WorldWideScience

Sample records for grand mobility tensor

  1. Efficient Brownian Dynamics of rigid colloids in linear flow fields based on the grand mobility matrix

    Science.gov (United States)

    Palanisamy, Duraivelan; den Otter, Wouter K.

    2018-05-01

    We present an efficient general method to simulate in the Stokesian limit the coupled translational and rotational dynamics of arbitrarily shaped colloids subject to external potential forces and torques, linear flow fields, and Brownian motion. The colloid's surface is represented by a collection of spherical primary particles. The hydrodynamic interactions between these particles, here approximated at the Rotne-Prager-Yamakawa level, are evaluated only once to generate the body's (11 × 11) grand mobility matrix. The constancy of this matrix in the body frame, combined with the convenient properties of quaternions in rotational Brownian Dynamics, enables an efficient simulation of the body's motion. Simulations in quiescent fluids yield correct translational and rotational diffusion behaviour and sample Boltzmann's equilibrium distribution. Simulations of ellipsoids and spherical caps under shear, in the absence of thermal fluctuations, yield periodic orbits in excellent agreement with the theories by Jeffery and Dorrepaal. The time-varying stress tensors provide the Einstein coefficient and viscosity of dilute suspensions of these bodies.

  2. The total position-spread tensor: Spin partition

    International Nuclear Information System (INIS)

    El Khatib, Muammar; Evangelisti, Stefano; Leininger, Thierry; Brea, Oriana; Fertitta, Edoardo; Bendazzoli, Gian Luigi

    2015-01-01

    The Total Position Spread (TPS) tensor, defined as the second moment cumulant of the position operator, is a key quantity to describe the mobility of electrons in a molecule or an extended system. In the present investigation, the partition of the TPS tensor according to spin variables is derived and discussed. It is shown that, while the spin-summed TPS gives information on charge mobility, the spin-partitioned TPS tensor becomes a powerful tool that provides information about spin fluctuations. The case of the hydrogen molecule is treated, both analytically, by using a 1s Slater-type orbital, and numerically, at Full Configuration Interaction (FCI) level with a V6Z basis set. It is found that, for very large inter-nuclear distances, the partitioned tensor growths quadratically with the distance in some of the low-lying electronic states. This fact is related to the presence of entanglement in the wave function. Non-dimerized open chains described by a model Hubbard Hamiltonian and linear hydrogen chains H n (n ≥ 2), composed of equally spaced atoms, are also studied at FCI level. The hydrogen systems show the presence of marked maxima for the spin-summed TPS (corresponding to a high charge mobility) when the inter-nuclear distance is about 2 bohrs. This fact can be associated to the presence of a Mott transition occurring in this region. The spin-partitioned TPS tensor, on the other hand, has a quadratical growth at long distances, a fact that corresponds to the high spin mobility in a magnetic system

  3. TensorLy: Tensor Learning in Python

    NARCIS (Netherlands)

    Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja

    2016-01-01

    Tensor methods are gaining increasing traction in machine learning. However, there are scant to no resources available to perform tensor learning and decomposition in Python. To answer this need we developed TensorLy. TensorLy is a state of the art general purpose library for tensor learning.

  4. Detection of ferromagnetic target based on mobile magnetic gradient tensor system

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Y.I.N., E-mail: gang.gang88@163.com; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren

    2016-03-15

    Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source–sensor displacement vector. Secondly, unit source–sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source–sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source–sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source–sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method. - Highlights: • Ferromagnetic target detection method is proposed based on rotational invariants • Intermediate eigenvector is perpendicular to magnetic moment and displacement vector • Angle between magnetic moment and displacement vector is a rotational invariant • Magnetic moment and displacement vector are derived based on invariants of two points.

  5. TensorLy: Tensor Learning in Python

    OpenAIRE

    Kossaifi, Jean; Panagakis, Yannis; Pantic, Maja

    2016-01-01

    Tensors are higher-order extensions of matrices. While matrix methods form the cornerstone of machine learning and data analysis, tensor methods have been gaining increasing traction. However, software support for tensor operations is not on the same footing. In order to bridge this gap, we have developed \\emph{TensorLy}, a high-level API for tensor methods and deep tensorized neural networks in Python. TensorLy aims to follow the same standards adopted by the main projects of the Python scie...

  6. Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI

    Science.gov (United States)

    Liu, Chunlei; Murphy, Nicole E.; Li, Wei

    2012-01-01

    Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

  7. Anisotropic Conductivity Tensor Imaging of In Vivo Canine Brain Using DT-MREIT.

    Science.gov (United States)

    Jeong, Woo Chul; Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-01-01

    We present in vivo images of anisotropic electrical conductivity tensor distributions inside canine brains using diffusion tensor magnetic resonance electrical impedance tomography (DT-MREIT). The conductivity tensor is represented as a product of an ion mobility tensor and a scale factor of ion concentrations. Incorporating directional mobility information from water diffusion tensors, we developed a stable process to reconstruct anisotropic conductivity tensor images from measured magnetic flux density data using an MRI scanner. Devising a new image reconstruction algorithm, we reconstructed anisotropic conductivity tensor images of two canine brains with a pixel size of 1.25 mm. Though the reconstructed conductivity values matched well in general with those measured by using invasive probing methods, there were some discrepancies as well. The degree of white matter anisotropy was 2 to 4.5, which is smaller than previous findings of 5 to 10. The reconstructed conductivity value of the cerebrospinal fluid was about 1.3 S/m, which is smaller than previous measurements of about 1.8 S/m. Future studies of in vivo imaging experiments with disease models should follow this initial trial to validate clinical significance of DT-MREIT as a new diagnostic imaging modality. Applications in modeling and simulation studies of bioelectromagnetic phenomena including source imaging and electrical stimulation are also promising.

  8. Tensor rank is not multiplicative under the tensor product

    NARCIS (Netherlands)

    M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)

    2018-01-01

    textabstractThe tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the

  9. Tensor rank is not multiplicative under the tensor product

    NARCIS (Netherlands)

    M. Christandl (Matthias); A. K. Jensen (Asger Kjærulff); J. Zuiddam (Jeroen)

    2017-01-01

    textabstractThe tensor rank of a tensor is the smallest number r such that the tensor can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor (not to be confused with the "tensor Kronecker product" used in

  10. Tensor rank is not multiplicative under the tensor product

    OpenAIRE

    Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen

    2017-01-01

    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an l-tensor. The tensor product of s and t is a (k + l)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection between restrictions and degenerations. A result of our study is that tensor rank is not in general multiplicative under the tensor product. This answers a question of Draisma and Saptharishi. Specif...

  11. Tensor surgery and tensor rank

    NARCIS (Netherlands)

    M. Christandl (Matthias); J. Zuiddam (Jeroen)

    2018-01-01

    textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new vertices

  12. Tensor surgery and tensor rank

    NARCIS (Netherlands)

    M. Christandl (Matthias); J. Zuiddam (Jeroen)

    2016-01-01

    textabstractWe introduce a method for transforming low-order tensors into higher-order tensors and apply it to tensors defined by graphs and hypergraphs. The transformation proceeds according to a surgery-like procedure that splits vertices, creates and absorbs virtual edges and inserts new

  13. Tensor rank is not multiplicative under the tensor product

    DEFF Research Database (Denmark)

    Christandl, Matthias; Jensen, Asger Kjærulff; Zuiddam, Jeroen

    2018-01-01

    The tensor rank of a tensor t is the smallest number r such that t can be decomposed as a sum of r simple tensors. Let s be a k-tensor and let t be an ℓ-tensor. The tensor product of s and t is a (k+ℓ)-tensor. Tensor rank is sub-multiplicative under the tensor product. We revisit the connection b...

  14. From Allá en el Rancho Grande to Lola la trailera: social mobility

    Directory of Open Access Journals (Sweden)

    Aurelio de los Reyes

    2016-04-01

    Full Text Available The text deals with both horizontal and vertical social mobility in the Mexican films Allá en el Rancho Grande (1936, Fernando de Fuentes, Por la puerta falsa (1950, Fernando de Fuentes, Nosotras las taquígrafas (1950, Emilio Gómez Muriel, El río y la muerte (1954, Luis Buñuel, three films by Emilio Fernández: Victimas del pecado (1950, Salón México (1948 and Las abandonadas (1944, two films by Ismael Rodríguez: La Cucaracha (1958 and Del rancho a la televisión (1952 and Lola la trailera (1984, Raúl Fernández, which speaks to the country’s transition from an agricultural to an industrial economy.

  15. Tensor Factorization for Low-Rank Tensor Completion.

    Science.gov (United States)

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  16. On two-particle N=1 supersymmetric composite grand unified models

    International Nuclear Information System (INIS)

    Pirogov, Yu.F.

    1984-01-01

    A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields

  17. A Review of Tensors and Tensor Signal Processing

    Science.gov (United States)

    Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  18. Partition-based Collaborative Tensor Factorization for POI Recommendation

    Institute of Scientific and Technical Information of China (English)

    Wenjing Luan; Guanjun Liu; Changjun Jiang; Liang Qi

    2017-01-01

    The rapid development of location-based social networks (LBSNs) provides people with an opportunity of better understanding their mobility behavior which enables them to decide their next location.For example,it can help travelers to choose where to go next,or recommend salesmen the most potential places to deliver advertisements or sell products.In this paper,a method for recommending points of interest (POIs) is proposed based on a collaborative tensor factorization (CTF) technique.Firstly,a generalized objective function is constructed for collaboratively factorizing a tensor with several feature matrices.Secondly,a 3-mode tensor is used to model all users' check-in behaviors,and three feature matrices are extracted to characterize the time distribution,category distribution and POI correlation,respectively.Thirdly,each user's preference to a POI at a specific time can be estimated by using CTF.In order to further improve the recommendation accuracy,PCTF (Partitionbased CTF) is proposed to fill the missing entries of a tensor after clustering its every mode.Experiments on a real checkin database show that the proposed method can provide more accurate location recommendation.

  19. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

    OpenAIRE

    Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael

    2016-01-01

    TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algo...

  20. Tensor gauge condition and tensor field decomposition

    Science.gov (United States)

    Zhu, Ben-Chao; Chen, Xiang-Song

    2015-10-01

    We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.

  1. Tensor spherical harmonics and tensor multipoles. II. Minkowski space

    International Nuclear Information System (INIS)

    Daumens, M.; Minnaert, P.

    1976-01-01

    The bases of tensor spherical harmonics and of tensor multipoles discussed in the preceding paper are generalized in the Hilbert space of Minkowski tensor fields. The transformation properties of the tensor multipoles under Lorentz transformation lead to the notion of irreducible tensor multipoles. We show that the usual 4-vector multipoles are themselves irreducible, and we build the irreducible tensor multipoles of the second order. We also give their relations with the symmetric tensor multipoles defined by Zerilli for application to the gravitational radiation

  2. Dopo il Grande Evento: politiche “utili” per la mobilità Beyond the Mega Events: “Useful” Policies for Urban Mobility

    Directory of Open Access Journals (Sweden)

    Andrea Ceudech

    2008-08-01

    Full Text Available Il contributo indaga i limiti delle politiche urbane e in particolare di quelle sulla mobilità attuate per i Grandi Eventi, evidenziando in molti casi la tendenza a privilegiare la realizzazione di infrastrutture, più che politiche sui servizi, la cui reale utilità è spesso messa in dubbio dalla pratica e i cui costi manutentivi divengono spesso nuovi carichi per la collettività. Sulla base di una breve rassegna delle politiche sulla mobilità maggiormente implementate nella preparazione e gestione dei Grandi Eventi, il contributo evidenzia in maniera critica punti di forza e punti di debolezza delle esperienze analizzate in riferimento sia alla gestione del grande evento, sia in riferimento alla loro reale utilità per la collettività dopo che il grande evento è terminato. Nell’ultima parte del contributo si evidenziano i principali requisiti che le politiche sulla mobilità devono possedere affinché apportino reali vantaggi alla città anche una volta che il Grande Evento è terminato.The paper analyses, through different examples, the limits of the urban mobility policies implemented for mega events, highlighting the tendency to privilege the infrastructure realization, more than policies on services, whose real usefulness is often put in doubt from the practice and whose maintenance often become a new cost for the community. On the base of a short review of the mobility policies mainly implemented in the preparation and management of the mega events, the paper highlights, from a critical point of view, the strengths and weaknesses of some experiences with reference to the real usefulness of urban mobility for the community beyond the mega event. The outcomes and the so-called “legacy” of the mega events for the cities are very different. Mega sport events, like the Olympic Games, have often involved only the realization of works for the event while events like the International Expositions have determined the acquisition of

  3. Linear Invariant Tensor Interpolation Applied to Cardiac Diffusion Tensor MRI

    Science.gov (United States)

    Gahm, Jin Kyu; Wisniewski, Nicholas; Kindlmann, Gordon; Kung, Geoffrey L.; Klug, William S.; Garfinkel, Alan; Ennis, Daniel B.

    2015-01-01

    Purpose Various methods exist for interpolating diffusion tensor fields, but none of them linearly interpolate tensor shape attributes. Linear interpolation is expected not to introduce spurious changes in tensor shape. Methods Herein we define a new linear invariant (LI) tensor interpolation method that linearly interpolates components of tensor shape (tensor invariants) and recapitulates the interpolated tensor from the linearly interpolated tensor invariants and the eigenvectors of a linearly interpolated tensor. The LI tensor interpolation method is compared to the Euclidean (EU), affine-invariant Riemannian (AI), log-Euclidean (LE) and geodesic-loxodrome (GL) interpolation methods using both a synthetic tensor field and three experimentally measured cardiac DT-MRI datasets. Results EU, AI, and LE introduce significant microstructural bias, which can be avoided through the use of GL or LI. Conclusion GL introduces the least microstructural bias, but LI tensor interpolation performs very similarly and at substantially reduced computational cost. PMID:23286085

  4. Tensor analysis methods for activity characterization in spatiotemporal data

    Energy Technology Data Exchange (ETDEWEB)

    Haass, Michael Joseph; Van Benthem, Mark Hilary; Ochoa, Edward M

    2014-03-01

    Tensor (multiway array) factorization and decomposition offers unique advantages for activity characterization in spatio-temporal datasets because these methods are compatible with sparse matrices and maintain multiway structure that is otherwise lost in collapsing for regular matrix factorization. This report describes our research as part of the PANTHER LDRD Grand Challenge to develop a foundational basis of mathematical techniques and visualizations that enable unsophisticated users (e.g. users who are not steeped in the mathematical details of matrix algebra and mulitway computations) to discover hidden patterns in large spatiotemporal data sets.

  5. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  6. Comparison of Magnetic Susceptibility Tensor and Diffusion Tensor of the Brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei

    2013-10-01

    Susceptibility tensor imaging (STI) provides a novel approach for noninvasive assessment of the white matter pathways of the brain. Using mouse brain ex vivo , we compared STI with diffusion tensor imaging (DTI), in terms of tensor values, principal tensor values, anisotropy values, and tensor orientations. Despite the completely different biophysical underpinnings, magnetic susceptibility tensors and diffusion tensors show many similarities in the tensor and principal tensor images, for example, the tensors perpendicular to the fiber direction have the highest gray-white matter contrast, and the largest principal tensor is along the fiber direction. Comparison to DTI fractional anisotropy, the susceptibility anisotropy provides much higher sensitivity to the chemical composition of the white matter, especially myelin. The high sensitivity can be further enhanced with the perfusion of ProHance, a gadolinium-based contrast agent. Regarding the tensor orientations, the direction of the largest principal susceptibility tensor agrees with that of diffusion tensors in major white matter fiber bundles. The STI fiber tractography can reconstruct the fiber pathways for the whole corpus callosum and for white matter fiber bundles that are in close contact but in different orientations. There are some differences between susceptibility and diffusion tensor orientations, which are likely due to the limitations in the current STI reconstruction. With the development of more accurate reconstruction methods, STI holds the promise for probing the white matter micro-architectures with more anatomical details and higher chemical sensitivity.

  7. Killing tensors and conformal Killing tensors from conformal Killing vectors

    International Nuclear Information System (INIS)

    Rani, Raffaele; Edgar, S Brian; Barnes, Alan

    2003-01-01

    Koutras has proposed some methods to construct reducible proper conformal Killing tensors and Killing tensors (which are, in general, irreducible) when a pair of orthogonal conformal Killing vectors exist in a given space. We give the completely general result demonstrating that this severe restriction of orthogonality is unnecessary. In addition, we correct and extend some results concerning Killing tensors constructed from a single conformal Killing vector. A number of examples demonstrate that it is possible to construct a much larger class of reducible proper conformal Killing tensors and Killing tensors than permitted by the Koutras algorithms. In particular, by showing that all conformal Killing tensors are reducible in conformally flat spaces, we have a method of constructing all conformal Killing tensors, and hence all the Killing tensors (which will in general be irreducible) of conformally flat spaces using their conformal Killing vectors

  8. Tensors for physics

    CERN Document Server

    Hess, Siegfried

    2015-01-01

    This book presents the science of tensors in a didactic way. The various types and ranks of tensors and the physical basis is presented. Cartesian Tensors are needed for the description of directional phenomena in many branches of physics and for the characterization the anisotropy of material properties. The first sections of the book provide an introduction to the vector and tensor algebra and analysis, with applications to physics,  at undergraduate level. Second rank tensors, in particular their symmetries, are discussed in detail. Differentiation and integration of fields, including generalizations of the Stokes law and the Gauss theorem, are treated. The physics relevant for the applications in mechanics, quantum mechanics, electrodynamics and hydrodynamics is presented. The second part of the book is devoted to  tensors of any rank, at graduate level.  Special topics are irreducible, i.e. symmetric traceless tensors, isotropic tensors, multipole potential tensors, spin tensors, integration and spin-...

  9. The 1/ N Expansion of Tensor Models with Two Symmetric Tensors

    Science.gov (United States)

    Gurau, Razvan

    2018-06-01

    It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.

  10. The energy–momentum tensor(s in classical gauge theories

    Directory of Open Access Journals (Sweden)

    Daniel N. Blaschke

    2016-11-01

    Full Text Available We give an introduction to, and review of, the energy–momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space–time. For the canonical energy–momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy–momentum tensor. The relationship with the Einstein–Hilbert tensor following from the coupling to a gravitational field is also discussed.

  11. Behavior of the Position-Spread Tensor in Diatomic Systems.

    Science.gov (United States)

    Brea, Oriana; El Khatib, Muammar; Angeli, Celestino; Bendazzoli, Gian Luigi; Evangelisti, Stefano; Leininger, Thierry

    2013-12-10

    The behavior of the Position-Spread Tensor (Λ) in a series of light diatomic molecules (either neutral or negative ions) is investigated at a Full Configuration Interaction level. This tensor, which is the second moment cumulant of the total position operator, is invariant with respect to molecular translations, while its trace is also rotationally invariant. Moreover, the tensor is additive in the case of noninteracting subsystems and can be seen as an intrinsic property of a molecule. In the present work, it is shown that the longitudinal component of the tensor, Λ∥, which is small for internuclear distances close to the equilibrium, tends to grow if the bond is stretched. A maximum is reached in the region of the bond breaking, then Λ∥ decreases and converges toward the isolated-atom value. The degenerate transversal components, Λ⊥, on the other hand, usually have a monotonic growth toward the atomic value. The Position Spread is extremely sensitive to reorganization of the molecular wave function, and it becomes larger in the case of an increase of the electron mobility, as illustrated by the neutral-ionic avoided crossing in LiF. For these reasons, the Position Spread can be an extremely useful property that characterizes the nature of the wave function in a molecular system.

  12. Efficient tensor completion for color image and video recovery: Low-rank tensor train

    OpenAIRE

    Bengua, Johann A.; Phien, Ho N.; Tuan, Hoang D.; Do, Minh N.

    2016-01-01

    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via tensor tra...

  13. Tensor completion and low-n-rank tensor recovery via convex optimization

    International Nuclear Information System (INIS)

    Gandy, Silvia; Yamada, Isao; Recht, Benjamin

    2011-01-01

    In this paper we consider sparsity on a tensor level, as given by the n-rank of a tensor. In an important sparse-vector approximation problem (compressed sensing) and the low-rank matrix recovery problem, using a convex relaxation technique proved to be a valuable solution strategy. Here, we will adapt these techniques to the tensor setting. We use the n-rank of a tensor as a sparsity measure and consider the low-n-rank tensor recovery problem, i.e. the problem of finding the tensor of the lowest n-rank that fulfills some linear constraints. We introduce a tractable convex relaxation of the n-rank and propose efficient algorithms to solve the low-n-rank tensor recovery problem numerically. The algorithms are based on the Douglas–Rachford splitting technique and its dual variant, the alternating direction method of multipliers

  14. Tensor eigenvalues and their applications

    CERN Document Server

    Qi, Liqun; Chen, Yannan

    2018-01-01

    This book offers an introduction to applications prompted by tensor analysis, especially by the spectral tensor theory developed in recent years. It covers applications of tensor eigenvalues in multilinear systems, exponential data fitting, tensor complementarity problems, and tensor eigenvalue complementarity problems. It also addresses higher-order diffusion tensor imaging, third-order symmetric and traceless tensors in liquid crystals, piezoelectric tensors, strong ellipticity for elasticity tensors, and higher-order tensors in quantum physics. This book is a valuable reference resource for researchers and graduate students who are interested in applications of tensor eigenvalues.

  15. Tensor Transpose and Its Properties

    OpenAIRE

    Pan, Ran

    2014-01-01

    Tensor transpose is a higher order generalization of matrix transpose. In this paper, we use permutations and symmetry group to define? the tensor transpose. Then we discuss the classification and composition of tensor transposes. Properties of tensor transpose are studied in relation to tensor multiplication, tensor eigenvalues, tensor decompositions and tensor rank.

  16. The tensor rank of tensor product of two three-qubit W states is eight

    OpenAIRE

    Chen, Lin; Friedland, Shmuel

    2017-01-01

    We show that the tensor rank of tensor product of two three-qubit W states is not less than eight. Combining this result with the recent result of M. Christandl, A. K. Jensen, and J. Zuiddam that the tensor rank of tensor product of two three-qubit W states is at most eight, we deduce that the tensor rank of tensor product of two three-qubit W states is eight. We also construct the upper bound of the tensor rank of tensor product of many three-qubit W states.

  17. Mobilidade do ametryn em solos da região semiárida do Rio Grande do Norte Ametryn mobility in soils of Rio Grande do Norte semiarid region

    Directory of Open Access Journals (Sweden)

    F.C.L. Freitas

    2012-09-01

    profundidade. O método do bioensaio com pepino como planta indicadora pode ser utilizado em estudos de lixiviação desse herbicida, em substituição ao método cromatográfico.This work aimed to evaluate ametryn mobility in four types of soils, three from the semiarid region of the state of Rio Grande do Norte (Cambisol ; Fluvic Neosol; Latosolic Dystrophic Red-Yellow Argisol and one from the state of Minas Gerais (Red-Yellow Latosol. Ametryn mobility was evaluated using PVC columns of 10 cm in diameter and 50 cm long. The experiment was conducted in a split-plot in a completely randomized design with four replications. The plots were composed by the columns, filled with the four types of soils and the subplots by 10 depths at intervals of 5 cm (0-5, 5-10, 10-15, 15-20, 20-25, 25-30 , 30-35, 35-40, 40-45 and 45-50 cm. Ametryn was applied on top of the columns (4 kg ha-1 and, 12 hours later, rainfall was simulated at the intensity of 60 mm. After 72 hours of simulated rain, the columns were placed in a horizontal position and opened longitudinally, divided into sections of 5.0 cm. At the center of each section, soil samples were collected for subsequent herbicide extraction and quantification through analysis by liquid chromatography (HPLC. Five seeds of cucumber (Cucumis sativus were sown as bio-indicators of the presence of the herbicide. Ametryn mobility at the columns was influenced by the physical and chemical characteristics of the soil,(soil texture, organic matter, and pH. The Rio Grande do Norte semiarid region soils had higher ametryn mobility potential, being detected at up to 25, 20, and 15 cm depth in Latosolic Dystrophic Red- Yellow Argisol, Cambisol, and Fluvic Neosol, respectively. Ametryn mobility was restricted to 5 cm depth in the Red Yellow Latosol, with higher organic matter content and pH 4.7. The bioassay method was more efficient to confirm ametryn leaching than liquid chromatography.

  18. Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.

    Science.gov (United States)

    Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N

    2017-05-01

    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.

  19. Bowen-York tensors

    International Nuclear Information System (INIS)

    Beig, Robert; Krammer, Werner

    2004-01-01

    For a conformally flat 3-space, we derive a family of linear second-order partial differential operators which sends vectors into trace-free, symmetric 2-tensors. These maps, which are parametrized by conformal Killing vectors on the 3-space, are such that the divergence of the resulting tensor field depends only on the divergence of the original vector field. In particular, these maps send source-free electric fields into TT tensors. Moreover, if the original vector field is the Coulomb field on R 3 {0}, the resulting tensor fields on R 3 {0} are nothing but the family of TT tensors originally written by Bowen and York

  20. Harmonic d-tensors

    Energy Technology Data Exchange (ETDEWEB)

    Hohmann, Manuel [Physikalisches Institut, Universitaet Tartu (Estonia)

    2016-07-01

    Tensor harmonics are a useful mathematical tool for finding solutions to differential equations which transform under a particular representation of the rotation group SO(3). In order to make use of this tool also in the setting of Finsler geometry, where the objects of relevance are d-tensors instead of tensors, we construct a set of d-tensor harmonics for both SO(3) and SO(4) symmetries and show how these can be used for calculations in Finsler geometry and gravity.

  1. Current density tensors

    Science.gov (United States)

    Lazzeretti, Paolo

    2018-04-01

    It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.

  2. TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

    OpenAIRE

    Hafner, Danijar; Davidson, James; Vanhoucke, Vincent

    2017-01-01

    We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...

  3. A RENORMALIZATION PROCEDURE FOR TENSOR MODELS AND SCALAR-TENSOR THEORIES OF GRAVITY

    OpenAIRE

    SASAKURA, NAOKI

    2010-01-01

    Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian config...

  4. Time integration of tensor trains

    OpenAIRE

    Lubich, Christian; Oseledets, Ivan; Vandereycken, Bart

    2014-01-01

    A robust and efficient time integrator for dynamical tensor approximation in the tensor train or matrix product state format is presented. The method is based on splitting the projector onto the tangent space of the tensor manifold. The algorithm can be used for updating time-dependent tensors in the given data-sparse tensor train / matrix product state format and for computing an approximate solution to high-dimensional tensor differential equations within this data-sparse format. The formul...

  5. Tensor spaces and exterior algebra

    CERN Document Server

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  6. The direct tensor solution and higher-order acquisition schemes for generalized diffusion tensor imaging

    NARCIS (Netherlands)

    Akkerman, Erik M.

    2010-01-01

    Both in diffusion tensor imaging (DTI) and in generalized diffusion tensor imaging (GDTI) the relation between the diffusion tensor and the measured apparent diffusion coefficients is given by a tensorial equation, which needs to be inverted in order to solve the diffusion tensor. The traditional

  7. RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.

    Science.gov (United States)

    Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B

    2017-06-01

    Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.

  8. Gogny interactions with tensor terms

    Energy Technology Data Exchange (ETDEWEB)

    Anguiano, M.; Lallena, A.M.; Bernard, R.N. [Universidad de Granada, Departamento de Fisica Atomica, Molecular y Nuclear, Granada (Spain); Co' , G. [INFN, Lecce (Italy); De Donno, V. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' E. De Giorgi' ' , Lecce (Italy); Grasso, M. [Universite Paris-Sud, Institut de Physique Nucleaire, IN2P3-CNRS, Orsay (France)

    2016-07-15

    We present a perturbative approach to include tensor terms in the Gogny interaction. We do not change the values of the usual parameterisations, with the only exception of the spin-orbit term, and we add tensor terms whose only free parameters are the strengths of the interactions. We identify observables sensitive to the presence of the tensor force in Hartree-Fock, Hartree-Fock-Bogoliubov and random phase approximation calculations. We show the need of including two tensor contributions, at least: a pure tensor term and a tensor-isospin term. We show results relevant for the inclusion of the tensor term for single-particle energies, charge-conserving magnetic excitations and Gamow-Teller excitations. (orig.)

  9. Tensor structure for Nori motives

    OpenAIRE

    Barbieri-Viale, Luca; Huber, Annette; Prest, Mike

    2018-01-01

    We construct a tensor product on Freyd's universal abelian category attached to an additive tensor category or a tensor quiver and establish a universal property. This is used to give an alternative construction for the tensor product on Nori motives.

  10. Tensor SOM and tensor GTM: Nonlinear tensor analysis by topographic mappings.

    Science.gov (United States)

    Iwasaki, Tohru; Furukawa, Tetsuo

    2016-05-01

    In this paper, we propose nonlinear tensor analysis methods: the tensor self-organizing map (TSOM) and the tensor generative topographic mapping (TGTM). TSOM is a straightforward extension of the self-organizing map from high-dimensional data to tensorial data, and TGTM is an extension of the generative topographic map, which provides a theoretical background for TSOM using a probabilistic generative model. These methods are useful tools for analyzing and visualizing tensorial data, especially multimodal relational data. For given n-mode relational data, TSOM and TGTM can simultaneously organize a set of n-topographic maps. Furthermore, they can be used to explore the tensorial data space by interactively visualizing the relationships between modes. We present the TSOM algorithm and a theoretical description from the viewpoint of TGTM. Various TSOM variations and visualization techniques are also described, along with some applications to real relational datasets. Additionally, we attempt to build a comprehensive description of the TSOM family by adapting various data structures. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Physical and Geometric Interpretations of the Riemann Tensor, Ricci Tensor, and Scalar Curvature

    OpenAIRE

    Loveridge, Lee C.

    2004-01-01

    Various interpretations of the Riemann Curvature Tensor, Ricci Tensor, and Scalar Curvature are described. Also, the physical meanings of the Einstein Tensor and Einstein's Equations are discussed. Finally a derivation of Newtonian Gravity from Einstein's Equations is given.

  12. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.

    Science.gov (United States)

    Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.

  13. Development of the Tensoral Computer Language

    Science.gov (United States)

    Ferziger, Joel; Dresselhaus, Eliot

    1996-01-01

    The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.

  14. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.

    Science.gov (United States)

    Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben

    2017-08-02

    It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.

  15. Killing-Yano tensors and Nambu mechanics

    International Nuclear Information System (INIS)

    Baleanu, D.

    1998-01-01

    Killing-Yano tensors were introduced in 1952 by Kentaro-Yano from mathematical point of view. The physical interpretation of Killing-Yano tensors of rank higher than two was unclear. We found that all Killing-Yano tensors η i 1 i 2 . .. i n with covariant derivative zero are Nambu tensors. We found that in the case of flat space case all Killing-Yano tensors are Nambu tensors. In the case of Taub-NUT and Kerr-Newmann metric Killing-Yano tensors of order two generate Nambu tensors of rank 3

  16. Categorical Tensor Network States

    Directory of Open Access Journals (Sweden)

    Jacob D. Biamonte

    2011-12-01

    Full Text Available We examine the use of string diagrams and the mathematics of category theory in the description of quantum states by tensor networks. This approach lead to a unification of several ideas, as well as several results and methods that have not previously appeared in either side of the literature. Our approach enabled the development of a tensor network framework allowing a solution to the quantum decomposition problem which has several appealing features. Specifically, given an n-body quantum state |ψ〉, we present a new and general method to factor |ψ〉 into a tensor network of clearly defined building blocks. We use the solution to expose a previously unknown and large class of quantum states which we prove can be sampled efficiently and exactly. This general framework of categorical tensor network states, where a combination of generic and algebraically defined tensors appear, enhances the theory of tensor network states.

  17. Tensor Permutation Matrices in Finite Dimensions

    OpenAIRE

    Christian, Rakotonirina

    2005-01-01

    We have generalised the properties with the tensor product, of one 4x4 matrix which is a permutation matrix, and we call a tensor commutation matrix. Tensor commutation matrices can be constructed with or without calculus. A formula allows us to construct a tensor permutation matrix, which is a generalisation of tensor commutation matrix, has been established. The expression of an element of a tensor commutation matrix has been generalised in the case of any element of a tensor permutation ma...

  18. Grand Canyon as a universally accessible virtual field trip for intro Geoscience classes using geo-referenced mobile game technology

    Science.gov (United States)

    Bursztyn, N.; Pederson, J. L.; Shelton, B.

    2012-12-01

    There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological

  19. The geomagnetic field gradient tensor

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Olsen, Nils

    2012-01-01

    We develop the general mathematical basis for space magnetic gradiometry in spherical coordinates. The magnetic gradient tensor is a second rank tensor consisting of 3 × 3 = 9 spatial derivatives. Since the geomagnetic field vector B is always solenoidal (∇ · B = 0) there are only eight independent...... tensor elements. Furthermore, in current free regions the magnetic gradient tensor becomes symmetric, further reducing the number of independent elements to five. In that case B is a Laplacian potential field and the gradient tensor can be expressed in series of spherical harmonics. We present properties...... of the magnetic gradient tensor and provide explicit expressions of its elements in terms of spherical harmonics. Finally we discuss the benefit of using gradient measurements for exploring the Earth’s magnetic field from space, in particular the advantage of the various tensor elements for a better determination...

  20. Algebraic classification of the Weyl tensor in higher dimensions based on its 'superenergy' tensor

    International Nuclear Information System (INIS)

    Senovilla, Jose M M

    2010-01-01

    The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved. (fast track communication)

  1. Symmetric Tensor Decomposition

    DEFF Research Database (Denmark)

    Brachat, Jerome; Comon, Pierre; Mourrain, Bernard

    2010-01-01

    We present an algorithm for decomposing a symmetric tensor, of dimension n and order d, as a sum of rank-1 symmetric tensors, extending the algorithm of Sylvester devised in 1886 for binary forms. We recall the correspondence between the decomposition of a homogeneous polynomial in n variables...... of polynomial equations of small degree in non-generic cases. We propose a new algorithm for symmetric tensor decomposition, based on this characterization and on linear algebra computations with Hankel matrices. The impact of this contribution is two-fold. First it permits an efficient computation...... of the decomposition of any tensor of sub-generic rank, as opposed to widely used iterative algorithms with unproved global convergence (e.g. Alternate Least Squares or gradient descents). Second, it gives tools for understanding uniqueness conditions and for detecting the rank....

  2. [Grand Banks activity : updates and opportunities

    International Nuclear Information System (INIS)

    Bruce, G.

    1998-01-01

    An overview of the exploration and on-going activities by the petroleum industry on the Grand Banks of Newfoundland was presented. The two offshore oil developments underway are Hibernia and Terra Nova, both located in the Jeanne d'Arc Basin. Current production from Hibernia is 68,000 bopd, expected to rise to 130,000 bopd in 1999. The Terra Nova Field is still under development. Total recoverable reserves from the 17 discoveries made in the Jeanne d'Arc Basin are estimated at 1.6 billion barrels of oil and 4 trillion cubic feet of gas. Industry participants in the area include Amoco, Petro-Canada, Mobil, Chevron, Husky and Norsk Hydro. Petro-Canada believes the Grand Banks represent one of the best opportunities for oil anywhere in the world. There are currently 21 exploration licenses held on the Grand Banks. Major attractions of the area include the large reserve potential, the relatively low finding costs, the size of the pools being discovered, improvements in offshore technology that have substantially lowered development costs, and a profit-sensitive generic royalty regime that ensures reasonable rates of return for investors. figs

  3. Monograph On Tensor Notations

    Science.gov (United States)

    Sirlin, Samuel W.

    1993-01-01

    Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.

  4. Cartesian tensors an introduction

    CERN Document Server

    Temple, G

    2004-01-01

    This undergraduate text provides an introduction to the theory of Cartesian tensors, defining tensors as multilinear functions of direction, and simplifying many theorems in a manner that lends unity to the subject. The author notes the importance of the analysis of the structure of tensors in terms of spectral sets of projection operators as part of the very substance of quantum theory. He therefore provides an elementary discussion of the subject, in addition to a view of isotropic tensors and spinor analysis within the confines of Euclidean space. The text concludes with an examination of t

  5. MATLAB tensor classes for fast algorithm prototyping.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Laboratories, Livermore, CA)

    2004-10-01

    Tensors (also known as mutidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to psychometrics. We describe four MATLAB classes for tensor manipulations that can be used for fast algorithm prototyping. The tensor class extends the functionality of MATLAB's multidimensional arrays by supporting additional operations such as tensor multiplication. The tensor as matrix class supports the 'matricization' of a tensor, i.e., the conversion of a tensor to a matrix (and vice versa), a commonly used operation in many algorithms. Two additional classes represent tensors stored in decomposed formats: cp tensor and tucker tensor. We descibe all of these classes and then demonstrate their use by showing how to implement several tensor algorithms that have appeared in the literature.

  6. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Krtous, Pavel [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Kubiznak, David [Institute of Theoretical Physics, Charles University, V Holesovickach 2, Prague (Czech Republic); Page, Don N. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada); Frolov, Valeri P. [Theoretical Physics Institute, University of Alberta, Edmonton T6G 2G7, Alberta (Canada)

    2007-02-15

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 {<=} j {<=} k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  7. Killing-Yano tensors, rank-2 Killing tensors, and conserved quantities in higher dimensions

    International Nuclear Information System (INIS)

    Krtous, Pavel; Kubiznak, David; Page, Don N.; Frolov, Valeri P.

    2007-01-01

    From the metric and one Killing-Yano tensor of rank D-2 in any D-dimensional spacetime with such a principal Killing-Yano tensor, we show how to generate k = [(D+1)/2] Killing-Yano tensors, of rank D-2j for all 0 ≤ j ≤ k-1, and k rank-2 Killing tensors, giving k constants of geodesic motion that are in involution. For the example of the Kerr-NUT-AdS spacetime (hep-th/0604125) with its principal Killing-Yano tensor (gr-qc/0610144), these constants and the constants from the k Killing vectors give D independent constants in involution, making the geodesic motion completely integrable (hep-th/0611083). The constants of motion are also related to the constants recently obtained in the separation of the Hamilton-Jacobi and Klein-Gordon equations (hep-th/0611245)

  8. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  9. Tensor-based spatiotemporal saliency detection

    Science.gov (United States)

    Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen

    2018-03-01

    This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.

  10. Generalized dielectric permittivity tensor

    International Nuclear Information System (INIS)

    Borzdov, G.N.; Barkovskii, L.M.; Fedorov, F.I.

    1986-01-01

    The authors deal with the question of what is to be done with the formalism of the electrodynamics of dispersive media based on the introduction of dielectric-permittivity tensors for purely harmonic fields when Voigt waves and waves of more general form exist. An attempt is made to broaden and generalize the formalism to take into account dispersion of waves of the given type. In dispersive media, the polarization, magnetization, and conduction current-density vectors of point and time are determined by the values of the electromagnetic field vectors in the vicinity of this point (spatial dispersion) in the preceding instants of time (time dispersion). The dielectric-permittivity tensor and other tensors of electrodynamic parameters of the medium are introduced in terms of a set of evolution operators and not the set of harmonic function. It is noted that a magnetic-permeability tensor and an elastic-modulus tensor may be introduced for an acoustic field in dispersive anisotropic media with coupling equations of general form

  11. Tensor analysis for physicists

    CERN Document Server

    Schouten, J A

    1989-01-01

    This brilliant study by a famed mathematical scholar and former professor of mathematics at the University of Amsterdam integrates a concise exposition of the mathematical basis of tensor analysis with admirably chosen physical examples of the theory. The first five chapters incisively set out the mathematical theory underlying the use of tensors. The tensor algebra in EN and RN is developed in Chapters I and II. Chapter II introduces a sub-group of the affine group, then deals with the identification of quantities in EN. The tensor analysis in XN is developed in Chapter IV. In chapters VI through IX, Professor Schouten presents applications of the theory that are both intrinsically interesting and good examples of the use and advantages of the calculus. Chapter VI, intimately connected with Chapter III, shows that the dimensions of physical quantities depend upon the choice of the underlying group, and that tensor calculus is the best instrument for dealing with the properties of anisotropic media. In Chapte...

  12. Sparse alignment for robust tensor learning.

    Science.gov (United States)

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  13. TensorPack: a Maple-based software package for the manipulation of algebraic expressions of tensors in general relativity

    International Nuclear Information System (INIS)

    Huf, P A; Carminati, J

    2015-01-01

    In this paper we: (1) introduce TensorPack, a software package for the algebraic manipulation of tensors in covariant index format in Maple; (2) briefly demonstrate the use of the package with an orthonormal tensor proof of the shearfree conjecture for dust. TensorPack is based on the Riemann and Canon tensor software packages and uses their functions to express tensors in an indexed covariant format. TensorPack uses a string representation as input and provides functions for output in index form. It extends the functionality to basic algebra of tensors, substitution, covariant differentiation, contraction, raising/lowering indices, symmetry functions and other accessory functions. The output can be merged with text in the Maple environment to create a full working document with embedded dynamic functionality. The package offers potential for manipulation of indexed algebraic tensor expressions in a flexible software environment. (paper)

  14. Unique characterization of the Bel-Robinson tensor

    International Nuclear Information System (INIS)

    Bergqvist, G; Lankinen, P

    2004-01-01

    We prove that a completely symmetric and trace-free rank-4 tensor is, up to sign, a Bel-Robinson-type tensor, i.e., the superenergy tensor of a tensor with the same algebraic symmetries as the Weyl tensor, if and only if it satisfies a certain quadratic identity. This may be seen as the first Rainich theory result for rank-4 tensors

  15. Tensor Product of Polygonal Cell Complexes

    OpenAIRE

    Chien, Yu-Yen

    2017-01-01

    We introduce the tensor product of polygonal cell complexes, which interacts nicely with the tensor product of link graphs of complexes. We also develop the unique factorization property of polygonal cell complexes with respect to the tensor product, and study the symmetries of tensor products of polygonal cell complexes.

