments of this mangrove ecosystem is strongly related to the physicochemical parameters pH, salinity, and redox potential, and to organic matter, and silt and clays contents

  12. Linking river nutrient concentrations to land use and rainfall in a paddy agriculture-urban area gradient watershed in southeast China.

    Science.gov (United States)

    Xia, Yongqiu; Ti, Chaopu; She, Dongli; Yan, Xiaoyuan

    2016-10-01

    The effects of land use and land-use changes on river nutrient concentrations are not well understood, especially in the watersheds of developing countries that have a mixed land use of rice paddy fields and developing urban surfaces. Here, we present a three-year study of a paddy agricultural-urban area gradient watershed in southeast China. The annual anthropogenic nitrogen (N) input from the agricultural region to the urban region was high, yet the results showed that the monthly nutrient concentrations in the river were low in the rainy seasons. The nutrient concentrations decreased continuously as the river water passed through the traditional agriculture region (TAR; paddy rice and wheat rotation) and increased substantially in the city region (CR). The traditional agricultural reference region exported most of the nutrient loads at high flows (>1mmd(-1)), the intensified agricultural region (IAR, aquaculture and poultry farming) exported most of the nutrient loads at moderate flows (between 0.5 and 1mmd(-1)), and the CR reference area exported most of the nutrient loads under low to moderate flows. We developed a statistical model to link variations in the nutrient concentrations to the proportion of land-use types and rainfall. The statistical results showed that impervious surfaces, which we interpret as a proxy for urban activities including sewage disposal, were the most important drivers of nutrient concentrations, whereas water surfaces accounted for a substantial proportion of the nutrient sinks. Therefore, to efficiently reduce water pollution, sewage from urban areas must be addressed as a priority, although wetland restoration could also achieve substantial pollutant removal. Copyright © 2016. Published by Elsevier B.V.

  13. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    Science.gov (United States)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were

  14. Determination of trace elements and heavy metals in agricultural products cultivated at the Rimac river valley in Lima city using nuclear and related analytical techniques

    OpenAIRE

    Bedregal, Patricia; Torres, Blanca; Olivera, Paula; Mendoza, Pablo; Ubillús, Marco; Creed-Kanashiro, H.; Penny, M.; Junco, J.; Ganoza, L.

    2004-01-01

    There are strong indications that the Rimac river valley is being contaminated with heavy metals and an excess of trace elements that come from some industrial and mining activities developed along the Rimac river valley. The agricultural products cultivated there in could be suffering the same effect. Nuclear and related analytical techniques will play an important role in the study of pollution by providing information concerning the degree of contamination in some agricultural products cul...

  15. Multisource Data-Based Integrated Agricultural Drought Monitoring in the Huai River Basin, China

    Science.gov (United States)

    Sun, Peng; Zhang, Qiang; Wen, Qingzhi; Singh, Vijay P.; Shi, Peijun

    2017-10-01

    Drought monitoring is critical for early warning of drought hazard. This study attempted to develop an integrated remote sensing drought monitoring index (IRSDI), based on meteorological data for 2003-2013 from 40 meteorological stations and soil moisture data from 16 observatory stations, as well as Moderate Resolution Imaging Spectroradiometer data using a linear trend detection method, and standardized precipitation evapotranspiration index. The objective was to investigate drought conditions across the Huai River basin in both space and time. Results indicate that (1) the proposed IRSDI monitors and describes drought conditions across the Huai River basin reasonably well in both space and time; (2) frequency of drought and severe drought are observed during April-May and July-September. The northeastern and eastern parts of Huai River basin are dominated by frequent droughts and intensified drought events. These regions are dominated by dry croplands, grasslands, and highly dense population and are hence more sensitive to drought hazards; (3) intensified droughts are detected during almost all months except January, August, October, and December. Besides, significant intensification of droughts is discerned mainly in eastern and western Huai River basin. The duration and regions dominated by intensified drought events would be a challenge for water resources management in view of agricultural and other activities in these regions in a changing climate.

  16. Impact of Potentially Contaminated River Water on Agricultural Irrigated Soils in an Equatorial Climate

    Directory of Open Access Journals (Sweden)

    Juan M. Trujillo-González

    2017-06-01

    Full Text Available Globally, it is estimated that 20 million hectares of arable land are irrigated with water that contains residual contributions from domestic liquids. This potentially poses risks to public health and ecosystems, especially due to heavy metals, which are considered dangerous because of their potential toxicity and persistence in the environment. The Villavicencio region (Colombia is an equatorial area where rainfall (near 3000 mm/year and temperature (average 25.6 °C are high. Soil processes in tropical conditions are fast and react quickly to changing conditions. Soil properties from agricultural fields irrigated with river water polluted by a variety of sources were analysed and compared to non-irrigated control soils. In this study, no physico-chemical alterations were found that gave evidence of a change due to the constant use of river water that contained wastes. This fact may be associated with the climatic factors (temperature and precipitation, which contribute to fast degradation of organic matter and nutrient and contaminants (such as heavy metals leaching, or to dilution of wastes by the river.

  17. Water Environment Evolution along the China Grand Canal

    International Nuclear Information System (INIS)

    Mao, F; Wu, Y X; Yang, B F; Li, X J

    2014-01-01

    The China Grand Canal is one of the earliest canals in the world, having lasted for nearly 3000 years. Even its section canals have a rich history, such as the North-South Grand Canal that was established during the Sui Dynasty, whereas the Beijing-Hangzhou Canal was excavated during the Yuan Dynasty and the east line of the South-to-North Water Diversion. As one of the longest in the world, the China Grand Canal's total length is over 3500 kilometers. This length includes the navigable, unnavigable, and underground sections. Making the best use of situations and according to local conditions, the Chinese people harmoniously constructed the Beijing-Hangzhou Canal with nature. Tens of millions of workers took nearly 3000 years to complete the great shipping system. Navigable sections still exist for up to 900 kilometers and the volume of freight traffic is approximately 300 million tons. The canal remains the main logistical channel of the North-to-South Coal Transportation, South-to-North Water Diversion, and resources circulation. To date, China is promoting the success of heritage application. Part of these efforts is the declaration of the China Grand Canal as a World Cultural Heritage by 2014. In addition, the east route of the South-to-North Water Transfer project is planned to be navigable by 2016. The ancient Beijing-Hangzhou Grand Canal will usher in the new ecological civilization and cultural revival along the canal. This paper presents technical methods of water environment evolution research on the river system, river, and water quality along the Beijing-Hangzhou Canal through the integration of historical literature and modern remote sensing image data. The study carried out water environment investigation and analysis along the Beijing-Hangzhou canal by using ETM, SPOT image data, and GPS measurement data. Spatial and temporal evolution characteristics and regulations of the Beijing-Hangzhou Grand Canal regional water environment in the span of

  18. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona

    Science.gov (United States)

    Choudhury, A.; Hoffnagle, T.L.; Cole, Rebecca A.

    2004-01-01

    A 2-yr, seasonal, parasitological study of 1,435 fish, belonging to 4 species of native fishes and 7 species of nonnative fishes from the lower Little Colorado River (LCR) and tributary creeks, Grand Canyon, Arizona, yielded 17 species of parasites. These comprised 1 myxozoan (Henneguya exilis), 2 copepods (Ergasilus arthrosis and Lernaea cyprinacea), 1 acarine (Oribatida gen. sp.), 1 piscicolid leech (Myzobdella lugubris), 4 monogeneans (Gyrodactylus hoffmani, Gyrodactylus sp., Dactylogyrus extensus, and Ligictaluridus floridanus), 4 nematodes (Contracaecum sp., Eustrongylides sp., Rhabdochona sp., and Truttaedacnitis truttae), 3 cestodes (Bothriocephalus acheilognathi, Corallobothrium fimbriatum, and Megathylacoides giganteum), and 2 trematodes (Ornithodiplostomum sp. and Posthodiplostomum sp.). Rhabdochona sp. was the only adult parasite native to the LCR. Infection intensities of Ornithodiplostomum sp. and B. acheilognathi were positively correlated with length of the humpback chub Gila cypha. Adult helminths showed a high degree of host specificity, except B. acheilognathi, which was recovered from all fish species examined but was most abundant in cyprinids. Abundance of B. acheilognathi in the humpback chub was highest in the fall and lowest in the summer in both reaches of the LCR. There was no major taxonomic difference in parasite assemblages between the 2 different reaches of the river (LC1 and LC2). Parasite community diversity was very similar in humpback chub, regardless of sampling site or time. The parasite fauna of the LCR is numerically dominated by B. acheilognathi and metacercariae of Ornithodiplostomum sp. The richest and most diverse component community occurred in a nonnative species, the channel catfish Ictalurus punctatus, but infracommunity species richness was highest in a native host, humpback chub.

  19. Perfluoroalkyl substances in waters along the Grand Canal, China.

    Science.gov (United States)

    Piao, H T; Jiao, X C; Gai, N; Chen, S; Lu, G H; Yin, X C; Yamazaki, E; Yamashita, N; Tan, K Y; Yang, Y L; Pan, J

    2017-07-01

    The Grand Canal, also known as the Beijing-Hangzhou Grand Canal, is a UNESCO World Heritage Site and the longest canal in the world. It is an important trunk line of the South-to-North Water Diversion Project in China. The contamination status and spatial distributions of perfluoroalky substances (PFASs) in waters of the Grand Canal were investigated. The total concentrations of PFASs (∑PFASs) range from 7.8 ng/L to 218.0 ng/L, with high ∑PFASs occurring in the southern part of the Grand Canal which is located in a highly urbanized and economically developed region. The dominance of PFOA showed a decreasing trend toward north while shorter chain homologue proportions increased in the northern part of the Canal which mainly traverses underdeveloped and rural areas in Eastern China. Positive correlations were observed between ∑PFASs and the population density as well as GDP per capita. Intersection with large rivers may affect the contamination levels and composition of PFASs in the water of the Grand Canal near the intersection sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. L'eau et l'agriculture

    OpenAIRE

    DUC, Myriam

    2012-01-01

    Cours sur la gestion des ressources en eau en particuliers les relation entre l'eau et l'agriculture, première activité consommatrice d'eau. Rappel du cycle de l’eau. Rappel des usages de l’eau : l’agriculture une grande consommatrice ! Les défis : trouver un moyen pour concilier alimentation humaine et respect des écosystèmes (l’agriculture source de pollutions, dégradation des terres…) Des notions : relations eau-plante-sol : Cultures et consommations d&#...

  1. Radioecological studies of agricultural floodplain of the Mulde River on the consequences of the former uranium mining; Radiooekologische Untersuchungen landwirtschaftlich genutzter Auen der Mulde zu den Folgen des ehemaligen Uranbergbaus

    Energy Technology Data Exchange (ETDEWEB)

    Bister, Stefan

    2012-12-18

    At the time of Warsaw Pact, the former German Democratic Republic (GDR) was one of the largest producer of uranium in the world and the most important supplier of uranium for the USSR. The former Saxon uranium mining areas are drained by the Zwickauer Mulde River. The Mulde River is a left side tributary or the Elbe River and mainly situated in Saxony. The frontal flows, Freiberger Mulde River and Zwickauer Mulde River, merge close to the small village of Sermuth to form the Vereinigte Mulde River, which flows into the Elbe River near Dessau. This research project was established to quantify the long-term effect of the former uranium mining activities on the floodplain ecosystem of the Mulde River. The radiological impact from the agricultural use of the alluvial soils was investigated. More than 280 samples from different environmental compartments (river water, surface sediment from the river, alluvial soils and agricultural crops) were sampled and analysed by radiometric methods. All of the compartments still show an impact from the former uranium mining. However, comparisons with earlier measurements reveal a considerable decrease of the radionuclide contamination. Thus, it is not possible to relate the activities in the soil samples to the activities of the water and sediment samples measured in parallel. Radionuclides originating from the alluvial soils enter the human food chain as a result of the agricultural use of the floodplains. Yet, the radiological effect is small. The uranium contamination of the river water results in activity values lying beyond the threshold of the current German Drinking Water Ordinance. Dose calculations based on the ''Berechnungsgrundlage Bergbau'' [BGB10] do not exceed the guidance level of 1 mSv additional potential radiation exposure per year for the current agricultural use, even assuming most disadvantageous conditions.

  2. USGS Activities at Lake Roosevelt and the Upper Columbia River

    Science.gov (United States)

    Barton, Cynthia; Turney, Gary L.

    2010-01-01

    Lake Roosevelt (Franklin D. Roosevelt Lake) is the impoundment of the upper Columbia River behind Grand Coulee Dam, and is the largest reservoir within the Bureau of Reclamation's Columbia Basin Project (CBP). The reservoir is located in northeastern Washington, and stretches 151 miles from Grand Coulee Dam north to the Canadian border. The 15-20 miles of the Columbia River downstream of the border are riverine and are under small backwater effects from the dam. Grand Coulee Dam is located on the mainstem of the Columbia River about 90 miles northwest of Spokane. Since the late 1980s, trace-element contamination has been known to be widely present in Lake Roosevelt. Trace elements of concern include arsenic, cadmium, copper, lead, mercury, and zinc. Contaminated sediment carried by the Columbia River is the primary source of the widespread occurrence of trace-element enrichment present in Lake Roosevelt. In 2001, the U.S. Environmental Protection Agency (EPA) initiated a preliminary assessment of environmental contamination of the Lake Roosevelt area (also referred to as Upper Columbia River, UCR site, or UCR/LR site) and has subsequently begun remedial investigations of the UCR site.

  3. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  4. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  5. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    Science.gov (United States)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  6. Rainfall characteristics and their implications for rain-fed agriculture : a case study in the Upper Zambezi River Basin

    NARCIS (Netherlands)

    Beyer, M.; Wallner, M.; Bahlmann, L.; Thiemig, V.; Dietrich, J.; Billib, M.

    2016-01-01

    This study investigates rainfall characteristics in the Upper Zambezi River Basin and implications for rain-fed agriculture. Seventeen indices describing the character of each rainy season were calculated using a bias-corrected version of TRMM-B42 v6 rainfall estimate for 1998–2010. These were

  7. Bird community structure in riparian environments in Cai River, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline Brummelhaus

    2012-06-01

    Full Text Available Urbanization produces changes in riparian environments, causing effects in the structure of bird communities, which present different responses to the impacts. We compare species richness, abundance, and composition of birds in riparian environments with different characteristics in Cai River, Rio Grande do Sul, Brazil. We carried out observations in woodland, grassland, and urban environments, between September 2007 and August 2008. We listed 130 bird species, 29 species unique to woodland environment, and an endangeredspecies: Triclaria malachitacea. Bird abundance differed from woodland (n = 426 individuals to urban environments (n = 939 individuals (F2,6 = 7.315; P = 0.025. Species composition and feeding guilds differed significantly in the bird community structures among these three riparian environments. In the grassland and urban environments there were more generalist insectivorous species, while in the woodland environments we find more leaf and trunk insectivorous species and frugivorous species, sensitive to human impacts. Bird species can be biological quality indicators and they contribute to ecosystems performing relevant functions. With the knowledge on bird community structure and their needs, it is possible to implement management practices for restoration of degraded riparian environments.

  8. Grande Ronde Endemic Spring Chinook Project - ODFW, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Scott

    2009-04-10

    Core activities of the Grande Ronde Endemic Spring Chinook Supplementation Program (GRESCSP) are funded through the authority of the Lower Snake River Fish and Wildlife Compensation Plan (LSRCP). The LSRCP program was approved by the Water Resources Development Act of 1976, PL 94-587, Section 102, 94th Congress substantially in accordance with the Special Report, LSRCP, June 1975 on file with the Chief of Engineers. The LSRCP was prepared and submitted in compliance with the Fish and Wildlife Coordination Act of 1958, PL 85-624, 85th Congress, August 12, 1958 to mitigate for the losses of fish and wildlife caused by the construction of dams on lower Snake River. The GRESCSP is an artificial propagation program that was initiated by Bonneville Power Administrations Fish and Wildlife program in the mid 1990's. The intent of this program was to change the mitigation aspect of the LSRCP program (harvest mitigation) to an integrated supplementation program; inasmuch as, hatchery produced fish could be experimentally used as a recovery tool and fish surplus to mitigation would be available for in-place and in-kind harvest. Fish production is still authorized by the LSRCP with the original mitigation return goal of 5,860 adult spring Chinook to the project area. The GRESCSP was developed with two primary components: (1) conventional broodstock (projects 199800702; 199800703; 199800704) and (2) captive brood (projects 199801001; 199801006). The GRESCSP relies on cooperative M&E efforts from the LSRCP including setting aside the Wenaha and Minam tributaries as natural production reserves components used for reference streams. The GRESCSP, coordinated with federal and tribal partners, identifies production levels for both propagation components and weir management strategies for each of the three supplemented tributary areas within the Grande Ronde Sub-basin. The three supplemented areas are Catherine Creek, Lostine River, and upper Grande Ronde River. Lookingglass

  9. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy L.; Hair, Donald; Gee, Sally

    2009-03-31

    The Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program is designed to rapidly increase numbers of Chinook salmon in stocks that are in imminent danger of extirpation in Catherine Creek (CC), Lostine River (LR) and upper Grande Ronde River (GR). Natural parr are captured and reared to adulthood in captivity, spawned (within stocks) and their progeny reared to smoltification before being released into the natal stream of their parents. This program is co-managed by ODFW, National Marine Fisheries Service, Nez Perce Tribe and Confederated Tribes of the Umatilla Indian Reservation. Presmolt rearing was initially conducted at Lookingglass Fish Hatchery (LFH) but parr collected in 2003 and later were reared at Wallowa Fish Hatchery (WFH). Post-smolt rearing is conducted at Bonneville Fish Hatchery (BOH - freshwater) and at Manchester Research Station (MRS - saltwater). The CC and LR programs are being terminated, as these populations have achieved the goal of a consistent return of 150 naturally spawning adults, so the 2005 brood year was the last brood year collected for theses populations. The Grande Ronde River program continued with 300 fish collected each year. Currently, we are attempting to collect 150 natural parr and incorporate 150 parr collected as eggs from females with low ELISA levels from the upper Grande Ronde River Conventional Hatchery Program. This is part of a comparison of two methods of obtaining fish for a captive broodstock program: natural fish vs. those spawned in captivity. In August 2007, we collected 152 parr (BY 2006) from the upper Grande Ronde River and also have 155 Grande Ronde River parr (BY 2006) that were hatched from eyed eggs at LFH. During 2008, we were unable to collect natural parr from the upper Grande Ronde River. Therefore, we obtained 300 fish from low ELISA females from the upper Grande Ronde River Conventional Program. In October 2008 we obtained 170 eyed eggs from the upper Grande Ronde river Conventional

  10. Natural resources in the Agriculture

    International Nuclear Information System (INIS)

    Tovar B, Diana Alejandra; Zorro Z, Ricardo

    2003-01-01

    The objective of this investigation is identification the relation between the naturals resources degradation, and the Colombian agriculture productive. It's means a way to quantification the influence of a bad utilization in the water and land resources in the agricultural sector, to guide the sector in to a sustainable development. This objective is to make by an empirical exercise where we built four econometrics models (ordinary minims square) based in the Colombia's history statistic of the variables: land erosion, river sedimentation, plaguicides, Insecticides, Fungicides y Herbicides, agriculture productivity and agriculture yield. The resolute of this exercise is that an increase in the erosion area also the river sedimentation gives a decrease in the agriculture productivity. The same situation happens when it use the consumption of the insecticides and the fungicides which in the long time shows an opposite relation with the yield and productivity. At last we have that the aperture of the ninety's, bring to good changes for the agricultural productivity. So that, it concludes that the rivers and lands degradation affect in the long time the agriculture yield and productivity. The best use in the naturals resources, can help to increase the agricultural development, because it can increase the yield while it maintain for the future the possibility curve of production when it conserve the resources

  11. 76 FR 49381 - Oranges and Grapefruit Grown in Lower Rio Grande Valley in Texas; Increased Assessment Rate

    Science.gov (United States)

    2011-08-10

    ... Grande Valley in Texas; Increased Assessment Rate AGENCY: Agricultural Marketing Service, USDA. ACTION... Agricultural Marketing Service (AMS) has considered the economic impact of this rule on small entities...: August 3, 2011. David R. Shipman, Acting Administrator, Agricultural Marketing Service. [FR Doc. 2011...

  12. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old

  13. First record of Arapaima gigas (Schinz, 1822) (Teleostei: Osteoglossomorpha), the "pirarucu", in the upper Paraná River basin, Southeast Brazil

    OpenAIRE

    Carvalho, Fernando; Casatti, Lilian; Manzotti, Angelo; Ravazzi, Délcero

    2015-01-01

    Arapaima gigas (Schinz), the "pirarucu", is one of largest freshwater fish of the Neotropical region, naturally occurring in the Amazon, Essequibo, and Orinoco river basins. Herein, it is first recorded from the Grande River, in the upper Paraná River basin. This record is based on the finding of one dead specimen on the left margin of the Grande River, and in situ observation of juveniles and adults in the river.

  14. Human impacts on river water quality- comparative research in the catchment areas of the Tone River and the Mur River-

    Science.gov (United States)

    Kogure, K.

    2013-12-01

    Human activities in river basin affect river water quality as water discharges into river with pollutant after we use it. By detecting pollutants source, pathway, and influential factor of human activities, it will be possible to consider proper river basin management. In this study, material flow analysis was done first and then nutrient emission modeling by MONERIS was conducted. So as to clarify land use contribution and climate condition, comparison of Japanese and European river basin area has been made. The model MONERIS (MOdelling Nutrient Emissions in RIver Systems; Behrendt et al., 2000) was applied to estimate the nutrient emissions in the Danube river basin by point sources and various diffuse pathways. Work for the Mur River Basin in Austria was already carried out by the Institute of Water Quality, Resources and Waste Management at the Vienna University of Technology. This study treats data collection, modelling for the Tone River in Japan, and comparative analysis for these two river basins. The estimation of the nutrient emissions was carried out for 11 different sub catchment areas covering the Tone River Basin for the time period 2000 to 2006. TN emissions into the Tone river basin were 51 kt/y. 67% was via ground water and dominant for all sub catchments. Urban area was also important emission pathway. Human effect is observed in urban structure and agricultural activity. Water supply and sewer system make urban water cycle with pipeline structure. Excess evapotranspiration in arable land is also influential in water cycle. As share of arable land is 37% and there provides agricultural products, it is thought that N emission from agricultural activity is main pollution source. Assumption case of 10% N surplus was simulated and the result was 99% identical to the actual. Even though N surplus reduction does not show drastic impact on N emission, it is of importance to reduce excess of fertilization and to encourage effective agricultural activity

  15. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    Science.gov (United States)

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Trend-outflow method for understanding interactions of surface water with groundwater and atmospheric water for eight reaches of the Upper Rio Grande

    Science.gov (United States)

    Liu, Yi; Sheng, Zhuping

    2011-11-01

    SummaryAtmospheric water, surface water, and groundwater interact very actively through hydrologic processes such as precipitation, infiltration, seepage, irrigation, drainage, evaporation, and evapotranspiration in the Upper Rio Grande Basin. A trend-outflow method has been developed in this paper to gain a better understanding of the interactions based on cumulated inflow and outflow data for any river reaches of interest. A general trend-outflow equation was derived by associating the net interaction of surface water with atmospheric water as a polynomial of inflow and the net interaction of surface water with groundwater as a constant based on surface water budget. Linear and quadratic relations are probably two common trend-outflow types in the real world. It was found that trend-outflows of the Upper Rio Grande reaches, Española, Albuquerque, Socorro-Engle, Palomas, and Rincon are linear with inflow, while those of reaches, Belen, Mesilla and Hueco are quadratic. Reaches Belen, Mesilla and Hueco are found as water deficit reaches mainly for irrigated agriculture in extreme drought years.

  17. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2003-9

    Science.gov (United States)

    Rankin, Dale R.; McCoy, Kurt J.; More, Geoff J.M.; Worthington, Jeffrey A.; Bandy-Baldwin, Kimberly M.

    2013-01-01

    The Albuquerque, New Mexico, area has two principal sources of water: groundwater from the Santa Fe Group aquifer system and surface water from the San Juan-Chama Diversion Project. From 1960 to 2002, groundwater withdrawals from the Santa Fe Group aquifer system have caused water levels to decline more than 120 feet in some places within the Albuquerque area, resulting in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande. In 2003, the U.S. Geological Survey in cooperation with the Bureau of Reclamation, the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers began a detailed characterization of the hydrogeology of the Rio Grande riparian corridor in the Albuquerque, New Mexico, area to provide hydrologic data and enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to the riverside drains. A simple conceptual model of flow indicates that the groundwater table gently slopes from the Rio Grande towards riverside drains and the outer boundaries of the inner valley. Water infiltrating from the Rio Grande initially moves vertically below the river, but, as flow spreads farther into the Rio Grande inner valley alluvial aquifer, flow becomes primarily horizontal. The slope of the water-table surface may be strongly controlled by the riverside drains and influenced by other more distal hydrologic boundary conditions, such as groundwater withdrawals by wells. Results from 35 slug tests performed in the Rio Grande inner valley alluvial aquifer during January and February 2009 indicate that hydraulic-conductivity values ranged from 5 feet per day to 160 feet per day with a median hydraulic-conductivity for all transects of 40 feet per day. Median annual horizontal hydraulic gradients in the Rio Grande inner valley alluvial aquifer ranged from 0.011 to 0

  18. 78 FR 43850 - Opportunity for Designation in Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Opportunity for Designation in Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND and Plainview, TX; Areas; Request for Comments on the Official Agencies Servicing These Areas AGENCY: Grain...

  19. 75 FR 52925 - Opportunity for Designation in the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande...

    Science.gov (United States)

    2010-08-30

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Opportunity for Designation in the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND; and Plainview, TX Areas; Request for Comments on the Official Agencies Servicing These Areas AGENCY...

  20. 76 FR 15936 - Designation for the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND...

    Science.gov (United States)

    2011-03-22

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Designation for the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND; and Plainview, TX Areas AGENCY: Grain Inspection, Packers and Stockyards Administration, USDA. ACTION: Notice...

  1. Numerical model of turbulence, sediment transport, and morphodynamics tested in the Colorado River at Grand Canyon

    Science.gov (United States)

    Alvarez, L. V.; Grams, P.

    2017-12-01

    We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the

  2. Grande Ronde Basin Fish Habitat Enhancement Project : 2007 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance R.; Morton, Winston H.

    2008-12-30

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an intergovernmental contract to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the contract, and in 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife and partners is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. Both passive and active restoration treatment techniques are used. Passive regeneration of habitat, using riparian exclosure fencing and alternate water sources are the primary method to restore degraded streams when restoration can be achieved primarily through changes in management. Active restoration techniques using plantings, bioengineering, site-specific instream structures, or whole stream channel alterations are utilized when streams are more severely degraded and not likely to recover in a reasonable timeframe. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and

  3. Steady incision of Grand Canyon at the million year timeframe: a case for mantle-driven differential uplift

    Science.gov (United States)

    Crow, Ryan S.; Karl Karlstrom,; Laura Crossey,; Richard Young,; Michael Ort,; Yemane Asmerom,; Victor Polyak,; Andrew Darling,

    2014-01-01

    The Grand Canyon region provides an excellent laboratory to examine the interplay between river incision, magmatism, and the geomorphic and tectonic processes that shape landscapes. Here we apply U-series, Ar–Ar, and cosmogenic burial dating of river terraces to examine spatial variations in incision rates along the 445 km length of the Colorado River through Grand Canyon. We also analyze strath terrace sequences that extend to heights of several hundred meters above the river, and integrate these with speleothem constrained maximum incision rates in several reaches to examine any temporal incision variations at the million-year time frame. This new high-resolution geochronology shows temporally steady long-term incision in any given reach of Grand Canyon but significant variations along its length from 160 m/Ma in the east to 101 m/Ma in the west. Spatial and temporal patterns of incision, and the long timescale of steady incision rule out models where geomorphic controls such as climate oscillations, bedrock strength, sediment load effects, or isostatic response to differential denudation are the first order drivers of canyon incision. The incision pattern is best explained by a model of Neogene and ongoing epeirogenic uplift due to an eastward propagating zone of increased upper mantle buoyancy that we infer from propagation of Neogene basaltic volcanism and a strong lateral gradient in modern upper mantle seismic structure.

  4. Variable exchange between a stream and an aquifer in the Rio Grande Project Area

    Science.gov (United States)

    Sheng, Z.; Abudu, S.; Michelsen, A.; King, P.

    2016-12-01

    Both surface water and groundwater in the Rio Grande Project area in southern New Mexico and Far West Texas have been stressed by natural conditions such as droughts and human activities, including urban development and agricultural irrigation. In some area pumping stress in the aquifer becomes so great that it depletes the river flow especially during the irrigation season, typically from March through October. Therefore understanding such relationship between surface water and groundwater becomes more important in regional water resources planning and management. In this area, stream flows are highly regulated by the upstream reservoirs during the irrigation season and greatly influenced by return flows during non-irrigation season. During a drought additional groundwater pumping to supplement surface water shortage further complicates the surface water and groundwater interaction. In this paper the authors will use observation data and results of numerical models (MODFLOW) to characterize and quantify hydrological exchange fluxes between groundwater in the aquifers and surface water as well as impacts of groundwater pumping. The interaction shows a very interesting seasonal variation (irrigation vs. non-irrigation) as well as impact of a drought. Groundwater has been pumped for both municipal supplies and agricultural irrigation, which has imposed stresses toward both stream flows and aquifer storage. The results clearly show that historic groundwater pumping has caused some reaches of the river change from gaining stream to losing stream. Beyond the exchange between surface water and groundwater in the shallow aquifer, groundwater pumping in a deep aquifer could also enhance the exchanges between different aquifers through leaky confining layers. In the earlier history of pumping, pumping from the shallow aquifer is compensated by simple depletion of surface water, while deep aquifer tends to use the aquifer storage. With continued pumping, the cumulative

  5. Nutrient Reduction in Agricultural Green Infrastructure: An Analysis of the Raccoon River Watershed

    Directory of Open Access Journals (Sweden)

    James F. Canning

    2018-06-01

    Full Text Available Agricultural intensification has had the undesirable effect of degrading water quality throughout the United States. Nitrate pollution presents a difficult problem for rural and urban communities, and it contributes to the immense Gulf of Mexico Hypoxia Zone. Current U.S. policy prohibits regulation of agricultural runoff because it is a nonpoint source. The Raccoon River Watershed upstream of Des Moines, Iowa, USA has some of the highest nitrate levels in the nation, and the drinking water utility in Des Moines unsuccessfully pursued litigation against drainage districts in the watershed. We propose a cooperative solution between urban residents and upstream rural residents—namely, the installation of agricultural green infrastructure in the form of riparian buffers throughout the watershed enabled by the principles of water quality trading. We compare this distributed, green approach with a centralized, gray approach (i.e., building a new nitrate removal facility at the drinking water utility. Using terrain analysis, we determined that first-order streams are the most fitting location for riparian buffers. We estimate the buffer installation to cost between $155–$185 million; maintenance of the current nitrate removal facility will cost $72 million, while a new facility could cost up to $184 million. Riparian buffer installation offers more indirect, non-quantified benefits than maintaining or building new centralized, gray treatment (e.g., living-wage jobs and in-stream water quality improvement. Our analysis could act as a model for water quality trading and distributed agricultural green infrastructure in other communities facing similar water quality challenges.

  6. Metal and trace element sediment assessment from Salto Grande reservoir, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A., E-mail: walace@usp.br [Setor de Analises Toxicologicas. CETESB, Sao Paulo, SP (Brazil); Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao com Neutrons

    2011-07-01

    The Salto Grande Reservoir is used for electric generation, irrigation, fish farming, recreation and water supply for the region's cities. The reservoir belongs to the city of Americana, located in on the eastern region of Sao Paulo State, Brazil. It belongs to the Piracicaba River Hydrographic Basin, the second most important economic and populated region and one of the most polluted areas in the State. This basin is located in a highly industrialized and agricultural region. Due to urban, industrial and agricultural activities as well as sewage wastes the water and sediments of this reservoir and surroundings are extremely contaminated, mainly by metals, according to CETESB (Environmental Control Agency of the Sao Paulo State). In order to obtain better information about its sediment contamination the present study reports results of the concentration of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Se, Ta, Th, U, Zn and rare earth (Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb)) elements in sediments and Cd, Cr, Cu, Ni and Pb concentration in sediments and water from the Salto Grande Reservoir. Multielementar analysis was carried out by Instrumental Neutron Activation Analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cd, Cr, Cu, Pb, Ni and Zn were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL) and adopted by CETESB, (author)

  7. Metal and trace element sediment assessment from Salto Grande reservoir, Sao Paulo state, Brazil, by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Favaro, Deborah I.T.

    2011-01-01

    The Salto Grande Reservoir is used for electric generation, irrigation, fish farming, recreation and water supply for the region's cities. The reservoir belongs to the city of Americana, located in on the eastern region of Sao Paulo State, Brazil. It belongs to the Piracicaba River Hydrographic Basin, the second most important economic and populated region and one of the most polluted areas in the State. This basin is located in a highly industrialized and agricultural region. Due to urban, industrial and agricultural activities as well as sewage wastes the water and sediments of this reservoir and surroundings are extremely contaminated, mainly by metals, according to CETESB (Environmental Control Agency of the Sao Paulo State). In order to obtain better information about its sediment contamination the present study reports results of the concentration of some major (Ca, Fe, K and Na), trace (As, Ba, Br, Co, Cr, Cs, Hf, Rb, Sb, Se, Ta, Th, U, Zn and rare earth (Ce, Eu, La, Lu, Nd, Sc, Sm, Tb and Yb)) elements in sediments and Cd, Cr, Cu, Ni and Pb concentration in sediments and water from the Salto Grande Reservoir. Multielementar analysis was carried out by Instrumental Neutron Activation Analysis (INAA). Multielemental concentrations in the sediment samples were compared to NASC (North American Shale Composite) values. The concentration values for metals As, Cd, Cr, Cu, Pb, Ni and Zn were compared to the Canadian Council of Minister of the Environment (CCME) oriented values (TEL and PEL) and adopted by CETESB, (author)

  8. Nesting ecology and nest success of the Blue Grosbeak along two rivers in New Mexico

    Science.gov (United States)

    Jean-Luc E. Cartron; Deborah M. Finch; David L. Hawksworth; Scott H. Stoleson

    2013-01-01

    From 1997 through 2008, we studied the nesting habits and nest success of the Blue Grosbeak (Passerina cerulean) along the middle Gila River (1997-2001) and the middle Rio Grande (2000-2008) in New Mexico. A riparian forest of cottonwoods grows along both rivers. but the forest along the Rio Grande is a much more intensively managed ecosystem, with an understory...

  9. Exploring the impact of agriculture on nitrogen and phosphorus biogeochemistry in global rivers during the twentieth century (Invited)

    Science.gov (United States)

    Bouwman, L.; Beusen, A.; Van Beek, L. P.

    2013-12-01

    Nutrients are transported from land to sea through the continuum formed by soils, groundwater, riparian zones, floodplains, streams, rivers, lakes, and reservoirs. The hydrology, ecology and biogeochemical processing in each of these components are strongly coupled and result in retention of a significant fraction of the nutrients transported. This paper analyzes the global changes in nutrient biogeochemical processes and retention in rivers during the past century (1900-2000); this period encompasses dramatic increases in human population and economic human activities including agriculture that have resulted in major changes in land use, nutrient use in agriculture, wastewater flows and human interventions in the hydrology (1). We use the hydrological PCR-GLOBWB model (2) for the period 1900-2000, including climate variability and the history of dam construction and land use conversion. Global agricultural and natural N and P soil budgets for the period 1900-2000 are the starting point to simulate nutrient flows from the soil via surface runoff and leaching through the groundwater system and riparian zones. In-stream processes are described with the nutrient spiraling concept. In the period 1900-2000, the global soil N budget surplus (inputs minus withdrawal in harvested crops) for agricultural and natural ecosystems increased from 118 to 202 Tg yr-1, and the global P budget increased from nutrient delivery to streams and river nutrient export has increased rapidly in the 20th century. Model results are sensitive to factors determining the N and P delivery, as well as in-stream processes. The most uncertain factors are N delivery to streams by groundwater (denitrification as a function of thickness and reactivity of aquifers), and in-stream N and P retention parameters (net uptake velocity, retention as function of concentration). References 1. Bouwman AF, Beusen AHW, Griffioen J, Van Groenigen JW, Hefting MM, Oenema O, et al. Global trends and uncertainties in

  10. First records of Freshwater Bivalves of Ilha Grande National Park, Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Flávio Henrique Ragonha

    2014-03-01

    Full Text Available The Ilha Grande National Park, Paraná, Brazil, is located in the Upper Paraná River and has characteristics typical of a floodplains. This protected area includes lagoons connected and disconnected to the Paraná River, although the latter also connect during periods of high water level, thus composing a heterogeneous group of lacustrine environments. The enormous potential the flora and fauna diversities are still little known to the region, as can be seen through benthic invertebrates, inclunding bivalves mollusks. The granulometric composition of these floodplain lagoons was formed mainly by mud and very fine sand. Furthermore, organic matter composition was predominantly of fine particulate. The other abiotic factors differed from lagoons located within the island of the park to those located in the left margin of Paraná River. The results demonstrated the importance of abiotic factors such as the physical composition of granulometric texture, organic matter and macrophyte banks, to the establishment of bivalves in these floodplain lagoons. We recorded bivalves of Pisidium (native, Diplodon (native, and Corbicula (invasive. The highest values of Diplodon sp. density were observed at São João/C lake, for Pisidium sterkianum (Pilsbry, 1897 at São João/M lake, and to Jatobá/C lagoon with high density of invasive species Corbicula fluminea (Müller, 1774. This study to obtain conduct the first records of freshwater bivalves in floodplains lagoon in the Ilha Grande National Park, and provides contributions to better understanding the ecology of these mollusks. The recording of native species in the region of Upper Paraná River floodplain after a lomg period without new records, demonstrated the importance of protecting the lagoons of the Ilha Grande National Park as they can be a possible refuge to some species of native freshwater bivalves.

  11. Colorado River cutthroat trout: a technical conservation assessment

    Science.gov (United States)

    Michael K. Young

    2008-01-01

    The Colorado River cutthroat trout (Oncorhynchus clarkii pleuriticus) was once distributed throughout the colder waters of the Colorado River basin above the Grand Canyon. About 8 percent of its historical range is occupied by unhybridized or ecologically significant populations. It has been petitioned for listing under the Endangered Species Act...

  12. Esclusas de peces en la represa de Salto Grande. Consideraciones acerca de su funcionamiento

    OpenAIRE

    Delfino, R.; Baigún, C.R.M.; Quirós, R.

    1986-01-01

    Fishlocks at Salto Grande Reservoir. Considerations about its functioning. The Salto Grande dam, has in its structure two Borland type fishlocks. The fish passage efficiency is low, and it is limited by the original system design, the management of the dam and the Uruguay river hidrology. Thus, in the 1984-1986 period, on annual average, the fishlocks were out of service 53 o/o of the time, while in the two periods when higher observed fish accumulation occur, march-april and september-octobe...

  13. Information Summary, Area of Concern: Grand Calumet River, Indiana

    Science.gov (United States)

    1991-03-01

    Page 179-183) 56 Waste Fill and Lagoon Sites Mapped Within the Grand Calumet Watershed (Source R13, Table 2-15) 57 Waste Fills of Greatest Concern...Percent Response for Single Species Sediment Bioassays from Indiana Harbor (Source RI, Table 18) 78 Aquatic Macroinvertebrates Collected from Stations 1, 2...3, 4, 5, and 12a, 3-4 May 88 (Source Rl, Table 22) 79 Aquatic Macroinvertebrates Collected from Stations 6, 7, 8, 9a, 10a, and 11, 3-4 and 19 May 88

  14. Decreasing Agricultural Irrigation has not reversed Groundwater Depletion in the Yellow River Basin

    Science.gov (United States)

    Kang, Z.; Xie, X.; Zhu, B.

    2017-12-01

    Agricultural irrigation is considered as the major water use sector accounting for over 60% of the global freshwater withdrawals. Especially in the arid and semiarid areas, irrigation from groundwater storage substantially sustain crop growth and food security. China's Yellow River Basin (YRB) is a typical arid and semiarid area with average annual precipitation about 450 mm. In this basin, more than 52 million hm2 of arable land needs irrigation for planting wheat, cotton, paddy rice etc, and groundwater contributes over one-third irrigation water. However, agricultural irrigation remained a certain level or decreased to some degree due to water-saving technologies and returning farmland to forest projects. Then an interesting question arises: has the groundwater storage (GWS) in YRB kept a consistent variation with the agricultural irrigation? In this study, to address this question, we employed multi-source data from ground measurements, remote sensing monitoring and large-scale hydrological modeling. Specifically, groundwater storage variation was identified using Gravity Recovery and Climate Experiment (GRACE) data and ground observations, and groundwater recharge was estimated based on the Variable Infiltration Capacity (VIC) modeling. Results indicated that GWS in YRB still holds a significant depletion with a rate of about -3 mm per year during the past decade, which was consistently demonstrated by the GRACE and the ground observations. Ground water recharge shows negligible upward trends despite climate change. The roles of different sectors contributing to groundwater depletion have changed. Agricultural irrigation accounting for over 60% of groundwater depletion, but its impact decreased. However, the domestic and the industrial purposes play an increasing role in shaping groundwater depletion.

  15. Indices of water quality and metal pollution of Nile River, Egypt

    Directory of Open Access Journals (Sweden)

    Amaal M. Abdel-Satar

    2017-03-01

    Full Text Available Nile River is the valued natural and exclusive source of fresh water in Egypt, where the drinking water supply is limited to the river. The water quality of 24 sites between Aswan and Cairo along the Nile was investigated. To evaluate the suitability of water for aquatic life and drinking purposes, the indices of water quality (WQI, heavy metal pollution (HPI and contamination (Cd were computed. The water quality variations were mainly related to inorganic nutrients and heavy metals, where, the sites affected by intensive load of urban, agricultural and industrial wastewater showed serious deterioration of water quality compared with other sites. The anthropogenic impact sites showed high HPI and Cd values and associated with high risks, where, most of the studied metals often exceeded the drinking water and aquatic life limits. The aquatic WQI indicated that the Nile water quality deteriorated and extended from poor to marginal, while drinking WQI varied from marginal to good. Accordingly, the river becoming unfit for aquatic life and the situation is getting worse by decreases in the water budget from the Nile in Egypt by building of the Grand Ethiopian Renaissance Dam, where the dilution strength of the Nile system will reduce.

  16. The Grand Ethiopian Renaissance Dam: Source of cooperation or contention?

    Science.gov (United States)

    Teferi Taye, Meron; Tadesse, Tsegaye; Senay, Gabriel; Block, Paul

    2016-01-01

    This paper discusses the challenges and benefits of the Grand Ethiopian Renaissance Dam (GERD), which is under construction and expected to be operational on the Blue Nile River in Ethiopia in a few years. Like many large-scale projects on transboundary rivers, the GERD has been criticized for potentially jeopardizing downstream water security and livelihoods through upstream unilateral decision making. In spite of the contentious nature of the project, the authors argue that this project can provide substantial benefits for regional development. The GERD, like any major river infrastructure project, will undeniably bring about social, environmental, and economic change, and in this unique case has, on balance, the potential to achieve success on all fronts. It must be stressed, however, that strong partnerships between riparian countries are essential. National success is contingent on regional cooperation.

  17. Agricultural drought prediction using climate indices based on Support Vector Regression in Xiangjiang River basin.

    Science.gov (United States)

    Tian, Ye; Xu, Yue-Ping; Wang, Guoqing

    2018-05-01

    Drought can have a substantial impact on the ecosystem and agriculture of the affected region and does harm to local economy. This study aims to analyze the relation between soil moisture and drought and predict agricultural drought in Xiangjiang River basin. The agriculture droughts are presented with the Precipitation-Evapotranspiration Index (SPEI). The Support Vector Regression (SVR) model incorporating climate indices is developed to predict the agricultural droughts. Analysis of climate forcing including El Niño Southern Oscillation and western Pacific subtropical high (WPSH) are carried out to select climate indices. The results show that SPEI of six months time scales (SPEI-6) represents the soil moisture better than that of three and one month time scale on drought duration, severity and peaks. The key factor that influences the agriculture drought is the Ridge Point of WPSH, which mainly controls regional temperature. The SVR model incorporating climate indices, especially ridge point of WPSH, could improve the prediction accuracy compared to that solely using drought index by 4.4% in training and 5.1% in testing measured by Nash Sutcliffe efficiency coefficient (NSE) for three month lead time. The improvement is more significant for the prediction with one month lead (15.8% in training and 27.0% in testing) than that with three months lead time. However, it needs to be cautious in selection of the input parameters, since adding redundant information could have a counter effect in attaining a better prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Contents of cadmium, copper, zinc, and lead in organs of Rhizophora mangle in Sevilla River mouth - Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Naranjo Sanchez, Yury A; Troncoso, Olivo Walberto

    2008-01-01

    In order to determine the contents of cadmium, copper, zinc, and lead in leaves, stalks, and root of Rhizophora mangle, samples from three parcels located in the river Sevilla mouth - Cienaga Grande de Santa Marta, were taken in October 2003. Measures of metals concentrations were made through the Inductively Coupled Plasma Atomic Emission Spectrometry technique (ICP-AES). The results indicated that lead concentration in R. mangle organs was below method detection limit ≤38 g/g) except the absorbent root (16.3 g/g); and significant differences exist in the contents of cadmium, copper, zinc, and lead into R. mangle organs, following this concentration order: absorbent roots ≥ stalk ≥ young leaves ≥adult leaves ≥ aerial roots

  19. Projecting avian responses to landscape managment along the middle RIO GRANDE, New Mexico

    Science.gov (United States)

    Lack of flooding due to river impoundments on the middle Rio Grande has contributed to the spread of exotic vegetation with dense understory fuel loads. Restoration has focused on understory vegetation thinning but it is unclear how these actions impact bird populations. We quantified densities of ...

