WorldWideScience

Sample records for grand canyon area

  1. Grand Canyon Monitoring and Research Center

    Science.gov (United States)

    Hamill, John F.

    2009-01-01

    The Grand Canyon of the Colorado River, one of the world's most spectacular gorges, is a premier U.S. National Park and a World Heritage Site. The canyon supports a diverse array of distinctive plants and animals and contains cultural resources significant to the region's Native Americans. About 15 miles upstream of Grand Canyon National Park sits Glen Canyon Dam, completed in 1963, which created Lake Powell. The dam provides hydroelectric power for 200 wholesale customers in six western States, but it has also altered the Colorado River's flow, temperature, and sediment-carrying capacity. Over time this has resulted in beach erosion, invasion and expansion of nonnative species, and losses of native fish. Public concern about the effects of Glen Canyon Dam operations prompted the passage of the Grand Canyon Protection Act of 1992, which directs the Secretary of the Interior to operate the dam 'to protect, mitigate adverse impacts to, and improve values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established...' This legislation also required the creation of a long-term monitoring and research program to provide information that could inform decisions related to dam operations and protection of downstream resources.

  2. Regional economic impacts of Grand Canyon river runners.

    Science.gov (United States)

    Hjerpe, Evan E; Kim, Yeon-Su

    2007-10-01

    Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy

  3. Carbonaceous aerosol particles from common vegetation in the Grand Canyon

    International Nuclear Information System (INIS)

    Hallock, K.A.; Mazurek, M.A.; Cass, G.R.

    1992-05-01

    The problem of visibility reduction in the Grand Canyon due to fine organic aerosol particles in the atmosphere has become an area of increased environmental concern. Aerosol particles can be derived from many emission sources. In this report, we focus on identifying organic aerosols derived from common vegetation in the Grand Canyon. These aerosols are expected to be significant contributors to the total atmospheric organic aerosol content. Aerosol samples from living vegetation were collected by resuspension of surface wax and resin components liberated from the leaves of vegetation common to areas of the Grand Canyon. The samples were analyzed using high-resolution gas chromatography/mass spectrometry (GC/MS). Probable identification of compounds was made by comparison of sample spectra with National Institute of Standards and Technology (NIST) mass spectral references and positive identification of compounds was made when possible by comparison with authentic standards as well as NIST references. Using these references, we have been able to positively identify the presence of n-alkane and n-alkanoic acid homolog series in the surface waxes of the vegetation sampled. Several monoterpenes, sesquiterpenes, and diterpenes were identified also as possible biogenic aerosols which may contribute to the total organic aerosol abundance leading to visibility reduction in the Grand Canyon

  4. Mineral resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon Emery, and Grand counties, Utah

    International Nuclear Information System (INIS)

    Cashion, W.B.; Kilburn, J.E.; Barton, H.N.; Kelley, K.D.; Kulik, D.M.; McDonnell, J.R.

    1990-09-01

    This paper reports on the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas which include 242,000 acres, 33,690 acres, and 23,140 acres. Coal deposits underlie all three study areas. Coal zones in the Blackhawk and Nelsen formations have identified bituminous coal resources of 22 million short tons in the Desolation Canyon Study Area, 6.3 million short tons in the Turtle Canyon Study Area, and 45 million short tons in the Floy Canyon Study Area. In-place inferred oil shale resources are estimated to contain 60 million barrels in the northern part of the Desolation Canyon area. Minor occurrences of uranium have been found in the southeastern part of the Desolation Canyon area and in the western part of the Floy Canyon area. Mineral resource potential for the study areas is estimated to be for coal, high for all areas, for oil and gas, high for the northern tract of the Desolation Canyon area and moderate for all other tracts, for bituminous sandstone, high for the northern part of the Desolation Canyon area, and low for all other tracts, for oil shale, low in all areas, for uranium, moderate for the Floy Canyon area and the southeastern part of the Desolation Canyon area and low for the remainder of the areas, for metals other than uranium, bentonite, zeolites, and geothermal energy, low in all areas, and for coal-bed methane unknown in all three areas

  5. Populating a Control Point Database: A cooperative effort between the USGS, Grand Canyon Monitoring and Research Center and the Grand Canyon Youth Organization

    Science.gov (United States)

    Brown, K. M.; Fritzinger, C.; Wharton, E.

    2004-12-01

    The Grand Canyon Monitoring and Research Center measures the effects of Glen Canyon Dam operations on the resources along the Colorado River from Glen Canyon Dam to Lake Mead in support of the Grand Canyon Adaptive Management Program. Control points are integral for geo-referencing the myriad of data collected in the Grand Canyon including aerial photography, topographic and bathymetric data used for classification and change-detection analysis of physical, biologic and cultural resources. The survey department has compiled a list of 870 control points installed by various organizations needing to establish a consistent reference for data collected at field sites along the 240 mile stretch of Colorado River in the Grand Canyon. This list is the foundation for the Control Point Database established primarily for researchers, to locate control points and independently geo-reference collected field data. The database has the potential to be a valuable mapping tool for assisting researchers to easily locate a control point and reduce the occurrance of unknowingly installing new control points within close proximity of an existing control point. The database is missing photographs and accurate site description information. Current site descriptions do not accurately define the location of the point but refer to the project that used the point, or some other interesting fact associated with the point. The Grand Canyon Monitoring and Research Center (GCMRC) resolved this problem by turning the data collection effort into an educational exercise for the participants of the Grand Canyon Youth organization. Grand Canyon Youth is a non-profit organization providing experiential education for middle and high school aged youth. GCMRC and the Grand Canyon Youth formed a partnership where GCMRC provided the logistical support, equipment, and training to conduct the field work, and the Grand Canyon Youth provided the time and personnel to complete the field work. Two data