  16. Mean template for tensor-based morphometry using deformation tensors.

    Science.gov (United States)

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  17. Notes on super Killing tensors

    Energy Technology Data Exchange (ETDEWEB)

    Howe, P.S. [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Lindström, University [Department of Physics and Astronomy, Theoretical Physics, Uppsala University,SE-751 20 Uppsala (Sweden); Theoretical Physics, Imperial College London,Prince Consort Road, London SW7 2AZ (United Kingdom)

    2016-03-14

    The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.

  18. Identifiability analysis of rotational diffusion tensor and electronic transition moments measured in time-resolved fluorescence depolarization experiment

    International Nuclear Information System (INIS)

    Szubiakowski, Jacek P.

    2014-01-01

    The subject of this paper is studies of the deterministic identifiability of molecular parameters, such as rotational diffusion tensor components and orientation of electronic transition moments, resulting from the time-resolved fluorescence anisotropy experiment. In the most general case considered, a pair of perpendicularly polarized emissions enables the unique determination of all the rotational diffusion tensor's principal components. The influence of the tensor's symmetry and the associated degeneration of its eigenvalues on the identifiability of the electronic transitions moments is systematically investigated. The analysis reveals that independently of the rotational diffusion tensor's symmetry, the transition moments involved in photoselection and emission processes cannot be uniquely identified without a priori information about their mutual orientation or their orientation with respect to the principal axes of the tensor. Moreover, it is shown that increasing the symmetry of the rotational diffusion tensor deteriorates the degree of the transition moments identifiability. To obtain these results analytically, a novel approach to solve bilinear system of equations for Markov parameters is applied. The effect of the additional information, obtained from fluorescence measurements for different molecular mobilities, to improve the identifiability at various levels of analysis is shown. The effectiveness and reliability of the target analysis method for experimental determination of the molecular parameters is also discussed

  19. Tensor Train Neighborhood Preserving Embedding

    Science.gov (United States)

    Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin

    2018-05-01

    In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.

  20. The Topology of Symmetric Tensor Fields

    Science.gov (United States)

    Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval

    1997-01-01

    Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.

  1. Random SU(2) invariant tensors

    Science.gov (United States)

    Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei

    2018-04-01

    SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n  =  4. In this paper, we show that for n  >  4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.

  2. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    Science.gov (United States)

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  3. Spherical Tensor Calculus for Local Adaptive Filtering

    Science.gov (United States)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  4. Improved tensor multiplets

    International Nuclear Information System (INIS)

    Wit, B. de; Rocek, M.

    1982-01-01

    We construct a conformally invariant theory of the N = 1 supersymmetric tensor gauge multiplet and discuss the situation in N = 2. We show that our results give rise to the recently proposed variant of Poincare supergravity, and provide the complete tensor calculus for the theory. Finally, we argue that this theory cannot be quantized sensibly. (orig.)

  5. The evolution of tensor polarization

    International Nuclear Information System (INIS)

    Huang, H.; Lee, S.Y.; Ratner, L.

    1993-01-01

    By using the equation of motion for the vector polarization, the spin transfer matrix for spin tensor polarization, the spin transfer matrix for spin tensor polarization is derived. The evolution equation for the tensor polarization is studied in the presence of an isolate spin resonance and in the presence of a spin rotor, or snake

  6. Tensor algebra and tensor analysis for engineers with applications to continuum mechanics

    CERN Document Server

    Itskov, Mikhail

    2015-01-01

    This is the fourth and revised edition of a well-received book that aims at bridging the gap between the engineering course of tensor algebra on the one side and the mathematical course of classical linear algebra on the other side. In accordance with the contemporary way of scientific publications, a modern absolute tensor notation is preferred throughout. The book provides a comprehensible exposition of the fundamental mathematical concepts of tensor calculus and enriches the presented material with many illustrative examples. In addition, the book also includes advanced chapters dealing with recent developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics. Hence, this monograph addresses graduate students as well as scientists working in this field. In each chapter numerous exercises are included, allowing for self-study and intense practice. Solutions to the exercises are also provided.

  7. Expectation-Maximization Tensor Factorization for Practical Location Privacy Attacks

    Directory of Open Access Journals (Sweden)

    Murakami Takao

    2017-10-01

    Full Text Available Location privacy attacks based on a Markov chain model have been widely studied to de-anonymize or de-obfuscate mobility traces. An adversary can perform various kinds of location privacy attacks using a personalized transition matrix, which is trained for each target user. However, the amount of training data available to the adversary can be very small, since many users do not disclose much location information in their daily lives. In addition, many locations can be missing from the training traces, since many users do not disclose their locations continuously but rather sporadically. In this paper, we show that the Markov chain model can be a threat even in this realistic situation. Specifically, we focus on a training phase (i.e. mobility profile building phase and propose Expectation-Maximization Tensor Factorization (EMTF, which alternates between computing a distribution of missing locations (E-step and computing personalized transition matrices via tensor factorization (M-step. Since the time complexity of EMTF is exponential in the number of missing locations, we propose two approximate learning methods, one of which uses the Viterbi algorithm while the other uses the Forward Filtering Backward Sampling (FFBS algorithm. We apply our learning methods to a de-anonymization attack and a localization attack, and evaluate them using three real datasets. The results show that our learning methods significantly outperform a random guess, even when there is only one training trace composed of 10 locations per user, and each location is missing with probability 80% (i.e. even when users hardly disclose two temporally-continuous locations.

  8. Tensor Calculus: Unlearning Vector Calculus

    Science.gov (United States)

    Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita

    2018-01-01

    Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…

  9. Link prediction via generalized coupled tensor factorisation

    DEFF Research Database (Denmark)

    Ermiş, Beyza; Evrim, Acar Ataman; Taylan Cemgil, A.

    2012-01-01

    and higher-order tensors. We propose to use an approach based on probabilistic interpretation of tensor factorisation models, i.e., Generalised Coupled Tensor Factorisation, which can simultaneously fit a large class of tensor models to higher-order tensors/matrices with com- mon latent factors using...... different loss functions. Numerical experiments demonstrate that joint analysis of data from multiple sources via coupled factorisation improves the link prediction performance and the selection of right loss function and tensor model is crucial for accurately predicting missing links....

  10. Energy-momentum tensor of the electromagnetic field

    International Nuclear Information System (INIS)

    Horndeski, G.W.; Wainwright, J.

    1977-01-01

    In this paper we investigate the energy-momentum tensor of the most general second-order vector-tensor theory of gravitation and electromagnetism which has field equations which are (i) derivable from a variational principle, (ii) consistent with the notion of conservation of charge, and (iii) compatible with Maxwell's equations in a flat space. This energy-momentum tensor turns out to be quadratic in the first partial derivatives of the electromagnetic field tensor and depends upon the curvature tensor. The asymptotic behavior of this energy-momentum tensor is examined for solutions to Maxwell's equations in Minkowski space, and it is demonstrated that this energy-momentum tensor predicts regions of negative energy density in the vicinity of point sources

  11. A new Weyl-like tensor of geometric origin

    Science.gov (United States)

    Vishwakarma, Ram Gopal

    2018-04-01

    A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.

  12. Tensor calculus for physics a concise guide

    CERN Document Server

    Neuenschwander, Dwight E

    2015-01-01

    Understanding tensors is essential for any physics student dealing with phenomena where causes and effects have different directions. A horizontal electric field producing vertical polarization in dielectrics; an unbalanced car wheel wobbling in the vertical plane while spinning about a horizontal axis; an electrostatic field on Earth observed to be a magnetic field by orbiting astronauts—these are some situations where physicists employ tensors. But the true beauty of tensors lies in this fact: When coordinates are transformed from one system to another, tensors change according to the same rules as the coordinates. Tensors, therefore, allow for the convenience of coordinates while also transcending them. This makes tensors the gold standard for expressing physical relationships in physics and geometry. Undergraduate physics majors are typically introduced to tensors in special-case applications. For example, in a classical mechanics course, they meet the "inertia tensor," and in electricity and magnetism...

  13. Seamless warping of diffusion tensor fields

    DEFF Research Database (Denmark)

    Xu, Dongrong; Hao, Xuejun; Bansal, Ravi

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping...... of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot...... transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT...

  14. Tensor norms and operator ideals

    CERN Document Server

    Defant, A; Floret, K

    1992-01-01

    The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer

  15. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  16. Tensors and their applications

    CERN Document Server

    Islam, Nazrul

    2006-01-01

    About the Book: The book is written is in easy-to-read style with corresponding examples. The main aim of this book is to precisely explain the fundamentals of Tensors and their applications to Mechanics, Elasticity, Theory of Relativity, Electromagnetic, Riemannian Geometry and many other disciplines of science and engineering, in a lucid manner. The text has been explained section wise, every concept has been narrated in the form of definition, examples and questions related to the concept taught. The overall package of the book is highly useful and interesting for the people associated with the field. Contents: Preliminaries Tensor Algebra Metric Tensor and Riemannian Metric Christoffel`s Symbols and Covariant Differentiation Riemann-Christoffel Tensor The e-Systems and the Generalized Krönecker Deltas Geometry Analytical Mechanics Curvature of a Curve, Geodesic Parallelism of Vectors Ricci`s Coefficients of Rotation and Congruence Hyper Surfaces

  17. Tensor Completion Algorithms in Big Data Analytics

    OpenAIRE

    Song, Qingquan; Ge, Hancheng; Caverlee, James; Hu, Xia

    2017-01-01

    Tensor completion is a problem of filling the missing or unobserved entries of partially observed tensors. Due to the multidimensional character of tensors in describing complex datasets, tensor completion algorithms and their applications have received wide attention and achievement in areas like data mining, computer vision, signal processing, and neuroscience. In this survey, we provide a modern overview of recent advances in tensor completion algorithms from the perspective of big data an...

  18. Efficient MATLAB computations with sparse and factored tensors.

    Energy Technology Data Exchange (ETDEWEB)

    Bader, Brett William; Kolda, Tamara Gibson (Sandia National Lab, Livermore, CA)

    2006-12-01

    In this paper, the term tensor refers simply to a multidimensional or N-way array, and we consider how specially structured tensors allow for efficient storage and computation. First, we study sparse tensors, which have the property that the vast majority of the elements are zero. We propose storing sparse tensors using coordinate format and describe the computational efficiency of this scheme for various mathematical operations, including those typical to tensor decomposition algorithms. Second, we study factored tensors, which have the property that they can be assembled from more basic components. We consider two specific types: a Tucker tensor can be expressed as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested in the case where the storage of the components is less than the storage of the full tensor, and we demonstrate that many elementary operations can be computed using only the components. All of the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.

  19. Reciprocal mass tensor : a general form

    International Nuclear Information System (INIS)

    Roy, C.L.

    1978-01-01

    Using the results of earlier treatment of wave packets, a general form of reciprocal mass tensor has been obtained. The elements of this tensor are seen to be dependent on momentum as well as space coordinates of the particle under consideration. The conditions under which the tensor would reduce to the usual space-independent form, are discussed and the impact of the space-dependence of this tensor on the motion of Bloch electrons, is examined. (author)

  20. A new deteriorated energy-momentum tensor

    International Nuclear Information System (INIS)

    Duff, M.J.

    1982-01-01

    The stress-tensor of a scalar field theory is not unique because of the possibility of adding an 'improvement term'. In supersymmetric field theories the stress-tensor will appear in a super-current multiplet along with the sypersymmetry current. The general question of the supercurrent multiplet for arbitrary deteriorated stress tensors and their relationship to supercurrent multiplets for models with gauge antisymmetric tensors is answered for various models of N = 1, 2 and 4 supersymmetry. (U.K.)

  1. Antisymmetric tensor generalizations of affine vector fields.

    Science.gov (United States)

    Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro

    2016-02-01

    Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.

  2. (Ln-bar, g)-spaces. Special tensor fields

    International Nuclear Information System (INIS)

    Manoff, S.; Dimitrov, B.

    1998-01-01

    The Kronecker tensor field, the contraction tensor field, as well as the multi-Kronecker and multi-contraction tensor fields are determined and the action of the covariant differential operator, the Lie differential operator, the curvature operator, and the deviation operator on these tensor fields is established. The commutation relations between the operators Sym and Asym and the covariant and Lie differential operators are considered acting on symmetric and antisymmetric tensor fields over (L n bar, g)-spaces

  3. The Riemann-Lovelock Curvature Tensor

    OpenAIRE

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth-order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k \\le D

  4. The Physical Interpretation of the Lanczos Tensor

    OpenAIRE

    Roberts, Mark D.

    1999-01-01

    The field equations of general relativity can be written as first order differential equations in the Weyl tensor, the Weyl tensor in turn can be written as a first order differential equation in a three index tensor called the Lanczos tensor. The Lanczos tensor plays a similar role in general relativity to that of the vector potential in electro-magnetic theory. The Aharonov-Bohm effect shows that when quantum mechanics is applied to electro-magnetic theory the vector potential is dynamicall...

  5. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    Science.gov (United States)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  6. 3D reconstruction of tensors and vectors

    International Nuclear Information System (INIS)

    Defrise, Michel; Gullberg, Grant T.

    2005-01-01

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields

  7. Non-Newtonian stress tensor and thermal conductivity tensor in granular plane shear flow

    Science.gov (United States)

    Alam, Meheboob; Saha, Saikat

    2014-11-01

    The non-Newtonian stress tensor and the heat flux in the plane shear flow of smooth inelastic disks are analysed from the Grad-level moment equations using the anisotropic Gaussian as a reference. Closed-form expressions for shear viscosity, pressure, first normal stress difference (N1) and the dissipation rate are given as functions of (i) the density or the area fraction (ν), (ii) the restitution coefficient (e), (iii) the dimensionless shear rate (R), (iv) the temperature anisotropy [ η, the difference between the principal eigenvalues of the second moment tensor] and (v) the angle (ϕ) between the principal directions of the shear tensor and the second moment tensor. Particle simulation data for a sheared hard-disk system is compared with theoretical results, with good agreement for p, μ and N1 over a large range of density. In contrast, the predictions from a Navier-Stokes order constitutive model are found to deviate significantly from both the simulation and the moment theory even at moderate values of e. We show that the gradient of the deviatoric part of the kinetic stress drives a heat current and the thermal conductivity is characterized by an anisotropic 2nd rank tensor for which explicit expressions are derived.

  8. Weyl tensors for asymmetric complex curvatures

    International Nuclear Information System (INIS)

    Oliveira, C.G.

    Considering a second rank Hermitian field tensor and a general Hermitian connection the associated complex curvature tensor is constructed. The Weyl tensor that corresponds to this complex curvature is determined. The formalism is applied to the Weyl unitary field theory and to the Moffat gravitational theory. (Author) [pt

  9. Tensor voting for robust color edge detection

    OpenAIRE

    Moreno, Rodrigo; García, Miguel Ángel; Puig, Domenec

    2014-01-01

    The final publication is available at Springer via http://dx.doi.org/10.1007/978-94-007-7584-8_9 This chapter proposes two robust color edge detection methods based on tensor voting. The first method is a direct adaptation of the classical tensor voting to color images where tensors are initialized with either the gradient or the local color structure tensor. The second method is based on an extension of tensor voting in which the encoding and voting processes are specifically tailored to ...

  10. Should I use TensorFlow

    OpenAIRE

    Schrimpf, Martin

    2016-01-01

    Google's Machine Learning framework TensorFlow was open-sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively. This work is aimed towards people with experience in Machine Learning considering whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity,...

  11. Dictionary-Based Tensor Canonical Polyadic Decomposition

    Science.gov (United States)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  12. Bayesian regularization of diffusion tensor images

    DEFF Research Database (Denmark)

    Frandsen, Jesper; Hobolth, Asger; Østergaard, Leif

    2007-01-01

    Diffusion tensor imaging (DTI) is a powerful tool in the study of the course of nerve fibre bundles in the human brain. Using DTI, the local fibre orientation in each image voxel can be described by a diffusion tensor which is constructed from local measurements of diffusion coefficients along...... several directions. The measured diffusion coefficients and thereby the diffusion tensors are subject to noise, leading to possibly flawed representations of the three dimensional fibre bundles. In this paper we develop a Bayesian procedure for regularizing the diffusion tensor field, fully utilizing...

  13. Energy-momentum tensor in the fermion-pairing model

    International Nuclear Information System (INIS)

    Kawati, S.; Miyata, H.

    1980-01-01

    The symmetric energy-momentum tensor for the self-interacting fermion theory (psi-barpsi) 2 is expressed in terms of the collective mode within the Hartree approximation. The divergent part of the energy-momentum tensor for the fermion theory induces an effective energy-momentum tensor for the collective mode, and this effective energy-momentum tensor automatically has the Callan-Coleman-Jackiw improved form. The renormalized energy-momentum tensor is structurally equivalent to the Callan-Coleman-Jackiw improved tensor for the Yukawa theory

  14. Diffusion tensor imaging tensor shape analysis for assessment of regional white matter differences.

    Science.gov (United States)

    Middleton, Dana M; Li, Jonathan Y; Lee, Hui J; Chen, Steven; Dickson, Patricia I; Ellinwood, N Matthew; White, Leonard E; Provenzale, James M

    2017-08-01

    Purpose The purpose of this study was to investigate a novel tensor shape plot analysis technique of diffusion tensor imaging data as a means to assess microstructural differences in brain tissue. We hypothesized that this technique could distinguish white matter regions with different microstructural compositions. Methods Three normal canines were euthanized at seven weeks old. Their brains were imaged using identical diffusion tensor imaging protocols on a 7T small-animal magnetic resonance imaging system. We examined two white matter regions, the internal capsule and the centrum semiovale, each subdivided into an anterior and posterior region. We placed 100 regions of interest in each of the four brain regions. Eigenvalues for each region of interest triangulated onto tensor shape plots as the weighted average of three shape metrics at the plot's vertices: CS, CL, and CP. Results The distribution of data on the plots for the internal capsule differed markedly from the centrum semiovale data, thus confirming our hypothesis. Furthermore, data for the internal capsule were distributed in a relatively tight cluster, possibly reflecting the compact and parallel nature of its fibers, while data for the centrum semiovale were more widely distributed, consistent with the less compact and often crossing pattern of its fibers. This indicates that the tensor shape plot technique can depict data in similar regions as being alike. Conclusion Tensor shape plots successfully depicted differences in tissue microstructure and reflected the microstructure of individual brain regions. This proof of principle study suggests that if our findings are reproduced in larger samples, including abnormal white matter states, the technique may be useful in assessment of white matter diseases.

  15. The Einstein tensor characterizing some Riemann spaces

    International Nuclear Information System (INIS)

    Rahman, M.S.

    1993-07-01

    A formal definition of the Einstein tensor is given. Mention is made of how this tensor plays a role of expressing certain conditions in a precise form. The cases of reducing the Einstein tensor to a zero tensor are studied on its merit. A lucid account of results, formulated as theorems, on Einstein symmetric and Einstein recurrent spaces is then presented. (author). 5 refs

  16. Radiative corrections in a vector-tensor model

    International Nuclear Information System (INIS)

    Chishtie, F.; Gagne-Portelance, M.; Hanif, T.; Homayouni, S.; McKeon, D.G.C.

    2006-01-01

    In a recently proposed model in which a vector non-Abelian gauge field interacts with an antisymmetric tensor field, it has been shown that the tensor field possesses no physical degrees of freedom. This formal demonstration is tested by computing the one-loop contributions of the tensor field to the self-energy of the vector field. It is shown that despite the large number of Feynman diagrams in which the tensor field contributes, the sum of these diagrams vanishes, confirming that it is not physical. Furthermore, if the tensor field were to couple with a spinor field, it is shown at one-loop order that the spinor self-energy is not renormalizable, and hence this coupling must be excluded. In principle though, this tensor field does couple to the gravitational field

  17. Transposes, L-Eigenvalues and Invariants of Third Order Tensors

    OpenAIRE

    Qi, Liqun

    2017-01-01

    Third order tensors have wide applications in mechanics, physics and engineering. The most famous and useful third order tensor is the piezoelectric tensor, which plays a key role in the piezoelectric effect, first discovered by Curie brothers. On the other hand, the Levi-Civita tensor is famous in tensor calculus. In this paper, we study third order tensors and (third order) hypermatrices systematically, by regarding a third order tensor as a linear operator which transforms a second order t...

  18. Joint Tensor Feature Analysis For Visual Object Recognition.

    Science.gov (United States)

    Wong, Wai Keung; Lai, Zhihui; Xu, Yong; Wen, Jiajun; Ho, Chu Po

    2015-11-01

    Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms.

  19. Graded tensor calculus

    International Nuclear Information System (INIS)

    Scheunert, M.

    1982-10-01

    We develop a graded tensor calculus corresponding to arbitrary Abelian groups of degrees and arbitrary commutation factors. The standard basic constructions and definitions like tensor products, spaces of multilinear mappings, contractions, symmetrization, symmetric algebra, as well as the transpose, adjoint, and trace of a linear mapping, are generalized to the graded case and a multitude of canonical isomorphisms is presented. Moreover, the graded versions of the classical Lie algebras are introduced and some of their basic properties are described. (orig.)

  20. (Ln-bar, g)-spaces. Ordinary and tensor differentials

    International Nuclear Information System (INIS)

    Manoff, S.; Dimitrov, B.

    1998-01-01

    Different types of differentials as special cases of differential operators acting on tensor fields over (L n bar, g)-spaces are considered. The ordinary differential, the covariant differential as a special case of the covariant differential operator, and the Lie differential as a special case of the Lie differential operator are investigated. The tensor differential and its special types (Covariant tensor differential, and Lie tensor differential) are determined and their properties are discussed. Covariant symmetric and antisymmetric (external) tensor differentials, Lie symmetric, and Lie antisymmetric (external) tensor differentials are determined and considered over (L n bar, g)-spaces

  1. Tensor network method for reversible classical computation

    Science.gov (United States)

    Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.

    2018-03-01

    We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.

  2. Robust estimation of adaptive tensors of curvature by tensor voting.

    Science.gov (United States)

    Tong, Wai-Shun; Tang, Chi-Keung

    2005-03-01

    Although curvature estimation from a given mesh or regularly sampled point set is a well-studied problem, it is still challenging when the input consists of a cloud of unstructured points corrupted by misalignment error and outlier noise. Such input is ubiquitous in computer vision. In this paper, we propose a three-pass tensor voting algorithm to robustly estimate curvature tensors, from which accurate principal curvatures and directions can be calculated. Our quantitative estimation is an improvement over the previous two-pass algorithm, where only qualitative curvature estimation (sign of Gaussian curvature) is performed. To overcome misalignment errors, our improved method automatically corrects input point locations at subvoxel precision, which also rejects outliers that are uncorrectable. To adapt to different scales locally, we define the RadiusHit of a curvature tensor to quantify estimation accuracy and applicability. Our curvature estimation algorithm has been proven with detailed quantitative experiments, performing better in a variety of standard error metrics (percentage error in curvature magnitudes, absolute angle difference in curvature direction) in the presence of a large amount of misalignment noise.

  3. On the concircular curvature tensor of Riemannian manifolds

    International Nuclear Information System (INIS)

    Rahman, M.S.; Lal, S.

    1990-06-01

    Definition of the concircular curvature tensor, Z hijk , along with Z-tensor, Z ij , is given and some properties of Z hijk are described. Tensors identical with Z hijk are shown. A necessary and sufficient condition that a Riemannian V n has zero Z-tensor is found. A number of theorems on concircular symmetric space, concircular recurrent space (Z n -space) and Z n -space with zero Z-tensor are deduced. (author). 6 refs

  4. Glyph-Based Comparative Visualization for Diffusion Tensor Fields.

    Science.gov (United States)

    Zhang, Changgong; Schultz, Thomas; Lawonn, Kai; Eisemann, Elmar; Vilanova, Anna

    2016-01-01

    Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging modality that enables the in-vivo reconstruction and visualization of fibrous structures. To inspect the local and individual diffusion tensors, glyph-based visualizations are commonly used since they are able to effectively convey full aspects of the diffusion tensor. For several applications it is necessary to compare tensor fields, e.g., to study the effects of acquisition parameters, or to investigate the influence of pathologies on white matter structures. This comparison is commonly done by extracting scalar information out of the tensor fields and then comparing these scalar fields, which leads to a loss of information. If the glyph representation is kept, simple juxtaposition or superposition can be used. However, neither facilitates the identification and interpretation of the differences between the tensor fields. Inspired by the checkerboard style visualization and the superquadric tensor glyph, we design a new glyph to locally visualize differences between two diffusion tensors by combining juxtaposition and explicit encoding. Because tensor scale, anisotropy type, and orientation are related to anatomical information relevant for DTI applications, we focus on visualizing tensor differences in these three aspects. As demonstrated in a user study, our new glyph design allows users to efficiently and effectively identify the tensor differences. We also apply our new glyphs to investigate the differences between DTI datasets of the human brain in two different contexts using different b-values, and to compare datasets from a healthy and HIV-infected subject.

  5. Tensoral for post-processing users and simulation authors

    Science.gov (United States)

    Dresselhaus, Eliot

    1993-01-01

    The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.

  6. Geometric decomposition of the conformation tensor in viscoelastic turbulence

    Science.gov (United States)

    Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.

    2018-05-01

    This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.

  7. Applications of tensor functions in creep mechanics

    International Nuclear Information System (INIS)

    Betten, J.

    1991-01-01

    Within this contribution a short survey is given of some recent advances in the mathematical modelling of materials behaviour under creep conditions. The mechanical behaviour of anisotropic solids requires a suitable mathematical modelling. The properties of tensor functions with several argument tensors constitute a rational basis for a consistent mathematical modelling of complex material behaviour. This paper presents certain principles, methods, and recent successfull applications of tensor functions in solid mechanics. The rules for specifying irreducible sets of tensor invariants and tensor generators for material tensors of rank two and four are also discussed. Furthermore, it is very important that the scalar coefficients in constitutive and evolutional equations are determined as functions of the integrity basis and experimental data. It is explained in detail that these coefficients can be determined by using tensorial interpolation methods. Some examples for practical use are discussed. (orig./RHM)

  8. Tensor interaction in heavy-ion scattering. Pt. 1

    International Nuclear Information System (INIS)

    Nishioka, H.; Johnson, R.C.

    1985-01-01

    The Heidelberg shape-effect model for heavy-ion tensor interactions is reformulated and generalized using the Hooton-Johnson formulation. The generalized semiclassical model (the turning-point model) predicts that the components of the tensor analysing power anti Tsub(2q) have certain relations with each other for each type of tensor interaction (Tsub(R), Tsub(P) and Tsub(L) types). The predicted relations between the anti Tsub(2q) are very simple and have a direct connection with the properties of the tensor interaction at the turning point. The model predictions are satisfied in quantum-mechanical calculations for 7 Li and 23 Na elastic scattering from 58 Ni in the Fresnel-diffraction energy region. As a consequence of this model, it becomes possible to single out effects from a Tsub(P)- or Tsub(L)-type tensor interaction in polarized heavy-ion scattering. The presence of a Tsub(P)-type tensor interaction is suggested by measured anti T 20 /anti T 22 ratios for 7 Li + 58 Ni scattering. In the turning-point model the three types of tensor operator are not independent, and this is found to be true also in a quantum-mechanical calculation. The model also predicts relations between the components of higher-rank tensor analysing power in the presence of a higher-rank tensor interaction. The rank-3 tensor case is discussed in detail. (orig.)

  9. On Lovelock analogs of the Riemann tensor

    Science.gov (United States)

    Camanho, Xián O.; Dadhich, Naresh

    2016-03-01

    It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.

  10. The simplicial Ricci tensor

    International Nuclear Information System (INIS)

    Alsing, Paul M; McDonald, Jonathan R; Miller, Warner A

    2011-01-01

    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincare conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area-an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.

  11. The simplicial Ricci tensor

    Science.gov (United States)

    Alsing, Paul M.; McDonald, Jonathan R.; Miller, Warner A.

    2011-08-01

    The Ricci tensor (Ric) is fundamental to Einstein's geometric theory of gravitation. The three-dimensional Ric of a spacelike surface vanishes at the moment of time symmetry for vacuum spacetimes. The four-dimensional Ric is the Einstein tensor for such spacetimes. More recently, the Ric was used by Hamilton to define a nonlinear, diffusive Ricci flow (RF) that was fundamental to Perelman's proof of the Poincarè conjecture. Analytic applications of RF can be found in many fields including general relativity and mathematics. Numerically it has been applied broadly to communication networks, medical physics, computer design and more. In this paper, we use Regge calculus (RC) to provide the first geometric discretization of the Ric. This result is fundamental for higher dimensional generalizations of discrete RF. We construct this tensor on both the simplicial lattice and its dual and prove their equivalence. We show that the Ric is an edge-based weighted average of deficit divided by an edge-based weighted average of dual area—an expression similar to the vertex-based weighted average of the scalar curvature reported recently. We use this Ric in a third and independent geometric derivation of the RC Einstein tensor in arbitrary dimensions.

  12. Beyond Low Rank: A Data-Adaptive Tensor Completion Method

    OpenAIRE

    Zhang, Lei; Wei, Wei; Shi, Qinfeng; Shen, Chunhua; Hengel, Anton van den; Zhang, Yanning

    2017-01-01

    Low rank tensor representation underpins much of recent progress in tensor completion. In real applications, however, this approach is confronted with two challenging problems, namely (1) tensor rank determination; (2) handling real tensor data which only approximately fulfils the low-rank requirement. To address these two issues, we develop a data-adaptive tensor completion model which explicitly represents both the low-rank and non-low-rank structures in a latent tensor. Representing the no...

  13. Exploring the tensor networks/AdS correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Arpan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Centre For High Energy Physics, Indian Institute of Science,560012 Bangalore (India); Gao, Zhe-Shen [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Hung, Ling-Yan [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); State Key Laboratory of Surface Physics and Department of Physics, Fudan University,220 Handan Road, 200433 Shanghai (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University,Nanjing, 210093 (China); Liu, Si-Nong [Department of Physics and Center for Field Theory and Particle Physics, Fudan University,220 Handan Road, 200433 Shanghai (China)

    2016-08-11

    In this paper we study the recently proposed tensor networks/AdS correspondence. We found that the Coxeter group is a useful tool to describe tensor networks in a negatively curved space. Studying generic tensor network populated by perfect tensors, we find that the physical wave function generically do not admit any connected correlation functions of local operators. To remedy the problem, we assume that wavefunctions admitting such semi-classical gravitational interpretation are composed of tensors close to, but not exactly perfect tensors. Computing corrections to the connected two point correlation functions, we find that the leading contribution is given by structures related to geodesics connecting the operators inserted at the boundary physical dofs. Such considerations admit generalizations at least to three point functions. This is highly suggestive of the emergence of the analogues of Witten diagrams in the tensor network. The perturbations alone however do not give the right entanglement spectrum. Using the Coxeter construction, we also constructed the tensor network counterpart of the BTZ black hole, by orbifolding the discrete lattice on which the network resides. We found that the construction naturally reproduces some of the salient features of the BTZ black hole, such as the appearance of RT surfaces that could wrap the horizon, depending on the size of the entanglement region A.

  14. p-Norm SDD tensors and eigenvalue localization

    Directory of Open Access Journals (Sweden)

    Qilong Liu

    2016-07-01

    Full Text Available Abstract We present a new class of nonsingular tensors (p-norm strictly diagonally dominant tensors, which is a subclass of strong H $\\mathcal{H}$ -tensors. As applications of the results, we give a new eigenvalue inclusion set, which is tighter than those provided by Li et al. (Linear Multilinear Algebra 64:727-736, 2016 in some case. Based on this set, we give a checkable sufficient condition for the positive (semidefiniteness of an even-order symmetric tensor.

  15. Differential invariants for higher-rank tensors. A progress report

    International Nuclear Information System (INIS)

    Tapial, V.

    2004-07-01

    We outline the construction of differential invariants for higher-rank tensors. In section 2 we outline the general method for the construction of differential invariants. A first result is that the simplest tensor differential invariant contains derivatives of the same order as the rank of the tensor. In section 3 we review the construction for the first-rank tensors (vectors) and second-rank tensors (metrics). In section 4 we outline the same construction for higher-rank tensors. (author)

  16. Energy-momentum tensor in scalar QED

    International Nuclear Information System (INIS)

    Joglekar, S.D.; Misra, A.

    1988-01-01

    We consider the renormalization of the energy-momentum tensor in scalar quantum electrodynamics. We show the need for adding an improvement term to the conventional energy-momentum tensor. We consider two possible forms for the improvement term: (i) one in which the improvement coefficient is a finite function of bare parameters of the theory (so that the energy-momentum tensor can be obtained from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a negative result; viz., neither form leads to a finite energy-momentum tensor to O(e 2 λ/sup n/). .AE

  17. Calculus of tensors and differential forms

    CERN Document Server

    Sinha, Rajnikant

    2014-01-01

    Calculus of tensors and differential forms is an introductory-level textbook. Through this book, students will familiarize themselves with tools they need in order to use for further study on general relativity and research, such as affine tensors, tensor calculus on manifolds, relative tensors, Lie derivatives, wedge products, differential forms, and Stokes' theorem. The treatment is concrete and in detail, so that abstract concepts do not deter even physics and engineering students. This self contained book requires undergraduate-level calculus of several variables and linear algebra as prerequisite. Fubini's theorem in real analysis, to be used in Stokes' theorem, has been proved earlier than Stokes' theorem so that students don't have to search elsewhere.

  18. Tensor Galileons and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chatzistavrakidis, Athanasios [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Khoo, Fech Scen [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany); Roest, Diederik [Van Swinderen Institute for Particle Physics and Gravity, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Schupp, Peter [Department of Physics and Earth Sciences, Jacobs University Bremen,Campus Ring 1, 28759 Bremen (Germany)

    2017-03-13

    The particular structure of Galileon interactions allows for higher-derivative terms while retaining second order field equations for scalar fields and Abelian p-forms. In this work we introduce an index-free formulation of these interactions in terms of two sets of Grassmannian variables. We employ this to construct Galileon interactions for mixed-symmetry tensor fields and coupled systems thereof. We argue that these tensors are the natural generalization of scalars with Galileon symmetry, similar to p-forms and scalars with a shift-symmetry. The simplest case corresponds to linearised gravity with Lovelock invariants, relating the Galileon symmetry to diffeomorphisms. Finally, we examine the coupling of a mixed-symmetry tensor to gravity, and demonstrate in an explicit example that the inclusion of appropriate counterterms retains second order field equations.

  19. Algebraic and computational aspects of real tensor ranks

    CERN Document Server

    Sakata, Toshio; Miyazaki, Mitsuhiro

    2016-01-01

    This book provides comprehensive summaries of theoretical (algebraic) and computational aspects of tensor ranks, maximal ranks, and typical ranks, over the real number field. Although tensor ranks have been often argued in the complex number field, it should be emphasized that this book treats real tensor ranks, which have direct applications in statistics. The book provides several interesting ideas, including determinant polynomials, determinantal ideals, absolutely nonsingular tensors, absolutely full column rank tensors, and their connection to bilinear maps and Hurwitz-Radon numbers. In addition to reviews of methods to determine real tensor ranks in details, global theories such as the Jacobian method are also reviewed in details. The book includes as well an accessible and comprehensive introduction of mathematical backgrounds, with basics of positive polynomials and calculations by using the Groebner basis. Furthermore, this book provides insights into numerical methods of finding tensor ranks through...

  20. Decomposition of a symmetric second-order tensor

    Science.gov (United States)

    Heras, José A.

    2018-05-01

    In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.

  1. Efficient Low Rank Tensor Ring Completion

    OpenAIRE

    Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin

    2017-01-01

    Using the matrix product state (MPS) representation of the recently proposed tensor ring decompositions, in this paper we propose a tensor completion algorithm, which is an alternating minimization algorithm that alternates over the factors in the MPS representation. This development is motivated in part by the success of matrix completion algorithms that alternate over the (low-rank) factors. In this paper, we propose a spectral initialization for the tensor ring completion algorithm and ana...

  2. Colored Tensor Models - a Review

    Directory of Open Access Journals (Sweden)

    Razvan Gurau

    2012-04-01

    Full Text Available Colored tensor models have recently burst onto the scene as a promising conceptual and computational tool in the investigation of problems of random geometry in dimension three and higher. We present a snapshot of the cutting edge in this rapidly expanding research field. Colored tensor models have been shown to share many of the properties of their direct ancestor, matrix models, which encode a theory of fluctuating two-dimensional surfaces. These features include the possession of Feynman graphs encoding topological spaces, a 1/N expansion of graph amplitudes, embedded matrix models inside the tensor structure, a resumable leading order with critical behavior and a continuum large volume limit, Schwinger-Dyson equations satisfying a Lie algebra (akin to the Virasoro algebra in two dimensions, non-trivial classical solutions and so on. In this review, we give a detailed introduction of colored tensor models and pointers to current and future research directions.

  3. Efficient Tensor Strategy for Recommendation

    Directory of Open Access Journals (Sweden)

    Aboagye Emelia Opoku

    2017-07-01

    Full Text Available The era of big data has witnessed the explosion of tensor datasets, and large scale Probabilistic Tensor Factorization (PTF analysis is important to accommodate such increasing trend of data. Sparsity, and Cold-Start are some of the inherent problems of recommender systems in the era of big data. This paper proposes a novel Sentiment-Based Probabilistic Tensor Analysis technique senti-PTF to address the problems. The propose framework first applies a Natural Language Processing technique to perform sentiment analysis taking advantage of the huge sums of textual data generated available from the social media which are predominantly left untouched. Although some current studies do employ review texts, many of them do not consider how sentiments in reviews influence recommendation algorithm for prediction. There is therefore this big data text analytics gap whose modeling is computationally expensive. From our experiments, our novel machine learning sentiment-based tensor analysis is computationally less expensive, and addresses the cold-start problem, for optimal recommendation prediction.

  4. Smartphone dependence classification using tensor factorization

    Science.gov (United States)

    Kim, Yejin; Yook, In Hye; Yu, Hwanjo; Kim, Dai-Jin

    2017-01-01

    Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC) or the addiction group (SUD) using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale) and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25). We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1) social networking services (SNS) during daytime, 2) web surfing, 3) SNS at night, 4) mobile shopping, 5) entertainment, and 6) gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data. PMID:28636614

  5. Smartphone dependence classification using tensor factorization.

    Directory of Open Access Journals (Sweden)

    Jingyun Choi

    Full Text Available Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC or the addiction group (SUD using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25. We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1 social networking services (SNS during daytime, 2 web surfing, 3 SNS at night, 4 mobile shopping, 5 entertainment, and 6 gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data.

  6. Smartphone dependence classification using tensor factorization.

    Science.gov (United States)

    Choi, Jingyun; Rho, Mi Jung; Kim, Yejin; Yook, In Hye; Yu, Hwanjo; Kim, Dai-Jin; Choi, In Young

    2017-01-01

    Excessive smartphone use causes personal and social problems. To address this issue, we sought to derive usage patterns that were directly correlated with smartphone dependence based on usage data. This study attempted to classify smartphone dependence using a data-driven prediction algorithm. We developed a mobile application to collect smartphone usage data. A total of 41,683 logs of 48 smartphone users were collected from March 8, 2015, to January 8, 2016. The participants were classified into the control group (SUC) or the addiction group (SUD) using the Korean Smartphone Addiction Proneness Scale for Adults (S-Scale) and a face-to-face offline interview by a psychiatrist and a clinical psychologist (SUC = 23 and SUD = 25). We derived usage patterns using tensor factorization and found the following six optimal usage patterns: 1) social networking services (SNS) during daytime, 2) web surfing, 3) SNS at night, 4) mobile shopping, 5) entertainment, and 6) gaming at night. The membership vectors of the six patterns obtained a significantly better prediction performance than the raw data. For all patterns, the usage times of the SUD were much longer than those of the SUC. From our findings, we concluded that usage patterns and membership vectors were effective tools to assess and predict smartphone dependence and could provide an intervention guideline to predict and treat smartphone dependence based on usage data.

  7. Conformal field theories and tensor categories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Chengming [Nankai Univ., Tianjin (China). Chern Institute of Mathematics; Fuchs, Juergen [Karlstad Univ. (Sweden). Theoretical Physics; Huang, Yi-Zhi [Rutgers Univ., Piscataway, NJ (United States). Dept. of Mathematics; Kong, Liang [Tsinghua Univ., Beijing (China). Inst. for Advanced Study; Runkel, Ingo; Schweigert, Christoph (eds.) [Hamburg Univ. (Germany). Dept. of Mathematics

    2014-08-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  8. On improving the efficiency of tensor voting.

    Science.gov (United States)

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim

    2011-11-01

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.

  9. Reduction schemes for one-loop tensor integrals

    International Nuclear Information System (INIS)

    Denner, A.; Dittmaier, S.

    2006-01-01

    We present new methods for the evaluation of one-loop tensor integrals which have been used in the calculation of the complete electroweak one-loop corrections to e + e - ->4 fermions. The described methods for 3-point and 4-point integrals are, in particular, applicable in the case where the conventional Passarino-Veltman reduction breaks down owing to the appearance of Gram determinants in the denominator. One method consists of different variants for expanding tensor coefficients about limits of vanishing Gram determinants or other kinematical determinants, thereby reducing all tensor coefficients to the usual scalar integrals. In a second method a specific tensor coefficient with a logarithmic integrand is evaluated numerically, and the remaining coefficients as well as the standard scalar integral are algebraically derived from this coefficient. For 5-point tensor integrals, we give explicit formulas that reduce the corresponding tensor coefficients to coefficients of 4-point integrals with tensor rank reduced by one. Similar formulas are provided for 6-point functions, and the generalization to functions with more internal propagators is straightforward. All the presented methods are also applicable if infrared (soft or collinear) divergences are treated in dimensional regularization or if mass parameters (for unstable particles) become complex

  10. Conformal field theories and tensor categories. Proceedings

    International Nuclear Information System (INIS)

    Bai, Chengming; Fuchs, Juergen; Huang, Yi-Zhi; Kong, Liang; Runkel, Ingo; Schweigert, Christoph

    2014-01-01

    First book devoted completely to the mathematics of conformal field theories, tensor categories and their applications. Contributors include both mathematicians and physicists. Some long expository articles are especially suitable for beginners. The present volume is a collection of seven papers that are either based on the talks presented at the workshop ''Conformal field theories and tensor categories'' held June 13 to June 17, 2011 at the Beijing International Center for Mathematical Research, Peking University, or are extensions of the material presented in the talks at the workshop. These papers present new developments beyond rational conformal field theories and modular tensor categories and new applications in mathematics and physics. The topics covered include tensor categories from representation categories of Hopf algebras, applications of conformal field theories and tensor categories to topological phases and gapped systems, logarithmic conformal field theories and the corresponding non-semisimple tensor categories, and new developments in the representation theory of vertex operator algebras. Some of the papers contain detailed introductory material that is helpful for graduate students and researchers looking for an introduction to these research directions. The papers also discuss exciting recent developments in the area of conformal field theories, tensor categories and their applications and will be extremely useful for researchers working in these areas.