  20. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    Science.gov (United States)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially

  1. Ecologia da paisagem da hantavirose no Estado do Rio Grande do Sul Landscape ecology of hantavirosis in Rio Grande do Sul State

    Directory of Open Access Journals (Sweden)

    Waldir E. Henkes

    2004-12-01

    Full Text Available Esse trabalho tem como objetivo estudar a ecologia da paisagem das hantaviroses no Rio Grande do Sul através do mapeamento da ocorrência de casos e sua sobreposição a mapas de vegetação e relevo. A maior parte dos casos ocorre na primavera em regiões serranas com vegetação secundária e atividade agrícola.The aim of this work was to study the landscape ecology of hantavirosis in Rio Grande do Sul state, Brazil. This was achieved through geocoding the occurrence of cases and overlaying onto vegetation and relief maps. The majority of cases occurred during Spring, in highland areas dominated by secondary vegetation and agricultural activity.

  2. Grande Ronde Basin Fish Habitat Enhancement Project, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    McGowan, Vance

    2003-08-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of 'The Grande Ronde Basin Fish Habitat Enhancement Project' is to create, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian exclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2002 included: (1) Implementing 1 new fencing project in the Wallowa subbasin that will protect an additional 0.95 miles of stream

  3. A different challenge: the directional drilled crossing for the Yacuiba - Rio Grande Gas Line Project - GASYRG

    Energy Technology Data Exchange (ETDEWEB)

    Green, Wayne; Garcia, Francisco [Bolinter Ltda., Santa Cruz (Bolivia); Montano, Ruben [Transierra, Santa Cruz (Bolivia)

    2003-07-01

    The Rio Grande River's directional drilling, 2002 m. long and 25 m. deep was a great challenge for Transierra - Owner - as well as Laney - Bolinter - Contractor - to accomplish a feat yet to be done in the entire world. The dedication of the people involved showed their degree of professionalism that these companies have obtained and the determination in doing the job overcoming unforeseen obstacles and still being able to finish on time, mitigating environmental impacts and leaving a first class crossing. This document presents a description of the technical, logistic and construction factors that were involved in the project and which allowed to perform 7 directional drillings, including Rio Grande River, which during the pull got the last 60 m. of pipe stuck, being freed only after using a pneumatic hammer. (author)

  4. Nutrient and salt mass balance on the Lower Arkansas River and a contributing tributary in an irrigated agricultural setting

    Science.gov (United States)

    Alexander Hulzenga; Ryan T. Bailey; Timothy K. Gates

    2016-01-01

    The Lower Arkansas River Basin is an irrigated, agricultural valley suffering from high concentrations of nutrients and salts in the coupled groundwater-surface water system. The majority of water quality data collection and associated spatial analysis of concentrations and mass loadings from the aquifer to the stream network has been performed at the regional scale (...

  5. Characteristics of the event mean concentration (EMCs) from rainfall runoff on mixed agricultural land use in the shoreline zone of the Yamuna River in Delhi, India

    Science.gov (United States)

    Sharma, Deepshikha; Gupta, Ruchi; Singh, Ram Karan; Kansal, Arun

    2012-03-01

    This paper is focused on the monitoring of the diffuse pollution characteristics from the agricultural land confining the River Yamuna in Delhi (capital of India). Agricultural fields surrounding the Yamuna river are direct nonpoint source of pollution impacting the river quality. The study includes watershed delineation for the River Yamuna using SWAT (2005) and land use classification for the city using GIS and remote sensing. Thereafter, the rainfall-runoff pollutant concentrations from the mixed agricultural land use were assessed for the 2006 and 2007 monsoon period (July-September). Runoff was measured using SCS method and grab samples of rainfall runoff were collected at three stations namely Old Delhi Railway Bridge (ODRB), Nizamuddin and Okhla bridge in Delhi. The samples were analysed for physico-chemical and biological parameters. Rainfall runoff and event mean concentrations (EMCs) for different water quality parameters were characterized and the effect of land use was analyzed. The average EMCs for BOD, COD, ammonia, nitrate, TKN, hardness, TDS, TSS, chlorides, sulfates, phosphate, fluorides and TC were 21.82 mg/L, 73.48 mg/L, 72.68 μg/L, 229.87 μg/L, 15.32 μg/L, 11.36 mg/L, 117.44 mg/L, 77.60 mg/L, 117.64 mg/L, 135.82 mg/L, 0.08 mg/L, 0.85 mg/L and 2,827.47 MPN/100 mL, respectively. The EMCs of TSS, nitrogen and its compounds, phosphate and BOD were high.

  6. Middle Rio Grande Water Sustainability in Extreme Drought: Using Provenance to Trace Modeling Scenarios Selected by Users

    Science.gov (United States)

    Pennington, D. D.; Garnica Chavira, L.; Villanueva-Rosales, N.

    2017-12-01

    People living in the vicinity of the middle Rio Grande from Elephant Butte Reservoir in New Mexico through Fort Quitman, Texas, including inhabitants on the Mexican side of the river, are confronted with numerous challenges that include drought, population growth, reduced surface water quality and quantity, declining aquifers, and expected future increases in temperature with more variable precipitation. The transboundary surface water is subject to complex regulation across two U.S. states and two nations (U.S. and Mexico). This presentation will summarize the modeling efforts of a USDA-funded project to characterize potential future solutions for water sustainability while managing agriculture, economic, and human impacts. It will present an online software system designed for rapid, flexible modeling of different climate, policy, and technology scenarios with stakeholders, and the underlying intelligent system that manages model selection, data and parameters, and user choices, and provides a provenance trace based on the W3C PROV standard.

  7. Benthic invertebrate density, biomass, and instantaneous secondary production along a fifth-order human-impacted tropical river.

    Science.gov (United States)

    Aguiar, Anna Carolina Fornero; Gücker, Björn; Brauns, Mario; Hille, Sandra; Boëchat, Iola Gonçalves

    2015-07-01

    The aim of this study was to assess land use effects on the density, biomass, and instantaneous secondary production (IP) of benthic invertebrates in a fifth-order tropical river. Invertebrates were sampled at 11 stations along the Rio das Mortes (upper Rio Grande, Southeast Brazil) in the dry and the rainy season 2010/2011. Invertebrates were counted, determined, and measured to estimate their density, biomass, and IP. Water chemical characteristics, sediment heterogeneity, and habitat structural integrity were assessed in parallel. Total invertebrate density, biomass, and IP were higher in the dry season than those in the rainy season, but did not differ significantly among sampling stations along the river. However, taxon-specific density, biomass, and IP differed similarly among sampling stations along the river and between seasons, suggesting that these metrics had the same bioindication potential. Variability in density, biomass, and IP was mainly explained by seasonality and the percentage of sandy sediment in the riverbed, and not directly by urban or agricultural land use. Our results suggest that the consistently high degradation status of the river, observed from its headwaters to mouth, weakened the response of the invertebrate community to specific land use impacts, so that only local habitat characteristics and seasonality exerted effects.

  8. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    Science.gov (United States)

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Lake Urmia (Iran): can future socio-ecologically motivated river basin management restore lake water levels in an arid region with extensive agricultural development?

    Science.gov (United States)

    Fazel, Nasim; Berndtsson, Ronny; Bertacchi Uvo, Cintia; Klove, Bjorn; Madani, Kaveh

    2015-04-01

    Lake Urmia, one of the world's largest hyper saline lakes located in northwest of Iran, is a UNESCO Biosphere Reserve and Ramsar site, protected as a national park and, supports invaluable and unique biodiversity and related ecosystem services for the region's 6.5 million inhabitants. Due to increased development of the region's water resources for agriculture and industry and to a certain extent climate change, the lake has started to shrink dramatically since 1995 and now is holding less than 30 percent of its volume. Rapid development in agricultural sector and land-use changes has resulted in immense construction of dams and water diversions in almost all lake feeding rivers, intensifying lake shrinking, increasing salinity and degrading its ecosystem. Recently, lake's cultural and environmental importance and social pressure has raised concerns and brought government attention to the lake restoration plans. Along with poor management, low yield agriculture as the most water consuming activity in the region with, rapid, insufficient development is one of the most influential drivers in the lake desiccation. Part of the lake restoration plans in agricultural sector is to restrict the agricultural areas in the main feeding river basins flowing mostly in the southern part of the lake and decreasing the agricultural water use in this area. This study assess the efficiency and effectiveness of the proposed plans and its influence on the lake level rise and its impacts on economy in the region using a system dynamics model developed for the Lake consist of hydrological and agro-economical sub-systems. The effect of decrease in agricultural area in the region on GDP and region economy was evaluated and compared with released water contribution in lake level rise for a five year simulation period.

  10. Identification of discontinuous sand pulses on the bed of the Colorado River in Grand Canyon

    Science.gov (United States)

    Mueller, E. R.; Grams, P. E.; Buscombe, D.; Topping, D. J.

    2017-12-01

    Decades of research on alluvial sandbars and sand transport on the Colorado River in Grand Canyon has contributed to in-depth understanding of the sand budget and lead to management actions designed to rebuild eroded sandbars. However, some basic, but difficult to address, questions about the processes and rates of sand movement through the system still limit our ability to predict geomorphic responses. The coarse fraction of the bed is heterogeneous and varies among boulders, cobble, gravel, and bedrock. Sand covers these substrates in patches of variable size and thickness, fills interstices to varying degrees, and forms mixed sand/coarse bed configurations such as linear stripes. Understanding the locations of sand accumulation, the quantities of sand contained in those locations, and the processes by which sand is exchanged among depositional locations is needed to predict the morphological response of sandbars to management actions, such as the controlled flood releases, and to predict whether sandbars are likely to increase or decrease in size over long (i.e. decadal) time periods. Here, we present evidence for the downstream translation of the sand component of tributary sediment inputs as discontinuous sand pulses. The silt and clay (mud) fraction of sediment introduced episodically by seasonal floods from tributary streams is transported entirely in suspension and moves through the 400 km series of canyons in a few days. The sand fraction of this sediment, which is transported on the bed and in suspension, moves downstream in sand pulses that we estimate range in length from a few km to tens of km. Owing to the complex geomorphic organization, the sand pulses are not detectable as coherent bed features; each individual sand pulse is comprised of many isolated storage locations, separated by rapids and riffles where sand cover is sparse. The presence of the sand pulses is inferred by the existence of alternating segments of sand accumulation and depletion

  11. Time still to restore the polluted Piracicaba river basin

    International Nuclear Information System (INIS)

    Favaro, P.C.; De Nadai Fernandes, E.A.; Ferraz, E.S.B.; Falotico, M.H.B.

    2004-01-01

    Over the last decades the acceleration of the industrialization and urbanization processes together with the intensive agricultural practices have resulted in an impact on the Piracicaba river basin, state of Sao Paulo, Brazil. The source rivers drain from an area of low population density, absence of heavy industries, non-significant agriculture, native forest and reforestation, the opposite is found in the middle part of the basin. Samples of riverbed sediments were collected along the basin for chemical analysis. Results showed that the source rivers still preserve their natural characteristics, while the Atibaia river in the middle part shows signs of pollution from the agricultural activity, industrial effluents and urban sewage. (author)

  12. Automated remote cameras for monitoring alluvial sandbars on the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Grams, Paul E.; Tusso, Robert B.; Buscombe, Daniel

    2018-02-27

    Automated camera systems deployed at 43 remote locations along the Colorado River corridor in Grand Canyon National Park, Arizona, are used to document sandbar erosion and deposition that are associated with the operations of Glen Canyon Dam. The camera systems, which can operate independently for a year or more, consist of a digital camera triggered by a separate data controller, both of which are powered by an external battery and solar panel. Analysis of images for categorical changes in sandbar size show deposition at 50 percent or more of monitoring sites during controlled flood releases done in 2012, 2013, 2014, and 2016. The images also depict erosion of sandbars and show that erosion rates were highest in the first 3 months following each controlled flood. Erosion rates were highest in 2015, the year of highest annual dam release volume. Comparison of the categorical estimates of sandbar change agree with sandbar change (erosion or deposition) measured by topographic surveys in 76 percent of cases evaluated. A semiautomated method for quantifying changes in sandbar area from the remote-camera images by rectifying the oblique images and segmenting the sandbar from the rest of the image is presented. Calculation of sandbar area by this method agrees with sandbar area determined by topographic survey within approximately 8 percent and allows quantification of sandbar area monthly (or more frequently).

  13. Stem volume losses in grand firs topkilled by western spruce budworm in Idaho

    Science.gov (United States)

    George T. Ferrell; Robert F. Scharpf

    1982-01-01

    Mature grand firs (Abies grandis [Dougl. ex D. Don] Lindl.) were sampled in two stands, one cutover and one virgin, in the Little Salmon River drainage in west-central Idaho, to estimate stem volume losses associated with topkilling. Damage to the stands resulted from three outbreaks of western spruce budworm (Choristoneura occidentalis...

  14. Pentimento: Fuels reduction and restoration in the Bosque of the Middle Rio Grande

    Science.gov (United States)

    Deborah M. Finch

    2008-01-01

    The Middle Rio Grande of New Mexico is the most extensive, remaining bosque, or cottonwood forest in the southwest. Alterations caused by humans-damming and channeling the river, controlling floods, and planting non-native trees-have disrupted the cycles of the earlier ecosystem. Without periodic flooding, native cottonwoods cannot regenerate. Invasive exotic plants...

  15. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    Science.gov (United States)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  16. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    Turbidity is a measure of the scattering and absorption of light in water, which in rivers is primarily caused by particles, usually sediment, suspended in the water. Turbidity varies significantly with differences in the design of the instrument measuring turbidity, a point that is illustrated in this study by side-by-side comparisons of two different models of instruments. Turbidity also varies with changes in the physical parameters of the particles in the water, such as concentration, grain size, grain shape, and color. A turbidity instrument that is commonly used for continuous monitoring of rivers has a light source in the near-infrared range (860±30 nanometers) and a detector oriented 90 degrees from the incident light path. This type of optical turbidity instrument has a limited measurement range (depending on pathlength) that is unable to capture the high turbidity levels of rivers that carry high suspended-sediment loads. The Colorado River in Grand Canyon is one such river, in which approximately 60 percent of the range in suspended-sediment concentration during the study period had unmeasurable turbidity using this type of optical instrument. Although some optical turbidimeters using backscatter or other techniques can measure higher concentrations of suspended sediment than the models used in this study, the maximum turbidity measurable using these other turbidimeters may still be exceeded in conditions of especially high concentrations of suspended silt and clay. In Grand Canyon, the existing optical turbidity instruments remain in use in part to provide consistency over time as new techniques are investigated. As a result, during these periods of high suspended-sediment concentration, turbidity values that could not be measured with the optical turbidity instruments were instead estimated from concurrent acoustic attenuation data collected using side-looking acoustic-Doppler profiler (ADP) instruments. Extending the turbidity record to the full

  17. Salmonid Gamete Preservation in the Snake River Basin, 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul

    2002-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. Along with reduced population and genetic variability, the loss of biodiversity means a diminished environmental adaptability. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2001 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act (ESA) listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2001, a total of 398 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 295 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Grande Ronde chinook salmon captive broodstock program stores 680 cryopreserved samples at the University of Idaho as a long-term archive, half of the total samples. A total of 3,206 cryopreserved samples from Snake River basin steelhead and

  18. Desertification, salinization, and biotic homogenization in a dryland river ecosystem

    Science.gov (United States)

    Miyazono, S.; Patino, Reynaldo; Taylor, C.M.

    2015-01-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamfiow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was > 2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  19. Resíduos de agrotóxicos na água de rios da Depressão Central do Estado do Rio Grande do Sul, Brasil Residues of pesticides in the water of the Depression Central rivers in the State of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Enio Marchesan

    2010-05-01

    Full Text Available A atividade orizícola é conduzida com uso intensivo de agrotóxicos, os quais, dependendo do manejo e das precipitações pluviais, podem chegar até os rios. O objetivo do trabalho foi determinar resíduos dos herbicidas clomazona, quincloraque, propanil, bentazona, 2,4-D e imazethapyr e dos inseticidas carbofurano e fipronil nos rios Vacacaí e Vacacaí-Mirim, situados na Depressão Central do Rio Grande do Sul, nas safras de 2003/04 a 2007/08, com coletas realizadas de novembro a fevereiro (cultivo do arroz. As análises dos herbicidas e do carbofurano foram realizadas por HPLC-DAD, e a análise do fipronil foi realizada por GC-ECD. Na safra 2003/04, em ambos os rios, os herbicidas clomazona, 2,4-D e propanil foram os mais frequentes nas amostras de água. Na safra 2004/05, o quincloraque foi detectado em maior número de amostras, já nas safras 2005/06 e 2006/07 fipronil foi o agrotóxico mais frequente nas amostras nos rios Vacacaí e Vacacaí-Mirim. Na safra de 2007/08, houve menor presença de resíduos de agrotóxicos nos rios Vacacaí e Vacacaí-Mirim. Há presença de agrotóxicos utilizados na lavoura de arroz nos rios Vacacaí e Vacacaí-Mirim durante o período de cultivo de arroz irrigado, destacando-se, entre os analisados, os herbicidas clomazona e quincloraque e o inseticida fipronil.The rice-growing activity is conducted out with intensive use of agrochemicals, which, depending on the management and rainfall can reach rivers. The study aimed to determine the residues of herbicides clomazone, quinclorac, propanil, bentazone, 2,4-D and imazethapyr and insecticides carbofuran and fipronil in the Vacacaí and Vacacaí-Mirim rivers, located in the Central Depression of Rio Grande do Sul, in the crop of 2003/04 untill 2007/08. Samples were collected from November to February (rice growing season. Analysis of herbicides and carbofuran were performed by HPLC-DAD and fipronil by GC-ECD. During 2003/04, in both rivers, the herbicide

  20. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1998 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish and Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next years work.

  1. Seasonal dynamics of tetracycline resistance gene transport in the Sumas River agricultural watershed of British Columbia, Canada.

    Science.gov (United States)

    Keen, Patricia L; Knapp, Charles W; Hall, Kenneth J; Graham, David W

    2018-07-01

    Environmental transport of contaminants that can influence the development of antibiotic resistance in bacteria is an important concern in the management of ecological and human health risks. Agricultural regions are locales where practices linked to food crop and livestock production can introduce contaminants that could alter the selective pressures for the development of antibiotic resistance in microbiota. This is important in regions where the use of animal manure or municipal biosolids as waste and/or fertilizer could influence selection for antibiotic resistance in pathogenic bacterial species. To investigate the environmental transport of contaminants that could lead to the development of antibiotic resistance in bacteria, a watershed with one of the highest levels of intensity of agricultural activity in Canada was studied; the Sumas River located 60 km east of Vancouver, British Columbia. This two-year assessment monitored four selected tetracycline resistance genes (tet(O), tet(M), tet(Q), tet(W)) and water quality parameters (temperature, specific conductivity, turbidity, suspended solids, nitrate, phosphate and chloride) at eight locations across the watershed. The tetracycline resistance genes (Tc r ) abundances in the Sumas River network ranged between 1.47 × 10 2 and 3.49 × 10 4  copies/mL and ranged between 2.3 and 6.9 copies/mL in a control stream (located far from agricultural activities) for the duration of the study. Further, Tc r abundances that were detected in the wet season months ranged between 1.3 × 10 3 and 2.29 × 10 4  copies/mL compared with dry season months (ranging between 0.6 and 31.2 copies/mL). Highest transport rates between 1.67 × 10 11 and 1.16 × 10 12  copies/s were observed in November 2005 during periods of high rainfall. The study showed that elevated concentrations of antibiotic resistance genes in the order of 10 2 -10 4  copies/mL can move through stream networks in an

  2. Exploring relationships among land ownership, agricultural land use, and native fish species richness in the Upper Mississippi River Basin

    Science.gov (United States)

    DeJager, Nathan R.; Rohweder, Jason J.

    2012-01-01

    The general effects of agriculture on in-stream fish communities in the Upper Midwestern United States have been well studied for nearly three decades (Karr et al. 1985; Nerbonne and Vondracek 1991; Zimmerman et al. 2001; Goldstein and Meador 2005). Specific impacts include: lowered water levels, sediment loading and nutrient enrichment, loss of riparian habitat, changes to channel morphometry and physical habitat, and changes to the forage base. As part of the National Fish Habitat Action Plan (NFHAP), an initiative to protect, restore, and enhance the nation's fish and aquatic communities, the Fishers and Farmers Partnership specifically focuses on working with agricultural producers to help protect and restore aquatic resources in the Upper Mississippi River Basin (UMRB) (Fig. 1). Successful protection and/or restoration will require the partnership and local conservation agencies to effectively communicate and work with local landowners. However, roughly 43% of the agricultural lands in the UMRB are not operated by those who own the land (National Agricultural Statistics Service 2009) and this is expected to increase as heirs of farm estates now reside greater distances from their home farms than ever before (Arbuckle 2010).

  3. Evaluation of the agricultural extension programmes of Shell ...

    African Journals Online (AJOL)

    International Journal of Agriculture and Rural Development ... Agricultural Extension Services as part of her corporate social responsibilities in Rivers, ... limited by inadequate communication and transport facilities, non-repayment of soft loans ...

  4. Agro-Science Journal of Tropical Agriculture, Food, Environment ...

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-09-03

    Sep 3, 2009 ... Agro-Science Journal of Tropical Agriculture, Food, Environment and Extension. Volume 8 ... 3 International Institute of Tropical Agriculture, High Rainfall Station,. Onne, Rivers State ...... Biosciences proceedings. 6: 444-454.

  5. Economic Drought Impact on Agriculture: analysis of all agricultural sectors affected

    Science.gov (United States)

    Gil, M.; Garrido, A.; Hernández-Mora, N.

    2012-04-01

    The analysis of drought impacts is essential to define efficient and sustainable management and mitigation. In this paper we present a detailed analysis of the impacts of the 2004-2008 drought in the agricultural sector in the Ebro river basin (Spain). An econometric model is applied in order to determine the magnitude of the economic loss attributable to water scarcity. Both the direct impacts of drought on agricultural productivity and the indirect impacts of drought on agricultural employment and agroindustry in the Ebro basin are evaluated. The econometric model measures losses in the economic value of irrigated and rainfed agricultural production, of agricultural employment and of Gross Value Added both from the agricultural sector and the agro-industrial sector. The explanatory variables include an index of water availability (reservoir storage levels for irrigated agriculture and accumulated rainfall for rainfed agriculture), a price index representative of the mix of crops grown in each region, and a time variable. The model allows for differentiating the impacts due to water scarcity from other sources of economic losses. Results show how the impacts diminish as we approach the macro-economic indicators from those directly dependent on water abstractions and precipitation. Sectors directly dependent on water are the most affected with identifiable economic losses resulting from the lack of water. From the management perspective implications of these findings are key to develop mitigation measures to reduce drought risk exposure. These results suggest that more open agricultural markets, and wider and more flexible procurement strategies of the agro-industry reduces the socio-economic exposure to drought cycles. This paper presents the results of research conducted under PREEMPT project (Policy relevant assessment of the socioeconomic effects of droughts and floods, ECHO - grant agreement # 070401/2010/579119/SUB/C4), which constitutes an effort to provide

  6. Grande Ronde Basin Chinook Salmon Captive Brood and Conventional Supplementation Programs, 1999 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carmichael, Richard W. (Oregon Department of Fish And Wildlife, La Grande, OR)

    2003-03-01

    Permit Number 1011 (formerly Permit No. 973) authorized ODFW to take listed spring chinook salmon juveniles from Catherine Creek and the Lostine and Grande Ronde rivers for scientific research and enhancement purposes. Special condition 2a specified the need for an annual report prior to initiation of next year's work.

  7. Effect of urbanization on bird community in riparian environments in Caí River, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Jaqueline Brummelhaus

    2012-02-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2012v25n2p81 Urbanization produces changes in riparian environments causing effects in the structure of bird communities, which respond differently to impacts. We compare richness, abundance and composition of birds in riparian environments with different urbanization gradients in Caí River, Rio Grande do Sul. We conducted observations in woodland, grassland and urban environments, between September/2007 and August/2008. We recorded 130 bird species, 29 species unique to woodland environments, including an endangered species: Triclaria malachitacea. Bird abundance differed between woodland and urban environments (426 individuals in woodland, 721 in grassland and 939 in urban. Species composition and feeding guilds contributed significantly to differentiation of bird community structures in these three riparian environments. In open environments (grassland and urban we recorded more generalist feeding guilds and bird species, while in riparian woodland environments, we find guilds and species more sensitive to human impacts. Bird species may be biological quality indicators and contribute to natural economy. With the knowledge of bird community structure and their needs, it is possible to establish management practices for riparian restoration of degraded environments in the region.

  8. ANALYSIS OF REMOTE SENSING ARCHAEOLOGY ON TRAFFIC FUNCTION TRANSFORMATION OF TONGJI GRAND CANAL IN SUI AND TANG DYNASTIES

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-yuan; HE Hui; ZHOU Ying-qiu; GAO Chao; HAN Shuang-wang

    2006-01-01

    In China, most directions of river flowing are from west to east. During historic period, since the water traffic played an important role, it was very important to form a cross-horizontal net of water carriage route. Canals should be dug so as to make up the lack of north-south river. Tongji Grand Canal, dug in the first year of Daye (605 A.D.) in the Sui Dynasty, was the important component of north-south system of Grand Canals in China. It promoted economic and social development of the Sui, Tang and Song dynasties (605 A.D.-1279 A.D.). As Tongji Canal (i.e.Tongji Grand Canal) flowed across the Huaibei Plain, which is aggraded by abundant mud and sand deposit resulted from the Huanghe (Yellow) River flooding, many traces (such as old channel) and human culture heritages were buried under mud-sand. Tongji Canal was silted up, and disappeared in the Jin Dynasty (1115 A.D.-1234 A.D.). From then on, there were many different stories about the flowing route of the canal in historical literature. Based on space-bone and air-bone remote sensing imagery, we attempt to search the old channel of Tongji Canal, and supplement historical record. The paper discusses transformation process of Tongji Canal's traffic function, and resumptively summarizes the reasons of the transformation, which results from synthetic function of physical geographical, political, economic, and social conditions.

  9. Vascular Plant and Vertebrate Inventory of Casa Grande Ruins National Monument

    Science.gov (United States)

    Powell, Brian F.; Albrecht, Eric W.; Schmidt, Cecilia A.; Halvorson, William L.; Anning, Pamela; Docherty, Kathleen

    2006-01-01

    Executive Summary This report summarizes results of the first comprehensive biological inventory of Casa Grande Ruins National Monument (NM) in southern Arizona. Surveys at the monument were part of a larger effort to inventory vascular plants and vertebrates in eight National Park Service units in Arizona and New Mexico. In 2001 and 2002 we surveyed for vascular plants and vertebrates (amphibians, reptiles, birds, and mammals) at Casa Grande Ruins NM to document the presence, and in some cases relative abundance, of species. By using repeatable study designs and standardized field techniques, which included quantified survey effort, we produced inventories that can serve as the basis for a biological monitoring program. Of the National Park Service units in the region, no other has experienced as much recent ecological change as Casa Grande Ruins NM. Once situated in a large and biologically diverse mesquite bosque near the perennially flowing Gila River, the monument is now a patch of sparse desert vegetation surrounded by urban and commercial development that is rapidly replacing agriculture as the dominant land use in the area. Roads, highways, and canals surround the monument. Development, and its associated impacts, has important implications for the plants and animals that live in the monument. The plant species list is small and the distribution and number of non-native plants appears to be increasing. Terrestrial vertebrates are also being impacted by the changing landscape, which is increasing the isolation of these populations from nearby natural areas and thereby reducing the number of species at the monument. These observations are alarming and are based on our review of previous studies, our research in the monument, and our knowledge of the biogeography and ecology of the Sonoran Desert. Together, these data suggest that the monument has lost a significant portion of its historic complement of species and these changes will likely intensify as

  10. Efficiency of Different Integrated Agriculture Aquaculture Systems in the Red River Delta of Vietnam

    Directory of Open Access Journals (Sweden)

    Nguyen Van Huong

    2018-02-01

    Full Text Available Integrated Agriculture Aquaculture (IAA is characteristic with diversity of small-scale production systems in the Red River Delta, Vietnam where most integrated aquaculture systems are closely associated to the VAC model, an ecosystem production that three components: garden (V, pond (A and livestock pen (C are integrated. These VAC systems effectively use all the available land, air, water and solar energy resources, and also effectively recycle by-products and waste for providing diversified agricultural products to meet the complex nutritional demands of rural communities. The IAA systems are dynamic, diverse and subject to economic and environmental changes. By investigating 167 aquaculture households, the traditional VAC, New VAC, Animal Fish (AF and Commercial Fish (FS systems are identified as four existing IAA systems. This paper presents the main characteristics and economic efficiency of these IAA systems. The study’s results indicate clear evidence that the traditional VAC system and New VAC system are the most efficient and effective models. The findings of this study have shed light on the important role of integrated aquaculture systems to food security and economic development of households and local communities. The VAC systems are likely to propose for improving household food security and developing the local economy.

  11. KLEPSUDRA: How the Rio Grande Treaty Increased Instability in Mexico

    Science.gov (United States)

    2008-05-09

    advantages, not the least of which is having an agency that can operate on the peer level with Mexico’s national water agency (Comisión Nacional del Agua ...Help Wanted’ ads,” USA Today, 25 April 08, sec. A, p. 8. 77 Manwaring (2007), 9-11, 24-25, 34-35. 78 Contamination levels along the border areas and in...the Rio Grande River after NAFTA has been extensively researched and documented. Recent testing indicates extreme fecal contamination is exposing

  12. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China.

    Science.gov (United States)

    Sun, Jianteng; Pan, Lili; Zhan, Yu; Lu, Hainan; Tsang, Daniel C W; Liu, Wenxin; Wang, Xilong; Li, Xiangdong; Zhu, Lizhong

    2016-02-15

    To reveal the pollution status associated with rapid urbanization and economic growth, extensive areas of agricultural soils (approximately 45,800 km(2)) in the Yangtze River Delta of China were investigated with respect to selected endocrine disruptor compounds (EDCs), including phthalate esters (PAEs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs). The residues of sum of 15 PAEs, sum of 15 OCPs and sum of 13 PBDEs were in the range of 167-9370 ng/g, 1.0-3520 ng/g, and usage and recent input. Agricultural plastic film was considered to be an important source of PAEs. Discharge from furniture industry was potential major source of PBDEs in this region. The selected pollutants showed quite different spatial distributions within the studied region. It is worth noting that much higher concentrations of the EDCs were found on the borders between Shanghai and the two neighboring provinces, where agriculture and industry developed rapidly in recent years. Contaminants from both agricultural and industrial activities made this area a pollution hotspot, which should arouse more stringent regulation to safeguard the environment and food security. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  15. Geomorphology of plutonium in the Northern Rio Grande

    International Nuclear Information System (INIS)

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi

  16. Identification of Neosho Smallmouth Bass (Micropterus dolomieu velox) stocks for possible introduction into Grand Lake, Oklahoma

    Science.gov (United States)

    Taylor, Andrew T.; Long, James M.; Schwemm, Michael R.; Tringali, Michael D.; Brewer, Shannon K.

    2016-01-01

    Stocking black basses (Micropterus spp.) is a common practice used to increase angling opportunities in impoundments; however, when non-native black basses are introduced they often invade riverine habitats where they threaten the persistence of other fishes, including native black basses. Neosho Smallmouth Bass (M. dolomieu velox) is endemic to portions of the Ozark Highlands and Boston Mountains ecoregions and is threatened by introductions of non-native Smallmouth Bass (“SMB”) forms. Because of recent interest in stocking SMB into Grand Lake o’ the Cherokees, we assessed the suitability of local Neosho SMB populations as potential broodstock sources by assessing introgression with non-native SMB forms, as well as characterizing population structure and genetic diversity. The majority of Neosho SMB populations contained low, but non-negligible, genomic proportions of two genetically distinct non-native SMB forms. Introgression was highest in the Illinois River upstream of Lake Tenkiller, where Tennessee ‘lake strain’ SMB were stocked in the early 1990’s. We recovered three genetically distinct clusters of Neosho SMB at the uppermost hierarchical level of population structure: a distinct Illinois River cluster and two Grand River clusters that appear to naturally mix at some sites. Genetic diversity measures generally increased with stream size, and smaller populations with low diversity measures may benefit from immigration of novel genetic material. Overall, introgression with non-native SMB forms appears to pose a prominent threat to Neosho SMB; however, relatively intact populations of Neosho SMB exist in some Grand Lake o’ the Cherokees tributaries. Results could be used in developing a stocking program that promotes and sustains existing genetic diversity within and among Neosho SMB populations.

  17. Modeling interactions of agriculture and groundwater nitrate contaminants: application of The STICS-Eau-Dyssée coupled models over the Seine River Basin

    Science.gov (United States)

    Tavakoly, A. A.; Habets, F.; Saleh, F.; Yang, Z. L.

    2017-12-01

    Human activities such as the cultivation of N-fixing crops, burning of fossil fuels, discharging of industrial and domestic effluents, and extensive usage of fertilizers have recently accelerated the nitrogen loading to watersheds worldwide. Increasing nitrate concentration in surface water and groundwater is a major concern in watersheds with extensive agricultural activities. Nutrient enrichment is one of the major environmental problems in the French coastal zone. To understand and predict interactions between agriculture, surface water and groundwater nitrate contaminants, this study presents a modeling framework that couples the agronomic STICS model with Eau-Dyssée, a distributed hydrologic modeling system to simulate groundwater-surface water interaction. The coupled system is implemented on the Seine River Basin with an area of 88,000 km2 to compute daily nitrate contaminants. Representing a sophisticated hydrosystem with several aquifers and including the megalopolis of Paris, the Seine River Basin is well-known as one of the most productive agricultural areas in France. The STICS-EauDyssée framework is evaluated for a long-term simulation covering 39 years (1971-2010). Model results show that the simulated nitrate highly depends on the inflow produced by surface and subsurface waters. Daily simulation shows that the model captures the seasonal variation of observations and that the overall long-term simulation of nitrate contaminant is satisfactory at the regional scale.

  18. Desertification, salinization, and biotic homogenization in a dryland river ecosystem.

    Science.gov (United States)

    Miyazono, Seiji; Patiño, Reynaldo; Taylor, Christopher M

    2015-04-01

    This study determined long-term changes in fish assemblages, river discharge, salinity, and local precipitation, and examined hydrological drivers of biotic homogenization in a dryland river ecosystem, the Trans-Pecos region of the Rio Grande/Rio Bravo del Norte (USA/Mexico). Historical (1977-1989) and current (2010-2011) fish assemblages were analyzed by rarefaction analysis (species richness), nonmetric multidimensional scaling (composition/variability), multiresponse permutation procedures (composition), and paired t-test (variability). Trends in hydrological conditions (1970s-2010s) were examined by Kendall tau and quantile regression, and associations between streamflow and specific conductance (salinity) by generalized linear models. Since the 1970s, species richness and variability of fish assemblages decreased in the Rio Grande below the confluence with the Rio Conchos (Mexico), a major tributary, but not above it. There was increased representation of lower-flow/higher-salinity tolerant species, thus making fish communities below the confluence taxonomically and functionally more homogeneous to those above it. Unlike findings elsewhere, this biotic homogenization was due primarily to changes in the relative abundances of native species. While Rio Conchos discharge was>2-fold higher than Rio Grande discharge above their confluence, Rio Conchos discharge decreased during the study period causing Rio Grande discharge below the confluence to also decrease. Rio Conchos salinity is lower than Rio Grande salinity above their confluence and, as Rio Conchos discharge decreased, it caused Rio Grande salinity below the confluence to increase (reduced dilution). Trends in discharge did not correspond to trends in precipitation except at extreme-high (90th quantile) levels. In conclusion, decreasing discharge from the Rio Conchos has led to decreasing flow and increasing salinity in the Rio Grande below the confluence. This spatially uneven desertification and

  19. Phytophthora Species in Rivers and Streams of the Southwestern United States.

    Science.gov (United States)

    Stamler, Rio A; Sanogo, Soumalia; Goldberg, Natalie P; Randall, Jennifer J

    2016-08-01

    Phytophthora species were isolated from rivers and streams in the southwestern United States by leaf baiting and identified by sequence analysis of internal transcribed spacer (ITS) ribosomal DNA (rDNA). The major waterways examined included the Rio Grande River, Gila River, Colorado River, and San Juan River. The most prevalent species identified in rivers and streams were Phytophthora lacustris and P. riparia, both members of Phytophthora ITS clade 6. P. gonapodyides, P. cinnamomi, and an uncharacterized Phytophthora species in clade 9 were also recovered. In addition, six isolates recovered from the Rio Grande River were shown to be hybrids of P. lacustris × P. riparia Pathogenicity assays using P. riparia and P. lacustris failed to produce any disease symptoms on commonly grown crops in the southwestern United States. Inoculation of Capsicum annuum with P. riparia was shown to inhibit disease symptom development when subsequently challenged with P. capsici, a pathogenic Phytophthora species. Many Phytophthora species are significant plant pathogens causing disease on a large variety of crops worldwide. Closer examinations of streams, rivers, and forest soils have also identified numerous Phytophthora species that do not appear to be phytopathogens and likely act as early saprophytes in aquatic and saturated environments. To date, the Phytophthora species composition in rivers and streams of the southwestern United States has not been evaluated. This article details a study to determine the identity and prevalence of Phytophthora species in rivers and streams located in New Mexico, Arizona, Colorado, Utah, and Texas. Isolated species were evaluated for pathogenicity on crop plants and for their potential to act as biological control agents. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Report on the 41st International Symposium Actual Tasks on Agricultural Engineering, 19-22 February 2013, Opatija, Croatia

    OpenAIRE

    Silvio Kosutic; Daniele De Wrachien

    2013-01-01

    The 41st International Symposium Actual Tasks on Agricultural Engineering was held on 19th-22nd February 2013 in Grand Hotel Adriatic Opatija, Republic of Croatia. The principal Organiser, Agricultural Engineering Department, Faculty of Agriculture, University of Zagreb was supported by the following frameworks: Department of Agricultural Engineering, Faculty of Agriculture, University J.J. Strossmayer, Osijek; Department of Bio-systems Engineering, Faculty of Agriculture, University of Marib...

  1. Water quality changes in floodplain lakes due to the Amazon River flood pulse: Lago Grande de Curuaí (Pará

    Directory of Open Access Journals (Sweden)

    AG Affonso

    Full Text Available Assurance of water quality for human consumption is essential for public health policies. In the Amazon floodplain, the seasonal water level variation causes periodic flooding of marginal areas that are usually used for settlements, agriculture and livestock. Therefore, the exchange of materials between the terrestrial and aquatic ecosystem affects the proportion of suspended and dissolved components in water and its physical-chemical characteristics, and consequently the quality of the water used by local people. Following this approach, the aim of this study is to evaluate changes in water quality in Lago Grande de Curuaí floodplain, Óbidos, Pará in response to the flood pulse, during one hydrological year from 2003 to 2004, based on water use classes (according to National Water Agency 357/2005 resolution using chlorophyll-a and dissolved oxygen concentration as parameters and the eutrophication index. Ordinary kriging was applied to interpolate chlorophyll-a and dissolved oxygen and to predict values at non sampled locations. Each location was then classified according to water use acceptable parameters and to Carlson Trophic State Index modified by Toledo to map lake water classes and trophic status. The result showed that Lago Grande de Curuaí floodplain is a supereutrophic system, with levels of dissolved oxygen and chlorophyll-a not suitable for human supply during the receding water phase. These areas are located near the riverine communities, which can cause health problems due to the presence of potentially toxic algae. Therefore, monitoring water quality in Amazon lakes is essential to ensure the availability has appropriate quality for human and animal supplies.

  2. 75 FR 38833 - Walker River Basin Acquisition Program

    Science.gov (United States)

    2010-07-06

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Walker River Basin Acquisition Program AGENCY... (Reclamation) is canceling work on the Environmental Impact Statement (EIS) for the Walker River Basin... Walker River, primarily for irrigated agriculture, have resulted in a steadily declining surface...

  3. Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Drome River Valley Case Study

    International Nuclear Information System (INIS)

    Abrami, G.

    2004-11-01

    Levels of Organisation in agent-based modelling for renewable resources management. Agricultural water management collective rules enforcement in the French Dr me River Valley Case Study. In the context of Agent-Based Modelling for participative renewable resources management, this thesis is concerned with representing multiple tangled levels of organisation of a system. The Agent-Group-Role (AGR) formalism is borrowed from computer science research. It has been conceptually specified to handle levels of organisation, and behaviours within levels of organisation. A design methodology dedicated to AGR modelling has been developed, together with an implementation of the formalism over a multi-agent platform. AGR models of agricultural water management in the French Dr me River Valley have been built and tested. This experiment demonstrates the AGR formalism ability to (1) clarify usually implicit hypothesis on action modes, scales or viewpoints (2) facilitate the definition of scenarios with various collective rules, and various rules in enforcement behaviours (3) generate bricks for generic irrigated catchment models. (author)

  4. Stabilization of the dyke on the north bank of the La Grande 1 hydroelectric complex

    International Nuclear Information System (INIS)

    Massiera, M.; Tournier, J-P.

    2000-01-01

    Special design features required in constructing a 2444 m long dyke on the north bank of the La Grade River at the site of the La Grande 1 hydroelectric power project are described. The special features involved construction of a downstream bank and upstream stabilization berms to avoid the occurrence of potentially dangerous retrogressive slides. These special features were deemed essential due to the presence of sensitive marine clay, covered with deltaic sand and silt and river sand deposits. The paper highlights the geotechnical and hydrogeological conditions of the northern terrace, and describes the different construction phases of stabilizing the river bank. Control of groundwater pressures in the lower aquifer with relief wells is emphasized. 9 refs., 1 tab., 17 figs

  5. Sewage discharges and nutrient levels in Marimba River, Zimbabwe ...

    African Journals Online (AJOL)

    Sewage discharges and nutrient levels in Marimba River, Zimbabwe. ... Population distribution, land-use, industrial activity, urban agricultural ... River, one of the major inflow rivers into the Lake Chivero, Harare city\\'s main water supply source.

  6. Summary Report for Bureau of Fisheries Stream Habitat Surveys : Umatilla, Tucannon, Asotin, and Grande Ronde River Basins, 1934-1942, Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    McIntosh, Bruce A.; Clark, Sharon E.; Sedell, James R.

    1995-01-01

    This document contains summary reports of stream habitat surveys, conducted in the Umatilla and Grande Ronde River basins, by the Bureau of Fisheries (BOF, now National Marine Fisheries Service) from 1938-1942. These surveys were part of a larger project to survey streams in the Columbia River basin that provided, or had provided, spawning and rearing habitat for salmon and steelhead (Rich, 1948). The purpose of the survey was, as described by Rich, 'to determine the present condition of the various tributaries with respect to their availability and usefulness for the migration, breeding, and rearing of migratory fishes'. Current estimates of the loss of anadromous fish habitat in the Columbia River Basin are based on a series of reports published from 1949-1952 by the U.S. Fish and Wildlife Service. The reports were brief, qualitative accounts of over 5000 miles of stream surveys conducted by the BOF from 1934-1946 (Bryant, 1949; Bryant and Parkhurst, 1950; Parkhurst, 1950a-c; Parkhurst et al 1950). Despite their brevity, these BOF reports have formed the basis for estimating fish habitat losses and conditions in the Columbia River Basin (Fulton, 1968, 1970; Thompson, 1976; NPPC, 1986). Recently, the field notebooks from the BOF surveys were discovered. The data is now archived and stored in the Forest Science DataBank at Oregon State University (Stafford et al., 1984; 1988). These records are the earliest and most comprehensive documentation available of the condition and extent of anadromous fish habitat before hydropower development in the Columbia River Basin. They provide the baseline data for quantifying changes and setting a benchmark for future restoration of anadromous fish habitat throughout the Basin. The summaries contained in this book are exact replicates of the originals. Due to discrepancies between the field data and the summaries, the database should be used to assess pool and substrate conditions. This data is available from the

  7. Survey of Columbia River Basin streams for Columbia pebblesnail Fluminicola columbiana and shortface lanx Fisherola nuttalli

    International Nuclear Information System (INIS)

    Neitzel, D.A.; Frest, T.J.

    1992-08-01

    At present, there are only two remaining sizable populations of Columbia pebblesnails Fluminicola columbiana; those in the Methow and Okanogan rivers, Washington. Smaller populations survive in the Hanford Reach of the Columbia River, Washington, and the lower Salmon River, Idaho, and possibly in the middle Snake River, Idaho; Hells Canyon of the Snake River, Idaho, Washington, and Oregon, and the Grande Ronde River, Oregon and Washington. Neither large population is at present protected, and there has been a substantial documented reduction in the species' historic range. Large populations of the shortface lanx Fisherolla nuttalli persist in four streams: the Deschutes River, Oregon; the Hanford Reach and Bonneville Dam area of the Columbia River, Washington and Oregon; Hens Canyon of the Snake River, Idaho and Oregon; and the Okanogan River, Washington. Smaller populations, or ones of uncertain size, are known from the lower Salmon and middle Snake rivers, Idaho; the Grande Ronde Washington and Oregon; Imnaha, and John Day rivers, Oregon; and the Methow River, Washington. While substantial range reduction has occurred in this species, and the large populations are not well protected, the problem is not as severe as in the case of the Columbia pebblesnail. Both species appear to have been widespread historically in the mainstem Columbia River and the Columbia River Basin prior to the installation of the current dam system. Both are now apparently reduced within the Columbia River to populations in the Hanford Reach and possibly other sites that are now separated by large areas of unsuitable habitat from those in the river's major tributaries

  8. Using aerial photography for mapping giant reed infestations along the Texas-Mexico portion of the Rio Grande.

    Science.gov (United States)

    Giant reed (Arundo donax L.) is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and...