  6. Wintertime Boundary Layer Structure in the Grand Canyon.

    Science.gov (United States)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  7. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande

  8. Perspective view over the Grand Canyon, Arizona

    Science.gov (United States)

    2001-01-01

    This simulated true color perspective view over the Grand Canyon was created from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data acquired on May 12, 2000. The Grand Canyon Village is in the lower foreground; the Bright Angel Trail crosses the Tonto Platform, before dropping down to the Colorado Village and then to the Phantom Ranch (green area across the river). Bright Angel Canyon and the North Rim dominate the view. At the top center of the image the dark blue area with light blue haze is an active forest fire. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and physical properties; wetlands evaluation; thermal pollution monitoring; coral reef degradation; surface temperature mapping of soils and geology; and measuring surface heat balance. The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate. Size: 5 km in foreground to 40 km Location: 36.3 degrees north latitude, 112 degrees west longitude Orientation: North-northeast at top Original Data Resolution: ASTER 15 meters Dates Acquired: May 12, 2000

  9. Numerical modeling of the late Cenozoic geomorphic evolution of Grand Canyon, Arizona

    Science.gov (United States)

    Pelletier, J. D.

    2008-12-01

    The late Cenozoic geomorphic evolution of Grand Canyon has been influenced by three primary tectonic and drainage adjustment events. First, incision into the Paleozoic strata of the southwestern margin of the Colorado Plateau began at 16 Ma in response to relief production along the Grand Wash Fault. Second, the ancestral Upper Colorado River reversed drainage and became integrated with the Lower Colorado River basin through Grand Canyon between 5.5 and 6 Ma. Third, the Colorado River was influenced by Plio- Quaternary normal faulting along the Hurricane and Toroweap Faults. Despite the relatively firm constraints available on the timing of these events, the geomorphic evolution of Grand Canyon is still not well constrained and many questions remain. For example, was there a deeply-incised gorge in western Grand Canyon before Colorado River integration? How and where was the Colorado River integrated? How have incision rates varied in space and time? In this paper, I describe the results of a numerical modeling study designed to address these questions. The model integrates the stream power model for bedrock channel erosion with cliff retreat and the flexural-isostatic response to erosion. The model honors the structural geology of the Grand Canyon region, including the variable erodibility of rocks in the Colorado Plateau and the occurrence of Plio-Quaternary normal faulting along the Hurricane-Toroweap Fault system. We present the results of two models designed to bracket the possible drainage architectures of the southwestern margin of the Colorado Plateau in Miocene time. In the first model, we assume a 13,000 km2 drainage basin primarily sourced from the Hualapai and Coconino Plateaux. The results of this model indicate that relief production along the Grand Wash fault initiated the formation of a large (700 m) knickpoint that migrated headward at a rate of 15 km/Myr prior to drainage integration at 6 Ma to form a deep gorge in western Grand Canyon. This model

  10. Standardized methods for Grand Canyon fisheries research 2015

    Science.gov (United States)

    Persons, William R.; Ward, David L.; Avery, Luke A.

    2013-01-01

    This document presents protocols and guidelines to persons sampling fishes in the Grand Canyon, to help ensure consistency in fish handling, fish tagging, and data collection among different projects and organizations. Most such research and monitoring projects are conducted under the general umbrella of the Glen Canyon Dam Adaptive Management Program and include studies by the U.S. Geological Survey (USGS), U.S. Fish and Wildlife Service (FWS), National Park Service (NPS), the Arizona Game and Fish Department (AGFD), various universities, and private contractors. This document is intended to provide guidance to fieldworkers regarding protocols that may vary from year to year depending on specific projects and objectives. We also provide herein documentation of standard methods used in the Grand Canyon that can be cited in scientific publications, as well as a summary of changes in protocols since the document was first created in 2002.

  11. Topographic change detection at select archeological sites in Grand Canyon National Park, Arizona, 2007–2010

    Science.gov (United States)

    Collins, Brian D.; Corbett, Skye C.; Fairley, Helen C.; Minasian, Diane L.; Kayen, Robert; Dealy, Timothy P.; Bedford, David R.