  11. Loop optimization for tensor network renormalization

    Science.gov (United States)

    Yang, Shuo; Gu, Zheng-Cheng; Wen, Xiao-Gang

    We introduce a tensor renormalization group scheme for coarse-graining a two-dimensional tensor network, which can be successfully applied to both classical and quantum systems on and off criticality. The key idea of our scheme is to deform a 2D tensor network into small loops and then optimize tensors on each loop. In this way we remove short-range entanglement at each iteration step, and significantly improve the accuracy and stability of the renormalization flow. We demonstrate our algorithm in the classical Ising model and a frustrated 2D quantum model. NSF Grant No. DMR-1005541 and NSFC 11274192, BMO Financial Group, John Templeton Foundation, Government of Canada through Industry Canada, Province of Ontario through the Ministry of Economic Development & Innovation.

  12. The Twist Tensor Nuclear Norm for Video Completion.

    Science.gov (United States)

    Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui

    2017-12-01

    In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.

  13. Off-shell N = 2 tensor supermultiplets

    International Nuclear Information System (INIS)

    Wit, Bernard de; Saueressig, Frank

    2006-01-01

    A multiplet calculus is presented for an arbitrary number n of N = 2 tensor supermultiplets. For rigid supersymmetry the known couplings are reproduced. In the superconformal case the target spaces parametrized by the scalar fields are cones over (3n-1)-dimensional spaces encoded in homogeneous SU(2) invariant potentials, subject to certain constraints. The coupling to conformal supergravity enables the derivation of a large class of supergravity Lagrangians with vector and tensor multiplets and hypermultiplets. Dualizing the tensor fields into scalars leads to hypermultiplets with hyperkaehler or quaternion-Kaehler target spaces with at least n abelian isometries. It is demonstrated how to use the calculus for the construction of Lagrangians containing higher-derivative couplings of tensor multiplets. For the application of the c-map between vector and tensor supermultiplets to Lagrangians with higher-order derivatives, an off-shell version of this map is proposed. Various other implications of the results are discussed. As an example an elegant derivation of the classification of 4-dimensional quaternion-Kaehler manifolds with two commuting isometries is given

  14. Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors

    OpenAIRE

    Lepore, Natasha; Brun, Caroline; Chou, Yi-Yu; Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Luders, Eileen; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor...

  15. Tensors, relativity, and cosmology

    CERN Document Server

    Dalarsson, Mirjana

    2015-01-01

    Tensors, Relativity, and Cosmology, Second Edition, combines relativity, astrophysics, and cosmology in a single volume, providing a simplified introduction to each subject that is followed by detailed mathematical derivations. The book includes a section on general relativity that gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes and Penrose processes), and considers the energy-momentum tensor for various solutions. In addition, a section on relativistic astrophysics discusses stellar contraction and collapse, neutron stars and their equations of state, black holes, and accretion onto collapsed objects, with a final section on cosmology discussing cosmological models, observational tests, and scenarios for the early universe. This fully revised and updated second edition includes new material on relativistic effects, such as the behavior of clocks and measuring rods in m...

  16. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    Science.gov (United States)

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  17. Measuring Nematic Susceptibilities from the Elastoresistivity Tensor

    Science.gov (United States)

    Hristov, A. T.; Shapiro, M. C.; Hlobil, Patrick; Maharaj, Akash; Chu, Jiun-Haw; Fisher, Ian

    The elastoresistivity tensor mijkl relates changes in resistivity to the strain on a material. As a fourth-rank tensor, it contains considerably more information about the material than the simpler (second-rank) resistivity tensor; in particular, certain elastoresistivity coefficients can be related to thermodynamic susceptibilities and serve as a direct probe of symmetry breaking at a phase transition. The aim of this talk is twofold. First, we enumerate how symmetry both constrains the structure of the elastoresistivity tensor into an easy-to-understand form and connects tensor elements to thermodynamic susceptibilities. In the process, we generalize previous studies of elastoresistivity to include the effects of magnetic field. Second, we describe an approach to measuring quantities in the elastoresistivity tensor with a novel transverse measurement, which is immune to relative strain offsets. These techniques are then applied to BaFe2As2 in a proof of principle measurement. This work is supported by the Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract DE-AC02-76SF00515.

  18. Tucker tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander

    2018-04-20

    Low-rank Tucker tensor methods in spatial statistics 1. Motivation: improve statistical models 2. Motivation: disadvantages of matrices 3. Tools: Tucker tensor format 4. Tensor approximation of Matern covariance function via FFT 5. Typical statistical operations in Tucker tensor format 6. Numerical experiments

  19. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    From Crofton's formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  20. Surface tensor estimation from linear sections

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus; Hug, Daniel

    2015-01-01

    From Crofton’s formula for Minkowski tensors we derive stereological estimators of translation invariant surface tensors of convex bodies in the n-dimensional Euclidean space. The estimators are based on one-dimensional linear sections. In a design based setting we suggest three types of estimators....... These are based on isotropic uniform random lines, vertical sections, and non-isotropic random lines, respectively. Further, we derive estimators of the specific surface tensors associated with a stationary process of convex particles in the model based setting....

  1. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    Science.gov (United States)

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  2. A recursive reduction of tensor Feynman integrals

    International Nuclear Information System (INIS)

    Diakonidis, T.; Riemann, T.; Tausk, J.B.; Fleischer, J.

    2009-07-01

    We perform a recursive reduction of one-loop n-point rank R tensor Feynman integrals [in short: (n,R)-integrals] for n≤6 with R≤n by representing (n,R)-integrals in terms of (n,R-1)- and (n-1,R-1)-integrals. We use the known representation of tensor integrals in terms of scalar integrals in higher dimension, which are then reduced by recurrence relations to integrals in generic dimension. With a systematic application of metric tensor representations in terms of chords, and by decomposing and recombining these representations, we find the recursive reduction for the tensors. The procedure represents a compact, sequential algorithm for numerical evaluations of tensor Feynman integrals appearing in next-to-leading order contributions to massless and massive three- and four-particle production at LHC and ILC, as well as at meson factories. (orig.)

  3. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart.

    Science.gov (United States)

    Dibb, Russell; Liu, Chunlei

    2017-06-01

    To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  4. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    Science.gov (United States)

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  5. Tensor-Based Dictionary Learning for Spectral CT Reconstruction.

    Science.gov (United States)

    Zhang, Yanbo; Mou, Xuanqin; Wang, Ge; Yu, Hengyong

    2017-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods.

  6. Mobile & social game design monetization methods and mechanics

    CERN Document Server

    Fields, Tim

    2014-01-01

    IntroductionThe Changing TideWhat This Book Is NotWhat Is a Social Game? Are Mobile Games Social? Meet Your CompetitionBBS Games and MUDsMMOsJust Being Multiplayer Doesn't Make You SocialGreat Mobile Games ARE SocialInterview with Words with Friends Creators, The BettnersHistory of Game MonetizationWhat Do We Mean By MonetizationA Brief History of Game MonetizationInterview with Richard Garriott, ""The Three Grand Eras of Gaming""Why Create a Social or Mobile Game?Social and Mobile Games Put a Lot of Power in the Hands of the DevelopersSocial Games Make the Developer ResponsibleSocial Games Gi

  7. Typesafe Abstractions for Tensor Operations

    OpenAIRE

    Chen, Tongfei

    2017-01-01

    We propose a typesafe abstraction to tensors (i.e. multidimensional arrays) exploiting the type-level programming capabilities of Scala through heterogeneous lists (HList), and showcase typesafe abstractions of common tensor operations and various neural layers such as convolution or recurrent neural networks. This abstraction could lay the foundation of future typesafe deep learning frameworks that runs on Scala/JVM.

  8. Tensor network state correspondence and holography

    Science.gov (United States)

    Singh, Sukhwinder

    2018-01-01

    In recent years, tensor network states have emerged as a very useful conceptual and simulation framework to study quantum many-body systems at low energies. In this paper, we describe a particular way in which any given tensor network can be viewed as a representation of two different quantum many-body states. The two quantum many-body states are said to correspond to each other by means of the tensor network. We apply this "tensor network state correspondence"—a correspondence between quantum many-body states mediated by tensor networks as we describe—to the multi-scale entanglement renormalization ansatz (MERA) representation of ground states of one dimensional (1D) quantum many-body systems. Since the MERA is a 2D hyperbolic tensor network (the extra dimension is identified as the length scale of the 1D system), the two quantum many-body states obtained from the MERA, via tensor network state correspondence, are seen to live in the bulk and on the boundary of a discrete hyperbolic geometry. The bulk state so obtained from a MERA exhibits interesting features, some of which caricature known features of the holographic correspondence of String theory. We show how (i) the bulk state admits a description in terms of "holographic screens", (ii) the conformal field theory data associated with a critical ground state can be obtained from the corresponding bulk state, in particular, how pointlike boundary operators are identified with extended bulk operators. (iii) We also present numerical results to illustrate that bulk states, dual to ground states of several critical spin chains, have exponentially decaying correlations, and that the bulk correlation length generally decreases with increase in central charge for these spin chains.

  9. Weyl curvature tensor in static spherical sources

    International Nuclear Information System (INIS)

    Ponce de Leon, J.

    1988-01-01

    The role of the Weyl curvature tensor in static sources of the Schwarzschild field is studied. It is shown that in general the contribution from the Weyl curvature tensor (the ''purely gravitational field energy'') to the mass-energy inside the body may be positive, negative, or zero. It is proved that a positive (negative) contribution from the Weyl tensor tends to increase (decrease) the effective gravitational mass, the red-shift (from a point in the sphere to infinity), as well as the gravitational force which acts on a constituent matter element of a body. It is also proved that the contribution from the Weyl tensor always is negative in sources with surface gravitational potential larger than (4/9. It is pointed out that large negative contributions from the Weyl tensor could give rise to the phenomenon of gravitational repulsion. A simple example which illustrates the results is discussed

  10. Concatenated image completion via tensor augmentation and completion

    OpenAIRE

    Bengua, Johann A.; Tuan, Hoang D.; Phien, Ho N.; Do, Minh N.

    2016-01-01

    This paper proposes a novel framework called concatenated image completion via tensor augmentation and completion (ICTAC), which recovers missing entries of color images with high accuracy. Typical images are second- or third-order tensors (2D/3D) depending if they are grayscale or color, hence tensor completion algorithms are ideal for their recovery. The proposed framework performs image completion by concatenating copies of a single image that has missing entries into a third-order tensor,...

  11. General projective relativity and the vector-tensor gravitational field

    International Nuclear Information System (INIS)

    Arcidiacono, G.

    1986-01-01

    In the general projective relativity, the induced 4-dimensional metric is symmetric in three cases, and we obtain the vector-tensor, the scalar-tensor, and the scalar-vector-tensor theories of gravitation. In this work we examine the vector-tensor theory, similar to the Veblen's theory, but with a different physical interpretation

  12. Tensor harmonic analysis on homogenous space

    International Nuclear Information System (INIS)

    Wrobel, G.

    1997-01-01

    The Hilbert space of tensor functions on a homogenous space with the compact stability group is considered. The functions are decomposed onto a sum of tensor plane waves (defined in the text), components of which are transformed by irreducible representations of the appropriate transformation group. The orthogonality relation and the completeness relation for tensor plane waves are found. The decomposition constitutes a unitary transformation, which allows to obtain the Parseval equality. The Fourier components can be calculated by means of the Fourier transformation, the form of which is given explicitly. (author)

  13. Environnements de tests d’intrusion pour mobiles et tablettes

    OpenAIRE

    Vianin, Jérémie; Bocchi, Yann

    2017-01-01

    L’objectif de ce travail est de réaliser une recherche des possibilités actuelles de tests d’intrusion mobiles. Après avoir recherché les technologies existantes, nous les analysons et les comparons afin de proposer un outil complet. Dans ce travail, nous analysons les possibilités de pentesting mobile avec l’aide d’une tablette de la marque Nexus et un smartphone de la gamme One d’HTC. Nous voyons le pentest mobile sous trois grands angles : OS, package et application.

  14. Tensor estimation for double-pulsed diffusional kurtosis imaging.

    Science.gov (United States)

    Shaw, Calvin B; Hui, Edward S; Helpern, Joseph A; Jensen, Jens H

    2017-07-01

    Double-pulsed diffusional kurtosis imaging (DP-DKI) represents the double diffusion encoding (DDE) MRI signal in terms of six-dimensional (6D) diffusion and kurtosis tensors. Here a method for estimating these tensors from experimental data is described. A standard numerical algorithm for tensor estimation from conventional (i.e. single diffusion encoding) diffusional kurtosis imaging (DKI) data is generalized to DP-DKI. This algorithm is based on a weighted least squares (WLS) fit of the signal model to the data combined with constraints designed to minimize unphysical parameter estimates. The numerical algorithm then takes the form of a quadratic programming problem. The principal change required to adapt the conventional DKI fitting algorithm to DP-DKI is replacing the three-dimensional diffusion and kurtosis tensors with the 6D tensors needed for DP-DKI. In this way, the 6D diffusion and kurtosis tensors for DP-DKI can be conveniently estimated from DDE data by using constrained WLS, providing a practical means for condensing DDE measurements into well-defined mathematical constructs that may be useful for interpreting and applying DDE MRI. Data from healthy volunteers for brain are used to demonstrate the DP-DKI tensor estimation algorithm. In particular, representative parametric maps of selected tensor-derived rotational invariants are presented. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Tensor network decompositions in the presence of a global symmetry

    International Nuclear Information System (INIS)

    Singh, Sukhwinder; Pfeifer, Robert N. C.; Vidal, Guifre

    2010-01-01

    Tensor network decompositions offer an efficient description of certain many-body states of a lattice system and are the basis of a wealth of numerical simulation algorithms. We discuss how to incorporate a global symmetry, given by a compact, completely reducible group G, in tensor network decompositions and algorithms. This is achieved by considering tensors that are invariant under the action of the group G. Each symmetric tensor decomposes into two types of tensors: degeneracy tensors, containing all the degrees of freedom, and structural tensors, which only depend on the symmetry group. In numerical calculations, the use of symmetric tensors ensures the preservation of the symmetry, allows selection of a specific symmetry sector, and significantly reduces computational costs. On the other hand, the resulting tensor network can be interpreted as a superposition of exponentially many spin networks. Spin networks are used extensively in loop quantum gravity, where they represent states of quantum geometry. Our work highlights their importance in the context of tensor network algorithms as well, thus setting the stage for cross-fertilization between these two areas of research.

  16. An Adaptive Spectrally Weighted Structure Tensor Applied to Tensor Anisotropic Nonlinear Diffusion for Hyperspectral Images

    Science.gov (United States)

    Marin Quintero, Maider J.

    2013-01-01

    The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…

  17. Indicial tensor manipulation on MACSYMA

    International Nuclear Information System (INIS)

    Bogen, R.A.; Pavelle, R.

    1977-01-01

    A new computational tool for physical calculations is described. It is the first computer system capable of performing indicial tensor calculus (as opposed to component tensor calculus). It is now operational on the symbolic manipulation system MACSYMA. The authors outline the capabilities of the system and describe some of the physical problems considered as well as others being examined at this time. (Auth.)

  18. Tensor based structure estimation in multi-channel images

    DEFF Research Database (Denmark)

    Schou, Jesper; Dierking, Wolfgang; Skriver, Henning

    2000-01-01

    . In the second part tensors are used for representing the structure information. This approach has the advantage, that tensors can be averaged either spatially or by applying several images, and the resulting tensor provides information of the average strength as well as orientation of the structure...

  19. On energy-momentum tensors of gravitational field

    International Nuclear Information System (INIS)

    Nikishov, A.I.

    2001-01-01

    The phenomenological approach to gravitation is discussed in which the 3-graviton interaction is reduced to the interaction of each graviton with the energy-momentum tensor of two others. If this is so, (and in general relativity this is not so), then the problem of choosing the correct energy-momentum tensor comes to finding the right 3-graviton vertex. Several energy-momentum tensors od gravitational field are considered and compared in the lowest approximation. Each of them together with the energy-momentum tensor of point-like particles satisfies the conservation laws when equations of motion of particles are the same as in general relativity. It is shown that in Newtonian approximation the considered tensors differ one from other in the way their energy density is distributed between energy density of interaction (nonzero only at locations of particles) and energy density of gravitational field. Stating from Lorentz invariance, the Lagrangians for spin-2, mass-0 field are considered [ru

  20. Geomorphology of plutonium in the Northern Rio Grande

    Energy Technology Data Exchange (ETDEWEB)

    Graf, W.L. [Arizona Univ., Tempe, AZ (United States). Dept., of Geography

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi.

  1. Geomorphology of plutonium in the Northern Rio Grande

    International Nuclear Information System (INIS)

    Graf, W.L.

    1993-03-01

    Nearly all of the plutonium in the natural environment of the Northern Rio Grande is associated with soils and sediment, and river processes account for most of the mobility of these materials. A composite regional budget for plutonium based on multi-decadal averages for sediment and plutonium movement shows that 90 percent of the plutonium moving into the system is from atmospheric fallout. The remaining 10 percent is from releases at Los Alamos. Annual variation in plutonium flux and storage exceeds 100 percent. The contribution to the plutonium budget from Los Alamos is associated with relatively coarse sediment which often behaves as bedload in the Rio Grande. Infusion of these materials into the main stream were largest in 1951, 1952, 1957, and 1968. Because of the schedule of delivery of plutonium to Los Alamos for experimentation and weapons manufacturing, the latter two years are probably the most important. Although the Los Alamos contribution to the entire plutonium budget was relatively small, in these four critical years it constituted 71--86 percent of the plutonium in bedload immediately downstream from Otowi

  2. Effects of tensor forces in nuclei

    International Nuclear Information System (INIS)

    Tanihata, Isao

    2013-01-01

    Recent studies of nuclei far from the stability line have revealed drastic changes in nuclear orbitals and reported the appearance of new magic numbers and the disappearance of magic numbers observed at the stability line. One of the important reasons for such changes is considered to be because of the effect of tensor forces on nuclear structure. Although the role of tensor forces in binding very light nuclei such as deuterons and 4 He has been known, direct experimental evidence for the effect on nuclear structure is scarce. In this paper, I review known effects of tensor forces in nuclei and then discuss the recently raised question of s–p wave mixing in a halo nucleus of 11 Li. Following these reviews, the development of a new experiment to see the high-momentum components due to the tensor forces is discussed and some of the new data are presented. (paper)

  3. The Grand Challenges Discourse: Transforming Identity Work in Science and Science Policy.

    Science.gov (United States)

    Kaldewey, David

    2018-01-01

    This article analyzes the concept of "grand challenges" as part of a shift in how scientists and policymakers frame and communicate their respective agendas. The history of the grand challenges discourse helps to understand how identity work in science and science policy has been transformed in recent decades. Furthermore, the question is raised whether this discourse is only an indicator, or also a factor in this transformation. Building on conceptual history and historical semantics, the two parts of the article reconstruct two discursive shifts. First, the observation that in scientific communication references to "problems" are increasingly substituted by references to "challenges" indicates a broader cultural trend of how attitudes towards what is problematic have shifted in the last decades. Second, as the grand challenges discourse is rooted in the sphere of sports and competition, it introduces a specific new set of societal values and practices into the spheres of science and technology. The article concludes that this process can be characterized as the sportification of science, which contributes to self-mobilization and, ultimately, to self-optimization of the participating scientists, engineers, and policymakers.

  4. Spectral Tensor-Train Decomposition

    DEFF Research Database (Denmark)

    Bigoni, Daniele; Engsig-Karup, Allan Peter; Marzouk, Youssef M.

    2016-01-01

    The accurate approximation of high-dimensional functions is an essential task in uncertainty quantification and many other fields. We propose a new function approximation scheme based on a spectral extension of the tensor-train (TT) decomposition. We first define a functional version of the TT...... adaptive Smolyak approach. The method is also used to approximate the solution of an elliptic PDE with random input data. The open source software and examples presented in this work are available online (http://pypi.python.org/pypi/TensorToolbox/)....

  5. Scalable Tensor Factorizations with Missing Data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; Kolda, Tamara G.

    2010-01-01

    of missing data, many important data sets will be discarded or improperly analyzed. Therefore, we need a robust and scalable approach for factorizing multi-way arrays (i.e., tensors) in the presence of missing data. We focus on one of the most well-known tensor factorizations, CANDECOMP/PARAFAC (CP...... is shown to successfully factor tensors with noise and up to 70% missing data. Moreover, our approach is significantly faster than the leading alternative and scales to larger problems. To show the real-world usefulness of CP-WOPT, we illustrate its applicability on a novel EEG (electroencephalogram...

  6. Scalable tensor factorizations for incomplete data

    DEFF Research Database (Denmark)

    Acar, Evrim; Dunlavy, Daniel M.; KOlda, Tamara G.

    2011-01-01

    to factorize data sets with missing values with the goal of capturing the underlying latent structure of the data and possibly reconstructing missing values (i.e., tensor completion). We focus on one of the most well-known tensor factorizations that captures multi-linear structure, CANDECOMP/PARAFAC (CP...... experiments, our algorithm is shown to successfully factorize tensors with noise and up to 99% missing data. A unique aspect of our approach is that it scales to sparse large-scale data, e.g., 1000 × 1000 × 1000 with five million known entries (0.5% dense). We further demonstrate the usefulness of CP...

  7. On improving the efficiency of tensor voting

    OpenAIRE

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim

    2011-01-01

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor v...

  8. The effects of noise over the complete space of diffusion tensor shape.

    Science.gov (United States)

    Gahm, Jin Kyu; Kindlmann, Gordon; Ennis, Daniel B

    2014-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) is a technique used to quantify the microstructural organization of biological tissues. Multiple images are necessary to reconstruct the tensor data and each acquisition is subject to complex thermal noise. As such, measures of tensor invariants, which characterize components of tensor shape, derived from the tensor data will be biased from their true values. Previous work has examined this bias, but over a narrow range of tensor shape. Herein, we define the mathematics for constructing a tensor from tensor invariants, which permits an intuitive and principled means for building tensors with a complete range of tensor shape and salient microstructural properties. Thereafter, we use this development to evaluate by simulation the effects of noise on characterizing tensor shape over the complete space of tensor shape for three encoding schemes with different SNR and gradient directions. We also define a new framework for determining the distribution of the true values of tensor invariants given their measures, which provides guidance about the confidence the observer should have in the measures. Finally, we present the statistics of tensor invariant estimates over the complete space of tensor shape to demonstrate how the noise sensitivity of tensor invariants varies across the space of tensor shape as well as how the imaging protocol impacts measures of tensor invariants. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. 3D Inversion of SQUID Magnetic Tensor Data

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    Developments in SQUID-based technology have enabled direct measurement of magnetic tensor data for geophysical exploration. For quantitative interpretation, we introduce 3D regularized inversion for magnetic tensor data. For mineral exploration-scale targets, our model studies show that magnetic...... tensor data have significantly improved resolution compared to magnetic vector data for the same model. We present a case study for the 3D regularized inversion of magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from our 3D regularized inversion agree...

  10. The mobility of negative ions in superfluid 3He

    International Nuclear Information System (INIS)

    Solomaa, M.

    1982-01-01

    This article reviews recent experimental and theoretical work on the mobility of negative ions in the superfluid A and B phases of liquid 3 He. In the normal Fermi liquid at temperatures below approximately 50 mK and also in the superfluid close to the superfluid transition temperature, Tsub(c), the mobility of a negative ion may simply be considered as limited by the elastic scattering of 3 He quasiparticles. This explains the constancy of the ion mobility in the normal phase. However, underlying the rapid increase of the measured mobility in the superfluid phases there is a subtle quantum-mechanical scattering effect. Detailed solutions of the 3 He quasiparticle-negative ion scattering process in the pair-correlated state provide a simple physical picture of an energy-dependent forward-peaking phenomenon. This yields quantitative theoretical results for the ion mobility in the quasi-isotropic B phase and for the ion mobility tensor in the anisotropic A phase which agree with the experimental data. (author)

  11. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    Science.gov (United States)

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  12. The tensor bi-spectrum in a matter bounce

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Debika; Sreenath, V.; Sriramkumar, L., E-mail: debika@physics.iitm.ac.in, E-mail: sreenath@lsu.edu, E-mail: sriram@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-11-01

    Matter bounces are bouncing scenarios wherein the universe contracts as in a matter dominated phase at early times. Such scenarios are known to lead to a scale invariant spectrum of tensor perturbations, just as de Sitter inflation does. In this work, we examine if the tensor bi-spectrum can discriminate between the inflationary and the bouncing scenarios. Using the Maldacena formalism, we analytically evaluate the tensor bi-spectrum in a matter bounce for an arbitrary triangular configuration of the wavevectors. We show that, over scales of cosmological interest, the non-Gaussianity parameter h{sub NL} that characterizes the amplitude of the tensor bi-spectrum is quite small when compared to the corresponding values in de Sitter inflation. During inflation, the amplitude of the tensor perturbations freeze on super-Hubble scales, a behavior that results in the so-called consistency condition relating the tensor bi-spectrum and the power spectrum in the squeezed limit. In contrast, in the bouncing scenarios, the amplitude of the tensor perturbations grow strongly as one approaches the bounce, which suggests that the consistency condition will not be valid in such situations. We explicitly show that the consistency relation is indeed violated in the matter bounce. We discuss the implications of the results.

  13. Endoscopic Anatomy of the Tensor Fold and Anterior Attic.

    Science.gov (United States)

    Li, Bin; Doan, Phi; Gruhl, Robert R; Rubini, Alessia; Marchioni, Daniele; Fina, Manuela

    2018-02-01

    Objectives The objectives of the study were to (1) study the anatomical variations of the tensor fold and its anatomic relation with transverse crest, supratubal recess, and anterior epitympanic space and (2) explore the most appropriate endoscopic surgical approach to each type of the tensor fold variants. Study Design Cadaver dissection study. Setting Temporal bone dissection laboratory. Subjects and Methods Twenty-eight human temporal bones (26 preserved and 2 fresh) were dissected through an endoscopic transcanal approach between September 2016 and June 2017. The anatomical variations of the tensor fold, transverse crest, supratubal recess, and anterior epitympanic space were studied before and after removing ossicles. Results Three different tensor fold orientations were observed: vertical (type A, 11/28, 39.3%) with attachment to the transverse crest, oblique (type B, 13/28, 46.4%) with attachment to the anterior tegmen tympani, and horizontal (type C, 4/28, 14.3%) with attachment to the tensor tympani canal. The tensor fold was a complete membrane in 20 of 28 (71.4%) specimens, preventing direct ventilation between the supratubal recess and anterior epitympanic space. We identified 3 surgical endoscopic approaches, which allowed visualization of the tensor fold without removing the ossicles. Conclusions The orientation of the tensor fold is the determining structure that dictates the conformation and limits of the epitympanic space. We propose a classification of the tensor fold based on 3 anatomical variants. We also describe 3 different minimally invasive endoscopic approaches to identify the orientation of the tensor fold while maintaining ossicular chain continuity.

  14. Potentials for transverse trace-free tensors

    International Nuclear Information System (INIS)

    Conboye, Rory; Murchadha, Niall Ó

    2014-01-01

    In constructing and understanding initial conditions in the 3 + 1 formalism for numerical relativity, the transverse and trace-free (TT) part of the extrinsic curvature plays a key role. We know that TT tensors possess two degrees of freedom per space point. However, finding an expression for a TT tensor depending on only two scalar functions is a non-trivial task. Assuming either axial or translational symmetry, expressions depending on two scalar potentials alone are derived here for all TT tensors in flat 3-space. In a more general spatial slice, only one of these potentials is found, the same potential given in (Baker and Puzio 1999 Phys. Rev. D 59 044030) and (Dain 2001 Phys. Rev. D 64 124002), with the remaining equations reduced to a partial differential equation, depending on boundary conditions for a solution. As an exercise, we also derive the potentials which give the Bowen-York curvature tensor in flat space. (paper)

  15. Gauge theories, duality relations and the tensor hierarchy

    International Nuclear Information System (INIS)

    Bergshoeff, Eric A.; Hohm, Olaf; Hartong, Jelle; Huebscher, Mechthild; OrtIn, Tomas

    2009-01-01

    We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 ≤ p ≤ D, which realize an off-shell algebra of bosonic gauge transformations. We show how these tensor hierarchies can be put on-shell by introducing a set of duality relations, thereby introducing additional scalars and a metric tensor. These so-called duality hierarchies encode the equations of motion of the bosonic part of the most general gauged supergravity theories in those dimensions, including the (projected) scalar equations of motion. We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of the same fields in the tensor hierarchy.

  16. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    . The output of the reconstruction algorithm is a polytope P, where the surface tensors of P and K are identical up to rank s. We establish a stability result based on a generalization of Wirtinger’s inequality that shows that for large s, two convex bodies are close in shape when they have identical surface...... that are translates of each other. An algorithm for reconstructing an unknown convex body in R 2 from its surface tensors up to a certain rank is presented. Using the reconstruction algorithm, the shape of an unknown convex body can be approximated when only a finite number s of surface tensors are available...... tensors up to rank s. This is used to establish consistency of the developed reconstruction algorithm....

  17. Diffusion tensor analysis with nuclear magnetic resonance in human central nervous system

    International Nuclear Information System (INIS)

    Nakayama, Naoki

    1998-01-01

    Nuclear magnetic resonance has been used to measure the diffusivity of water molecules. In central nervous system, anisotropic diffusion, which is characterized by apparent diffusion tensor D app ξ , is thought to be related to neuronal fiber tract orientation. For precise observation of anisotropic diffusion, it is needed to determine the diagonal and off-diagonal elements of D app ξ . Once D app ξ is estimated from a series of diffusion weighted images, a tissue's orthotropic principal axes and diffusivity of each direction are determined from eigenvalues and eigenvectors of D app ξ . There are several methods to represent anisotropic diffusion with D app ξ . Examples are diffusion ellipsoids constructed in each voxel depicting both these principal axes and the mean diffusion length in these directions, trace invariant values and its mapping image, largest eigenvalue, and ratio of largest eigenvalue to the other eigenvalue. In this study, the author investigated practical procedure to analyze diffusion tensor D app ξ using both of spin-echo end echo-planer diffusion weighted imagings with 3-tesla magnetic resonance machine in human brain. The ellipsoid representation provided particularly useful information about microanatomy including neuronal fiber tract orientation and molecular mobility reflective of microstructure. Furthermore, in the lesion of Wallerian degeneration, the loss of anisotropy of local apparent diffusion was observed. It is suggested that the function of axons can be observed via degree of anisotropy of apparent diffusion. Consequently, diffusion tensor analysis is expected to be a powerful, noninvasive method capable of quantitative and functional evaluation of the central nervous system. (author)

  18. Relativistic particles with spin and antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Sandoval Junior, L.

    1990-09-01

    A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)

  19. Prescribed curvature tensor in locally conformally flat manifolds

    Science.gov (United States)

    Pina, Romildo; Pieterzack, Mauricio

    2018-01-01

    A global existence theorem for the prescribed curvature tensor problem in locally conformally flat manifolds is proved for a special class of tensors R. Necessary and sufficient conditions for the existence of a metric g ¯ , conformal to Euclidean g, are determined such that R ¯ = R, where R ¯ is the Riemannian curvature tensor of the metric g ¯ . The solution to this problem is given explicitly for special cases of the tensor R, including the case where the metric g ¯ is complete on Rn. Similar problems are considered for locally conformally flat manifolds.

  20. Algebraic Rainich conditions for the fourth rank tensor V

    International Nuclear Information System (INIS)

    So, Lau Loi

    2011-01-01

    Algebraic conditions on the Ricci tensor in the Rainich-Misner-Wheeler unified field theory are known as the Rainich conditions. Penrose and more recently Bergqvist and Lankinen made an analogy from the Ricci tensor to the Bel-Robinson tensor B αβμν , a certain fourth rank tensor quadratic in the Weyl curvature, which also satisfies algebraic Rainich-like conditions. However, we found that not only does the tensor B αβμν fulfill these conditions, but so also does our recently proposed tensor V αβμν , which has many of the desirable properties of B αβμν . For the quasilocal small sphere limit restriction, we found that there are only two fourth rank tensors, B αβμν and V αβμν , which form a basis for good energy expressions. Both of them have the completely trace free and causal properties, these two form necessary and sufficient conditions. Surprisingly either completely traceless or causal is enough to fulfill the algebraic Rainich conditions.

  1. On the skew-symmetric character of the couple-stress tensor

    OpenAIRE

    Hadjesfandiari, Ali R.

    2013-01-01

    In this paper, the skew-symmetric character of the couple-stress tensor is established as the result of arguments from tensor analysis. Consequently, the couple-stress pseudo-tensor has a true vectorial character. The fundamental step in this development is that the isotropic couple-stress tensor cannot exist.

  2. Tensor products of higher almost split sequences

    OpenAIRE

    Pasquali, Andrea

    2015-01-01

    We investigate how the higher almost split sequences over a tensor product of algebras are related to those over each factor. Herschend and Iyama gave a precise criterion for when the tensor product of an $n$-representation finite algebra and an $m$-representation finite algebra is $(n+m)$-representation finite. In this case we give a complete description of the higher almost split sequences over the tensor product by expressing every higher almost split sequence as the mapping cone of a suit...

  3. The 'gravitating' tensor in the dualistic theory

    International Nuclear Information System (INIS)

    Mahanta, M.N.

    1989-01-01

    The exact microscopic system of Einstein-type field equations of the dualistic gravitation theory is investigated as well as an analysis of the modified energy-momentum tensor or so called 'gravitating' tensor is presented

  4. Physical states in the canonical tensor model from the perspective of random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Narain, Gaurav [The Institute for Fundamental Study “The Tah Poe Academia Institute”,Naresuan University, Phitsanulok 65000 (Thailand); Sasakura, Naoki [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Sato, Yuki [National Institute for Theoretical Physics,School of Physics and Centre for Theoretical Physics,University of the Witwartersrand, WITS 2050 (South Africa)

    2015-01-07

    Tensor models, generalization of matrix models, are studied aiming for quantum gravity in dimensions larger than two. Among them, the canonical tensor model is formulated as a totally constrained system with first-class constraints, the algebra of which resembles the Dirac algebra of general relativity. When quantized, the physical states are defined to be vanished by the quantized constraints. In explicit representations, the constraint equations are a set of partial differential equations for the physical wave-functions, which do not seem straightforward to be solved due to their non-linear character. In this paper, after providing some explicit solutions for N=2,3, we show that certain scale-free integration of partition functions of statistical systems on random networks (or random tensor networks more generally) provides a series of solutions for general N. Then, by generalizing this form, we also obtain various solutions for general N. Moreover, we show that the solutions for the cases with a cosmological constant can be obtained from those with no cosmological constant for increased N. This would imply the interesting possibility that a cosmological constant can always be absorbed into the dynamics and is not an input parameter in the canonical tensor model. We also observe the possibility of symmetry enhancement in N=3, and comment on an extension of Airy function related to the solutions.

  5. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    2016-01-01

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. When only measurements subject to noise...... of surface tensors are available for reconstruction, we recommend to use certain values of the surface tensors, namely harmonic intrinsic volumes instead of the surface tensors evaluated at the standard basis. The second algorithm we present is based on harmonic intrinsic volumes and allows for noisy...... measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based on measurements subject to noise is established under certain assumptions on the noise...

  6. The Riemann-Lovelock curvature tensor

    International Nuclear Information System (INIS)

    Kastor, David

    2012-01-01

    In order to study the properties of Lovelock gravity theories in low dimensions, we define the kth-order Riemann-Lovelock tensor as a certain quantity having a total 4k-indices, which is kth order in the Riemann curvature tensor and shares its basic algebraic and differential properties. We show that the kth-order Riemann-Lovelock tensor is determined by its traces in dimensions 2k ≤ D < 4k. In D = 2k + 1 this identity implies that all solutions of pure kth-order Lovelock gravity are 'Riemann-Lovelock' flat. It is verified that the static, spherically symmetric solutions of these theories, which are missing solid angle spacetimes, indeed satisfy this flatness property. This generalizes results from Einstein gravity in D = 3, which corresponds to the k = 1 case. We speculate about some possible further consequences of Riemann-Lovelock curvature. (paper)

  7. A General Expression for the Quartic Lovelock Tensor

    OpenAIRE

    Briggs, C. C.

    1997-01-01

    A general expression is given for the quartic Lovelock tensor in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection. In addition, expressions are given (in the appendix) for the coefficient of the quartic Lovelock Lagrangian as well as for lower-order Lovelock tensors and Lovelock Lagrangian coefficients.

  8. Tensor-GMRES method for large sparse systems of nonlinear equations

    Science.gov (United States)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  9. Tensor Network Quantum Virtual Machine (TNQVM)

    Energy Technology Data Exchange (ETDEWEB)

    2016-11-18

    There is a lack of state-of-the-art quantum computing simulation software that scales on heterogeneous systems like Titan. Tensor Network Quantum Virtual Machine (TNQVM) provides a quantum simulator that leverages a distributed network of GPUs to simulate quantum circuits in a manner that leverages recent results from tensor network theory.

  10. A Tour of TensorFlow

    OpenAIRE

    Goldsborough, Peter

    2016-01-01

    Deep learning is a branch of artificial intelligence employing deep neural network architectures that has significantly advanced the state-of-the-art in computer vision, speech recognition, natural language processing and other domains. In November 2015, Google released $\\textit{TensorFlow}$, an open source deep learning software library for defining, training and deploying machine learning models. In this paper, we review TensorFlow and put it in context of modern deep learning concepts and ...

  11. Feature Surfaces in Symmetric Tensor Fields Based on Eigenvalue Manifold.

    Science.gov (United States)

    Palacios, Jonathan; Yeh, Harry; Wang, Wenping; Zhang, Yue; Laramee, Robert S; Sharma, Ritesh; Schultz, Thomas; Zhang, Eugene

    2016-03-01

    Three-dimensional symmetric tensor fields have a wide range of applications in solid and fluid mechanics. Recent advances in the (topological) analysis of 3D symmetric tensor fields focus on degenerate tensors which form curves. In this paper, we introduce a number of feature surfaces, such as neutral surfaces and traceless surfaces, into tensor field analysis, based on the notion of eigenvalue manifold. Neutral surfaces are the boundary between linear tensors and planar tensors, and the traceless surfaces are the boundary between tensors of positive traces and those of negative traces. Degenerate curves, neutral surfaces, and traceless surfaces together form a partition of the eigenvalue manifold, which provides a more complete tensor field analysis than degenerate curves alone. We also extract and visualize the isosurfaces of tensor modes, tensor isotropy, and tensor magnitude, which we have found useful for domain applications in fluid and solid mechanics. Extracting neutral and traceless surfaces using the Marching Tetrahedra method can cause the loss of geometric and topological details, which can lead to false physical interpretation. To robustly extract neutral surfaces and traceless surfaces, we develop a polynomial description of them which enables us to borrow techniques from algebraic surface extraction, a topic well-researched by the computer-aided design (CAD) community as well as the algebraic geometry community. In addition, we adapt the surface extraction technique, called A-patches, to improve the speed of finding degenerate curves. Finally, we apply our analysis to data from solid and fluid mechanics as well as scalar field analysis.

  12. Abelian gauge theories with tensor gauge fields

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1984-01-01

    Gauge fields of arbitrary tensor type are introduced. In curved space-time the gravitational field serves as a bridge joining different gauge fields. The theory of second order tensor gauge field is developed on the basis of close analogy to Maxwell electrodynamics. The notion of tensor current is introduced and an experimental test of its detection is proposed. The main result consists in a coupled set of field equations representing a generalization of Maxwell theory in which the Einstein equivalence principle is not satisfied. (author)

  13. Theoretical study of lithium clusters by electronic stress tensor

    International Nuclear Information System (INIS)

    Ichikawa, Kazuhide; Nozaki, Hiroo; Komazawa, Naoya; Tachibana, Akitomo

    2012-01-01

    We study the electronic structure of small lithium clusters Li_n (n = 2 ∼ 8) using the electronic stress tensor. We find that the three eigenvalues of the electronic stress tensor of the Li clusters are negative and degenerate, just like the stress tensor of liquid. This leads us to propose that we may characterize a metallic bond in terms of the electronic stress tensor. Our proposal is that in addition to the negativity of the three eigenvalues of the electronic stress tensor, their degeneracy characterizes some aspects of the metallic nature of chemical bonding. To quantify the degree of degeneracy, we use the differential eigenvalues of the electronic stress tensor. By comparing the Li clusters and hydrocarbon molecules, we show that the sign of the largest eigenvalue and the differential eigenvalues could be useful indices to evaluate the metallicity or covalency of a chemical bond.