  9. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    Science.gov (United States)

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  10. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  11. Human impacts on riparian ecosystems of the Middle Rio Grande Valley during historic times

    Science.gov (United States)

    Frank E. Wozniak

    1996-01-01

    The development of irrigation agriculture in historic times has profoundly impacted riparian ecosystems in the Middle Rio Grande Valley of New Mexico. A vital relationship has existed between water resources and settlement in the semi-arid Southwest since prehistoric times. Levels of technology have influenced human generated changes in the riparian ecosystems of the...

  12. local government headquarters and spatial interaction within rivers

    African Journals Online (AJOL)

    user

    headquarters and rural hinterland settlements in Rivers South East ... of Rivers State is responsible for over seventy percent (70%) of the total employment in the ... even proportion and balanced development for all could not completely ... Rivers West ... agricultural under development, unemployment, poor quality of life due.

  13. Evaluation of aquifer heterogeneity effects on river flow loss using a transition probability framework

    Science.gov (United States)

    Engdahl, N.B.; Vogler, E.T.; Weissmann, G.S.

    2010-01-01

    River-aquifer exchange is considered within a transition probability framework along the Rio Grande in Albuquerque, New Mexico, to provide a stochastic estimate of aquifer heterogeneity and river loss. Six plausible hydrofacies configurations were determined using categorized drill core and wetland survey data processed through the TPROGS geostatistical package. A base case homogeneous model was also constructed for comparison. River loss was simulated for low, moderate, and high Rio Grande stages and several different riverside drain stage configurations. Heterogeneity effects were quantified by determining the mean and variance of the K field for each realization compared to the root-mean-square (RMS) error of the observed groundwater head data. Simulation results showed that the heterogeneous models produced smaller estimates of loss than the homogeneous approximation. Differences between heterogeneous and homogeneous model results indicate that the use of a homogeneous K in a regional-scale model may result in an overestimation of loss but comparable RMS error. We find that the simulated river loss is dependent on the aquifer structure and is most sensitive to the volumetric proportion of fines within the river channel. Copyright 2010 by the American Geophysical Union.

  14. The Grand Canyon of the Colorado: a challenge to float, a challenge to manage

    Science.gov (United States)

    David N. Cole

    1989-01-01

    Last summer, I finally got my chance to float the Colorado River through the Grand Canyon, one of the world’s premier adventure trips. For 18 days and 280 miles, my group floated through some of the most spectacular scenery imaginable, spacing our days with hikes through slickrock alcoves, along terraced pools of blue-green water, to waterfalls plunging out of holes on...

  15. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland

    Directory of Open Access Journals (Sweden)

    S. TATTARI

    2008-12-01

    Full Text Available Modeling tools are needed to assess (i the amounts of loading from agricultural sources to water bodies as well as (ii the alternative management options in varying climatic conditions. These days, the implementation of Water Framework Directive (WFD has put totally new requirements also for modeling approaches. The physically based models are commonly not operational and thus the usability of these models is restricted for a few selected catchments. But the rewarding feature of these process-based models is an option to study the effect of protection measures on a catchment scale and, up to a certain point, a possibility to upscale the results. In this study, the parameterization of the SWAT model was developed in terms of discharge dynamics and nutrient loads, and a sensitivity analysis regarding discharge and sediment concentration was made. The SWAT modeling exercise was carried out for a 2nd order catchment (Yläneenjoki, 233 km2 of the Eurajoki river basin in southwestern Finland. The Yläneenjoki catchment has been intensively monitored during the last 14 years. Hence, there was enough background information available for both parameter setup and calibration. In addition to load estimates, SWAT also offers possibility to assess the effects of various agricultural management actions like fertilization, tillage practices, choice of cultivated plants, buffer strips, sedimentation ponds and constructed wetlands (CWs on loading. Moreover, information on local agricultural practices and the implemented and planned protective measures were readily available thanks to aware farmers and active authorities. Here, we studied how CWs can reduce the nutrient load at the outlet of the Yläneenjoki river basin. The results suggested that sensitivity analysis and autocalibration tools incorporated in the model are useful by pointing out the most influential parameters, and that flow dynamics and annual loading values can be modeled with reasonable

  16. Investigations into the Early Life History of Naturally Produced Spring Chinook Salmon and Summer Steelhead in the Grande Ronde River Basin : Annual Report 2000 : Project Period 1 October 1999 to 30 November 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Monzyk, Fred R.

    2002-06-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring.

  17. Hydrochemical evaluation of river water quality—a case study: Horroud River

    Science.gov (United States)

    Falah, Fatemeh; Haghizadeh, Ali

    2017-12-01

    Surface waters, especially rivers are the most important sources of water supply for drinking and agricultural purposes. Water with desirable quality is necessary for human life. Therefore, knowledge of water quality and its temporal changes is of particular importance in sustainable management of water resources. In this study, available data during 20 years from two hydrometry stations located in the way of Horroud River in Lorestan province were used and analyzed using Aq.QA software. Piper, Schoeller, Stiff, and Wilcox diagram were drawn and Mann-Kendal test was used for determining data trend. According to Wilcox diagram, water of this river in both stations is placed in c2s1 class which is good for agricultural purposes, and according to Schoeller diagram, there is no restrict for drinking purposes. Results of Man-Kendal test show increasing trend for colorine, EC, TDS while decreasing trend for potassium in Kakareza station. On the other hand in Dehnu station, positive trend was seen in calcium and colorine while negative trend for sulfate and potassium. For other variables, no specific trend was found.

  18. Estrutura populacional de Poecilia vivípara Bloch & Schneider, 1801 (Atheriniformes, Poeciliidae do rio Ceará-Mirim - Rio Grande do Norte Populational structure of Poecilia vivipara Block & Schneider, 1801 (Atheriniformes, Poeciliidae of Ceará-Mirim river, State of Rio Grande do Norte

    Directory of Open Access Journals (Sweden)

    Renata Swany Soares Nascimento

    2000-05-01

    Full Text Available Com o propósito de elucidar aspectos da estrutura populacional de Poecilia vivipara do rio Ceará-Mirim, município de Poço Branco, Rio Grande do Norte, foram capturados 3.390 exemplares em coletas mensais, no período de junho de 1995 a maio de 1997, utilizando-se tarrafas e peneiras. A partir dos resultados obtidos, constatou-se que as fêmeas, em relação aos machos, predominaram na proporção de 8:1, considerando-se as análises total e sazonal. No que se refere à distribuição por classes de comprimento para os sexos separados, observou-se uma maior amplitude de comprimento das fêmeas em relação aos machos e ainda uma ausência de diferenças entre as estações chuvosa e seca. De acordo com os valores obtidos para o &Teta; (3,86, verificou-se, para a espécie, um crescimento do tipo alométrico positivo. Quanto à influência dos fatores abióticos, fotoperíodo, pluviosidade, temperatura e nível do rio, relacionados aos aspectos da estrutura populacional, não foram verificados resultados significativos que a confirmassemWith the aim of clarifying aspects of the populational structure of Poecilia vivipara in the Ceará-Mirim river, State of Rio Grande do Norte, a total of 3,390 specimens were captured in monthly collections June 1995 trough May 1997, using nets and sieves. Results showed that females, prevailed in the proportion of 8:1, in the whole period as well as seasonaly. The total length classes distribution for separate sexes indicated that females reaches greatest lengths than males with no difference between dry and rainy seasons. The species growth is of the alometric positive type as suggested by the &Teta; value (3,86. No correlation between abiotic factors (photoperiod duration, rainfall, temperature and river water level and the population structure was found

  19. Contamination characteristics and source apportionment of methylated PAHs in agricultural soils from Yangtze River Delta, China

    International Nuclear Information System (INIS)

    Chen, Weixiao; Wu, Xinyi; Zhang, Haiyun; Sun, Jianteng; Liu, Wenxin; Zhu, Lizhong; Li, Xiangdong; Tsang, Daniel C.W.; Tao, Shu; Wang, Xilong

    2017-01-01

    Alkylated PAHs (APAHs) have been shown to be more toxic and persistent than their non-alkylated parent compounds. However, little is known about the extent of soil contamination by these pollutants. To help understand agricultural soil pollution by these compounds at a regional scale, a total of 18 methylated PAHs (MPAHs, a major class of APAHs) in 243 soil samples were analyzed. These soil samples were collected from 11 sites in the Yangtze River Delta (YRD) region, a representative fast developing area in China. The total concentration of MPAHs (∑18MPAHs) ranged from 5.5 to 696.2 ng/g dry soil, with methylnaphthalenes (M-NAPs) and methylphenanthrenes (M-PHEs) accounting for more than 70% of the compositional profile. Relatively high concentrations of ∑18MPAHs were found in Jiaxing and Huzhou areas of Zhejiang province, as well as on the border between the cities of Wuxi and Suzhou. Different MPAH groups showed dissimilar spatial distribution patterns. The spatial distribution of lower molecular weight MPAHs was related to agricultural straw burning and emissions/depositions from industrial activities, whereas that of higher molecular weight MPAHs was much more a function of the total organic carbon (TOC) content of soil. Although coal, biomass (crop straw and wood), and petroleum combustion were identified to be the major emission sources for most of the sampling sites, the areas with relatively severe pollution with ∑18MPAHs resulted from the localized hotspots of petroleum leakage. Isomeric MPAHs with methyl group substituted at 2- (β) position exhibited significantly higher concentrations than those substituted at 1- (α) position. Results of this work help to understand soil pollution by MPAHs, and are useful for designing effective strategies for pollution control so as to ensure food safety in areas with fast economic growth. - Highlights: • Several 2–4 rings methyl-PAHs were investigated in soils from Yangtze River Delta. • Higher levels of

  20. Quantitative fidelity of recent freshwater mollusk assemblages from the Touro Passo River, Rio Grande do Sul, Brazil Fidelidade quantitativa de associações de moluscos límnicos recentes na bacia do rio Touro Passo, Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Alcemar R. Martello

    Full Text Available This study represents one of the first contributions to the knowledge on the quantitative fidelity of the recent freshwater molluscan assemblages in subtropical rivers. Thanatocoenoses and biocoenoses were studied in straight and meandering to braided sectors, in the middle course of the Touro Passo River, a fourth-order tributary of the Uruguay River, located in the westernmost part of the State of Rio Grande do Sul. Samplings were carried out through quadrats of 5 m², five in each sector. A total area of 50 m² was sampled. Samplings were also made in a lentic environment (abandoned meander, with intermittent communication with the Touro Passo River, aiming to record out-of-habitat shell transportation from the lentic communities to the main river channel. The results show that, despite the frequent oscillation of the water level, the biocoenosis of the Touro Passo River shows high ecological fidelity and undergoes little influence from the lentic vicinal environments. The taxonomic composition and some features of the structure of communities, especially the dominant species, also reflect some ecological differences between the two main sectors sampled, such as the complexity of habitats in the meandering-sector. Regarding the quantitative fidelity, 60% of the species found alive were also found dead and 47.3% of the species found dead were also found alive, at river-scale. However, 72% of the dead individuals belong to species also found alive. This value might be related with the good rank order correlation obtained for live/dead assemblages. Consequently, the dominant species of the thanatocoenoses could be used to infer the ecological attributes of the biocoenoses. The values of all the indexes analyzed were very variable in small-scale samplings (quadrat, but were more similar to others registered in previous studies, when they were analyzed in a station and river scale.O presente estudo teve como objetivo apresentar uma das primeiras

  1. Landscape Evolution Comparison between Sacra Mensa, Mars and the Grand Mesa, Colorado, USA

    Science.gov (United States)

    Chesnutt, J. M.; Wegmann, K. W.; Cole, R. D.; Byrne, P. K.

    2017-12-01

    The Grand Mesa in Colorado is one of the largest and highest flat-topped mountains on Earth, and as such provides a compelling analog for Mars' Sacra Mensa. Both basalt-capped landforms are morphologically similar, enabling a landscape evolution comparison between the two that considers key differences in locale, composition, and environmental conditions. Sacra Mensa is nearly 50 times the area of Grand Mesa and towers 3 km above the surrounding area. The 1,300 km2 Grand Mesa rises 2 km above Grand Valley, and is bracketed by the Colorado and Gunnison Rivers in much the same way as Sacra Mensa is bounded by braided channels of Kasei Valles. The sustained incision by the Gunnison and Colorado was a key erosive force in the creation of the Grand Mesa, whereas punctuated but voluminous Hesperian glacio-fluvial floods are thought to have carved the Sacra Mensa. The Grand Mesa is undergoing extensive mass wasting, ranging from deadly landslides like the 2014 West Salt Creek rock avalanche to hundreds of slower-moving retrogressive slump blocks calving off the Miocene basalt cap. The genesis and modification of both landforms includes volcanic and fluvial activity, albeit in an inverted sequence. The Grand Mesa basalt cap has preserved the landform during the incision around its sides, whereas Sacra Mensa was likely carved by floods, with those flood channels later modified by lava flows. Recent (2015-2017) LiDAR surveys revealed massive and possible ancient landslides in many stream valleys and extensive earthflows on all sides of the Grand Mesa. In the case of the Grand Mesa, the large landslides are mainly occurring in one stratigraphic unit. In comparison, the western half of Sacra Mensa contains substantial slumping accompanied by landslides and debris flows, whereas the eastern half has relatively few such phenomena. Here, we report on the first Mesa-Mensa landscape evolution analog study. The surficial and bedrock mapping and 14C dating of key features of the

  2. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    Science.gov (United States)

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  3. Comparative Analysis Of Agricultural News Covered By Federal ...

    African Journals Online (AJOL)

    This study investigated the frequency of agricultural news coverage in three Nigerians newspapers. The three papers were the Federal Government Daily Times, the Rivers State Government Tide, and a Privately owned and well read The Guardian. The objective of the study was to compare the extent of agricultural news ...

  4. Detecting seasonal and cyclical trends in agricultural runoff water quality-hypothesis tests and block bootstrap power analysis.

    Science.gov (United States)

    Uddameri, Venkatesh; Singaraju, Sreeram; Hernandez, E Annette

    2018-02-21

    Seasonal and cyclic trends in nutrient concentrations at four agricultural drainage ditches were assessed using a dataset generated from a multivariate, multiscale, multiyear water quality monitoring effort in the agriculturally dominant Lower Rio Grande Valley (LRGV) River Watershed in South Texas. An innovative bootstrap sampling-based power analysis procedure was developed to evaluate the ability of Mann-Whitney and Noether tests to discern trends and to guide future monitoring efforts. The Mann-Whitney U test was able to detect significant changes between summer and winter nutrient concentrations at sites with lower depths and unimpeded flows. Pollutant dilution, non-agricultural loadings, and in-channel flow structures (weirs) masked the effects of seasonality. The detection of cyclical trends using the Noether test was highest in the presence of vegetation mainly for total phosphorus and oxidized nitrogen (nitrite + nitrate) compared to dissolved phosphorus and reduced nitrogen (total Kjeldahl nitrogen-TKN). Prospective power analysis indicated that while increased monitoring can lead to higher statistical power, the effect size (i.e., the total number of trend sequences within a time-series) had a greater influence on the Noether test. Both Mann-Whitney and Noether tests provide complementary information on seasonal and cyclic behavior of pollutant concentrations and are affected by different processes. The results from these statistical tests when evaluated in the context of flow, vegetation, and in-channel hydraulic alterations can help guide future data collection and monitoring efforts. The study highlights the need for long-term monitoring of agricultural drainage ditches to properly discern seasonal and cyclical trends.

  5. Mapping giant reed (Arundo donax) infestations along the Texas-Mexico portion of the Rio Grande using aerial photography

    Science.gov (United States)

    Giant reed is an invasive weed throughout the southern half of the United States with the densest stands growing along the coastal rivers of southern California and the Rio Grande in Texas. The objective of this study was to use aerial photography to map giant reed infestations and estimate infested...

  6. Investigations into the early life history of naturally produced spring chinook salmon and summer steelhead in the Grande Ronde River Basin : annual report 2000 : project period 1 October 1999 to 30 November 2000.; ANNUAL

    International Nuclear Information System (INIS)

    Monzyk, Fred R.; United States. Bonneville Power Administration. Environment, Fish and Wildlife.

    2002-01-01

    The authors determined migration timing and abundance of juvenile spring chinook salmon Oncorhynchus tshawytscha and juvenile steelhead/rainbow trout O. mykiss from three populations in the Grande Ronde River basin. Based on migration timing and abundance, two distinct life-history strategies of juvenile spring chinook and O.mykiss could be distinguished. An early migrant group left upper rearing areas from July through January with a peak in the fall. A late migrant group descended from upper rearing areas from February through June with a peak in the spring

  7. A Survey of the Invasive Aquatic and Riparian Plants of the Lower Rio Grande

    Science.gov (United States)

    2005-04-01

    monocultures in many areas. In 2001 and 2003, surveys were conducted starting below Amistad Reservoir to immediately below Falcon Reservoir to assess...management programs to inhibit further new infestations locally and downstream. In 2001, 20 sites on the Rio Grande River were surveyed from Amistad Reservoir...the 2001 survey, hydrilla was found in Amistad Reservoir and below Falcon Reservoir. In August 2002, hydrilla fragments were observed in plant

  8. Dynamics and sources of reduced sulfur, humic substances and dissolved organic carbon in a temperate river system affected by agricultural practices.

    Science.gov (United States)

    Marie, Lauriane; Pernet-Coudrier, Benoît; Waeles, Matthieu; Gabon, Marine; Riso, Ricardo

    2015-12-15

    Although reduced organic sulfur substances (RSS) as well as humic substances (HS) are widely suspected to play a role in, for example, metal speciation or used as a model of dissolved organic carbon (DOC) in laboratory studies, reports of their quantification in natural waters are scarce. We have examined the dynamics and sources of reduced sulfur, HS and DOC over an annual cycle in a river system affected by agricultural practices. The new differential pulse cathodic stripping voltammetry was successfully applied to measure glutathione-like compounds (GSHs), thioacetamide-like compounds (TAs) and the liquid chromatography coupled to organic detector to analyze HS and DOC at high frequency in the Penzé River (NW France). The streamflow-concentration patterns, principal components analysis and flux analysis allowed discrimination of the source of each organic compound type. Surprisingly, the two RSS and HS detected in all samples, displayed different behavior. As previously shown, manuring practice is the main source of DOC and HS in this watershed where agricultural activity is predominant. The HS were then transferred to the river systems via runoff, particularly during the spring and autumn floods, which are responsible of >60% of the annual flux. TAs had a clear groundwater source and may be formed underground, whereas GSHs displayed two sources: one aquagenic in spring and summer probably linked to the primary productivity and a second, which may be related to bacterial degradation. High sampling frequency allowed a more accurate assessment of the flux values which were 280 tC y(-1) for DOC representing 20 kg C ha(-1) y(-1). HS, TAs and GSHs fluxes represented 60, 13, and 4% of the total annual DOC export, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Assessment of river quality in a subtropical Austral river system: a combined approach using benthic diatoms and macroinvertebrates

    Science.gov (United States)

    Nhiwatiwa, Tamuka; Dalu, Tatenda; Sithole, Tatenda

    2017-12-01

    River systems constitute areas of high human population densities owing to their favourable conditions for agriculture, water supply and transportation network. Despite human dependence on river systems, anthropogenic activities severely degrade water quality. The main aim of this study was to assess the river health of Ngamo River using diatom and macroinvertebrate community structure based on multivariate analyses and community metrics. Ammonia, pH, salinity, total phosphorus and temperature were found to be significantly different among the study seasons. The diatom and macroinvertebrate taxa richness increased downstream suggesting an improvement in water as we moved away from the pollution point sources. Canonical correspondence analyses identified nutrients (total nitrogen and reactive phosphorus) as important variables structuring diatom and macroinvertebrate community. The community metrics and diversity indices for both bioindicators highlighted that the water quality of the river system was very poor. These findings indicate that both methods can be used for water quality assessments, e.g. sewage and agricultural pollution, and they show high potential for use during water quality monitoring programmes in other regions.

  10. Interlinking of Rivers in India: Issues & Challenges

    OpenAIRE

    MEHTA, Dharmendra; MEHTA, Naveen K.

    2013-01-01

    Abstract. The rivers in India are truly speaking not only life-line of masses but also for wild-life. The rivers play a vital role in the lives of the Indian people. The river systems help us in irrigation, potable water, cheap transportation, electricity as well as a source of livelihood for our ever increasing population. Some of the major cities of India are situated at the banks of holy rivers. Proper management of river water is the need of the hour. Indian agriculture largely d...

  11. Análise arqueométrica de cerâmica Tupiguarani da região central do Estado do Rio Grande do Sul, Brasil, usando fluorescência de raios X por dispersão de energia (EDXRF Archaeometric analysis of Tupiguarani pottery from the central region of the Rio Grande do Sul State, Brazil, by energy dispersive X-ray fluorescence (EDXRF

    Directory of Open Access Journals (Sweden)

    Irene Akemy Tomiyoshi Bona

    2007-08-01

    Full Text Available Energy dispersive X-ray fluorescence methodology (EDXRF was used to determine Al, Ba, Ca, Cr, Fe, K, Mn, Pb, Rb, S, Si, Sr, Ti, V, Zn in pottery sherds from seven archaeological sites in the central region of Rio Grande do Sul State, Brazil. The potteries' chemical fingerprints from Ijuí River, Ibicuí Mirim River, Vacacaí Mirim River and Jacuí River were identified. Interactions between sites from the Jacuí River, Vacacaí Mirim River and Ibicui Mirim River could have occurred because some samples from these sites are overlapping in a principal component analysis (PCA graphic. The pottery provenance could be the same.

  12. Floodplain construction of the Rio Grande at El Paso, Texas, USA: response to Holocene climate change

    Science.gov (United States)

    Hall, Stephen A.; Peterson, John A.

    2013-04-01

    The Rio Grande is one of the larger rivers in North America, and the development of its floodplain is related to Holocene climate and climate change. The late Pleistocene through early Holocene channel is characterized by a meander or braided system with lateral cutting and backfilling, resulting in the valley-wide deposition of massive to cross-bedded, fine-to-medium textured sand. The late Pleistocene-early Holocene floodplain is also the sand source for the adjacent Bolson sand sheet. The sand sheet stopped accumulating new sand 5000 yrs ago, an event directly related to the shutting off of the sand supply caused by the deposition of overbank muds that covered and sealed the floodplain surface. During the middle Holocene, the river may have dried intermittently with the floodplain becoming deflated and local sand dunes forming on the floodplain. After 5000 yrs the climate was less arid and the river shifted to a regime of increased flooding and overbank deposition of silt and clay. By 2500 yrs, a late Holocene period of wet climate resulted in further overbank deposition and the formation of a cumulic Mollisol across the floodplain, the Socorro paleosol. The period of wet climate corresponds to the Audubon Neoglacial and active rock glaciers in the southern Rocky Mountains, speleothem growth in nearby caves, and other evidence for wet-cool conditions in the region. After 1000 yrs, the climate became drier, and the deposition and accumulation of overbank muds by the flooding Rio Grande came to a halt. Even though the river has flooded often in historic times, and presumably during late prehistoric times as well, there is little evidence for deposition of overbank sediments on the floodplain since A.D. 1000. Accordingly, the present-day surface of the Lower Valley is ten centuries old. Three channels occur on the US side of the Lower Valley floodplain, and during the past 2500 yrs stream flow has shifted from one to the other by the avulsion process of channel

  13. Population structure of Trachelyopterus albicrux (Siluriformes, Auchenipteridae from the Ibicuí River, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Éverton Luis Zardo

    2012-06-01

    Full Text Available This study aimed to determine some of the biological aspects of Trachelyopterus albicrux by analyzing its population structure. The study focused on sex proportion, length and the relation of weight/length. Samples were taken every two months, from December 1999 to January 2002, in lotic and lentic environments along the Ibicui River between the cities of São Vicente do Sul and Itaqui, in Rio Grande do Sul. The following nets were used: 10m nets with 1.5, 2.0, 2.5 and 3.0cm mesh; 20m nets with 4.0, 5.0, 6.0, 8.0 and 10.0cm mesh; and 4.0/20.0, 5.0/20 and 6.0/20.0 sweep nets (all mesh sizes were in cm and measured between adjacent knots. The nets stayed in the water for 24 hours, and were checked every 6 hours. A total of 122 males and 112 females were captured, which had a standard average length (Ls of 13.27cm and a total average weight (Wt of 95.95g. There was no significant difference between the males and females. The weight/length relation was calculated using the equation Wt = 0,0224 × Ls3,1691 for males and Wt = 0,0127 × Ls3,4 for females. Trachelyopterus albicrux showed isometric growth, with the coefficient value of the linear regression equation equal to 3.1691 for males and 3.4 for females.

  14. Groundwater hydrology and estimation of horizontal groundwater flux from the Rio Grande at selected locations in Albuquerque, New Mexico, 2009–10

    Science.gov (United States)

    Rankin, Dale R.; Oelsner, Gretchen P.; McCoy, Kurt J.; Goeff J.M. Moret,; Jeffery A. Worthington,; Kimberly M. Bandy-Baldwin,

    2016-03-17

    The Albuquerque area of New Mexico has two principal sources of water: (1) groundwater from the Santa Fe Group aquifer system, and (2) surface water from the Rio Grande. From 1960 to 2002, pumping from the Santa Fe Group aquifer system caused groundwater levels to decline more than 120 feet while water-level declines along the Rio Grande in Albuquerque were generally less than 40 feet. These differences in water-level declines in the Albuquerque area have resulted in a great deal of interest in quantifying the river-aquifer interaction associated with the Rio Grande.In 2003, the U.S. Geological Survey, in cooperation with the Bureau of Reclamation, acting as fiscal agent for the Middle Rio Grande Endangered Species Collaborative Program, and the U.S. Army Corps of Engineers, began a study to characterize the hydrogeology of the Rio Grande inner valley alluvial aquifer in the Albuquerque area of New Mexico. The study provides hydrologic data in order to enhance the understanding of rates of water leakage from the Rio Grande to the alluvial aquifer, groundwater flow through the aquifer, and discharge of water from the aquifer to riverside drains. The study area extends about 20 miles along the Rio Grande in the Albuquerque area. Piezometers and surface-water gages were installed in paired transects at eight locations. Nested piezometers, completed at various depths in the alluvial aquifer, and surface-water gages, installed in the Rio Grande and riverside drains, were instrumented with pressure transducers. Water-level and water-temperature data were collected from 2009 to 2010.Water levels from the piezometers indicated that groundwater movement was usually away from the river towards the riverside drains. Annual mean horizontal groundwater gradients in the inner valley alluvial aquifer ranged from 0.0024 (I-25 East) to 0.0144 (Pajarito East). The median hydraulic conductivity values of the inner valley alluvial aquifer, determined from slug tests, ranged from 30

  15. Salmonid Gamete Preservation in the Snake River Basin : 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Robyn; Kucera, Paul A. [Nez Perce Tribe. Dept. of Fisheries Resource Management, Lapwai, ID (US)

    2001-06-01

    Steelhead (Oncorhynchus mykiss) and chinook salmon (Oncorhynchus tshawytscha) populations in the Northwest are decreasing. Genetic diversity is being lost at an alarming rate. The Nez Perce Tribe (Tribe) strives to ensure availability of genetic samples of the existing male salmonid population by establishing and maintaining a germplasm repository. The sampling strategy, initiated in 1992, has been to collect and preserve male salmon and steelhead genetic diversity across the geographic landscape by sampling within the major river subbasins in the Snake River basin, assuming a metapopulation structure existed historically. Gamete cryopreservation conserves genetic diversity in a germplasm repository, but is not a recovery action for listed fish species. The Tribe was funded in 2000 by the Bonneville Power Administration (BPA) and the U.S. Fish and Wildlife Service Lower Snake River Compensation Plan (LSRCP) to coordinate gene banking of male gametes from Endangered Species Act listed steelhead and spring and summer chinook salmon in the Snake River basin. In 2000, a total of 349 viable chinook salmon semen samples from the Lostine River, Catherine Creek, upper Grande Ronde River, Lookingglass Hatchery (Imnaha River stock), Rapid River Hatchery, Lake Creek, the South Fork Salmon River weir, Johnson Creek, Big Creek, Capehorn Creek, Marsh Creek, Pahsimeroi Hatchery, and Sawtooth Hatchery (upper Salmon River stock) were cryopreserved. Also, 283 samples of male steelhead gametes from Dworshak Hatchery, Fish Creek, Grande Ronde River, Imnaha River, Little Sheep Creek, Pahsimeroi Hatchery and Oxbow Hatchery were also cryopreserved. The Tribe acquired 5 frozen steelhead samples from the Selway River collected in 1994 and 15 from Fish Creek sampled in 1993 from the U.S. Geological Survey, for addition into the germplasm repository. Also, 590 cryopreserved samples from the Grande Ronde chinook salmon captive broodstock program are being stored at the University of Idaho as

  16. Transboundary water resources management and livelihoods: interactions in the Senegal river

    Science.gov (United States)

    Bruckmann, Laurent; Beltrando, Gérard

    2016-04-01

    In Sub-Saharan Africa, 90 % of wetlands provide ecosystem services to societies, especially for agriculture and fishing. However, tropical rivers are increasingly regulated to provide hydroelectricity and irrigated agriculture. Modifications of flows create new hydrological conditions that affect floodplains ecology and peoples' livelihoods. In the Senegal river valley, large dams were built during the 1980's to secure water resources after a decade of water scarcity in the 1970's: Manantali in the upper basin with a reservoir of 12km3 and Diama close to estuary to avoid saltwater intrusion during dry season. Senegal river water resources are known under the supervision of Senegal River Basin Development Organization (OMVS), which defines water allocation between different goals (electricity, irrigation, traditional activities). This study, based on the concept of socio-hydrology, analyses socio-ecological changes following thirty years of dam management. The work enlightens adaptation mechanisms of livelihoods from people living along the river floodplain and feedback on water ressources. The study uses a mixed method approach, combining hydrological analyses, literature review and data collection from surveys on stakeholders and key informants level in the middle Senegal valley. Our results suggest that in all the Senegal river valley, socio-ecological changes are driven by new hydrological conditions. If dam management benefit for peoples with electrification and development of an irrigated agriculture, it has also emphasized the floodplain degradation. Flooded area has decline and are more irregular, causing an erosion of floodplain supporting services (traditional activities as fishing, grazing and flood-recession agriculture). These conditions reduce peoples' livelihood possibilities and irrigation is the only regular activity. As a feedback, irrigated agriculture increases withdrawals in the river and, recently, in aquifers posing a new uncertainty on water

  17. Distribution and habitat associations of juvenile Common Snook in the lower Rio Grande, Texas

    Science.gov (United States)

    Huber, Caleb G.; Grabowski, Timothy B.; Patino, Reynaldo; Pope, Kevin L.

    2014-01-01

    Common Snook Centropomus undecimalis were once abundant off the Texas coast, but these populations are now characterized by low abundance and erratic recruitment. Most research concerning Common Snook in North America has been conducted in Florida and very little is known about the specific biology and habitat needs of Common Snook in Texas. The primary objective of this study was to describe the habitat use patterns of juvenile Common Snook and their role in the fish assemblage in the lower portion of the Rio Grande, Texas. Secondarily, we documented the relationship between age and juvenile reproductive development. Fish were collected during January–March 2006 from the lower 51.5 km of the Rio Grande using a bottom trawl and boat-mounted electrofisher. Measurements of water quality and other habitat traits were recorded at each sampling site. We captured 225 Common Snook exclusively in freshwater habitats above river kilometer 12.9. The distribution of juvenile Common Snook was not random, but influenced primarily by turbidity and dissolved oxygen. Sex differentiation and gonadal development based on histological examination of gonads established that age-1 and age-2 Common Snook were juvenile, prepubertal males. There was no difference between the age groups in their overall distribution in the river. However, age-2 Common Snook were associated with deeper areas with faster currents, higher conductivity, and steeper banks. Overall, Common Snook in the lower Rio Grande show substantial differences in habitat use than their counterparts in other parts of the range of the species, but it is unclear whether this is due to differences in habitat availability, behavioral plasticity, or some combination thereof.

  18. Beyond the edge: Linking agricultural landscapes, stream networks, and best management practices

    Science.gov (United States)

    Kreiling, Rebecca M.; Thoms, Martin C.; Richardson, William B.

    2018-01-01

    Despite much research and investment into understanding and managing nutrients across agricultural landscapes, nutrient runoff to freshwater ecosystems is still a major concern. We argue there is currently a disconnect between the management of watershed surfaces (agricultural landscape) and river networks (riverine landscape). These landscapes are commonly managed separately, but there is limited cohesiveness between agricultural landscape-focused research and river science, despite similar end goals. Interdisciplinary research into stream networks that drain agricultural landscapes is expanding but is fraught with problems. Conceptual frameworks are useful tools to order phenomena, reveal patterns and processes, and in interdisciplinary river science, enable the joining of multiple areas of understanding into a single conceptual–empirical structure. We present a framework for the interdisciplinary study and management of agricultural and riverine landscapes. The framework includes components of an ecosystems approach to the study of catchment–stream networks, resilience thinking, and strategic adaptive management. Application of the framework is illustrated through a study of the Fox Basin in Wisconsin, USA. To fully realize the goal of nutrient reduction in the basin, we suggest that greater emphasis is needed on where best management practices (BMPs) are used within the spatial context of the combined watershed–stream network system, including BMPs within the river channel. Targeted placement of BMPs throughout the riverine landscape would increase the overall buffering capacity of the system to nutrient runoff and thus its resilience to current and future disturbances.

  19. A Report on the 40th International Symposium Actual Tasks on Agricultural Engineering, 21-24 February 2012, Opatija, Croatia

    OpenAIRE

    Silvio Kosutic; Daniele De Wrachien

    2012-01-01

    The 40th International Symposium, Actual Tasks on Agricultural Engineering, was held on 21-24 February 2012 in the “Grand Hotel Adriatic”, Opatija, in the Republic of Croatia. It was organized by the Agricultural Engineering Department of the Faculty of Agriculture of the University of Zagreb, and was supported by the Department of Agricultural Engineering of the Faculty of Agriculture of the J.J. Strossmayer University, Osijek, the Department of Bio-Systems Engineering of the Faculty of Agri...

  20. Sustainable management of river oases along the Tarim River (SuMaRiO) in Northwest China under conditions of climate change

    Science.gov (United States)

    Rumbaur, C.; Thevs, N.; Disse, M.; Ahlheim, M.; Brieden, A.; Cyffka, B.; Duethmann, D.; Feike, T.; Frör, O.; Gärtner, P.; Halik, Ü.; Hill, J.; Hinnenthal, M.; Keilholz, P.; Kleinschmit, B.; Krysanova, V.; Kuba, M.; Mader, S.; Menz, C.; Othmanli, H.; Pelz, S.; Schroeder, M.; Siew, T. F.; Stender, V.; Stahr, K.; Thomas, F. M.; Welp, M.; Wortmann, M.; Zhao, X.; Chen, X.; Jiang, T.; Luo, J.; Yimit, H.; Yu, R.; Zhang, X.; Zhao, C.

    2015-03-01

    The Tarim River basin, located in Xinjiang, NW China, is the largest endorheic river basin in China and one of the largest in all of Central Asia. Due to the extremely arid climate, with an annual precipitation of less than 100 mm, the water supply along the Aksu and Tarim rivers solely depends on river water. This is linked to anthropogenic activities (e.g., agriculture) and natural and semi-natural ecosystems as both compete for water. The ongoing increase in water consumption by agriculture and other human activities in this region has been enhancing the competition for water between human needs and nature. Against this background, 11 German and 6 Chinese universities and research institutes have formed the consortium SuMaRiO (Sustainable Management of River Oases along the Tarim River; de"target="_blank">http://www.sumario.de), which aims to create a holistic picture of the availability of water resources in the Tarim River basin and the impacts on anthropogenic activities and natural ecosystems caused by the water distribution within the Tarim River basin. On the basis of the results from field studies and modeling approaches as well as from suggestions by the relevant regional stakeholders, a decision support tool (DST) will be implemented that will then assist stakeholders in balancing the competition for water, acknowledging the major external effects of water allocation to agriculture and to natural ecosystems. This consortium was formed in 2011 and is funded by the German Federal Ministry of Education and Research. As the data collection phase was finished this year, the paper presented here brings together the results from the fields from the disciplines of climate modeling, cryology, hydrology, agricultural sciences, ecology, geoinformatics, and social sciences in order to present a comprehensive picture of the effects of different water availability schemes on anthropogenic activities and natural ecosystems along the Tarim River. The second objective

  1. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  2. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  3. La Grande Nation and Agriculture: The Power of French Farmers Demystified

    NARCIS (Netherlands)

    Vleuten, J.M. van der; Alons, G.C.

    2012-01-01

    France is considered a strong state, but French governments have always fiercely defended the interests of French farmers in European and global negotiations. Why would a ‘strong state’ be unable to resist farm lobby pressure? Is agriculture an exception to the French ‘strong state’ rule? This

  4. Age, distribution, and formation of late cenozoic paleovalleys of the lower Colorado River and their relation to river aggradation and degradation

    Science.gov (United States)

    Howard, K.A.; Lundstrom, S.C.; Malmon, D.V.; Hook, S.J.

    2008-01-01

    Distinctive far-traveled fluvial sediment of the lower Colorado River fills 20 paleo-valleys now stranded by the river downstream of Grand Canyon as it crosses the Basin and Range Province. These sediments resulted from two or more aggradational epi sodes in Pliocene and Pleistocene times following initial incision during the early Pliocene. A review of the stratigraphic evidence of major swings in river elevation over the last 5 m.y. from alternating degradation and aggradation episodes establishes a framework for understanding the incision and filling of the paleovalleys. The paleo-valleys are found mostly along narrow bedrock canyon reaches of the river, where divides of bedrock or old deposits separate them from the modern river. The paleo-valleys are interpreted to have stemmed from periods of aggradation that filled and broadened the river valley, burying low uplands in the canyon reaches into which later channel positions were entrenched during subsequent degradation episodes. The aggradation-degradation cycles resulted in the stranding of incised river valleys that range in elevation from near the modern river to 350 m above it. ?? 2008 The Geological Society of America.

  5. Effects of land use on the concentration and emission of nitrous oxide in nitrogen-enriched rivers.

    Science.gov (United States)

    Yang, Libiao; Lei, Kun

    2018-07-01

    Nitrous oxide (N 2 O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Nitrogen-enriched rivers are significant sources of atmospheric N 2 O. This study conducted a one-year field campaign in seven N-enriched rivers draining urban, rural, and agricultural land to determine the link between the production, concentrations, and emissions of N 2 O and land use. Estimated N 2 O fluxes varied between 1.30 and 1164.38 μg N 2 O-N m -2 h -1 with a mean value of 154.90 μg N 2 O-N m -2 h -1 , indicating that rivers were the net sources of atmospheric N 2 O. Concentrations of N 2 O ranged between 0.23 and 29.21 μg N 2 O-N L -1 with an overall mean value of 3.81 μg N 2 O-N L -1 . Concentrations of ammonium and nitrate in urban and rural rivers were high in the cold season. The concentrations were also high in agricultural rivers in the wet season. N 2 O concentrations and emissions in rural and urban rivers followed a similar pattern to ammonium and a similar pattern to nitrate in agricultural rivers. A strong link between the concentrations and emissions of N 2 O and land use was observed. N 2 O concentrations in and emissions from the rivers draining the urban and rural areas were significantly higher than the rivers draining the agricultural areas (P Nitrate-N and NO 3- -O isotope data and linear regression of N 2 O and river water variables strongly indicated that dissolved N 2 O was mainly derived from nitrification in agricultural rivers and denitrification in rural and urban rivers. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Tourist Satisfaction with Hospitality Services on River Ship “Ms River Aria”

    Directory of Open Access Journals (Sweden)

    Nikola Vuksanović

    2013-07-01

    Full Text Available The main prerequisite for a successful business of hospitality services and building customer loyalty is to develop measures for improving and development hospitality services and offer. This paper presents the results of tourists satisfaction surveys based on the measurement of expected and perceived levels of quality hospitality services on a river ship “MS River Aria” company “Grand Circle Cruise Line”. The survey was conducted between March and September 2012 on the itinerary: Amsterdam - Vienna (SGE, Amsterdam - Antwerp (SHH, Linz - Budapest (EDR and Budapest - Constanta (LBS. A model for measuring hospitality services was developed by the company itself. During statistical data analysis, only the highest ratings, whose share was shown as percentage, were taken into account. The obtained results may be relevant for other cruise companies and contribute to the improvement of business and pleasure tourist.

  7. Landuse Types within Channel Corridor and River Channel Morphology of River Ona, Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Olutoyin Fashae

    2017-12-01

    Full Text Available The importance of river a corridor warrants a well thought out and balanced management approach because it helps in improving or maintaining water quality, protecting wetlands, etc. Hence, this study seeks to identify major landuse types within the River Ona Corridor; examine the impact of these landuse types within the River Ona corridor on its channel morphology and understand the risk being posed by these landuse types. The study is designed by selecting two reaches of six times the average width from each of the four major landuse types that exist along the river corridor. This study revealed that along the downstream section of Eleyele Dam of River Ona, natural forest stabilizes river channel banks, thereby presenting a narrow and shallow width and depth respectively but the widest of all is found at the agricultural zones.

  8. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  9. Whose waters? Large-scale agricultural development and water grabbing in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Aurelia van Eeden

    2016-10-01

    Full Text Available In Tanzania like in other parts of the global South, in the name of 'development' and 'poverty eradication' vast tracts of land have been earmarked by the government to be developed by investors for different commercial agricultural projects, giving rise to the contested land grab phenomenon. In parallel, Integrated Water Resources Management (IWRM has been promoted in the country and globally as the governance framework that seeks to manage water resources in an efficient, equitable and sustainable manner. This article asks how IWRM manages the competing interests as well as the diverse priorities of both large and small water users in the midst of foreign direct investment. By focusing on two commercial sugar companies operating in the Wami-Ruvu River Basin in Tanzania and their impacts on the water and land rights of the surrounding villages, the article asks whether institutional and capacity weaknesses around IWRM implementation can be exploited by powerful actors that seek to meet their own interests, thus allowing water grabbing to take place. The paper thus highlights the power, interests and alliances of the various actors involved in the governance of water resources. By drawing on recent conceptual insights from the water grabbing literature, the empirical findings suggest that the IWRM framework indirectly and directly facilitates the phenomenon of water grabbing to take place in the Wami-Ruvu River Basin in Tanzania.

  10. Grande Ronde Endemic Spring Chinook Salmon Supplementation Program: Monitoring and Evaluation, 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Boe, Stephen J.; Weldert, Rey F.; Crump, Carrie A. (Confederated Tribes of the Umatilla Indian Reservation, Department of Natural Resources, Pendleton, OR)

    2003-03-01

    This is the fifth annual report of a multi-year project to operate adult collection and juvenile acclimation facilities on Catherine Creek and the upper Grande Ronde River for Snake River spring chinook salmon. These two streams have historically supported populations that provided significant tribal and non-tribal fisheries. Conventional and captive broodstock supplementation techniques are being used to restore spring chinook salmon fisheries in these streams. Statement of Work Objectives for 2002: (1) Plan for, administer, coordinate and assist comanagers in GRESCP M&E activities. (2) Evaluate performance of supplemented juvenile spring chinook salmon. (3) Evaluate life history differences between wild and hatchery-origin (F{sub 1}) adult spring chinook salmon. (4) Describe life history characteristics and genetics of adult summer steelhead collected at weirs.

  11. Methylmercury cycling, bioaccumulation, and export from agricultural and non-agricultural wetlands in the Yolo Bypass

    Science.gov (United States)

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Fleck, Jacob; Alpers, Charles N.; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Stricker, Craig; Stephenson, Mark; Feliz, David; Gill, Gary; Bachand, Philip; Brice, Ann; Kulakow, Robin

    2010-01-01

    This 18-month field study addresses the seasonal and spatial patterns and processes controlling methylmercury (MeHg) production, bioaccumulation, and export from natural and agricultural wetlands of the Yolo Bypass Wildlife Area (YBWA). The data were collected in conjuntion with a Proposition 40 grant from the State Water Resources Control Board in support of the development of Best Management Practices (BMP's) for reducing MeHg loading from agricultural lands in the wetland-dominated Yolo Bypass to the Sacramento-San Joaquin River Delta. The four managemenr-based questions addressed in this study were: 1. Is there a different among agricultural and managfed wetland types in terms of Me Hg dynamic (production, degradation, bioaccumulation, or export)?

  12. Phosphorus Fluxes from Three Coastal Watersheds under Varied Agriculture Intensities to the Northern Gulf of Mexico

    Directory of Open Access Journals (Sweden)

    Songjie He

    2018-06-01

    Full Text Available This study aims to evaluate recent total phosphorus (TP and dissolved inorganic phosphorus (DIP transport from three coastal rivers—the Calcasieu, Mermentau, and Vermilion Rivers—that drain watersheds with varied agriculture intensities (21%, 67%, and 61%, respectively into the northern Gulf of Mexico, one of the world’s largest summer hypoxic zones. The study also examined the spatial trends of TP and DIP from freshwater to saltwater along an 88-km estuarine reach with salinity increasing from 0.02 to 29.50. The results showed that from 1990–2009 to 2010–2017, the TP fluxes for one of the agriculture-intensive rivers increased while no significant change was found for the other two rivers. Change in river discharge was the main reason for this TP flux trend. The two more agriculture-intensive river basins showed consistently higher TP and DIP concentrations and fluxes, as well as higher DIP:TP ratios than the river draining less agriculture-intensive land, confirming the strong effect of land uses on phosphorus input and speciation. Longitudinal profiles of DIP along the salinity gradient of the estuarine reach displayed characteristic input behavior. Desorption of DIP from suspended solids and river bed sediments, urban inputs, as well as stronger calcium carbonate and phosphorus co-precipitation at the marine endmember could be the reasons for such mixing dynamics.