    2012-01-01

    collected two new datasets in April and September 2010 and processed and improved upon existing methods to generate high-accuracy (3 to 5 cm vertical change threshold) topographic change-detection maps for 10 survey areas encompassing 9 archeological sites along the Colorado River corridor. We also used terrestrial lidar techniques to investigate several other metrics for studying archeological site stability, including monitoring cultural structures and artifacts and remotely measuring cryptobiotic soil crust areas. Our topographic change results indicate that 9 of 10 survey areas showed signs of either erosion, deposition, or both during the 2007–2010 time interval and that these changes can be linked to a variety of geomorphic processes, primarily overland flow gullying and aeolian sand transport. In several cases, large (>50 cm) vertical change occurred, and in one case, more than 100 m3 of sediment was eroded. Further, for all sites monitored throughout the river corridor during this time period, the overall signal was related to erosion rather than deposition. These results highlight the potential for rapid archeological site change in Grand Canyon. Whereas the topographic change results presented herein provide the highest level of change detection yet performed on entire archeological sites in Grand Canyon, additional work in combining these results with site-specific weather, hydrology, and geomorphology data is needed to provide a more thorough understanding of the causes of the documented topographic changes. Linking lidar-derived measurements of topographic changes with these other data sources should provide land managers with a scientific basis for making management decisions regarding archeological resources in Grand Canyon National Park and assist in answering open questions regarding the influence that sediment-depleted flows from Glen Canyon Dam have on archeological site stability.

  12. Utilizing NASA Earth Observations to Assist the National Park Service in Monitoring Shoreline Land Cover Change in the Lower Grand Canyon

    Science.gov (United States)

    Stevens, C. L.; Phillips, A.; Young, S.; Counts, A.

    2017-12-01

    Sustained drought conditions have contributed to a significant decrease in the volume of the Colorado River in the Lake Mead reservoir and lower portion of the Grand Canyon. As a result, changes in riparian conditions have occurred in the region, such as sediment exposure and receding vegetation. These changes have large negative impacts on ecological health, including water and air pollution, aquatic, terrestrial and avian habitat alterations, and invasive species introduction. Scientists at Grand Canyon National Park seek to quantify changes in water surface and land cover area in the Lower Grand Canyon from 1998 to 2016 to better understand the effects of these changing conditions within the park. Landsat imagery was used to detect changes of the water surface and land cover area across this time period to assess the effects of long-term drought on the riparian zone. The resulting land cover and water surface time-series from this project will assist in monitoring future changes in water, sediment, and vegetation extent, increasing the ability of park scientists to create adaptation strategies for the ecosystem in the Lower Grand Canyon.

  13. Ground-water conditions in the Grand County area, Utah, with emphasis on the Mill Creek-Spanish Valley area

    Science.gov (United States)

    Blanchard, Paul J.

    1990-01-01

    The Grand County area includes all of Grand County, the Mill Creek and Pack Creek drainages in San Juan County, and the area between the Colorado and Green Rivers in San Juan County. The Grand County area includes about 3,980 square miles, and the Mill Creek-Spanish Valley area includes about 44 square miles. The three principal consolidated-rock aquifers in the Grand County area are the Entrada, Navajo, and Wingate aquifers in the Entrada Sandstone, the Navajo Sandstone, and the Wingate Sandstone, and the principal consolidated-rock aquifer in the Mill Creek-Spanish Valley area is the Glen Canyon aquifer in the Glen Canyon Group, comprised of the Navajo Sandstone, the Kayenta Formation, and the Wingate Sandstone.Recharge to the Entrada, Navajo, and Glen Canyon aquifers typically occurs where the formations containing the aquifers crop out or are overlain by unconsolidated sand deposits. Recharge is enhanced where the sand deposits are saturated at a depth of more than about 6 feet below the land surface, and the effects of evaporation begin to decrease rapidly with depth. Recharge to the Wingate aquifer typically occurs by downward movement of water from the Navajo aquifer through the Kayenta Formation, and primarily occurs where the Navajo Sandstone, Kayenta Formation, and the Wingate Sandstone are fractured.

  14. 75 FR 10308 - Fire Management Plan, Final Environmental Impact Statement, Record of Decision, Grand Canyon...

    Science.gov (United States)

    2010-03-05

    ... DEPARTMENT OF THE INTERIOR National Park Service Fire Management Plan, Final Environmental Impact... Statement for the Fire Management Plan, Grand Canyon National Park. SUMMARY: Pursuant to the National... the Record of Decision for the Fire Management Plan, Grand Canyon National Park, Arizona. On January...

  15. 3D View of Grand Canyon, Arizona

    Science.gov (United States)

    2000-01-01

    The Grand Canyon is one of North America's most spectacular geologic features. Carved primarily by the Colorado River over the past six million years, the canyon sports vertical drops of 5,000 feet and spans a 445-kilometer-long stretch of Arizona desert. The strata along the steep walls of the canyon form a record of geologic time from the Paleozoic Era (250 million years ago) to the Precambrian (1.7 billion years ago).The above view was acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument aboard the Terra spacecraft. Visible and near infrared data were combined to form an image that simulates the natural colors of water and vegetation. Rock colors, however, are not accurate. The image data were combined with elevation data to produce this perspective view, with no vertical exaggeration, looking from above the South Rim up Bright Angel Canyon towards the North Rim. The light lines on the plateau at lower right are the roads around the Canyon View Information Plaza. The Bright Angel Trail, which reaches the Colorado in 11.3 kilometers, can be seen dropping into the canyon over Plateau Point at bottom center. The blue and black areas on the North Rim indicate a forest fire that was smoldering as the data were acquired on May 12, 2000.Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as

  16. Preliminary hydrogeologic assessment near Tassi and Pakoon Springs, western part of Grand Canyon-Parashant National Monument, Arizona

    Science.gov (United States)