  14. Aspects of the Antisymmetric Tensor Field

    Science.gov (United States)

    Lahiri, Amitabha

    1991-02-01

    With the possible exception of gravitation, fundamental interactions are generally described by theories of point particles interacting via massless gauge fields. Since the advent of string theories the picture of physical interaction has changed to accommodate one in which extended objects interact with each other. The generalization of the gauge theories to extended objects leads to theories of antisymmetric tensor fields. At scales corresponding to present-day laboratory experiments one expects to see only point particles, their interactions modified by the presence of antisymmetric tensor fields in the theory. Therefore, in order to establish the validity of any theory with antisymmetric tensor fields one needs to look for manifestations of these fields at low energies. The principal problem of gauge theories is the failure to provide a suitable explanation for the generation of masses for the fields in the theory. While there is a known mechanism (spontaneous symmetry breaking) for generating masses for both the matter fields and the gauge fields, the lack of experimental evidence in support of an elementary scalar field suggests that one look for alternative ways of generating masses for the fields. The interaction of gauge fields with an antisymmetric tensor field seems to be an attractive way of doing so, especially since all indications point to the possibility that there will be no remnant degrees of freedom. On the other hand the interaction of such a field with black holes suggest an independent way of verifying the existence of such fields. In this dissertation the origins of the antisymmetric tensor field are discussed in terms of string theory. The interaction of black holes with such a field is discussed next. The last chapter discusses the effects of an antisymmetric tensor field on quantum electrodynamics when the fields are minimally coupled.

  15. Tensor hypercontraction. II. Least-squares renormalization

    Science.gov (United States)

    Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David

    2012-12-01

    The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.

  16. Ryu-Takayanagi formula for symmetric random tensor networks

    Science.gov (United States)

    Chirco, Goffredo; Oriti, Daniele; Zhang, Mingyi

    2018-06-01

    We consider the special case of random tensor networks (RTNs) endowed with gauge symmetry constraints on each tensor. We compute the Rényi entropy for such states and recover the Ryu-Takayanagi (RT) formula in the large-bond regime. The result provides first of all an interesting new extension of the existing derivations of the RT formula for RTNs. Moreover, this extension of the RTN formalism brings it in direct relation with (tensorial) group field theories (and spin networks), and thus provides new tools for realizing the tensor network/geometry duality in the context of background-independent quantum gravity, and for importing quantum gravity tools into tensor network research.

  17. The Topology of Three-Dimensional Symmetric Tensor Fields

    Science.gov (United States)

    Lavin, Yingmei; Levy, Yuval; Hesselink, Lambertus

    1994-01-01

    We study the topology of 3-D symmetric tensor fields. The goal is to represent their complex structure by a simple set of carefully chosen points and lines analogous to vector field topology. The basic constituents of tensor topology are the degenerate points, or points where eigenvalues are equal to each other. First, we introduce a new method for locating 3-D degenerate points. We then extract the topological skeletons of the eigenvector fields and use them for a compact, comprehensive description of the tensor field. Finally, we demonstrate the use of tensor field topology for the interpretation of the two-force Boussinesq problem.

  18. Visualizing Tensor Normal Distributions at Multiple Levels of Detail.

    Science.gov (United States)

    Abbasloo, Amin; Wiens, Vitalis; Hermann, Max; Schultz, Thomas

    2016-01-01

    Despite the widely recognized importance of symmetric second order tensor fields in medicine and engineering, the visualization of data uncertainty in tensor fields is still in its infancy. A recently proposed tensorial normal distribution, involving a fourth order covariance tensor, provides a mathematical description of how different aspects of the tensor field, such as trace, anisotropy, or orientation, vary and covary at each point. However, this wealth of information is far too rich for a human analyst to take in at a single glance, and no suitable visualization tools are available. We propose a novel approach that facilitates visual analysis of tensor covariance at multiple levels of detail. We start with a visual abstraction that uses slice views and direct volume rendering to indicate large-scale changes in the covariance structure, and locations with high overall variance. We then provide tools for interactive exploration, making it possible to drill down into different types of variability, such as in shape or orientation. Finally, we allow the analyst to focus on specific locations of the field, and provide tensor glyph animations and overlays that intuitively depict confidence intervals at those points. Our system is demonstrated by investigating the effects of measurement noise on diffusion tensor MRI, and by analyzing two ensembles of stress tensor fields from solid mechanics.

  19. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, K.

    1981-01-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path-integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat--space-time limit, all the Ward-Takahashi identities associated with space-time transformations including the global dilatation become free from anomalies in terms of this energy-momentum tensor, reflecting the general covariance of the integral measure; the trace of this tensor is thus finite at zero momentum transfer for renormalizable theories. The Jacobian for the local conformal transformation, however, becomes nontrivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization-group b function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise

  20. Tensor and non-tensor tractography for the assessment of the corticospinal tract of children with motor disorders: a comparative study.

    Science.gov (United States)

    Stefanou, Maria-Ioanna; Lumsden, Daniel E; Ashmore, Jonathan; Ashkan, Keyoumars; Lin, Jean-Pierre; Charles-Edwards, Geoffrey

    2016-10-01

    Non-invasive measures of corticospinal tract (CST) integrity may help to guide clinical interventions, particularly in children and young people (CAYP) with motor disorders. We compared diffusion tensor imaging (DTI) metrics extracted from the CST generated by tensor and non-tensor based tractography algorithms. For a group of 25 CAYP undergoing clinical evaluation, the CST was reconstructed using (1) deterministic tensor-based tractography algorithm, (2) probabilistic tensor-based, and (3) constrained spherical deconvolution (CSD)-derived tractography algorithms. Choice of tractography algorithm significantly altered the results of tracking. Larger tracts were consistently defined with CSD, with differences in FA but not MD values for tracts to the pre- or post-central gyrus. Differences between deterministic and probabilistic tensor-based algorithms were minimal. Non-tensor reconstructed tracts appeared to be more anatomically representative. Examining metrics along the tract, difference in FA values appeared to be greatest in voxels with predominantly single-fibre orientations. Less pronounced differences were seen outwith of these regions. With an increasing interest in the applications of tractography analysis at all stages of movement disorder surgery, it is important that clinicians remain alert to the consequences of choice of tractography algorithm on subsequently generated tracts, including differences in volumes, anatomical reconstruction, and DTI metrics, the latter of which will have global as well as more regional effects. Tract-wide analysis of DTI based metrics is of limited utility, and a more segmental approach to analysis may be appropriate, particularly if disruption to a focal region of a white matter pathway is anticipated.

  1. Local Tensor Radiation Conditions For Elastic Waves

    DEFF Research Database (Denmark)

    Krenk, S.; Kirkegaard, Poul Henning

    2001-01-01

    A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point....... The tensor relation generalizes the traditional normal incidence impedance condition by accounting for the angle between wave propagation and the surface normal and by including a generalized stiffness term due to spreading of the waves. The effectiveness of the local tensor radiation condition...

  2. Exact tensor network ansatz for strongly interacting systems

    Science.gov (United States)

    Zaletel, Michael P.

    It appears that the tensor network ansatz, while not quite complete, is an efficient coordinate system for the tiny subset of a many-body Hilbert space which can be realized as a low energy state of a local Hamiltonian. However, we don't fully understand precisely which phases are captured by the tensor network ansatz, how to compute their physical observables (even numerically), or how to compute a tensor network representation for a ground state given a microscopic Hamiltonian. These questions are algorithmic in nature, but their resolution is intimately related to understanding the nature of quantum entanglement in many-body systems. For this reason it is useful to compute the tensor network representation of various `model' wavefunctions representative of different phases of matter; this allows us to understand how the entanglement properties of each phase are expressed in the tensor network ansatz, and can serve as test cases for algorithm development. Condensed matter physics has many illuminating model wavefunctions, such as Laughlin's celebrated wave function for the fractional quantum Hall effect, the Bardeen-Cooper-Schrieffer wave function for superconductivity, and Anderson's resonating valence bond ansatz for spin liquids. This thesis presents some results on exact tensor network representations of these model wavefunctions. In addition, a tensor network representation is given for the time evolution operator of a long-range one-dimensional Hamiltonian, which allows one to numerically simulate the time evolution of power-law interacting spin chains as well as two-dimensional strips and cylinders.

  3. The normal conformal Cartan connection and the Bach tensor

    International Nuclear Information System (INIS)

    Korzynski, Mikolaj; Lewandowski, Jerzy

    2003-01-01

    The goal of this paper is to express the Bach tensor of a four-dimensional conformal geometry of an arbitrary signature by the Cartan normal conformal (CNC) connection. We show that the Bach tensor can be identified with the Yang-Mills current of the connection. It follows from that result that a conformal geometry whose CNC connection is reducible in an appropriate way has a degenerate Bach tensor. As an example we study the case of a CNC connection which admits a twisting covariantly constant twistor field. This class of conformal geometries of this property is known as given by the Fefferman metric tensors. We use our result to calculate the Bach tensor of an arbitrary Fefferman metric and show that it is proportional to the tensorial square of the four-fold eigenvector of the Weyl tensor. Finally, we solve the Yang-Mills equations imposed on the CNC connection for all the homogeneous Fefferman metrics. The only solution is the Nurowski-Plebanski metric

  4. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2011-01-01

    An Introduction to Tensors and Group Theory for Physicists provides both an intuitive and rigorous approach to tensors and groups and their role in theoretical physics and applied mathematics. A particular aim is to demystify tensors and provide a unified framework for understanding them in the context of classical and quantum physics. Connecting the component formalism prevalent in physics calculations with the abstract but more conceptual formulation found in many mathematical texts, the work will be a welcome addition to the literature on tensors and group theory. Part I of the text begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to classical and quantum physics through the use of tensor products. Part II introduces abstract groups along with matrix Lie groups and Lie algebras, then intertwines this material with that of Part I by introducing representation theory. Exercises and examples are provided throughout for go...

  5. Tensor Excitations in Nambu - Jona-Lasinio Model

    CERN Document Server

    Chizhov, M V

    1996-01-01

    It is shown that in the one-flavour NJL model the vector and axial-vector quasiparticles described by the antisymmetric tensor field are generated. These excitations have tensor interactions with quarks in contrast to usual vector ones. Phenomenological applications are discussed.

  6. On the energy-momentum tensor in Moyal space

    International Nuclear Information System (INIS)

    Balasin, Herbert; Schweda, Manfred; Blaschke, Daniel N.; Gieres, Francois

    2015-01-01

    We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is well known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another star-product. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the last two procedures are incompatible with each other if couplings of gauge fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line. (orig.)

  7. Coordinate independent expression for transverse trace-free tensors

    International Nuclear Information System (INIS)

    Conboye, Rory

    2016-01-01

    The transverse and trace-free (TT) part of the extrinsic curvature represents half of the dynamical degrees of freedom of the gravitational field in the 3 + 1 formalism. As such, it is part of the freely specifiable initial data for numerical relativity. Though TT tensors in three-space possess only two component degrees of freedom, they cannot ordinarily be given solely by two scalar potentials. Such expressions have been derived, however, in coordinate form, for all TT tensors in flat space which are also translationally or axially symmetric (Conboye and Murchadha 2014 Class. Quantum Grav. 31 085019). Since TT tensors are conformally covariant, these also give TT tensors in conformally flat space. In this article, the work above has been extended by giving a coordinate-independent expression for these TT tensors. The translational and axial symmetry conditions have also been generalized to invariance along any hypersurface orthogonal Killing vector. (paper)

  8. The tree technique and irreducible tensor operators for the quantum algebra suq (2). The algebra of irreducible tensor operators

    International Nuclear Information System (INIS)

    Smirnov, Yu.F.; Tolstoi, V.N.; Kharitonov, Yu.I.

    1993-01-01

    The tree technique for the quantum algebra su q (2) developed in an earlier study is used to construct the q analog of the algebra of irreducible tensor operators. The adjoint action of the algebra su q (2) on irreducible tensor operators is discussed, and the adjoint R matrix is introduced. A set of expressions is obtained for the matrix elements of various irreducible tensor operators and combinations of them. As an application, the recursion relations for the Clebsch-Gordan and Racah coefficients of the algebra su q (2) are derived. 16 refs

  9. Quantum mechanics of Yano tensors: Dirac equation in curved spacetime

    International Nuclear Information System (INIS)

    Cariglia, Marco

    2004-01-01

    In spacetimes admitting Yano tensors, the classical theory of the spinning particle possesses enhanced worldline supersymmetry. Quantum mechanically generators of extra supersymmetries correspond to operators that in the classical limit commute with the Dirac operator and generate conserved quantities. We show that the result is preserved in the full quantum theory, that is, Yano symmetries are not anomalous. This was known for Yano tensors of rank 2, but our main result is to show that it extends to Yano tensors of arbitrary rank. We also describe the conformal Yano equation and show that is invariant under Hodge duality. There is a natural relationship between Yano tensors and supergravity theories. As the simplest possible example, we show that when the spacetime admits a Killing spinor then this generates Yano and conformal Yano tensors. As an application, we construct Yano tensors on maximally symmetric spaces: they are spanned by tensor products of Killing vectors

  10. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    Science.gov (United States)

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  11. Tensor meson dominance and e+e--physics

    International Nuclear Information System (INIS)

    Genz, H.; Karlsruhe Univ.; Mallik, S.

    1983-01-01

    The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2 ++ -meson chi 2 (3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment. (author)

  12. The nonabelian tensor square of a bieberbach group with ...

    African Journals Online (AJOL)

    The main objective of this paper is to compute the nonabelian tensor square of one Bieberbach group with elementary abelian 2-group point group of dimension three by using the computational method of the nonabelian tensor square for polycyclic groups. The finding of the computation showed that the nonabelian tensor ...

  13. Holographic stress tensor for non-relativistic theories

    International Nuclear Information System (INIS)

    Ross, Simon F.; Saremi, Omid

    2009-01-01

    We discuss the calculation of the field theory stress tensor from the dual geometry for two recent proposals for gravity duals of non-relativistic conformal field theories. The first of these has a Schroedinger symmetry including Galilean boosts, while the second has just an anisotropic scale invariance (the Lifshitz case). For the Lifshitz case, we construct an appropriate action principle. We propose a definition of the non-relativistic stress tensor complex for the field theory as an appropriate variation of the action in both cases. In the Schroedinger case, we show that this gives physically reasonable results for a simple black hole solution and agrees with an earlier proposal to determine the stress tensor from the familiar AdS prescription. In the Lifshitz case, we solve the linearised equations of motion for a general perturbation around the background, showing that our stress tensor is finite on-shell.

  14. Unsupervised Tensor Mining for Big Data Practitioners.

    Science.gov (United States)

    Papalexakis, Evangelos E; Faloutsos, Christos

    2016-09-01

    Multiaspect data are ubiquitous in modern Big Data applications. For instance, different aspects of a social network are the different types of communication between people, the time stamp of each interaction, and the location associated to each individual. How can we jointly model all those aspects and leverage the additional information that they introduce to our analysis? Tensors, which are multidimensional extensions of matrices, are a principled and mathematically sound way of modeling such multiaspect data. In this article, our goal is to popularize tensors and tensor decompositions to Big Data practitioners by demonstrating their effectiveness, outlining challenges that pertain to their application in Big Data scenarios, and presenting our recent work that tackles those challenges. We view this work as a step toward a fully automated, unsupervised tensor mining tool that can be easily and broadly adopted by practitioners in academia and industry.

  15. Correlators in tensor models from character calculus

    Directory of Open Access Journals (Sweden)

    A. Mironov

    2017-11-01

    Full Text Available We explain how the calculations of [20], which provided the first evidence for non-trivial structures of Gaussian correlators in tensor models, are efficiently performed with the help of the (Hurwitz character calculus. This emphasizes a close similarity between technical methods in matrix and tensor models and supports a hope to understand the emerging structures in very similar terms. We claim that the 2m-fold Gaussian correlators of rank r tensors are given by r-linear combinations of dimensions with the Young diagrams of size m. The coefficients are made from the characters of the symmetric group Sm and their exact form depends on the choice of the correlator and on the symmetries of the model. As the simplest application of this new knowledge, we provide simple expressions for correlators in the Aristotelian tensor model as tri-linear combinations of dimensions.

  16. Scalar-tensor linear inflation

    Energy Technology Data Exchange (ETDEWEB)

    Artymowski, Michał [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Racioppi, Antonio, E-mail: Michal.Artymowski@uj.edu.pl, E-mail: Antonio.Racioppi@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-04-01

    We investigate two approaches to non-minimally coupled gravity theories which present linear inflation as attractor solution: a) the scalar-tensor theory approach, where we look for a scalar-tensor theory that would restore results of linear inflation in the strong coupling limit for a non-minimal coupling to gravity of the form of f (φ) R /2; b) the particle physics approach, where we motivate the form of the Jordan frame potential by loop corrections to the inflaton field. In both cases the Jordan frame potentials are modifications of the induced gravity inflationary scenario, but instead of the Starobinsky attractor they lead to linear inflation in the strong coupling limit.

  17. Superconformal tensor calculus and matter couplings in six dimensions

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; Proeyen, A. van

    1986-01-01

    Using superconformal tensor calculus we construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. We start from the superconformal algebra which we realize on a 40 + 40 Weyl multiplet and on several matter multiplets. A special role is played by the tensor multiplet, which cannot be treated as an ordinary matter multiplet, but leads to a second 40 + 40 version of the Weyl multiplet. We also obtain a 48 + 48 off-shell formulation of Poincare supergravity coupled to a tensor multiplet. (orig.)

  18. Genten: Software for Generalized Tensor Decompositions v. 1.0.0

    Energy Technology Data Exchange (ETDEWEB)

    2017-06-22

    Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.

  19. A tensor-based dictionary learning approach to tomographic image reconstruction

    DEFF Research Database (Denmark)

    Soltani, Sara; Kilmer, Misha E.; Hansen, Per Christian

    2016-01-01

    We consider tomographic reconstruction using priors in the form of a dictionary learned from training images. The reconstruction has two stages: first we construct a tensor dictionary prior from our training data, and then we pose the reconstruction problem in terms of recovering the expansion...... coefficients in that dictionary. Our approach differs from past approaches in that (a) we use a third-order tensor representation for our images and (b) we recast the reconstruction problem using the tensor formulation. The dictionary learning problem is presented as a non-negative tensor factorization problem...... with sparsity constraints. The reconstruction problem is formulated in a convex optimization framework by looking for a solution with a sparse representation in the tensor dictionary. Numerical results show that our tensor formulation leads to very sparse representations of both the training images...

  20. Dark energy in scalar-tensor theories

    International Nuclear Information System (INIS)

    Moeller, J.

    2007-12-01

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of σ-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  1. Dark energy in scalar-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, J.

    2007-12-15

    We investigate several aspects of dynamical dark energy in the framework of scalar-tensor theories of gravity. We provide a classification of scalar-tensor coupling functions admitting cosmological scaling solutions. In particular, we recover that Brans-Dicke theory with inverse power-law potential allows for a sequence of background dominated scaling regime and scalar field dominated, accelerated expansion. Furthermore, we compare minimally and non-minimally coupled models, with respect to the small redshift evolution of the dark energy equation of state. We discuss the possibility to discriminate between different models by a reconstruction of the equation-of-state parameter from available observational data. The non-minimal coupling characterizing scalar-tensor models can - in specific cases - alleviate fine tuning problems, which appear if (minimally coupled) quintessence is required to mimic a cosmological constant. Finally, we perform a phase-space analysis of a family of biscalar-tensor models characterized by a specific type of {sigma}-model metric, including two examples from recent literature. In particular, we generalize an axion-dilaton model of Sonner and Townsend, incorporating a perfect fluid background consisting of (dark) matter and radiation. (orig.)

  2. Tensor completion for PDEs with uncertain coefficients and Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2017-03-05

    In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.

  3. Tensor completion for PDEs with uncertain coefficients and Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2017-01-01

    In this work, we tried to show connections between Bayesian update and tensor completion techniques. Usually, only a small/sparse vector/tensor of measurements is available. The typical measurement is a function of the solution. The solution of a stochastic PDE is a tensor, the measurement as well. The idea is to use completion techniques to compute all "missing" values of the measurement tensor and only then apply the Bayesian technique.

  4. Tensor squeezed limits and the Higuchi bound

    Energy Technology Data Exchange (ETDEWEB)

    Bordin, Lorenzo [SISSA, via Bonomea 265, 34136, Trieste (Italy); Creminelli, Paolo [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Mirbabayi, Mehrdad [Institute for Advanced Study, Princeton, NJ 08540 (United States); Noreña, Jorge, E-mail: lbordin@sissa.it, E-mail: creminel@ictp.it, E-mail: mehrdadm@ias.edu, E-mail: jorge.norena@pucv.cl [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile)

    2016-09-01

    We point out that tensor consistency relations—i.e. the behavior of primordial correlation functions in the limit a tensor mode has a small momentum—are more universal than scalar consistency relations. They hold in the presence of multiple scalar fields and as long as anisotropies are diluted exponentially fast. When de Sitter isometries are approximately respected during inflation this is guaranteed by the Higuchi bound, which forbids the existence of light particles with spin: de Sitter space can support scalar hair but no curly hair. We discuss two indirect ways to look for the violation of tensor consistency relations in observations, as a signature of models in which inflation is not a strong isotropic attractor, such as solid inflation: (a) graviton exchange contribution to the scalar four-point function; (b) quadrupolar anisotropy of the scalar power spectrum due to super-horizon tensor modes. This anisotropy has a well-defined statistics which can be distinguished from cases in which the background has a privileged direction.

  5. Relativistic interpretation of the nature of the nuclear tensor force

    Science.gov (United States)

    Zong, Yao-Yao; Sun, Bao-Yuan

    2018-02-01

    The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)

  6. Grand Bank seabed and shallow subsurface geology in relation to subsea engineering design

    Energy Technology Data Exchange (ETDEWEB)

    Sonnichsen, G.V.; King, E.L. [Natural Resources Canada, Dartmouth, NS (Canada). Geological Survey of Canada

    2005-07-01

    An overview of the surficial and subseabed geology of the northeastern section of the Newfoundland Grand Banks was presented with particular reference to the Jeanne d'Arc Basin. The stratigraphy of the upper 100 metres below seafloor has been interpreted from high-resolution seismic reflection data, surficial sediment samples and geotechnical borehole data. This paper described the character and strength properties of nearby seabed sediments and addressed the issue of seabed scour by icebergs, which is the main process threatening subsea facilities. Other potential geohazards such as shallow gas, buried channels and sediment mobility are not considered to be major barriers to offshore development in the Jeanne d'Arc Basin. However, drifting icebergs with large drafts often impact the seabed, producing either linear furrows or circular pits. The constraints to subsea design and construction were identified. It was noted that regional geological characterization is needed to help select the location for offshore platforms as well as routes for excavating trenches for subsea installations for offshore hydrocarbon development. Updated regional surficial and near-seabed stratigraphy is needed to predict foundation conditions beyond ground truth from isolated geotechnical borehole investigations. This paper described the Grand Banks regional setting, regional geology, near-surface sediment in the northeastern Grand Banks, and Quaternary sediments in the northeastern Grand Banks with reference to the Grand Banks Drift, Adolphus Sand, and the Grand Banks Sand and Gravel Formation. Risk assessments have shown that well heads and manifolds should be installed below the seabed in order to avoid damage by seabed-scouring icebergs and that the design scour depth should be re-examined for future subsea development. It was suggested that more emphasis on gathering multibeam bathymetric data and repetitive mapping of the seabed will better define scour risk. 57 refs., 3

  7. Massless and massive quanta resulting from a mediumlike metric tensor

    International Nuclear Information System (INIS)

    Soln, J.

    1985-01-01

    A simple model of the ''primordial'' scalar field theory is presented in which the metric tensor is a generalization of the metric tensor from electrodynamics in a medium. The radiation signal corresponding to the scalar field propagates with a velocity that is generally less than c. This signal can be associated simultaneously with imaginary and real effective (momentum-dependent) masses. The requirement that the imaginary effective mass vanishes, which we take to be the prerequisite for the vacuumlike signal propagation, leads to the ''spontaneous'' splitting of the metric tensor into two distinct metric tensors: one metric tensor gives rise to masslesslike radiation and the other to a massive particle. (author)

  8. Interplay between tensor force and deformation in even–even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Rémi N., E-mail: rbernard@ugr.es; Anguiano, Marta

    2016-09-15

    In this work we study the effect of the nuclear tensor force on properties related with deformation. We focus on isotopes in the Mg, Si, S, Ar, Sr and Zr chains within the Hartree–Fock–Bogoliubov theory using the D1ST2a Gogny interaction. Contributions to the tensor energy in terms of saturated and unsaturated subshells are analyzed. Like–particle and proton–neutron parts of the tensor term are independently examinated. We found that the tensor term may considerably modify the potential energy landscapes and change the ground state shape. We analyze too how the pairing characteristics of the ground state change when the tensor force is included.

  9. Superconformal tensor calculus and matter couplings in six dimensions

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Sezgin, E.; van Proeyen, A.

    1989-01-01

    Using superconformal tensor calculus the authors construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. They start from the superconformal algebra which they realize on a 40 + 40 Weyl multiplet and on several matter multiplets. A special role is played by the tensor multiplet, which cannot be treated as an ordinary matter multiplet, but leads to a second 40 + 40 version of the Weyl multiplet. The authors also obtain a 48 + 48 off-shell formulation of Poincare supergravity coupled to a tensor multiplet

  10. Tensor product varieties and crystals. GL case

    OpenAIRE

    Malkin, Anton

    2001-01-01

    The role of Spaltenstein varieties in the tensor product for GL is explained. In particular a direct (non-combinatorial) proof of the fact that the number of irreducible components of a Spaltenstein variety is equal to a Littlewood-Richardson coefficient (i.e. certain tensor product multiplicity) is obtained.

  11. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  12. Atomic-batched tensor decomposed two-electron repulsion integrals

    Science.gov (United States)

    Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove

    2017-04-01

    We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.

  13. Inflationary tensor fossils in large-scale structure

    Energy Technology Data Exchange (ETDEWEB)

    Dimastrogiovanni, Emanuela [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Fasiello, Matteo [Department of Physics, Case Western Reserve University, Cleveland, OH 44106 (United States); Jeong, Donghui [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Kamionkowski, Marc, E-mail: ema@physics.umn.edu, E-mail: mrf65@case.edu, E-mail: duj13@psu.edu, E-mail: kamion@jhu.edu [Department of Physics and Astronomy, 3400 N. Charles St., Johns Hopkins University, Baltimore, MD 21218 (United States)

    2014-12-01

    Inflation models make specific predictions for a tensor-scalar-scalar three-point correlation, or bispectrum, between one gravitational-wave (tensor) mode and two density-perturbation (scalar) modes. This tensor-scalar-scalar correlation leads to a local power quadrupole, an apparent departure from statistical isotropy in our Universe, as well as characteristic four-point correlations in the current mass distribution in the Universe. So far, the predictions for these observables have been worked out only for single-clock models in which certain consistency conditions between the tensor-scalar-scalar correlation and tensor and scalar power spectra are satisfied. Here we review the requirements on inflation models for these consistency conditions to be satisfied. We then consider several examples of inflation models, such as non-attractor and solid-inflation models, in which these conditions are put to the test. In solid inflation the simplest consistency conditions are already violated whilst in the non-attractor model we find that, contrary to the standard scenario, the tensor-scalar-scalar correlator probes directly relevant model-dependent information. We work out the predictions for observables in these models. For non-attractor inflation we find an apparent local quadrupolar departure from statistical isotropy in large-scale structure but that this power quadrupole decreases very rapidly at smaller scales. The consistency of the CMB quadrupole with statistical isotropy then constrains the distance scale that corresponds to the transition from the non-attractor to attractor phase of inflation to be larger than the currently observable horizon. Solid inflation predicts clustering fossils signatures in the current galaxy distribution that may be large enough to be detectable with forthcoming, and possibly even current, galaxy surveys.

  14. N = (2,0) self-dual non-Abelian tensor multiplet in D = 3 + 3 generates N = (1,1) self-dual systems in D = 2 + 2

    Science.gov (United States)

    Nishino, Hitoshi; Rajpoot, Subhash

    2018-03-01

    We formulate an N = (2 , 0) system in D = 3 + 3 dimensions consisting of a Yang-Mills (YM)-multiplet (ˆ μ ˆ IA, λˆI), a self-dual non-Abelian tensor multiplet (ˆ μ ˆ ν ˆ IB, χˆI ,φˆI), and an extra vector multiplet (C ˆ μ ˆ IC, ρˆI). We next perform the dimensional reductions of this system into D = 2 + 2, and obtain N = (1 , 1) systems with a self-dual YM-multiplet (AIμ ,λI), a self-dual tensor multiplet (BIμν , χI , φI), and an extra vector multiplet (CIμ , ρI). In D = 2 + 2, we reach two distinct theories: 'Theory-I' and 'Theory-II'. The former has the self-dual field-strength Hμν(+)I of CIμ already presented in our recent paper, while the latter has anti-self-dual field strength Hμν(-)I. As an application, we show that Theory-II actually generates supersymmetric-KdV equations in D = 1 + 1. Our result leads to a new conclusion that the D = 3 + 3 theory with non-Abelian tensor multiplet can be a 'Grand Master Theory' for self-dual multiplet and self-dual YM-multiplet in D = 2 + 2, that in turn has been conjectured to be the 'Master Theory' for all supersymmetric integrable theories in D ≤ 3.

  15. Properties of the tensor correlation in He isotopes

    International Nuclear Information System (INIS)

    Myo, Takayuki; Sugimoto, Satoru; Kato, Kiyoshi; Toki, Hiroshi; Ikeda, Kiyomi

    2006-01-01

    We investigate the roles of the tensor correlation on the structures of 4,5 He. For 4 He, we take the high angular momentum states as much as possible with the 2p2h excitations of the shell model type method to describe the tensor correlation. Three specific configurations are found to be favored for the tensor correlation. This correlation is also important to describe the scattering phenomena of the 4 He+nsystem including the higher partial waves consistently

  16. Energy-momentum tensor in the quantum field theory

    International Nuclear Information System (INIS)

    Azakov, S.I.

    1977-01-01

    An energy-momentum tensor in the scalar field theory is built. The tensor must satisfy the finiteness requirement of the Green function. The Green functions can always be made finite by renormalizations in the S-matrix by introducing counter terms into the Hamiltonian (or Lagrangian) of the interaction. Such a renormalization leads to divergencies in the Green functions. Elimination of these divergencies requires the introduction of new counter terms, which must be taken into account in the energy-momentum tensor

  17. Tensor product of quantum logics

    Science.gov (United States)

    Pulmannová, Sylvia

    1985-01-01

    A quantum logic is the couple (L,M) where L is an orthomodular σ-lattice and M is a strong set of states on L. The Jauch-Piron property in the σ-form is also supposed for any state of M. A ``tensor product'' of quantum logics is defined. This definition is compared with the definition of a free orthodistributive product of orthomodular σ-lattices. The existence and uniqueness of the tensor product in special cases of Hilbert space quantum logics and one quantum and one classical logic are studied.

  18. A Closed-Form Solution to Tensor Voting: Theory and Applications

    OpenAIRE

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gerard

    2016-01-01

    We prove a closed-form solution to tensor voting (CFTV): given a point set in any dimensions, our closed-form solution provides an exact, continuous and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence...

  19. Superconformal tensor calculus in five dimensions

    International Nuclear Information System (INIS)

    Fujita, Tomoyuki; Ohashi, Keisuke

    2001-01-01

    We present a full superconformal tensor calculus in five spacetime dimensions in which the Weyl multiplet has 32 Bose plus 32 Fermi degrees of freedom. It is derived using dimensional reduction from the 6D superconformal tensor calculus. We present two types of 32+32 Weyl multiplets, a vector multiplet, linear multiplet, hypermultiplet and nonlinear multiplet. Their superconformal transformation laws and the embedding and invariant action formulas are given. (author)

  20. The tensor distribution function.

    Science.gov (United States)

    Leow, A D; Zhu, S; Zhan, L; McMahon, K; de Zubicaray, G I; Meredith, M; Wright, M J; Toga, A W; Thompson, P M

    2009-01-01

    Diffusion weighted magnetic resonance imaging is a powerful tool that can be employed to study white matter microstructure by examining the 3D displacement profile of water molecules in brain tissue. By applying diffusion-sensitized gradients along a minimum of six directions, second-order tensors (represented by three-by-three positive definite matrices) can be computed to model dominant diffusion processes. However, conventional DTI is not sufficient to resolve more complicated white matter configurations, e.g., crossing fiber tracts. Recently, a number of high-angular resolution schemes with more than six gradient directions have been employed to address this issue. In this article, we introduce the tensor distribution function (TDF), a probability function defined on the space of symmetric positive definite matrices. Using the calculus of variations, we solve the TDF that optimally describes the observed data. Here, fiber crossing is modeled as an ensemble of Gaussian diffusion processes with weights specified by the TDF. Once this optimal TDF is determined, the orientation distribution function (ODF) can easily be computed by analytic integration of the resulting displacement probability function. Moreover, a tensor orientation distribution function (TOD) may also be derived from the TDF, allowing for the estimation of principal fiber directions and their corresponding eigenvalues.

  1. Inductive Framework for Multi-Aspect Streaming Tensor Completion with Side Information

    OpenAIRE

    Nimishakavi, Madhav; Mishra, Bamdev; Gupta, Manish; Talukdar, Partha

    2018-01-01

    Low-rank tensor completion is a well-studied problem and has applications in various fields. However, in many real-world applications the data is dynamic, i.e., the tensor grows as new data arrives. Besides the tensor, in many real-world scenarios, side information is also available in the form of matrices which also grow. Existing work on dynamic tensor completion do not incorporate side information and most of the previous work is based on the assumption that the tensor grows only in one mo...

  2. The classification of the Ricci tensor in the general theory of relativity

    International Nuclear Information System (INIS)

    Cormack, W.J.

    1979-10-01

    A comprehensive classification of the Ricci tensor in General Relativity using several techniques is given and their connection with existing classification studied under the headings; canonical forms for the Ricci tensor, invariant 2-spaces in the classification of the Ricci tensor, Riemannian curvature and the classification of the Riemann and Ricci tensors, and spinor classifications of the Ricci tensor. (U.K.)

  3. Susceptibility Tensor Imaging (STI) of the Brain

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  4. Singular Poisson tensors

    International Nuclear Information System (INIS)

    Littlejohn, R.G.

    1982-01-01

    The Hamiltonian structures discovered by Morrison and Greene for various fluid equations were obtained by guessing a Hamiltonian and a suitable Poisson bracket formula, expressed in terms of noncanonical (but physical) coordinates. In general, such a procedure for obtaining a Hamiltonian system does not produce a Hamiltonian phase space in the usual sense (a symplectic manifold), but rather a family of symplectic manifolds. To state the matter in terms of a system with a finite number of degrees of freedom, the family of symplectic manifolds is parametrized by a set of Casimir functions, which are characterized by having vanishing Poisson brackets with all other functions. The number of independent Casimir functions is the corank of the Poisson tensor J/sup ij/, the components of which are the Poisson brackets of the coordinates among themselves. Thus, these Casimir functions exist only when the Poisson tensor is singular

  5. Structure of the Einstein tensor for class-1 embedded space time

    Energy Technology Data Exchange (ETDEWEB)

    Krause, J [Universidad Central de Venezuela, Caracas

    1976-04-11

    Continuing previous work, some features of the flat embedding theory of class-1 curved space-time are further discussed. In the two-metric formalism provided by the embedding approach the Gauss tensor obtains as the flat-covariant gradient of a fundamental vector potential. The Einstein tensor is then examined in terms of the Gauss tensor. It is proved that the Einstein tensor is divergence free in flat space-time, i.e. a true Lorentz-covariant conservation law for the Einstein tensor is shown to hold. The form of the Einstein tensor in flat space-time also appears as a canonical energy-momentum tensor of the vector potential. The corresponding Lagrangian density, however, does not provide us with a set of field equations for the fundamental vector potential; indeed, the Euler-Lagrange ''equations'' collapse to a useless identity, while the Lagrangian density has the form of a flat divergence.

  6. TENSOR MODELING BASED FOR AIRBORNE LiDAR DATA CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    N. Li

    2016-06-01

    Full Text Available Feature selection and description is a key factor in classification of Earth observation data. In this paper a classification method based on tensor decomposition is proposed. First, multiple features are extracted from raw LiDAR point cloud, and raster LiDAR images are derived by accumulating features or the “raw” data attributes. Then, the feature rasters of LiDAR data are stored as a tensor, and tensor decomposition is used to select component features. This tensor representation could keep the initial spatial structure and insure the consideration of the neighborhood. Based on a small number of component features a k nearest neighborhood classification is applied.

  7. Validation of diffusion tensor MRI measurements of cardiac microstructure with structure tensor synchrotron radiation imaging.

    Science.gov (United States)

    Teh, Irvin; McClymont, Darryl; Zdora, Marie-Christine; Whittington, Hannah J; Davidoiu, Valentina; Lee, Jack; Lygate, Craig A; Rau, Christoph; Zanette, Irene; Schneider, Jürgen E

    2017-03-10

    Diffusion tensor imaging (DTI) is widely used to assess tissue microstructure non-invasively. Cardiac DTI enables inference of cell and sheetlet orientations, which are altered under pathological conditions. However, DTI is affected by many factors, therefore robust validation is critical. Existing histological validation is intrinsically flawed, since it requires further tissue processing leading to sample distortion, is routinely limited in field-of-view and requires reconstruction of three-dimensional volumes from two-dimensional images. In contrast, synchrotron radiation imaging (SRI) data enables imaging of the heart in 3D without further preparation following DTI. The objective of the study was to validate DTI measurements based on structure tensor analysis of SRI data. One isolated, fixed rat heart was imaged ex vivo with DTI and X-ray phase contrast SRI, and reconstructed at 100 μm and 3.6 μm isotropic resolution respectively. Structure tensors were determined from the SRI data and registered to the DTI data. Excellent agreement in helix angles (HA) and transverse angles (TA) was observed between the DTI and structure tensor synchrotron radiation imaging (STSRI) data, where HA DTI-STSRI  = -1.4° ± 23.2° and TA DTI-STSRI  = -1.4° ± 35.0° (mean ± 1.96 standard deviation across all voxels in the left ventricle). STSRI confirmed that the primary eigenvector of the diffusion tensor corresponds with the cardiomyocyte long-axis across the whole myocardium. We have used STSRI as a novel and high-resolution gold standard for the validation of DTI, allowing like-with-like comparison of three-dimensional tissue structures in the same intact heart free of distortion. This represents a critical step forward in independently verifying the structural basis and informing the interpretation of cardiac DTI data, thereby supporting the further development and adoption of DTI in structure-based electro-mechanical modelling and routine clinical

  8. Tensor Completion for Estimating Missing Values in Visual Data

    KAUST Repository

    Liu, Ji

    2012-01-25

    In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between Fa

  9. Tensor Completion for Estimating Missing Values in Visual Data

    KAUST Repository

    Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping

    2012-01-01

    In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependant relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between Fa

  10. Tensor completion for estimating missing values in visual data.

    Science.gov (United States)

    Liu, Ji; Musialski, Przemyslaw; Wonka, Peter; Ye, Jieping

    2013-01-01

    In this paper, we propose an algorithm to estimate missing values in tensors of visual data. The values can be missing due to problems in the acquisition process or because the user manually identified unwanted outliers. Our algorithm works even with a small amount of samples and it can propagate structure to fill larger missing regions. Our methodology is built on recent studies about matrix completion using the matrix trace norm. The contribution of our paper is to extend the matrix case to the tensor case by proposing the first definition of the trace norm for tensors and then by building a working algorithm. First, we propose a definition for the tensor trace norm that generalizes the established definition of the matrix trace norm. Second, similarly to matrix completion, the tensor completion is formulated as a convex optimization problem. Unfortunately, the straightforward problem extension is significantly harder to solve than the matrix case because of the dependency among multiple constraints. To tackle this problem, we developed three algorithms: simple low rank tensor completion (SiLRTC), fast low rank tensor completion (FaLRTC), and high accuracy low rank tensor completion (HaLRTC). The SiLRTC algorithm is simple to implement and employs a relaxation technique to separate the dependent relationships and uses the block coordinate descent (BCD) method to achieve a globally optimal solution; the FaLRTC algorithm utilizes a smoothing scheme to transform the original nonsmooth problem into a smooth one and can be used to solve a general tensor trace norm minimization problem; the HaLRTC algorithm applies the alternating direction method of multipliers (ADMMs) to our problem. Our experiments show potential applications of our algorithms and the quantitative evaluation indicates that our methods are more accurate and robust than heuristic approaches. The efficiency comparison indicates that FaLTRC and HaLRTC are more efficient than SiLRTC and between FaLRTC an

  11. Inference of segmented color and texture description by tensor voting.

    Science.gov (United States)

    Jia, Jiaya; Tang, Chi-Keung

    2004-06-01

    A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.