  13. Economic compensation standard for irrigation processes to safeguard environmental flows in the Yellow River Estuary, China

    Science.gov (United States)

    Pang, Aiping; Sun, Tao; Yang, Zhifeng

    2013-03-01

    SummaryAgriculture and ecosystems are increasingly competing for water. We propose an approach to assess the economic compensation standard required to release water from agricultural use to ecosystems while taking into account seasonal variability in river flow. First, we defined agricultural water shortage as the difference in water volume between agricultural demands and actual supply after maintaining environmental flows for ecosystems. Second, we developed a production loss model to establish the relationship between production losses and agricultural water shortages in view of seasonal variation in river discharge. Finally, we estimated the appropriate economic compensation for different irrigation stakeholders based on crop prices and production losses. A case study in the Yellow River Estuary, China, demonstrated that relatively stable economic compensation for irrigation processes can be defined based on the developed model, taking into account seasonal variations in river discharge and different levels of environmental flow. Annual economic compensation is not directly related to annual water shortage because of the temporal variability in river flow rate and environmental flow. Crops that have stable planting areas to guarantee food security should be selected as indicator crops in economic compensation assessments in the important grain production zone. Economic compensation may be implemented by creating funds to update water-saving measures in agricultural facilities.

  14. An Integrated Model for a Water Leasing System on the Middle Rio Grand, New Mexico

    Science.gov (United States)

    Brookshire, D. S.; Coursey, D. L.; Tidwell, V. C.; Broadbent, C. D.

    2006-12-01

    Since 1950 demand for water has more than doubled in the United States. Virtually all water supplies are allocated, leading to the question, where will water come from? The concept of water leasing has gained considerable attention as a volunteer, market-mediated system for transferring water between competing uses. For a water leasing system to be truly effective, detailed knowledge of the available water supply and the factors that affect water demand is critical. Improving understating of the factors that determine residential, industrial, and agricultural demand for water using experimental economics and then integrating with a hydrological model will allow for better understanding of market-based mechanisms potential to allocate water resources effectively. Currently we have three case studies underway, a generalized water leasing system on the Middle Rio Grande, a sophisticated farmer decision process and a study in the Mimbres basin in southern New Mexico. The developed market model utilizes an open market trading system known as a double auction, where buyers and sellers declare their bids and offers to the market. The developed hydrological model utilizes the Upper Rio Grande Water Operations Model (URGWOM) system structure and data for the generalized water leasing system and the farmer decision process, with a different hydrological model being developed for the Mimbres basin. A key coupling between the hydrologic and market models involves tracking the difference in river losses for trades that move water up or down the river. In the experiments the hydrological model runs before the market-trading period to establish water rights, the trading period occurs and the hydrological model then runs a second time to report flows to each reach of the river. Participants in the experiment represent the interests of specific users, including farmers, Native American interests, urban interests and environmental interests. Participants in the experiments are

  15. State of Flood Related Modeling Along Middle Rio Grande: Report Documentary 2007-2008 Work

    Science.gov (United States)

    2010-07-01

    Bosque Environment (CBE) Title Prepared By Rio Grande Silvery Minnow Sanctuary Proposed Site, 1-D HEC - RAS Model of Area of Interest Jonathan Acbuchon...Erosion Jennifer G. Duan Case Study: Application of the HEC -6 Model for the Main Stem of the Kankakee River in Illinois Nani G. Bhowmik, D.WRE...1 bank-attached bar HYDRAULIC ANALYSIS One-dimensional HEC - RAS models – Fixed-bed analysis – Calibrated to gauged flow at time of survey and 2005

  16. Defining chemical status of a temporary Mediterranean River.

    Science.gov (United States)

    Skoulikidis, Nikolaos Th

    2008-07-01

    Although the majority of rivers and streams in the Mediterranean area are temporary, no particular attention is being paid for such systems in the Water Framework Directive (WFD). A typical temporal Mediterranean river, draining an intensively cultivated basin, was assessed for its chemical status. Elevated concentrations of nitrates and salts in river water as well as nutrients and heavy metals in river sediments have been attributed to agricultural land uses and practices and point sources of organic pollution. A scheme for the classification of the river's chemical status (within the ecological quality classification procedure) was applied by combining pollution parameters in groups according to related pressures. In light of the temporal hydrological regime and anthropogenic impacts, sediment chemical quality elements were considered, in addition to hydrochemical ones. Despite the extensive agricultural activities in the basin, the majority of the sites examined showed a good quality and only three of them were classified as moderate. For the classification of the chemical quality of temporary water bodies, there is a need to develop ecologically relevant salinity and sediment quality standards.

  17. Topographic change detection at select archeological sites in Grand Canyon National Park, Arizona, 2007–2010

    Science.gov (United States)

    Collins, Brian D.; Corbett, Skye C.; Fairley, Helen C.; Minasian, Diane L.; Kayen, Robert; Dealy, Timothy P.; Bedford, David R.

    2012-01-01

    Human occupation in Grand Canyon, Arizona, dates from at least 11,000 years before present to the modern era. For most of this period, the only evidence of human occupation in this iconic landscape is provided by archeological sites. Because of the dynamic nature of this environment, many archeological sites are subject to relatively rapid topographic change. Quantifying the extent, magnitude, and cause of such change is important for monitoring and managing these archeological sites. Such quantification is necessary to help inform the continuing debate on whether and how controlled releases from Glen Canyon Dam, located immediately upstream of Grand Canyon National Park, are affecting site erosion rates, artifact transport, and archeological resource preservation along the Colorado River in Grand Canyon. Although long-term topographic change resulting from a variety of natural processes is inherent in the Grand Canyon region, continued erosion of archeological sites threatens both the archeological resources and our future ability to study evidence of past cultural habitation. Thus, this subject is of considerable interest to National Park Service managers and other stakeholders in the Glen Canyon Dam Adaptive Management Program. Understanding the causes and effects of archeological site erosion requires a knowledge of several factors, including the location, timing, and magnitude of the changes occurring in relation to archeological resources, the rates of change, and the relative contribution of potential causes. These potential causes include sediment depletion associated with managed flows from Glen Canyon Dam, site-specific weather and overland flow patterns, visitor impacts, and long-term regional climate change. To obtain this information, highly accurate, spatially specific data are needed from sites undergoing change. Using terrestrial lidar techniques, and building upon three previous surveys of archeological sites performed in 2006 and 2007, we

  18. The Water Quality of the River Enborne, UK: Observations from High-Frequency Monitoring in a Rural, Lowland River System

    Directory of Open Access Journals (Sweden)

    Sarah J. Halliday

    2014-01-01

    Full Text Available This paper reports the results of a 2-year study of water quality in the River Enborne, a rural river in lowland England. Concentrations of nitrogen and phosphorus species and other chemical determinands were monitored both at high-frequency (hourly, using automated in situ instrumentation, and by manual weekly sampling and laboratory analysis. The catchment land use is largely agricultural, with a population density of 123 persons km−2. The river water is largely derived from calcareous groundwater, and there are high nitrogen and phosphorus concentrations. Agricultural fertiliser is the dominant source of annual loads of both nitrogen and phosphorus. However, the data show that sewage effluent discharges have a disproportionate effect on the river nitrogen and phosphorus dynamics. At least 38% of the catchment population use septic tank systems, but the effects are hard to quantify as only 6% are officially registered, and the characteristics of the others are unknown. Only 4% of the phosphorus input and 9% of the nitrogen input is exported from the catchment by the river, highlighting the importance of catchment process understanding in predicting nutrient concentrations. High-frequency monitoring will be a key to developing this vital process understanding.

  19. Assessment of pollution in Ndarugu river due to runoff and agro ...

    African Journals Online (AJOL)

    River Ndarugu is a tributary of Athi River in Kenya and is one of the main ... it receives untreated agro‐industrial waste discharges, effluent from coffee and tea ... as to protect the river from the adverse impacts of agricultural activities and save it ...

  20. USDA-ARS update

    Science.gov (United States)

    Potato research at the Red River Valley Agricultural Research Center is conducted by the Sugarbeet & Potato Research Unit at two locations: the Northern Crop Science Laboratory in Fargo, ND and the Potato Research Worksite located in East Grand Forks, MN. Research in Fargo is laboratory oriented an...

  1. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  2. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    Science.gov (United States)

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  3. A complete and continuous pesticide screening during one growing season in five small Swiss rivers with agricultural watersheds

    Science.gov (United States)

    Mangold, Simon; Comte, Rahel; Doppler, Tobias; Wittmer, Irene; Moschet, Christoph; Stamm, Christian; Singer, Heinz; Kunz, Manuel

    2016-04-01

    Agricultural pesticides are regularly found in surface waters at concentration levels that raise ecotoxicological concerns. Due to large fluctuations in concentration over time and the potentially high number of pesticides in agricultural watersheds, it is difficult to obtain a comprehensive overview of the actual pollution level. This collaborative project between research and Swiss federal and cantonal authorities aimed for a comprehensive analysis of pesticide pollution in five small agricultural streams to address this knowledge gap. The five rivers are located in catchments (1.5 to 9 km2) with intensive agriculture covering a wide range of crops, such as grains, vegetables, vineyards and orchards. Urban activities and influences are low. Twelve-hour composite samples were collected continuously from March until the end of August with automatic sampling devices, resulting in 360 samples per site. Using precipitation and water level data, we differentiated between discharge events and low-flow periods. Samples taken during dry weather were pooled for the analysis. This procedure resulted in a complete concentration profile over the entire monitoring period covered by 60 samples per site. The analysis, using liquid chromatography coupled to high resolution mass spectrometry (Orbitrap technology), involved a target screening of 248 pesticides including fungicides, herbicides, insecticides, as well as important transformation products. Data on the total number and distribution of pesticides, their detection frequency, crop specific applications and concentration time profiles will be presented. Preliminary results indicate substantial pesticide exposure since at least 20 different compounds were detected in all samples. One sample even contained a mixture of 80 pesticides. The majority of concentrations were in the low ng/L range but concentrations of a few compounds were very high (several micrograms/L) during discharge events as well as during low flow conditions

  4. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    Science.gov (United States)

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  5. Thinking outside the channel: modeling nitrogen cycling in networked river ecosystems

    Science.gov (United States)

    Ashley M. Helton; Geoffrey C. Poole; Judy L. Meyer; Wilfred M. Wollheim; Bruce J. Peterson; Patrick J. Mulholland; Emily S. Bernhardt; Jack A. Stanford; Clay Arango; Linda R. Ashkenas; Lee W. Cooper; Walter K. Dodds; Stanley V. Gregory; Robert O. Hall; Stephen K. Hamilton; Sherri L. Johnson; William H. McDowell; Jody D. Potter; Jennifer L. Tank; Suzanne M. Thomas; H. Maurice Valett; Jackson R. Webster; Lydia Zeglin

    2011-01-01

    Agricultural and urban development alters nitrogen and other biogeochemical cycles in rivers worldwide. Because such biogeochemical processes cannot be measured empirically across whole river networks, simulation models are critical tools for understanding river-network biogeochemistry. However, limitations inherent in current models restrict our ability to simulate...

  6. Air-water oxygen exchange in a large whitewater river

    Science.gov (United States)

    Hall, Robert O.; Kennedy, Theodore A.; Rosi-Marshall, Emma J.

    2012-01-01

    Air-water gas exchange governs fluxes of gas into and out of aquatic ecosystems. Knowing this flux is necessary to calculate gas budgets (i.e., O2) to estimate whole-ecosystem metabolism and basin-scale carbon budgets. Empirical data on rates of gas exchange for streams, estuaries, and oceans are readily available. However, there are few data from large rivers and no data from whitewater rapids. We measured gas transfer velocity in the Colorado River, Grand Canyon, as decline in O2 saturation deficit, 7 times in a 28-km segment spanning 7 rapids. The O2 saturation deficit exists because of hypolimnetic discharge from Glen Canyon Dam, located 25 km upriver from Lees Ferry. Gas transfer velocity (k600) increased with slope of the immediate reach. k600 was -1 in flat reaches, while k600 for the steepest rapid ranged 3600-7700 cm h-1, an extremely high value of k600. Using the rate of gas exchange per unit length of water surface elevation (Kdrop, m-1), segment-integrated k600 varied between 74 and 101 cm h-1. Using Kdrop we scaled k600 to the remainder of the Colorado River in Grand Canyon. At the scale corresponding to the segment length where 80% of the O2 exchanged with the atmosphere (mean length = 26.1 km), k600 varied 4.5-fold between 56 and 272 cm h-1 with a mean of 113 cm h-1. Gas transfer velocity for the Colorado River was higher than those from other aquatic ecosystems because of large rapids. Our approach of scaling k600 based on Kdrop allows comparing gas transfer velocity across rivers with spatially heterogeneous morphology.

  7. Pesticides in surface water measured at select sites in the Sacramento River basin, California, 1996-1998

    Science.gov (United States)

    Domagalski, Joseph L.

    2000-01-01

    Pesticides were measured in one urban stream, one agricultural stream, one site on the Sacramento River, and one large flood control channel over a period of 18 months during 1996-1998. All sites were located within the Sacramento River Basin of California. Measurements were made on 83 pesticides or pesticide transformation products by either gas chromatography/mass spectrometry or by high performance liquid chromatography with ultraviolet light spectrometry. Some pesticides were detected frequently at the agricultural stream and downstream in the Sacramento River and at the flood control channel of the Sacramento River. These were pesticides related to rice farming (molinate, carbofuran, thiobencarb, and bentazon); herbicides used both agriculturally or for roadside maintenance (diuron, simazine, and metolachlor); or insecticides used on orchards and row corps (diazinon and chlorpyrifos). No pesticide concen-trations above enforceable water quality criteria were measured at either the agricultural site or the Sacramento River sites. In contrast to the agricul-tural site, insecticides used for household, lawn, or garden maintenance were the most frequently detected pesticides at the urban site. Diazinon, an organophosphate insecticide, exceeded recom-mended criteria for the protection of aquatic life, and the diazinon levels were frequently above known toxic levels for certain zooplankton species at the urban site. Because of the low discharge of the urban stream, pesticide concentrations were greatly diluted upon mixing with Sacramento River water.

  8. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  9. Geographic distribution of genetic diversity in populations of Rio Grande Chub Gila pandora

    Science.gov (United States)

    Galindo, Rene; Wilson, Wade; Caldwell, Colleen A.

    2016-01-01

    In the southwestern United States (US), the Rio Grande chub (Gila pandora) is state-listed as a fish species of greatest conservation need and federally listed as sensitive due to habitat alterations and competition with non-native fishes. Characterizing genetic diversity, genetic population structure, and effective number of breeders will assist with conservation efforts by providing a baseline of genetic metrics. Genetic relatedness within and among G. pandora populations throughout New Mexico was characterized using 11 microsatellite loci among 15 populations in three drainage basins (Rio Grande, Pecos, Canadian). Observed heterozygosity (HO) ranged from 0.71–0.87 and was similar to expected heterozygosity (0.75–0.87). Rio Ojo Caliente (Rio Grande) had the highest allelic richness (AR = 15.09), while Upper Rio Bonito (Pecos) had the lowest allelic richness (AR = 6.75). Genetic differentiation existed among all populations with the lowest genetic variation occurring within the Pecos drainage. STRUCTURE analysis revealed seven genetic clusters. Populations of G. pandora within the upper Rio Grande drainage (Rio Ojo Caliente, Rio Vallecitos, Rio Pueblo de Taos) had high levels of admixture with Q-values ranging from 0.30–0.50. In contrast, populations within the Pecos drainage (Pecos River and Upper Rio Bonito) had low levels of admixture (Q = 0.94 and 0.87, respectively). Estimates of effective number of breeders (N b ) varied from 6.1 (Pecos: Upper Rio Bonito) to 109.7 (Rio Grande: Rio Peñasco) indicating that populations in the Pecos drainage are at risk of extirpation. In the event that management actions are deemed necessary to preserve or increase genetic diversity of G. pandora, consideration must be given as to which populations are selected for translocation.

  10. Environmental research programme. Ecological research. Annual report 1994. Urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, terrestrial ecosystem research, environmental pollution and health

    International Nuclear Information System (INIS)

    1995-01-01

    In the annual report 1994 of the Federal Ministry of Research and Technology, the points of emphasis of the ecological research programme and their financing are discussed. The individual projects in the following subject areas are described in detail: urban-industrial landscapes, forests, agricultural landscapes, river and lake landscapes, other ecosystems and landscapes, terrestrial ecosystem research, environmental pollution and human health and cross-sectional activities in ecological research. (vhe) [de

  11. Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Wei; Ouyang, Wei, E-mail: wei@itc.nl; Hao, Fanghua; Lin, Chunye

    2015-12-01

    A better understanding of anthropogenic impact can help assess the diffuse trace metal accumulation in the agricultural environment. In this study, both river sediments and background soils were collected from a case study area in Northeast China and analyzed for total concentrations of six trace metals, four major elements and three lead isotopes. Results showed that Pb, Cd, Cu, Zn, Cr and Ni have accumulated in the river sediments after about 40 years of agricultural development, with average concentrations 1.23–1.71 times higher than local soil background values. Among them Ni, Cr and Cu were of special concern and they may pose adverse biological effects. By calculating enrichment factor (EF), it was found that the trace metal accumulation was still mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. For Pb, geochemical and isotopic approaches gave very similar anthropogenic contributions. Principal component analysis (PCA) further suggested that the anthropogenic Pb, Cu, Cr and Ni inputs were mostly related to the regional atmospheric deposition of industrial emissions and gasoline combustion, which had a strong affinity for iron oxides in the sediments. Concerning Cd, however, it mainly originated from local fertilizer applications and was controlled by sediment carbonates. - Graphical abstract: The trace metal accumulation was mainly ascribed to natural weathering processes, but anthropogenic contribution could represent up to 40.09% of total sediment content. Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition, while fertilizer application was the main anthropogenic source of Cd. - Highlights: • Trace metals have accumulated in the Naolihe sediments. • Natural weathering was still a major contributor to metal accumulation. • Anthropogenic Pb, Cu, Cr and Ni mostly came from atmospheric deposition. • Local fertilizer application was the main

  12. Tracking sediment through the Holocene: Determining anthropogenic contributions to a sediment-rich agricultural system, north-central USA

    Science.gov (United States)

    Gran, Karen; Belmont, Patrick; Finnegan, Noah

    2013-04-01

    Management and restoration of sediment-impaired streams requires quantification of sediment sources and pathways of transport. Addressing the role of humans in altering the magnitude and sources of sediment supplied to a catchment is notoriously challenging. Here, we explore how humans have amplified erosion in geomorphically-sensitive portions of the predominantly-agricultural Minnesota River basin in north-central USA. In the Minnesota River basin, the primary sources of sediment are classified generally as upland agricultural field vs. near-channel sources, with near-channel sources including stream banks, bluffs, and ravines. Using aerial lidar data, repeat terrestrial lidar scans of bluffs, ravine monitoring, historic air photo analyses, and sediment fingerprinting, we have developed a sediment budget to determine the relative importance of each source in a tributary to the Minnesota River, the Le Sueur River. We then investigate how these sources have changed through time, from changes evident over the past few decades to changes associated with valley evolution over the past 13,400 years. The Minnesota River valley was carved ~13,400 years ago through catastrophic drainage of glacial Lake Agassiz. As the Minnesota River valley incised, knickpoints have migrated upstream into tributaries, carving out deep valleys where the most actively eroding near-channel sediment sources occur. The modern sediment budget, closed for the time period 2000 to 2010, shows that the majority of the fine sediment load in the Le Sueur River comes from bluffs and other near-channel sources in the deeply-incised knick zone. Numerical modeling of valley evolution constrained by mapped and dated strath terraces cut into the glacial till presents an opportunity to compare the modern sediment budget to that of the river prior to anthropogenic modification. This comparison reveals a natural background or "pre-agriculture" rate of erosion from near-channel sources to be 3-5 times lower

  13. Agriculture et environnement | CRDI - Centre de recherches pour le ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Par l'entremise de son programme Agriculture et sécurité alimentaire, le CRDI a investi plus de 179 millions de dollars canadiens de 2009 à 2015, pour élaborer, mettre à l'essai et appliquer à grande échelle des solutions qui améliorent la sécurité alimentaire et la nutrition dans les pays en développement. Read more ...

  14. Links between river water acidity, land use and hydrology

    Energy Technology Data Exchange (ETDEWEB)

    Saarinen, T.; Celebi, A.; Kloeve, B. [Oulu Univ. (Finland). Water Resources and Environmental Eng. Lab.], Email: tuomas.saarinen@oulu.fi

    2013-11-01

    In western Finland, acid leaching to watercourses is mainly due to drainage of acid sulphate (As) soils. This study examined how different land-use and land-cover types affect water acidity in the northwestern coastal region of Finland, which has abundant drained AS soils and peatlands. Sampling conducted in different hydrological conditions in studied river basins revealed two different catchment types: catchments dominated by drained forested peatlands and catchments used by agriculture. Low pH and high electric conductivity (EC) were typical in rivers affected by agriculture. In rivers dominated by forested peatlands and wetlands, EC was considerably lower. During spring and autumn high runoff events, water quality was poor and showed large spatial variation. Thus it is important to ensure that in river basin status assessment, sampling is carried out in different hydrological situations and in also water from some tributaries is sampled. (orig.)

  15. Flow management for hydropower extirpates aquatic insects, undermining river food webs

    Science.gov (United States)

    Kennedy, Theodore A.; Muehlbauer, Jeffrey D.; Yackulic, Charles B.; Lytle, D.A.; Miller, S.A.; Dibble, Kimberly L.; Kortenhoeven, Eric W.; Metcalfe, Anya; Baxter, Colden V.

    2016-01-01

    Dams impound the majority of rivers and provide important societal benefits, especially daily water releases that enable on-peak hydroelectricity generation. Such “hydropeaking” is common worldwide, but its downstream impacts remain unclear. We evaluated the response of aquatic insects, a cornerstone of river food webs, to hydropeaking using a life history–hydrodynamic model. Our model predicts that aquatic-insect abundance will depend on a basic life-history trait—adult egg-laying behavior—such that open-water layers will be unaffected by hydropeaking, whereas ecologically important and widespread river-edge layers, such as mayflies, will be extirpated. These predictions are supported by a more-than-2500-sample, citizen-science data set of aquatic insects from the Colorado River in the Grand Canyon and by a survey of insect diversity and hydropeaking intensity across dammed rivers of the Western United States. Our study reveals a hydropeaking-related life history bottleneck that precludes viable populations of many aquatic insects from inhabiting regulated rivers.

  16. Groundwater Challenges of the Lower Rio Grande: A Case Study of Legal Issues in Texas and New Mexico

    Directory of Open Access Journals (Sweden)

    Elizabeth Wheat

    2015-03-01

    Full Text Available In 1938, Texas, New Mexico, and Colorado signed the Rio Grande Compact, establishing terms of apportionment for some of the water from the Rio Grande for the three states. Following congressional approval in 1939, this compact governs water allocation in a region with a variable climate and frequent drought conditions and established the Rio Grande Compact Commission, comprised of a commissioner from each state and one from the federal government, to enforce the compact. With an increasing population and declining surface water supply, the Compact has been tested among the parties and within the states themselves. In a case currently before the U.S. Supreme Court, Texas v. New Mexico and Colorado (2013, Texas claims New Mexico is violating the Compact and Rio Grande Project Act by using water in excess of its apportionment through its allowance of diversions of surface and groundwater. The issue is further compounded by disputes within Texas over separate legal regimes for groundwater and surface water. Combined with growing scarcity issues, the allocation of water in the Lower Rio Grande presents a timely natural resource challenge. This review explores legal issues involved in the case as well as growing challenges of population growth, agricultural development needs, and water shortages.

  17. Carbon stocks quantification in agricultural systems employing succession and rotation of crops in Rio Grande do Sul State, Brazil.

    Science.gov (United States)

    Walter, Michele K. C.; Marinho, Mara de A.; Denardin, José E.; Zullo, Jurandir, Jr.; Paz-González, Antonio

    2013-04-01

    Soil and vegetation constitute respectively the third and the fourth terrestrial reservoirs of Carbon (C) on Earth. C sequestration in these reservoirs includes the capture of the CO2 from the atmosphere by photosynthesis and its storage as organic C. Consequently, changes in land use and agricultural practices affect directly the emissions of the greenhouse gases and the C sequestration. Several studies have already demonstrated that conservation agriculture, and particularly zero tillage (ZT), has a positive effect on soil C sequestration. The Brazilian federal program ABC (Agriculture of Low Carbon Emission) was conceived to promote agricultural production with environmental protection and represents an instrument to achieve voluntary targets to mitigate emissions or NAMAS (National Appropriated Mitigation Actions). With financial resources of about US 1.0 billion until 2020 the ABC Program has a target of expand ZT in 8 million hectares of land, with reduction of 16 to 20 million of CO2eq. Our objective was to quantify the C stocks in soil, plants and litter of representative grain crops systems under ZT in Rio Grande do Sul State, Brazil. Two treatments of a long term experimental essay (> 20 years) were evaluated: 1) Crop succession with wheat (Triticum aestivum L.)/soybean (Glycine max (L.) Merril); 2) Crop rotation with wheat/soybean (1st year), vetch (Vicia sativa L.)/soybean (2nd year), and white oat (Avena sativa L.)/sorghum (Sorghum bicolor L.) (3rd year). C quantification in plants and in litter was performed using the direct method of biomass quantification. The soil type evaluated was a Humic Rhodic Hapludox, and C quantification was executed employing the method referred by "C mass by unit area". Results showed that soybean plants under crop succession presented greater C stock (4.31MgC ha-1) comparing with soybean plants cultivated under crop rotation (3.59 MgC ha-1). For wheat, however, greater C stock was quantified in plants under rotation

  18. Agricultural irrigated land-use inventory for the counties in the Suwannee River Water Management District in Florida, 2015

    Science.gov (United States)

    Marella, Richard L.; Dixon, Joann F.; Berry, Darbi R.

    2016-07-28

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to accurately estimate agricultural water use or to project future water demands in many Florida counties. A detailed digital map and summary of irrigated acreage during the 2015 growing season was developed for 13 of the 15 counties that compose the Suwannee River Water Management District. The irrigated areas were delineated using land-use data, orthoimagery, and information obtained from the water management district consumptive water-use permits that were then field verified between May and November of 2015. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 113,134 acres were either irrigated or had potential for irrigation in all or part of the 13 counties within the Suwannee River Water Management District during 2015. This estimate includes 108,870 acres of field-verified, irrigated crops and 4,264 acres of irrigated land observed as (1) idle (with an irrigation system visible but no crop present at the time of the field-verification visit), (2) acres that could not be verified during field visits, or (3) acres that were located on publicly owned research lands.

  19. Chemistry of chromites from Arroio Grande Ophiolite (Dom Feliciano Belt, Brazil) and their possible connection with the Nama Group (Namibia)

    Science.gov (United States)

    Ramos, Rodrigo Chaves; Koester, Edinei; Porcher, Carla Cristine

    2017-12-01

    The present paper shows a mineral chemistry study in chromites found in serpentine-talc schists of the Arroio Grande Ophiolite, located in the southeastern Dom Feliciano Belt, near the Brazil/Uruguay border. Using electron microscope scanning and electron microprobe techniques, this study found a supra-subduction zone signature in the chromites, together with evidence of metasomatism. It corroborates previous hypothesis that suggested a supra-subduction zone origin for the protoliths of the Arroio Grande meta-igneous rocks and a metasomatic origin for the chromite-bearing magnesian schists. The studied chromites present high Cr# (0.65-0.77) and Fe2+# (0.88-0.95), low MgO (0.85-2.47 wt%) and TiO2 (0.01-0.19 wt%) and anomalous high concentration of ZnO (up to 1.97 wt%). The results were compared with chemical data from detrital chromites from the Schwarzrand and Fish River Subgroups of the Nama Group (Namibia), demonstrating that they are compositionally similar with those found in the latter. These chromites, in turn, are believed to have been derived from the oceanic Marmora Terrane (Gariep Belt) in the west (present-day coordinates). Taking into consideration that oceanic metamafites from both the latter and the Arroio Grande Ophiolite share common bulk-rock geochemical features (in this paper interpreted as fragments of the same paleo-ocean floor - the Marmora back-arc basin), it is possible to raise the hypothesis that detrital material derived from the studied ophiolite might also be found in Nama Group. It is reinforced by the fact that sediments (related to the Pelotas-Aiguá Batholith granitoids) derived from the easternmost Dom Feliciano Belt, i.e. the region where Arroio Grande Ophiolite is located, is found in both Schwarzrand and Fish River Subgroups. Thus, we suggest that Arroio Grande Ophiolite detrital sediments might also have contributed to the Nama Basin infilling during Late Ediacaran-Lower Cambrian.

  20. Holistic Sustainability Assessment of Agricultural Rainwater Harvesting

    Science.gov (United States)

    We present a methodology for holistic sustainability assessment of green infrastructure, applied to agricultural rainwater harvesting (RWH) in the Albemarle-Pamlico river basin. It builds upon prior work in the region through the use of detailed, crop-level management information...

  1. Ecologisation of the agricultural Danubian Region on the concrete territory in the part between Danube river-bed and derivation canal

    International Nuclear Information System (INIS)

    Davidova, T.

    1997-01-01

    The construction of the hydroelectric power constructions Gabcikovo changed the landscape near the Danube river. After the construction of the supply and falling-off canals with the hydroelectric power plant the artificial island with three seats were formed. This territory has high ecologic quality with good developed organisation of the bio-centers, bio-corridors and interaction elements with the specifically oriented agriculture. In this territory the development of the socio-economic activities were substantially limited regard to the protection of the water sources, protection of the forests, protected territories of the nature and communication accessibility. Therefore, the centre of the gravity of the territory development must be oriented in the ecology

  2. Spatialising Agricultural Water Governance Data in Polycentric Regimes

    Directory of Open Access Journals (Sweden)

    Faith Sternlieb

    2015-06-01

    Full Text Available Water governance in the Colorado River Basin (CRB is based on a historical and complex set of policies, legal decisions, and operational guidelines called the Law of the River. Behind the complex institutional structure lies an intricate web of data on water, most of which are hydrogeological in nature. However, we posit that in order to realise sustainable water governance, management efforts must also address data on water governance. Therefore, our central research question is: what is the role of water governance data in water governance, as it pertains to agriculture? First, we lay out the digital landscape and theoretical framework that justify the development of the Colorado River Basin Water Governance Relational Database. Then, we conduct an analysis of water-sharing policies within Law of the River to identify and categorise boundaries. By operationalising a boundary typology in a geographic information system, we found that data on agricultural water governance have little to no current role in water governance due to scale discrepancies, insufficient availability and collection of data, and lack of standardisation. In addition, agricultural water governance in the CRB was found to exhibit polycentric patterns. However, unlike the flexible and adaptive nature of some polycentric systems, polycentric data sets may pose challenges to water governance due to limited information regarding organisational changes, policy developments, and special interests. This study advances the science-policy dialogue in four ways: 1 by emphasising the salience of the data on water governance, 2 by incorporating water governance data in water governance and policy decisions, 3 by demonstrating the value of integrating data types, and 4 by engaging users through geo-visualisation.

  3. Integrated river basin management of Južna Morava River

    Directory of Open Access Journals (Sweden)

    Borisavljević Ana

    2012-01-01

    Full Text Available In the last decade in particular, Serbia encountered the problems of drinking water supply, which influenced the perception of professional public about the water crisis but also started more intensive work on water resource perseverance as well as the implementation of European Water Directive. One of the main demands of the Directive focuses on integrated river basin management (IRBM, which is a complex and a large task. The need to collect data on water quality and quantity, specific and key issues of water management in Južna Morava river basin, pressures on river ecosystem, flood risks and erosion problems, cross-border issues, socioeconomic processes, agricultural development as well as protected areas, and also to give the measures for solving problems and pressures recognized in the basin, is undisputable. This paper focuses on detailed analysis of specific pressures on river ecosystem and composition of recommendations for integrated management of Južna Morava river basin as cross-border river basin, taking into the account European experiences in IRBM. [Projekat Ministarstva nauke Republike Srbije, br. 43007: Istraživanje klimatskih promena na životnu sredinu - praćenje uticaja, adaptacija i ublažavanje, podprojekat br. 9: Učestalost bujičnih poplava, degradacija zemljišta i voda kao posledica globalnih promena

  4. Utilizing NASA Earth Observations to Assist the National Park Service in Monitoring Shoreline Land Cover Change in the Lower Grand Canyon

    Science.gov (United States)

    Stevens, C. L.; Phillips, A.; Young, S.; Counts, A.

    2017-12-01

    Sustained drought conditions have contributed to a significant decrease in the volume of the Colorado River in the Lake Mead reservoir and lower portion of the Grand Canyon. As a result, changes in riparian conditions have occurred in the region, such as sediment exposure and receding vegetation. These changes have large negative impacts on ecological health, including water and air pollution, aquatic, terrestrial and avian habitat alterations, and invasive species introduction. Scientists at Grand Canyon National Park seek to quantify changes in water surface and land cover area in the Lower Grand Canyon from 1998 to 2016 to better understand the effects of these changing conditions within the park. Landsat imagery was used to detect changes of the water surface and land cover area across this time period to assess the effects of long-term drought on the riparian zone. The resulting land cover and water surface time-series from this project will assist in monitoring future changes in water, sediment, and vegetation extent, increasing the ability of park scientists to create adaptation strategies for the ecosystem in the Lower Grand Canyon.

  5. Grandes remolques

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1961-07-01

    Full Text Available El empleo creciente del material pesado auxiliar en la construcción de obras de ingeniería civil ha motivado la fabricación de grandes plataformas, capaces de transportar toda clase de maquinaria auxiliar. En general, este tipo de maquinaria requiere medios de transporte, pues su circulación por carreteras es lenta, obstructiva y cara, siempre que se trate de grandes distancias, caso presente en la mayoría de ocasiones en que se exige un traslado de esta maquinaria de una a otra obra.

  6. The effects of China’s Sloping Land Conversion Program on agricultural households

    DEFF Research Database (Denmark)

    Liu, Zhen; Henningsen, Arne

    theoretical comparative static analysis, e.g. that the SLCP significantly decreases agricultural production. While the SLCP increases non-farm labor supply and total consumption in the Yellow River basin, these effects could not be observed in the Yangtze River basin. The recent reduction of the SLCP...

  7. Morphodynamics of a cyclic prograding delta: the Red River, Vietnam

    NARCIS (Netherlands)

    Maren, D.S. van

    2004-01-01

    River deltas are inhabited by over 60% of the world population, and are, consequently, of paramount agricultural and economical importance. They constitute unique wetland envi ronments which gives river deltas ecological importance as well. Additionally, many deltas contain large accumulations of

  8. Freshwater Ecosystem Services and Hydrologic Alteration in the Lower Mississippi River Basin

    Science.gov (United States)

    Yasarer, L.; Taylor, J.; Rigby, J.; Locke, M. A.

    2017-12-01

    Flowing freshwater ecosystems provide a variety of essential ecosystem services including: consumptive water for domestic, industrial, and agricultural use; transportation of goods; maintenance of aquatic biodiversity and water quality; and recreation. However, freshwater ecosystem services can oftentimes be at odds with each other. For example, the over-consumption of water for agricultural production or domestic use may alter hydrologic patterns and diminish the ability of flowing waters to sustain healthy aquatic ecosystems. In the Lower Mississippi River Basin there has been a substantial increase in groundwater-irrigated cropland acreage over the past several decades and subsequent declines in regional aquifer levels. Changes in aquifer levels potentially impact surface water hydrology throughout the region. This study tests the hypothesis that flowing water systems in lowland agricultural watersheds within the Lower Mississippi River Basin have greater hydrologic alteration compared to upland non-agricultural watersheds, particularly with declines in base flow and an increase in extreme low flows. Long-term streamflow records from USGS gauges located in predominantly agricultural and non-agricultural watersheds in Arkansas, Louisiana, Mississippi, and Tennessee were evaluated from 1969 -2016 using the Indicators of Hydrologic Alteration (IHA) software. Preliminary results from 8 non-agricultural and 5 agricultural watersheds demonstrate a substantial decline in base flow in the agricultural watersheds, which is not apparent in the non-agricultural watersheds. This exploratory study will analyze the trade-off between gains in agricultural productivity and changes in ecohydrological indicators over the last half century in diverse watersheds across the Lower Mississippi River Basin. By quantifying the changes in ecosystem services provided by flowing waters in the past, we can inform sustainable management pathways to better balance services in the future.

  9. Rio Grande valley Colorado new Mexico and Texas

    Science.gov (United States)

    Ellis, Sherman R.; Levings, Gary W.; Carter, Lisa F.; Richey, Steven F.; Radell, Mary Jo

    1993-01-01

    Two structural settings are found in the study unit: alluvial basins and bedrock basins. The alluvial basins can have through-flowing surface water or be closed basins. The discussion of streamflow and water quality for the surface-water system is based on four river reaches for the 750 miles of the main stem. the quality of the ground water is affected by both natural process and human activities and by nonpoint and point sources. Nonpoint sources for surface water include agriculture, hydromodification, and mining operations; point sources are mainly discharge from wastewater treatment plants. Nonpoint sources for ground water include agriculture and septic tanks and cesspools; point sources include leaking underground storage tanks, unlined or manure-lined holding ponds used for disposal of dairy wastes, landfills, and mining operations.

  10. Physicochemical composition of water of Sirdariya River (within of Sogd region)

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.; Khakimov, N.; Murtazaev, Kh.; Sufiev, A.

    2010-01-01

    Present article is devoted to physicochemical composition of water of Sirdariya River (within of Sogd region). During 12 months the physicochemical composition of above mentioned river was studied by means of water sampling from 10 points of river. The analysis was conducted and it was defined that the main contaminants of the river are the plant facilities, the deposits of radioactive ores and agricultural grounds.

  11. Evaluation of physico-chemical parameters of agricultural soils ...

    African Journals Online (AJOL)

    Evaluation of physico-chemical parameters of agricultural soils irrigated by the waters of the hydrolic basin of Sebou River and their influences on the transfer of trace elements into sugar crops (the case of sugar cane)

  12. Stabilization of Aley river water content by forest stands

    Directory of Open Access Journals (Sweden)

    E. G. Paramonov

    2016-06-01

    Full Text Available Aley river basin is one of the most developed territories in West Siberia. Initially, the development here was related to the development of ore mining in the Altai. Currently it is associated mainly with the agricultural orientation of economic development. The intensive involvement of basin lands into the economic turnover for the last 100 years contributed to the formation of a number of environmental problems, such as water and wind erosion, loss of soil fertility and salinization, and desertification of the territory. Besides, the decrease of Aley river water content due to natural and anthropogenic reasons was observed. A specific feature of water management in Aley river basin is a significant amount of water resources used for irrigation purposes and agricultural water supply. To ensure the economic and drinking water supply, two reservoirs and a number of ponds have been constructed and operate in the basin. Forest ecosystems of the basin are considered from the viewpoint of preservation and restoration of small rivers. The ability of forest to accumulate solid precipitation and intercept them during the snowmelt for a longer time reduces the surface drainage and promotes transfer into the subsurface flow, significantly influencing the water content of permanent watercourses, is shown. The state of protective forest plantations in Aley river basin is analyzed. Aley river tributaries are compared by area, the length of water flow, and forest coverage of the basin. It is proposed to regulate the runoff through drastic actions on the increase of forest cover in the plain and especially in the mountainous parts of the basin. Measures to increase the forest cover within water protection zones, afforestation of temporary and permanent river basins, and the protection of agricultural soil fertility are worked out.

  13. Contamination of persistent organochlorines in sediments from Mekong River Delta, South Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Minh Nguyen; Kajiwara, Natsuko; Kunisue, Tatsuya; Subramanian, A.; Iwata, Hisato; Tanabe, Shinsuke [Ehime Univ., Matsuyama (Japan). Center for Marine Environmental Studies; Hung, Viet Pham [Hanoi National Univ., Hanoi (Viet Nam); Cach, Tuyen Bui [Univ. for Agriculture and Forestry, Hochiminh (Viet Nam)

    2004-09-15

    Mekong River is the longest river in southeastern Asia, which flows a distance of almost 4800 km from China through Myanmar, Thailand, Laos, Cambodia and Vietnam. The Mekong River basin with an area of nearly 800 thousand square kilometers is an important habitat for approximately 60 million people. Mekong River delta in South Vietnam, which is inhabited by about 20 million people, is one of the most highly productive agriculture lands in the world. Rice production is major economical sector in Mekong delta contributing half of the rice production in Vietnam - approximately 35 million tons annually. On the other hand, development of agriculture in Mekong delta raised some concern on environmental quality and disturbance on ecosystem. For example, intensive use of organochlorine (OC) insecticides such as DDTs, chlordanes, HCHs may lead to considerable residues in the agriculture land. Moreover, relative persistence of such chemicals together with natural processes like evaporation and run-off, might enhance their ubiquitous distribution in environment, food chains and eventually bio-accumulate in humans. In Vietnam, despite official ban on the usage of OCs on 1995, there have been evidences of recent uses of such chemicals, particularly DDT, throughout the country. It can be anticipated that similar situation may occur in Mekong River delta due to high population density and intensive agriculture activities in this region. Despite this fact, no comprehensive study, to evaluate the status of contamination by persistent OCs in this region, has been made in recent years. In this study, we collected sediments from different locations along Mekong River and determined the concentrations of persistent OCs such as DDTs, HCHs, CHLs, HCB and PCBs in order to elucidate the recent contamination status, their usage pattern as well as to evaluate potential pollution sources of these chemicals to the river.

  14. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  15. Diuron, Irgarol 1051 and Fenitrothion contamination for a river passing through an agricultural and urban area in Higashi Hiroshima City, Japan.

    Science.gov (United States)

    Kaonga, Chikumbusko Chiziwa; Takeda, Kazuhiko; Sakugawa, Hiroshi

    2015-06-15

    A study was conducted on the pesticides Diuron, Irgarol 1051 and Fenitrothion in Kurose River water, Higashi Hiroshima, Japan for a period of one year to assess the contribution of agriculture and urban activities on pesticide pollution of the river. Samples were analysed by a reverse phase HPLC system. The maximum pesticide concentrations were; 4620 ng/L, 50 ng/L and 370 ng/L for Diuron, Irgarol 1051 and Fenitrothion, respectively. While Diuron and Fenitrothion were detected at all sites, Irgarol 1051 was only present at Izumi, a high density urban and industrial area which also registered the highest concentrations of the pesticides. The pattern showed by Diuron and Fenitrothion was linked to farming activities. Also, Diuron and Fenitrothion concentration correlated with pesticide utilization data for Hiroshima Prefecture. Irgarol 1051 showed a different pattern to that of Diuron and Fenitrothion and its source was attributed to paint. It was noted that 78% and 42% of water samples at Izumi sampling site exceeded the European Union (EU) guidelines for Diuron and Fenitrothion, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Pesticide residues in fish from the Densu River Basin in Ghana ...

    African Journals Online (AJOL)

    The Densu River is a typical river flowing through agricultural areas in Southern Ghana. Six fish species from different locations in the river were sampled and analyzed for residues of pesticides and metabolites using GC with ECD/FID. The results of the study indicate that all the detected residues and metabolites in fish ...

  17. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  18. Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  19. Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  20. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  1. Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building

  2. The MARINA model (Model to Assess River Inputs of Nutrients to seAs)

    NARCIS (Netherlands)

    Strokal, Maryna; Kroeze, Carolien; Wang, Mengru; Bai, Zhaohai; Ma, Lin

    2016-01-01

    Chinese agriculture has been developing fast towards industrial food production systems that discharge nutrient-rich wastewater into rivers. As a result, nutrient export by rivers has been increasing, resulting in coastal water pollution. We developed a Model to Assess River Inputs of Nutrients

  3. Population biology of shrimp Macrobrachium jelskii (Miers, 1778 (Decapoda, Palaemonoidea at the Grande River at northwest of the state of Minas Gerais, Brazil Biologia populacional do camarão Macrobrachium jelskii (Miers, 1778 (Decapoda, Palaemonoidea no Rio Grande no noroeste do estado de Minas Gerais, Brasil

    Directory of Open Access Journals (Sweden)

    Samara de Paiva Barros-Alves

    2012-09-01

    Full Text Available AIM: The population biology of the freshwater shrimp Macrobrachium jelskii was investigated here emphasizing the length-frequency distribution, sex ratio, reproductive period and juvenile recruitment. In addition, the abundance of individuals was correlated with the abiotic factors. METHODS: Samples were collected on a monthly basis from July 2005 to June 2007 along the river margin in shallow water of Grande River, at Planura region, State of Minas Gerais, Brazil (20º 09' S and 48º 40' W, using a trawl net (1.0 mm mesh size, and 2.0 m × 0.5 m wide. The fishing gear was handled by two people along the marginal vegetation of the Grande River in a course of 100 m, covered for one hour. In the laboratory, the specimens were identified, measured and sexed. RESULTS: A total of 2,789 specimens was analyzed, which corresponded to 1,126 males (549 juveniles and 577 adults and 1,663 females (1,093 juveniles, 423 adults non-ovigerous and 147 ovigerous. The sex ratio differed significantly in favor of the females of M. jelskii (1:1.48; χ² = 103.95; p OBJETIVO: A biologia populacional do camarão de água doce Macrobrachium jelskii foi investigada, com ênfase na distribuição de frequência em classes de tamanho, razão sexual, período reprodutivo e recrutamento juvenil. Além disso, a abundância dos indivíduos foi correlacionada com os fatores abióticos. MÉTODOS: Amostras foram coletadas mensalmente de julho de 2005 a junho de 2007, às margens do Rio Grande, região de Planura, estado de Minas Gerais, Brasil (20º 09' S e 48º 40' W, usando uma rede de arrasto (1.0 mm tamanho da malha e 2.0 × 0.5 m de largura. O equipamento foi arrastado por duas pessoas às margens da vegetação do rio por 100 metros de distância, percorridos por uma hora. Em laboratório, os espécimes foram identificados, mensurados e sexados. RESULTADOS: Um total de 2,789 espécimes foi analisado, no qual correspondem a 1,126 machos (549 jovens e 577 adultos e 1,663 f

  4. Water-quality assessment of the lower Illinois River Basin; environmental setting

    Science.gov (United States)

    Warner, Kelly L.