    Truini, Margot

    2013-01-01

    Tassi and Pakoon Springs are both in the Grand Wash Trough in the western part of Grand Canyon-Parashant National Monument on the Arizona Strip. The monument is jointly managed by the National Park Service (NPS) and the Bureau of Land Management. This study was in response to NPS’s need to better understand the influence from regional increases in groundwater withdrawals near Grand Canyon-Parashant on the groundwater discharge from Tassi and Pakoon Springs. The climate of the Arizona Strip is generally semiarid to arid, and springs in the monument provide the water for the fragile ecosystems that are commonly separated by large areas of dry washes in canyons with pinyon and juniper. Available hydrogeologic data from previous investigations included water levels from the few existing wells, location information for springs, water chemistry from springs, and geologic maps. Available groundwater-elevation data from the wells and springs in the monument indicate that groundwater in the Grand Wash Trough is moving from north to south, discharging to springs and into the Colorado River. Groundwater may also be moving from east to west from Paleozoic rocks in the Grand Wash Cliffs into sedimentary deposits in the Grand Wash Trough. Finally, groundwater may be moving from the northwest in the Mesoproterozoic crystalline rocks of the Virgin Mountains into the northern part of the Grand Wash Trough. Water discharging from Tassi and Pakoon Springs has a major-ion chemistry similar to that of other springs in the western part of Grand Canyon-Parashant. Stable-isotopic signatures for oxygen-18 and hydrogen-2 are depleted in the water from both Tassi and Pakoon Springs in comparison to other springs on the Arizona Strip. Tassi Spring discharges from multiple seeps along the Wheeler Fault, and the depleted isotopic signatures suggest that water may be flowing from multiple places into Lake Mead and seems to have a higher elevation or an older climate source. Elevated water

  17. Preliminary Use of the Seismo-Lineament Analysis Method (SLAM) to Investigate Seismogenic Faulting in the Grand Canyon Area, Northern Arizona

    Science.gov (United States)

    Cronin, V. S.; Cleveland, D. M.; Prochnow, S. J.

    2007-12-01

    This is a progress report on our application of the Seismo-Lineament Analysis Method (SLAM) to the eastern Grand Canyon area of northern Arizona. SLAM is a new integrated method for identifying potentially seismogenic faults using earthquake focal-mechanism solutions, geomorphic analysis and field work. There are two nodal planes associated with any double-couple focal-mechanism solution, one of which is thought to coincide with the fault that produced the earthquake; the slip vector is normal to the other (auxiliary) plane. When no uncertainty in the orientation of the fault-plane solution is reported, we use the reported vertical and horizontal uncertainties in the focal location to define a tabular uncertainty volume whose orientation coincides with that of the fault-plane solution. The intersection of the uncertainty volume and the ground surface (represented by the DEM) is termed a seismo-lineament. An image of the DEM surface is illuminated perpendicular to the strike of the seismo- lineament to accentuate geomorphic features within the seismo-lineament that may be related to seismogenic faulting. This evaluation of structural geomorphology is repeated for several different azimuths and elevations of illumination. A map is compiled that includes possible geomorphic indicators of faulting as well as previously mapped faults within each seismo-lineament, constituting a set of hypotheses for the possible location of seismogenic fault segments that must be evaluated through fieldwork. A fault observed in the field that is located within a seismo-lineament, and that has an orientation and slip characteristics that are statistically compatible with the fault-plane solution, is considered potentially seismogenic. We compiled a digital elevation model (DEM) of the Grand Canyon area from published data sets. We used earthquake focal-mechanism solutions produced by David Brumbaugh (2005, BSSA, v. 95, p. 1561-1566) for five M > 3.5 events reported between 1989 and 1995

  18. Grand Canyon 10 x 20 NTMS area: Arizona. Data report

    International Nuclear Information System (INIS)

    Koller, G.R.

    1979-01-01

    This data report presents results of ground water and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Grand Canyon 1 0 x 2 0 quadrangle. Surface samples (sediment) were collected from 1013 sites. The target sampling density was one site per 16 square kilometers (six square miles). Ground water samples were collected at 84 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from ground water sites (on microfiche in pocket) include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, and scintillometer reading), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from sediment sites (also on microfiche in pocket) include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements, U/Th, U/Hf, and Th/La ratios, and scintillometer readings for sediment samples are included on the microfiche

  19. Yuntaishan Global Geopark VS Grand Canyon World Heritage Site A Contrast of Yuntai/Grand Canyon Physiognomy

    Science.gov (United States)