  12. Diffusion tensor smoothing through weighted Karcher means

    Science.gov (United States)

    Carmichael, Owen; Chen, Jun; Paul, Debashis; Peng, Jie

    2014-01-01

    Diffusion tensor magnetic resonance imaging (MRI) quantifies the spatial distribution of water Diffusion at each voxel on a regular grid of locations in a biological specimen by Diffusion tensors– 3 × 3 positive definite matrices. Removal of noise from DTI is an important problem due to the high scientific relevance of DTI and relatively low signal to noise ratio it provides. Leading approaches to this problem amount to estimation of weighted Karcher means of Diffusion tensors within spatial neighborhoods, under various metrics imposed on the space of tensors. However, it is unclear how the behavior of these estimators varies with the magnitude of DTI sensor noise (the noise resulting from the thermal e!ects of MRI scanning) as well as the geometric structure of the underlying Diffusion tensor neighborhoods. In this paper, we combine theoretical analysis, empirical analysis of simulated DTI data, and empirical analysis of real DTI scans to compare the noise removal performance of three kernel-based DTI smoothers that are based on Euclidean, log-Euclidean, and affine-invariant metrics. The results suggest, contrary to conventional wisdom, that imposing a simplistic Euclidean metric may in fact provide comparable or superior noise removal, especially in relatively unstructured regions and/or in the presence of moderate to high levels of sensor noise. On the contrary, log-Euclidean and affine-invariant metrics may lead to better noise removal in highly structured anatomical regions, especially when the sensor noise is of low magnitude. These findings emphasize the importance of considering the interplay of sensor noise magnitude and tensor field geometric structure when assessing Diffusion tensor smoothing options. They also point to the necessity for continued development of smoothing methods that perform well across a large range of scenarios. PMID:25419264

  13. Diffusion tensor imaging in spinal cord compression

    International Nuclear Information System (INIS)

    Wang, Wei; Qin, Wen; Hao, Nanxin; Wang, Yibin; Zong, Genlin

    2012-01-01

    Background Although diffusion tensor imaging has been successfully applied in brain research for decades, several main difficulties have hindered its extended utilization in spinal cord imaging. Purpose To assess the feasibility and clinical value of diffusion tensor imaging and tractography for evaluating chronic spinal cord compression. Material and Methods Single-shot spin-echo echo-planar DT sequences were scanned in 42 spinal cord compression patients and 49 healthy volunteers. The mean values of the apparent diffusion coefficient and fractional anisotropy were measured in region of interest at the cervical and lower thoracic spinal cord. The patients were divided into two groups according to the high signal on T2WI (the SCC-HI group and the SCC-nHI group for with or without high signal). A one-way ANOVA was used. Diffusion tensor tractography was used to visualize the morphological features of normal and impaired white matter. Results There were no statistically significant differences in the apparent diffusion coefficient and fractional anisotropy values between the different spinal cord segments of the normal subjects. All of the patients in the SCC-HI group had increased apparent diffusion coefficient values and decreased fractional anisotropy values at the lesion level compared to the normal controls. However, there were no statistically significant diffusion index differences between the SCC-nHI group and the normal controls. In the diffusion tensor imaging maps, the normal spinal cord sections were depicted as fiber tracts that were color-encoded to a cephalocaudal orientation. The diffusion tensor images were compressed to different degrees in all of the patients. Conclusion Diffusion tensor imaging and tractography are promising methods for visualizing spinal cord tracts and can provide additional information in clinical studies in spinal cord compression

  14. Positivity of linear maps under tensor powers

    Energy Technology Data Exchange (ETDEWEB)

    Müller-Hermes, Alexander, E-mail: muellerh@ma.tum.de; Wolf, Michael M., E-mail: m.wolf@tum.de [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Reeb, David, E-mail: reeb.qit@gmail.com [Zentrum Mathematik, Technische Universität München, 85748 Garching (Germany); Institute for Theoretical Physics, Leibniz Universität Hannover, 30167 Hannover (Germany)

    2016-01-15

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task.

  15. Fermionic topological quantum states as tensor networks

    Science.gov (United States)

    Wille, C.; Buerschaper, O.; Eisert, J.

    2017-06-01

    Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.

  16. Positivity of linear maps under tensor powers

    International Nuclear Information System (INIS)

    Müller-Hermes, Alexander; Wolf, Michael M.; Reeb, David

    2016-01-01

    We investigate linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every n ∈ ℕ, there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. For higher dimensions, we reduce the existence question of such non-trivial “tensor-stable positive maps” to a one-parameter family of maps and show that an affirmative answer would imply the existence of non-positive partial transpose bound entanglement. As an application, we show that any tensor-stable positive map that is not completely positive yields an upper bound on the quantum channel capacity, which for the transposition map gives the well-known cb-norm bound. We, furthermore, show that the latter is an upper bound even for the local operations and classical communications-assisted quantum capacity, and that moreover it is a strong converse rate for this task

  17. Tensor B mode and stochastic Faraday mixing

    CERN Document Server

    Giovannini, Massimo

    2014-01-01

    This paper investigates the Faraday effect as a different source of B mode polarization. The E mode polarization is Faraday rotated provided a stochastic large-scale magnetic field is present prior to photon decoupling. In the first part of the paper we discuss the case where the tensor modes of the geometry are absent and we argue that the B mode recently detected by the Bicep2 collaboration cannot be explained by a large-scale magnetic field rotating, through the Faraday effect, the well established E mode polarization. In this case, the observed temperature autocorrelations would be excessively distorted by the magnetic field. In the second part of the paper the formation of Faraday rotation is treated as a stationary, random and Markovian process with the aim of generalizing a set of scaling laws originally derived in the absence of the tensor modes of the geometry. We show that the scalar, vector and tensor modes of the brightness perturbations can all be Faraday rotated even if the vector and tensor par...

  18. Some spacetimes with higher rank Killing-Staeckel tensors

    International Nuclear Information System (INIS)

    Gibbons, G.W.; Houri, T.; Kubiznak, D.; Warnick, C.M.

    2011-01-01

    By applying the lightlike Eisenhart lift to several known examples of low-dimensional integrable systems admitting integrals of motion of higher-order in momenta, we obtain four- and higher-dimensional Lorentzian spacetimes with irreducible higher-rank Killing tensors. Such metrics, we believe, are first examples of spacetimes admitting higher-rank Killing tensors. Included in our examples is a four-dimensional supersymmetric pp-wave spacetime, whose geodesic flow is superintegrable. The Killing tensors satisfy a non-trivial Poisson-Schouten-Nijenhuis algebra. We discuss the extension to the quantum regime.

  19. Tensor perturbations during inflation in a spatially closed Universe

    Energy Technology Data Exchange (ETDEWEB)

    Bonga, Béatrice; Gupt, Brajesh; Yokomizo, Nelson, E-mail: bpb165@psu.edu, E-mail: bgupt@gravity.psu.edu, E-mail: yokomizo@gravity.psu.edu [Institute for Gravitation and the Cosmos and Physics Department, The Pennsylvania State University, 104 Lavey Lab, University Park, PA 16802 (United States)

    2017-05-01

    In a recent paper [1], we studied the evolution of the background geometry and scalar perturbations in an inflationary, spatially closed Friedmann-Lemaȋtre-Robertson-Walker (FLRW) model having constant positive spatial curvature and spatial topology S{sup 3}. Due to the spatial curvature, the early phase of slow-roll inflation is modified, leading to suppression of power in the scalar power spectrum at large angular scales. In this paper, we extend the analysis to include tensor perturbations. We find that, similarly to the scalar perturbations, the tensor power spectrum also shows suppression for long wavelength modes. The correction to the tensor spectrum is limited to the very long wavelength modes, therefore the resulting observable CMB B-mode polarization spectrum remains practically the same as in the standard scenario with flat spatial sections. However, since both the tensor and scalar power spectra are modified, there are scale dependent corrections to the tensor-to-scalar ratio that leads to violation of the standard slow-roll consistency relation.

  20. La mobilité pendulaire et le transport collectif intercommunal dans l'agglomération du Grand El Jadida: Cas des flux provenant de la banlieue

    OpenAIRE

    EL ADIB , MOHAMED

    2017-01-01

    This thesis focuses on the question of the pendulum mobility in the grand El Jadida especially the flows from the suburbs. Following its attractiveness since the early 1980s, by the location of various developmental projects especially Jorf Lasfar industrial Port Complex, the university and tourist projects, a functional complementarity is established between centers and the territorial collectivities of the grand El Jadida. From this complementarity, the populations of the suburb are in fron...

  1. Papapetrou energy-momentum tensor for Chern-Simons modified gravity

    International Nuclear Information System (INIS)

    Guarrera, David; Hariton, A. J.

    2007-01-01

    We construct a conserved, symmetric energy-momentum (pseudo-)tensor for Chern-Simons modified gravity, thus demonstrating that the theory is Lorentz invariant. The tensor is discussed in relation to other gravitational energy-momentum tensors and analyzed for the Schwarzschild, Reissner-Nordstrom, and Friedmann-Robertson-Walker solutions. To our knowledge this is the first confirmation that the Reissner-Nordstrom and Friedmann-Robertson-Walker metrics are solutions of the modified theory

  2. Supergravity tensor calculus in 5D from 6D

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Ohashi, Keisuke

    2000-01-01

    Supergravity tensor calculus in five spacetime dimensions is derived by dimensional reduction from the d=6 superconformal tensor calculus. In particular, we obtain an off-shell hypermultiplet in 5D from the on-shell hypermultiplet in 6D. Our tensor calculus retains the dilatation gauge symmetry, so that it is a trivial gauge fixing to make the Einstein term canonical in a general matter-Yang-Mills-supergravity coupled system. (author)

  3. Applied tensor stereology

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Nyengaard, Jens Randel; Jensen, Eva B. Vedel

    In the present paper, statistical procedures for estimating shape and orientation of arbitrary three-dimensional particles are developed. The focus of this work is on the case where the particles cannot be observed directly, but only via sections. Volume tensors are used for describing particle s...

  4. Confinement through tensor gauge fields

    International Nuclear Information System (INIS)

    Salam, A.; Strathdee, J.

    1977-12-01

    Using the 0(3,2)-symmetric de Sitter solution of Einstein's equation describing a strongly interacting tensor field it is shown that hadronic bags confining quarks can be represented as de Sitter ''micro-universes'' with radii given 1/R 2 =lambdak 2 /6. Here k 2 and lambda are the strong coupling and the ''cosmological'' constant which apear in the Einstein equation used. Surprisingly the energy spectrum for the two-body hadronic states is the same as that for a harmonic oscillator potential, though the wave functions are completely different. The Einstein equation can be extended to include colour for the tensor fields

  5. Erratum to Surface‐wave green’s tensors in the near field

    Science.gov (United States)

    Haney, Matthew M.; Hisashi Nakahara,

    2016-01-01

    Haney and Nakahara (2014) derived expressions for surface‐wave Green’s tensors that included near‐field behavior. Building on the result for a force source, Haney and Nakahara (2014) further derived expressions for a general point moment tensor source using the exact Green’s tensors. However, it has come to our attention that, although the Green’s tensors were correct, the resulting expressions for a general point moment tensor source were missing some terms. In this erratum, we provide updated expressions with these missing terms. The inclusion of the missing terms changes the example given in Haney and Nakahara (2014).

  6. Susceptibility tensor imaging (STI) of the brain.

    Science.gov (United States)

    Li, Wei; Liu, Chunlei; Duong, Timothy Q; van Zijl, Peter C M; Li, Xu

    2017-04-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility and magnetic susceptibility anisotropy can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping to remove such dependence. Similar to diffusion tensor imaging, STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of the susceptibility anisotropy in brain white matter is myelin. Another unique feature of the susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in the myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Energy-momentum tensor in quantum field theory

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo.

    1980-12-01

    The definition of the energy-momentum tensor as a source current coupled to the background gravitational field receives an important modification in quantum theory. In the path integral approach, the manifest covariance of the integral measure under general coordinate transformations dictates that field variables with weight 1/2 should be used as independent integration variables. An improved energy-momentum tensor is then generated by the variational derivative, and it gives rise to well-defined gravitational conformal (Weyl) anomalies. In the flat space-time limit, all the Ward-Takahashi identities associate with space-time transformations including the global dilatation become free from anomalies, reflecting the general covariance of the integral measure; the trace of this energy-momentum tensor is thus finite at the zero momentum transfer. The Jacobian for the local conformal transformation however becomes non-trivial, and it gives rise to an anomaly for the conformal identity. All the familiar anomalies are thus reduced to either chiral or conformal anomalies. The consistency of the dilatation and conformal identities at the vanishing momentum transfer determines the trace anomaly of this energy-momentum tensor in terms of the renormalization group β-function and other parameters. In contrast, the trace of the conventional energy-momentum tensor generally diverges even at the vanishing momentum transfer depending on the regularization scheme, and it is subtractively renormalized. We also explain how the apparently different renormalization properties of the chiral and trace anomalies arise. (author)

  8. Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.

    Science.gov (United States)

    Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh

    2017-08-01

    Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

  9. Caracterização das vítimas de ferimentos por arma de fogo, atendidas pelo Serviço de Atendimento Móvel de Urgência em Campo Grande-MS Characterization of victims injured by firearms assisted by the Mobile Emergency Care Service in Campo Grande-MS

    Directory of Open Access Journals (Sweden)

    Simone Sanches

    2009-03-01

    the Mobile Emergency Care Service (SAMU - Serviço de Atendimento Móvel de Urgência in the municipality of Campo Grande, state of Mato Grosso do Sul (MS, in the period from April 2005 to April 2007 - the first two years of operation since the implementation of the service in the capital of the state. A descriptive, retrospective and longitudinal study was carried out, based on a documental analysis of the information system of the SAMU of Campo Grande. In the study, 233 events were described. The results showed 213 male victims aged between 20 and 24 years. The head and neck were the most injured parts of the body and the South region of the city was the one that concentrated most events. It follows that violence caused by firearms in Campo Grande, MS, affects the economically active population and comes from regions characterized by poverty and social inequality. This justifies the implementation of a free service like SAMU, which has had an important impact on the community's health.

  10. A defect in holographic interpretations of tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Czech, Bartłomiej [Institute for Advanced Study,Princeton, NJ 08540 (United States); Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan [Theory Group, Department of Physics and Texas Cosmology Center,The University of Texas at Austin,Austin, TX 78712 (United States)

    2017-03-16

    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS{sub 3}-Janus geometries.

  11. TensorFlow: A system for large-scale machine learning

    OpenAIRE

    Abadi, Martín; Barham, Paul; Chen, Jianmin; Chen, Zhifeng; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Irving, Geoffrey; Isard, Michael; Kudlur, Manjunath; Levenberg, Josh; Monga, Rajat; Moore, Sherry; Murray, Derek G.

    2016-01-01

    TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexib...

  12. Complete algebraic reduction of one-loop tensor Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, J.; Riemann, T.

    2011-01-01

    We set up a new, flexible approach for the tensor reduction of one-loop Feynman integrals. The 5-point tensor integrals up to rank R=5 are expressed by 4-point tensor integrals of rank R-1, such that the appearance of the inverse 5-point Gram determinant is avoided. The 4-point tensor coefficients are represented in terms of 4-point integrals, defined in d dimensions, 4-2ε≤d≤4-2ε+2(R-1), with higher powers of the propagators. They can be further reduced to expressions which stay free of the inverse 4-point Gram determinants but contain higher-dimensional 4-point integrals with only the first power of scalar propagators, plus 3-point tensor coefficients. A direct evaluation of the higher-dimensional 4-point functions would avoid the appearance of inverse powers of the Gram determinants completely. The simplest approach, however, is to apply here dimensional recurrence relations in order to reduce them to the familiar 2- to 4-point functions in generic dimension d=4-2ε, introducing thereby coefficients with inverse 4-point Gram determinants up to power R for tensors of rank R. For small or vanishing Gram determinants--where this reduction is not applicable--we use analytic expansions in positive powers of the Gram determinants. Improving the convergence of the expansions substantially with Pade approximants we close up to the evaluation of the 4-point tensor coefficients for larger Gram determinants. Finally, some relations are discussed which may be useful for analytic simplifications of Feynman diagrams.

  13. Tucker Tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander

    2018-03-09

    In this work, we describe advanced numerical tools for working with multivariate functions and for the analysis of large data sets. These tools will drastically reduce the required computing time and the storage cost, and, therefore, will allow us to consider much larger data sets or finer meshes. Covariance matrices are crucial in spatio-temporal statistical tasks, but are often very expensive to compute and store, especially in 3D. Therefore, we approximate covariance functions by cheap surrogates in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence. We prove the exponential convergence of the Tucker and canonical approximations in tensor rank parameters. Several statistical operations are performed in this low-rank tensor format, including evaluating the conditional covariance matrix, spatially averaged estimation variance, computing a quadratic form, determinant, trace, loglikelihood, inverse, and Cholesky decomposition of a large covariance matrix. Low-rank tensor approximations reduce the computing and storage costs essentially. For example, the storage cost is reduced from an exponential O(n^d) to a linear scaling O(drn), where d is the spatial dimension, n is the number of mesh points in one direction, and r is the tensor rank. Prerequisites for applicability of the proposed techniques are the assumptions that the data, locations, and measurements lie on a tensor (axes-parallel) grid and that the covariance function depends on a distance, ||x-y||.

  14. Composite antisymmetric tensor bosons in a four-fermion interaction model

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2000-01-01

    We discuss the phenomenological consequences of the U A (1) symmetry-breaking two-flavour four-fermion antisymmetric (AS) Lorentz tensor interaction Lagrangians. We use the recently developed methods that respect the 'duality' symmetry of this interaction. Starting from the Fierz transform of the two-flavour 't Hooft interaction (a four-fermion Lagrangian with AS tensor interaction terms augmented by Nambu and Jona-Lasinio (NJL)-type Lorentz scalar interaction responsible for dynamical symmetry breaking and quark mass generation), we find the following. (a) Four antisymmetric tensor and four AS pseudotensor bosons exist which satisfy a mass relation previously derived for scalar and pseudoscalar mesons from the 't Hooft interaction. (b) Antisymmetric tensor bosons mix with vector bosons via one-fermion-loop effective couplings so that both kinds of bosons have their masses shifted and the fermions (quarks) acquire anomalous magnetic moment form factors that explicitly violate chiral symmetry. (c) The mixing of massive AS tensor fields with vector fields leads to two sets of spin-1 states. The second set of spin-1 mesons is heavy and has not been observed. Moreover, at least one member of this second set is tachyonic, under standard assumptions about the source and strength of the AS tensor interaction. The tachyonic state also shows up as a pole in the space-like region of the electromagnetic form factors. (d) The mixing of axial-vector fields with antisymmetric tensor bosons is proportional to the (small) isospin-breaking up-down quark mass difference, so the mixing-induced mass shift is negligible. (e) The AS tensor version of the Veneziano-Witten U A (1) symmetry-breaking interaction does not lead to tachyons, or any AS tensor field propagation to leading order in N C . (author)

  15. A closed-form solution to tensor voting: theory and applications.

    Science.gov (United States)

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  16. Mean-intercept anisotropy analysis of porous media. II. Conceptual shortcomings of the MIL tensor definition and Minkowski tensors as an alternative.

    Science.gov (United States)

    Klatt, Michael A; Schröder-Turk, Gerd E; Mecke, Klaus

    2017-07-01

    Structure-property relations, which relate the shape of the microstructure to physical properties such as transport or mechanical properties, need sensitive measures of structure. What are suitable fabric tensors to quantify the shape of anisotropic heterogeneous materials? The mean intercept length is among the most commonly used characteristics of anisotropy in porous media, e.g., of trabecular bone in medical physics. Yet, in this series of two papers we demonstrate that it has conceptual shortcomings that limit the validity of its results. We test the validity of general assumptions regarding the properties of the mean-intercept length tensor using analytical formulas for the mean-intercept lengths in anisotropic Boolean models (derived in part I of this series), augmented by numerical simulations. We discuss in detail the functional form of the mean intercept length as a function of the test line orientations. As the most prominent result, we find that, at least for the example of overlapping grains modeling porous media, the polar plot of the mean intercept length is in general not an ellipse and hence not represented by a second-rank tensor. This is in stark contrast to the common understanding that for a large collection of grains the mean intercept length figure averages to an ellipse. The standard mean intercept length tensor defined by a least-square fit of an ellipse is based on a model mismatch, which causes an intrinsic lack of accuracy. Our analysis reveals several shortcomings of the mean intercept length tensor analysis that pose conceptual problems and limitations on the information content of this commonly used analysis method. We suggest the Minkowski tensors from integral geometry as alternative sensitive measures of anisotropy. The Minkowski tensors allow for a robust, comprehensive, and systematic approach to quantify various aspects of structural anisotropy. We show the Minkowski tensors to be more sensitive, in the sense, that they can

  17. A forgotten argument by Gordon uniquely selects Abraham's tensor as the energy-momentum tensor for the electromagnetic field in homogeneous, isotropic matter

    International Nuclear Information System (INIS)

    Antoci, S.; Mihich, L.

    1997-01-01

    Given the present status of the problem of the electromagnetic energy tensor in matter, there is perhaps use in recalling a forgotten argument given in 1923 by W. Gordon. Let us consider a material medium which is homogeneous and isotropic when observed in its rest frame. For such a medium, Gordon's argument allows to reduce the above-mentioned problem to an analogous one, defined in a general relativistic vacuum. For the latter problem the form of the Lagrangian is known already, hence the determination of the energy tensor is a straightforward matter. One just performs the Hamiltonian derivative of the Lagrangian chosen in this way with respect to the true metric g ik . Abraham's tensor is thus selected as the electromagnetic energy tensor for a medium which is homogeneous and isotropic in its rest frame

  18. Classification of the Ricci and Plebanski tensors in general relativity using Newman--Penrose formalism

    International Nuclear Information System (INIS)

    McIntosh, C.B.G.; Foyster, J.M.; Lun, A.W.h.

    1981-01-01

    A list is given of a canonical set of the Newman--Penrose quantities Phi/sub A/B, the tetrad components of the trace-free Ricci tensor, for each Plebanski class according to Plebanski's classification of this tensor. This comparative list can easily be extended to cover the classification in tetrad language of any second-order, trace-free, symmetric tensor in a space-time. A fourth-order tensor which is the product of two such tensors was defined by Plebanski and used in his classification. This has the same symmetries as the Weyl tensor. The Petrov classification of this tensor, here called the Plebanski tensor, is discussed along with the classification of the Ricci tensor. The use of the Plebanski tensor in a couple of areas of general relativity is also briefly discussed

  19. Multiple M2-branes and the embedding tensor

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; de Roo, Mees; Hohm, Olaf

    2008-01-01

    We show that the Bagger-Lambert theory of multiple M2-branes fits into the general construction of maximally supersymmetric gauge theories using the embedding tensor technique. We apply the embedding tensor technique in order to systematically obtain the consistent gaugings of N = 8 superconformal

  20. Two-perfect fluid interpretation of an energy tensor

    International Nuclear Information System (INIS)

    Ferrando, J.J.; Morales, J.A.; Portilla, M.

    1990-01-01

    There are many topics in General Relativity where matter is represented by a mixture of two fluids. In fact, some astrophysical and cosmological situations need to be described by an energy tensor made up of the sum of two or more perfect fluids rather than that with only one. The paper contains the necessary and sufficient conditions for a given energy tensor to be interpreted as a sum of two perfect fluids. Given a tensor of this class, the decomposition in two perfect fluids (which is determined up to a couple of real functions) is obtained

  1. Grandes remolques

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1961-07-01

    Full Text Available El empleo creciente del material pesado auxiliar en la construcción de obras de ingeniería civil ha motivado la fabricación de grandes plataformas, capaces de transportar toda clase de maquinaria auxiliar. En general, este tipo de maquinaria requiere medios de transporte, pues su circulación por carreteras es lenta, obstructiva y cara, siempre que se trate de grandes distancias, caso presente en la mayoría de ocasiones en que se exige un traslado de esta maquinaria de una a otra obra.

  2. QCD vacuum tensor susceptibility and properties of transversely polarized mesons

    International Nuclear Information System (INIS)

    Bakulev, A.P.; Mikhajlov, S.V.

    1999-01-01

    We re-estimate the tensor susceptibility of QCD vacuum, χ, and to this end, we re-estimate the leptonic decay constants for transversely polarized ρ-, ρ'- and b 1 -mesons. The origin of the susceptibility is analyzed using duality between ρ- and b 1 -channels in a 2-point correlator of tensor currents and disagree with [2] on both OPE expansion and the value of QCD vacuum tensor susceptibility. Using our value for the latter we determine new estimations of nucleon tensor charges related to the first moment of the transverse structure functions h 1 of a nucleon

  3. Identification of θ(f2(1720)) as a tensor glueball

    International Nuclear Information System (INIS)

    Liu, K.F.

    1988-01-01

    The energy-momentum tensor matrix element for the tensor glueball is obtained from the tensor dominance model. Branching ratio of θ(f 2 (1720)) in J/ψ radiative decay is thus calculated which is in accord with the observed experimental branching ratio. The decay modes of θ(f 2 (1720)) and results from J/ψ→ γK bar K,ωK bar K, and φK bar K are taken as good indicators for flavor independence of the tensor meson Θ. Suppression of θ(f 2 (1720)) in γγ reaction and K - p → ΛK o s K o s are considered as evidence for the fact that there are no quarks in θ. From the combined theoretical and experimental studies, the authors conclude that θ is by far the best tensor glueball candidate

  4. All-at-once Optimization for Coupled Matrix and Tensor Factorizations

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Kolda, Tamara G.; Dunlavy, Daniel M.

    2011-01-01

    .g., the person by person social network matrix or the restaurant by category matrix, and higher-order tensors, e.g., the "ratings" tensor of the form restaurant by meal by person. In this paper, we are particularly interested in fusing data sets with the goal of capturing their underlying latent structures. We...... formulate this problem as a coupled matrix and tensor factorization (CMTF) problem where heterogeneous data sets are modeled by fitting outer-product models to higher-order tensors and matrices in a coupled manner. Unlike traditional approaches solving this problem using alternating algorithms, we propose...... an all-at-once optimization approach called CMTF-OPT (CMTF-OPTimization), which is a gradient-based optimization approach for joint analysis of matrices and higher-order tensors. We also extend the algorithm to handle coupled incomplete data sets. Using numerical experiments, we demonstrate...

  5. A General Expression for the Quintic Lovelock Tensor

    OpenAIRE

    Briggs, C. C.

    1996-01-01

    A general expression is given for the quintic Lovelock tensor as well as for the coefficient of the quintic Lovelock Lagrangian in terms of the Riemann-Christoffel and Ricci curvature tensors and the Riemann curvature scalar for n-dimensional differentiable manifolds having a general linear connection.

  6. Nonperturbative loop quantization of scalar-tensor theories of gravity

    International Nuclear Information System (INIS)

    Zhang Xiangdong; Ma Yongge

    2011-01-01

    The Hamiltonian formulation of scalar-tensor theories of gravity is derived from their Lagrangian formulation by Hamiltonian analysis. The Hamiltonian formalism marks off two sectors of the theories by the coupling parameter ω(φ). In the sector of ω(φ)=-(3/2), the feasible theories are restricted and a new primary constraint generating conformal transformations of spacetime is obtained, while in the other sector of ω(φ)≠-(3/2), the canonical structure and constraint algebra of the theories are similar to those of general relativity coupled with a scalar field. By canonical transformations, we further obtain the connection-dynamical formalism of the scalar-tensor theories with real su(2) connections as configuration variables in both sectors. This formalism enables us to extend the scheme of nonperturbative loop quantum gravity to the scalar-tensor theories. The quantum kinematical framework for the scalar-tensor theories is rigorously constructed. Both the Hamiltonian constraint operator and master constraint operator are well defined and proposed to represent quantum dynamics. Thus the loop quantum gravity method is also valid for general scalar-tensor theories.

  7. Federated Tensor Factorization for Computational Phenotyping

    Science.gov (United States)

    Kim, Yejin; Sun, Jimeng; Yu, Hwanjo; Jiang, Xiaoqian

    2017-01-01

    Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy. PMID:29071165

  8. Tensor calculus for engineers and physicists

    CERN Document Server

    de Souza Sánchez Filho, Emil

    2016-01-01

    This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of N dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without need...

  9. Stress-energy tensors for vector fields outside a static black hole

    International Nuclear Information System (INIS)

    Barrios, F.A.; Vaz, C.

    1989-01-01

    We obtain new, approximate stress-energy tensors to describe gauge fields in the neighborhood of a Schwarzschild black hole. We assume that the coefficient of ∇ 2 R in the trace anomaly is correctly given by ζ-function regularization. Our approximation differs from that of Page and of Brown and Ottewill and relies upon a new, improved ansatz for the form of the stress-energy tensor in the ultrastatic optical metric of the black hole. The Israel-Hartle-Hawking thermal tensor is constructed to be regular on the horizon and possess the correct asymptotic behavior. Our approximation of Unruh's tensor is likewise constructed to be regular on the future horizon and exhibit a luminosity which agrees with Page's numerically obtained value. Geometric expressions for the approximate tensors are given, and the approximate energy density of the thermal tensor on the horizon is compared with recent numerical estimates

  10. Improving Tensor Based Recommenders with Clustering

    DEFF Research Database (Denmark)

    Leginus, Martin; Dolog, Peter; Zemaitis, Valdas

    2012-01-01

    Social tagging systems (STS) model three types of entities (i.e. tag-user-item) and relationships between them are encoded into a 3-order tensor. Latent relationships and patterns can be discovered by applying tensor factorization techniques like Higher Order Singular Value Decomposition (HOSVD),...... of the recommendations and execution time are improved and memory requirements are decreased. The clustering is motivated by the fact that many tags in a tag space are semantically similar thus the tags can be grouped. Finally, promising experimental results are presented...

  11. Tensor modes in pure natural inflation

    Science.gov (United States)

    Nomura, Yasunori; Yamazaki, Masahito

    2018-05-01

    We study tensor modes in pure natural inflation [1], a recently-proposed inflationary model in which an axionic inflaton couples to pure Yang-Mills gauge fields. We find that the tensor-to-scalar ratio r is naturally bounded from below. This bound originates from the finiteness of the number of metastable branches of vacua in pure Yang-Mills theories. Details of the model can be probed by future cosmic microwave background experiments and improved lattice gauge theory calculations of the θ-angle dependence of the vacuum energy.

  12. The Chevreton tensor and Einstein-Maxwell spacetimes conformal to Einstein spaces

    International Nuclear Information System (INIS)

    Bergqvist, Goeran; Eriksson, Ingemar

    2007-01-01

    In this paper, we characterize the source-free Einstein-Maxwell spacetimes which have a trace-free Chevreton tensor. We show that this is equivalent to the Chevreton tensor being of pure radiation type and that it restricts the spacetimes to Petrov type N or O. We prove that the trace of the Chevreton tensor is related to the Bach tensor and use this to find all Einstein-Maxwell spacetimes with a zero cosmological constant that have a vanishing Bach tensor. Among these spacetimes we then look for those which are conformal to Einstein spaces. We find that the electromagnetic field and the Weyl tensor must be aligned, and in the case that the electromagnetic field is null, the spacetime must be conformally Ricci-flat and all such solutions are known. In the non-null case, since the general solution is not known on a closed form, we settle by giving the integrability conditions in the general case, but we do give new explicit examples of Einstein-Maxwell spacetimes that are conformal to Einstein spaces, and we also find examples where the vanishing of the Bach tensor does not imply that the spacetime is conformal to a C-space. The non-aligned Einstein-Maxwell spacetimes with vanishing Bach tensor are conformally C-spaces, but none of them are conformal to Einstein spaces

  13. A General Sparse Tensor Framework for Electronic Structure Theory.

    Science.gov (United States)

    Manzer, Samuel; Epifanovsky, Evgeny; Krylov, Anna I; Head-Gordon, Martin

    2017-03-14

    Linear-scaling algorithms must be developed in order to extend the domain of applicability of electronic structure theory to molecules of any desired size. However, the increasing complexity of modern linear-scaling methods makes code development and maintenance a significant challenge. A major contributor to this difficulty is the lack of robust software abstractions for handling block-sparse tensor operations. We therefore report the development of a highly efficient symbolic block-sparse tensor library in order to provide access to high-level software constructs to treat such problems. Our implementation supports arbitrary multi-dimensional sparsity in all input and output tensors. We avoid cumbersome machine-generated code by implementing all functionality as a high-level symbolic C++ language library and demonstrate that our implementation attains very high performance for linear-scaling sparse tensor contractions.

  14. An eigenvalue localization set for tensors and its applications.

    Science.gov (United States)

    Zhao, Jianxing; Sang, Caili

    2017-01-01

    A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al . (Linear Algebra Appl. 481:36-53, 2015) and Huang et al . (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text]-tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al ., the advantage of our results is that, without considering the selection of nonempty proper subsets S of [Formula: see text], we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of [Formula: see text]-tensors. Finally, numerical examples are given to verify the theoretical results.

  15. Traffic speed data imputation method based on tensor completion.

    Science.gov (United States)

    Ran, Bin; Tan, Huachun; Feng, Jianshuai; Liu, Ying; Wang, Wuhong

    2015-01-01

    Traffic speed data plays a key role in Intelligent Transportation Systems (ITS); however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS). In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC), an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS) database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  16. TENSOR DECOMPOSITIONS AND SPARSE LOG-LINEAR MODELS

    Science.gov (United States)

    Johndrow, James E.; Bhattacharya, Anirban; Dunson, David B.

    2017-01-01

    Contingency table analysis routinely relies on log-linear models, with latent structure analysis providing a common alternative. Latent structure models lead to a reduced rank tensor factorization of the probability mass function for multivariate categorical data, while log-linear models achieve dimensionality reduction through sparsity. Little is known about the relationship between these notions of dimensionality reduction in the two paradigms. We derive several results relating the support of a log-linear model to nonnegative ranks of the associated probability tensor. Motivated by these findings, we propose a new collapsed Tucker class of tensor decompositions, which bridge existing PARAFAC and Tucker decompositions, providing a more flexible framework for parsimoniously characterizing multivariate categorical data. Taking a Bayesian approach to inference, we illustrate empirical advantages of the new decompositions. PMID:29332971

  17. Energy momentum tensor in local causal perturbation theory

    International Nuclear Information System (INIS)

    Prange, D.

    2001-01-01

    We study the energy momentum tensor in the Bogolyubov-Epstein-Glaser approach to perturbation theory. It is found to be locally conserved for a class of theories containing to derivated fields in the interaction. For the massless φ 4 -theory we derive the trace anomaly of the improved tensor. (orig.)

  18. Tucker Tensor analysis of Matern functions in spatial statistics

    KAUST Repository

    Litvinenko, Alexander; Keyes, David E.; Khoromskaia, Venera; Khoromskij, Boris N.; Matthies, Hermann G.

    2018-01-01

    in a low-rank tensor format. We apply the Tucker and canonical tensor decompositions to a family of Matern- and Slater-type functions with varying parameters and demonstrate numerically that their approximations exhibit exponentially fast convergence

  19. Tensor polarized deuteron targets for intermediate energy physics experiments

    International Nuclear Information System (INIS)

    Meyer, W.; Schilling, E.

    1985-03-01

    At intermediate energies measurements from a tensor polarized deuteron target are being prepared for the following reactions: the photodisintegration of the deuteron, the elastic pion-deuteron scattering and the elastic electron-deuteron scattering. The experimental situation of the polarization experiments for these reactions is briefly discussed in section 2. In section 3 the definitions of the deuteron polarization and the possibilities to determine the vector and tensor polarization are given. Present tensor polarization values and further improvements in this field are reported in section 4. (orig.)

  20. A Nonlinear GMRES Optimization Algorithm for Canonical Tensor Decomposition

    OpenAIRE

    De Sterck, Hans

    2011-01-01

    A new algorithm is presented for computing a canonical rank-R tensor approximation that has minimal distance to a given tensor in the Frobenius norm, where the canonical rank-R tensor consists of the sum of R rank-one components. Each iteration of the method consists of three steps. In the first step, a tentative new iterate is generated by a stand-alone one-step process, for which we use alternating least squares (ALS). In the second step, an accelerated iterate is generated by a nonlinear g...

  1. Extended vector-tensor theories

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Rampei; Naruko, Atsushi; Yoshida, Daisuke, E-mail: rampei@th.phys.titech.ac.jp, E-mail: naruko@th.phys.titech.ac.jp, E-mail: yoshida@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)

    2017-01-01

    Recently, several extensions of massive vector theory in curved space-time have been proposed in many literatures. In this paper, we consider the most general vector-tensor theories that contain up to two derivatives with respect to metric and vector field. By imposing a degeneracy condition of the Lagrangian in the context of ADM decomposition of space-time to eliminate an unwanted mode, we construct a new class of massive vector theories where five degrees of freedom can propagate, corresponding to three for massive vector modes and two for massless tensor modes. We find that the generalized Proca and the beyond generalized Proca theories up to the quartic Lagrangian, which should be included in this formulation, are degenerate theories even in curved space-time. Finally, introducing new metric and vector field transformations, we investigate the properties of thus obtained theories under such transformations.

  2. Tensor categories and the mathematics of rational and logarithmic conformal field theory

    International Nuclear Information System (INIS)

    Huang, Yi-Zhi; Lepowsky, James

    2013-01-01

    We review the construction of braided tensor categories and modular tensor categories from representations of vertex operator algebras, which correspond to chiral algebras in physics. The extensive and general theory underlying this construction also establishes the operator product expansion for intertwining operators, which correspond to chiral vertex operators, and more generally, it establishes the logarithmic operator product expansion for logarithmic intertwining operators. We review the main ideas in the construction of the tensor product bifunctors and the associativity isomorphisms. For rational and logarithmic conformal field theories, we review the precise results that yield braided tensor categories, and in the rational case, modular tensor categories as well. In the case of rational conformal field theory, we also briefly discuss the construction of the modular tensor categories for the Wess–Zumino–Novikov–Witten models and, especially, a recent discovery concerning the proof of the fundamental rigidity property of the modular tensor categories for this important special case. In the case of logarithmic conformal field theory, we mention suitable categories of modules for the triplet W-algebras as an example of the applications of our general construction of the braided tensor category structure. (review)

  3. Analyzing vortex breakdown flow structures by assignment of colors to tensor invariants.

    Science.gov (United States)

    Rütten, Markus; Chong, Min S

    2006-01-01

    Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.

  4. X-ray strain tensor imaging: FEM simulation and experiments with a micro-CT.

    Science.gov (United States)

    Kim, Jae G; Park, So E; Lee, Soo Y

    2014-01-01

    In tissue elasticity imaging, measuring the strain tensor components is necessary to solve the inverse problem. However, it is impractical to measure all the tensor components in ultrasound or MRI elastography because of their anisotropic spatial resolution. The objective of this study is to compute 3D strain tensor maps from the 3D CT images of a tissue-mimicking phantom. We took 3D micro-CT images of the phantom twice with applying two different mechanical compressions to it. Applying the 3D image correlation technique to the CT images under different compression, we computed 3D displacement vectors and strain tensors at every pixel. To evaluate the accuracy of the strain tensor maps, we made a 3D FEM model of the phantom, and we computed strain tensor maps through FEM simulation. Experimentally obtained strain tensor maps showed similar patterns to the FEM-simulated ones in visual inspection. The correlation between the strain tensor maps obtained from the experiment and the FEM simulation ranges from 0.03 to 0.93. Even though the strain tensor maps suffer from high level noise, we expect the x-ray strain tensor imaging may find some biomedical applications such as malignant tissue characterization and stress analysis inside the tissues.

  5. Tweeting Earthquakes using TensorFlow

    Science.gov (United States)

    Casarotti, E.; Comunello, F.; Magnoni, F.

    2016-12-01

    The use of social media is emerging as a powerful tool for disseminating trusted information about earthquakes. Since 2009, the Twitter account @INGVterremoti provides constant and timely details about M2+ seismic events detected by the Italian National Seismic Network, directly connected with the seismologists on duty at Istituto Nazionale di Geofisica e Vulcanologia (INGV). Currently, it updates more than 150,000 followers. Nevertheless, since it provides only the manual revision of seismic parameters, the timing (approximately between 10 and 20 minutes after an event) has started to be under evaluation. Undeniably, mobile internet, social network sites and Twitter in particular require a more rapid and "real-time" reaction. During the last 36 months, INGV tested the tweeting of the automatic detection of M3+ earthquakes, studying the reliability of the information both in term of seismological accuracy that from the point of view of communication and social research. A set of quality parameters (i.e. number of seismic stations, gap, relative error of the location) has been recognized to reduce false alarms and the uncertainty of the automatic detection. We present an experiment to further improve the reliability of this process using TensorFlow™ (an open source software library originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization).

  6. Core Polarization and Tensor Coupling Effects on Magnetic Moments of Hypernuclei

    International Nuclear Information System (INIS)

    Jiang-Ming, Yao; Jie, Meng; Hong-Feng, Lü; Greg, Hillhouse

    2008-01-01

    Effects of core polarization and tensor coupling on the magnetic moments in Λ 13 C, Λ 17 O, and Λ 41 Ca Λ-hypernuclei are studied by employing the Dirac equation with scalar, vector and tensor potentials. It is found that the effect of core polarization on the magnetic moments is suppressed by Λ tensor coupling. The Λ tensor potential reduces the spin-orbit splitting of p Λ states considerably. However, almost the same magnetic moments are obtained using the hyperon wavefunction obtained via the Dirac equation either with or without the A tensor potential in the electromagnetic current vertex. The deviations of magnetic moments for p Λ states from the Schmidt values are found to increase with nuclear mass number. (nuclear physics)

  7. Gauge theories, duality relations and the tensor hierarchy

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hartong, Jelle; Hohm, Olaf; Huebscher, Mechthild; Ortin, Tomas; Hübscher, Mechthild

    We compute the complete 3- and 4-dimensional tensor hierarchies, i.e. sets of p-form fields, with 1 We construct gauge-invariant actions that include all the fields in the tensor hierarchies. We elucidate the relation between the gauge transformations of the p-form fields in the action and those of

  8. Thermodynamical inequivalence of quantum stress-energy and spin tensors

    International Nuclear Information System (INIS)

    Becattini, F.; Tinti, L.

    2011-01-01

    It is shown that different couples of stress-energy and spin tensors of quantum-relativistic fields, which would be otherwise equivalent, are in fact inequivalent if the second law of thermodynamics is taken into account. The proof of the inequivalence is based on the analysis of a macroscopic system at full thermodynamical equilibrium with a macroscopic total angular momentum and a specific instance is given for the free Dirac field, for which we show that the canonical and Belinfante stress-energy tensors are not equivalent. For this particular case, we show that the difference between the predicted angular momentum densities for a rotating system at full thermodynamical equilibrium is a quantum effect, persisting in the nonrelativistic limit, corresponding to a polarization of particles of the order of (ℎ/2π)ω/KT (ω being the angular velocity) and could in principle be measured experimentally. This result implies that specific stress-energy and spin tensors are physically meaningful even in the absence of gravitational coupling and raises the issue of finding the thermodynamically right (or the right class of) tensors. We argue that the maximization of the thermodynamic potential theoretically allows us to discriminate between two different couples, yet for the present we are unable to provide a theoretical method to single out the best couple of tensors in a given quantum field theory. The existence of a nonvanishing spin tensor would have major consequences in hydrodynamics, gravity and cosmology.

  9. a tensor theory of gravitation in a curved metric on a flat background

    International Nuclear Information System (INIS)

    Drummond, J.E.