    1998-01-01

    The lower Illinois River Basin (LIRB) encompasses 18,000 square miles of central and western Illinois. Historical and recent information from Federal, State, and local agencies describing the physiography, population, land use, soils, climate, geology, streamflow, habitat, ground water, water use, and aquatic biology is summarized to describe the environmental setting of the LIRB. The LIRB is in the Till Plains Section of the Central Lowland physiographic province. The basin is characterized by flat topography, which is dissected by the Illinois River. The drainage pattern of the LIRB has been shaped by many bedrock and glacial geologic processes. Erosion prior to and during Pleistocene time created wide and deep bedrock valleys. The thickest deposits and most major aquifers are in buried bedrock valleys. The Wisconsinan glaciation, which bisects the northern half of the LIRB, affects the distribution and characteristics of glacial deposits in the basin. Agriculture is the largest land use and forested land is the second largest land use in the LIRB. The major urban areas are near Peoria, Springfield, Decatur, and Bloomington-Normal. Soil type and distribution affect the amount of soil erosion, which results in sedimentation of lakes and reservoirs in the basin. Rates of soil erosion of up to 2 percent per year of farmland soil have been measured. Many of the 300 reservoirs, lakes, and wetlands are disappearing because of sedimentation resulting from agriculture activities, levee building, and urbanization. Sedimentation and the destruction of habitat appreciably affect the ecosystem. The Illinois River is a large river-floodplain ecosystem where biological productivity is enhanced by annual flood pulses that advance and retreat over the flood plain and temporarily expand backwater and flood-plain lakes. Ground-water discharge to streams affects the flow and water quality of the streams. The water budget of several subbasins show variability in ground

  5. Contamination of Piracicaba river basin source by Zn, Cr and Co

    International Nuclear Information System (INIS)

    Favaro, P.C.; Ferraz, E.S.B.

    1999-01-01

    The growth of the industrialization, urbanization and modernization of the agricultural practices in the last decades, has been causing a great impact in the basin of the Piracicaba river, the second economic pole of the country, area that shelters important urban centers like Campinas and Piracicaba. there are 45 headquarters of municipal districts in area of 12.400 km 2 with more than 3,5 million inhabitants. The present work studies one of the source of the basin, the sub-basin of the high Atibaia river, one of the former of the river Piracicaba, in low impacted area due to low demographic density, absence of load industries and non significant agriculture. The objective is to establish parameters for comparison with other areas of the basin, intensely modified. Samples of bottom sediments on the former rivers and of soils of the area they were analyzed by neutronic activation for the identification of about 20 elements line. The results showed that the area already presents signs of preoccupying anthropic pollution because the contaminations with Zn, Cr and Co are already significant, probably due to the agricultural activity and to the urban sewer. (author)

  6. Estimating discharge from the Godavari river using ENVISAT, Jason-2, and SARAL/AltiKa radar altimeters

    Digital Repository Service at National Institute of Oceanography (India)

    Sridevi, T.; Sharma, Rashmi; Mehra, P.; Prasad, K.V.S.R.

    ://www.legos.obs-mip.fr/soa/hydrologie/hydroweb), U.S. Department of Agriculture's Foreign Agricultural Service (http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir), and European Space Agency and De Montfort University River and Lake Project (http... has been established between river heights and in-situ discharge with high correlation and from Fig. 7, it was already observed a good correlation between the altimetry river heights and in-situ heights, the comparison could therefore be extended...

  7. Vascular epiphytes of the Atlantic Forest in the Sinos River basin, state of Rio Grande do Sul, Brazil: richness, floristic composition and community structure.

    Science.gov (United States)

    Barbosa, M D; Becker, D F P; Cunha, S; Droste, A; Schmitt, J L

    2015-05-01

    The Atlantic Forest, which has a vast epiphytic richness, is a priority area for preservation, listed as one of the five most important world hotspots. Vascular epiphyte richness, composition and community structure were studied in two fragments, one of the ombrophilous (29º43'42"S and 50º22'00"W) and the other of the seasonal (29º40'54"S and 51º06'56"W) forest, both belonging to the Atlantic Forest biome in the Sinos River basin, Rio Grande do Sul, Brazil. In each fragment, 40 trees, divided into four ecological zones, were analyzed. In each zone, the occurrence of the species was recorded, and the importance value of each species was calculated according to the frequency of phorophytes and intervals, and cover scores. The Shannon index was calculated for the two communities. In the fragment of the ombrophilous forest (F1), 30 epiphytic species were recorded, and in the seasonal forest (F2), 25. The highest importance value was found for Microgramma squamulosa (Kaulf.) de la Sota in both fragments. The diversity indexes for F1 (H'=2.72) and F2 (H'=2.55) were similar and reflected the subtropical location of the areas. The decrease in mean richness in both fragments in zone 3 (internal crown) to zone 4 (external crown) may be associated with time and space availability for epiphyte occupation and microclimate variations. Exclusive species were found in the areas, which suggest that a greater number of preserved fragments may result in a greater number of preserved epiphytic species in the Sinos River basin.

  8. Chemical signature study of tupiguarani ceramic tradition from Central region of the Rio Grande do Sul state, Brazil; Estudo de assinaturas quimicas em ceramica da tradicao tupiguarani da regiao central do estado do Rio Grande do Sul, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Irene Akemy Tomiyoshi

    2006-07-01

    In this work a model based on experimental results using chemical composition data of the pottery sherds applied to Spearmann's no parametric test, principal component analysis and discriminant analysis, was applied. The samples are soils and Tupiguarani Tradition pottery sherd from the central area of the Rio Grande do Sul State. The chemical elements , Al, Ba, Ca, Cr, Fe, K Mn, Pb, Rb, S, Si, Sr, Ti, V and Zn were determined by energy dispersive X-ray fluorescence (EDXFR) while Ce, Cu, Gd, La, Nd, Pr, Sm, Th and Y by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) techniques. Relationships among the pottery characteristics, studied sites and sherd dispersion in the several sites were proposed. Indications of chemical signature of the small pottery with function to go or not to the fire were observed. The largest dispersion is of small pottery with surface treatment no corrugated. The potteries chemical fingerprints from Ijui River, Ibicui-Vacacai Mirim River and Jacui River were verified. (author)

  9. Constraints and Strategies for Improving Agricultural Intervention ...

    African Journals Online (AJOL)

    PROF. MADUKWE

    Food and Agricultural Organization (FAO) ... programmes such as the National Accelerated Food Production Programme (NAFPP-. 1973), River Basin .... farm inputs, high cost of labour, unavailability of agro chemicals, high cost of agro chemicals, poor fadama access roads, lack of credit facilities and low productivity. Slow ...

  10. The Human Threat to River Ecosystems at the Watershed Scale: An Ecological Security Assessment of the Songhua River Basin, Northeast China

    Directory of Open Access Journals (Sweden)

    Yuan Shen

    2017-03-01

    Full Text Available Human disturbances impact river basins by reducing the quality of, and services provided by, aquatic ecosystems. Conducting quantitative assessments of ecological security at the watershed scale is important for enhancing the water quality of river basins and promoting environmental management. In this study, China’s Songhua River Basin was divided into 204 assessment units by combining watershed and administrative boundaries. Ten human threat factors were identified based on their significant influence on the river ecosystem. A modified ecological threat index was used to synthetically evaluate the ecological security, where frequency was weighted by flow length from the grids to the main rivers, while severity was weighted by the potential hazard of the factors on variables of river ecosystem integrity. The results showed that individual factors related to urbanization, agricultural development and facility construction presented different spatial distribution characteristics. At the center of the plain area, the provincial capital cities posed the highest level of threat, as did the municipal districts of prefecture-level cities. The spatial relationships between hot spot locations of the ecological threat index and water quality, as well as the distribution areas of critically endangered species, were analyzed. The sensitivity analysis illustrated that alteration of agricultural development largely changed the ecological security level of the basin. By offering a reference for assessing ecological security, this study can enhance water environmental planning and management.

  11. A millennium-length reconstruction of Bear River stream flow, Utah

    Science.gov (United States)

    R. J. DeRose; M. F. Bekker; S.-Y. Wang; B. M. Buckley; R. K. Kjelgren; T. Bardsley; T. M. Rittenour; E. B. Allen

    2015-01-01

    The Bear River contributes more water to the eastern Great Basin than any other river system. It is also the most significant source of water for the burgeoning Wasatch Front metropolitan area in northern Utah. Despite its importance for water resources for the region’s agricultural, urban, and wildlife needs, our understanding of the variability of Bear River’s stream...

  12. Analysis of socio-environmental benefits from the implementation of cleaner production strategies in the agricultural sector of the middle reaches of the river chinchiná, colombia

    OpenAIRE

    Florez Yepes, Gloria Yaneth; Calderon Cuartas, Paola Andrea

    2014-01-01

    The purpose of this paper is to assess the socio-environmental benefits generated by the implementation of cleaner production strategies in the agriculture and livestock sectors, in the middle part of the Chinchina river basin, Colombia. The methodology involves recording of field data on the basis of interviews and semi-structured dialogue; processing and analysis of data on the basis of matrix adaptation and network diagramming; and assessment of socio-environmental benefits, with determina...

  13. Comparative Research on River Basin Management in the Sagami River Basin (Japan and the Muda River Basin (Malaysia

    Directory of Open Access Journals (Sweden)

    Lay Mei Sim

    2018-05-01

    Full Text Available In the world, river basins often interwoven into two or more states or prefectures and because of that, disputes over water are common. Nevertheless, not all shared river basins are associated with water conflicts. Rivers in Japan and Malaysia play a significant role in regional economic development. They also play a significant role as water sources for industrial, domestic, agricultural, aquaculture, hydroelectric power generation, and the environment. The research aim is to determine the similarities and differences between the Sagami and Muda River Basins in order to have a better understanding of the governance needed for effectively implementing the lessons drawn from the Sagami River Basin for improving the management of the Muda River Basin in Malaysia. This research adopts qualitative and quantitative approaches. Semi-structured interviews were held with the key stakeholders from both basins and show that Japan has endeavored to present policy efforts to accommodate the innovative approaches in the management of their water resources, including the establishment of a river basin council. In Malaysia, there is little or no stakeholder involvement in the Muda River Basin, and the water resource management is not holistic and is not integrated as it should be. Besides that, there is little or no Integrated Resources Water Management, a pre-requisite for sustainable water resources. The results from this comparative study concluded that full support and participation from public stakeholders (meaning the non-government and non-private sector stakeholders is vital for achieving sustainable water use in the Muda River Basin. Integrated Water Resources Management (IWRM approaches such as the introduction of payments for ecosystems services and the development of river basin organization in the Muda River Basin should take place in the spirit of political willingness.

  14. Stochastic modelling of river morphodynamics

    NARCIS (Netherlands)

    Van Vuren, B.G.

    2005-01-01

    Modern river management has to reconcile a number of functions, such as protection against floods and provision of safe and efficient navigation, floodplain agriculture, ecology and recreation. Knowledge on uncertainty in fluvial processes is important to make this possible, to design effective

  15. Quantification of the impacts of climate change and human agricultural activities on oasis water requirements in an arid region: a case study of the Heihe River basin, China

    Science.gov (United States)

    Liu, Xingran; Shen, Yanjun

    2018-03-01

    Ecological deterioration in arid regions caused by agricultural development has become a global issue. Understanding water requirements of the oasis ecosystems and the influences of human agricultural activities and climate change is important for the sustainable development of oasis ecosystems and water resource management in arid regions. In this study, water requirements of the main oasis in Heihe River basin during 1986-2013 were analyzed and the amount showed a sharp increase from 10.8 × 108 m3 in 1986 to 19.0 × 108 m3 in 2013. Both human agricultural activities and climate change could lead to the increase in water requirement. To quantify the contributions of agricultural activities and climate change to the increase in water requirements, partial derivative and slope method were used. Results showed that climate change and human agricultural activities, such as oasis expansion and changes in land cropping structure, has contributed to the increase in water requirement at rates of 6.9, 58.1, and 25.3 %, respectively. Overall, human agricultural activities were the dominant forces driving the increase in water requirement. In addition, the contribution of oasis expanding to the increased water requirement was significantly greater than that of other concerned variables. This reveals that controlling the oasis scale is extremely important and effective for balancing water for agriculture and ecosystems and to achieving a sustainable oasis development in arid regions.

  16. Aquifer depletion in the Lower Mississippi River Basin: challenges and solutions

    Science.gov (United States)

    The Lower Mississippi River Basin (LMRB) is a nationally- and internationally-important region of intensive agricultural production that relies heavily on the underlying Mississippi River Valley Alluvial Aquifer (MRVAA) for row crop irrigation. Extensive irrigation coupled with the region’s geology ...

  17. "Left High and Dry": Federal Land Policies and Pima Agriculture, 1860-1910

    Science.gov (United States)

    Dejong, David H.

    2009-01-01

    The Akimel O'odham, or "River People" (Pima), have lived in the middle Gila River Valley for centuries, irrigating and cultivating the same land as their Huhugam ancestors did for millennia. Continuing their irrigated agricultural economy bequeathed to them by their Huhugam ancestors, the Pima leveraged a favorable geopolitical setting into a…

  18. Developing a Composite Aquifer Vulnerability Assessment Model Combining DRASTIC with Agricultural Land Use in Choushui River Alluvial Fan, Central Taiwan

    Science.gov (United States)

    Chen, Shih-Kai; Hsieh, Chih-Heng; Tsai, Cheng-Bin

    2017-04-01

    Aquifer vulnerability assessment is considered to be an effective tool in controlling potential pollution which is critical for groundwater management. The Choushui River alluvial fan, located in central Taiwan, is an agricultural area with complex crop patterns and various irrigation schemes, which increased the difficulties in groundwater resource management. The aim of this study is to propose an integrated methodology to assess shallow groundwater vulnerability by including land-use impact on groundwater potential pollution. The original groundwater vulnerability methodology, DRASTIC, was modified by adding a land-use parameter in order to assess groundwater vulnerability under intense agricultural activities. To examine the prediction capacity of pollution for the modified DRASTIC model, various risk categories of contamination potentials were compared with observed nitrate-N obtained from groundwater monitoring network. It was found that for the original DRASTIC vulnerability map, some areas with low nitrate-N concentrations are covered within the high vulnerability areas, especially in the northern part of mid-fan areas, where rice paddy is the main crop and planted for two crop seasons per year. The low nitrate-N contamination potential of rice paddies may be resulted from the denitrification in the reduced root zone. By reducing the rating for rice paddies, the modified model was proved to be capable of increasing the precise of prediction in study area. The results can provide a basis for groundwater monitoring network design and effective preserve measures formulation in the mixed agricultural area. Keyword:Aquifer Vulnerability, Groundwater, DRASTIC, Nitrate-N

  19. River water infiltration enhances denitrification efficiency in riparian groundwater.

    Science.gov (United States)

    Trauth, Nico; Musolff, Andreas; Knöller, Kay; Kaden, Ute S; Keller, Toralf; Werban, Ulrike; Fleckenstein, Jan H

    2018-03-01

    Nitrate contamination in ground- and surface water is a persistent problem in countries with intense agriculture. The transition zone between rivers and their riparian aquifers, where river water and groundwater interact, may play an important role in mediating nitrate exports, as it can facilitate intensive denitrification, which permanently removes nitrate from the aquatic system. However, the in-situ factors controlling riparian denitrification are not fully understood, as they are often strongly linked and their effects superimpose each other. In this study, we present the evaluation of hydrochemical and isotopic data from a 2-year sampling period of river water and groundwater in the riparian zone along a 3rd order river in Central Germany. Based on bi- and multivariate statistics (Spearman's rank correlation and partial least squares regression) we can show, that highest rates for oxygen consumption and denitrification in the riparian aquifer occur where the fraction of infiltrated river water and at the same time groundwater temperature, are high. River discharge and depth to groundwater are additional explanatory variables for those reaction rates, but of minor importance. Our data and analyses suggest that at locations in the riparian aquifer, which show significant river water infiltration, heterotrophic microbial reactions in the riparian zone may be fueled by bioavailable organic carbon derived from the river water. We conclude that interactions between rivers and riparian groundwater are likely to be a key control of nitrate removal and should be considered as a measure to mitigate high nitrate exports from agricultural catchments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Grain-size evolution in suspended sediment and deposits from the 2004 and 2008 controlled-flood experiments in Marble and Grand Canyons, Arizona

    Science.gov (United States)

    Draut, Amy E.; Topping, David J.; Rubin, David M.; Wright, Scott A.; Schmidt, John C.

    2010-01-01

    Since the closure of Glen Canyon Dam in 1963, the hydrology, sediment supply, and distribution and size of modern alluvial deposits in the Colorado River through Grand Canyon have changed substantially (e.g., Howard and Dolan, 1981; Johnson and Carothers, 1987; Webb et al., 1999; Rubin et al., 2002; Topping et al., 2000, 2003; Wright et al., 2005; Hazel et al., 2006). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of natural floods, sediment is not deposited at elevations that regularly received sediment before dam closure. There has been a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in the early 1980s and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1990; Kearsley et al., 1994; Schmidt et al., 2004; Wright et al., 2005; Hazel et al., 2006). Fluvial sandbars are an important component of riparian ecology that, among other functions, enclose eddy backwaters that form native-fish habitat, provide a source for eolian sand that protects some archaeological sites, and are used as campsites by thousands of river-runners annually (Rubin et al., 1990; Kearsley et al., 1994; Neal et al., 2000; Wright et al., 2005; Draut and Rubin, 2008).

  1. Water pollution by agriculture

    OpenAIRE

    Moss, Brian

    2007-01-01

    Agriculture disrupts all freshwater systems hugely from their pristine states. The former reductionist concept of pollution was of examining individual effects of particular substances on individual taxa or sub-communities in freshwater systems, an essentially ecotoxicological concept. It is now less useful than a more holistic approach that treats the impacts on the system as a whole and includes physical impacts such as drainage and physical modification of river channels and modification o...

  2. Space-time variation in the composition, richness and abundance of social wasps (Hymenoptera: Vespidae: Polistinae in a forest-agriculture mosaic in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Pablo Klein

    2015-07-01

    Full Text Available Wasps, important agents for the control of insect population, have been scantily studied in the Brazilian State of Rio Grande do Sul. Current study investigates monthly variations of social wasps in microhabitats within a forest-agriculture mosaic. Samples were collected between February 2013 and February 2014, through active search and baited traps made from 2 L transparent PET bottles, in five microhabitats, namely, forest, monoculture, polyculture and the edges between the forest fragment and monoculture and polyculture, in the municipality of Doutor Maurício Cardoso. Statistical tests, similarity indices, dominance and constancy as well as PCoA were used for data analysis to group the collection. A total of 953 specimens were collected, distributed across 15 species and seven genera. Abundance differed between microhabitats and the monoculture cultivation was least similar to the other microhabitats. PCoA identified three different groups. Abundance was positively correlated with temperature, negatively correlated with air humidity and was not correlated with wind velocity. Social wasps are able to utilize resources outside the forest fragments, but monocultures may create barriers for their dispersal.

  3. Water quality assessment of the Sinos River, Southern Brazil.

    Science.gov (United States)

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  4. Water quality assessment of the Sinos River, Southern Brazil

    Directory of Open Access Journals (Sweden)

    KK. Blume

    Full Text Available The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W, Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD5, turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI used by the Sinos River Basin Management Committee (COMITESINOS. Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  5. Abiquiu Dam and Reservoir, Rio Grande Basin, Rio Chama, New Mexico. Embankment Criteria and Performance Report.

    Science.gov (United States)

    1987-04-01

    EMBANKMENT CRITERIA AND PERFORMANCE REPORT PERTINENT DATA 1. General Data. LOCATION: Rio Arriba County, New Mexico, on the Rio Chama at river mile 33. PURPOSE...is located across the Rio Chama, approximately 30 miles upstream from its confluence with the Rio Grande, in Rio Arriba County, New Mexico. The dam is...6600- 4 i ’. 6600 65060- -60 6600- a + v6500s-go FA**v~w -6500 6300- 60 - ~ ~ ~ wo Ala filll------------------ EMBNKEN SECTION62 *LDN WOR SAFEL VAIE

  6. Survey on monthly variations of water quality in the Tajan River (Sari ...

    African Journals Online (AJOL)

    user

    The aims of the study were to evaluate water quality of Tajan River in Sari in terms of chemical pollution and the impact of pollutant ... qualities of water from Tajan River were within the acceptable limits for agricultural consumptions. In addition, Tajan River water ..... Water and Return Flow Reuse. No. 535. Zazouli et al. 3991.

  7. New species and records of the genus Aegla Leach, 1820 (Crustacea, Anomura, Aeglidae from the West-Central region of Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Sandro Santos

    Full Text Available Aeglidae are anomuran freshwater "crabs" found only in southern South America. In Brazil, the greatest species diversity occurs in hydrographic basins of the state of Rio Grande do Sul. Two new species, Aegla georginae and Aegla ludwigi, are described from the Ibicuí and Ijuí Rivers, respectively (Uruguay River Basin. The new taxa can be distinguished from other Aegla species based on both morphological and molecular characters. The two new species have a very restricted distribution and are categorized as endangered (A. georginae and critically endangered (A. ludwigi using IUCN Red List criteria. We also summarize and present new records of the Aegla species occurring in the Uruguay River Basin.

  8. Work plan for ground water elevation data recorder/monitor well installation at Grand Junction, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1994-08-01

    The purpose of this document is to describe the work that will be performed and the procedures that will be followed during installation of ground water monitor wells and ground water elevation data recorders (data loggers) at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. The monitor wells and data loggers will be used to gather required time-dependent data to investigate the interaction between the shallow aquifer and the Colorado River

  9. Phylogeography of Hypostomus strigaticeps (Siluriformes: Loricariidae inferred by mitochondrial DNA reveals its distribution in the upper Paraná River basin

    Directory of Open Access Journals (Sweden)

    Rafael Splendore de Borba

    Full Text Available In this study, phylogenetic and phylogeographic analyses of populations identified as Hypostomus strigaticeps from the upper Paraná River basin were conducted in order to test whether these different populations comprises cryptic species or structured populations and to assess their genetic variability. The sequences of the mitochondrial DNA ATP sintetase (subunits 6/8 of 27 specimens from 10 populations (one from Mogi-Guaçu River, five from Paranapanema River, three from Tietê River and one from Peixe River were analyzed. The phylogeographic analysis showed the existence of eight haplotypes (A-H, and despite the ancestral haplotype includes only individuals from the Tietê River basin, the distribution of H. strigaticeps was not restricted to this basin. Haplotypes A, B and F were the most frequent. Haplotypes D, E, F, G, and H were present in the sub-basin of Paranapanema, two (A and B were present in the sub-basin of the Tietê River, one (C was exclusively distributed in the sub-basin of the Peixe River, and one (B was also present in the sub-basin of the Grande River. The phylogenetic analysis showed that the populations of H. strigaticeps indeed form a monophyletic unit comprising two lineages: TG, with representatives from the Tietê, Mogi-Guaçu and Peixe Rivers; and PP, with specimens from the Paranapanema River. The observed degree of genetic divergence within the TG and PP lineages was 0.1% and 0.2%, respectively, whereas the genetic divergence between the two lineages themselves was approximately 1%. The results of the phylogenetic analysis do not support the hypothesis of existence of crypt species and the phylogeographic analysis confirm the presence of H. strigaticeps in other sub-basins of the upper Paraná River: Grande, Peixe, and Paranapanema sub-basins.

  10. PCDD/Fs and dioxin-like PCBs in the Tone River, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Eiki; Heesoo, Eun; Koji, Baba; Tomohito, Arao; Shozo, Endo [National Institute for Agro-Environmental Sciences, Tsukuba (Japan); Tadashi, Sekino [Environmental Research Center, Tsukuba (Japan)

    2004-09-15

    Environmental pollution by PCDD/Fs has arisen exclusively from human activities, and for example, they are inadvertently produced from various combustion sources and manufacturing processes, such as municipal solid waste incineration steel production processes and chemical production processes. In Japan, it is well known that the environmental pollution has close relation to agricultural operation, that is, some PCDD/Fs are contained as impurities in a kind of pesticide. The Tone River is the largest basin area (about 16,900 km{sup 2}) in Japan, and after the Shinano River, is the second longest river (about 322 km). The river has many tributaries (about 800 rivers), and the rivers taking the Kokai River, the Kinu River, the Edo River, and the Watarase River as objects of the present study are also representative tributaries. Since the Tone River basin corresponding to about 4.5% of the total area of Japan leads about twelve million population corresponding to about 10% of the gross population in Japan, it plays an important part in a supply of water for human activities. Not only some residential zones near Tokyo and industrial zones but also representative agricultural zones in Japan expand in the basin expands, and especially the lower basin leads a leading granary. The objective of our effort is to investigate the levels of PCDD/Fs and PCBs in surface sediment and water samples from the Tone River and some related tributaries, and to assess their distribution and origin using congener-specific characterization approach.

  11. Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Krauland, P.A.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  12. Hydrology, phosphorus, and suspended solids in five agricultural streams in the Lower Fox River and Green Bay Watersheds, Wisconsin, Water Years 2004-06

    Science.gov (United States)

    Graczyk, David J.; Robertson, Dale M.; Baumgart, Paul D.; Fermanich, Kevin J.

    2011-01-01

    A 3-year study was conducted by the U.S. Geological Survey and the University of Wisconsin-Green Bay to characterize water quality in agricultural streams in the Fox/Wolf watershed in northeastern Wisconsin and provide information to assist in the calibration of a watershed model for the area. Streamflow, phosphorus, and suspended solids data were collected between October 1, 2003, and September 30, 2006, in five streams, including Apple Creek, Ashwaubenon Creek, Baird Creek, Duck Creek, and the East River. During this study, total annual precipitation was close to the 30-year normal of 29.12 inches. The 3-year mean streamflow was highest in the East River (113 ft3/s), followed by Duck Creek (58.2 ft3/s), Apple Creek (26.9 ft3/s), Baird Creek (12.8 ft3/s), and Ashwaubenon Creek (9.1 ft3/s). On a yield basis, during these three years, the East River had the highest flow (0.78 ft3/s/mi2), followed by Baird Creek (0.61 ft3/s/mi2), Apple Creek (0.59 ft3/s/mi2), Duck Creek (0.54 ft3/s/mi2), and Ashwaubenon Creek (0.46 ft3/s/mi2). The overall median total suspended solids (TSS) concentration was highest in Baird Creek (73.5 mg/L), followed by Apple and Ashwaubenon Creeks (65 mg/L), East River (40 mg/L), and Duck Creek (30 mg/L). The median total phosphorus (TP) concentration was highest in Ashwaubenon Creek (0.60 mg/L), followed by Baird Creek (0.47 mg/L), Apple Creek (0.37 mg/L), East River (0.26 mg/L), and Duck Creek (0.22 mg/L).

  13. Soil erosion and suspended sediment transport in an agricultural watershed of Brie. Use of radioactive and magnetic tracers

    International Nuclear Information System (INIS)

    Sogon, St.

    1999-01-01

    The degradation of the water quality of rivers by the particulates and the associated pollutants coming from the erosion of agricultural soils is analyzed in the framework of the Piren-Seine program. The area under study is the catchment basin of the Grand Morin river in the Brie plateau (SE of the Paris basin, France). The 137 Cs (T1/2 = 30 years), mainly produced during the atmospheric nuclear tests (1952-1963) is rapidly and strongly fixed to the soil particulates and can be used as a tracer of their migration. These fallout are considered as uniform at the catchment basin scale but those coming from the Tchernobyl accident disturb this labelling. The image obtained from the implementation of the method (reference activity: 3170 Bq/m 2 in January 1, 1996, with 792 Bq/m 2 coming from Tchernobyl) on a 11.2 Ha field (Hardy field, 160 carrots) shows a badly structured 137 Cs redistribution. The mosaic of erosion and accumulation areas shows that the relays represent a major element of the erosion dynamics. No particular element of the landscape can explain the redistribution of the particulates, but the upward part has a more complex functioning with respect to the downward part which has more inclined slopes (>5%). The measurement of the particulates migration on the southern slope (3.5 Ha) of the field allows to calculate a sedimentary status (net erosion ratio: 4 kg/m 2 /year; sedimentary supply ratio: 40%). The study of the suspended matter exported by a buried drainage network (specific of the agriculture of the Brie region) shows strong 137 Cs, 7 Be (T1/2 = 53 days) and 210 Pb (T1/2 = 22 years) activities characteristic of a direct and fast transfer of the thin clay fraction (0.5-0.1 μm) coming from the ploughed layer. In the upstream part of the Vannetin river, the activity of the suspended matter remains identical to the one of the drainage network showing their influence. On the other hand, in the mid-stream part, the sources of suspended matter are

  14. The generation of river alimentation in response to precipitation : a soil physical approach

    NARCIS (Netherlands)

    Wind, G.P.; Vandenberg, A.

    1983-01-01

    River alimentation can be simulated with the aid of models developed by agricultural hydrologists. One dimensional models with a Fourrier boundary condition are the most appropriote. Chapter of PAO-course Real-time River Flow

  15. A Physical Assessment of the Opportunities for Improved Management of the Water Resources of the Bi-National Rio Grande/Rio Bravo Basin

    Science.gov (United States)

    Aparicio, J.; McKinney, D.; Valdes, J.; Guitron, A.; Thomas, G.

    2007-05-01

    The hydro-physical opportunities for expanding the beneficial uses of the fixed water supply in the Rio Grande/Bravo Basin to better satisfy an array of water management goals are examined. These include making agriculture more resilient to periodic conditions of drought, improving the reliability of supplies to cities and towns, and restoring lost environmental functions in the river system. This is a comprehensive, outcome-neutral, model- based planning exercise performed by some 20 technical, primarily non-governmental institutions from both countries, aimed at proposing strategies that can reduce future conflicts over water throughout the entire basin. The second track consists in generating a set of future water management scenarios that respond to the needs and objectives of the basin stakeholders in each segment and each country. An array of scenarios for improved water management has been developed for the lower Rio Grande/Rio Bravo basin in Texas and the Mexican state of Tamaulipas. Another set under development will focus on the Rio Conchos and the El Paso/Juarez region. Eventually, scenarios will be generated such that will comprehend the entire basin on both sides of the border. These scenarios are the product of consultations with agricultural water districts, governmental organizations and environmental NGOs. They include strategies for reducing the physical losses of water in the system, conservation transfers, improvements in the operations of the Mexican and international reservoirs, improvements in environmental flow conditions, improvements in reliability of water supplies, and drought coping strategies.These scenarios will be evaluated for hydrologic feasibility by the basin-wide model and the gaming exercises. Modeling is necessary to understand how these options will affect the entire system and how they can be crafted to maximize the benefits and avoid unintended or uncompensated effects. The scenarios that have the potential to provide large

  16. market supply response of imported sardinella in cross river state ...

    African Journals Online (AJOL)

    Admin

    E. A. Etuk, Department of Agricultural Economics, University of Calabar, Cross River State, Nigera ... million persons in 2006 and a population growth rate of ... Following Lipsey and Steiner (1981) on the determinants of supply, we assume a first order autoregressive process. .... The case of ASEAN agricultural export to.

  17. Agricultural Chemical Concentrations and Loads in Rivers Draining the Central Valley, California, to the San Francisco Bay-Delta Estuary: Before and During an Extended Drought

    Science.gov (United States)

    Domagalski, J. L.

    2016-12-01

    Drought or near drought conditions have occurred in California since 2012. Although some parts of the State received near normal precipitation in water year 2016, other locations were still below average. Extended drought can impact aquatic organisms in a variety of ways because of decreased flows and elevated water temperature. However, lower precipitation and availability of irrigation water may limit subsequent runoff, resulting in reduced concentrations and loads of certain environmental toxicants, such as pesticides and ammonia, thereby limiting their toxic effects. In this study, funded by the U.S. Geological Survey National Water Quality Program, the occurrence of 227 pesticides and degradation products, and nutrients was assessed before and during this current drought in the two largest rivers draining to the San Francisco Bay: the Sacramento and San Joaquin Rivers. The watersheds of both rivers include substantial agricultural and urban land use. Herbicides, insecticides, fungicides, and ammonia were detected throughout the study (2010 to 2016) and models of daily concentration using the seasonal wave model (rloadest) were formulated to assess the amount of time that concentrations may have exceeded benchmark levels known to be toxic to aquatic organisms. Frequently detected pesticides included the fungicide azoxystrobin, herbicides or their degradation products such as diuron, glyphosate, and metolachlor, and insecticides such as imidacloprid. Compounds that are transported primarily by surface runoff generally showed decreasing concentrations as the drought progressed, especially in the San Joaquin River. Compounds mainly transported by groundwater, as indicated by seasonal concentration profiles, had more stable concentrations in the rivers. Mass loads to the Bay all decreased, as expected, because of the lower river discharge. When compared to aquatic-life benchmarks, modeled concentrations indicated that individual compounds were not contributing to

  18. Preliminary hydrogeologic assessment near Tassi and Pakoon Springs, western part of Grand Canyon-Parashant National Monument, Arizona

    Science.gov (United States)

    Truini, Margot

    2013-01-01

    Tassi and Pakoon Springs are both in the Grand Wash Trough in the western part of Grand Canyon-Parashant National Monument on the Arizona Strip. The monument is jointly managed by the National Park Service (NPS) and the Bureau of Land Management. This study was in response to NPS’s need to better understand the influence from regional increases in groundwater withdrawals near Grand Canyon-Parashant on the groundwater discharge from Tassi and Pakoon Springs. The climate of the Arizona Strip is generally semiarid to arid, and springs in the monument provide the water for the fragile ecosystems that are commonly separated by large areas of dry washes in canyons with pinyon and juniper. Available hydrogeologic data from previous investigations included water levels from the few existing wells, location information for springs, water chemistry from springs, and geologic maps. Available groundwater-elevation data from the wells and springs in the monument indicate that groundwater in the Grand Wash Trough is moving from north to south, discharging to springs and into the Colorado River. Groundwater may also be moving from east to west from Paleozoic rocks in the Grand Wash Cliffs into sedimentary deposits in the Grand Wash Trough. Finally, groundwater may be moving from the northwest in the Mesoproterozoic crystalline rocks of the Virgin Mountains into the northern part of the Grand Wash Trough. Water discharging from Tassi and Pakoon Springs has a major-ion chemistry similar to that of other springs in the western part of Grand Canyon-Parashant. Stable-isotopic signatures for oxygen-18 and hydrogen-2 are depleted in the water from both Tassi and Pakoon Springs in comparison to other springs on the Arizona Strip. Tassi Spring discharges from multiple seeps along the Wheeler Fault, and the depleted isotopic signatures suggest that water may be flowing from multiple places into Lake Mead and seems to have a higher elevation or an older climate source. Elevated water

  19. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  20. Chemical signature study of tupiguarani ceramic tradition from Central region of the Rio Grande do Sul state, Brazil

    International Nuclear Information System (INIS)

    Bona, Irene Akemy Tomiyoshi

    2006-01-01

    In this work a model based on experimental results using chemical composition data of the pottery sherds applied to Spearmann's no parametric test, principal component analysis and discriminant analysis, was applied. The samples are soils and Tupiguarani Tradition pottery sherd from the central area of the Rio Grande do Sul State. The chemical elements , Al, Ba, Ca, Cr, Fe, K Mn, Pb, Rb, S, Si, Sr, Ti, V and Zn were determined by energy dispersive X-ray fluorescence (EDXFR) while Ce, Cu, Gd, La, Nd, Pr, Sm, Th and Y by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) techniques. Relationships among the pottery characteristics, studied sites and sherd dispersion in the several sites were proposed. Indications of chemical signature of the small pottery with function to go or not to the fire were observed. The largest dispersion is of small pottery with surface treatment no corrugated. The potteries chemical fingerprints from Ijui River, Ibicui-Vacacai Mirim River and Jacui River were verified. (author)

  1. Cités horticoles en sursis ? L'agriculture urbaine dans les grandes ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Face à la crise des systèmes de production agricole ruraux, l'agriculture urbaine, notamment l'horticulture et l'élevage, est devenue une activité en pleine expansion. Ce secteur absorbe une partie de l'exode rural, contribue au développement d'activités génératrices de revenus et bénéficie d'une situation privilégiée grâce ...

  2. Environmental contaminants and biomarker responses in fish from the Rio Grande and its U.S. tributaries: Spatial and temporal trends

    Science.gov (United States)

    Schmitt, C.J.; Hinck, J.E.; Blazer, V.S.; Denslow, N.D.; Dethloff, G.M.; Bartish, T.M.; Coyle, J.J.; Tillitt, D.E.

    2005-01-01

    We collected, examined, and analyzed 368 fish of seven species from 10 sites on rivers of the Rio Grande Basin (RGB) during late 1997 and early 1998 to document temporal and geographic trends in the concentrations of accumulative contaminants and to assess contaminant effects on the fish. Sites were located on the mainstem of the Rio Grande and on the Arroyo Colorado and Pecos River in Texas (TX), New Mexico (NM), and Colorado. Common carp (Cyprinus carpio) and largemouth bass (Micropterus salmoides) were the targeted species. Fish were examined in the field for internal and external visible gross lesions, selected organs were weighed to compute ponderal and organosomatic indices, and samples of tissues and fluids were obtained and preserved for analysis of fish health and reproductive biomarkers. Whole fish from each station were composited by species and gender and analyzed for organochlorine chemical residues and elemental contaminants using instrumental methods, and for 2,3,7,8-tetrachloro dibenzo-p-dioxin-like activity (TCDD-EQ) using the H4IIE rat hepatoma cell bioassay. Overall, fish from lower RGB stations contained greater concentrations of organochlorine pesticide residues and appeared to be less healthy than those from sites in the central and upper parts of the basin, as indicated by a general gradient of residue concentrations and biomarker responses. A minimal number of altered biomarkers and few or no elevated contaminant concentrations were noted in fish from the upper RGB. The exception was elevated concentrations [up to 0.46 ??g/g wet-weight (ww)] of total mercury (Hg) in predatory species from the Rio Grande at Elephant Butte Reservoir, NM, a condition documented in previous studies. Arsenic (As) and selenium (Se) concentrations were greatest in fish from sites in the central RGB; Se concentrations in fish from the Pecos River at Red Bluff Lake, TX and from the Rio Grande at Langtry, TX and Amistad International Reservoir, TX exceeded published

  3. South Fork Holston River basin 1988 biomonitoring

    Energy Technology Data Exchange (ETDEWEB)

    Saylor, C.F.; Ahlstedt, S.A.

    1990-06-01

    There is concern over the effects of shifts in land use use practices on the aquatic fauna of streams in the South Fork Holston River basin in northwestern North Carolina and southwestern Virginia. Trout reproduction has noticeably declined in the Watauga River subbasin. The Watauga River and Elk River subbasins have been subjected to commercial and resort development. The Middle fork Holston River and the upper South Fork Holston River subbasins have been affected by agricultural and mining activities, respectively (Cox, 1986). To aid reclamation and management of the South Fork Holston basin, Tennessee Valley Authority (TVA) biologists conducted biomonitoring--including index of biotic integrity and macroinvertebrate sampling--on the Middle Fork Holston, South Fork Holston, Watauga, and Elk Rivers to assess cumulative impairment related to changes in habitat and pollutant loading in these subbasins. Biomonitoring can detect environmental degradation, help document problem areas, and assist in development of strategies for managing water quality. This report discusses the methods and materials and results of the biomonitoring of South Fork Holston River Basin. 13 refs., 5 figs., 12 tabs.

  4. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing

  5. Assessment of Ecosystem Services in a Semi-arid Agriculture-dominant Area: Framework and Case Study

    Science.gov (United States)

    Dhungel, R.; Chen, Y.; Maltos, R.; Sivakumaran, K.; Aguilar, A.; Harmon, T. C.

    2015-12-01

    California's Central Valley (CV) water crisis has increased in severity due to a prolonged drought. The drought is directly contributing to the overexploitation of groundwater, along with deficiency in agricultural, recreational and aesthetic water services. The population of the CV, home to about 6.5 million people, is projected to be 12 million by 2040. Balancing water demand between municipal use, agricultural supply, and other ecosystem services, will be challenging for this region in perpetuity. In the heart of CV lies the San Joaquin River (SJR) where Friant Dam is the main low-elevation reservoir regulating water release. The Friant Dam's reservoir fulfills agricultural, municipal and industrial water needs through the Friant-Kern and Madera canals, as well as through the mainstem SJR. The SJR restoration project (SJRRP) is a recent development that is imposing additional demands on water releases in order to restore sustainable aquatic habitat for Chinook salmon and other species on the mainstem below the Friant Dam. The Chinook require adequate flow to moderate river temperature, particularly during hot summer and fall months. Temperatures on CV rivers exhibit strong diurnal and seasonal patterns, and can rise to harmful levels when flows are inadequate. In this study, we developed a framework that allows for assessing the effectiveness and implied costs of ecosystem services provided by a restored SJR in a semi-arid agriculture-dominant area. This is done by explicitly linking economics-based farmers' model with a reduced-form hydrological model that is loosely coupled to a physical-based stream-temperature model, specifically CE-QUAL-W2. The farmers' model is based on positive mathematical program approach calibrated with twenty proxy crops for year 2005. The river-hydrology is simulated by a vector autoregression model that incorporates daily flow variability. We study the mandated release policies by the SJR restoration project, along with hypothetical

  6. Ecosystem level assessment of the Grand Calumet Lagoons, Indiana Dunes National Lakeshore

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, P.M. [National Biological Service, Porter, IN (United States)

    1995-12-31

    The Grand Calumet Lagoons make up the eastern section of the Grand Calumet River (GCR), Indiana Harbor and Ship Canal and nearshore Lake Michigan Area of Concern (AOC). The GCR AOC is the only one of the 42 Great Lakes Areas of Concern identified by the International Joint Commission with all 14 designated uses classified as impaired. Included within the boundaries of the Indiana Dunes National Lakeshore (INDU), is the central section of the Grand Calumet Lagoons. A number of biotic and abiotic factors were tested to determine the effects of an industrial landfill that borders the lagoons to assess the potential impact on park resources. Analysis included water quality testing, assessments of macroinvertebrate, fish, algae and aquatic plant communities and contaminant concentrations in water, sediment and plant and fish tissue. Surface water testing found very few contaminants, but significantly higher nutrient levels were found in the water column closest to the landfill. Macroinvertebrate, aquatic plant and fish communities all showed significant impairment in relationship to their proximity to the landfill. Aquatic plant growth habit became limited next to the landfill with certain growth habits disappearing entirely. Aquatic plants collected close to the landfill had high concentrations of several heavy metals in their stems and shoots. Using the index of biotic integrity (IBI), fish community assessment indicated impairment in the areas adjacent to the landfill. Sediments tested at one site had over 12% polycyclic aromatic hydrocarbons (PAH) and carp (Cyprinus carpio) collected from this site had whole fish tissue concentrations over 1 mg/kg PAH.