    Ting, Zhao; Xun, Zhao

    2017-04-01

    1). Sights of Yuntai/Grand Canyon: Immaculate. Physiognomy of Yuntai/Grand Canyon: Typical representatives of stratiform ravine physiognomy The physiognomy is distributed widely on the second geological ladder zone (Xing'an Peak-Mt. Yan-Mt. Taihang-West Henan Province; Mountainous areas in west Hubei Province-West Hunan Province; East Guizhou Province-West Guangxi Province) and in the valleys of the Yellow River; similar physiognomy is also to be found in the Grand Canyon of U.S and the Great Rift Valley in east Africa, etc. The physiognomy has the following features: broken mounds sprinkle the ancient plateau, insignificant streams and brooks carve dongas on the plateau, grits, fine or coarse in terms of sizes, that are near to sources jam water channels, and riverbanks and slopes are covered by slope sediments, remains and flood residues; on the edge of the plateau, there are towering ragged cliffs and long walls when ruptures and joints don't develop; when they do develop, facets of the plateau will be incised by the intercrossing development to form high or low peak walls that resemble plates or peak pillars that reaches into the sky; Under the river valleys and gulches where water gather on the face of the plateau, suspending waterfalls wash away the soft layers of rock and soil, which collapse into urn-shaped valleys, and gigantic stones fall up-side-down to form stone awls that has no distinctive layers and single components; more often than not, they would pile up into complicated caves and holes, wherein sands and mud are flushed away by floods; Inside the valley, erosion by means of wind and water are even stronger, and narrow valleys, shield-like valleys, gorges, suspending valleys, and valley-in-valleys are clearly cut, and ruts formed by water flush and urn-shaped valleys can often be found together. In the lower reaches of rivers, wide valleys, winding streams and yoke lakes grow into major sights, and the flush and collapse on the valley slopes formed

  20. Haze in the Grand Canyon: An evaluation of the Winter Haze Intensive Tracer Experiment

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    The Grand Canyon is one of the most spectacular natural sights on earth. Approximately 4 million visitors travel to Grand Canyon National Park (GCNP) each year to enjoy its majestic geological formations and intensely colored views. However, visibility in GCNP can be impaired by small increases in concentrations of fine suspended particles that scatter and absorb light; the resulting visibility degradation is perceived as haze. Sulfate particles are a major factor in visibility impairment at Grand Canyon in summer and winter. Many wintertime hazes at GCNP are believed to result from the accumulation of emissions from local sources during conditions of air stagnation, which occur more frequently in winter than in summer. In January and February 1987, the National Park Service (NPS) carried out a large-scale experiment known as the Winter Haze Intensive Tracer Experiment (WHITEX) to investigate the causes of wintertime haze in the region of GCNP and Canyonlands National Park. The overall objective of WHITEX was to assess the feasibility of attributing visibility impairment in specific geographic regions to emissions from a single point source. The experiment called for the injection of a tracer, deuterated methane (CD{sub 4}), into one of the stacks of the Navajo Generating Station (NGS), a major coal-fired power plant located 25 km from the GCNP boundary and 110 km northeast of Grand Canyon Village. A network of field stations was established in the vicinity -- mostly to the northeast of GCNP and NGS -- to measure CD{sub 4} concentrations, atmospheric aerosol and optical properties, and other chemical and physical attributes. 19 refs., 3 figs.

  1. The Colorado River and its deposits downstream from Grand Canyon in Arizona, California, and Nevada

    Science.gov (United States)

    Crow, Ryan S.; Block, Debra L.; Felger, Tracey J.; House, P. Kyle; Pearthree, Philip A.; Gootee, Brian F.; Youberg, Ann M.; Howard, Keith A.; Beard, L. Sue

    2018-02-05

    Understanding the evolution of the Colorado River system has direct implications for (1) the processes and timing of continental-scale river system integration, (2) the formation of iconic landscapes like those in and around Grand Canyon, and (3) the availability of groundwater resources. Spatial patterns in the position and type of Colorado River deposits, only discernible through geologic mapping, can be used to test models related to Colorado River evolution. This is particularly true downstream from Grand Canyon where ancestral Colorado River deposits are well-exposed. We are principally interested in (1) regional patterns in the minimum and maximum elevation of each depositional unit, which are affected by depositional mechanism and postdepositional deformation; and (2) the volume of each unit, which reflects regional changes in erosion, transport efficiency, and accommodation space. The volume of Colorado River deposits below Grand Canyon has implications for groundwater resources, as the primary regional aquifer there is composed of those deposits. To this end, we are presently mapping Colorado River deposits and compiling and updating older mapping. This preliminary data release shows the current status of our mapping and compilation efforts. We plan to update it at regular intervals in conjunction with ongoing mapping.

  2. Predictive Temperature Equations for Three Sites at the Grand Canyon

    Science.gov (United States)

    McLaughlin, Katrina Marie Neitzel

    Climate data collected at a number of automated weather stations were used to create a series of predictive equations spanning from December 2009 to May 2010 in order to better predict the temperatures along hiking trails within the Grand Canyon. The central focus of this project is how atmospheric variables interact and can be combined to predict the weather in the Grand Canyon at the Indian Gardens, Phantom Ranch, and Bright Angel sites. Through the use of statistical analysis software and data regression, predictive equations were determined. The predictive equations are simple or multivariable best fits that reflect the curvilinear nature of the data. With data analysis software curves resulting from the predictive equations were plotted along with the observed data. Each equation's reduced chi2 was determined to aid the visual examination of the predictive equations' ability to reproduce the observed data. From this information an equation or pair of equations was determined to be the best of the predictive equations. Although a best predictive equation for each month and season was determined for each site, future work may refine equations to result in a more accurate predictive equation.