    1979-01-01

    A theory of gravity is proposed using a tensor potential for the field on a flat metric. This potential cannot be isolated by local observations, but some details can be deduced from measurements at a distance. The requirement that the field equations for the tensor potential shall be deducible from an action integral, that the action and field equations are gauge invariant, and, conversely, that the Lagrangian in the action integral can be integrated from the field equations leads to Einstein's field equations. The requirement that the field energy-momentum tensor exists leads to a constraint on the tensor potential. If the constraint is a differential gauge condition, then it can only be the Hilbert condition giving a unique background tensor, metric tensor and tensor potential. For a continuous field inside a solid sphere the metric must be homogeneous in the spatial coordinates, and the associated field energy-momentum tensor has properties consistent with Newtonian dynamics. (author)

  10. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  11. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-01-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions. (paper)

  12. Decorated tensor network renormalization for lattice gauge theories and spin foam models

    Science.gov (United States)

    Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian

    2016-05-01

    Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.

  13. Tensor products of process matrices with indefinite causal structure

    Science.gov (United States)

    Jia, Ding; Sakharwade, Nitica

    2018-03-01

    Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.

  14. An eigenvalue localization set for tensors and its applications

    Directory of Open Access Journals (Sweden)

    Jianxing Zhao

    2017-03-01

    Full Text Available Abstract A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al. (Linear Algebra Appl. 481:36-53, 2015 and Huang et al. (J. Inequal. Appl. 2016:254, 2016. As an application of this set, new bounds for the minimum eigenvalue of M $\\mathcal{M}$ -tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al., the advantage of our results is that, without considering the selection of nonempty proper subsets S of N = { 1 , 2 , … , n } $N=\\{1,2,\\ldots,n\\}$ , we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of M $\\mathcal{M}$ -tensors. Finally, numerical examples are given to verify the theoretical results.

  15. Traffic Speed Data Imputation Method Based on Tensor Completion

    Directory of Open Access Journals (Sweden)

    Bin Ran

    2015-01-01

    Full Text Available Traffic speed data plays a key role in Intelligent Transportation Systems (ITS; however, missing traffic data would affect the performance of ITS as well as Advanced Traveler Information Systems (ATIS. In this paper, we handle this issue by a novel tensor-based imputation approach. Specifically, tensor pattern is adopted for modeling traffic speed data and then High accurate Low Rank Tensor Completion (HaLRTC, an efficient tensor completion method, is employed to estimate the missing traffic speed data. This proposed method is able to recover missing entries from given entries, which may be noisy, considering severe fluctuation of traffic speed data compared with traffic volume. The proposed method is evaluated on Performance Measurement System (PeMS database, and the experimental results show the superiority of the proposed approach over state-of-the-art baseline approaches.

  16. One-loop tensor Feynman integral reduction with signed minors

    DEFF Research Database (Denmark)

    Fleischer, Jochem; Riemann, Tord; Yundin, Valery

    2012-01-01

    of the formalism is the immediate evaluation of complete contractions of the tensor integrals with external momenta. This leads to the problem of evaluating sums over products of signed minors with scalar products of chords. Chords are differences of external momenta. These sums may be evaluated analytically......We present an algebraic approach to one-loop tensor integral reduction. The integrals are presented in terms of scalar one- to four-point functions. The reduction is worked out explicitly until five-point functions of rank five. The numerical C++ package PJFry evaluates tensor coefficients in terms...

  17. Exploring extra dimensions through inflationary tensor modes

    Science.gov (United States)

    Im, Sang Hui; Nilles, Hans Peter; Trautner, Andreas

    2018-03-01

    Predictions of inflationary schemes can be influenced by the presence of extra dimensions. This could be of particular relevance for the spectrum of gravitational waves in models where the extra dimensions provide a brane-world solution to the hierarchy problem. Apart from models of large as well as exponentially warped extra dimensions, we analyze the size of tensor modes in the Linear Dilaton scheme recently revived in the discussion of the "clockwork mechanism". The results are model dependent, significantly enhanced tensor modes on one side and a suppression on the other. In some cases we are led to a scheme of "remote inflation", where the expansion is driven by energies at a hidden brane. In all cases where tensor modes are enhanced, the requirement of perturbativity of gravity leads to a stringent upper limit on the allowed Hubble rate during inflation.

  18. Diffusion tensor optical coherence tomography

    Science.gov (United States)

    Marks, Daniel L.; Blackmon, Richard L.; Oldenburg, Amy L.

    2018-01-01

    In situ measurements of diffusive particle transport provide insight into tissue architecture, drug delivery, and cellular function. Analogous to diffusion-tensor magnetic resonance imaging (DT-MRI), where the anisotropic diffusion of water molecules is mapped on the millimeter scale to elucidate the fibrous structure of tissue, here we propose diffusion-tensor optical coherence tomography (DT-OCT) for measuring directional diffusivity and flow of optically scattering particles within tissue. Because DT-OCT is sensitive to the sub-resolution motion of Brownian particles as they are constrained by tissue macromolecules, it has the potential to quantify nanoporous anisotropic tissue structure at micrometer resolution as relevant to extracellular matrices, neurons, and capillaries. Here we derive the principles of DT-OCT, relating the detected optical signal from a minimum of six probe beams with the six unique diffusion tensor and three flow vector components. The optimal geometry of the probe beams is determined given a finite numerical aperture, and a high-speed hardware implementation is proposed. Finally, Monte Carlo simulations are employed to assess the ability of the proposed DT-OCT system to quantify anisotropic diffusion of nanoparticles in a collagen matrix, an extracellular constituent that is known to become highly aligned during tumor development.

  19. Flat-space holography and stress tensor of Kerr black hole

    Energy Technology Data Exchange (ETDEWEB)

    Baghchesaraei, Omid, E-mail: omidbaghchesaraei@gmail.com [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Fareghbal, Reza, E-mail: r_fareghbal@sbu.ac.ir [Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran 19839 (Iran, Islamic Republic of); Izadi, Yousef, E-mail: yizadi2015@fau.edu [Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 (United States)

    2016-09-10

    We propose a stress tensor for the Kerr black hole written in the Boyer–Lindquist coordinate. To achieve this, we use the dictionary of the Flat/CCFT correspondence and take the flat-space limit from the quasi-local stress tensor of the four-dimensional Kerr–AdS black hole. The proposed stress tensor yields the correct values for the mass and angular momentum of the Kerr black hole at spatial infinity. We also calculate some components of the energy momentum tensor of the three dimensional CCFT and show that they are consistent with the holographic calculation of the Kerr black hole. The calculation we present in this paper is another confirmation for the Flat/CCFT proposal.

  20. An optimization approach for fitting canonical tensor decompositions.

    Energy Technology Data Exchange (ETDEWEB)

    Dunlavy, Daniel M. (Sandia National Laboratories, Albuquerque, NM); Acar, Evrim; Kolda, Tamara Gibson

    2009-02-01

    Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.

  1. A higher-order tensor vessel tractography for segmentation of vascular structures.

    Science.gov (United States)

    Cetin, Suheyla; Unal, Gozde

    2015-10-01

    A new vascular structure segmentation method, which is based on a cylindrical flux-based higher order tensor (HOT), is presented. On a vessel structure, the HOT naturally models branching points, which create challenges for vessel segmentation algorithms. In a general linear HOT model embedded in 3D, one has to work with an even order tensor due to an enforced antipodal-symmetry on the unit sphere. However, in scenarios such as in a bifurcation, the antipodally-symmetric tensor embedded in 3D will not be useful. In order to overcome that limitation, we embed the tensor in 4D and obtain a structure that can model asymmetric junction scenarios. During construction of a higher order tensor (e.g. third or fourth order) in 4D, the orientation vectors lie on the unit 3-sphere, in contrast to the unit 2-sphere in 3D tensor modeling. This 4D tensor is exploited in a seed-based vessel segmentation algorithm, where the principal directions of the 4D HOT is obtained by decomposition, and used in a HOT tractography approach. We demonstrate quantitative validation of the proposed algorithm on both synthetic complex tubular structures as well as real cerebral vasculature in Magnetic Resonance Angiography (MRA) datasets and coronary arteries from Computed Tomography Angiography (CTA) volumes.

  2. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    Science.gov (United States)

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  3. The average number of critical rank-one approximations to a tensor

    NARCIS (Netherlands)

    Draisma, J.; Horobet, E.

    2014-01-01

    Motivated by the many potential applications of low-rank multi-way tensor approximations, we set out to count the rank-one tensors that are critical points of the distance function to a general tensor v. As this count depends on v, we average over v drawn from a Gaussian distribution, and find

  4. On the axial anomalies in external tensor fields

    International Nuclear Information System (INIS)

    Khudaverdyan, O.M.; Mkrtchyan, R.L.; Zurabyan, L.A.

    1985-01-01

    Computation of the axial anomaly for Dirac fermions in external tensor fields is studied. The sequence of the supersymmetric one-dimensional models is presented. Their supercharges are equal, after quantization, to Dirac operators in external tensor fields, and the density of Witten's partition function gives the anomaly. It is shown that action in the corresponding path integral differs from the classical one. Gaussian approximation gives the anomaly only in the case of third-rank tensor with zero exterior derivative and in that case anomaly is calculated in all dimensions. The interpretation of that field as the torsion of gravitational field and also connection with the results of Witten and Alvarez-Gaume and Atiyah-Singer index theorem are discussed

  5. Structural connectivity via the tensor-based morphometry

    OpenAIRE

    Kim, S.; Chung, M.; Hanson, J.; Avants, B.; Gee, J.; Davidson, R.; Pollak, S.

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε-neighbor ...

  6. Geometrical foundations of tensor calculus and relativity

    OpenAIRE

    Schuller , Frédéric; Lorent , Vincent

    2006-01-01

    Manifolds, particularly space curves: basic notions 1 The first groundform, the covariant metric tensor 11 The second groundform, Meusnier's theorem 19 Transformation groups in the plane 28 Co- and contravariant components for a special affine transformation in the plane 29 Surface vectors 32 Elements of tensor calculus 36 Generalization of the first groundform to the space 46 The covariant (absolute) derivation 57 Examples from elasticity theory 61 Geodesic lines 63 Main curvatur...

  7. The Simon and Simon-Mars tensors for stationary Einstein-Maxwell fields

    International Nuclear Information System (INIS)

    Bini, Donato; Cherubini, Christian; Jantzen, Robert T; Miniutti, Giovanni

    2004-01-01

    Modulo conventional scale factors, the Simon and Simon-Mars tensors are defined for stationary vacuum spacetimes so that their equality follows from the Bianchi identities of the second kind. In the nonvacuum case one can absorb additional source terms into a redefinition of the Simon tensor so that this equality is maintained. Among the electrovacuum class of solutions of the Einstein-Maxwell equations, the expression for the Simon tensor in the Kerr-Newman-Taub-NUT spacetime in terms of the Ernst potential is formally the same as in the vacuum case (modulo a scale factor), and its vanishing guarantees the simultaneous alignment of the principal null directions of the Weyl tensor, the Papapetrou field associated with the timelike Killing vector field, the electromagnetic field of the spacetime and even the Killing-Yano tensor

  8. Anisotropic conductivity tensor imaging in MREIT using directional diffusion rate of water molecules

    International Nuclear Information System (INIS)

    Kwon, Oh In; Jeong, Woo Chul; Sajib, Saurav Z K; Kim, Hyung Joong; Woo, Eung Je

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an emerging method to visualize electrical conductivity and/or current density images at low frequencies (below 1 KHz). Injecting currents into an imaging object, one component of the induced magnetic flux density is acquired using an MRI scanner for isotropic conductivity image reconstructions. Diffusion tensor MRI (DT-MRI) measures the intrinsic three-dimensional diffusion property of water molecules within a tissue. It characterizes the anisotropic water transport by the effective diffusion tensor. Combining the DT-MRI and MREIT techniques, we propose a novel direct method for absolute conductivity tensor image reconstructions based on a linear relationship between the water diffusion tensor and the electrical conductivity tensor. We first recover the projected current density, which is the best approximation of the internal current density one can obtain from the measured single component of the induced magnetic flux density. This enables us to estimate a scale factor between the diffusion tensor and the conductivity tensor. Combining these values at all pixels with the acquired diffusion tensor map, we can quantitatively recover the anisotropic conductivity tensor map. From numerical simulations and experimental verifications using a biological tissue phantom, we found that the new method overcomes the limitations of each method and successfully reconstructs both the direction and magnitude of the conductivity tensor for both the anisotropic and isotropic regions. (paper)

  9. Non-Abelian tensor gauge fields and higher-spin extension of standard model

    International Nuclear Information System (INIS)

    Savvidy, G.

    2006-01-01

    We suggest an extension of the gauge principle which includes non-Abelian tensor gauge fields. The invariant Lagrangian is quadratic in the field strength tensors and describes interaction of charged tensor gauge bosons of arbitrary large integer spin 1,2,l. Non-Abelian tensor gauge fields can be viewed as a unique gauge field with values in the infinite-dimensional current algebra associated with compact Lie group. The full Lagrangian exhibits also enhanced local gauge invariance with double number of gauge parameters which allows to eliminate all negative norm states of the nonsymmetric second-rank tensor gauge field, which describes therefore two polarizations of helicity-two massless charged tensor gauge boson and the helicity-zero ''axion'' The geometrical interpretation of the enhanced gauge symmetry with double number of gauge parameters is not yet known. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. Mesh Denoising based on Normal Voting Tensor and Binary Optimization

    OpenAIRE

    Yadav, S. K.; Reitebuch, U.; Polthier, K.

    2016-01-01

    This paper presents a tensor multiplication based smoothing algorithm that follows a two step denoising method. Unlike other traditional averaging approaches, our approach uses an element based normal voting tensor to compute smooth surfaces. By introducing a binary optimization on the proposed tensor together with a local binary neighborhood concept, our algorithm better retains sharp features and produces smoother umbilical regions than previous approaches. On top of that, we provide a stoc...

  11. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    Science.gov (United States)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  12. Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement

    Directory of Open Access Journals (Sweden)

    Mehmet Nergiz

    2017-11-01

    Full Text Available Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively.

  13. MathGR: a tensor and GR computation package to keep it simple

    OpenAIRE

    Wang, Yi

    2013-01-01

    We introduce the MathGR package, written in Mathematica. The package can manipulate tensor and GR calculations with either abstract or explicit indices, simplify tensors with permutational symmetries, decompose tensors from abstract indices to partially or completely explicit indices and convert partial derivatives into total derivatives. Frequently used GR tensors and a model of FRW universe with ADM type perturbations are predefined. The package is built around the philosophy to "keep it si...

  14. Simultaneous tensor decomposition and completion using factor priors.

    Science.gov (United States)

    Chen, Yi-Lei; Hsu, Chiou-Ting; Liao, Hong-Yuan Mark

    2014-03-01

    The success of research on matrix completion is evident in a variety of real-world applications. Tensor completion, which is a high-order extension of matrix completion, has also generated a great deal of research interest in recent years. Given a tensor with incomplete entries, existing methods use either factorization or completion schemes to recover the missing parts. However, as the number of missing entries increases, factorization schemes may overfit the model because of incorrectly predefined ranks, while completion schemes may fail to interpret the model factors. In this paper, we introduce a novel concept: complete the missing entries and simultaneously capture the underlying model structure. To this end, we propose a method called simultaneous tensor decomposition and completion (STDC) that combines a rank minimization technique with Tucker model decomposition. Moreover, as the model structure is implicitly included in the Tucker model, we use factor priors, which are usually known a priori in real-world tensor objects, to characterize the underlying joint-manifold drawn from the model factors. By exploiting this auxiliary information, our method leverages two classic schemes and accurately estimates the model factors and missing entries. We conducted experiments to empirically verify the convergence of our algorithm on synthetic data and evaluate its effectiveness on various kinds of real-world data. The results demonstrate the efficacy of the proposed method and its potential usage in tensor-based applications. It also outperforms state-of-the-art methods on multilinear model analysis and visual data completion tasks.

  15. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages.

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S; Ragin, Ann B; Hao, Zhifeng; Yang, Xiaowei

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases ( i.e ., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes.

  16. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    Science.gov (United States)

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  17. An introduction to tensors and group theory for physicists

    CERN Document Server

    Jeevanjee, Nadir

    2015-01-01

    The second edition of this highly praised textbook provides an introduction to tensors, group theory, and their applications in classical and quantum physics.  Both intuitive and rigorous, it aims to demystify tensors by giving the slightly more abstract but conceptually much clearer definition found in the math literature, and then connects this formulation to the component formalism of physics calculations.  New pedagogical features, such as new illustrations, tables, and boxed sections, as well as additional “invitation” sections that provide accessible introductions to new material, offer increased visual engagement, clarity, and motivation for students.   Part I begins with linear algebraic foundations, follows with the modern component-free definition of tensors, and concludes with applications to physics through the use of tensor products. Part II introduces group theory, including abstract groups and Lie groups and their associated Lie algebras, then intertwines this material with that of Part...

  18. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    Science.gov (United States)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  19. Adaptive distance learning scheme for diffusion tensor imaging using kernel target alignment

    NARCIS (Netherlands)

    Rodrigues, P.R.; Vilanova, A.; Twellmann, T.; Haar Romenij, ter B.M.; Alexander, D.; Gee, J.; Whitaker, R.

    2008-01-01

    In segmentation techniques for Diffusion Tensor Imaging (DTI) data, the similarity of diffusion tensors must be assessed for partitioning data into regions which are homogeneous in terms of tensor characteristics. Various distance measures have been proposed in literature for analysing the

  20. MR-NTD: Manifold Regularization Nonnegative Tucker Decomposition for Tensor Data Dimension Reduction and Representation.

    Science.gov (United States)

    Li, Xutao; Ng, Michael K; Cong, Gao; Ye, Yunming; Wu, Qingyao

    2017-08-01

    With the advancement of data acquisition techniques, tensor (multidimensional data) objects are increasingly accumulated and generated, for example, multichannel electroencephalographies, multiview images, and videos. In these applications, the tensor objects are usually nonnegative, since the physical signals are recorded. As the dimensionality of tensor objects is often very high, a dimension reduction technique becomes an important research topic of tensor data. From the perspective of geometry, high-dimensional objects often reside in a low-dimensional submanifold of the ambient space. In this paper, we propose a new approach to perform the dimension reduction for nonnegative tensor objects. Our idea is to use nonnegative Tucker decomposition (NTD) to obtain a set of core tensors of smaller sizes by finding a common set of projection matrices for tensor objects. To preserve geometric information in tensor data, we employ a manifold regularization term for the core tensors constructed in the Tucker decomposition. An algorithm called manifold regularization NTD (MR-NTD) is developed to solve the common projection matrices and core tensors in an alternating least squares manner. The convergence of the proposed algorithm is shown, and the computational complexity of the proposed method scales linearly with respect to the number of tensor objects and the size of the tensor objects, respectively. These theoretical results show that the proposed algorithm can be efficient. Extensive experimental results have been provided to further demonstrate the effectiveness and efficiency of the proposed MR-NTD algorithm.

  1. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  2. Estimation of Uncertainties of Full Moment Tensors

    Science.gov (United States)

    2017-10-06

    For our moment tensor inversions, we use the ‘cut-and-paste’ ( CAP ) code of Zhu and Helmberger (1996) and Zhu and Ben-Zion (2013), with some...modifications. For the misfit function we use an L1 norm Silwal and Tape (2016), and we incorporate the number of misfitting polarities into the waveform... norm of the eigenvalue triple provides the magnitude of the moment tensor, leaving two free parameters to define the source type. In the same year

  3. Two new eigenvalue localization sets for tensors and theirs applications

    Directory of Open Access Journals (Sweden)

    Zhao Jianxing

    2017-10-01

    Full Text Available A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Qi (J. Symbolic Comput., 2005, 40, 1302-1324 and Li et al. (Numer. Linear Algebra Appl., 2014, 21, 39-50. As an application, a weaker checkable sufficient condition for the positive (semi-definiteness of an even-order real symmetric tensor is obtained. Meanwhile, an S-type E-eigenvalue localization set for tensors is given and proved to be tighter than that presented by Wang et al. (Discrete Cont. Dyn.-B, 2017, 22(1, 187-198. As an application, an S-type upper bound for the Z-spectral radius of weakly symmetric nonnegative tensors is obtained. Finally, numerical examples are given to verify the theoretical results.

  4. Tensor meson dominance and e/sup +/e/sup -/-physics

    Energy Technology Data Exchange (ETDEWEB)

    Genz, H [Miami Univ., Coral Gables, FL (USA). Center for Theoretical Studies; Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik); Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik

    1983-01-01

    The phenomenological status of tensor meson dominance is reported. Some new results concerning hadronic decays of the 2/sup + +/-meson chi/sub 2/(3.55) and the heavy lepton tau are also included. Considering experimental errors, tensor meson dominance is in agreement with experiment.

  5. A dielectric tensor for magnetoplasmas comprising components with generalized Lorentzian distributions

    International Nuclear Information System (INIS)

    Mace, R.L.

    1996-01-01

    We report on a new form for the dielectric tensor for a plasma containing superthermal particles. The individual particle components are modelled by 3-dimensional isotropic kappa, or generalized Lorentzian, distributions with arbitrary real-valued index κ. The new dielectric tensor is valid for arbitrary wavevectors. The dielectric tensor, which resembles Trubnikov's dielectric tensor for a relativistic plasma, is compared with the familiar Maxwellian form. When the dielectric tensor is used in the plasma dispersion relation for waves propagating parallel to the magnetic field it reproduces previously derived dispersion relations for various electromagnetic and electrostatic waves in plasmas modelled by Lorentzian particle distributions. Within the constraints of propagation parallel to the ambient magnetic field, we extend the above results to incorporate loss-cone Lorentzian particle distributions, which have important applications in laboratory mirror devices, as well as in space and astrophysical environments. (orig.)

  6. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Science.gov (United States)

    Tretyakova, Daria; Latosh, Boris

    2018-02-01

    In this review we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on a black hole, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the gaps that must be filled.

  7. Scalar-Tensor Black Holes Embedded in an Expanding Universe

    Directory of Open Access Journals (Sweden)

    Daria Tretyakova

    2018-02-01

    Full Text Available In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated.

  8. Diffusion tensor imaging of the human skeletal muscle: contributions and applications

    International Nuclear Information System (INIS)

    Neji, Radhouene

    2010-01-01

    In this thesis, we present several techniques for the processing of diffusion tensor images. They span a wide range of tasks such as estimation and regularization, clustering and segmentation, as well as registration. The variational framework proposed for recovering a tensor field from noisy diffusion weighted images exploits the fact that diffusion data represent populations of fibers and therefore each tensor can be reconstructed using a weighted combination of tensors lying in its neighborhood. The segmentation approach operates both at the voxel and the fiber tract levels. It is based on the use of Mercer kernels over Gaussian diffusion probabilities to model tensor similarity and spatial interactions, allowing the definition of fiber metrics that combine information from spatial localization and diffusion tensors. Several clustering techniques can be subsequently used to segment tensor fields and fiber tractographies. Moreover, we show how to develop supervised extensions of these algorithms. The registration algorithm uses probability kernels in order to match moving and target images. The deformation consistency is assessed using the distortion induced in the distances between neighboring probabilities. Discrete optimization is used to seek an optimum of the defined objective function. The experimental validation is done over a dataset of manually segmented diffusion images of the lower leg muscle for healthy and diseased subjects. The results of the techniques developed throughout this thesis are promising. (author)

  9. Tensor Basis Neural Network v. 1.0 (beta)

    Energy Technology Data Exchange (ETDEWEB)

    2017-03-28

    This software package can be used to build, train, and test a neural network machine learning model. The neural network architecture is specifically designed to embed tensor invariance properties by enforcing that the model predictions sit on an invariant tensor basis. This neural network architecture can be used in developing constitutive models for applications such as turbulence modeling, materials science, and electromagnetism.

  10. Micromechanics based framework with second-order damage tensors

    Science.gov (United States)

    Desmorat, R.; Desmorat, B.; Olive, M.; Kolev, B.

    2018-05-01

    The harmonic product of tensors---leading to the concept of harmonic factorization---has been defined in a previous work (Olive et al, 2017). In the practical case of 3D crack density measurements on thin or thick walled structures, this mathematical tool allows us to factorize the harmonic (irreducible) part of the fourth-order damage tensor as an harmonic square: an exact harmonic square in 2D, an harmonic square over the set of so-called mechanically accessible directions for measurements in the 3D case. The corresponding micro-mechanics framework based on second---instead of fourth---order damage tensors is derived. An illustrating example is provided showing how the proposed framework allows for the modeling of the so-called hydrostatic sensitivity up to high damage levels.

  11. DuSK: A Dual Structure-preserving Kernel for Supervised Tensor Learning with Applications to Neuroimages

    Science.gov (United States)

    He, Lifang; Kong, Xiangnan; Yu, Philip S.; Ragin, Ann B.; Hao, Zhifeng; Yang, Xiaowei

    2015-01-01

    With advances in data collection technologies, tensor data is assuming increasing prominence in many applications and the problem of supervised tensor learning has emerged as a topic of critical significance in the data mining and machine learning community. Conventional methods for supervised tensor learning mainly focus on learning kernels by flattening the tensor into vectors or matrices, however structural information within the tensors will be lost. In this paper, we introduce a new scheme to design structure-preserving kernels for supervised tensor learning. Specifically, we demonstrate how to leverage the naturally available structure within the tensorial representation to encode prior knowledge in the kernel. We proposed a tensor kernel that can preserve tensor structures based upon dual-tensorial mapping. The dual-tensorial mapping function can map each tensor instance in the input space to another tensor in the feature space while preserving the tensorial structure. Theoretically, our approach is an extension of the conventional kernels in the vector space to tensor space. We applied our novel kernel in conjunction with SVM to real-world tensor classification problems including brain fMRI classification for three different diseases (i.e., Alzheimer's disease, ADHD and brain damage by HIV). Extensive empirical studies demonstrate that our proposed approach can effectively boost tensor classification performances, particularly with small sample sizes. PMID:25927014

  12. Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.

    Science.gov (United States)

    Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej

    2015-09-01

    CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.

  13. New results for algebraic tensor reduction of Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Jochem [Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, Tord [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Yundin, Valery [Copenhagen Univ. (Denmark). Niels Bohr International Academy and Discovery Center

    2012-02-15

    We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2{epsilon}. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)

  14. New results for algebraic tensor reduction of Feynman integrals

    International Nuclear Information System (INIS)

    Fleischer, Jochem; Yundin, Valery

    2012-02-01

    We report on some recent developments in algebraic tensor reduction of one-loop Feynman integrals. For 5-point functions, an efficient tensor reduction was worked out recently and is now available as numerical C++ package, PJFry, covering tensor ranks until five. It is free of inverse 5- point Gram determinants and inverse small 4-point Gram determinants are treated by expansions in higher-dimensional 3-point functions. By exploiting sums over signed minors, weighted with scalar products of chords (or, equivalently, external momenta), extremely efficient expressions for tensor integrals contracted with external momenta were derived. The evaluation of 7-point functions is discussed. In the present approach one needs for the reductions a (d +2)-dimensional scalar 5-point function in addition to the usual scalar basis of 1- to 4-point functions in the generic dimension d=4-2ε. When exploiting the four-dimensionality of the kinematics, this basis is sufficient. We indicate how the (d+2)-dimensional 5-point function can be evaluated. (orig.)

  15. Structural equations for Killing tensors of order two. II

    International Nuclear Information System (INIS)

    Hauser, I.; Malhiot, R.J.

    1975-01-01

    In a preceding paper, a new form of the structural equations for any Killing tensor of order two have been derived; these equations constitute a system analogous to the Killing vector equations Nabla/sub alpha/ K/sub beta/ = ω/sub alpha beta/ = -ω/sub beta alpha/ and Nabla/sub gamma/ ω/sub alpha beta = R/sub alpha beta gamma delta/ K/sup delta/. The first integrability condition for the Killing tensor structural equations is now derived. The structural equations and the integrability condition have forms which can readily be expressed in terms of a null tetrad to furnish a Killing tensor parallel of the Newman--Penrose equations; this is briefly described. The integrability condition implies the new result, for any given space--time, that the dimension of the set of second-order Killing tensors attains its maximum possible value of 50 only if the space--time is of constant curvature. Potential applications of the structural equations are discussed

  16. Full magnetic gradient tensor from triaxial aeromagnetic gradient measurements: Calculation and application

    Science.gov (United States)

    Luo, Yao; Wu, Mei-Ping; Wang, Ping; Duan, Shu-Ling; Liu, Hao-Jun; Wang, Jin-Long; An, Zhan-Feng

    2015-09-01

    The full magnetic gradient tensor (MGT) refers to the spatial change rate of the three field components of the geomagnetic field vector along three mutually orthogonal axes. The tensor is of use to geological mapping, resources exploration, magnetic navigation, and others. However, it is very difficult to measure the full magnetic tensor gradient using existing engineering technology. We present a method to use triaxial aeromagnetic gradient measurements for deriving the full MGT. The method uses the triaxial gradient data and makes full use of the variation of the magnetic anomaly modulus in three dimensions to obtain a self-consistent magnetic tensor gradient. Numerical simulations show that the full MGT data obtained with the proposed method are of high precision and satisfy the requirements of data processing. We selected triaxial aeromagnetic gradient data from the Hebei Province for calculating the full MGT. Data processing shows that using triaxial tensor gradient data allows to take advantage of the spatial rate of change of the total field in three dimensions and suppresses part of the independent noise in the aeromagnetic gradient. The calculated tensor components have improved resolution, and the transformed full tensor gradient satisfies the requirement of geological mapping and interpretation.

  17. Examining the consistency relations describing the three-point functions involving tensors

    International Nuclear Information System (INIS)

    Sreenath, V.; Sriramkumar, L.

    2014-01-01

    It is well known that the non-Gaussianity parameter f NL characterizing the scalar bi-spectrum can be expressed in terms of the scalar spectral index in the squeezed limit, a property that is referred to as the consistency relation. In contrast to the scalar bi-spectrum, the three-point cross-correlations involving scalars and tensors and the tensor bi-spectrum have not received adequate attention, which can be largely attributed to the fact that the tensors had remained undetected at the level of the power spectrum until very recently. The detection of the imprints of the primordial tensor perturbations by BICEP2 and its indication of a rather high tensor-to-scalar ratio, if confirmed, can open up a new window for understanding the tensor perturbations, not only at the level of the power spectrum, but also in the realm of non-Gaussianities. In this work, we consider the consistency relations associated with the three-point cross-correlations involving scalars and tensors as well as the tensor bi-spectrum in inflationary models driven by a single, canonical, scalar field. Characterizing the cross-correlations in terms of the dimensionless non-Gaussianity parameters C NL R and C NL γ that we had introduced earlier, we express the consistency relations governing the cross-correlations as relations between these non-Gaussianity parameters and the scalar or tensor spectral indices, in a fashion similar to that of the purely scalar case. We also discuss the corresponding relation for the non-Gaussianity parameter h NL used to describe the tensor bi-spectrum. We analytically establish these consistency relations explicitly in the following two situations: a simple example involving a specific case of power law inflation and a non-trivial scenario in the so-called Starobinsky model that is governed by a linear potential with a sharp change in its slope. We also numerically verify the consistency relations in three types of inflationary models that permit deviations from

  18. Comparison of two global digital algorithms for Minkowski tensor estimation

    DEFF Research Database (Denmark)

    The geometry of real world objects can be described by Minkowski tensors. Algorithms have been suggested to approximate Minkowski tensors if only a binary image of the object is available. This paper presents implementations of two such algorithms. The theoretical convergence properties...... are confirmed by simulations on test sets, and recommendations for input arguments of the algorithms are given. For increasing resolutions, we obtain more accurate estimators for the Minkowski tensors. Digitisations of more complicated objects are shown to require higher resolutions....

  19. X-linked adrenoleukodystrophy: correlation between Loes score and diffusion tensor imaging parameters.

    Science.gov (United States)

    Ono, Sergio Eiji; de Carvalho Neto, Arnolfo; Gasparetto, Emerson Leandro; Coelho, Luiz Otávio de Mattos; Escuissato, Dante Luiz; Bonfim, Carmem Maria Sales; Ribeiro, Lisandro Lima

    2014-01-01

    The present study was aimed at evaluating the correlation between diffusion tensor imaging parameters and Loes score as well as whether those parameters could indicate early structural alterations. Diffusion tensor imaging measurements were obtained in 30 studies of 14 patients with X-linked adrenoleukodystrophy and were correlated with Loes scores. A control group including 28 male patients was created to establish agematched diffusion tensor imaging measurements. Inter- and intraobserver statistical analyses were undertaken. Diffusion tensor imaging measurements presented strong Pearson correlation coefficients (r) of -0.86, 0.89, 0.89 and 0.84 for fractional anisotropy and mean, radial and axial diffusivities (p tensor measurements at early stage of the disease indicates that mean and radial diffusivities might be useful to predict the disease progression. Measurements of diffusion tensor parameters can be used as an adjunct to the Loes score, aiding in the monitoring of the disease and alerting for possible Loes score progression in the range of interest for therapeutic decisions.

  20. Realizability of metamaterials with prescribed electric permittivity and magnetic permeability tensors

    International Nuclear Information System (INIS)

    Milton, Graeme W

    2010-01-01

    We show that any pair of real symmetric tensors ε and μ can be realized as the effective electric permittivity and effective magnetic permeability of a metamaterial at a given fixed frequency. The construction starts with two extremely low-loss metamaterials, with arbitrarily small microstructure, whose existence is ensured by the work of Bouchitte and Bourel and Bouchitte and Schweizer: one having, at the given frequency, a permittivity tensor with exactly one negative eigenvalue, and a positive permeability tensor; and the other having a positive permittivity tensor, and a permeability tensor having exactly one negative eigenvalue. To achieve the desired effective properties, these materials are laminated together in a hierarchical multiple rank laminate structure, with widely separated length scales, and varying directions of lamination, but with the largest length scale still much shorter than the wavelengths and attenuation lengths in the macroscopic effective medium.

  1. Generalized Tensor Analysis Model for Multi-Subcarrier Analog Optical Systems

    DEFF Research Database (Denmark)

    Zhao, Ying; Yu, Xianbin; Zheng, Xiaoping

    2011-01-01

    We propose and develop a general tensor analysis framework for a subcarrier multiplex analog optical fiber link for applications in microwave photonics. The goal of this work is to construct an uniform method to address nonlinear distortions of a discrete frequency transmission system. We employ....... In addition, it is demonstrated that each corresponding tensor is formally determined by device structures, which allows for a synthesized study of device combinations more systematically. For implementing numerical methods, the practical significance of the tensor model is it simplifies the derivation...... details compared with series-based approaches by hiding the underlying multi-fold summation and index operation. The integrity of the proposed methodology is validated by investigating the classical intensity modulated system. Furthermore, to give an application model of the tensor formalism, we make...

  2. Superconformal tensor calculus and matter couplings in six dimensions

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Proeyen, A. Van

    1986-01-01

    Using superconformal tensor calculus we construct general interactions of N = 2, d = 6 supergravity with a tensor multiplet and a number of scalar, vector and linear multiplets. We start from the superconformal algebra which we realize on a 40+40 Weyl multiplet and on several matter multiplets. A

  3. TensorFlow Distributions

    OpenAIRE

    Dillon, Joshua V.; Langmore, Ian; Tran, Dustin; Brevdo, Eugene; Vasudevan, Srinivas; Moore, Dave; Patton, Brian; Alemi, Alex; Hoffman, Matt; Saurous, Rif A.

    2017-01-01

    The TensorFlow Distributions library implements a vision of probability theory adapted to the modern deep-learning paradigm of end-to-end differentiable computation. Building on two basic abstractions, it offers flexible building blocks for probabilistic computation. Distributions provide fast, numerically stable methods for generating samples and computing statistics, e.g., log density. Bijectors provide composable volume-tracking transformations with automatic caching. Together these enable...

  4. The gauge-invariant canonical energy-momentum tensor

    Science.gov (United States)

    Lorcé, Cédric

    2016-03-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictacted in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMDs and GPDs). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive three similar new sum rules expressing the conservation of transverse momentum.

  5. The gauge-invariant canonical energy-momentum tensor

    International Nuclear Information System (INIS)

    Lorce, C.

    2016-01-01

    The canonical energy-momentum tensor is often considered as a purely academic object because of its gauge dependence. However, it has recently been realized that canonical quantities can in fact be defined in a gauge-invariant way provided that strict locality is abandoned, the non-local aspect being dictated in high-energy physics by the factorization theorems. Using the general techniques for the parametrization of non-local parton correlators, we provide for the first time a complete parametrization of the energy-momentum tensor (generalizing the purely local parametrizations of Ji and Bakker-Leader-Trueman used for the kinetic energy-momentum tensor) and identify explicitly the parts accessible from measurable two-parton distribution functions (TMD and GPD). As by-products, we confirm the absence of model-independent relations between TMDs and parton orbital angular momentum, recover in a much simpler way the Burkardt sum rule and derive 3 similar new sum rules expressing the conservation of transverse momentum. (author)

  6. On an uninterpretated tensor in Dirac's theory

    International Nuclear Information System (INIS)

    Costa de Beauregard, O.

    1989-01-01

    Franz, in 1935, deduced systematically from the Dirac equation 10 tensorial equations, 5 with a mechanical interpretation, 5 with an electromagnetic interpretation, which are also consequences of Kemmer's formalism for spins 1 and 0; Durand, in 1944, operating similarly with the second order Dirac equation, obtained, 10 equations, 5 of which expressing the divergences of the Gordon type tensors. Of these equations, together with the tensors they imply, some are easily interpreted by reference to the classical theories, some other remain uniterpreted. Recently (1988) we proposed a theory of the coupling between Einstein's gravity field and the 5 Franz mechanical equations, yielding as a bonus the complete interpretation of the 5 Franz mechanical equations. This is an incitation to reexamine the 5 electromagnetic equations. We show here that two of these, together with one of the Durand equations, implying the same tensor, remain uninterpreted. This is proposed as a challenge to the reader's sagacity [fr

  7. On deformed tensor potential for inelastic deuteron scattering

    International Nuclear Information System (INIS)

    Raynal, Jacques.

    1980-08-01

    Tensor analysing powers for inelastic deuteron scattering have been measured around 12 to 15 MeV. There is no problem to use such a tensor potential for the excited states in coupled channel calculations. However, for transition potentials, form factors are very different. A fit has been done with the first order vibrational model for 64 Ni(d,d') 64 Ni*, 2 + at 1,344 MeV

  8. Monte Carlo Volcano Seismic Moment Tensors

    Science.gov (United States)

    Waite, G. P.; Brill, K. A.; Lanza, F.

    2015-12-01

    Inverse modeling of volcano seismic sources can provide insight into the geometry and dynamics of volcanic conduits. But given the logistical challenges of working on an active volcano, seismic networks are typically deficient in spatial and temporal coverage; this potentially leads to large errors in source models. In addition, uncertainties in the centroid location and moment-tensor components, including volumetric components, are difficult to constrain from the linear inversion results, which leads to a poor understanding of the model space. In this study, we employ a nonlinear inversion using a Monte Carlo scheme with the objective of defining robustly resolved elements of model space. The model space is randomized by centroid location and moment tensor eigenvectors. Point sources densely sample the summit area and moment tensors are constrained to a randomly chosen geometry within the inversion; Green's functions for the random moment tensors are all calculated from modeled single forces, making the nonlinear inversion computationally reasonable. We apply this method to very-long-period (VLP) seismic events that accompany minor eruptions at Fuego volcano, Guatemala. The library of single force Green's functions is computed with a 3D finite-difference modeling algorithm through a homogeneous velocity-density model that includes topography, for a 3D grid of nodes, spaced 40 m apart, within the summit region. The homogenous velocity and density model is justified by long wavelength of VLP data. The nonlinear inversion reveals well resolved model features and informs the interpretation through a better understanding of the possible models. This approach can also be used to evaluate possible station geometries in order to optimize networks prior to deployment.

  9. Tensor integrand reduction via Laurent expansion

    Energy Technology Data Exchange (ETDEWEB)

    Hirschi, Valentin [SLAC, National Accelerator Laboratory,2575 Sand Hill Road, Menlo Park, CA 94025-7090 (United States); Peraro, Tiziano [Higgs Centre for Theoretical Physics, School of Physics and Astronomy,The University of Edinburgh,Edinburgh EH9 3JZ, Scotland (United Kingdom)

    2016-06-09

    We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MADLOOP, which is part of the public MADGRAPH5{sub A}MC@NLO framework. We performed a detailed performance study, comparing against other public reduction tools, namely CUTTOOLS, SAMURAI, IREGI, PJFRY++ and GOLEM95. We find that Ninja outperforms traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool GOLEM95 which is however more limited and slower than Ninja. We considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.

  10. Tensor force and debye screening in quarkonium-type mesons

    International Nuclear Information System (INIS)

    Kovacs, L.B.; Kovacs, T.G.; Lovas, I.

    1990-01-01

    We use a non-relativistic quantum-mechanical model to investigate the effect of a screening plasma on two quarkonium-type mesons: the charmonium and bottonium. The stability of these mesons in the plasma is estimated in two cases: including the tensor and spin-orbit term in the potential and without these terms. It turns out that while the bottonium is somewhat stabilized by the tensor force, the charmonium becomes less stabil due to this modification of the potential. Thus the charmonium seems to be a more sensitive probe of the quark-gluon plasma formation than it was thought to be without including the tensor force. (Authors)

  11. Using the TensorFlow Deep Neural Network to Classify Mainland China Visitor Behaviours in Hong Kong from Check-in Data

    Directory of Open Access Journals (Sweden)

    Shanshan Han

    2018-04-01

    Full Text Available Over the past decade, big data, including Global Positioning System (GPS data, mobile phone tracking data and social media check-in data, have been widely used to analyse human movements and behaviours. Tourism management researchers have noted the potential of applying these data to study tourist behaviours, and many studies have shown that social media check-in data can provide new opportunities for extracting tourism activities and tourist behaviours. However, traditional methods may not be suitable for extracting comprehensive tourist behaviours due to the complexity and diversity of human behaviours. Studies have shown that deep neural networks have outpaced the abilities of human beings in many fields and that deep neural networks can be explained in a psychological manner. Thus, deep neural network methods can potentially be used to understand human behaviours. In this paper, a deep learning neural network constructed in TensorFlow is applied to classify Mainland China visitor behaviours in Hong Kong, and the characteristics of these visitors are analysed to verify the classification results. For the social science classification problem investigated in this study, the deep neural network classifier in TensorFlow provides better accuracy and more lucid visualisation than do traditional neural network methods, even for erratic classification rules. Furthermore, the results of this study reveal that TensorFlow has considerable potential for application in the human geography field.