  7. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  8. Development of river flood model in lower reach of urbanized river basin

    Science.gov (United States)

    Yoshimura, Kouhei; Tajima, Yoshimitsu; Sanuki, Hiroshi; Shibuo, Yoshihiro; Sato, Shinji; Lee, SungAe; Furumai, Hiroaki; Koike, Toshio

    2014-05-01

    Japan, with its natural mountainous landscape, has demographic feature that population is concentrated in lower reach of elevation close to the coast, and therefore flood damage with large socio-economic value tends to occur in low-lying region. Modeling of river flood in such low-lying urbanized river basin is complex due to the following reasons. In upstream it has been experienced urbanization, which changed land covers from natural forest or agricultural fields to residential or industrial area. Hence rate of infiltration and runoff are quite different from natural hydrological settings. In downstream, paved covers and construct of sewerage system in urbanized areas affect direct discharges and it enhances higher and faster flood peak arrival. Also tidal effect from river mouth strongly affects water levels in rivers, which must be taken into account. We develop an integrated river flood model in lower reach of urbanized areas to be able to address above described complex feature, by integrating model components: LSM coupled distributed hydrological model that models anthropogenic influence on river discharges to downstream; urban hydrological model that simulates run off response in urbanized areas; Saint Venant's equation approximated river model that integrates upstream and urban hydrological models with considering tidal effect from downstream. These features are integrated in a common modeling framework so that model interaction can be directly performed. The model is applied to the Tsurumi river basin, urbanized low-lying river basin in Yokohama and model results show that it can simulate water levels in rivers with acceptable model errors. Furthermore the model is able to install miscellaneous water planning constructs, such as runoff reduction pond in urbanized area, flood control field along the river channel, levee, etc. This can be a useful tool to investigate cost performance of hypothetical water management plan against impact of climate change in

  9. Chloride Sources and Losses in Two Tile-Drained Agricultural Watersheds.

    Science.gov (United States)

    David, Mark B; Mitchell, Corey A; Gentry, Lowell E; Salemme, Ronald K

    2016-01-01

    Chloride is a relatively unreactive plant nutrient that has long been used as a biogeochemical tracer but also can be a pollutant causing aquatic biology impacts when concentrations are high, typically from rock salt applications used for deicing roads. Chloride inputs to watersheds are most often from atmospheric deposition, road salt, or agricultural fertilizer, although studies on agricultural watersheds with large fertilizer inputs are few. We used long-term (21 and 17 yr) chloride water quality data in two rivers of east-central Illinois to better understand chloride biogeochemistry in two agricultural watersheds (Embarras and Kaskaskia), the former with a larger urban land use and both with extensive tile drainage. During our sampling period, the average chloride concentration was 23.7 and 20.9 mg L in the Embarras and Kaskaskia Rivers, respectively. Annual fluxes of chloride were 72.5 and 61.2 kg ha yr in the Embarras and Kaskaskia watersheds, respectively. In both watersheds, fertilizer chloride was the dominant input (∼49 kg ha yr), with road salt likely the other major source (23.2 and 7.2 kg ha yr for the Embarras and Kaskaskia watersheds, respectively). Combining our monitoring data with earlier published data on the Embarras River showed an increase in chloride concentrations as potash use increased in Illinois during the 1960s and 1970s with a lag of about 2 to 6 yr to changes in potash inputs based on a multiple-regression model. In these agricultural watersheds, riverine chloride responds relatively quickly to potash fertilization as a result of tile-drainage. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Lockwood, Jr., Neil [Kalispel Tribe of Indians, Usk, WA (United States); McLellan, Jason G [Washington Department of Fish and Wildlife, Spokane, WA (United States); Crossley, Brian [Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA (United States); O' Connor, Dick

    2001-01-01

    The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project

  11. The science and practice of river restoration

    Science.gov (United States)

    Wohl, Ellen; Lane, Stuart N.; Wilcox, Andrew C.

    2015-08-01

    River restoration is one of the most prominent areas of applied water-resources science. From an initial focus on enhancing fish habitat or river appearance, primarily through structural modification of channel form, restoration has expanded to incorporate a wide variety of management activities designed to enhance river process and form. Restoration is conducted on headwater streams, large lowland rivers, and entire river networks in urban, agricultural, and less intensively human-altered environments. We critically examine how contemporary practitioners approach river restoration and challenges for implementing restoration, which include clearly identified objectives, holistic understanding of rivers as ecosystems, and the role of restoration as a social process. We also examine challenges for scientific understanding in river restoration. These include: how physical complexity supports biogeochemical function, stream metabolism, and stream ecosystem productivity; characterizing response curves of different river components; understanding sediment dynamics; and increasing appreciation of the importance of incorporating climate change considerations and resiliency into restoration planning. Finally, we examine changes in river restoration within the past decade, such as increasing use of stream mitigation banking; development of new tools and technologies; different types of process-based restoration; growing recognition of the importance of biological-physical feedbacks in rivers; increasing expectations of water quality improvements from restoration; and more effective communication between practitioners and river scientists.

  12. Rivers, Rockets and Readiness: Army Engineers in the Sunbelt

    Science.gov (United States)

    1979-01-01

    at Proctor Lake. 138 Water sports are enjoyed at Benbrook Lake. 139 The powerhouse at Sam Rayburn Dam and Reservoir. 140 Amistad Dam - a...for the Fort Worth District. Th~ Fort Worth District designed the United States portion of the Amistad Dam--a cooperative effort with Mexico on the...Antonio Resident Office.17 Adding to the workload was the Amistad Dam located on the Rio Grande River about twelve miles above Del Rio, Texas. The

  13. Review of freeboard: Grand Rapids Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Groeneveld, J.L.; Harding, W.B.; Bonin, D.V.; Fuchs, D.M. [Acres Manitoba Ltd., Winnipeg, MB (Canada); Warner, B.J. [Manitoba Hydro, Winnipeg, MB (Canada)

    2001-10-01

    Constructed during the period 1960-1965, the Grand Rapids Generating Station is a 472 MW hydroelectric station located approximately 400 kilometres northwest of Winnipeg, Manitoba, on the Saskatchewan River. An intake structure, four penstocks, a four-unit plus house unit powerhouse, wing walls, extensive dyke structures and a four-bay spillway are the components of the generating station. A little over ten years ago, the Manitoba Hydro Dam Safety Program was initiated. The program included a detailed dam safety review of the Grand rapids Generating Station. A potential deficiency in the freeboard allowance for several of the earthen dykes was revealed by the review process. The dam safety guidelines sponsored by the Canadian Dam Association were not met. The occurrence of a 1:1000 year wind event from the critical direction when the reservoir was at or near its full supply level was compounded by the analysis. The establishment of a wind and wave monitoring program was included in the deficiency studies commissioned. The objective was to confirm the empirical estimates concerning wave height, the development and usage of a two dimensional numerical wave model, and additional freeboard analyses to refine estimates of the recurrence interval of the current level of protection. A statistical Monte Carlo analysis was performed in the case of the estimates of the recurrence interval to determine the joint probabilities of seasonal variations in wind direction, wind speed, and reservoir level. The estimate of the actual risk of overtopping was therefore refined, and the details pertaining to the methodology and the conclusions of the analysis are all included in the paper. 15 refs., 4 tabs., 9 figs.

  14. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  15. Geology and geologic history of the Moscow-Pullman basin, Idaho and Washington, from late Grande Ronde to late Saddle Mountains time

    Science.gov (United States)

    Bush, John H; Garwood, Dean L; Dunlap, Pamela

    2016-01-01

    The Moscow-Pullman basin, located on the eastern margin of the Columbia River flood basalt province, consists of a subsurface mosaic of interlayered Miocene sediments and lava flows of the Imnaha, Grande Ronde, Wanapum, and Saddle Mountains Basalts of the Columbia River Basalt Group. This sequence is ~1800 ft (550 m) thick in the east around Moscow, Idaho, and exceeds 2300 ft (700 m) in the west at Pullman, Washington. Most flows entered from the west into a topographic low, partially surrounded by steep mountainous terrain. These flows caused a rapid rise in base level and deposition of immature sediments. This field guide focuses on the upper Grande Ronde Basalt, Wanapum Basalt, and sediments of the Latah Formation.Late Grande Ronde flows terminated midway into the basin to begin the formation of a topographic high that now separates a thick sediment wedge of the Vantage Member to the east of the high from a thin layer to the west. Disrupted by lava flows, streams were pushed from a west-flowing direction to a north-northwest orientation and drained the basin through a gap between steptoes toward Palouse, Washington. Emplacement of the Roza flow of the Wanapum Basalt against the western side of the topographic high was instrumental in this process, plugging west-flowing drainages and increasing deposition of Vantage sediments east of the high. The overlying basalt of Lolo covered both the Roza flow and Vantage sediments, blocking all drainages, and was in turn covered by sediments interlayered with local Saddle Mountains Basalt flows. Reestablishment of west-flowing drainages has been slow.The uppermost Grande Ronde, the Vantage, and the Wanapum contain what is known as the upper aquifer. The water supply is controlled, in part, by thickness, composition, and distribution of the Vantage sediments. A buried channel of the Vantage likely connects the upper aquifer to Palouse, Washington, outside the basin. This field guide locates outcrops; relates them to

  16. Diagnóstico da floricultura no Rio Grande do Sul Diagnosis of floriculture in Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    Atelene Normann Kämpf

    1999-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o segmento da produção de flores e plantas ornamentais no Rio Grande do Sul, Brasil, por meio de um levantamento a campo. O estudo faz parte de um projeto global, apoiado pelo Instituto Brasileiro de Floricultura (IBRAFLOR e pelo Ministério da Agricultura e do Abastecimento (MAARA, através do Departamento Nacional de Cooperativismo (DENACOOP. Com base nos formulários preenchidos nas propriedades, foi elaborado um cadastro dos floricultores, com seus endereços e produções. A floricultura gaúcha conta com 257 produtores, que cultivam o total de 304ha em 65 municípios; 30% dessa área é ocupada com flores de corte, 33% com mudas para jardim, 29% com outros produtos da floricultura e 8% com plantas envasadas. O sistema de cultivo predominante é a céu aberto (89%, com baixos investimentos tecnológicos.A survey was conducted to quantify flower and ornamental plant production in the State of Rio Grande do Sul State, Brazil. The Brazilian Floriculture Institute (IBRAFLOR and the Agriculture Ministry (MAARA - DENACOOP granted this research. Based on an inventory formulary a catalog including the nurseries, addresses and main crops was elaborated. There are 257 growers in this State with an area of 304ha distributed among 65 counties; 30% of this area are cultivated with cut flowers, 33% with annuals and perennials for garden, 29% with other floriculture products and 8% with potted plants. The main system of cultivation is not protected with low technological investments.

  17. Predictive techniques for river channel evolution and maintenance

    Science.gov (United States)

    Nelson, J.M.

    1996-01-01

    Predicting changes in alluvial channel morphology associated with anthropogenic and natural changes in flow and/or sediment supply is a critical part of the management of riverine systems. Over the past few years, advances in the understanding of the physics of sediment transport in conjunction with rapidly increasing capabilities in computational fluid dynamics have yielded now approaches to problems in river mechanics. Techniques appropriate for length scales ranging from reaches to bars and bedforms are described here. Examples of the use of these computational approaches are discussed for three cases: (1) the design of diversion scenarios that maintain channel morphology in steep cobble-bedded channels in Colorado, (2) determination of channel maintenance flows for the preservation of channel islands in the Snake River in Idaho, and (3) prediction of the temporal evolution of deposits in lateral separation zones for future assessment of the impacts of various dam release scenarios on lateral separation deposits in the Colorado River in Grand Canyon. With continued development of their scientific and technical components, the methodologies described here can provide powerful tools for the management of river environments in the future.

  18. Analysing the influence of human activity on runoff in the Weihe River basin

    Directory of Open Access Journals (Sweden)

    C. Shen

    2015-05-01

    Full Text Available Changing runoff patterns can have profound effects on the economic development of river basins. To assess the impact of human activity on runoff in the Weihe River basin, principal component analysis (PCA was applied to a set of 17 widely used indicators of economic development to construct general combined indicators reflecting different types of human activity. Grey relational analysis suggested that the combined indicator associated with agricultural activity was most likely to have influenced the changes in runoff observed within the river basin during 1994–2011. Curve fitting was then performed to characterize the relationship between the general agricultural indicator and the measured runoff, revealing a reasonably high correlation (R2 = 0.393 and an exponential relationship. Finally, a sensitivity analysis was performed to assess the influence of the 17 individual indicators on the measured runoff, confirming that indicators associated with agricultural activity had profound effects whereas those associated with urbanization had relatively little impact.

  19. Susquehanna River Basin Flood Control Review Study

    Science.gov (United States)

    1980-08-01

    and made recommendations for an intergrated water plan for the Basin and included a specific Early Action Plan. Concerning flood damage reduction, the...transportation and by agriculture as a source of income and occupation. The river served as a source of transportation for trade and commerce and also as a... trade patterns, and labor market areas. The Susquehanna River Basin is largely comprised of BEA economic areas 011, 012, 013, and 016. Figure II shows the

  20. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

    OpenAIRE

    Manoj Kumar Jha

    2011-01-01

    This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science...

  1. Chemical signature study of tupiguarani ceramic tradition from Central region of the Rio Grande do Sul state, Brazil; Estudo de assinaturas quimicas em ceramica da tradicao tupiguarani da regiao central do estado do Rio Grande do Sul, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Bona, Irene Akemy Tomiyoshi

    2006-07-01

    In this work a model based on experimental results using chemical composition data of the pottery sherds applied to Spearmann's no parametric test, principal component analysis and discriminant analysis, was applied. The samples are soils and Tupiguarani Tradition pottery sherd from the central area of the Rio Grande do Sul State. The chemical elements , Al, Ba, Ca, Cr, Fe, K Mn, Pb, Rb, S, Si, Sr, Ti, V and Zn were determined by energy dispersive X-ray fluorescence (EDXFR) while Ce, Cu, Gd, La, Nd, Pr, Sm, Th and Y by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) techniques. Relationships among the pottery characteristics, studied sites and sherd dispersion in the several sites were proposed. Indications of chemical signature of the small pottery with function to go or not to the fire were observed. The largest dispersion is of small pottery with surface treatment no corrugated. The potteries chemical fingerprints from Ijui River, Ibicui-Vacacai Mirim River and Jacui River were verified. (author)

  2. Environment and society: the Sinos River Basin and public policies

    Directory of Open Access Journals (Sweden)

    V Pedde

    Full Text Available This study discusses the tensions and conflicts in the relationship between environment and society in the Sinos River Basin, in the state of Rio Grande do Sul, Brazil. An environmental disaster in 2006, which resulted in the death of 100 tons of fish in the Sinos River, is the dividing line for this study. A review of documents and field interviews with representatives of the municipal government and companies in the region were used to analyze the impact of public policies on the environment and which deficiencies remain11We thank Malcon Naor Voltz and Ana Arnoldo, undergraduate research grant holders, for their participation in data collection for this study..

  3. Watershed Analysis of Nitrate Transport as a Result of Agricultural Inputs for Varying Land Use/Land Cover and Soil Type

    Science.gov (United States)

    Scott, M. E.; Sykes, J. F.

    2006-12-01

    The Grand River Watershed is one of the largest watersheds in southwestern Ontario with an area of approximately 7000 square kilometers. Ninety percent of the watershed is classified as rural, and 80 percent of the watershed population relies on groundwater as their source of drinking water. Management of the watershed requires the determination of the effect of agricultural practices on long-term groundwater quality and to identify locations within the watershed that are at a higher risk of contamination. The study focuses on the transport of nitrate through the root zone as a result of agricultural inputs with attenuation due to biodegradation. The driving force for transport is spatially and temporally varying groundwater recharge that is a function of land use/land cover, soil and meteorological inputs that yields 47,229 unique soil columns within the watershed. Fertilizer sources are determined from Statistics Canada's Agricultural Census and include livestock manure and a popular commercial fertilizer, urea. Accounting for different application rates yields 60,066 unique land parcels of which 22,809 are classified as croplands where manure and inorganic fertilizes are directly applied. The transport for the croplands is simulated over a 14-year period to investigate the impact of seasonal applications of nitrate fertilizers on the concentration leaching from the root zone to the water table. Based on land use/land cover maps, ArcView GIS is used to define the location of fertilizer applications within the watershed and to spatially visualize data and analyze results. The large quantity of input data is stored and managed using MS-Access and a relational database management system. Nitrogen transformations and ammonium and nitrate uptake by plants and transport through the soil column are simulated on a daily basis using Visual Basic for Applications (VBA) within MS-Access modules. Nitrogen transformations within the soil column were simplified using

  4. Trace and major elements in rock samples from Itingussu River Basin, Coroa-Grande, Rio de Janeiro

    International Nuclear Information System (INIS)

    Araripe, D.R.; Patchineelam, S.R.; Bellido, A.V.B.; Vasconcellos, M.B.A.

    2006-01-01

    The goal of the present work was to determine the concentration of 23 elements by instrumental neutron activation analysis in rock samples from the vicinity of Itingussu River, in order to investigate the contribution of trace and major elements from the local lithology to the river basin. The Itingussu River Basin ends in a mangrove area not yet largely impacted by antropogenic activities. So far, there are no data for the concentration of trace elements in that region, even though these data are important to the understanding of the influence of the rocks on the composition of the mangrove sediments. The results showed some enrichment of Th and some light rare earths, probably because of the presence of the mineral allanite and other accessory minerals, as identified by petrographic analysis. (author)

  5. Determination of REE and U in agricultural soils from Jaguari River basin, Sao Paulo, by neutron activation analysis

    International Nuclear Information System (INIS)

    Ruby, E.C.; Modesto, R.P.; Lemos, M.M.G.

    2009-01-01

    Uranium has the highest atomic weight of the naturally occurring elements. It is weakly radioactive and occurs naturally in low concentrations (a few parts per million) in soil, rock and water. The rare earth elements (REE) form the largest chemically coherent group in the periodic table. The versatility and specificity of the REE have given them a level of technological, environmental, and economic importance considerably greater than might be expected. The objective of this work was to determine the concentration of the lanthanides (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu), and U, considering the soil use and occupation from the Jaguari river basin, Sao Paulo. Instrumental Neutron Activation Analysis (INAA) was used for the REE and U analysis The study area is located in a traditional agricultural area which is nowadays one of the main industrial regions of Brazil. In order to evaluate the quality of these soils in relation to lanthanides and U levels, the obtained concentrations were compared to guiding values reported by environmental protection agencies. The 75th percentile for U in agricultural soils (2.76 mg kg- 1 ) was higher than in the control areas (1.61 mg kg -1 ), but much lower than the maximum allowed concentration for soils in The Netherlands (28.3 mg kg -1 ). The lanthanides presented concentration levels higher than the guiding values of the RIVM - -National Institute for Public Health and the Environment guidelines. (author)

  6. MOSSES AS BIOINDICATORS OF AIR POLLUTION ALONG AN URBAN–AGRICULTURAL TRANSECT IN THE CREDIT RIVER WATERSHED, SOUTHERN ONTARIO, CANADA

    Directory of Open Access Journals (Sweden)

    P. Cowden

    2015-04-01

    Full Text Available The activities associated with urbanization, such as vehicular traffic and industrial processes, lead to elevated emissions of atmospheric pollutants. Measuring the spatial extent of these pollutants is pivotal to identifying areas of concern and assessing mitigation measures. The objective of this study was to evaluate the relative deposition of heavy metals and nitrogen using moss species along an urban–agricultural transition in the Credit River Watershed, southern Ontario. Thirteen species of moss were collected from Sugar Maple (Acer saccharum dominated forest stands across the study area, with only one moss species (Atrichum altercristatum commonly occurring. Heavy metal concentrations were variable between species; the Coefficient of Variation (CV for the majority of metals (Al, V, Cr, Fe, Ni, As, Sb and Pb was greater than ~50% across species. Nonetheless, metals exhibited similar trends, with the highest concentrations for Fe, followed by Al > Zn > Cu > Pb > Cr > Ni > V > As > Cd > Sb > Hg across species. Heavy metal concentrations in Atrichum altercristatum exhibited lower variability between sites, with CV < 33% for most metals (Cu, Zn, As, Cd, Sb, Pb and Hg. Further, many metal concentrations were strongly correlated (e.g., Al, V, Cr, Fe, and As; r ≤ 0.90 suggesting common emission sources, such as wind blown dust from agricultural activities or vehicular traffic, both predominant throughout the watershed.

  7. La importancia de ser grande

    OpenAIRE

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  8. Multi-Patient Rabies Exposure on a Colorado River Rafting Expedition: Urgent vs. Emergent Transport Decision Making in an Austere Setting.

    Science.gov (United States)

    Pearce, Emily A; Farney, Aaron N; Banks, Laura; Harrell, Andrew J

    2018-01-01

    We present a case of rabies exposure on a private river rafting trip on Grand Canyon National Park's Colorado River. Five individuals were exposed to an erratically acting bat; one of the individuals sustained a direct bite to the upper lip while sleeping. This case illustrates the challenges of austere medical care and evacuation in remote conditions while highlighting the importance of risk mitigation considerations in all austere situations.

  9. Global Approaches to Extension Practice: A Journal of Agricultural ...

    African Journals Online (AJOL)

    Credit Delivery Systems In Rural Nigeria: Issues And Implications For Rural Transformation · EMAIL FULL TEXT EMAIL FULL TEXT .... Influence Of Fund Availability On Adoption Of Improved Agricultural Technologies Among Farmers Involved In The Special Programme For Food Security In Rivers State, Nigeria · EMAIL ...

  10. Three run-of-river power plants

    International Nuclear Information System (INIS)

    1992-01-01

    Three 'run-of-river' hydroelectric power plants in the Montreal area in the province of Quebec were described visually and in sound. A run-of-river generating station is one that has no reservoir behind the generating facilities. Instead of a reservoir, the generating station draws its power from the strong flow of the whole river as it passes through the turbines. The first generating station described was the Beauharnois power plant completed in 1963 which became the most powerful generating station in Canada at that time. Today, it ranks fourth after the La Grande complex. In winter, it supplies electricity primarily to the Quebec power system, but between April and November, 90 per cent of its power is destined for export. The Carillon power station on the Ottawa River, the second to be discussed in this videotape presentation, was completed in 1964 with a total generating capacity of 654 MW. Today, it is the tenth largest of its kind in Quebec. The Rivieres des Prairies generating station, the third and last one described was completed in 1930; today it has a generating capacity of 45 MW. Some of the efforts made by Hydro-Quebec to protect and enhance the natural environment were shown in action, including regular removal and recycling of debris at the gateways to the generating stations, construction of fish spawning ladders, and the control of zebra mussels

  11. Improvement of fish habitat in a Norwegian river channelization scheme

    International Nuclear Information System (INIS)

    Brittain, J.E.; Brabrand, A.; Saltveit, S.J.; Heggenes, J.

    1993-01-01

    Techniques for reducing adverse effects of river and lake regulation are being developed and tested within the framework of the Norwegian Biotope Adjustment Programme. The programme is illustrated by studies of a river flowing through the wetland area, Lesjaleirene, which has been drained and channelized to provide additional agricultural land. The channelized river has a homogeneous sand substrate. Experimental placement of rocks and stones increased brown trout densities, especially in areas in contact with the river banks. The new areas of rocks and stones provide cover for fish as well as a greater variation in depth and flow conditions. (Author)

  12. River Basin Water Assessment and Balance in fast developing areas in Viet Nam

    Science.gov (United States)

    Le, Van Chin; Ranzi, Roberto

    2010-05-01

    Uneven precipitation in space and time together with mismanagement and lack of knowledge about quantity and quality of water resources, have caused water shortages for water supply to large cities and irrigation areas in many regions of Viet Nam in the dry season. The rainy season (from June to October) counts for 80% of the total annual rainfall, while the water volume of dry season (from November to May of the following year) accounts for 20% only. Lack of sufficient water volumes occurs in some areas where the pressure of a fast increasing population (1.3% per year on average in the last decade in Viet Nam), intensive agricultural and industrial uses is one of the major problems facing sustainable development. For those areas an accurate water assessment and balance at the riverbasin scale is needed to manage the exploitation and appropriate use of water resources and plan future development. The paper describes the preliminary phase of the pilot development of the river basin water balance for the Day River Basin in the Red River delta in Viet Nam. The Day river basin includes a 7,897 km² area in the south-western part of the Red River in Viet Nam. The total population in the Day river basin exceeds 8 millions inhabitants, including the Hanoi capital, Nam Dinh and other large towns. Agricultural land covered 390,294 ha in 2000 and this area is going to be increased by 14,000 ha in 2010 due to land reclamation and expansion toward the sea. Agricultural uses exploit about 90% of surface water resources in the Day river basin but have to compete with industrial and civil needs in the recent years. At the background of the brief characterization of the Day River Basin, we concentrate on the application of a water balance model integrated by an assessment of water quality after consumptive uses for civil, agricultural and industrial needs to assist water management in the basin. In addition, future development scenarios are taken into account, considering less

  13. Groundwater recharge and agricultural contamination in alluvial fan of Eastern Kofu basin, JAPAN

    Science.gov (United States)

    Nakamura, T.

    2009-12-01

    Agriculture has significant effects on the rate and composition of groundwater recharge. The chemical loading into groundwater have been dominated by the constituents derived directly or indirectly from agricultural practices and additives. The contamination of groundwater with nitrate is a major public health and environmental concern around the world. The inorganic constituents like, K+, Ca2+, Mg2+, SO42-, Cl- and variety of other minor elements of groundwater are often used as agricultural additives; and the natural occurrence of these elements are dominated by the agricultural sources. A recent study has reported that Kofu basin groundwater aquifer is contaminated by nitrate from agricultural areas because of the fertilizer application for the orchard (Kazama and Yoneyama, 2002; Sakamoto et al., 1997, Nakamura et al., 2007). The water-oxygen and hydrogen stable isotope (δ18O and δD) and nitrate-nitrogen stable isotope (δ15N) of groundwater, river water and precipitation samples were investigated to identify the source of groundwater and nitrate nitrogen contamination in groundwater in the Fuefukigawa and Hikawa_Kanegawa alluvial fans in Kofu basin. The plot of δD versus δ18O values of groundwater, river water and precipitation samples suggest that the groundwater is a mixture of precipitation and river water. And nitrate-nitrogen isotope values have suggested the nitrate contamination of groundwater is from agricultural area. The study revealed positive correlation between groundwater δ18O values and NO3-, Cl-, SO42-, Ca2+, Mg2+ concentration, which shows the agricultural contamination is carried by the recharge of groundwater from precipitation in alluvial fan. Whereas, NO3-, Cl-, SO42-, Ca2+, Mg2+ are diluted by the river water recharges. This study showed the quality of groundwater is resulted from the mixing of water from the different source during the groundwater recharge in the study area. References Kazama F, Yoneyama M (2002) Nitrogen generation

  14. Proposal for the further development of the 'Ribeira Grande' agricultural geothermal project

    International Nuclear Information System (INIS)

    Popovski, Kiril; De Medeiros, Jorge Rosa; Rodrigues, Ana Catarina Tavares

    2000-01-01

    Geothermal project Ribeira Grande has been the first trial to introduce the possibilities of direct application of geothermal energy at Azores. As all the first experiences, it's development has been escorted with a list of difficulties and problems, resulting with non proper completion of some systems and installations. However, even not complete, the reached results justified both technically and economically the indigenous resource door for further activities and development. Presented proposal for the second phase of project development consists two very important advantages: 1) Enables development of new demonstration and productive projects, without engaging new import of fuels or other energents; 2) Enables development based on the already existing economy sectors at the islands and makes them more profitable and accommodated to the requests of the national and international market. However, influencing national and international preconditions for the realization of the proposed activities are not very convenient and are requesting a concentrate engagement of the Institute for Innovative Technologies of Azores INOVA during the period of next 5 years. The final success of this engagement shall open very wide possibilities for direct application of geothermal energy development in this isolated EC community, presently mainly orientated towards import both of energy and food. (Authors)

  15. A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana.

    Science.gov (United States)

    Kotir, Julius H; Smith, Carl; Brown, Greg; Marshall, Nadine; Johnstone, Ron

    2016-12-15

    In a rapidly changing water resources system, dynamic models based on the notion of systems thinking can serve as useful analytical tools for scientists and policy-makers to study changes in key system variables over time. In this paper, an integrated system dynamics simulation model was developed using a system dynamics modelling approach to examine the feedback processes and interaction between the population, the water resource, and the agricultural production sub-sectors of the Volta River Basin in West Africa. The objective of the model is to provide a learning tool for policy-makers to improve their understanding of the long-term dynamic behaviour of the basin, and as a decision support tool for exploring plausible policy scenarios necessary for sustainable water resource management and agricultural development. Structural and behavioural pattern tests, and statistical test were used to evaluate and validate the performance of the model. The results showed that the simulated outputs agreed well with the observed reality of the system. A sensitivity analysis also indicated that the model is reliable and robust to uncertainties in the major parameters. Results of the business as usual scenario showed that total population, agricultural, domestic, and industrial water demands will continue to increase over the simulated period. Besides business as usual, three additional policy scenarios were simulated to assess their impact on water demands, crop yield, and net-farm income. These were the development of the water infrastructure (scenario 1), cropland expansion (scenario 2) and dry conditions (scenario 3). The results showed that scenario 1 would provide the maximum benefit to people living in the basin. Overall, the model results could help inform planning and investment decisions within the basin to enhance food security, livelihoods development, socio-economic growth, and sustainable management of natural resources. Copyright © 2016 Elsevier B.V. All

  16. River basin closure: Processes, implications and responses

    NARCIS (Netherlands)

    Molle, F.; Wester, P.; Hirsch, P.

    2010-01-01

    Increasing water withdrawals for urban, industrial, and agricultural use have profoundly altered the hydrology of many major rivers worldwide. Coupled with degradation of water quality, low flows have induced severe environmental degradation and water has been rendered unusable by downstream users.

  17. Land Use and the Agrarian Economy in the Roman Dutch River Area

    Directory of Open Access Journals (Sweden)

    Maaike Groot

    2009-12-01

    Full Text Available This article aims to reconstruct agrarian land use for a rural community in the Roman frontier zone in the Netherlands. The Dutch River Area was characterised by a dynamic landscape. Rivers regularly flooded the surrounding low-lying land. Only the higher streamridges provided suitable places for habitation and arable agriculture. The limitations of the landscape dictated to a large extent both the types and quantities of crops and animals that could be produced. An interactive map of the micro-region of Tiel-Passewaaij shows how the land was used for agrarian production and sourced for other products. These symbols link to short texts that discuss the archaeological evidence for aspects such as growing cereals, raising livestock and the exploitation of wood and wild animals. The complex and dynamic geological situation of the Dutch River Area is also explained, and the consequences for agriculture discussed. We address three main research questions. How were the different elements of the riverine landscape used by rural inhabitants? How were arable agriculture and animal husbandry organised spatially, both within the settlement and in its immediate surroundings? Which natural resources were used and managed? Our research is mainly based on one large and well-excavated settlement complex (Tiel-Passewaaij, but we will use complementary data from several other settlements in the region. Our results show that the river landscape offered plenty of opportunities for agriculture. The interaction between arable and pastoral farming was essential, with livestock providing manure and agricultural labour, and the fields offering fodder and additional grazing (after harvest or during fallow years. The location of large enclosure ditches suggest that even minor differences in height, caused by older streamridges, may have made arable farming possible in the flood basin.

  18. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  19. Características ergonômicas dos tratores agrícolas utilizados na região central do Rio Grande do Sul Ergonomic characteristics of agricultural tractors used in central region of Rio Grande do Sul State, Brazil

    Directory of Open Access Journals (Sweden)

    Henrique Debiasi

    2004-12-01

    Full Text Available A utilização de tratores agrícolas com boas condições ergonômicas reduz a probabilidade de ocorrência de acidentes e doenças ocupacionais, aumentando a eficiência dos trabalhadores. Neste trabalho, objetivou-se verificar a presença de itens relacionados à ergonomia de tratores agrícolas usados, bem como avaliar o comportamento destas características em função do tempo de uso das referidas máquinas. Foram analisados 175 tratores agrícolas pertencentes às microrregiões gaúchas de Santa Maria, Restinga Seca e Cachoeira do Sul, presentes em 114 propriedades aleatoriamente amostradas. Os resultados mostraram que apenas 3% dos espécimes avaliados eram equipados com cabina, sendo que a maior parte dos mesmos não apresentava isolamento do calor gerado pelo motor e transmissão. Com relação à ergonomia dos comandos, mais de 70% dos tratores tinham alavancas de câmbio centrais, enquanto que apenas 8% eram equipados com volante de direção regulável. Da mesma forma, mais de 20% dos exemplares amostrados possuíam bancos sem estofamento. Além disso, a presença dos itens avaliados foi menor para os tratores mais antigos.It is possible to reduce the probability of work accidents, diseases occurrence and increase the work efficiency using agricultural tractors with good ergonomic conditions. The objective of this research was to verify the presence of ergonomic items in used agricultural tractors and also to evaluate the influence of tractor age in these characteristics. 175 agricultural tractors belonging to 3 regions of Rio Grande do Sul State (Santa Maria, Restinga Seca and Cachoeira do Sul, Brazil, present in 114 farms randomly sampled, were evaluated. The results showed that only 3% of sampled specimens were equipped with a cab, and most part of the tractors did not have protection against the heat produced by tractor transmission and engine. With regard to ergonomics of commands, more than 70% of the tractors had gear levers

  20. Geomorphological evidences of Quaternary tectonic activities in the Santa Cruz river valley, Patagonia, Argentina

    International Nuclear Information System (INIS)

    Massabie, A.; Sanguinetti, A.; Nestiero, O.

    2007-01-01

    From Argentin lake, at west on Andean hills, to Puerto Santa Cruz on Atlantic coast, Santa Cruz river cross eastward Santa Cruz province over 250 km in Patagonia at southern Argentina. Present bed of the river has a meandering outline with first order meanders of great ratio bends and second order meanders of minor ratio bends. Principal wanderings are 45 to 55 km spaced from near Estancia La Julia or Rio Bote at west to Comandante Luis Piedrabuena at east. On river's bed middle sector these great curvatures are located at Estancia Condor Cliff and Estancia Rincon Grande. Regional and partial detailed studies allow to recognize structural control on river's bed sketch and valley s geomorphology that relates first order bends with reactivated principal faults. These faults fit well with parallel system of northwest strike of Austral Basin.On geological, geomorphologic and structural evidences recognized in Santa Cruz river, quaternary tectonic activity, related to Andean movements in southern Patagonian foreland, is postulated. (author)

  1. Resident fish stock status above Chief Joseph and Grand Coulee dams : 2000 annual report; ANNUAL

    International Nuclear Information System (INIS)

    Lockwood, N.; McLellan, J.; Crossley, B.

    2001-01-01

    The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, commonly known as the Joint Stock Assessment Project (JSAP) is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (blocked area). The three-phase approach of this project will enhance the fisheries resources of the blocked area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information housed in a central location will allow managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP (NWPPC program measure 10.8B.26) is designed and guided jointly by fisheries managers in the blocked area and the Columbia Basin blocked area management plan (1998). The initial year of the project (1997) identified the need for a central data storage and analysis facility, coordination with the StreamNet project, compilation of blocked area fisheries information, and a report on the ecological condition of the Spokane River System. These needs were addressed in 1998 by acquiring a central location with a data storage and analysis system, coordinating a pilot project with StreamNet, compiling fisheries distribution data throughout the blocked area, identifying data gaps based on compiled information, and researching the ecological condition of the Spokane River. In order to ensure that any additional information collected throughout the life of this project will be easily stored and manipulated by the central storage facility, it was necessary to develop standardized methodologies between the JSAP fisheries managers. The use of common collection and analytical tools is essential to the process of streamlining joint management decisions. In 1999 and 2000 the project

  2. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  3. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  4. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. Using Temperature Forecasts to Improve Seasonal Streamflow Forecasts in the Colorado and Rio Grande Basins

    Science.gov (United States)

    Lehner, F.; Wood, A.; Llewellyn, D.; Blatchford, D. B.; Goodbody, A. G.; Pappenberger, F.

    2017-12-01

    Recent studies have documented the influence of increasing temperature on streamflow across the American West, including snow-melt driven rivers such as the Colorado or Rio Grande. At the same time, some basins are reporting decreasing skill in seasonal streamflow forecasts, termed water supply forecasts (WSFs), over the recent decade. While the skill in seasonal precipitation forecasts from dynamical models remains low, their skill in predicting seasonal temperature variations could potentially be harvested for WSFs to account for non-stationarity in regional temperatures. Here, we investigate whether WSF skill can be improved by incorporating seasonal temperature forecasts from dynamical forecasting models (from the North American Multi Model Ensemble and the European Centre for Medium-Range Weather Forecast System 4) into traditional statistical forecast models. We find improved streamflow forecast skill relative to traditional WSF approaches in a majority of headwater locations in the Colorado and Rio Grande basins. Incorporation of temperature into WSFs thus provides a promising avenue to increase the robustness of current forecasting techniques in the face of continued regional warming.

  6. Mississippi River Hydrodynamic and Delta Management Study (MRHDM) - Geomorphic Assessment

    Science.gov (United States)

    2014-07-01

    Mississippi River @ Venice Daily stage 1960–present MVN Grand Pass Measured Q 1960–present MVN West Bay Diversion Measured Q 2004–present MVN...frequency during the study time period. The dredge history for the crossing locations was used to qualitatively inform the interpretation of the...pattern of deposition downstream of Venice , Louisiana, that was similarly identified by Sharp et al (2013) as part of the West Bay Sediment Diversion

  7. Grand unified theories. Pt. 2

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-01-01

    The author gives an introduction to the construction of grand unified theories on the base of the SU(3)xSU(2)xU(1) model of the strong, weak, and electromagnetic interactions. Especially he discusses the proton decay, neutrino masses and oscillations, and cosmological implications in connection with grand unified theories. (orig./HSI)

  8. Yuntaishan Global Geopark VS Grand Canyon World Heritage Site A Contrast of Yuntai/Grand Canyon Physiognomy

    Science.gov (United States)

    Ting, Zhao; Xun, Zhao

    2017-04-01

    1). Sights of Yuntai/Grand Canyon: Immaculate. Physiognomy of Yuntai/Grand Canyon: Typical representatives of stratiform ravine physiognomy The physiognomy is distributed widely on the second geological ladder zone (Xing'an Peak-Mt. Yan-Mt. Taihang-West Henan Province; Mountainous areas in west Hubei Province-West Hunan Province; East Guizhou Province-West Guangxi Province) and in the valleys of the Yellow River; similar physiognomy is also to be found in the Grand Canyon of U.S and the Great Rift Valley in east Africa, etc. The physiognomy has the following features: broken mounds sprinkle the ancient plateau, insignificant streams and brooks carve dongas on the plateau, grits, fine or coarse in terms of sizes, that are near to sources jam water channels, and riverbanks and slopes are covered by slope sediments, remains and flood residues; on the edge of the plateau, there are towering ragged cliffs and long walls when ruptures and joints don't develop; when they do develop, facets of the plateau will be incised by the intercrossing development to form high or low peak walls that resemble plates or peak pillars that reaches into the sky; Under the river valleys and gulches where water gather on the face of the plateau, suspending waterfalls wash away the soft layers of rock and soil, which collapse into urn-shaped valleys, and gigantic stones fall up-side-down to form stone awls that has no distinctive layers and single components; more often than not, they would pile up into complicated caves and holes, wherein sands and mud are flushed away by floods; Inside the valley, erosion by means of wind and water are even stronger, and narrow valleys, shield-like valleys, gorges, suspending valleys, and valley-in-valleys are clearly cut, and ruts formed by water flush and urn-shaped valleys can often be found together. In the lower reaches of rivers, wide valleys, winding streams and yoke lakes grow into major sights, and the flush and collapse on the valley slopes formed

  9. Landscapes and ethno-knowledge in the Ticuna and Cocama agriculture at upper River Solimões, Amazonas, Brazil

    Directory of Open Access Journals (Sweden)

    Sandra do Nascimento Noda

    2012-08-01

    Full Text Available The units of landscape in the Cocama and Ticuna agriculture, in the upper River Solimões, are characterized by productionarrangements and management of natural resources. This paper aims to characterize these agro-ecological based practices,the landscaped results and its regional applicability. The survey was conducted in Novo Paraíso, at Bom Intento Island,and in Nova Aliança, both located in the municipality of Benjamin Constant, state of Amazonas, Brazil. The social andeconomic organization of Ticuna and Cocama Peoples is founded on kinship and communal ownership of natural resources,including spaces for gathering. Family units, despite their weak linkages with the market and its rules, have in the logicof reciprocity the motivation for the production, transmission and management of resources and factors of production.The landscapes are reconstructed by agro-ecological production derived from ethno-knowledge and correspond to theinherent processes of management and conservation of flora and fauna. This process allows the existence of compleximbrications of constantly changing landscapes in which forms of production are recreated for sufficiency and sustainability.

  10. Low robustness of increasing reservoir capacity for adaptation to climate change: A case study for an agricultural river basin

    Science.gov (United States)

    Kim, Daeha; Eum, Hyung-Il

    2017-04-01

    With growing concerns of the uncertain climate change, investments in water infrastructures are considered as adaptation policies for water managers and stakeholders despite their negative impacts on the environment. Particularly in regions with limited water availability or conflicting demands, building reservoirs and/or augmenting their storage capacity were already adopted for alleviating influences of the climate change. This study provides a probabilistic assessment of climate change impacts on water scarcity in a river system regulated by an agricultural reservoir in South Korea, which already increased its storage capacity for water supply. For the assessment, we developed the climate response functions (CRFs) defined as relationships between bi-decadal system performance indicators (reservoir reliability and vulnerability) and corresponding climatic conditions, using hydrological models with 10,000-year long stochastic generation of daily precipitation and temperatures. The climate change impacts were assessed by plotting 52 downscaled climate projections of general circulation models (GCMs) on the CRFs. Results indicated that augmented reservoir capacity makes the reservoir system more sensitive to changes in long-term averages of precipitation and temperatures despite improved system performances. Increasing reservoir capacity is unlikely to be "no regret" adaptation policy for the river system. On the other hand, converting the planting strategy from transplanting to direct sowing (i.e., a demand control) could be a more robust to bi-decadal climatic changes based on CRFs and thus could be good to be a no-regret policy.

  11. Revealing fate of CO2 leakage pathways in the Little Grand Wash Fault, Green River, Utah

    Science.gov (United States)

    Han, K.; Han, W. S.; Watson, Z. T.; Guyant, E.; Park, E.

    2015-12-01

    To assure long-term security of geologic carbon sequestration site, evaluation of natural CO2 leakage should be preceded before actual construction of the CO2 facility by comparing natural and artificial reservoir systems. The Little Grand Wash fault is located at the northwestern margin of the Paradox Basin and roles on a bypass of deep subsurface CO2 and brine water onto the surface, e.g., cold water geyser, CO2 spring, and surface travertine deposits. CO2 degassed out from brine at the Little Grand Wash fault zone may react with formation water and minerals while migrating through the fault conduit. Leakage observed by soil CO2 flux on the fault trace shows this ongoing transition of CO2, from supersaturated condition in deep subsurface to shallow surface equilibria. The present study aims to investigate the reactions induced by changes in hydrological and mineralogical factors inside of the fault zone. The methodology to develop site-specific geochemical model of the Little Grand Wash Fault combines calculated mechanical movements of each fluid end-member, along with chemical reactions among fluid, free CO2 gas and rock formations. Reactive transport modeling was conducted to simulate these property changes inside of the fault zone, using chemistry dataset based on 86 effluent samples of CO2 geysers, springs and in situ formation water from Entrada, Carmel, and Navajo Sandstone. Meanwhile, one- and two-dimensional models were separately developed to delineate features mentioned above. The results from the 3000-year simulation showed an appearance of self-sealing processes near the surface of the fault conduit. By tracking physicochemical changes at the depth of 15 m on the 2-dimensional model, significant changes induced by fluid mixing were indicated. Calculated rates of precipitation for calcite, illite, and pyrite showed increase in 2.6 x 10-4, 2.25 x 10-5, and 3.0 x 10-6 in mineral volume fraction at the depth of 15m, respectively. Concurrently

  12. Economic risk assessment of drought impacts on irrigated agriculture

    Science.gov (United States)

    Lopez-Nicolas, A.; Pulido-Velazquez, M.; Macian-Sorribes, H.

    2017-07-01

    In this paper we present an innovative framework for an economic risk analysis of drought impacts on irrigated agriculture. It consists on the integration of three components: stochastic time series modelling for prediction of inflows and future reservoir storages at the beginning of the irrigation season; statistical regression for the evaluation of water deliveries based on projected inflows and storages; and econometric modelling for economic assessment of the production value of agriculture based on irrigation water deliveries and crop prices. Therefore, the effect of the price volatility can be isolated from the losses due to water scarcity in the assessment of the drought impacts. Monte Carlo simulations are applied to generate probability functions of inflows, which are translated into probabilities of storages, deliveries, and finally, production value of agriculture. The framework also allows the assessment of the value of mitigation measures as reduction of economic losses during droughts. The approach was applied to the Jucar river basin, a complex system affected by multiannual severe droughts, with irrigated agriculture as the main consumptive demand. Probability distributions of deliveries and production value were obtained for each irrigation season. In the majority of the irrigation districts, drought causes a significant economic impact. The increase of crop prices can partially offset the losses from the reduction of production due to water scarcity in some districts. Emergency wells contribute to mitigating the droughts' impacts on the Jucar river system.

  13. Combining geochemical tracers with geophysical tools to study groundwater quality in Mesilla Bolson of the semi-arid Rio Grande watershed

    Science.gov (United States)

    Ma, L.; Hiebing, M.; Garcia, S.; Szynkiewicz, A.; Doser, D. I.

    2017-12-01

    Mesilla Bolson is an important alluvial aquifer system of the semi-arid Rio Grande watershed in southern New Mexico and West Texas. It is one of the two major groundwater sources for the City of El Paso in Texas and provides about 30% of the region's domestic groundwater needs. Groundwater from Mesilla Bolson is also extensively used for agriculture irrigation in this region. However, high concentrations of total dissolved solids in some areas of this region significantly impact groundwater quality for the Rio Grande alluvial aquifer. For example, an increase in groundwater salinity is generally observed from north to south within the aquifer. Some previous researchers have suggested this salinity change is due to 1) runoff and recharge from agricultural activity; 2) natural upwelling of deeper brackish groundwater; and 3) water-rock interactions in the aquifer. To better study how agricultural and municipal practices contribute to increasing salinity, we sampled 50 wells of the Mesilla Bolson in 2015-2016 for uranium (234U/238U), strontium (87Sr/86Sr), boron (d11B), and sulfur (d34S) isotope compositions to characterize major salinity sources of groundwater. In addition, we applied a geophysical gravity survey to determine the possible influences of faults and other subsurface structures on groundwater quality in this region. Our multi-isotope results suggest that the groundwater resources of this alluvial aquifer have been already impacted by human activities and groundwater recharge to the alluvial aquifer is affected by surface processes such as i) the return flows from the Rio Grande surface water used for irrigation, ii) municipal discharges, and iii) irrigation with the reclaimed city water. However, natural upwelling is also probably responsible for the salinity increase near some fault areas, primarily due to water-rock interactions such as dissolution of evaporites within the deeper basin. In some areas of the Mesilla Bolson, fault systems act as conduits

  14. First record of Chara indica and Chara zeylanica (Charophyceae, Charales, Characeae in the semiarid reservoirs the state of Rio Grande do Norte, Brazil

    Directory of Open Access Journals (Sweden)

    Norma Catarina Bueno

    2013-09-01

    Full Text Available In the present study we present the first record of the macroalgaes Chara indica and Chara zeylanica for the state of Rio Grande do Norte, Brazil, and the semiarid northeastern. Specimens of C. indica and C. zeylanica were collected in Santa Cruz and Umari reservoirs, respectively. Both reservoirs are located in the river basin Apodi-Mossoró (Western State in the Caatinga Biome.