  3. 76 FR 23623 - Backcountry Management Plan, Environmental Impact Statement, Grand Canyon National Park, Arizona

    Science.gov (United States)

    2011-04-27

    ...-7945, [email protected] or Rachel Bennett, Environmental Protection Specialist, P.O. Box 129, Grand Canyon, Arizona 86023, 928-638-7326, Rachel[email protected] . SUPPLEMENTARY INFORMATION: If you wish to...

  4. Continuing fire regimes in remote forests of Grand Canyon National Park

    Science.gov (United States)

    Peter Z. Fule; Thomas A. Heinlein; W. Wallace Covington; Margaret H. Moore

    2000-01-01

    Ponderosa pine forests in which frequent fire regimes continue up to the present would be invaluable points of reference for assessing natural ecological attributes. A few remote forests on the North Rim of Grand Canyon National Park come close to this ideal: never-harvested, distant from human communities and fire suppression resources, and with several low-intensity...

  5. Problem solving or social change? The Applegate and Grand Canyon Forest Partnerships

    Science.gov (United States)

    Cassandra Moseley; Brett KenCairn

    2001-01-01

    Natural resource conflicts have resulted in attempts at better collaboration between public and private sectors. The resulting partnerships approach collaboration either by problem solving through better information and management, or by requiring substantial social change. The Applegate Partnership in Oregon and the Grand Canyon Forest Partnership in Arizona...

  6. Deciphering Paria and Little Colorado River flood regimes and their significance in multi-objective adaptive management strategies for Colorado River resources in Grand Canyon

    Science.gov (United States)

    Jain, S.; Topping, D. J.; Melis, T. S.

    2014-12-01

    Planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, sandbars, recreational trout angling, endangered native fish, whitewater rafting, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on warm-season Paria River floods (JUL-OCT, at point-to-regional scales) has been identified as lead information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars below Glen Canyon Dam; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of warm season tributary sand input from the Paria River into the Colorado River in Grand Canyon National Park. The Little Colorado River is an important secondary source of sand inputs to Grand Canyon, but its lower segment is also critical spawning habitat for the endangered humpback chub. Fish biologists have reported increased abundance of chub juveniles in this key tributary in summers following cool-season flooding (DEC-FEB), but little is known about chub spawning substrates and behavior or the role that flood frequency in this tributary may play in native fish population dynamics in Grand Canyon. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm- and cool-season floods from these two important tributaries of the semi-arid Colorado Plateau. Coupled variations of floods (magnitude and timing) from these rivers are also

  7. Reconciling Conflicting Geologic and Thermochronologic Interpretations Via Multiple Apatite Thermochronometers (AHe, AFT, and 4He/3He): 6 Ma Incision of the Westernmost Grand Canyon

    Science.gov (United States)

    Winn, C.; Karlstrom, K. E.; Shuster, D. L.; Kelley, S.; Fox, M.

    2017-12-01

    The application of low-temperature apatite thermochronology to the incision history of the Grand Canyon has led to conflicting hypotheses of either a 70 Ma ("old") or conflict with these lines of evidence and indicate a much older ( 70 Ma) westernmost Grand Canyon. We reconcile this conflict by applying apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry, and apatite fission track ages and lengths (AFT) to the same sample at a key location. Using HeFTy, t-T paths that predict these data show cooling from ˜100 °C to 40-60 °C at 70-50 Ma, long-term residence at 40-60 °C from 50-10 Ma, and cooling to surface temperatures after 10 Ma, indicating young incision. New AFT (5) and AHe (3) datasets are also presented here. When datasets are examined separately, AHe data show t-T paths that cool to surface temperatures during the Laramide, consistent with an "old" Canyon. When multiple methods are applied, t-T paths instead show young incision. This inconsistency demonstrates the age of the Grand Canyon controversy. Here we reconcile the difference in t-T paths by adjusting model parameters to account for uncertainty in the rate of radiation damage annealing in apatite during burial heating and the resulting variations in He retentivity. In this area, peak burial conditions during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged near-surface residence prior to burial. We conclude that application of multiple thermochronometers from common rocks reconciles conflicting thermochronologic interpretations and these data are best explained by a "young" westernmost Grand Canyon.

  8. Steady incision of Grand Canyon at the million year timeframe: a case for mantle-driven differential uplift

    Science.gov (United States)

    Crow, Ryan S.; Karl Karlstrom,; Laura Crossey,; Richard Young,; Michael Ort,; Yemane Asmerom,; Victor Polyak,; Andrew Darling,

    2014-01-01

    The Grand Canyon region provides an excellent laboratory to examine the interplay between river incision, magmatism, and the geomorphic and tectonic processes that shape landscapes. Here we apply U-series, Ar–Ar, and cosmogenic burial dating of river terraces to examine spatial variations in incision rates along the 445 km length of the Colorado River through Grand Canyon. We also analyze strath terrace sequences that extend to heights of several hundred meters above the river, and integrate these with speleothem constrained maximum incision rates in several reaches to examine any temporal incision variations at the million-year time frame. This new high-resolution geochronology shows temporally steady long-term incision in any given reach of Grand Canyon but significant variations along its length from 160 m/Ma in the east to 101 m/Ma in the west. Spatial and temporal patterns of incision, and the long timescale of steady incision rule out models where geomorphic controls such as climate oscillations, bedrock strength, sediment load effects, or isostatic response to differential denudation are the first order drivers of canyon incision. The incision pattern is best explained by a model of Neogene and ongoing epeirogenic uplift due to an eastward propagating zone of increased upper mantle buoyancy that we infer from propagation of Neogene basaltic volcanism and a strong lateral gradient in modern upper mantle seismic structure.