  12. Curvature tensors and unified field equations on SEX/sub n/

    International Nuclear Information System (INIS)

    Chung, K.T.; Lee, I.L.

    1988-01-01

    We study the curvature tensors and field equations in the n-dimensional SE manifold SEX/sub n/. We obtain several basic properties of the vectors S/subλ/ and U/sub λ/ and then of the SE curvature tensor and its contractions, such as a generalized Ricci identity, a generalized Bianchi identity, and two variations of the Bianchi identity satisfied by the SE Einstein tensor. Finally, a system of field equations is discussed in SEX/sub n/ an done of its particular solutions is constructed and displayed

  13. arXiv Tensor to scalar ratio from single field magnetogenesis

    CERN Document Server

    Giovannini, Massimo

    2017-08-10

    The tensor to scalar ratio is affected by the evolution of the large-scale gauge fields potentially amplified during an inflationary stage of expansion. After deriving the exact evolution equations for the scalar and tensor modes of the geometry in the presence of dynamical gauge fields, it is shown that the tensor to scalar ratio is bounded from below by the dominance of the adiabatic contribution and it cannot be smaller than one thousands whenever the magnetogenesis is driven by a single inflaton field.

  14. Parity and isospin in pion condensation and tensor binding

    International Nuclear Information System (INIS)

    Pace, E.; Palumbo, F.

    1978-01-01

    In infinite nuclear matter with pion condensates or tensor binding both parity and isospin symmetries are broken. Finite nuclei with pion condensates or tensor binding, however, can have definite parity. They cannot have a definite value of isospin, whose average value is of the order of the number of nucleons. (Auth.)

  15. Couplings of self-dual tensor multiplet in six dimensions

    NARCIS (Netherlands)

    Bergshoeff, E.; Sezgin, E.; Sokatchev, E.

    1996-01-01

    The (1, 0) supersymmetry in six dimensions admits a tensor multiplet which contains a second-rank antisymmetric tensor field with a self-dual field strength and a dilaton. We describe the fully supersymmetric coupling of this multiplet to a Yang–Mills multiplet, in the absence of supergravity. The

  16. Entanglement and tensor product decomposition for two fermions

    International Nuclear Information System (INIS)

    Caban, P; Podlaski, K; Rembielinski, J; Smolinski, K A; Walczak, Z

    2005-01-01

    The problem of the choice of tensor product decomposition in a system of two fermions with the help of Bogoliubov transformations of creation and annihilation operators is discussed. The set of physical states of the composite system is restricted by the superselection rule forbidding the superposition of fermions and bosons. It is shown that the Wootters concurrence is not the proper entanglement measure in this case. The explicit formula for the entanglement of formation is found. This formula shows that the entanglement of a given state depends on the tensor product decomposition of a Hilbert space. It is shown that the set of separable states is narrower than in the two-qubit case. Moreover, there exist states which are separable with respect to all tensor product decompositions of the Hilbert space. (letter to the editor)

  17. The light-front gauge-invariant energy-momentum tensor

    International Nuclear Information System (INIS)

    Lorce, Cedric

    2015-01-01

    In this study, we provide for the first time a complete parametrization for the matrix elements of the generic asymmetric, non-local and gauge-invariant canonical energy-momentum tensor, generalizing therefore former works on the symmetric, local and gauge-invariant kinetic energy-momentum tensor also known as the Belinfante-Rosenfeld energy-momentum tensor. We discuss in detail the various constraints imposed by non-locality, linear and angular momentum conservation. We also derive the relations with two-parton generalized and transverse-momentum dependent distributions, clarifying what can be learned from the latter. In particular, we show explicitly that two-parton transverse-momentum dependent distributions cannot provide any model-independent information about the parton orbital angular momentum. On the way, we recover the Burkardt sum rule and obtain similar new sum rules for higher-twist distributions

  18. Locally extracting scalar, vector and tensor modes in cosmological perturbation theory

    International Nuclear Information System (INIS)

    Clarkson, Chris; Osano, Bob

    2011-01-01

    Cosmological perturbation theory relies on the decomposition of perturbations into so-called scalar, vector and tensor modes. This decomposition is non-local and depends on unknowable boundary conditions. The non-locality is particularly important at second and higher order because perturbative modes are sourced by products of lower order modes, which must be integrated over all space in order to isolate each mode. However, given a trace-free rank-2 tensor, a locally defined scalar mode may be trivially derived by taking two divergences, which knocks out the vector and tensor degrees of freedom. A similar local differential operation will return a pure vector mode. This means that scalar and vector degrees of freedom have local descriptions. The corresponding local extraction of the tensor mode is unknown however. We give it here. The operators we define are useful for defining gauge-invariant quantities at second order. We perform much of our analysis using an index-free 'vector-calculus' approach which makes manipulating tensor equations considerably simpler. (papers)

  19. The gravitational wave stress–energy (pseudo)-tensor in modified gravity

    Science.gov (United States)

    Saffer, Alexander; Yunes, Nicolás; Yagi, Kent

    2018-03-01

    The recent detections of gravitational waves by the advanced LIGO and Virgo detectors open up new tests of modified gravity theories in the strong-field and dynamical, extreme gravity regime. Such tests rely sensitively on the phase evolution of the gravitational waves, which is controlled by the energy–momentum carried by such waves out of the system. We here study four different methods for finding the gravitational wave stress–energy pseudo-tensor in gravity theories with any combination of scalar, vector, or tensor degrees of freedom. These methods rely on the second variation of the action under short-wavelength averaging, the second perturbation of the field equations in the short-wavelength approximation, the construction of an energy complex leading to a Landau–Lifshitz tensor, and the use of Noether’s theorem in field theories about a flat background. We apply these methods in general relativity, Jordan–Fierz–Brans–Dicky theoy, and Einstein-Æther theory to find the gravitational wave stress–energy pseudo-tensor and calculate the rate at which energy and linear momentum is carried away from the system. The stress–energy tensor and the rate of linear momentum loss in Einstein-Æther theory are presented here for the first time. We find that all methods yield the same rate of energy loss, although the stress–energy pseudo-tensor can be functionally different. We also find that the Noether method yields a stress–energy tensor that is not symmetric or gauge-invariant, and symmetrization via the Belinfante procedure does not fix these problems because this procedure relies on Lorentz invariance, which is spontaneously broken in Einstein-Æther theory. The methods and results found here will be useful for the calculation of predictions in modified gravity theories that can then be contrasted with observations.

  20. Multivariate Tensor-based Brain Anatomical Surface Morphometry via Holomorphic One-Forms

    OpenAIRE

    Wang, Yalin; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer’s Disease (AD; 26 subjects), lateral ventricula...

  1. Reweighted Low-Rank Tensor Completion and its Applications in Video Recovery

    OpenAIRE

    M., Baburaj; George, Sudhish N.

    2016-01-01

    This paper focus on recovering multi-dimensional data called tensor from randomly corrupted incomplete observation. Inspired by reweighted $l_1$ norm minimization for sparsity enhancement, this paper proposes a reweighted singular value enhancement scheme to improve tensor low tubular rank in the tensor completion process. An efficient iterative decomposition scheme based on t-SVD is proposed which improves low-rank signal recovery significantly. The effectiveness of the proposed method is es...

  2. Conservation laws and stress-energy-momentum tensors for systems with background fields

    Energy Technology Data Exchange (ETDEWEB)

    Gratus, Jonathan, E-mail: j.gratus@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Obukhov, Yuri N., E-mail: yo@thp.uni-koeln.de [Institute for Theoretical Physics, University of Cologne, 50923 Koeln (Germany); Tucker, Robin W., E-mail: r.tucker@lancaster.ac.uk [Lancaster University, Lancaster LA1 4YB (United Kingdom); The Cockcroft Institute, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom)

    2012-10-15

    This article attempts to delineate the roles played by non-dynamical background structures and Killing symmetries in the construction of stress-energy-momentum tensors generated from a diffeomorphism invariant action density. An intrinsic coordinate independent approach puts into perspective a number of spurious arguments that have historically lead to the main contenders, viz the Belinfante-Rosenfeld stress-energy-momentum tensor derived from a Noether current and the Einstein-Hilbert stress-energy-momentum tensor derived in the context of Einstein's theory of general relativity. Emphasis is placed on the role played by non-dynamical background (phenomenological) structures that discriminate between properties of these tensors particularly in the context of electrodynamics in media. These tensors are used to construct conservation laws in the presence of Killing Lie-symmetric background fields. - Highlights: Black-Right-Pointing-Pointer The role of background fields in diffeomorphism invariant actions is demonstrated. Black-Right-Pointing-Pointer Interrelations between different stress-energy-momentum tensors are emphasised. Black-Right-Pointing-Pointer The Abraham and Minkowski electromagnetic tensors are discussed in this context. Black-Right-Pointing-Pointer Conservation laws in the presence of nondynamic background fields are formulated. Black-Right-Pointing-Pointer The discussion is facilitated by the development of a new variational calculus.

  3. A complete algebraic reduction of one-loop tensor Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Bielefeld Univ. (Germany). Fakultaet fuer Physik; Riemann, T. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-09-15

    Guided by the need to eliminate inverse Gram determinants (){sub 5} from tensorial 5-point functions and sub-Gram determinants (){sub 4} from tensorial 4-point functions, we set up a new and very efficient approach for the tensor reduction of Feynman integrals. We eliminate all Gram determinants for one-loop 5-point integrals up to tensors of rank R=5 by reducing their tensor coefficients to higherdimensional 4-point tensor coefficients. These in turn are reduced to expressions which are free of inverse powers of (){sub 4}, but depend on higher-dimensional integrals I{sub 4}{sup (d)} with d{<=}2R. Their expression in terms of scalar integrals defined in the generic dimension, I{sub 4}; I{sub 3}; I{sub 2}; I{sub 1}, however, introduces coefficients [1=(){sub 4}]{sup R} for tensors of rank R. For small or vanishing (){sub 4}, an efficient expansion is found so that a stable numerical evaluation of massive and massless Feynman integrals at arbitrary values of the Gram determinants is made possible. Finally, some relations are mentioned which may be useful for analytic simplifications of the original Feynman diagrams. (orig.)

  4. Diffusion tensor MR microscopy of tissues with low diffusional anisotropy.

    Science.gov (United States)

    Bajd, Franci; Mattea, Carlos; Stapf, Siegfried; Sersa, Igor

    2016-06-01

    Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low.

  5. Performance Optimization of Tensor Contraction Expressions for Many Body Methods in Quantum Chemistry

    International Nuclear Information System (INIS)

    Hartono, Albert; Lu, Qingda; Henretty, Thomas; Krishnamoorthy, Sriram; Zhang, Huaijian; Baumgartner, Gerald; Bernholdt, David E.; Nooijen, Marcel; Pitzer, Russell M.; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-01-01

    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations such as minimization of cache misses and utilization of multimedia vector instructions are discussed. A library for efficient index permutation of multi-dimensional tensors is described and experimental performance data is provided that demonstrates its effectiveness.

  6. Performance Optimization of Tensor Contraction Expressions for Many Body Methods in Quantum Chemistry

    International Nuclear Information System (INIS)

    Krishnamoorthy, Sriram; Bernholdt, David E.; Pitzer, R.M.; Sadayappan, Ponnuswamy

    2009-01-01

    Complex tensor contraction expressions arise in accurate electronic structure models in quantum chemistry, such as the coupled cluster method. This paper addresses two complementary aspects of performance optimization of such tensor contraction expressions. Transformations using algebraic properties of commutativity and associativity can be used to significantly decrease the number of arithmetic operations required for evaluation of these expressions. The identification of common subexpressions among a set of tensor contraction expressions can result in a reduction of the total number of operations required to evaluate the tensor contractions. The first part of the paper describes an effective algorithm for operation minimization with common subexpression identification and demonstrates its effectiveness on tensor contraction expressions for coupled cluster equations. The second part of the paper highlights the importance of data layout transformation in the optimization of tensor contraction computations on modern processors. A number of considerations, such as minimization of cache misses and utilization of multimedia vector instructions, are discussed. A library for efficient index permutation of multidimensional tensors is described, and experimental performance data is provided that demonstrates its effectiveness.

  7. Migration transformation of two-dimensional magnetic vector and tensor fields

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu; Wilson, Glenn

    2012-01-01

    We introduce a new method of rapid interpretation of magnetic vector and tensor field data, based on ideas of potential field migration which extends the general principles of seismic and electromagnetic migration to potential fields. 2-D potential field migration represents a direct integral...... to the downward continuation of a well-behaved analytical function. We present case studies for imaging of SQUID-based magnetic tensor data acquired over a magnetite skarn at Tallawang, Australia. The results obtained from magnetic tensor field migration agree very well with both Euler deconvolution and the known...

  8. Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.

    Science.gov (United States)

    Khoromskaia, Venera; Khoromskij, Boris N

    2015-12-21

    We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.

  9. Effective gravitational wave stress-energy tensor in alternative theories of gravity

    International Nuclear Information System (INIS)

    Stein, Leo C.; Yunes, Nicolas

    2011-01-01

    The inspiral of binary systems in vacuum is controlled by the stress-energy of gravitational radiation and any other propagating degrees of freedom. For gravitational waves, the dominant contribution is characterized by an effective stress-energy tensor at future null infinity. We employ perturbation theory and the short-wavelength approximation to compute this stress-energy tensor in a wide class of alternative theories. We find that this tensor is generally a modification of that first computed by Isaacson, where the corrections can dominate over the general relativistic term. In a wide class of theories, however, these corrections identically vanish at asymptotically flat, future, null infinity, reducing the stress-energy tensor to Isaacson's. We exemplify this phenomenon by first considering dynamical Chern-Simons modified gravity, which corrects the action via a scalar field and the contraction of the Riemann tensor and its dual. We then consider a wide class of theories with dynamical scalar fields coupled to higher-order curvature invariants and show that the gravitational wave stress-energy tensor still reduces to Isaacson's. The calculations presented in this paper are crucial to perform systematic tests of such modified gravity theories through the orbital decay of binary pulsars or through gravitational wave observations.

  10. Tensor fields on orbits of quantum states and applications

    Energy Technology Data Exchange (ETDEWEB)

    Volkert, Georg Friedrich

    2010-07-19

    On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C{sub 0}-principal bundle H{sub 0} {yields} P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)

  11. Tensor fields on orbits of quantum states and applications

    International Nuclear Information System (INIS)

    Volkert, Georg Friedrich

    2010-01-01

    On classical Lie groups, which act by means of a unitary representation on finite dimensional Hilbert spaces H, we identify two classes of tensor field constructions. First, as pull-back tensor fields of order two from modified Hermitian tensor fields, constructed on Hilbert spaces by means of the property of having the vertical distributions of the C 0 -principal bundle H 0 → P(H) over the projective Hilbert space P(H) in the kernel. And second, directly constructed on the Lie group, as left-invariant representation-dependent operator-valued tensor fields (LIROVTs) of arbitrary order being evaluated on a quantum state. Within the NP-hard problem of deciding whether a given state in a n-level bi-partite quantum system is entangled or separable (Gurvits, 2003), we show that both tensor field constructions admit a geometric approach to this problem, which evades the traditional ambiguity on defining metrical structures on the convex set of mixed states. In particular by considering manifolds associated to orbits passing through a selected state when acted upon by the local unitary group U(n) x U(n) of Schmidt coefficient decomposition inducing transformations, we find the following results: In the case of pure states we show that Schmidt-equivalence classes which are Lagrangian submanifolds define maximal entangled states. This implies a stronger statement as the one proposed by Bengtsson (2007). Moreover, Riemannian pull-back tensor fields split on orbits of separable states and provide a quantitative characterization of entanglement which recover the entanglement measure proposed by Schlienz and Mahler (1995). In the case of mixed states we highlight a relation between LIROVTs of order two and a class of computable separability criteria based on the Bloch-representation (de Vicente, 2007). (orig.)

  12. Reconstruction of convex bodies from surface tensors

    DEFF Research Database (Denmark)

    Kousholt, Astrid; Kiderlen, Markus

    We present two algorithms for reconstruction of the shape of convex bodies in the two-dimensional Euclidean space. The first reconstruction algorithm requires knowledge of the exact surface tensors of a convex body up to rank s for some natural number s. The second algorithm uses harmonic intrinsic...... volumes which are certain values of the surface tensors and allows for noisy measurements. From a generalized version of Wirtinger's inequality, we derive stability results that are utilized to ensure consistency of both reconstruction procedures. Consistency of the reconstruction procedure based...

  13. Secoond order parallel tensors on some paracontact manifolds | Liu ...

    African Journals Online (AJOL)

    The object of the present paper is to study the symmetric and skewsymmetric properties of a second order parallel tensor on paracontact metric (k;μ)- spaces and almost β-para-Kenmotsu (k;μ)-spaces. In this paper, we prove that if there exists a second order symmetric parallel tensor on a paracontact metric (k;μ)- space M, ...

  14. A Gradient Based Iterative Solutions for Sylvester Tensor Equations

    Directory of Open Access Journals (Sweden)

    Zhen Chen

    2013-01-01

    proposed by Ding and Chen, 2005, and by using tensor arithmetic concepts, an iterative algorithm and its modification are established to solve the Sylvester tensor equation. Convergence analysis indicates that the iterative solutions always converge to the exact solution for arbitrary initial value. Finally, some examples are provided to show that the proposed algorithms are effective.

  15. The superspace-translation tensor and linearized N = 1 supergravities

    International Nuclear Information System (INIS)

    Bedding, S.P.; Lang, W.

    1982-01-01

    The recently proposed superspace-translation tensor is considered as the source of supergravities in the context of N = 1 supersymmetry. It is shown how the structure of this tensor leads to a complete evaluation of the linearized supervielbein in terms of unconstrained prepotentials with derived transformation laws. Connection with formulations using torsion constraints is made. (orig.)

  16. A Tensor Statistical Model for Quantifying Dynamic Functional Connectivity.

    Science.gov (United States)

    Zhu, Yingying; Zhu, Xiaofeng; Kim, Minjeong; Yan, Jin; Wu, Guorong

    2017-06-01

    Functional connectivity (FC) has been widely investigated in many imaging-based neuroscience and clinical studies. Since functional Magnetic Resonance Image (MRI) signal is just an indirect reflection of brain activity, it is difficult to accurately quantify the FC strength only based on signal correlation. To address this limitation, we propose a learning-based tensor model to derive high sensitivity and specificity connectome biomarkers at the individual level from resting-state fMRI images. First, we propose a learning-based approach to estimate the intrinsic functional connectivity. In addition to the low level region-to-region signal correlation, latent module-to-module connection is also estimated and used to provide high level heuristics for measuring connectivity strength. Furthermore, sparsity constraint is employed to automatically remove the spurious connections, thus alleviating the issue of searching for optimal threshold. Second, we integrate our learning-based approach with the sliding-window technique to further reveal the dynamics of functional connectivity. Specifically, we stack the functional connectivity matrix within each sliding window and form a 3D tensor where the third dimension denotes for time. Then we obtain dynamic functional connectivity (dFC) for each individual subject by simultaneously estimating the within-sliding-window functional connectivity and characterizing the across-sliding-window temporal dynamics. Third, in order to enhance the robustness of the connectome patterns extracted from dFC, we extend the individual-based 3D tensors to a population-based 4D tensor (with the fourth dimension stands for the training subjects) and learn the statistics of connectome patterns via 4D tensor analysis. Since our 4D tensor model jointly (1) optimizes dFC for each training subject and (2) captures the principle connectome patterns, our statistical model gains more statistical power of representing new subject than current state

  17. STRUCTURE TENSOR IMAGE FILTERING USING RIEMANNIAN L1 AND L∞ CENTER-OF-MASS

    Directory of Open Access Journals (Sweden)

    Jesus Angulo

    2014-06-01

    Full Text Available Structure tensor images are obtained by a Gaussian smoothing of the dyadic product of gradient image. These images give at each pixel a n×n symmetric positive definite matrix SPD(n, representing the local orientation and the edge information. Processing such images requires appropriate algorithms working on the Riemannian manifold on the SPD(n matrices. This contribution deals with structure tensor image filtering based on Lp geometric averaging. In particular, L1 center-of-mass (Riemannian median or Fermat-Weber point and L∞ center-of-mass (Riemannian circumcenter can be obtained for structure tensors using recently proposed algorithms. Our contribution in this paper is to study the interest of L1 and L∞ Riemannian estimators for structure tensor image processing. In particular, we compare both for two image analysis tasks: (i structure tensor image denoising; (ii anomaly detection in structure tensor images.

  18. Dimensionality Reduction for Hyperspectral Data Based on Class-Aware Tensor Neighborhood Graph and Patch Alignment.

    Science.gov (United States)

    Gao, Yang; Wang, Xuesong; Cheng, Yuhu; Wang, Z Jane

    2015-08-01

    To take full advantage of hyperspectral information, to avoid data redundancy and to address the curse of dimensionality concern, dimensionality reduction (DR) becomes particularly important to analyze hyperspectral data. Exploring the tensor characteristic of hyperspectral data, a DR algorithm based on class-aware tensor neighborhood graph and patch alignment is proposed here. First, hyperspectral data are represented in the tensor form through a window field to keep the spatial information of each pixel. Second, using a tensor distance criterion, a class-aware tensor neighborhood graph containing discriminating information is obtained. In the third step, employing the patch alignment framework extended to the tensor space, we can obtain global optimal spectral-spatial information. Finally, the solution of the tensor subspace is calculated using an iterative method and low-dimensional projection matrixes for hyperspectral data are obtained accordingly. The proposed method effectively explores the spectral and spatial information in hyperspectral data simultaneously. Experimental results on 3 real hyperspectral datasets show that, compared with some popular vector- and tensor-based DR algorithms, the proposed method can yield better performance with less tensor training samples required.

  19. Voxel-based clustered imaging by multiparameter diffusion tensor images for glioma grading.

    Science.gov (United States)

    Inano, Rika; Oishi, Naoya; Kunieda, Takeharu; Arakawa, Yoshiki; Yamao, Yukihiro; Shibata, Sumiya; Kikuchi, Takayuki; Fukuyama, Hidenao; Miyamoto, Susumu

    2014-01-01

    Gliomas are the most common intra-axial primary brain tumour; therefore, predicting glioma grade would influence therapeutic strategies. Although several methods based on single or multiple parameters from diagnostic images exist, a definitive method for pre-operatively determining glioma grade remains unknown. We aimed to develop an unsupervised method using multiple parameters from pre-operative diffusion tensor images for obtaining a clustered image that could enable visual grading of gliomas. Fourteen patients with low-grade gliomas and 19 with high-grade gliomas underwent diffusion tensor imaging and three-dimensional T1-weighted magnetic resonance imaging before tumour resection. Seven features including diffusion-weighted imaging, fractional anisotropy, first eigenvalue, second eigenvalue, third eigenvalue, mean diffusivity and raw T2 signal with no diffusion weighting, were extracted as multiple parameters from diffusion tensor imaging. We developed a two-level clustering approach for a self-organizing map followed by the K-means algorithm to enable unsupervised clustering of a large number of input vectors with the seven features for the whole brain. The vectors were grouped by the self-organizing map as protoclusters, which were classified into the smaller number of clusters by K-means to make a voxel-based diffusion tensor-based clustered image. Furthermore, we also determined if the diffusion tensor-based clustered image was really helpful for predicting pre-operative glioma grade in a supervised manner. The ratio of each class in the diffusion tensor-based clustered images was calculated from the regions of interest manually traced on the diffusion tensor imaging space, and the common logarithmic ratio scales were calculated. We then applied support vector machine as a classifier for distinguishing between low- and high-grade gliomas. Consequently, the sensitivity, specificity, accuracy and area under the curve of receiver operating characteristic

  20. Tensor analysis and elementary differential geometry for physicists and engineers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2017-01-01

    This book comprehensively presents topics, such as Dirac notation, tensor analysis, elementary differential geometry of moving surfaces, and k-differential forms. Additionally, two new chapters of Cartan differential forms and Dirac and tensor notations in quantum mechanics are added to this second edition. The reader is provided with hands-on calculations and worked-out examples at which he will learn how to handle the bra-ket notation, tensors, differential geometry, and differential forms; and to apply them to the physical and engineering world. Many methods and applications are given in CFD, continuum mechanics, electrodynamics in special relativity, cosmology in the Minkowski four-dimensional spacetime, and relativistic and non-relativistic quantum mechanics. Tensors, differential geometry, differential forms, and Dirac notation are very useful advanced mathematical tools in many fields of modern physics and computational engineering. They are involved in special and general relativity physics, quantum m...

  1. Multivariate tensor-based brain anatomical surface morphometry via holomorphic one-forms.

    Science.gov (United States)

    Wang, Yalin; Chan, Tony F; Toga, Arthur W; Thompson, Paul M

    2009-01-01

    Here we introduce multivariate tensor-based surface morphometry using holomorphic one-forms to study brain anatomy. We computed new statistics from the Riemannian metric tensors that retain the full information in the deformation tensor fields. We introduce two different holomorphic one-forms that induce different surface conformal parameterizations. We applied this framework to 3D MRI data to analyze hippocampal surface morphometry in Alzheimer's Disease (AD; 26 subjects), lateral ventricular surface morphometry in HIV/AIDS (19 subjects) and cortical surface morphometry in Williams Syndrome (WS; 80 subjects). Experimental results demonstrated that our method powerfully detected brain surface abnormalities. Multivariate statistics on the local tensors outperformed other TBM methods including analysis of the Jacobian determinant, the largest eigenvalue, or the pair of eigenvalues, of the surface Jacobian matrix.

  2. Dissipation consistent fabric tensor definition from DEM to continuum for granular media

    Science.gov (United States)

    Li, X. S.; Dafalias, Y. F.

    2015-05-01

    In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.

  3. Gradients estimation from random points with volumetric tensor in turbulence

    Science.gov (United States)

    Watanabe, Tomoaki; Nagata, Koji

    2017-12-01

    We present an estimation method of fully-resolved/coarse-grained gradients from randomly distributed points in turbulence. The method is based on a linear approximation of spatial gradients expressed with the volumetric tensor, which is a 3 × 3 matrix determined by a geometric distribution of the points. The coarse grained gradient can be considered as a low pass filtered gradient, whose cutoff is estimated with the eigenvalues of the volumetric tensor. The present method, the volumetric tensor approximation, is tested for velocity and passive scalar gradients in incompressible planar jet and mixing layer. Comparison with a finite difference approximation on a Cartesian grid shows that the volumetric tensor approximation computes the coarse grained gradients fairly well at a moderate computational cost under various conditions of spatial distributions of points. We also show that imposing the solenoidal condition improves the accuracy of the present method for solenoidal vectors, such as a velocity vector in incompressible flows, especially when the number of the points is not large. The volumetric tensor approximation with 4 points poorly estimates the gradient because of anisotropic distribution of the points. Increasing the number of points from 4 significantly improves the accuracy. Although the coarse grained gradient changes with the cutoff length, the volumetric tensor approximation yields the coarse grained gradient whose magnitude is close to the one obtained by the finite difference. We also show that the velocity gradient estimated with the present method well captures the turbulence characteristics such as local flow topology, amplification of enstrophy and strain, and energy transfer across scales.

  4. An Introduction to Tensors for Students of Physics and Engineering

    Science.gov (United States)

    Kolecki, Joseph C.

    2002-01-01

    Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.

  5. Electrical tensor Green functions for cylindrical waveguides

    International Nuclear Information System (INIS)

    Prijmenko, S.D.; Papkovich, V.G.; Khizhnyak, N.A.

    1988-01-01

    Formation of electrical tensor Green functions for cylindrical waveguides is considered. Behaviour of these functions in the source region is studied. Cases of electrical tensor Green functions for vector potential G E (r-vector, r'-vector) and electric field G e (r-vector, r'-vector) are analysed. When forming G E (r-vector, r'-vector), its dependence on lateral coordinates is taken into account by means of two-dimensional fundamental vector Hansen functions, several methods are used to take into account the dependence on transverse coordinate. When forming G e (r-vector, r'-vector) we use the fact that G E (r-vector, r'-vector) and G e (r-vector, r'-vector) are the generalized functions. It is shown that G e (r-vector, r'-vector) behaviour in the source region is defined by a singular term, which properties are described by the delta-function. Two variants of solving the problem of defining singular and regular sides of tensor function G E (r-vector, r'-vector) are presented. 23 refs

  6. The total energy-momentum tensor for electromagnetic fields in a dielectric

    Science.gov (United States)

    Crenshaw, Michael E.

    2017-08-01

    Radiation pressure is an observable consequence of optically induced forces on materials. On cosmic scales, radiation pressure is responsible for the bending of the tails of comets as they pass near the sun. At a much smaller scale, optically induced forces are being investigated as part of a toolkit for micromanipulation and nanofabrication technology [1]. A number of practical applications of the mechanical effects of light-matter interaction are discussed by Qiu, et al. [2]. The promise of the nascent nanophotonic technology for manufacturing small, low-power, high-sensitivity sensors and other devices has likely motivated the substantial current interest in optical manipulation of materials at the nanoscale, see, for example, Ref. [2] and the references therein. While substantial progress toward optical micromanipulation has been achieved, e.g. optical tweezers [1], in this report we limit our consideration to the particular issue of optically induced forces on a transparent dielectric material. As a matter of electromagnetic theory, these forces remain indeterminate and controversial. Due to the potential applications in nanotechnology, the century-old debate regarding these forces, and the associated momentums, has ramped up considerably in the physics community. The energy-momentum tensor is the centerpiece of conservation laws for the unimpeded, inviscid, incompressible flow of non-interacting particles in the continuum limit in an otherwise empty volume. The foundations of the energy-momentum tensor and the associated tensor conservation theory come to electrodynamics from classical continuum dynamics by applying the divergence theorem to a Taylor series expansion of a property density field of a continuous flow in an otherwise empty volume. The dust tensor is a particularly simple example of an energy-momentum tensor that deals with particles of matter in the continuum limit in terms of the mass density ρm, energy density ρmc 2 , and momentum density

  7. La importancia de ser grande

    OpenAIRE

    Baisre, J. A.

    2007-01-01

    Se responde a las preguntas ¿por qué los mamíferos marinos son los animales más grandes del planeta?, ¿Por qué los peces no pueden ser más grandes?. Éstas y otras interrogantes son respondidas de forma sencilla y clara.

  8. Morphometric study of tensor of vastus intermedius in South Indian population.

    Science.gov (United States)

    Veeramani, Raveendranath; Gnanasekaran, Dhivyalakshmi

    2017-03-01

    Tensor of vastus intermedius is a newly discovered muscle located between vastus lateralis and vastus intermedius. The purpose of this study was to investigate the detailed morphology of tensor of vastus intermedius, specifically to provide data pertaining to the attachments, innervations, variation in the types and its morphometry in South Indian population. The tensor of vastus intermedius was studied in thirty six cadaveric lower limbs using macrodissection techniques. The origin of the muscle was from upper part of intertrochanteric line and anterior part of greater trochanter of femur inserted to medial aspect of upper border of patella. The muscle was classified into four types based on the origin and also the aponeurosis course with independent type (type 1) being common. The mean and standard deviation of the length of tensor of vastus intermedius and aponeurosis were 145.40±37.55 mm and 193.55±42.32 mm, respectively. The results of the study suggest that tensor of vastus intermedius is variable and the information provided regarding the attachments, types and quantitative data will contribute to the existing knowledge of the muscle.

  9. Cylindrically symmetric solutions of a scalar--tensor theory of gravitation

    International Nuclear Information System (INIS)

    Singh, T.

    1975-01-01

    The cylindrically symmetric solutions for the Einstein--Rosen metric of a scalar--tensor theory proposed by Dunn have been obtained. A method has been given by which one can obtain, under certain conditions, solutions of this scalar--tensor theory from known solutions of the empty space field equations of Einstein's theory of gravitation. It is also found that one of the solutions of the scalar--tensor theory is nonsingular in the sense of Bonnor. Further some special solutions are obtained which reduce to the well-known solution of Levi-Civita and a time dependent solution obtained by Misra and Radhakrishna

  10. Projectors and seed conformal blocks for traceless mixed-symmetry tensors

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Miguel S. [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Hansen, Tobias [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); II. Institut für Theoretische Physik, Universität Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany); Penedones, João [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Theory Division, Department of Physics, CERN, CH-1211 Genève 23 (Switzerland); Fields and Strings Laboratory, Institute of Physics, EPFL, CH-1015 Lausanne (Switzerland); Trevisani, Emilio [Centro de Física do Porto, Departamento de Física e Astronomia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2016-07-05

    In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length l{sub 1} of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in l{sub 1} for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.

  11. Projectors and seed conformal blocks for traceless mixed-symmetry tensors

    International Nuclear Information System (INIS)

    Costa, Miguel S.; Hansen, Tobias; Penedones, João; Trevisani, Emilio

    2016-01-01

    In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length l_1 of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in l_1 for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.

  12. Projectors and seed conformal blocks for traceless mixed-symmetry tensors

    CERN Document Server

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-01-01

    In this paper we derive the projectors to all irreducible SO(d) representations (traceless mixed-symmetry tensors) that appear in the partial wave decomposition of a conformal correlator of four stress-tensors in d dimensions. These projectors are given in a closed form for arbitrary length $l_1$ of the first row of the Young diagram. The appearance of Gegenbauer polynomials leads directly to recursion relations in $l_1$ for seed conformal blocks. Further results include a differential operator that generates the projectors to traceless mixed-symmetry tensors and the general normalization constant of the shadow operator.

  13. A Study of Applying Digital Mobile Museum Guide

    Directory of Open Access Journals (Sweden)

    Chao-yun Chaucer Liang

    2003-09-01

    Full Text Available With the prosperous development of information technology, museums begin to apply new technology to enhance operation and communication efficiency. One of the information technology. Personal Digital Mobile, featuring light weight and mobility, can help museum to set up an interactive navigation system, which offering capability of user-controlled guidance and both broad and depth information. In this study, literature related to museum tour guide, digital mobile navigation, and multimedia interaction design were reviewed, and two examples were offered for reference. The first one example is Exploratorium in American, which is cooperated with HP labs to integrate wireless networking and PDA devices. The domestic example is the design project of the Personal Digital Mobile Guide for the Emperor Ch’ien-lung’s Grand Cultural Enterprise Exhibition in National Palace Museum, 2002. This paper introduces the techniques involved, interactive storyboard, interface design, color planning, electronic element planning, etc. The process of applying theory into creative project may help future researches in the related areas.[Article content in Chinese

  14. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-01-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h 3 ) convergence in the grid-size h=O(n -1 ). Moreover, this requires O(3rn+r 3 ) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH 4 molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10 -6 hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  15. Classification of materials for conducting spheroids based on the first order polarization tensor

    Science.gov (United States)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  16. Diffusion tensor imaging fiber tracking with reliable tracking orientation and flexible step size☆

    Science.gov (United States)

    Yao, Xufeng; Wang, Manning; Chen, Xinrong; Nie, Shengdong; Li, Zhexu; Xu, Xiaoping; Zhang, Xuelong; Song, Zhijian

    2013-01-01

    We propose a method of reliable tracking orientation and flexible step size fiber tracking. A new directional strategy was defined to select one optimal tracking orientation from each directional set, which was based on the single-tensor model and the two-tensor model. The directional set of planar voxels contained three tracking directions: two from the two-tensor model and one from the single-tensor model. The directional set of linear voxels contained only one principal vector. In addition, a flexible step size, rather than fixable step sizes, was implemented to improve the accuracy of fiber tracking. We used two sets of human data to assess the performance of our method; one was from a healthy volunteer and the other from a patient with low-grade glioma. Results verified that our method was superior to the single-tensor Fiber Assignment by Continuous Tracking and the two-tensor eXtended Streamline Tractography for showing detailed images of fiber bundles. PMID:25206444

  17. Black holes with surrounding matter in scalar-tensor theories.

    Science.gov (United States)

    Cardoso, Vitor; Carucci, Isabella P; Pani, Paolo; Sotiriou, Thomas P

    2013-09-13

    We uncover two mechanisms that can render Kerr black holes unstable in scalar-tensor gravity, both associated with the presence of matter in the vicinity of the black hole and the fact that this introduces an effective mass for the scalar. Our results highlight the importance of understanding the structure of spacetime in realistic, astrophysical black holes in scalar-tensor theories.

  18. Diffusion tensor and diffusion weighted imaging. Pictorial mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Nakada, Tsutomu [California Univ., Davis, CA (United States)

    1995-06-01

    A new imaging algorithm for the treatment of a second order apparent diffusion tensor, D{sub app}{sup {xi}} is described. The method calls for only mathematics of images (pictorial mathematics) without necessity of eigenvalues/eigenvectors estimation. Nevertheless, it is capable of extracting properties of D{sub app}{sup {xi}} invariant to observation axes. While trace image is an example of images weighted by invariance of the tensor matrix, three dimensional anisotropy (3DAC) contrast represents the imaging method making use to anisotropic direction of tensor ellipsoid producing color coded contrast of exceptionally high anatomic resolution. Contrary to intuition, the processes require only a simple algorithm directly applicable to clinical magnetic resonance imaging (MRI). As a contrast method which precisely represents physical characteristics of a target tissue, invariant D{sub app}{sup {xi}} images produced by pictorial mathematics possess significant potential for a number of biological and clinical applications. (author).

  19. (2, 0) tensor multiplets and conformal supergravity in D = 6

    NARCIS (Netherlands)

    Bergshoeff, Eric; Sezgin, Ergin; Proeyen, Antoine Van

    1999-01-01

    We construct the supercurrent multiplet that contains the energy–momentum tensor of the (2, 0) tensor multiplet. By coupling this multiplet of currents to the fields of conformal supergravity, we first construct the linearized superconformal transformations rules of the (2, 0) Weyl multiplet.

  20. Density and distribution of nests of Mycetophylax simplex (Emery (Hymenoptera, Formicidae in areas with mobile dunes on the northern coast of Rio Grande do Sul, Brazil Densidade e distribuição de ninhos de Mycetophylax simplex (Emery (Hymenoptera, Formicidae em área de dunas móveis no litoral norte do Rio Grande do Sul, Brasil

    Directory of Open Access Journals (Sweden)

    Emília Z. de Albuquerque

    2005-03-01

    Full Text Available Studies on lower attines are scarce, especially on nesting and foraging ecology and behavior. This study aimed to contribute to the knowledge of an Attini in dunes ecosystems through the description of density and spatial distribution of Mycetophylax simplex (Emery, 1887 nests in a strip of mobile dunes in the Praia Grande beach, Torres, northern coast of Rio Grande do Sul, Brazil. The density and spatial distribution of nests were estimated in four plots of 2,500 m² each, in which were found 20, 209, 284 and 324 nests, with average densities of 0.01 nests/m², 0.09, 0.11 and 0.13 nests/m², respectively. The nests were found near to the vegetation and showed clumped distribution. The density and distribution pattern of the nests seem to be related to the availability of nesting places and foraging resources.Estudos sobre as atinis inferiores são escassos, principalmente em relação ao comportamento e ecologia da nidificação e do forrageamento. Este estudo objetivou contribuir ao conhecimento da tribo Attini em ecossistemas de dunas, através da descrição da densidade e da distribuição espacial dos ninhos de Mycetophylax simplex (Emery, 1887 em uma faixa de dunas móveis na praia Grande, município de Torres, litoral norte do Rio Grande do Sul. A densidade e distribuição espacial dos ninhos foram estimadas em quatro parcelas de 2.500 m² cada, nas quais foram encontrados 20, 209, 284 e 324 ninhos, com densidades médias, de 0,01 ninhos/m², 0,09, 0,11 e 0,13 ninhos/m², respectivamente. Os ninhos encontravam-se próximos à vegetação e com distribuição agregada. É sugerido que a densidade e o padrão de distribuição dos ninhos estariam relacionados à disponibilidade de locais de nidificação e à presença de recursos para forrageamento.

  1. Distance Adaptive Tensor Discriminative Geometry Preserving Projection for Face Recognition

    Directory of Open Access Journals (Sweden)

    Ziqiang Wang

    2012-09-01

    Full Text Available There is a growing interest in dimensionality reduction techniques for face recognition, however, the traditional dimensionality reduction algorithms often transform the input face image data into vectors before embedding. Such vectorization often ignores the underlying data structure and leads to higher computational complexity. To effectively cope with these problems, a novel dimensionality reduction algorithm termed distance adaptive tensor discriminative geometry preserving projection (DATDGPP is proposed in this paper. The key idea of DATDGPP is as follows: first, the face image data are directly encoded in high-order tensor structure so that the relationships among the face image data can be preserved; second, the data-adaptive tensor distance is adopted to model the correlation among different coordinates of tensor data; third, the transformation matrix which can preserve discrimination and local geometry information is obtained by an iteration algorithm. Experimental results on three face databases show that the proposed algorithm outperforms other representative dimensionality reduction algorithms.

  2. Effect of Tensor Correlations on Gamow-Teller States in 90Zr and 208Pb

    International Nuclear Information System (INIS)

    Bai, C. L.; Zhang, H. Q.; Zhang, X. Z.

    2009-01-01

    The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF-RPA) model. The Gamow-Teller (GT) strength functions of 9 0Z r and 2 08P b is calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA. A microscopic origin of the quenching of GT sum rule due to the tensor force is discussed.(author)

  3. STRUCTURAL CONNECTIVITY VIA THE TENSOR-BASED MORPHOMETRY.

    Science.gov (United States)

    Kim, Seung-Goo; Chung, Moo K; Hanson, Jamie L; Avants, Brian B; Gee, James C; Davidson, Richard J; Pollak, Seth D

    2011-01-01

    The tensor-based morphometry (TBM) has been widely used in characterizing tissue volume difference between populations at voxel level. We present a novel computational framework for investigating the white matter connectivity using TBM. Unlike other diffusion tensor imaging (DTI) based white matter connectivity studies, we do not use DTI but only T1-weighted magnetic resonance imaging (MRI). To construct brain network graphs, we have developed a new data-driven approach called the ε -neighbor method that does not need any predetermined parcellation. The proposed pipeline is applied in detecting the topological alteration of the white matter connectivity in maltreated children.