  15. Nest-location and nest-survival of black-chinned hummingbirds in New Mexico: A comparison between rivers with differing levels of regulation and invasion of nonnative plants

    Science.gov (United States)

    D. Max Smith; Deborah M. Finch; Scott H. Stoleson

    2014-01-01

    We compared plants used as sites for nests and survival of nests of black-chinned hummingbirds (Archilochus alexandri) along two rivers in New Mexico. Along the free-flowing Gila River which was dominated by native plants, most nests were constructed in boxelder (Acer negundo). Along the flow-restricted Middle Rio Grande which was dominated by nonnative plants, most...

  16. Electrical resistivity investigation of fluvial geomorphology to evaluate potential seepage conduits to agricultural lands along the San Joaquin River, Merced County, California, 2012–13

    Science.gov (United States)

    Groover, Krishangi D.; Burgess, Matthew K.; Howle, James F.; Phillips, Steven P.

    2017-02-08

    Increased flows in the San Joaquin River, part of the San Joaquin River Restoration Program, are designed to help restore fish populations. However, increased seepage losses could result from these higher restoration flows, which could exacerbate existing drainage problems in neighboring agricultural lands and potentially damage crops. Channel deposits of abandoned river meanders that are hydraulically connected to the river could act as seepage conduits, allowing rapid and widespread water-table rise during restoration flows. There is a need to identify the geometry and properties of these channel deposits to assess their role in potential increased seepage effects and to evaluate management alternatives for reducing seepage. Electrical and electromagnetic surface geophysical methods have provided a reliable proxy for lithology in studies of fluvial and hyporheic systems where a sufficient electrical contrast exists between deposits of differing grain size. In this study, direct-current (DC) resistivity was used to measure subsurface resistivity to identify channel deposits and to map their subsurface geometry. The efficacy of this method was assessed by using DC resistivity surveys collected along a reach of the San Joaquin River in Merced County, California, during the summers of 2012 and 2013, in conjunction with borings and associated measurements from a hydraulic profiling tool. Modeled DC resistivity data corresponded with data from cores, hand-auger samples, a hydraulic profiling tool, and aerial photographs, confirming that DC resistivity is effective for differentiating between silt and sand deposits in this setting. Modeled DC resistivity data provided detailed two-dimensional cross-sectional resistivity profiles to a depth of about 20 meters. The distribution of high-resistivity units in these profiles was used as a proxy for identifying areas of high hydraulic conductivity. These data were used subsequently to guide the location and depth of wells

  17. Down, but not out: Recent decline of Berg–Breede River whitefish (Barbus andrewi in the upper Hex River, South Africa

    Directory of Open Access Journals (Sweden)

    Jeremy M. Shelton

    2017-03-01

    Full Text Available The Berg–Breede River whitefish, Barbus andrewi, an endangered Cape Floristic Region endemic, was once widespread in both the Berg and Breede River catchments. However, its distribution has been strongly reduced, apparently by human-related activities, over the last century, and the Hex River now contains one of the last recruiting populations within its native range. This population was last surveyed by Christie who found that the species occurred in six pools over a 9-km stretch of the upper Hex River. We re-surveyed fish populations at Christie’s sites in 2015 to evaluate differences in the fish community between 2002 and 2015. Our data indicated that the distribution of B. andrewi in the Hex River has declined from six to four pools and that its density in the study area in 2015 (0.57 fish per 100 m2 ± 0.31 fish per 100 m2 was more than fivefold lower than that recorded in 2002 (3.39 fish per 100 m2 ± 1.40 fish per 100 m2 . Moreover, small size classes of B. andrewi (< 10 cm were largely absent in 2015, indicating recruitment failure in recent years. Habitat degradation, exacerbated by a severe flood in 2008, and recent invasions by predatory non-native fishes (smallmouth bass, Micropterus dolomieu and sharptooth catfish, Clarias gariepinus are identified as likely causes of this decline. Cape kurper, Sandelia capensis, another native species, was relatively common in 2002 but not recorded in 2015, whereas the density of native Breede River redfin, Pseudobarbus burchelli, was higher in 2015 than in 2002. Urgent conservation actions including managing non-native fish invasions and mitigating agricultural impacts on aquatic habitat are required to prevent further decline, and possible extirpation, of the Hex River population of B. andrewi. Conservation implications: Urgent conservation actions including preventing further increases in the abundance and distribution of non-native fishes, and improving habitat and water quality through

  18. Hydrogeochemical and stream sediment reconnaissance basic data for Grand Island NTMS Quadrangle, Nebraska/Kansas

    International Nuclear Information System (INIS)

    1980-01-01

    Results of a reconnaissance geochemical survey of the Grand Island Quadrangle, Nebraska/Kansas are reported. Statistical data and areal distributions for uranium and uranium-related variables are presented for 564 groundwater and 532 stream sediment samples. Also included is a brief discussion on location and geologic setting. Groundwater data indicate that uranium concentrations above the 85th percentile occur primarily in shallow wells (0 to 20 m) along or near the Platte and Republican Rivers, which flow west to east along the northern and southern portions of the quadrangle, respectively. Waters containing high concentration of uranium in the northern portion of the quadrangle occur in recent alluvium and nearby glacial deposits. In the southern portion of the quadrangle, waters containing high uranium concentrations occur in Recent alluvium and the Niobrara Chalk in the southeast. Stream sediment data indicate that uranium concentrations above the 85th percentile occur in sediments along the Platte River in the northern portion of the quadrangle and paralleling the Republican River in the southeastern portion. Sediments with high uranium values along the Platte River are derived from glacial and alluvial deposits. High uranium values paralleling the Republican River in the southeast are derived from the Niobrara Chalk, the Carlile Shale, and glacial and alluvial deposits. High U-NT and thorium values, and high values for cerium, niobium, scandium, titanium, vanadium, yttrium, and zirconium suggest the presence of clays and/or residual minerals in the southeast. Sediment derivation and the leaching of possible ash-rich loess and alluvial deposits and/or uranium-rich alkaline evaporite deposits could account for high uranium concentrations in sediment and groundwaters within the quadrangle

  19. The role of feedback mechanisms in historic channel changes of the lower Rio Grande in the Big Bend region

    Science.gov (United States)

    Dean, David J.; Schmidt, John C.

    2011-03-01

    Over the last century, large-scale water development of the upper Rio Grande in the U.S. and Mexico, and of the Rio Conchos in Mexico, has resulted in progressive channel narrowing of the lower Rio Grande in the Big Bend region. We used methods operating at multiple spatial and temporal scales to analyze the rate, magnitude, and processes responsible for channel narrowing. These methods included: hydrologic analysis of historic stream gage data, analysis of notes of measured discharges, historic oblique and aerial photograph analysis, and stratigraphic and dendrogeomorphic analysis of inset floodplain deposits. Our analyses indicate that frequent large floods between 1900 and the mid-1940s acted as a negative feedback mechanism and maintained a wide, sandy, multi-threaded river. Declines in mean and peak flow in the mid-1940s resulted in progressive channel narrowing. Channel narrowing has been temporarily interrupted by occasional large floods that widened the channel, however, channel narrowing has always resumed. After large floods in 1990 and 1991, the active channel width of the lower Rio Grande has narrowed by 36-52%. Narrowing has occurred by the vertical accretion of fine-grained deposits on top of sand and gravel bars, inset within natural levees. Channel narrowing by vertical accretion occurred simultaneously with a rapid invasion of non-native riparian vegetation ( Tamarix spp., Arundo donax) which created a positive feedback and exacerbated the processes of channel narrowing and vertical accretion. In two floodplain trenches, we measured 2.75 and 3.5 m of vertical accretion between 1993 and 2008. In some localities, nearly 90% of bare, active channel bars were converted to vegetated floodplain during the same period. Upward shifts of stage-discharge relations occurred resulting in over-bank flooding at lower discharges, and continued vertical accretion despite a progressive reduction in stream flow. Thus, although the magnitude of the average annual

  20. Flocculent and grand design spiral galaxies in groups: time scales for the persistence of grand design spiral structures

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1983-01-01

    Spiral arm classifications were made for 261 low-inclination galaxies in groups listed by Huchra and Geller. The fractional occurrence of grand design spiral structure in nonbarred galaxies was found to increase from approx.0.1 to approx.0.6 and then level off as the group crossing rate or galaxy collision rate in a group increases. A simple model is discussed where the random encounters between galaxies of any type and flocculent galaxies induce transient grand design spirals in the flocculent galaxies. If this grand-design stimulation occurs for binary collisions with impact parameters less than αR 25 , were R 25 is the galactic radius at 25 mag arcsec - 2 , and if the induced grand design spirals persist for an average time equal to #betta# galactic rotations, then the quantity α 2 #betta# equals approximately 3 x 10 4 . If binary collisions are responsible for grand design spirals, then this result implies either that the induced spirals last for many galactic rotations (#betta#>15), or that they can be stimulated by very remote encounters (α>45.) Alternatively, grand design spirals may be stimulated by multiple galaxy encounters, which would be the case for such large α, or by interactions with the potential well of the associated group, rather than by simple binary encounters. Weak correlations between the grand design fraction and the galaxy size, or between this fraction and the total number of galaxies in a group, were also found. Spiral structures of barred galaxies show no correlations with group environment

  1. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  2. Agricultural biomass monitoring on watersheds based on remotely sensed data.

    Science.gov (United States)

    Tamás, János; Nagy, Attila; Fehér, János

    2015-01-01

    There is a close quality relationship between the harmful levels of all three drought indicator groups (meteorological, hydrological and agricultural). However, the numerical scale of the relationships between them is unclear and the conversion of indicators is unsolved. Different areas or an area with different forms of drought cannot be compared. For example, from the evaluation of meteorological drought using the standardized precipitation index (SPI) values of a river basin, it cannot be stated how many tonnes of maize will be lost during a given drought period. A reliable estimated rate of yield loss would be very important information for the planned interventions (i.e. by farmers or river basin management organisations) in terms of time and cost. The aim of our research project was to develop a process which could provide information for estimating relevant drought indexes and drought related yield losses more effectively from remotely sensed spectral data and to determine the congruency of data derived from spectral data and from field measurements. The paper discusses a new calculation method, which provides early information on physical implementation of drought risk levels. The elaborated method provides improvement in setting up a complex drought monitoring system, which could assist hydrologists, meteorologists and farmers to predict and more precisely quantify the yield loss and the role of vegetation in the hydrological cycle. The results also allow the conversion of different-purpose drought indices, such as meteorological, agricultural and hydrological ones, as well as allow more water-saving agricultural land use alternatives to be planned in the river basins.

  3. Climate change, poverty and agricultural resource degradation: a case study of district d.g. khan

    International Nuclear Information System (INIS)

    Imran, M.; Bano, S.; Dawood, M.; Tarar, M.A.; Ali, A.

    2012-01-01

    Global development agendas are now being bonded with adaptation to climate change. Sustainable biodiversity and community adaptation to climate change are closely associated as depletion of natural resources adversely affects the living standard of people. Rapid climatic changes and intervention to regulate water resources in Indus delta of Pakistan have put the lives of millions of people residing near the Indus river belt at the stake of climate change. Therefore, this study was designed to inquire the socio-economic conditions of the people residing near the Indus river bank and the perceived impact of climate change on river belt agricultural resources specifically in district D. G. Khan. Based on primary data study employed univariate and bivariate analysis which suggested flood, wind storm and temperature as the significant climate change parameters affecting the land fertility, forest and fisheries. The Foster Greer and Thorbeck technique for calculating the poverty indicated that majority (82%) of population was below poverty line and most of them entirely depend on river belt agricultural resources which were found to be depleting due to rapid climate change. (author)

  4. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2002 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Jason M. (Kalispel Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); Butler, Chris (Spokane Tribe of Indians, Department of Natural Resources, Wellpinit, WA)

    2003-09-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area

  5. Influence of agricultural land-use and pesticides on benthic macroinvertebrate assemblages in an agricultural river basin in southeast Brazil

    Directory of Open Access Journals (Sweden)

    M Egler

    Full Text Available Land-use alterations and pesticide run-offs are among the main causes for impairment in agricultural areas. We evaluated the influence of different land-uses (forest, pasture and intensive agriculture on the water quality and on benthic macroinvertebrate assemblages on three occasions: in the dry season, wet season and at the end of the wet season. Macroinvertebrates responded to this gradient of impairment: agricultural sites had significantly lower richness numbers than forested and pasture sites, and all major invertebrate groups were significantly affected. Most taxa found in forested sites were found in pasture sites, but often with lower densities. In this case, the loss of habitats due to sedimentation and the lower complexity of substrates seem to be the disruptive force for the macroinvertebrate fauna.

  6. Zinc and Its Isotopes in the Loire River Basin, France

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Bourrain, X.

    2014-12-01

    The contribution of human activities such as industries, agriculture and domestic inputs, becomes more and more significant in the chemical composition of the dissolved load of rivers. Human factors act as a supplementary key process. Therefore the mass-balance for the budget of catchments and river basins include anthropogenic disturbances. The Loire River in central France is approximately 1010 km long and drains an area of 117,800 km2. In the upper basin, the bedrock is old plutonic rock overlain by much younger volcanic rocks. The intermediate basin includes three major tributaries flowing into the Loire River from the left bank: the Cher, the Indre and the Vienne rivers; the main stream flows westward and its valley stretches toward the Atlantic Ocean. Here, the Loire River drains the sedimentary series of the Paris Basin, mainly carbonate deposits. The lower Loire basin drains pre-Mesozoic basement of the Armorican Massif and its overlying Mesozoic to Cenozoic sedimentary deposits. The Loire River is one of the main European riverine inputs to the Atlantic ocean. Here we are reporting concentration and isotope data for Zn in river waters and suspended sediments from the Loire River Basin. In addition, we also report concentration and isotope data for the different industrial sources within the Loire Basin, as well as data for biota samples such as mussels and oysters from the Bay of Biscay and North Brittany. These organisms are known to be natural accumulators of metal pollutants. Zinc isotopic compositions are rather homogeneous in river waters with δ66Zn values ranging from 0.21 to 0.39‰. This range of variation is very different from anthropogenic signature (industrial and/or agriculture release) that displays δ66Zn values between 0.02 to 0.14‰. This result is in agreement with a geogenic origin and the low Zn concentrations in the Loire River Basin (from 0.8 to 6 µg/L).

  7. Bed load determination in Parana river by radioactive tracer technique

    International Nuclear Information System (INIS)

    Aoki, P.E.; Enokihara, C.T.; Rocca, H.C.C.; Bittencourt, A.V.L.

    1988-10-01

    Radioactive tracing technique with marked sand was employed to evaluate the bottom sediment drag of Parana river, near the future site for the ''Ilha Grande'' Dam in Guaira City (State of Parana). 198 Au radioisotope was employed and measurements had been performed for a period of fifteen days. A bed load rate of 952,3 t/day was obtained for a laminar layer of 0,33 m mean thickness and 1.65 m/day mean velocity. (author) [pt

  8. A comprehensive assessment of agriculture in lowlands of south Brazil: characterization and comparison of current and alternative concepts

    NARCIS (Netherlands)

    Theisen, Giovani

    2017-01-01

    Agriculture in the lowlands of south Brazil is of strategic importance at the national level, since it supplies around 80% of the rice consumed by the Brazilian population. In Rio Grande do Sul, the southernmost state in Brazil, three million hectares of lowlands are ready for grain-based

  9. Farmers' Perceptions of Climate Change and Its Agricultural Impacts ...

    African Journals Online (AJOL)

    This article presents an assessment of farmers' perceptions of climate change and its agricultural impacts in the Ethiopian portion of the Nile and Baro-Akobo river basins. A total of 500 randomly selected households were interviewed from 15 kebeles in five woredas, three each from dega, woina-dega and kolla ...

  10. Resident Fish Stock above Chief Joseph and Grand Coulee Dams; 2003-2004 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Olympia, WA); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

    2005-11-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The

  11. Cooperation on Climate Services in the Binational Rio Grande/Bravo Basin

    Science.gov (United States)

    Garfin, G. M.; Shafer, M. A.; Brown, D. P.

    2013-12-01

    The Rio Grande/Bravo River Basin (RGB) of the United States and México is exposed to tornadoes, severe storms, hurricanes, winter storms, wildfire, and drought. The combination of these weather and climate-related hazards has resulted in impacts, such as wildfire, crop loss, water supply reduction, and flooding, with exceedingly high economic costs ($13 billion in 2011). In order to contribute to increased binational information flow and knowledge exchange in the region, we have developed a prototype quarterly bilingual RGB Climate Outlook, in PDF, supplemented by Twitter messages and Facebook posts. The goal of the project is to improve coordination between institutions in the U.S. and Mexico, increase awareness about climate variations, their impacts and costs to society, and build capacity for enhanced hazard preparedness. The RGB Outlook features a synthesis of climate products, impact data and analysis, is expressed in user-friendly language, and relies substantially on visual communication in contrast to text. The RGB Outlook is co-produced with colleagues in the U.S. and Mexico, in conjunction with the North American Climate Services Partnership (NACSP) and NOAA's regional climate services program. NACSP is a tri-national initiative to develop and deliver drought-based climate services in order to assist water resource managers, agricultural interests, and other constituents as they prepare for future drought events and build capacity to respond to other climate extremes. The RGB Climate Outlook builds on lessons learned from the Climate Assessment for the Southwest (CLIMAS) Southwest Climate Outlook (PDF, html), La Niña Drought Tracker (PDF, html), the Southern Climate Impacts Policy Program (SCIPP) Managing Drought in the Southern Plains webinar series, the Border Climate Summary (PDF), and Transborder Climate newsletter (PDF) and webinar series. The latter two have been the only regularly occurring bilingual climate information products in the U

  12. The management of the Diama reservoir (Senegal River)

    Science.gov (United States)

    Duvail, S.; Hamerlynck, O.

    2003-04-01

    The Senegal River is regulated by 2 dams built in the 1980's by the "Organisation pour la Mise en Valeur du fleuve Sénégal" (OMVS), a river basin management organisation grouping Mali, Senegal and Mauritania. The initial objectives of OMVS, which were to regulate the Senegal flows in order to develop irrigated agriculture, produce hydropower and facilitate river navigation has been only partially met. The maintenance of the annual flood by the upstream dam (Manantali), initially to be phased out when irrigated agriculture would have replaced the traditional recession agriculture, is now scheduled to continue indefinitely on the basis of socio-economic and environmental concerns. This change of mindset has however not affected the management of the downstream dam (Diama). Initially conceived as a salt-wedge dam, its function evolved to a reservoir dam with a high and constant water level. During the dry season, the water level is maintained high and constant in order to reduce the pumping costs for the irrigated agriculture in the delta. During the flood season (July-October) the dam is primarily managed for risk avoidance: limit flooding downstream of the dam (especially the city of St. Louis) and secure the infrastructure of the dam itself. The permanent freshwater reservoir lake has adverse effects on ecosystems, on human and animal health and a high social cost for the traditional stakeholders of the deltaic floodplain (fishermen, livestock keepers and gatherers). Upstream of the reservoir there is an excess of stagnant freshwater and managers are confronted with the development of invasive species while substantial downstream flooding is essential for the estuarine ecosystems and local livelihoods. The presentation will review the different approaches to the management of the Diama reservoir and proposes different management scenarios and compares their economical, environmental, and social costs and benefits.

  13. Aerial gamma ray and magnetic survey: Minnesota Project, Thief River Falls, Grand Forks, Fargo, Milbank, Watertown, New Ulm and St. Cloud quadrangles of North Dakota, South Dakota and Minnesota. Final report

    International Nuclear Information System (INIS)

    1979-10-01

    During the months of August and September 1979, geoMetrics, Inc., collected 12,415 line miles of high sensitivity airborne radiometric and magnetic data in adjoining portions of South Dakota and Minnesota over seven 1 by 2 degree NTMS quadrangles (Thief River Falls, Grand Forks, Fargo, Milbank, Watertown, New Ulm, and St. Cloud) as part of the Department of Energy's National Uranium Resource Evaluation Program. All radiometric and magnetic data were fully corrected and interpreted by geoMetrics and are presented as eight volumes (one Volume I and seven Volume II's). Regional geology for these seven quadrangles can be divided into two logical sections. The first comprises the surficial glacial deposits, which mantle most of the area and can be up to hundreds of feet thick. The second section consists of the underlying bedrock which is exposed in small scattered outcrops, generally along major drainages. No sedimentary structures exist within the quadrangles. As of this writing, no known uranium deposits exist within the seven quadrangles

  14. Water quality of Cisadane River based on watershed segmentation

    Science.gov (United States)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  15. Agricultural implications of the Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Nakanishi, Tomoko M.

    2016-01-01

    More than 4 years has passed since the accident at the Fukushima Nuclear Power Plant. Immediately after the accident, 40 to 50 academic staff of the Graduate School of Agricultural and Life Sciences at the University of Tokyo created an independent team to monitor the behavior of the radioactive materials in the field and their effects on agricultural farm lands, forests, rivers, animals, etc. When the radioactive nuclides from the nuclear power plant fell, they were instantly adsorbed at the site where they first touched; consequently, the fallout was found as scattered spots on the surface of anything that was exposed to the air at the time of the accident. The adsorption has become stronger over time, so the radioactive nuclides are now difficult to remove. The findings of our study regarding the wide range of effects on agricultural fields are summarized in this report

  16. Geo-environmental changes and agricultural land development in Bengal Delta

    International Nuclear Information System (INIS)

    Miyamoto, Shinji; Uchida, Haruo; Ando, Kazuo; Salim, Muhammad

    2010-01-01

    We analyzed changes in the relationship between geo-environment and agricultural land development around the central Jamuna (Brahmaputra) River, central Bangladesh. Based on sedimentary facies analysis and AMS radiocarbon dating, some conclusions are as follows: (1) Natural levees along the Jamuna River formed until ca. 12 to 11 k cal yrs BP; (2) Homesteads (bari-bhiti) were repaired by public works (mati-kata) following some flood events; (3) Paddy fields and homesteads were created since ca. 1.3 k cal yrs BP around central Bangladesh (central Bengal Delta). (author)

  17. Metal geochemistry of Nerus River, Terengganu

    International Nuclear Information System (INIS)

    Chee, Poh Seng; Suhaimi Suratman; Keat, Chew Choon; Norhayati Mohd Tahir

    2008-01-01

    The Nerus River passes through the Setiu and Kuala Terengganu districts, on the east coast of Peninsular Malaysia. It passes through the populated urban area of northeastern Kuala Terengganu and receives and carries different kinds of agricultural and urban solid and liquid wastes produces by agricultural based industries and domestic sewage. The objective of this study is to investigate trace metal concentration in suspended particulate and water of the Nerus River and relate this to the anthropogenic activities. Water samples were collected from nine sites during dry and pre monsoon seasons (from May to October). Water pH, temperature, electric conductivity and salinity were measured in-situ. The suspended particulate was separated from water by using 0.45 μm pore size acetate cellulose membrane filter. Water (filtered) samples were subjected to APDC-MIBK pre-concentration and particulate samples were totally digested by using strong acids. Cd, Cu, Zn and Pb were analyzed using GFAAS and ICP-OES. Although the overall concentration of the metals obtained were still within Class I limit of the INWQS, however the results indicated that there is an increasing trend of Cu and Zn concentration in Nerus River water compared to previous study done in 2001. High Cu and Zn concentration in suspended matter sampled at downstream station which received effluent from nearby factories. (author)

  18. Digital Elevation Model Correction for the thalweg values of Obion River system, TN

    Science.gov (United States)

    Dullo, T. T.; Bhuyian, M. N. M.; Hawkins, S. A.; Kalyanapu, A. J.

    2016-12-01

    Obion River system is located in North-West Tennessee and discharges into the Mississippi River. To facilitate US Department of Agriculture (USDA) to estimate water availability for agricultural consumption a one-dimensional HEC-RAS model has been proposed. The model incorporates the major tributaries (north and south), main stem of Obion River along with a segment of the Mississippi River. A one-meter spatial resolution Light Detection and Ranging (LiDAR) derived Digital Elevation Model (DEM) was used as the primary source of topographic data. LiDAR provides fine-resolution terrain data over given extent. However, it lacks in accurate representation of river bathymetry due to limited penetration beyond a certain water depth. This reduces the conveyance along river channel as represented by the DEM and affects the hydrodynamic modeling performance. This research focused on proposing a method to overcome this issue and test the qualitative improvement by the proposed method over an existing technique. Therefore, objective of this research is to compare effectiveness of a HEC-RAS based bathymetry optimization method with an existing hydraulic based DEM correction technique (Bhuyian et al., 2014) for Obion River system in Tennessee. Accuracy of hydrodynamic simulations (upon employing bathymetry from respective sources) would be regarded as the indicator of performance. The aforementioned river system includes nine major reaches with a total river length of 310 km. The bathymetry of the river was represented via 315 cross sections equally spaced at about one km. This study targeted to selecting best practice for treating LiDAR based terrain data over complex river system at a sub-watershed scale.

  19. Development of A Mississippi River Alluvial Aquifer Groundwater Model

    Science.gov (United States)

    Karakullukcu, R. E.; Tsai, F. T. C.; Bhatta, D.; Paudel, K.; Kao, S. C.

    2017-12-01

    The Mississippi River Alluvial Aquifer (MRAA) underlies the Mississippi River Valley of the northeastern Louisiana, extending from the north border of Louisiana and Arkansas to south central of Louisiana. The MRAA has direct contact with the Mississippi River. However, the interaction between the Mississippi River and the alluvial aquifer is largely unknown. The MRAA is the second most used groundwater source in Louisiana's aquifers with about 390 million gallons per day, which is about 25% of all groundwater withdrawals in Louisiana. MRAA is the major water source to agriculture in the northeastern Louisiana. The groundwater withdrawals from the MRAA increases annually for irrigation. High groundwater pumping has caused significant groundwater level decline and elevated salinity in the aquifer. Therefore, dealing with agricultural irrigation is the primary purpose for managing the MRAA. The main objective of this study is to develop a groundwater model as a tool for the MRAA groundwater management. To do so, a hydrostratigraphy model of the MRAA was constructed by using nearly 8,000 drillers' logs and electric logs collected from Louisiana Department of Natural Resources. The hydrostratigraphy model clearly shows that the Mississippi River cuts into the alluvial aquifer. A grid generation technique was developed to convert the hydrostratigraphy model into a MODFLOW model with 12 layers. A GIS-based method was used to estimate groundwater withdrawals for irrigation wells based on the crop location and acreage from the USDACropScape - Cropland Data Layer. Results from the Variable Infiltration Capacity (VIC) model were used to determine potential recharge. NHDPlusV2 data was used to determine water level for major streams for the MODFLOW River Package. The groundwater model was calibrated using groundwater data between 2004 and 2015 to estimate aquifer hydraulic conductivity, specific yield, specific storage, river conductance, and surficial recharge.

  20. Grand unified theories

    International Nuclear Information System (INIS)

    Langacker, P.

    1981-01-01

    In this talk I discuss the present status of these theories and of their observational and experimental implications. In section II, I briefly review the standard SU 3 sup(c) x SU 2 x U 1 model of the strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are addressed by grand unified theories, which are defined and discussed in Section III. The Georgi-Glashow SU 5 model is described, as are theories based on larger groups such as SO 10 , E 6 , or SO 16 . It is emphasized that there are many possible grand unified theories and that it is an experimental problem not only to test the basic ideas but to discriminate between models. (orig./HSI)

  1. The lower San Pedro River: hydrology and flow restoration for biodiversity conservation

    Science.gov (United States)

    Jeanmarie Haney

    2005-01-01

    The lower San Pedro River, downstream from Benson, is a nearly unfragmented habitat containing perennial flow reaches that support riparian vegetation that serve as “stepping stones” for migratory species. The Nature Conservancy has purchased farm properties and retired agricultural pumping along the lower river, based largely on results from hydrologic analyses...

  2. Human impact on the microbiological water quality of the rivers

    OpenAIRE

    P?ll, Em?ke; Niculae, Mihaela; Kiss, Timea; ?andru, Carmen Dana; Sp?nu, Marina

    2013-01-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human invo...

  3. Physical characteristics and fish assemblage composition at site and mesohabitat scales over a range of streamflows in the Middle Rio Grande, New Mexico, winter 2011-12, summer 2012

    Science.gov (United States)

    Braun, Christopher L.; Pearson, Daniel K.; Porter, Michael D.; Moring, J. Bruce

    2015-01-01

    In winter 2011–12 and summer 2012, the U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, Albuquerque District and the U.S. Fish and Wildlife Service New Mexico Fish and Wildlife Conservation Office in Albuquerque, New Mexico, evaluated the physical characteristics and fish assemblage composition of available mesohabitats over a range of streamflows at 15 sites on the Middle Rio Grande in New Mexico. The fish assemblage of the Middle Rio Grande includes several minnow species adapted to hydrologically variable but seasonably predictable rivers, including theHybognathus amarus (Rio Grande silvery minnow), a federally listed endangered species. Gaining a better understanding of habitat usage by the Rio Grande silvery minnow was the impetus for studying physical characteristics and fish assemblages in the Middle Rio Grande during different streamflow conditions. Data were collected at all 15 sites during winter 2011–12 (moderate streamflow), and a subset was collected at the 13 most downstream sites in summer 2012 (low streamflow). Sites were grouped into four river reaches separated by diversion dams listed in downstream order (names of the diversion dams are followed by short names of the sites nearest each dam in parentheses, listed in downstream order): (1) Cochiti (Peña Blanca), (2) Angostura (Bernalillo, La Orilla, Barelas, Los Padillas), (3) Isleta (Los Lunas I, Los Lunas II, Abeytas, La Joya, Rio Salado), and (4) San Acacia (Lemitar, Arroyo del Tajo, San Pedro, Bosque del Apache I, and Bosque del Apache II). Stream habitat was mapped in the field by using a geographic information system in conjunction with a Global Positioning System. Fish assemblage composition was determined during both streamflow regimes, and fish were collected by seining in each mesohabitat where physical characteristic data (depth, velocity, dominant substrate type and size, and percent embeddedness) and water-quality properties (temperature

  4. Investigating the Performance of One- and Two-dimensional Flood Models in a Channelized River Network: A Case Study of the Obion River System

    Science.gov (United States)

    Kalyanapu, A. J.; Dullo, T. T.; Thornton, J. C.; Auld, L. A.

    2015-12-01

    Obion River, is located in the northwestern Tennessee region, and discharges into the Mississippi River. In the past, the river system was largely channelized for agricultural purposes that resulted in increased erosion, loss of wildlife habitat and downstream flood risks. These impacts are now being slowly reversed mainly due to wetland restoration. The river system is characterized by a large network of "loops" around the main channels that hold water either from excess flows or due to flow diversions. Without data on each individual channel, levee, canal, or pond it is not known where the water flows from or to. In some segments along the river, the natural channel has been altered and rerouted by the farmers for their irrigation purposes. Satellite imagery can aid in identifying these features, but its spatial coverage is temporally sparse. All the alterations that have been done to the watershed make it difficult to develop hydraulic models, which could predict flooding and droughts. This is especially true when building one-dimensional (1D) hydraulic models compared to two-dimensional (2D) models, as the former cannot adequately simulate lateral flows in the floodplain and in complex terrains. The objective of this study therefore is to study the performance of 1D and 2D flood models in this complex river system, evaluate the limitations of 1D models and highlight the advantages of 2D models. The study presents the application of HEC-RAS and HEC-2D models developed by the Hydrologic Engineering Center (HEC), a division of the US Army Corps of Engineers. The broader impacts of this study is the development of best practices for developing flood models in channelized river systems and in agricultural watersheds.

  5. Broad spectrum screening of 463 organic contaminants in rivers in Macedonia.

    Science.gov (United States)

    Stipaničev, Draženka; Dragun, Zrinka; Repec, Siniša; Rebok, Katerina; Jordanova, Maja

    2017-01-01

    Target screening of 463 organic contaminants in surface water using ultra high performance liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) with direct injection was performed in spring of 2015 in northern Macedonia, at six sampling sites in four rivers belonging to Vardar basin: Kriva, Zletovska, Bregalnica and Vardar. The aim of the study was to differentiate between various types of organic contamination characteristic for different types of anthropogenic activities, such as mining, agriculture, and urbanization. Depending on the studied river, 9-16% of analyzed compounds were detected. The highest total levels of organic contaminants were recorded in agriculturally impacted Bregalnica River (1839-1962ngL -1 ) and Vardar River downstream from the city of Skopje (1945ngL -1 ), whereas the lowest level was found in the mining impacted Zletovska River (989ngL -1 ). The principal organic contaminants of the Bregalnica River were herbicides (45-55% of all detected compounds; 838-1094ngL -1 ), with the highest concentrations of bentazone (407-530ngL -1 ) and molinate (84-549ngL -1 ), common herbicides in rice cultivation. The main organic contaminants in the other rivers were drugs (70-80% of all detected compounds), with antibiotics as a predominant drug class. The highest drug concentrations were measured in the Vardar River, downstream from Skopje (1544ngL -1 ). Screening of surface water by UHPLC-QTOF-MS was proven as a practical tool for fast collection of comprehensive preliminary information on organic contamination of natural waters, which can present a significant contribution in the monitoring and preservation of good ecological status of freshwater ecosystems. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Impact of vegetable crop agriculture on anopheline agressivity and malaria transmission in urban and less urbanized settings of the South region of Cameroon.

    Science.gov (United States)

    Akono, Patrick Ntonga; Mbida, Jean Arthur Mbida; Tonga, Calvin; Belong, Philippe; Ngo Hondt, Odette Etoile; Magne, Gaëlle Tamdem; Peka, Marie Florence; Lehman, Leopold Gustave

    2015-05-28

    The use of inland valley swamps for vegetable crop agriculture contributes to food security in urban and less urbanized settings in Africa. The impact of this agriculture on aggressive mosquitoes' diversity and malaria transmission in central Africa is poorly documented. This study is aimed at assessing the impact of vegetable crop agriculture on these entomological parameters in urban and less urbanized settings of the forest area, south of Cameroon. The human bait technique was used for the capture of aggressive mosquitoes from January to December 2012. For three consecutive days each month, captures were performed on volunteers in hydro-agricultural and river bank sites of Akonolinga and Yaoundé. Physico-chemical characteristics of mosquito breeding sites were recorded. Molecular alongside morpho-taxonomic techniques were used for the identification of mosquito species; ELISA test was used to reveal Plasmodium falciparum infected mosquitoes through the detection of CSP. Mosquito diversity, aggressivity and malaria transmission in sites and settings were determined and compared. Biting rates were higher in hydro-agricultural sites of less urbanized and urban settings (31.8 b/p/n and 28.6 b/p/n respectively) than in river banks sites (6.83 b/p/n and 3.64 b/p/n respectively; p agricultural sites 2 species were captured in the urban setting versus 4 in the less urbanized setting, meanwhile in river bank sites, 3 species were captured in the urban setting versus 4 species in the less urbanized setting. An. nili s.s. was found in river banks only. An. hancocki was not found to insure Plasmodium falciparum Welch transmission. EIR in hydro-agricultural sites varied from 1.86 ib/p/n (urban area) to 2.13 ib/p/n (less urbanized area) with higher rates in April/May and August. Overall, EIR was higher in less urbanized areas (p agriculture (p = 0.2). These results highlight the need for specific preventive measures that take into account the ecological peculiarities

  7. Impacts of sand and dust storms on agriculture and potential agricultural applications of a SDSWS

    International Nuclear Information System (INIS)

    Stefanski, R; Sivakumar, M V K

    2009-01-01

    This paper will give an overview of the various impacts of sand and dust storms on agriculture and then address the potential applications of a Sand and Dust Storm Warning System (SDSWS) for agricultural users. Sand and dust storms have many negative impacts on the agricultural sector including: reducing crop yields by burial of seedlings under sand deposits, the loss of plant tissue and reduced photosynthetic activity as a result of sandblasting, delaying plant development, increasing end-of-season drought risk, causing injury and reduced productivity of livestock, increasing soil erosion and accelerating the process of land degradation and desertification, filling up irrigation canals with sediments, covering transportation routes, affecting water quality of rivers and streams, and affecting air quality. One positive impact is the fertilization of soil minerals to terrestrial ecosystems. There are several potential agricultural applications of a SDSWS. The first is to alert agricultural communities farmers to take preventive action in the near-term such as harvesting maturing crops (vegetables, grain), sheltering livestock, and strengthening infrastructure (houses, roads, grain storage) for the storm. Also, the products of a SDSWS could be used in for monitoring potential locust movement and post-storm crop damage assessments. An archive of SDSWS products (movement, amount of sand and dust) could be used in researching plant and animal pathogen movement and the relationship of sand and dust storms to disease outbreaks and in developing improved soil erosion and land degradation models.

  8. Journal of Agriculture, Forestry and the Social Sciences - Vol 5, No 2 ...

    African Journals Online (AJOL)

    Journal of Agriculture, Forestry and the Social Sciences - Vol 5, No 2 (2007) ... Marketing Of Bushmeat In Peri-Urban Areas Of Ibadan Metropolis Of Oyo State, ... Sport Fisheries Potentials Of Agbokim Waterfalls, Cross River State, Nigeria ...

  9. Late Miocene-Pleistocene evolution of a Rio Grande rift subbasin, Sunshine Valley-Costilla Plain, San Luis Basin, New Mexico and Colorado

    Science.gov (United States)

    Ruleman, C.A.; Thompson, R.A.; Shroba, R.R.; Anderson, M.; Drenth, B.J.; Rotzien, J.; Lyon, J.

    2013-01-01

    The Sunshine Valley-Costilla Plain, a structural subbasin of the greater San Luis Basin of the northern Rio Grande rift, is bounded to the north and south by the San Luis Hills and the Red River fault zone, respectively. Surficial mapping, neotectonic investigations, geochronology, and geophysics demonstrate that the structural, volcanic, and geomorphic evolution of the basin involves the intermingling of climatic cycles and spatially and temporally varying tectonic activity of the Rio Grande rift system. Tectonic activity has transferred between range-bounding and intrabasin faults creating relict landforms of higher tectonic-activity rates along the mountain-piedmont junction. Pliocene–Pleistocene average long-term slip rates along the southern Sangre de Cristo fault zone range between 0.1 and 0.2 mm/year with late Pleistocene slip rates approximately half (0.06 mm/year) of the longer Quaternary slip rate. During the late Pleistocene, climatic influences have been dominant over tectonic influences on mountain-front geomorphic processes. Geomorphic evidence suggests that this once-closed subbasin was integrated into the Rio Grande prior to the integration of the once-closed northern San Luis Basin, north of the San Luis Hills, Colorado; however, deep canyon incision, north of the Red River and south of the San Luis Hills, initiated relatively coeval to the integration of the northern San Luis Basin.Long-term projections of slip rates applied to a 1.6 km basin depth defined from geophysical modeling suggests that rifting initiated within this subbasin between 20 and 10 Ma. Geologic mapping and geophysical interpretations reveal a complex network of northwest-, northeast-, and north-south–trending faults. Northwest- and northeast-trending faults show dual polarity and are crosscut by north-south– trending faults. This structural model possibly provides an analog for how some intracontinental rift structures evolve through time.

  10. DAMPAK LINGKUNGAN PEMANFAATAN ALUR SUNGAI DI KALI BOYONG, KALI KUNING DAN KALI GENDOL (Environmental Impact of Utulization River Courses in Boyong River, Kuning River and Gendol River

    Directory of Open Access Journals (Sweden)

    Darmakusuma Darmanto

    2011-07-01

    penambangan material sedimen pasir dan batu serta pemanfaatan lembah alur sungai untuk kegiatan pertanian, kedua hal tersebut menimbulkan dampak negatif yang menghambat pengaliran air sungai dari hulu ke hilir akan tetapi juga mendapatkan dampak positif dari kedua kegiatan tersebut paling tidak untuk tambahan PAD dan untuk kesejahteraan masyarakat sekitar lokasi kegiatan.   ABSTRACT This study is a part of the Doctoral Program (S3, the location is in Boyong, Kuning and Gendol River, where periodically are used to transport the sediment material from Merapi volcano.The problems of study are: (a there will be impact of the Merapi eruption to the fuction of the river channels or courses in storage and delivery for the water in the river, (b the usage of river channels/courses from or sediment material minings, and water and land usages by the people for agriculture so that needed to developed a model to manage the river channel in an active volcano to keep the function of the channel optimal. The methodology are field surveying and laboratory analysis by measuring, observation, taking sediment samples, interviewing respondents in the surrounding area and taking field photoes from the profiling sections of the river. Data are used to analyze the result by using ecology and spatial approach. The result and evaluation conclusions are: (a by using ecological and spatial approach the physical and the biological factors are seems to be similar at Boyong River and Gendol/Opak River compared to Kuning River this was due to an interrivercourse area, and (b the usage of river channel by surroundings people and government makes negative impacts of the water storage and flow of water to downstream, but the mining activity of sand and boulders and agriculture will produce positive impacts to the government and surroundings people

  11. 2010 Panel on the Biomaterials Grand Challenges

    Science.gov (United States)

    Reichert, William “Monty”; Ratner, Buddy D.; Anderson, James; Coury, Art; Hoffman, Allan S.; Laurencin, Cato T.; Tirrell, David

    2014-01-01

    In 2009, the National Academy for Engineering issued the Grand Challenges for Engineering in the 21st Century comprised of 14 technical challenges that must be addressed to build a healthy, profitable, sustainable, and secure global community (http://www.engineeringchallenges.org). Although crucial, none of the NEA Grand Challenges adequately addressed the challenges that face the biomaterials community. In response to the NAE Grand Challenges, Monty Reichert of Duke University organized a panel entitled Grand Challenges in Biomaterials at the at the 2010 Society for Biomaterials Annual Meeting in Seattle. Six members of the National Academies—Buddy Ratner, James Anderson, Allan Hoffman, Art Coury, Cato Laurencin, and David Tirrell—were asked to propose a grand challenge to the audience that, if met, would significantly impact the future of biomaterials and medical devices. Successfully meeting these challenges will speed the 60-plus year transition from commodity, off-the-shelf biomaterials to bioengineered chemistries, and biomaterial devices that will significantly advance our ability to address patient needs and also to create new market opportunities. PMID:21171147

  12. Salinity Impacts on Agriculture and Groundwater in Delta Regions

    Science.gov (United States)

    Clarke, D.; Salehin, M.; Jairuddin, M.; Saleh, A. F. M.; Rahman, M. M.; Parks, K. E.; Haque, M. A.; Lázár, A. N.; Payo, A.

    2015-12-01

    Delta regions are attractive for high intensity agriculture due to the availability of rich sedimentary soils and of fresh water. Many of the world's tropical deltas support high population densities which are reliant on irrigated agriculture. However environmental changes such as sea level rise, tidal inundation and reduced river flows have reduced the quantity and quality of water available for successful agriculture. Additionally, anthropogenic influences such as the over abstraction of ground water and the increased use of low quality water from river inlets has resulted in the accumulation of salts in the soils which diminishes crop productivity. Communities based in these regions are usually reliant on the same water for drinking and cooking because surface water is frequently contaminated by commercial and urban pollution. The expansion of shallow tube well systems for drinking water and agricultural use over the last few decades has resulted in mobilisation of salinity in the coastal and estuarine fringes. Sustainable development in delta regions is becoming constrained by water salinity. However salinity is often studied as an independent issue by specialists working in the fields of agriculture, community water supply and groundwater. The lack of interaction between these disciplines often results in corrective actions being applied to one sector without fully assessing the effects of these actions on other sectors. This paper describes a framework for indentifying the causes and impacts of salinity in delta regions based on the source-pathway-receptor framework. It uses examples and scenarios from the Ganges-Brahmaputra-Meghna delta in Bangladesh together with field measurements and observations made in vulnerable coastal communities. The paper demonstrates the importance of creating an holistic understanding of the development and management of water resources to reduce the impact of salinity in fresh water in delta regions.

  13. Can rice (Oryza sativa) mitigate pesticides and nutrients in agricultural runoff?

    Science.gov (United States)

    Phytoremediation of nutrients and pesticides in runoff is a growing conservation effort, particularly in agriculturally intensive areas such as the lower Mississippi River Valley. In the current study, rice (Oryza sativa) was examined for its mitigation capacity of nitrogen, phosphorus, diazinon, a...

  14. Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin

    Science.gov (United States)

    da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio

    2018-03-01

    This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate

  15. Sandbar Response in Marble and Grand Canyons, Arizona, Following the 2008 High-Flow Experiment on the Colorado River

    Science.gov (United States)

    Hazel, Joseph E.; Grams, Paul E.; Schmidt, John C.; Kaplinski, Matt

    2010-01-01

    A 60-hour release of water at 1,203 cubic meters per second (m3/s) from Glen Canyon Dam in March 2008 provided an opportunity to analyze channel-margin response at discharge levels above the normal, diurnally fluctuating releases for hydropower plant operations. We compare measurements at sandbars and associated campsites along the mainstem Colorado River, downstream from Glen Canyon Dam, at 57 locations in Marble and Grand Canyons. Sandbar and main-channel response to the 2008 high-flow experiment (2008 HFE) was documented by measuring bar and bed topography at the study sites before and after the controlled flood and twice more in the following 6 months to examine the persistence of flood-formed deposits. The 2008 HFE caused widespread deposition at elevations above the stage equivalent to a flow rate of 227 m3/s and caused an increase in the area and volume of the high-elevation parts of sandbars, thereby increasing the size of campsite areas. In this study, we differentiate between four response styles, depending on how sediment was distributed throughout each study site. Then, we present the longitudinal pattern relevant to the different response styles and place the site responses in context with two previous high-release experiments conducted in 1996 and 2004. We find that (1) nearly every measured sandbar aggraded above the 227-m3/s water-surface elevation, resulting in sandbars as large or larger than occurred following previous high flows; (2) reaches closest to Glen Canyon Dam were characterized by a greater percentage of sites that incurred net erosion, although the total sand volume in all sediment-flux monitoring reaches was greater following the 2008 HFE than following previous high flows; and (3) longitudinal differences in topographic response in eddies and in the channel suggest a greater and more evenly distributed sediment supply than existed during previous controlled floods from Glen Canyon Dam.