  9. Recreational impacts on Colorado River beaches in Glen Canyon, Arizona

    Science.gov (United States)

    Carothers, Steven W.; Johnson, Robert A.; Dolan, Robert

    1984-07-01

    Recreational impact was measured on eight beaches in Glen Canyon National Recreation Area and 15 beaches in Grand Canyon National Park using permanently located transects and plots. Recreational impact indices included densities of human trash and charcoal and a measure of sand discoloration due to charcoal. Significant increases in the indices occurred on several Glen Canyon beaches over a seven-month period. Sand discoloration became significantly higher over all Glen Canyon beaches during the same time period. All indices were significantly higher in Glen Canyon than on similar Grand Canyon beaches. These differences are probably due to differences in: (a) level of impacts tolerated by the respective management regimes and, (b) in the number of user days among the two National Park Service administrative units. Management alternatives are presented for reversing the present trends of recreational impact on Glen Canyon beaches.

  10. Warm Season Storms, Floods, and Tributary Sand Inputs below Glen Canyon Dam: Investigating Salience to Adaptive Management in the Context of a 10-Year Long Controlled Flooding Experiment in Grand Canyon National Park, AZ, USA

    Science.gov (United States)

    Jain, S.; Melis, T. S.; Topping, D. J.; Pulwarty, R. S.; Eischeid, J.

    2013-12-01

    The planning and decision processes in the Glen Canyon Dam Adaptive Management Program (GCDAMP) strive to balance numerous, often competing, objectives, such as, water supply, hydropower generation, low flow maintenance, maximizing conservation of downstream tributary sand supply, endangered native fish, and other sociocultural resources of Glen Canyon National Recreation Area and Grand Canyon National Park. In this context, use of monitored and predictive information on the warm season floods (at point-to-regional scales) has been identified as lead-information for a new 10-year long controlled flooding experiment (termed the High-Flow Experiment Protocol) intended to determine management options for rebuilding and maintaining sandbars in Grand Canyon; an adaptive strategy that can potentially facilitate improved planning and dam operations. In this work, we focus on a key concern identified by the GCDAMP, related to the timing and volume of tributary sand input from the Paria and Little Colorado Rivers (located 26 and 124 km below the dam, respectively) into the Colorado River in Grand Canyon National Park. Episodic and intraseasonal variations (with links to equatorial and sub-tropical Pacific sea surface temperature variability) in the southwest hydroclimatology are investigated to understand the magnitude, timing and spatial scales of warm season floods from this relatively small, but prolific sand producing drainage of the semi-arid Colorado Plateau. The coupled variations of the flood-driven sediment input (magnitude and timing) from these two drainages into the Colorado River are also investigated. The physical processes, including diagnosis of storms and moisture sources, are mapped alongside the planning and decision processes for the ongoing experimental flood releases from the Glen Canyon Dam which are aimed at achieving restoration and maintenance of sandbars and instream ecology. The GCDAMP represents one of the most visible and widely recognized

  11. 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT, (U-Th)/He, and 4He/3He thermochronologic data

    Science.gov (United States)

    Winn, Carmen; Karlstrom, Karl E.; Shuster, David L.; Kelley, Shari; Fox, Matthew

    2017-09-01

    Conflicting hypotheses about the timing of carving of the Grand Canyon involve either a 70 Ma (;old;) or conflict with these lines of evidence, but are reconciled in this paper via the integration of three methods of analyses on the same sample: apatite (U-Th)/He ages (AHe), 4He/3He thermochronometry (4He/3He), and apatite fission-track ages and lengths (AFT). HeFTy software was used to generate time-temperature (t-T) paths that predict all new and published 4He/3He, AHe, and AFT data to within assumed uncertainties. These t-T paths show cooling from ∼100 °C to 40-60 °C in the Laramide (70-50 Ma), long-term residence at 40-60 °C in the mid-Tertiary (50-10 Ma), and cooling to near-surface temperatures after 10 Ma, and thus support young incision of the westernmost Grand Canyon. A subset of AHe data, when interpreted alone (i.e. without 4He/3He or AFT data), are better predicted by t-T paths that cool to surface temperatures during the Laramide, consistent with an ;old; Grand Canyon. However, the combined AFT, AHe, and 4He/3He analysis of a key sample from Separation Canyon can only be reconciled by a ;young; Canyon. Additional new AFT (5 samples) and AHe data (3 samples) in several locations along the canyon corridor also support a ;young; Canyon. This inconsistency, which mimics the overall controversy of the age of the Grand Canyon, is reconciled here by optimizing cooling paths so they are most consistent with multiple thermochronometers from the same rocks. To do this, we adjusted model parameters and uncertainties to account for uncertainty in the rate of radiation damage annealing in these apatites during sedimentary burial and the resulting variations in He retentivity. In westernmost Grand Canyon, peak burial conditions (temperature and duration) during the Laramide were likely insufficient to fully anneal radiation damage that accumulated during prolonged, near-surface residence since the Proterozoic. We conclude that application of multiple

  12. A Transformative Undergraduate Field Trip to the Grand Canyon and Death Valley

    Science.gov (United States)

    Smith, J. A.