  4. Tensor models, Kronecker coefficients and permutation centralizer algebras

    Science.gov (United States)

    Geloun, Joseph Ben; Ramgoolam, Sanjaye

    2017-11-01

    We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.

  5. Numerical evaluation of tensor Feynman integrals in Euclidean kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, J.; Kajda [Silesia Univ., Katowice (Poland). Inst. of Physics; Riemann, T.; Yundin, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2010-10-15

    For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently 'simple' numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d=4-2{epsilon} dimensions. One method uses Mellin-Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A. V. Smirnov and V. A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop {epsilon}-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sectordecomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin-Barnes representations and sector decompositions, is compared. The computational packages are publicly available. (orig.)

  6. Mobility and diffusion of atomic helium and neon ions in their parent gases

    International Nuclear Information System (INIS)

    Skullerud, H.R.; Larsen, P.-H.

    1990-01-01

    The mobility and the diffusion tensor have been calculated for He + ions in He and Ne + ions in Ne, at temperatures of 77-78 and 294 K, and at field-to-density values E/n 0 up to 2000 Td. For He + ions in He, ab initio potentials were used, with a careful extrapolation to large distances. A slight adjustment of the mean potential resulted in agreement between calculated mobilities and the best experimental values to better than 0.5%. For Ne + ions in Ne, a potential model with three adjustable parameters was constructed, and an overall agreement between measured and calculated mobilities to better than 1% was obtained. The model potentials probably give a good estimate of the gerade-ungerade splitting at internuclear distances from 7.5 to 10 au, but are not expected to be accurate at shorter distances. (author)

  7. Symmetry rules for the indirect nuclear spin-spin coupling tensor revisited

    Science.gov (United States)

    Buckingham, A. D.; Pyykkö, P.; Robert, J. B.; Wiesenfeld, L.

    The symmetry rules of Buckingham and Love (1970), relating the number of independent components of the indirect spin-spin coupling tensor J to the symmetry of the nuclear sites, are shown to require modification if the two nuclei are exchanged by a symmetry operation. In that case, the anti-symmetric part of J does not transform as a second-rank polar tensor under symmetry operations that interchange the coupled nuclei and may be called an anti-tensor. New rules are derived and illustrated by simple molecular models.

  8. Scale transformations, the energy-momentum tensor, and the equation of state

    International Nuclear Information System (INIS)

    Carruthers, P.

    1989-01-01

    The Equation of State (EOS) relates diagonal elements of the energy-momentum tensor θ μν . The first moment of the energy-momentum tensor generates scale transformations. The virial theorem, a consequence of the behavior of the energy density under scale transformations, allows one to eliminate the kinetic energy in terms of the potential terms. The trace theorem for the energy-momentum tensor expresses ε-3p in terms of ensemble averages of scale-breaking operators, allowing a new approach to the EOS. 10 refs

  9. Tensor calculus, relativity, and cosmology a first course

    CERN Document Server

    Dalarsson, M

    2005-01-01

    This book combines relativity, astrophysics, and cosmology in a single volume, providing an introduction to each subject that enables students to understand more detailed treatises as well as the current literature. The section on general relativity gives the case for a curved space-time, presents the mathematical background (tensor calculus, Riemannian geometry), discusses the Einstein equation and its solutions (including black holes, Penrose processes, and similar topics), and considers the energy-momentum tensor for various solutions. The next section on relativistic astrophysics discusses

  10. Tensor-optimized shell model for the Li isotopes with a bare nucleon-nucleon interaction

    Science.gov (United States)

    Myo, Takayuki; Umeya, Atsushi; Toki, Hiroshi; Ikeda, Kiyomi

    2012-08-01

    We study the Li isotopes systematically in terms of the tensor-optimized shell model (TOSM) by using a bare nucleon-nucleon interaction as the AV8' interaction. The short-range correlation is treated in the unitary correlation operator method (UCOM). Using the TOSM + UCOM approach, we investigate the role of the tensor force on each spectrum of the Li isotopes. It is found that the tensor force produces quite a characteristic effect on various states in each spectrum and those spectra are affected considerably by the tensor force. The energy difference between the spin-orbit partner, the p1/2 and p3/2 orbits of the last neutron, in 5Li is caused by opposite roles of the tensor correlation. In 6Li, the spin-triplet state in the LS coupling configuration is favored energetically by the tensor force in comparison with jj coupling shell-model states. In 7,8,9Li, the low-lying states containing extra neutrons in the p3/2 orbit are favored energetically due to the large tensor contribution to allow the excitation from the 0s, orbit to the p1/2 orbit by the tensor force. Those three nuclei show the jj coupling character in their ground states which is different from 6Li.

  11. Grand unified theories. Pt. 2

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-01-01

    The author gives an introduction to the construction of grand unified theories on the base of the SU(3)xSU(2)xU(1) model of the strong, weak, and electromagnetic interactions. Especially he discusses the proton decay, neutrino masses and oscillations, and cosmological implications in connection with grand unified theories. (orig./HSI)

  12. Low Multilinear Rank Approximation of Tensors and Application in Missing Traffic Data

    Directory of Open Access Journals (Sweden)

    Huachun Tan

    2014-02-01

    Full Text Available The problem of missing data in multiway arrays (i.e., tensors is common in many fields such as bibliographic data analysis, image processing, and computer vision. We consider the problems of approximating a tensor by another tensor with low multilinear rank in the presence of missing data and possibly reconstructing it (i.e., tensor completion. In this paper, we propose a weighted Tucker model which models only the known elements for capturing the latent structure of the data and reconstructing the missing elements. To treat the nonuniqueness of the proposed weighted Tucker model, a novel gradient descent algorithm based on a Grassmann manifold, which is termed Tucker weighted optimization (Tucker-Wopt, is proposed for guaranteeing the global convergence to a local minimum of the problem. Based on extensive experiments, Tucker-Wopt is shown to successfully reconstruct tensors with noise and up to 95% missing data. Furthermore, the experiments on traffic flow volume data demonstrate the usefulness of our algorithm on real-world application.

  13. Optimization via separated representations and the canonical tensor decomposition

    Science.gov (United States)

    Reynolds, Matthew J.; Beylkin, Gregory; Doostan, Alireza

    2017-11-01

    We introduce a new, quadratically convergent algorithm for finding maximum absolute value entries of tensors represented in the canonical format. The computational complexity of the algorithm is linear in the dimension of the tensor. We show how to use this algorithm to find global maxima of non-convex multivariate functions in separated form. We demonstrate the performance of the new algorithms on several examples.

  14. Optimization via Separated Representations and the Canonical Tensor Decomposition

    OpenAIRE

    Reynolds, Matthew J; Beylkin, Gregory; Doostan, Alireza

    2016-01-01

    We introduce a new, quadratically convergent algorithm for finding maximum absolute value entries of tensors represented in the canonical format. The computational complexity of the algorithm is linear in the dimension of the tensor. We show how to use this algorithm to find global maxima of non-convex multivariate functions in separated form. We demonstrate the performance of the new algorithms on several examples.

  15. Canonical forms of tensor representations and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Cummins, C.J.

    1986-01-01

    An algorithm for constructing canonical forms for any tensor representation of the classical compact Lie groups is given. This method is used to find a complete list of the symmetry breaking patterns produced by Higgs fields in the third-rank antisymmetric representations of U(n), SU(n) and SO(n) for n<=7. A simple canonical form is also given for kth-rank symmetric tensor representations. (author)

  16. Tensor valuations and their applications in stochastic geometry and imaging

    CERN Document Server

    Kiderlen, Markus

    2017-01-01

    The purpose of this volume is to give an up-to-date introduction to tensor valuations and their applications. Starting with classical results concerning scalar-valued valuations on the families of convex bodies and convex polytopes, it proceeds to the modern theory of tensor valuations. Product and Fourier-type transforms are introduced and various integral formulae are derived. New and well-known results are presented, together with generalizations in several directions, including extensions to the non-Euclidean setting and to non-convex sets. A variety of applications of tensor valuations to models in stochastic geometry, to local stereology and to imaging are also discussed.

  17. Extracting the diffusion tensor from molecular dynamics simulation with Milestoning

    International Nuclear Information System (INIS)

    Mugnai, Mauro L.; Elber, Ron

    2015-01-01

    We propose an algorithm to extract the diffusion tensor from Molecular Dynamics simulations with Milestoning. A Kramers-Moyal expansion of a discrete master equation, which is the Markovian limit of the Milestoning theory, determines the diffusion tensor. To test the algorithm, we analyze overdamped Langevin trajectories and recover a multidimensional Fokker-Planck equation. The recovery process determines the flux through a mesh and estimates local kinetic parameters. Rate coefficients are converted to the derivatives of the potential of mean force and to coordinate dependent diffusion tensor. We illustrate the computation on simple models and on an atomically detailed system—the diffusion along the backbone torsions of a solvated alanine dipeptide

  18. Effect on Tensor Correlations on Gamow- Teller States in 90Zr and 208Pb

    International Nuclear Information System (INIS)

    Bai, C. L.; Sagawa, H.; Zhang, H. Q.

    2009-01-01

    The tensor terms of the Skyrme effective interaction are included in the self-consistent Hartree-Fock plus Random Phase Approximation (HF-RPA) model. The Gamow-Teller (GT) strength function of 9 0Z r and 2 08P b are calculated with and without the tensor terms. The main peaks are moved downwards by about 2 MeV when including the tensor contribution. About 10% of the non-energy weighted sum rule is shifted to the excitation energy region above 30 MeV by the RPA tensor correlations. The contribution of the tensor terms to the energy weighted sum rule is given analytically, and compared to the outcome of RPA. A microscopic origin of the quenching of GT sum rule is discussed in relation with the coupling to giant spin-quadrupole excitations by the tensor interactions.(author)

  19. A tensor approach to the estimation of hydraulic conductivities in ...

    African Journals Online (AJOL)

    Based on the field measurements of the physical properties of fractured rocks, the anisotropic properties of hydraulic conductivity (HC) of the fractured rock aquifer can be assessed and presented using a tensor approach called hydraulic conductivity tensor. Three types of HC values, namely point value, axial value and flow ...

  20. A Givental-like formula and bilinear identities for tensor models

    Energy Technology Data Exchange (ETDEWEB)

    Dartois, Stéphane [LIPN, Institut Galilée, CNRS UMR 7030, Université Paris 13,F-93430, Villetaneuse (France); Laboratoire de Physique Théorique, CNRS UMR 8627, Université Paris 11,91405 Orsay Cedex (France)

    2015-08-26

    In this paper we express some simple random tensor models in a Givental-like fashion i.e. as differential operators acting on a product of generic 1-Hermitian matrix models. Finally we derive Hirota’s equations for these tensor models. Our decomposition is a first step towards integrability of such models.

  1. Subtracting a best rank-1 approximation may increase tensor rank

    NARCIS (Netherlands)

    Stegeman, Alwin; Comon, Pierre

    2010-01-01

    It has been shown that a best rank-R approximation of an order-k tensor may not exist when R >= 2 and k >= 3. This poses a serious problem to data analysts using tensor decompositions it has been observed numerically that, generally, this issue cannot be solved by consecutively computing and

  2. Data fusion in metabolomics using coupled matrix and tensor factorizations

    DEFF Research Database (Denmark)

    Evrim, Acar Ataman; Bro, Rasmus; Smilde, Age Klaas

    2015-01-01

    of heterogeneous (i.e., in the form of higher order tensors and matrices) data sets with shared/unshared factors. In order to jointly analyze such heterogeneous data sets, we formulate data fusion as a coupled matrix and tensor factorization (CMTF) problem, which has already proved useful in many data mining...

  3. On the dual variable of the Cauchy stress tensor in isotropic finite hyperelasticity

    Science.gov (United States)

    Vallée, Claude; Fortuné, Danielle; Lerintiu, Camelia

    2008-11-01

    Elastic materials are governed by a constitutive law relating the second Piola-Kirchhoff stress tensor Σ and the right Cauchy-Green strain tensor C=FF. Isotropic elastic materials are the special cases for which the Cauchy stress tensor σ depends solely on the left Cauchy-Green strain tensor B=FF. In this Note we revisit the following property of isotropic hyperelastic materials: if the constitutive law relating Σ and C is derivable from a potential ϕ, then σ and lnB are related by a constitutive law derived from the compound potential ϕ○exp. We give a new and concise proof which is based on an explicit integral formula expressing the derivative of the exponential of a tensor. To cite this article: C. Vallée et al., C. R. Mecanique 336 (2008).

  4. Albuquerque/Middle Rio Grande Urban Waters Viewer

    Science.gov (United States)

    These data have been compiled in support of the Middle Rio Grande/Albuquerque Urban Waters Partnership for the region including Albuquerque, New Mexico.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership is co-chaired by the U.S. Dept. of Housing and Urban Development and the U.S. Environmental Protection Agency. There are also a number of other federal agencies engaged in projects with Tribal, State, and local officials, and community stakeholders. Like many western river ecosystems, the Middle Rio Grande faces numerous challenges in balancing competing needs within a finite water supply and other resource constrains. Historical practices by our ancestors and immigrants to the Middle Rio Grande have established the conditions that we have inherited. Long-term drought exacerbated by climate change is changing conditions that affect natural and human communities as we strive to improve our precious Rio Grande.The Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will reconnect our urban communities, particularly those that are overburdened or economically distressed, with the waterway by improving coordination among federal agencies and collaborating with community-led revitalization efforts. Our projects will improve our community water systems and promote their economic, environmental and social benefits. Specifically, the Middle Rio Grande/Albuquerque Urban Waters Federal Partnership will support the development of the Valle de Oro

  5. Deep Into the Fibers! Postmortem Diffusion Tensor Imaging in Forensic Radiology.

    Science.gov (United States)

    Flach, Patricia Mildred; Schroth, Sarah; Schweitzer, Wolf; Ampanozi, Garyfalia; Slotboom, Johannes; Kiefer, Claus; Germerott, Tanja; Thali, Michael J; El-Koussy, Marwan

    2015-09-01

    In traumatic brain injury, diffusion-weighted and diffusion tensor imaging of the brain are essential techniques for determining the pathology sustained and the outcome. Postmortem cross-sectional imaging is an established adjunct to forensic autopsy in death investigation. The purpose of this prospective study was to evaluate postmortem diffusion tensor imaging in forensics for its feasibility, influencing factors and correlation to the cause of death compared with autopsy. Postmortem computed tomography, magnetic resonance imaging, and diffusion tensor imaging with fiber tracking were performed in 10 deceased subjects. The Likert scale grading of colored fractional anisotropy maps was correlated to the body temperature and intracranial pathology to assess the diagnostic feasibility of postmortem diffusion tensor imaging and fiber tracking. Optimal fiber tracking (>15,000 fiber tracts) was achieved with a body temperature at 10°C. Likert scale grading showed no linear correlation (P > 0.7) to fiber tract counts. No statistically significant correlation between total fiber count and postmortem interval could be observed (P = 0.122). Postmortem diffusion tensor imaging and fiber tracking allowed for radiological diagnosis in cases with shearing injuries but was impaired in cases with pneumencephalon and intracerebral mass hemorrhage. Postmortem diffusion tensor imaging with fiber tracking provides an exceptional in situ insight "deep into the fibers" of the brain with diagnostic benefit in traumatic brain injury and axonal injuries in the assessment of the underlying cause of death, considering influencing factors for optimal imaging technique.

  6. Generating scale-invariant tensor perturbations in the non-inflationary universe

    International Nuclear Information System (INIS)

    Li, Mingzhe

    2014-01-01

    It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  7. Generating scale-invariant tensor perturbations in the non-inflationary universe

    Directory of Open Access Journals (Sweden)

    Mingzhe Li

    2014-09-01

    Full Text Available It is believed that the recent detection of large tensor perturbations strongly favors the inflation scenario in the early universe. This common sense depends on the assumption that Einstein's general relativity is valid at the early universe. In this paper we show that nearly scale-invariant primordial tensor perturbations can be generated during a contracting phase before the radiation dominated epoch if the theory of gravity is modified by the scalar–tensor theory at that time. The scale-invariance protects the tensor perturbations from suppressing at large scales and they may have significant amplitudes to fit BICEP2's result. We construct a model to achieve this purpose and show that the universe can bounce to the hot big bang after long time contraction, and at almost the same time the theory of gravity approaches to general relativity through stabilizing the scalar field. Theoretically, such models are dual to inflation models if we change to the frame in which the theory of gravity is general relativity. Dual models are related by the conformal transformations. With this study we reinforce the point that only the conformal invariant quantities such as the scalar and tensor perturbations are physical. How did the background evolve before the radiation time depends on the frame and has no physical meaning. It is impossible to distinguish different pictures by later time cosmological probes.

  8. F-theory and unpaired tensors in 6D SCFTs and LSTs

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, David R. [Department of Mathematics, University of California Santa Barbara, CA (United States); Department of Physics, University of California Santa Barbara, CA (United States); Rudelius, Tom [Jefferson Physical Laboratory, Harvard University, Cambridge, MA (United States)

    2016-08-15

    We investigate global symmetries for 6D SCFTs and LSTs having a single ''unpaired'' tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F-theory whose tensor has Dirac self-pairing equal to -1, the global symmetry algebra is a subalgebra of e{sub 8}. This result is new if the F-theory presentation of the theory involves a one-parameter family of nodal or cuspidal rational curves (i.e., Kodaira types I{sub 1} or II) rather than elliptic curves (Kodaira type I{sub 0}). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi-tensor theories. We also study the analogous problem for theories whose tensor has Dirac self-pairing equal to -2 and find that the global symmetry algebra is a subalgebra of su(2). However, in this case there are additional constraints on F-theory constructions for coupling these theories to others. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. F-theory and unpaired tensors in 6D SCFTs and LSTs

    International Nuclear Information System (INIS)

    Morrison, David R.; Rudelius, Tom

    2016-01-01

    We investigate global symmetries for 6D SCFTs and LSTs having a single ''unpaired'' tensor, that is, a tensor with no associated gauge symmetry. We verify that for every such theory built from F-theory whose tensor has Dirac self-pairing equal to -1, the global symmetry algebra is a subalgebra of e 8 . This result is new if the F-theory presentation of the theory involves a one-parameter family of nodal or cuspidal rational curves (i.e., Kodaira types I 1 or II) rather than elliptic curves (Kodaira type I 0 ). For such theories, this condition on the global symmetry algebra appears to fully capture the constraints on coupling these theories to others in the context of multi-tensor theories. We also study the analogous problem for theories whose tensor has Dirac self-pairing equal to -2 and find that the global symmetry algebra is a subalgebra of su(2). However, in this case there are additional constraints on F-theory constructions for coupling these theories to others. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Algebraic classification of the conformal tensor

    International Nuclear Information System (INIS)

    Ares de Parga, Gonzalo; Chavoya, O.; Lopez B, J.L.; Ovando Z, Gerardo

    1989-01-01

    Starting from the Petrov matrix method, we deduce a new algorithm (adaptable to computers), within the Newman-Penrose formalism, to obtain the algebraic type of the Weyl tensor in general relativity. (author)

  11. An introduction to tensor calculus, relativity and cosmology /3rd edition/

    Science.gov (United States)

    Lawden, D. F.

    This textbook introduction to the principles of special relativity proceeds within the context of cartesian tensors. Newton's laws of motion are reviewed, as are the Lorentz transformations, Minkowski space-time, and the Fitzgerald contraction. Orthogonal transformations are described, and invariants, gradients, tensor derivatives, contraction, scalar products, divergence, pseudotensors, vector products, and curl are defined. Special relativity mechanics are explored in terms of mass, momentum, the force vector, the Lorentz transformation equations for force, calculations for photons and neutrinos, the development of the Lagrange and Hamilton equations, and the energy-momentum tensor. Electrodynamics is investigated, together with general tensor calculus and Riemmanian space. The General Theory of Relativity is presented, along with applications to astrophysical phenomena such as black holes and gravitational waves. Finally, analytical discussions of cosmological problems are reviewed, particularly Einstein, de Sitter, and Friedmann universes, redshifts, event horizons, and the redshift.

  12. Noether symmetries, energy-momentum tensors, and conformal invariance in classical field theory

    International Nuclear Information System (INIS)

    Pons, Josep M.

    2011-01-01

    In the framework of classical field theory, we first review the Noether theory of symmetries, with simple rederivations of its essential results, with special emphasis given to the Noether identities for gauge theories. With this baggage on board, we next discuss in detail, for Poincare invariant theories in flat spacetime, the differences between the Belinfante energy-momentum tensor and a family of Hilbert energy-momentum tensors. All these tensors coincide on shell but they split their duties in the following sense: Belinfante's tensor is the one to use in order to obtain the generators of Poincare symmetries and it is a basic ingredient of the generators of other eventual spacetime symmetries which may happen to exist. Instead, Hilbert tensors are the means to test whether a theory contains other spacetime symmetries beyond Poincare. We discuss at length the case of scale and conformal symmetry, of which we give some examples. We show, for Poincare invariant Lagrangians, that the realization of scale invariance selects a unique Hilbert tensor which allows for an easy test as to whether conformal invariance is also realized. Finally we make some basic remarks on metric generally covariant theories and classical field theory in a fixed curved background.

  13. The holographic bound in the scalar-tensor and f(R) gravities

    International Nuclear Information System (INIS)

    Firouzjaee, J.T.

    2013-01-01

    The holographic bound has been extended to the different theory of gravities such as scalar-tensor gravity and f(R) gravity according to the Noether charge definition of the entropy for a black hole surface. We have introduced some popular examples of the flat FRW cosmology in order to investigate holographic bound in scalar-tensor and f(R) gravity. Using the holographic bound, we put an additional constraint on scalar-tensor gravity and the f(R) gravity parameters. We also discuss the transformation from Jordan frame to Einstein frame. (orig.)

  14. Estimation of the magnetic field gradient tensor using the Swarm constellation

    DEFF Research Database (Denmark)

    Kotsiaros, Stavros; Finlay, Chris; Olsen, Nils

    2014-01-01

    For the first time, part of the magnetic field gradient tensor is estimated in space by the Swarm mission. We investigate the possibility of a more complete estimation of the gradient tensor exploiting the Swarm constellation. The East-West gradients can be approximated by observations from...... deviations compared to conventional vector observations at almost all latitudes. Analytical and numerical analysis of the spectral properties of the gradient tensor shows that specific combinations of the East-West and North-South gradients have almost identical signal content to the radial gradient...

  15. Energy-momentum tensor of the gravitational field for material spheres

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1990-01-01

    Density of the energy-momentum tensor of a gravitational field which can be defined in the general relativity theory with the help of ideas of the relativistic gravitational theory is found for the case of material spheres. A relationship of this quantity with the Riemann tensor R αβγδ is discussed

  16. The tensor product in Wadler's analysis of lists

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1992-01-01

    We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation....

  17. Quark-gluon mixing in pseudoscalar and tensor mesons

    International Nuclear Information System (INIS)

    Eremyan, Sh.S.; Nazaryan, A.E.

    1986-01-01

    A mixing model of quark-antiquark ang gluonium states in η, η', i(1440) pseudoscalar and f, f', Θ(1690) tensor mesons is considered. Description of and predictions for 68 two-particle decays with these particles taking part in them are obtained. It is shown that i(1440) by 85% consists of gluonium and Θ(1690) is a pure gluonic state. The quark-gluon and gluon-gluon couplings in the pseudoscalar sector are obtained to be stronger as compared to the corresponding ones in the tensor case

  18. Cα chemical shift tensors in helical peptides by dipolar-modulated chemical shift recoupling NMR

    International Nuclear Information System (INIS)

    Yao Xiaolan; Yamaguchi, Satoru; Hong Mei

    2002-01-01

    The Cα chemical shift tensors of proteins contain information on the backbone conformation. We have determined the magnitude and orientation of the Cα chemical shift tensors of two peptides with α-helical torsion angles: the Ala residue in G*AL (φ=-65.7 deg., ψ=-40 deg.), and the Val residue in GG*V (φ=-81.5 deg., ψ=-50.7 deg.). The magnitude of the tensors was determined from quasi-static powder patterns recoupled under magic-angle spinning, while the orientation of the tensors was extracted from Cα-Hα and Cα-N dipolar modulated powder patterns. The helical Ala Cα chemical shift tensor has a span of 36 ppm and an asymmetry parameter of 0.89. Its σ 11 axis is 116 deg. ± 5 deg. from the Cα-Hα bond while the σ 22 axis is 40 deg. ± 5 deg. from the Cα-N bond. The Val tensor has an anisotropic span of 25 ppm and an asymmetry parameter of 0.33, both much smaller than the values for β-sheet Val found recently (Yao and Hong, 2002). The Val σ 33 axis is tilted by 115 deg. ± 5 deg. from the Cα-Hα bond and 98 deg. ± 5 deg. from the Cα-N bond. These represent the first completely experimentally determined Cα chemical shift tensors of helical peptides. Using an icosahedral representation, we compared the experimental chemical shift tensors with quantum chemical calculations and found overall good agreement. These solid-state chemical shift tensors confirm the observation from cross-correlated relaxation experiments that the projection of the Cα chemical shift tensor onto the Cα-Hα bond is much smaller in α-helices than in β-sheets

  19. Analytical effective tensor for flow-through composites

    Science.gov (United States)

    Sviercoski, Rosangela De Fatima [Los Alamos, NM

    2012-06-19

    A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.

  20. Holographic duality from random tensor networks

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, Patrick; Nezami, Sepehr; Qi, Xiao-Liang; Thomas, Nathaniel; Walter, Michael; Yang, Zhao [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,382 Via Pueblo, Stanford, CA 94305 (United States)

    2016-11-02

    Tensor networks provide a natural framework for exploring holographic duality because they obey entanglement area laws. They have been used to construct explicit toy models realizing many of the interesting structural features of the AdS/CFT correspondence, including the non-uniqueness of bulk operator reconstruction in the boundary theory. In this article, we explore the holographic properties of networks of random tensors. We find that our models naturally incorporate many features that are analogous to those of the AdS/CFT correspondence. When the bond dimension of the tensors is large, we show that the entanglement entropy of all boundary regions, whether connected or not, obey the Ryu-Takayanagi entropy formula, a fact closely related to known properties of the multipartite entanglement of assistance. We also discuss the behavior of Rényi entropies in our models and contrast it with AdS/CFT. Moreover, we find that each boundary region faithfully encodes the physics of the entire bulk entanglement wedge, i.e., the bulk region enclosed by the boundary region and the minimal surface. Our method is to interpret the average over random tensors as the partition function of a classical ferromagnetic Ising model, so that the minimal surfaces of Ryu-Takayanagi appear as domain walls. Upon including the analog of a bulk field, we find that our model reproduces the expected corrections to the Ryu-Takayanagi formula: the bulk minimal surface is displaced and the entropy is augmented by the entanglement of the bulk field. Increasing the entanglement of the bulk field ultimately changes the minimal surface behavior topologically, in a way similar to the effect of creating a black hole. Extrapolating bulk correlation functions to the boundary permits the calculation of the scaling dimensions of boundary operators, which exhibit a large gap between a small number of low-dimension operators and the rest. While we are primarily motivated by the AdS/CFT duality, the main

  1. Flocculent and grand design spiral galaxies in groups: time scales for the persistence of grand design spiral structures

    International Nuclear Information System (INIS)

    Elmegreen, B.G.; Elmegreen, D.M.

    1983-01-01

    Spiral arm classifications were made for 261 low-inclination galaxies in groups listed by Huchra and Geller. The fractional occurrence of grand design spiral structure in nonbarred galaxies was found to increase from approx.0.1 to approx.0.6 and then level off as the group crossing rate or galaxy collision rate in a group increases. A simple model is discussed where the random encounters between galaxies of any type and flocculent galaxies induce transient grand design spirals in the flocculent galaxies. If this grand-design stimulation occurs for binary collisions with impact parameters less than αR 25 , were R 25 is the galactic radius at 25 mag arcsec - 2 , and if the induced grand design spirals persist for an average time equal to #betta# galactic rotations, then the quantity α 2 #betta# equals approximately 3 x 10 4 . If binary collisions are responsible for grand design spirals, then this result implies either that the induced spirals last for many galactic rotations (#betta#>15), or that they can be stimulated by very remote encounters (α>45.) Alternatively, grand design spirals may be stimulated by multiple galaxy encounters, which would be the case for such large α, or by interactions with the potential well of the associated group, rather than by simple binary encounters. Weak correlations between the grand design fraction and the galaxy size, or between this fraction and the total number of galaxies in a group, were also found. Spiral structures of barred galaxies show no correlations with group environment

  2. Fast evaluation of nonlinear functionals of tensor product wavelet expansions

    NARCIS (Netherlands)

    Schwab, C.; Stevenson, R.

    2011-01-01

    Abstract For a nonlinear functional f, and a function u from the span of a set of tensor product interpolets, it is shown how to compute the interpolant of f (u) from the span of this set of tensor product interpolets in linear complexity, assuming that the index set has a certain multiple tree

  3. Charged black holes in a generalized scalar–tensor gravity model

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2017-09-01

    Full Text Available We study 4-dimensional charged and static black holes in a generalized scalar–tensor gravity model, in which a shift symmetry for the scalar field exists. For vanishing scalar field the solution corresponds to the Reissner–Nordström (RN solution, while solutions of the full scalar-gravity model have to be constructed numerically. We demonstrate that these black holes support Galilean scalar hair up to a maximal value of the scalar–tensor coupling that depends on the value of the charge and can be up to roughly twice as large as that for uncharged solutions. The Hawking temperature TH of the hairy black holes at maximal scalar–tensor coupling decreases continuously with the increase of the charge and reaches TH=0 for the highest possible charge that these solutions can carry. However, in this limit, the scalar–tensor coupling needs to vanish. The limiting solution hence corresponds to the extremal RN solution, which does not support regular Galilean scalar hair due to its AdS2×S2 near-horizon geometry.

  4. Stress tensor from the trace anomaly in Reissner-Nordstroem spacetimes

    International Nuclear Information System (INIS)

    Anderson, Paul R.; Mottola, Emil; Vaulin, Ruslan

    2007-01-01

    The effective action associated with the trace anomaly provides a general algorithm for approximating the expectation value of the stress tensor of conformal matter fields in arbitrary curved spacetimes. In static, spherically symmetric spacetimes, the algorithm involves solving a fourth order linear differential equation in the radial coordinate r for the two scalar auxiliary fields appearing in the anomaly action, and its corresponding stress tensor. By appropriate choice of the homogeneous solutions of the auxiliary field equations, we show that it is possible to obtain finite stress tensors on all Reissner-Nordstroem event horizons, including the extreme Q=M case. We compare these finite results to previous analytic approximation methods, which yield invariably an infinite stress energy on charged black hole horizons, as well as with detailed numerical calculations that indicate the contrary. The approximation scheme based on the auxiliary field effective action reproduces all physically allowed behaviors of the quantum stress tensor, in a variety of quantum states, for fields of any spin, in the vicinity of the entire family (0≤Q≤M) of RN horizons

  5. Intrinsic broadening of the mobility spectrum of bulk n-type GaAs

    International Nuclear Information System (INIS)

    Jolley, G; Umana-Membreno, G A; Akhavan, N D; Antoszewski, J; Faraone, L; Fischetti, M V

    2014-01-01

    Modern devices consisting of multiple semiconductor layers often result in the population of numerous distinct carrier species. Conventional Hall measurements at a single-magnetic-field strength provide only a weighted average of the electron mobility and carrier concentration of a semiconductor structure and, therefore, are of limited use for the extraction of carrier transport information. In recent years, mobility spectrum analysis techniques, which have been developed to extract a mobility spectrum from magnetic field-dependent conductivity-tensor measurements, have been applied in the analysis of carrier conductivity mechanisms of numerous semiconductor structures and devices. Currently there is a severe lack of reported studies on theoretical calculations of the mobility distribution of semiconductor structures or devices. In addition, the majority of reports on experimental mobility spectrum analysis are of complex, multi layered structures such as type-II superlattices, and the interpretation of the mobility spectra has been difficult. Therefore, a good understanding of the mobility spectrum has yet to be developed. For example, it is often assumed that distinct peaks of a mobility spectrum result from fundamentally different conduction mechanisms such as the bulk and surface conduction of narrow-band-gap semiconductors. In this article, we present calculations of the electron mobility distribution of bulk GaAs, which predict the existence of multiple mobility spectrum peaks that result from electron conductivity in the Γ conduction band. This report serves as an important and simple test case upon which experimentally measured mobility spectra can be compared. It also presents insight into the general nature of electron mobility distributions. (paper)

  6. Characteristics of the Residual Stress tensor when filter width is larger than the Ozmidov scale

    Science.gov (United States)

    de Bragança Alves, Felipe Augusto; de Bruyn Kops, Stephen

    2017-11-01

    In stratified turbulence, the residual stress tensor is statistically anisotropic unless the smallest resolved length scale is smaller than the Ozmidov scale and the buoyancy Reynolds number is sufficiently high for there to exist a range of scales that is statistically isotropic. We present approximations to the residual stress tensor that are derived analytically. These approximations are evaluated by filtering data from direct numerical simulations of homogeneous stratified turbulence, with unity Prandtl number, resolved on up to 8192 × 8192 × 4096 grid points along with an isotropic homogeneous case resolved on 81923 grid points. It is found that the best possible scaling of the strain rate tensor yields a residual stress tensor (RST) that is less well statistically aligned with the exact RST than a randomly generated tensor. It is also found that, while a scaling of the strain rate tensor can dissipate the right amount of energy, it produces incorrect anisotropic dissipation, removing energy from the wrong components of the velocity vector. We find that a combination of the strain rate tensor and a tensor related to energy redistribution caused by a Newtonian fluid viscous stress yields an excellent tensorial basis for modelling the RST.

  7. A brief summary on formalizing parallel tensor distributions redistributions and algorithm derivations.

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, Martin D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kolda, Tamara G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van de Geijn, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Large-scale datasets in computational chemistry typically require distributed-memory parallel methods to perform a special operation known as tensor contraction. Tensors are multidimensional arrays, and a tensor contraction is akin to matrix multiplication with special types of permutations. Creating an efficient algorithm and optimized im- plementation in this domain is complex, tedious, and error-prone. To address this, we develop a notation to express data distributions so that we can apply use automated methods to find optimized implementations for tensor contractions. We consider the spin-adapted coupled cluster singles and doubles method from computational chemistry and use our methodology to produce an efficient implementation. Experiments per- formed on the IBM Blue Gene/Q and Cray XC30 demonstrate impact both improved performance and reduced memory consumption.

  8. Energy-momentum tensor of intermediate vector bosons in an external electromagnetic field

    International Nuclear Information System (INIS)

    Mostepanenko, V.M.; Sokolov, I.Yu.

    1988-01-01

    Expressions are obtained for the canonical and metric energy-momentum tensors of the vector field of intermediate bosons in an external electromagnetic field. It is shown that in the case of a gyromagnetic ratio not equal to unity the energy-momentum tensor cannot be symmetrized on its indices, and an additional term proportional to the anomalous magnetic moment appears in the conservation laws. A modification of the canonical formalism for scalar and vector fields in an external field is proposed in accordance with which the Hamiltonian density is equal to the 00 component of the energy-momentum tensor. An expression for the energy-momentum tensor of a closed system containing a gauge field of intermediate bosons and an electromagnetic field is obtained

  9. Ambiguities and symmetry relations associated with fermionic tensor densities

    International Nuclear Information System (INIS)

    Dallabona, G.; Battistel, O. A.

    2004-01-01

    We consider the consistent evaluation of perturbative (divergent) Green functions associated with fermionic tensor densities and the derivation of symmetry relations for them. We show that, in spite of current algebra methods being not applicable, it is possible to derive symmetry properties analogous to the Ward identities of vector and axial-vector densities. The proposed method, which is applicable to any previously chosen order of perturbative calculation, gives the same results as those of current algebra when such a tool is applicable. By using a very general calculational strategy, concerning the manipulations and calculations involving divergent Feynman integrals, we evaluate the purely fermionic two-point functions containing tensor vertices and derive their symmetry properties. The present investigation is the first step in the study and characterization of possible anomalies involving fermionic tensor densities, particularly in purely fermionic three-point functions

  10. The tensor product in Wadler's analysis of lists

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1994-01-01

    We consider abstract interpretation (in particular strictness analysis) for pairs and lists. We begin by reviewing the well-known fact that the best known description of a pair of elements is obtained using the tensor product rather than the cartesian product. We next present a generalisation...... of Wadler's strictness analysis for lists (1987) using the notion of open set. Finally, we illustrate the intimate connection between the case analysis implicit in Wadler's strictness analysis and the precision that the tensor product allows for modelling the inverse cons operation...

  11. Bound-Preserving Reconstruction of Tensor Quantities for Remap in ALE Fluid Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Klima, Matej [Czech Technical Univ. in Prague, Praha (Czech Republic); Kucharik, MIlan [Czech Technical Univ. in Prague, Praha (Czech Republic); Shashkov, Mikhail Jurievich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Velechovsky, Jan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-06

    We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables. We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.

  12. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    Science.gov (United States)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  13. A locally convergent Jacobi iteration for the tensor singular value problem

    NARCIS (Netherlands)

    Shekhawat, Hanumant Singh; Weiland, Siep

    2018-01-01

    Multi-linear functionals or tensors are useful in study and analysis multi-dimensional signal and system. Tensor approximation, which has various applications in signal processing and system theory, can be achieved by generalizing the notion of singular values and singular vectors of matrices to

  14. Relativistic symmetries in the Hulthén scalar—vector—tensor interactions

    International Nuclear Information System (INIS)

    Hamzavi Majid; Rajabi Ali Akbar

    2013-01-01

    In the presence of spin and pseudospin (p-spin) symmetries, the approximate analytical bound states of the Dirac equation for scalar—vector—tensor Hulthén potentials are obtained with any arbitrary spin—orbit coupling number κ using the Pekeris approximation. The Hulthén tensor interaction is studied instead of the commonly used Coulomb or linear terms. The generalized parametric Nikiforov—Uvarov (NU) method is used to obtain energy eigenvalues and corresponding wave functions in their closed forms. It is shown that tensor interaction removes degeneracy between spin and p-spin doublets. Some numerical results are also given. (general)

  15. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid

    Science.gov (United States)

    Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri

    2018-01-01

    A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.

  16. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    Science.gov (United States)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  17. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    Science.gov (United States)

    Alvizuri, Celso R.

    We present a catalog of full seismic moment tensors for 63 events from Uturuncu volcano in Bolivia. The events were recorded during 2011-2012 in the PLUTONS seismic array of 24 broadband stations. Most events had magnitudes between 0.5 and 2.0 and did not generate discernible surface waves; the largest event was Mw 2.8. For each event we computed the misfit between observed and synthetic waveforms, and we used first-motion polarity measurements to reduce the number of possible solutions. Each moment tensor solution was obtained using a grid search over the six-dimensional space of moment tensors. For each event we show the misfit function in eigenvalue space, represented by a lune. We identify three subsets of the catalog: (1) 6 isotropic events, (2) 5 tensional crack events, and (3) a swarm of 14 events southeast of the volcanic center that appear to be double couples. The occurrence of positively isotropic events is consistent with other published results from volcanic and geothermal regions. Several of these previous results, as well as our results, cannot be interpreted within the context of either an oblique opening crack or a crack-plus-double-couple model. Proper characterization of uncertainties for full moment tensors is critical for distinguishing among physical models of source processes. A seismic moment tensor is a 3x3 symmetric matrix that provides a compact representation of a seismic source. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms for each moment tensor and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M0 for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M0, we first convert the misfit function to a probability function. The uncertainty, or

  18. Induced vacuum energy-momentum tensor in the background of a cosmic string

    OpenAIRE

    Sitenko, Yu. A.; Vlasii, N. D.

    2011-01-01

    A massive scalar field is quantized in the background of a cosmic string which is generalized to a static flux-carrying codimension-2 brane in the locally flat multidimensional space-time. We find that the finite energy-momentum tensor is induced in the vacuum. The dependence of the tensor components on the brane flux and tension, as well as on the coupling to the space-time curvature scalar, is comprehensively analyzed. The tensor components are holomorphic functions of space dimension, decr...

  19. AGREEMENT BETWEEN THE WHITE MATTER CONNECTIVITY BASED ON THE TENSOR-BASED MORPHOMETRY AND THE VOLUMETRIC WHITE MATTER PARCELLATIONS BASED ON DIFFUSION TENSOR IMAGING

    OpenAIRE

    Kim, Seung-Goo; Lee, Hyekyoung; Chung, Moo K.; Hanson, Jamie L.; Avants, Brian B.; Gee, James C.; Davidson, Richard J.; Pollak, Seth D.

    2012-01-01

    We are interested in investigating white matter connectivity using a novel computational framework that does not use diffusion tensor imaging (DTI) but only uses T1-weighted magnetic resonance imaging. The proposed method relies on correlating Jacobian determinants across different voxels based on the tensor-based morphometry (TBM) framework. In this paper, we show agreement between the TBM-based white matter connectivity and the DTI-based white matter atlas. As an application, altered white ...

  20. Ecocar Expo: Une exposition grand public dédiée à la voiture écologique

    CERN Multimedia

    2011-01-01

    Le 8 octobre 2011, 9h-16h à Meyrin, sur la place des Cinq-Continents, l’association suisse chargée de la promotion des véhicules écologiques e’mobile et la commune de Meyrin réuniront un aperçu des voitures à motorisation alternative efficiente et respectueuse du climat actuellement disponibles sur le marché. Cette manifestation grand-public proposera, démarche originale, des essais gratuits sur route.   Les conducteurs sont de plus en plus sensibles à l’impact de leur voiture sur l’environnement. Des questions sur la consommation, la pollution et les alternatives possibles sont fréquemment évoquées lors de l’achat d’une voiture neuve. Durant l'exposition Ecocar, des professionnels de e’mobile, association indépendante pour la promotion de véhicules rout...