  16. The effect of naturally acidified irrigation water on agricultural volcanic soils. The case of Asembagus, Java, Indonesia

    NARCIS (Netherlands)

    Los, A.M.D.; Vriend, S.P.; Bergen, M.J.; Gaans, R.F.M.

    2008-01-01

    Acid water from the Banyuputih river (pH similar to 3.5) is used for the irrigation of agricultural land in the Asembagus coastal area (East Java, Indonesia), with harmful consequences for rice yields. The river water has an unusual composition which is caused by seepage from the acidic Kawah Ijen

  17. Rio Grande transboundary integrated hydrologic model and water-availability analysis, New Mexico and Texas, United States, and Northern Chihuahua, Mexico

    Science.gov (United States)

    Hanson, Randall T.; Ritchie, Andre; Boyce, Scott E.; Ferguson, Ian; Galanter, Amy; Flint, Lorraine E.; Henson, Wesley

    2018-05-31

    Changes in population, agricultural development and practices (including shifts to more water-intensive crops), and climate variability are increasing demands on available water resources, particularly groundwater, in one of the most productive agricultural regions in the Southwest—the Rincon and Mesilla Valley parts of Rio Grande Valley, Doña Ana and Sierra Counties, New Mexico, and El Paso County, Texas. The goal of this study was to produce an integrated hydrological simulation model to help evaluate water-management strategies, including conjunctive use of surface water and groundwater for historical conditions, and to support long-term planning for the Rio Grande Project. This report describes model construction and applications by the U.S. Geological Survey, working in cooperation and collaboration with the Bureau of Reclamation.This model, the Rio Grande Transboundary Integrated Hydrologic Model, simulates the most important natural and human components of the hydrologic system, including selected components related to variations in climate, thereby providing a reliable assessment of surface-water and groundwater conditions and processes that can inform water users and help improve planning for future conditions and sustained operations of the Rio Grande Project (RGP) by the Bureau of Reclamation. Model development included a revision of the conceptual model of the flow system, construction of a Transboundary Rio Grande Watershed Model (TRGWM) water-balance model using the Basin Characterization Model (BCM), and construction of an integrated hydrologic flow model with MODFLOW-One-Water Hydrologic Flow Model (referred to as One Water). The hydrologic models were developed for and calibrated to historical conditions of water and land use, and parameters were adjusted so that simulated values closely matched available measurements (calibration). The calibrated model was then used to assess the use and movement of water in the Rincon Valley, Mesilla Basin

  18. Geochemistry of the Upper Parana River floodplain. Study of the Garcas Pond and Patos Pond

    International Nuclear Information System (INIS)

    Marcelo Bevilacqua Remor; Silvio Cesar Sampaio; Marcio Antonio Vilas Boas; Ralpho Rinaldo dos Reis

    2015-01-01

    The aim of this study was to investigate the temporal evolution of the supply of chemical elements to the Upper Parana River floodplain and identify trends in the geochemistry of its drainage basin. The primary factor that regulates the supply of chemical elements of the Upper Parana River floodplain is the flood pulse, which can be magnified by the El Nino-Southern Oscillation. Garcas Pond is affected by agriculture, urbanization, discharge of industrial effluents and hydroelectric power production activities. Patos Pond is affected by sugarcane burning, gold mining, agriculture and urbanization. (author)

  19. Latest Miocene-earliest Pliocene evolution of the ancestral Rio Grande at the Española-San Luis Basin boundary, northern New Mexico

    Science.gov (United States)

    Daniel J. Koning,; Aby, Scott B.; Grauch, V. J.; Matthew J. Zimmerer,

    2016-01-01

    We use stratigraphic relations, paleoflow data, and 40Ar/39Ar dating to interpret net aggradation, punctuated by at least two minor incisional events, along part of the upper ancestral Rio Grande fluvial system between 5.5 and 4.5 Ma (in northern New Mexico). The studied fluvial deposits, which we informally call the Sandlin unit of the Santa Fe Group, overlie a structural high between the San Luis and Española Basins. The Sandlin unit was deposited by two merging, west- to southwest-flowing, ancestral Rio Grande tributaries respectively sourced in the central Taos Mountains and southern Taos Mountains-northeastern Picuris Mountains. The river confluence progressively shifted southwestward (downstream) with time, and the integrated river (ancestral Rio Grande) flowed southwards into the Española Basin to merge with the ancestral Rio Chama. Just prior to the end of the Miocene, this fluvial system was incised in the southern part of the study area (resulting in an approximately 4–7 km wide paleovalley), and had sufficient competency to transport cobbles and boulders. Sometime between emplacement of two basalt flows dated at 5.54± 0.38 Ma and 4.82±0.20 Ma (groundmass 40Ar/39Ar ages), this fluvial system deposited 10–12 m of sandier sediment (lower Sandlin subunit) preserved in the northern part of this paleovalley. The fluvial system widened between 4.82±0.20 and 4.50±0.07 Ma, depositing coarse sand and fine gravel up to 14 km north of the present-day Rio Grande. This 10–25 m-thick sediment package (upper Sandlin unit) buried earlier south- to southeast-trending paleovalleys (500–800 m wide) inferred from aeromagnetic data. Two brief incisional events are recognized. The first was caused by the 4.82±0.20 Ma basalt flow impounding south-flowing paleodrainages, and the second occurred shortly after emplacement of a 4.69±0.09 Ma basalt flow in the northern study area. Drivers responsible for Sandlin unit aggradation may include climate

  20. Phenology of the adult angel lichen moth (Cisthene angelus) in Grand Canyon, USA

    Science.gov (United States)

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    We investigated the phenology of adult angel lichen moths (Cisthene angelus) along a 364-km long segment of the Colorado River in Grand Canyon, Arizona, USA, using a unique data set of 2,437 light-trap samples collected by citizen scientists. We found that adults of C. angelus were bivoltine from 2012 to 2014. We quantified plasticity in wing lengths and sex ratios among the two generations and across a 545-m elevation gradient. We found that abundance, but not wing length, increased at lower elevations and that the two generations differed in size and sex distributions. Our results shed light on the life history and morphology of a common, but poorly known, species of moth endemic to the southwestern United States and Mexico.

  1. 1944 Water Treaty Between Mexico and the United States: Present Situation and Future Potential

    Directory of Open Access Journals (Sweden)

    Anabel Sánchez

    2006-01-01

    Full Text Available Historically and culturally, water has always been considered to be a critical issue in Mexico- USA agenda. Along the 3 140-km border between Mexico and the United States, there is intense competition over the adequate availability of water. Water uses in urban border areas have continued to increase exponentially due to steadily increasing levels of population growth. Rapid industrialisation and urbanisation have resulted in more intensive patterns of water consumption and use. Agricultural water demands continue to be high. Mexico and the United States have established institutions and agreements to manage and protect rivers in the border region. The Treaty between Mexico and the United States for the Utilisation of Waters of the Colorado and Tijuana Rivers and of the Rio Grande was signed in 1944. With the turn of the century, the growing urban centers along the Rio Grande (Rio Bravo, where the river becomes the international boundary, started increasingly to depend on groundwater. This situation was not specifically addressed in the 1944 Treaty, especially as groundwater use at that time was not so significant.

  2. A preliminary evaluation of volcanic rock powder for application in agriculture as soil a remineralizer

    International Nuclear Information System (INIS)

    Ramos, Claudete G.; Querol, Xavier; Oliveira, Marcos L.S.; Pires, Karen; Kautzmann, Rubens M.; Oliveira, Luis F.S.

    2015-01-01

    Mineralogical and geochemical characteristics of volcanic rock residue, from a crushing plant in the Nova Prata Mining District, State of Rio Grande do Sul (RS), Brazil, in this work named rock powder, were investigated in view of its potential application as soil ammendment in agriculture. Abaut 52,400 m 3 of mining waste is generated annually in the city of Nova Prata without a proper disposal. The nutrients potentially available to plants were evaluated through leaching laboratory tests. Nutrient leaching tests were performed in Milli-Q water; citric acid solution 1% and 2% (AC); and oxalic acid solution 1% and 5% (AO). The bulk and leachable contents of 57 elements were determined by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma atomic emission spectroscopy (ICP-AES). Mining waste were made up by CaO, K 2 O, SiO 2 , Al 2 O 3 , Fe 2 O 3 , and P 2 O 5 . The analysis by X-ray diffraction (XRD) showed the major occurence of quartz, anorthite, cristobalite, sanidine, and augite. The water leachable concentrations of all elements studied were lower than 1.0 mg/kg, indicating their low solubility. Leaching tests in acidic media yield larger leachable fractions for all elements being studied are in the leachate of the AO 1%. These date usefulness of volcanic rock powder as potential natural fertilizer in agriculture in the mining district in Nova Prata, Rio Grande do Sul, Brazil to reduce the use of chemical fertilizers. - Highlights: • Volcanic rock powder as fertilizer in agriculture • Volcanic rock powder as a source of nutrients to plants • This technology may favor the use of volcanic rock in agriculture

  3. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  4. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  5. Hydrologic parameters and land use reflection on water quality at Mun river, Thailand

    International Nuclear Information System (INIS)

    Akter, A.; Babel, M.S.

    2005-01-01

    The 'River Basin' is the land area surrounding one river from its headwaters to its mouth whereas the area drained by a river and its tributaries. So that the land use changes and excessive application of nutrients (Nitrogen and Phosphorus) in predominant agricultural river basins may have a great influence on water quality. Here the study area Mun River Basin is approximately of 69,701 km/sup 2/ and in 1994, out of the total basin area 'about 80 percent was covered by agricultural purposes. Also one of the driest parts of Thailand as well as one of the industrialized provinces in Thailand, Nakhon Ratchasima is situated at the upstream of the river. Accordingly the downstream part Ubon Ratchathani seems totally agricultural based area. To get the water quality changing trends due to land use, there are around forty water quality parameters has considered for the last ten years along with the basins hydrological parameters. For this study based on the fifteen years rainfall data, the whole year divided into two seasons namely wet season (May to October) and dry season (November to April). The result shows: (1) most of the physicochemical parameters are high in wet season; (2) heavy metals moreover appear higher at wet season and (3) although the presences of pesticides are very nominal, the higher values are detected at wet season. The conclusion draws for the water quality by having wet season water sampling and then the testing of water samples for selected seven parameters whereas the water samples are collected at a duration of one-week to three-week from April to October 2004. And this short duration analysis shows that the mean value of the nutrient shows not only higher at wet season (May to October) than April's data also exceed the existing Thailand's surface water quality standard. (author)

  6. RICHNESS AND FLORISTIC COMPOSITION OF THE FERN COMMUNITY IN RIPARIAN FOREST OF THE RIVER ‘CADEIA’, IN RIO GRANDE DO SUL STATE, BRAZIL

    Directory of Open Access Journals (Sweden)

    Ivanete Teresinha Mallmann

    2014-03-01

    Full Text Available http://dx.doi.org/10.5902/1980509813327The present study analyzed richness and specific composition of the fern community in fragments fromthe riparian forest of river ‘Cadeia’, under different levels of human impact, in Santa Maria do Herval, RioGrande do Sul state, Brazil. An amount of 120 sample units were delimited, equitably distributed in threefragments (FI, II and III in which all species were surveyed and the richness was recorded. The floristiccomposition among fragments was compared using Jaccard’s index and spatial distribution of units wasevaluated through multidimensional scaling. Richness data were presented in the form of rarefaction curvesbased on samples and non-parametric diversity estimators. A total of 40 species were found, belonging to13 families. The greater floristic similarity was between FI and FII. Sample units from FI formed the mostdefined grouping and they had more exclusive species than the others. The rarefaction curve for the totalsampling almost reached the asymptote and estimators indicated a maximum of 45 species, which meansthat the majority of species was surveyed at the study site. A decreasing gradient of mean richness per unitwas observed as the urbanization increased in the matrix habitat of the fragments. These results form a database to be used in management, conservation and reforestation measures in degraded riparian forests. Theycan be directly compared to results from other studies that used rarefaction and richness estimators, whichis not possible to do with many of the surveys accomplished in Brazil so far.

  7. economics of cucumber production in rivers state, nigeria

    African Journals Online (AJOL)

    2016-05-02

    May 2, 2016 ... Faculty of Agriculture, University of Port Harcourt, Rivers State, Nigeria ... The study aimed to determine the profitability of cucumber production in two local government .... more amenable to risk taking and change than non- ..... improve cucumber value chain, attract better prices ... management practices.

  8. Community-based restoration of desert wetlands: the case of the Colorado River delta

    Science.gov (United States)

    Osvel Hinojosa-Huerta; Mark Briggs; Yamilett Carrillo-Guerroro; Edward P. Glenn; Miriam Lara-Flores; Martha Roman-Rodriguez

    2005-01-01

    Wetland areas have been drastically reduced through the Pacific Flyway and the Sonoran Desert, with severe consequences for avian populations. In the Colorado River delta, wetlands have been reduced by 80 percent due to water management practices in the Colorado River basin. However, excess flows and agricultural drainage water has restored some areas, providing...

  9. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2001 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Jason M. (Kalispell Department of Natural Resources, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife, Spokane, WA); O' Connor, Dick (Washington Department of Fish and Wildlife, Olympia, WA)

    2003-01-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power Planning Council (NPPC). The NPPC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPPC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial fish assemblages and native fish in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area and the Columbia Basin Blocked Area Management Plan

  10. Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams; 2002-2003 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Connor, Jason M. (Kalispel Tribe of Indians, Usk, WA); McLellan, Jason G. (Washington Department of Fish and Wildlife); Butler, Chris (Spokane Tribe of Indians, Wellpinit, WA)

    2006-02-01

    In 1980, the United States Congress enacted the Northwest Power Planning and Conservation Act (PL 96-501, 1980), which established the Northwest Power and Conservation Council (NPCC), formerly the Northwest Power Planning Council. The NPCC was directed by Congress to develop a regional Power Plan and also the Columbia River Basin Fish and Wildlife Program (FWP) to restore or replace losses of fish caused by construction and operation of hydroelectric dams in the Columbia River Basin. In developing the FWP, Congress specifically directed NPCC to solicit recommendations for measures to be included in the Program from the region's fish and wildlife agencies and Indian tribes. All measures adopted by the Council were also required to be consistent with the management objectives of the agencies and tribes [Section 4.(h)(6)(A)], the legal rights of Indian tribes in the region [Section 4.(h)(6)(D)] and be based upon and supported by the best available scientific knowledge [Section 4.(h)(6)(B)]. The Resident Fish Stock Status above Chief Joseph and Grand Coulee Dams Project, also known as the Joint Stock Assessment Project (JSAP) specifically addresses NPPC Council measure 10.8B.26 of the 1994 program. The Joint Stock Assessment Project is a management tool using ecosystem principles to manage artificial and native fish assemblages in altered environments existing in the Columbia River System above Chief Joseph and Grand Coulee Dams (Blocked Area). A three-phase approach of this project will enhance the fisheries resources of the Blocked Area by identifying data gaps, filling data gaps with research, and implementing management recommendations based on research results. The Blocked Area fisheries information is housed in a central location, allowing managers to view the entire system while making decisions, rather than basing management decisions on isolated portions of the system. The JSAP is designed and guided jointly by fisheries managers in the Blocked Area. The

  11. Canadian Environmental Assessment Act - comprehensive study report: new Grand-Mere hydroelectric facility proposed by Hydro-Quebec

    International Nuclear Information System (INIS)

    1999-06-01

    A description is given of the hydroelectric construction project as well as the environment surrounding it, the outcome of consultations with interest parties in the public, the overall environmental impacts and cumulative impacts with associated problems that may occur in carrying out the project, attempts at project and environmental mitigation, measuring the importance of the cumulative and environmental effects, conditions for project acceptance, and the overall acceptance of the project or its rejection. The older hydroelectric project was constructed in the post-1910 period and being out of date is experiencing operational problems. There are four problem areas that are important including a need for major repairs to the turbine-generators, lack of flexibility and low electrical capacity that affect the working of the sending-end substation, a state of deterioration affecting operation of the spillways concrete structure, and a bottleneck problem on the Saint-Maurice river caused by the low flow design of the Grand-Mere power station in comparison with that of the Saint-Maurice station. Considering economical, social and environmental factors, of the three options of abandoning the site, upgrading the existing site or constructing a new one, the third option is the preferred one, a conclusion based on considering the out of date state of Grand-Mere facilities and the bottleneck flow condition created on the Saint-Maurice river by the older station. Given the proposed efforts at mitigation, and the follow-up operations stated by the third option advocate, the Department of Fisheries and Oceans is of the opinion that the proposed plans will not affect the environment in an adverse manner. 7 refs

  12. Dissolved organic matter cycling in eastern Mediterranean rivers experiencing multiple pressures. The case of the trans-boundary Evros River

    Directory of Open Access Journals (Sweden)

    E. PITTA

    2014-07-01

    Full Text Available The objective of our study was to provide a comprehensive evaluation on C, N, P cycling in medium sized Mediterranean rivers, such as the Evros, experiencing multiple pressures (intensive agriculture, industrial activities, population density. Our work aims also to contribute to the development of integrated management policies. Dissolved organic matter (DOM cycling were investigated, during a one-year study. It was shown that the organic component of N and P was comparable to those of large Mediterranean rivers (Rhone, Po. In the lower parts of the river where all point and non-point inputs converge, the high inorganic N input favour elevated assimilation rates by phytoplankton and result in increased chl-a concentrations and autochthonous dissolved organic matter (DOM production during the dry season with limited water flow. Moreover, carbohydrate distribution revealed that there is a constant background of soil derived mono-saccharides on top of which are superimposed impulses of poly-saccharides during blooms. During the dry season, inorganic nutrients and DOM are trapped in the lower parts of the river, whereas during high flow conditions DOM is flushed towards the sea and organic nitrogen forms can become an important TDN constituent (at least 40% transported to shelf waters. The co-existence of terrigenous material with autochthonous and some anthropogenic is supported by the relatively low DOC:DON and DOC:DOP ratios, the positive correlation of DOC vs chl-a and the decoupling between DOC and DON. Overall, this study showed that in medium size Mediterranean rivers, such as the Evros, intensive agriculture and pollution sources in combination with water management practices and climatic variability are important factors determining C, N, P dynamics and export to coastal seas. Also, it highlights the importance of the organic fraction of N and P when considering management practices.

  13. Grand Mal Seizure

    Science.gov (United States)

    ... grand mal seizures include: A family history of seizure disorders Any injury to the brain from trauma, a ... the risk of birth defects. If you have epilepsy and plan to become pregnant, work with your ...

  14. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the

  15. Deuterium and oxygen-18 concentrations in rain and river waters from Minas Gerais, Sao Paulo and Parana States, Brazil

    International Nuclear Information System (INIS)

    Vieira, Oliveiro J.; Salati, Eneas

    1982-01-01

    The main object of this paper was to study the concentration of deuterium (D) and Oxygen-18 ( 18 O) in the rain and river waters from the States of Minas Gerais, Sao paulo and Parana. Monthly samples were prepared and analysed at the Centro de Energia Nuclear na Agricultura (CENA-ESALQ-USP) with the use of CH-4 ( 18 O) and GD-150 (D) mass spectrometers of Varian-Mat. In order to correlate the D and 18 O of the rain water the equation δD = 9.22 + 7.17δ18 was found. Considering the three equations separately it was observed that the parameter a = δD -bδ18 increases from the South to the North. For the Piracicaba River (city of Piracicaba only), the D and 18 O relationship was expressed by δD = -10.98 + 4.88δ18. The States of Minas Gerais and Sao Paulo can be divided according to the weight-average concentrations (δ18 m% 0 ). This division is not possible from Parana. Considering the average from the weight average concentration (annually and summer) for the three States, the annual average (D and 18 O) is slightly richer than the summer average, showing the importance of the amount effect, mainly for the States of Minas Gerais and Sao Paulo. The rivers studied had little variation in the 18 O concentrations with no definite periodicity. The rivers from the North of Minas Gerais are slightly richer in 18 O than the rivers from the South. The waters from Rio Grande in the South of Minas Gerais State are poorer in 18 O than the water of the same river in the 'Triangle'region. The δ18% 0 data for the rivers Grande, Parnaiba and Parana are very similar, so there is no way to compute the contribution of the first and the second rivers in the formation of the third. (author). 20 refs., 2 figs., 8 tabs

  16. QUALITATIVE ASPECTS OF CRIŞUL REPEDE RIVER

    Directory of Open Access Journals (Sweden)

    VIGH MELINDA

    2012-03-01

    Full Text Available Qualitative aspects of Crisul Repede River. The evolution of water quality over the Crişul Repede River is atypical because of natural and anthropic factors. The most significant factors are the geological substrate, and the settlements with their agricultural and industrial activity. The study was performed at three gauging stations for the period 1996-2006, taking into account the annual average values. The considered elements were: the discharge values, temperature, suspensions, oxygen regime, nutrients and phosphorus, taking into consideration their temporal and spatial variation. By comparing them with the admitted limits we could enroll them in various quality classes.

  17. Grand-Bassam

    African Journals Online (AJOL)

    Geo

    l'estuaire du fleuve Comoé (Grand-Bassam, Côte d'Ivoire). Kouassi Laurent ADOPO1*, Apie Colette AKOBE1, Etche Mireille AMANI2,. Sylvain MONDE3 et Kouamé AKA3. (1)Laboratoire de Géologie Marine, Sédimentologie et Environnement, Centre de Recherche en Ecologie,. Université Felix Houphouet Boigny Abidjan, ...

  18. Environmental Setting of the Lower Merced River Basin, California

    Science.gov (United States)

    Gronberg, Jo Ann M.; Kratzer, Charles R.

    2006-01-01

    In 1991, the U.S. Geological Survey began to study the effects of natural and anthropogenic influences on the quality of ground water, surface water, biology, and ecology as part of the National Water-Quality Assessment (NAWQA) Program. As part of this program, the San Joaquin-Tulare Basins study unit is assessing parts of the lower Merced River Basin, California. This report provides descriptions of natural and anthropogenic features of this basin as background information to assess the influence of these and other factors on water quality. The lower Merced River Basin, which encompasses the Mustang Creek Subbasin, gently slopes from the northeast to the southwest toward the San Joaquin River. The arid to semiarid climate is characterized by hot summers (highs of mid 90 degrees Fahrenheit) and mild winters (lows of mid 30 degrees Fahrenheit). Annual precipitation is highly variable, with long periods of drought and above normal precipitation. Population is estimated at about 39,230 for 2000. The watershed is predominately agricultural on the valley floor. Approximately 2.2 million pounds active ingredient of pesticides and an estimated 17.6 million pounds active ingredient of nitrogen and phosphorus fertilizer is applied annually to the agricultural land.

  19. Ecosystem Services and Related Sustainable Management of River Oases along the Tarim River in Northwest China

    Science.gov (United States)

    Disse, M.; Keilholz, P.; Rumbaur, C.; Thevs, N.

    2011-12-01

    Within the Taklimakan Desert of Northwestern China, an area renowned for its extreme climate and vulnerable ecosystems, lies one of the largest inland rivers in the world, the Tarim River. Because the Tarim River is located in a remote area from the oceans, rainfall is extremely rare (less than 50 mm per year) but potential evaporation is high (3000 mm). Thus, the major source of water discharge comes from snowmelt and glacier-melt in the mountains. Though the water discharge into the Tarim River has experienced an increase over the past ten years, global climate change forecasts predict this water supply to decline within the century. The Tarim River is the major source of water in Northwestern China, and has become the hub of many economic activities related to agriculture and urban life. Over the past 50 years increased activity in the area has led to a severe decline in river flow. Both human and natural ecosystems have been impacted by water diversions. Since rainfall is rare, the majority of vegetation in this area depends solely on groundwater for survival, and plants are experiencing stress caused by decreasing groundwater levels. Recently nearby cities have experienced severe dust storms caused by the shrinking of the vegetative region along the river. SuMaRiO (Sustainable Management of River Oases) is a bundle project between Germany and China working to contribute to a sustainable land management which explicitly takes into account ecosystem functions (ESF) and ecosystem services (ESS). In a transdisciplinary research process, SuMaRiO will identify realizable management strategies, considering social, economic and ecological criteria. SuMaRiO is developing tools to work with Chinese decision makers to implement sustainable land management strategies. In addition, research is being conducted to estimate climate change impacts, floodplain biodiversity, and water runoff characteristics. The overarching goal of SuMaRiO is to support oasis management along

  20. A Grande Reportagem no contexto informativo SIC

    OpenAIRE

    Colaço, Vanessa Alexandra Francisco

    2014-01-01

    Os telespectadores querem ver grandes reportagens? Como evoluíram as audiências da Grande Reportagem SIC? É este o produto premium da estação? Terá este formato um investimento e continuidade garantidas? Estas são algumas das questões formuladas e às quais se procurou dar resposta neste Relatório de Estágio. Neste trabalho traça-se o perfil do programa Grande Reportagem SIC, clarificando a linha editorial que lhe serviu de base, procurando perceber as suas dinâmicas e passando em revista mome...

  1. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  2. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  3. Application of water quality models to rivers in Johor

    Science.gov (United States)

    Chii, Puah Lih; Rahman, Haliza Abd.

    2017-08-01

    River pollution is one the most common hazard in many countries in the world, which includes Malaysia. Many rivers have been polluted because of the rapid growth in industrialization to support the country's growing population and economy. Domestic and industrial sewage, agricultural wastes have polluted the rivers and will affect the water quality. Based on the Malaysia Environment Quality Report 2007, the Department of Environment (DOE) has described that one of the major pollutants is Biochemical Oxygen Demand (BOD). Data from DOE in 2004, based on BOD, 18 river basins were classified polluted, 37 river basins were slightly polluted and 65 river basins were in clean condition. In this paper, two models are fitted the data of rivers in Johor state namely Streeter-Phelps model and nonlinear regression (NLR) model. The BOD concentration data for the two rivers in Johor state from year 1981 to year 1990 is analyzed. To estimate the parameters for the Streeter-Phelps model and NLR model, this study focuses on the weighted least squares and Gauss-Newton method respectively. Based on the value of Mean Square Error, NLR model is a better model compared to Streeter-Phelps model.

  4. Projecting water resources changes in potential large-scale agricultural investment areas of the Kafue River Basin in Zambia

    Science.gov (United States)

    Kim, Y.; Trainor, A. M.; Baker, T. J.

    2017-12-01

    Climate change impacts regional water availability through the spatial and temporal redistribution of available water resources. This study focuses on understanding possible response of water resources to climate change in regions where potentials for large-scale agricultural investments are planned in the upper and middle Kafue River Basin in Zambia. We used historical and projected precipitation and temperature to assess changes in water yield, using the Soil and Water Assessment Tool (SWAT) hydrological model. Some of the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model outputs for the Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios project a temperature warming range from 1.8 - 5.7 °C over the region from 2020 to 2095. Precipitation projection patterns vary monthly but tend toward drier dry seasons with a slight increase in precipitation during the rainy season as compared to the historical time series. The best five calibrated parameter sets generated for the historical record (1965 - 2005) were applied for two future periods, 2020 - 2060 and 2055 - 2095, to project water yield change. Simulations projected that the 90th percentile water yield would be exceeded across most of the study area by up to 800% under the medium-low (RCP4.5) CO2 emission scenario, whereas the high (RCP8.5) CO2 emission scenario resulted in a more spatially varied pattern mixed with increasing (up to 500%) and decreasing (up to -54%) trends. The 10th percentile water yield indicated spatially varied pattern across the basin, increasing by as much as 500% though decreasing in some areas by 66%, with the greatest decreases during the dry season under RCP8.5. Overall, available water resources in the study area are projected to trend toward increased floods (i.e. water yields far exceeding 90th percentile) as well as increasing drought (i.e. water yield far below 10th percentile) vulnerability. Because surface water is a primary source for agriculture

  5. Status and trends of selected resources in the Upper Mississippi River System

    Science.gov (United States)

    Johnson, Barry L.; Hagerty, Karen H.

    2010-01-01

    Like other large rivers, the Upper Mississippi River System (UMRS) serves a diversity of roles. The UMRS provides commercial and recreational fishing, floodplain agriculture, drinking water for many communities, an important bird migration pathway, a variety of recreational activities, and a navigation system that transports much of the country's agricultural exports. These multiple roles present significant management challenges. Regular assessment of the condition of the river is needed to improve management plans and evaluate their effectiveness. This report provides a summary of the recent status (mean and range of conditions) and trends (change in direction over time) for 24 indicators of the ecological condition of the Upper Mississippi and Illinois Rivers using data collected through the Long Term Resource Monitoring Program (LTRMP). The 24 indicators were grouped into seven categories: hydrology, sedimentation, water quality, land cover, aquatic vegetation, invertebrates, and fish. Most of the data used in the report were collected between about 1993 and 2004, although some older data were also used to compare to recent conditions.Historical observations and current LTRMP data clearly indicate that the UMRS has been changed by human activity in ways that have diminished the ecological health of the river. The data indicate that status and trends differ among regions, and we expect that regional responses to various ecological rehabilitation techniques will differ as well. The continuing role of the LTRMP will be to provide the data needed to assess changes in river conditions and to determine how those changes relate to management actions, natural variation, and the overall ecological integrity of the river system.

  6. Grande-Baie tugboat sinking and salvage operations

    International Nuclear Information System (INIS)

    Dussault, M.; Gauthier, F.

    2009-01-01

    This paper described the operations that took place during an oil spill that occurred in December 2007 when the Grande-Baie tugboat sank at the wharf in Port Alfred, in the Ha-Ha Bay on the Saguenay River, Quebec. Approximately 100 tonnes of diesel fuel was onboard the tug. Although the exact amount of diesel spilled during this event is not known, it is assumed that half of the ship's load in diesel was spilled into the ice-infested waters. Poor weather, the presence of pack ice and tides of 2.5 meters were present at the time. Two Canadian Coast Guard officers, one emergency officer from Environment Quebec and one from Environment Canada were called for response purposes, particularly to avoid spreading of the diesel fuel and to ensure that the oily water was recovered from inside the vessel during salvage operations. One of the key objectives was to prevent diesel spills by capping vessel vents, which proved to be very challenging. Oily water was pumped from inside the boat directly in the bay of the Saguenay River to facilitate salvage of the ship. This was the first time that this method was used in Canada, and was successful because of proper risk assessment. Many conditions were followed for the purpose of environmental protection, such as confinement, good observations by divers, agreed upon criteria to stop pumping, and adequate monitoring the the Regional Environmental Emergency Team (REET). The salvage operation lasted 19 days. The challenges associated with the migration and recovery of oil in icy waters were discussed along with the environmental issues associated with the spill, particularly with the imminent opening of the ice fishing season. 2 refs., 2 tabs.,5 figs.

  7. Proton hexality in local grand unification

    Energy Technology Data Exchange (ETDEWEB)

    Foerste, Stefan; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics

    2010-07-15

    Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of ''Local Grand Unification'' discussed in the framework of model building in (heterotic) string theory. (orig.)

  8. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas.

    Science.gov (United States)

    Rashid, Irfan; Romshoo, Shakil Ahmad

    2013-06-01

    The pristine waters of Kashmir Himalaya are showing signs of deterioration due to multiple reasons. This study researches the causes of deteriorating water quality in the Lidder River, one of the main tributaries of Jhelum River in Kashmir Himalaya. The land use and land cover of the Lidder catchment were generated using multi-spectral, bi-seasonal IRS LISS III (October 2005 and May 2006) satellite data to identify the extent of agriculture and horticulture lands that are the main non-point sources of pollution at the catchment scale. A total of 12 water quality parameters were analyzed over a period of 1 year. Water sampling was done at eight different sampling sites, each with a varied topography and distinct land use/land cover, along the length of Lidder River. It was observed that water quality deteriorated during the months of June-August that coincides with the peak tourist flow and maximal agricultural/horticultural activity. Total phosphorus, orthophosphate phosphorus, nitrate nitrogen, and ammoniacal nitrogen showed higher concentration in the months of July and August, while the concentration of dissolved oxygen decreased in the same period, resulting in deterioration in water quality. Moreover, tourism influx in the Lidder Valley shows a drastic increase through the years, and particularly, the number of tourists visiting the valley has increased in the summer months from June to September, which is also responsible for deteriorating the water quality of Lidder River. In addition to this, the extensive use of fertilizers and pesticides in the agriculture and horticulture lands during the growing season (June-August) is also responsible for the deteriorating water quality of Lidder River.

  9. Las cinco grandes dimensiones de la personalidad

    Directory of Open Access Journals (Sweden)

    Jan ter Laak

    1996-12-01

    Full Text Available Este artículo revisa las distintas posiciones teóricas sobre las cinco grandes dimensiones de la personalidad, mostrando las semejanzas y diferencias entre las posturas teóricas. Esta contribución presenta lo siguiente: (a la génesis del contenido y la estructura de las cinco dimensiones; (b la fortaleza de las cinco dimensiones; (e la relación de las cinco grandes dimensiones con otros constructos de personalidad; (d discute el valor predictivo de las puntuaciones del perfil de las cinco dimensiones para criterios pertinentes; (e analiza el estatus teórico de las cinco dimensiones; (f discute críticas históricas sobre las cinco grandes dimensiones y se formulan respuestas a estas críticas; (g hace conjeturas para el futuro de las cinco grandes dimensiones; y (h concluye con algunas conclusiones y comentarios.

  10. Klamath River Basin water-quality data

    Science.gov (United States)

    Smith, Cassandra D.; Rounds, Stewart A.; Orzol, Leonard L.; Sobieszczyk, Steven

    2018-05-29

    The Klamath River Basin stretches from the mountains and inland basins of south-central Oregon and northern California to the Pacific Ocean, spanning multiple climatic regions and encompassing a variety of ecosystems. Water quantity and water quality are important topics in the basin, because water is a critical resource for farming and municipal use, power generation, and for the support of wildlife, aquatic ecosystems, and endangered species. Upper Klamath Lake is the largest freshwater lake in Oregon (112 square miles) and is known for its seasonal algal blooms. The Klamath River has dams for hydropower and the upper basin requires irrigation water to support agriculture and grazing. Multiple species of endangered fish inhabit the rivers and lakes, and the marshes are key stops on the Pacific flyway for migrating birds. For these and other reasons, the water resources in this basin have been studied and monitored to support their management distribution.

  11. EVALUATING THE IMPACT OF POLICY OPTIONS ON AGRICULTURAL LANDSCAPES: AN ALTERNATIVE-FUTURES APPROACH

    Science.gov (United States)

    Alternative-futures analysis was used to analyze different scenarios of future growth patterns and attendant resource allocations on the agricultural system of Oregon's Willamette River Basin. A stakeholder group formulated three policy alternatives: a continuation of current tr...

  12. Diversity of non-biting midge larvae assemblages in the Jacuí River basin, Brazil.

    Science.gov (United States)

    Floss, Elzira Cecília Serafini; Kotzian, Carla Bender; Spies, Márcia Regina; Secretti, Elisangela

    2012-01-01

    The richness and composition of a mountain-river chironomid larvae assemblage in the Jacuí River basin, Brazil were studied, and compared with other riverine non-biting midge larvae assemblages previously studied in the country. Additionally, the influence of some regional-scale environmental characteristics on the spatial distribution of these assemblages was tested. The specimens were collected at 12 sites in the middle course of the Jacuí River basin (in the state of Rio Grande do Sul) between April 2000 and May 2002. Around 100 taxa were recorded. The dominant taxa belonged to the genera Rheotanytarsus, Cricotopus, Polypedilum, and Pseudochironomus. Twenty-two rare taxa were found, representing 22% of the total of taxa inventoried. Fourteen genera (Aedokritus, Axarus, Endotribelos, Kiefferulus, Manoa, Oukuriella, Phaenopsectra, Stenochironomus, Xenochironomus, Xestochironomus, Cardiocladius, Metriocnemus, Paracladius, and Rheocricotopus) represent new occurrences in Rio Grande do Sul. The similarity analysis of the chironomid larvae assemblages inventoried in 32 regions of Brazil indicated five groups with similarity higher than 50%. The groups, when the effects of spatial autocorrelation were removed, displayed a weak positive correlation between the assemblage composition and the aquatic system or hydraulic conditions and the hydrographic basin, and a weak negative correlation in relation to the biome. The altitude showed no correlation with the composition of the assemblage. The relatively high richness of the region surveyed in relation to other Brazilian regions corroborates some tendencies already noted in other parts of the world, such as: i) lotic systems may constitute an exception to the rule that diversity is greater in tropical regions, ii) regions of transitional relief may contain the greatest richness of Chironomidae, and iii) in rivers, the group might have its spatial distribution influenced to a greater extent by local environmental

  13. Anthropogenic modifications to drainage conditions on streamflow variability in the Wabash River basin, Indiana

    Science.gov (United States)

    Chiu, C.; Bowling, L. C.

    2011-12-01

    The Wabash River watershed is the largest watershed in Indiana and includes the longest undammed river reach east of the Mississippi River. The land use of the Wabash River basin began to significantly change from mixed woodland dominated by small lakes and wetlands to agriculture in the mid-1800s and agriculture is now the predominant land use. Over 80% of natural wetland areas were drained to facilitate better crop production through both surface and subsurface drainage applications. Quantifying the change in hydrologic response in this intensively managed landscape requires a hydrologic model that can represent wetlands, crop growth, and impervious area as well as subsurface and surface drainage enhancements, coupled with high resolution soil and topographic inputs. The Variable Infiltration Capacity (VIC) model wetland algorithm has been previously modified to incorporate spatially-varying estimates of water table distribution using a topographic index approach, as well as a simple urban representation. Now, the soil water characteristics curve and a derived drained to equilibrium moisture profile are used to improve the model's estimation of the water table. In order to represent subsurface (tile) drainage, the tile drainage component of subsurface flow is calculated when the simulated water table rises above a specified drain depth. A map of the current estimated extent of subsurface tile drainage for the Wabash River based on a decision tree classifier of soil drainage class, soil slope and agricultural land use is used to activate the new tile drainage feature in the VIC model, while wetland depressional storage capacity is extracted from digital elevation and soil information. This modified VIC model is used to evaluate the performance of model physical variations in the intensively managed hydrologic regime of the Wabash River system and to understand the role of surface and subsurface storage, and land use and land cover change on hydrologic change.

  14. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  15. Atoyac River Pollution in the Metropolitan Area of Puebla, México

    Directory of Open Access Journals (Sweden)

    Gabriela Pérez Castresana

    2018-03-01

    Full Text Available The Atoyac River crosses the metropolitan area of Puebla-Tlaxcala in Mexico and presents a state of pollution that has been scarcely studied. In 2016, the water quality of the river was evaluated based on physicochemical and bacteriological parameters, under the guidelines established for the Maximum Permissible Limit (MPL for Aquatic Life Protection (ALP and Agricultural Irrigation (AI. The sampling sites were the Covadonga Dam, the Echeverría Dam, and an irrigation canal. Water from wells and a spring in the Emilio Portes Gil (EPG population that uses Atoyac water for agricultural irrigation was also analyzed. The data obtained from the river were compared with the 2011 data published in the declaration of classification of Atoyac and Xochiac or Hueyapan and its tributaries. There was a notable increase in hemical oxygen demand (COD (49% and in heavy metals with varying percentages. The anoxic condition of the river (mean 1.47 mg of O2/L with large populations of coliform bacteria was demonstrated, 11 pathogenic members of the Enterobacteriaceae were found, and high organic pollution concentrations were shown, particularly during droughts. Irrigation and well water was contaminated with fecal bacteria (104–549 NMP/100 mL, which included pathogens.

  16. Management of regional German river catchments (REGFLUD) impact of nitrogen reduction measures on the nitrogen load in the River Ems and the River Rhine.

    Science.gov (United States)

    Kunkel, R; Bogena, H; Goemann, H; Kreins, P; Wendland, F

    2005-01-01

    The REGFLUD-project, commissioned by Germany's Federal Research Ministry (BMBF), addresses the problem of reducing diffuse pollution from agricultural production. The objective of the project is the development and application of multi-criteria scientific methods, which are able to predict diffuse pollution in river basins subject to economic feasibility and social acceptability. The selected river basins (Ems and Rhine basins) cover a variety of landscape units with different hydrological, hydrogeological and socio-economic characteristics. This paper focuses on the analysis of the effects of certain policy measures to reduce diffuse pollution by nitrogen. For this purpose a model system consisting of an agricultural sector model, a water balance model and a residence time/denitrification model was developed and applied. First results indicate a wide range of annual nitrogen surpluses for the rural areas between less than 10 kg N/ha up to 200 kg N/ha or more depending on the type and intensity of farming. Compared to the level of nitrogen surpluses the level of nitrogen inputs into the surface waters is relatively moderate because of degradation processes during transport in soil and groundwater. Policy impact analysis for a nitrogen tax and a limitation of the livestock density stress the importance of regionally tailored measures.

  17. Standard mapping of the environment sensibility of oil to Lagoa dos Patos, Rio Grande do Sul, Brazil; Padronizacao do mapeamento da sensibilidade ambiental a derramamento de oleo para a Lagoa dos Patos, Rio Grande do Sul, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Felipe C; Griep, Gilberto H [Fundacao Universidade do Rio Grande (FURG), RS (Brazil)

    2008-07-01

    The intense flow of fossil fuels in the inland waters of Patos Lagoon (LP) - Rio Grande do Sul, justifies the importance of preventive actions to claims by oil and derivatives within the lagoon. The mapping and classification of coastline environmental sensitivity for oil spills (Cartas SAO) is fundamental tool for this type of action. Therefore, since 2001, the Laboratory of Geological Oceanography (LOG) of Federal University of Rio Grande (FURG) has developed the mapping SAO for the LP. In this work, through review of raw data from the database of LOG, and taking into account the methodology proposed by the Ministry of Environment (MMA, 2004), gave up a strategic projection of standardized environmental sensitivity of the oil spill to Patos Lagoon. This new account also enable a better understanding of the lagoon ecosystem, enables comparisons between its different areas, facilitating the planning and decision-making, allowing the management for faster action-in response. Like, highlights the regions of the estuary of the LP, the delta of the Camaqua River and Casamento Lagoon as the areas of greater sensitivity to environmental spillage of oil from Patos Lagoon. (author)

  18. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  19. Mechanisms of basin-scale nitrogen load reductions under intensified irrigated agriculture.

    Directory of Open Access Journals (Sweden)

    Rebecka Törnqvist

    Full Text Available Irrigated agriculture can modify the cycling and transport of nitrogen (N, due to associated water diversions, water losses, and changes in transport flow-paths. We investigate dominant processes behind observed long-term changes in dissolved inorganic nitrogen (DIN concentrations and loads of the extensive (465,000 km2 semi-arid Amu Darya River basin (ADRB in Central Asia. We specifically considered a 40-year period (1960-2000 of large irrigation expansion, reduced river water flows, increased fertilizer application and net increase of N input into the soil-water system. Results showed that observed decreases in riverine DIN concentration near the Aral Sea outlet of ADRB primarily were due to increased recirculation of irrigation water, which extends the flow-path lengths and enhances N attenuation. The observed DIN concentrations matched a developed analytical relation between concentration attenuation and recirculation ratio, showing that a fourfold increase in basin-scale recirculation can increase DIN attenuation from 85 to 99%. Such effects have previously only been observed at small scales, in laboratory experiments and at individual agricultural plots. These results imply that increased recirculation can have contributed to observed increases in N attenuation in agriculturally dominated drainage basins in different parts of the world. Additionally, it can be important for basin scale attenuation of other pollutants, including phosphorous, metals and organic matter. A six-fold lower DIN export from ADRB during the period 1981-2000, compared to the period 1960-1980, was due to the combined result of drastic river flow reduction of almost 70%, and decreased DIN concentrations at the basin outlet. Several arid and semi-arid regions around the world are projected to undergo similar reductions in discharge as the ADRB due to climate change and agricultural intensification, and may therefore undergo comparable shifts in DIN export as shown here

  20. Rio Grande Erosion Potential Demonstration - Report for the National Border Technology Program; TOPICAL

    International Nuclear Information System (INIS)

    JEPSEN, RICHARD A.; ROBERTS, JESSE D.; LANGFORD, RICHARD; GAILANI, JOSEPH

    2001-01-01

    This demonstration project is a collaboration among DOE, Sandia National Laboratories, the University of Texas, El Paso (UTEP), the International Boundary and Water Commission (IBWC), and the US Army Corps of Engineers (USACE). Sandia deployed and demonstrated a field measurement technology that enables the determination of erosion and transport potential of sediments in the Rio Grande. The technology deployed was the Mobile High Shear Stress Flume. This unique device was developed by Sandia's Carlsbad Programs for the USACE and has been used extensively in collaborative efforts on near shore and river systems throughout the United States. Since surface water quantity and quality along with human health is an important part of the National Border Technology Program, technologies that aid in characterizing, managing, and protecting this valuable resource from possible contamination sources is imperative