    2014-12-01

    Seeing the iconic Grand Canyon and Death Valley in person is a transformative experience for most geologists, including nine undergraduate geology students from upstate New York. The students were enrolled in a one-credit course designed around a nine-day spring-break field trip to Grand Canyon National Park (GCNP) and Death Valley National Park (DVNP). We met once a week before the trip to plan day-to-day activities and discuss background geologic information. Students selected a research topic related to our itinerary and wrote a guidebook entry for the topic. Students' entries were combined with papers, maps, and background material to make a guidebook. The printed guidebooks provided students with a "publication" of their work to show to others and refer to in the field. The nine-day field trip started with a flight into Las Vegas, NV, on 3/1/14. We spent three nights camping at the South Rim of the Grand Canyon, one night camping in Valley of Fire State Park (VOFSP, 55 mi N of Las Vegas), and three nights staying at the Shoshone Education and Research Center (SHEAR) east of Death Valley. Highlights of the trip included the hike along the Bright Angel Trail (and fault) to Plateau Point and recognition of the Great Unconformity at GCNP; the White Domes loop hike, camping at the Beehives, and observation of the Muddy Mountain Overthrust in VOFSP; and hikes at Ubehebe Crater, Badwater Salt Flat, and Natural Bridge Canyon in DVNP. Each student presented his/her research topic at a pertinent point in the field trip; students were impressively well-prepared. One requirement of the course was a poster presentation on each student's research topic at our Undergraduate Research Symposium in April. For most of the students, the poster session was the first experience preparing and presenting a poster. In addition, the class gave a joint colloquium presentation to several hundred science majors and a number of science faculty at Saint Rose. Each student spoke for five

  13. Hydroacoustic signatures of Colorado Riverbed sediments in Marble and Grand Canyons using multibeam sonar

    Science.gov (United States)

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matthew; Tusso, Robert B.; Rubin, David M.

    2015-01-01

    Characterizing the large-scale sedimentary make-up of heterogeneous riverbeds (Nelson et al., 2014), which consist of a patchwork of sediment types over small scales (less than one to several tens of meters) (Dietrich and Smith, 1984) requires high resolution measurements of sediment grain size. Capturing such variability with conventional physical (e.g. grabs, cores, and dredges) or underwater photographic sampling (Rubin et al., 2007; Buscombe et al., 2014a) would be prohibitively costly and time-consuming. However, characterizing bed sediments using high-frequency (several hundred kilohertz) acoustic backscatter from swath-mapping systems has the potential to provide near complete coverage of the bed (Brown and Blondel, 2009; Brown et al., 2011; Snellen et al., 2013), at resolutions down to a few centimeters, which photographic sampling could not practically achieve within the same time and with the same positional accuracy. In shallow water, the physics of high frequency scattering of sound are relatively poorly understood, therefore acoustic sediment classification are almost always statistical (Snellen et al., 2013). Many such methods proposed to date are designed for characterizing large areas of seabed (Brown and Blondel, 2009; Brown et al., 2011) at relatively poor resolution (tens of meters to several hundred meters) and therefore rely on aggregation of data over scales much larger than the typical scales of sediment patchiness on heterogeneous riverbeds. In response to this need, Buscombe et al. (2014b, 2014c) developed a new statistical method for acoustic sediment classification based on spectral analysis of backscatter. This method is both continuous in coverage and of sufficient resolution (order meter or less) to characterize sediment variability on patchy riverbeds. Here, we apply these methods to multibeam echosounder (MBES) data collected from the bed of the Colorado River in Marble and Grand Canyons. Sediment dynamics on the Colorado River in

  14. Mercury and selenium accumulation in the Colorado River food web, Grand Canyon, USA

    Science.gov (United States)

    Walters, David M.; E.J. Rosi-Marshall,; Kennedy, Theodore A.; W.F. Cross,; C.V. Baxter,

    2015-01-01

    Mercury (Hg) and selenium (Se) biomagnify in aquatic food webs and are toxic to fish and wildlife. The authors measured Hg and Se in organic matter, invertebrates, and fishes in the Colorado River food web at sites spanning 387 river km downstream of Glen Canyon Dam (AZ, USA). Concentrations were relatively high among sites compared with other large rivers (mean wet wt for 6 fishes was 0.17–1.59 μg g–1 Hg and 1.35–2.65 μg g–1 Se), but consistent longitudinal patterns in Hg or Se concentrations relative to the dam were lacking. Mercury increased (slope = 0.147) with δ15N, a metric of trophic position, indicating biomagnification similar to that observed in other freshwater systems. Organisms regularly exceeded exposure risk thresholds for wildlife and humans (6–100% and 56–100% of samples for Hg and Se, respectfully, among risk thresholds). In the Colorado River, Grand Canyon, Hg and Se concentrations pose exposure risks for fish, wildlife, and humans, and the findings of the present study add to a growing body of evidence showing that remote ecosystems are vulnerable to long-range transport and subsequent bioaccumulation of contaminants. Management of exposure risks in Grand Canyon will remain a challenge, as sources and transport mechanisms of Hg and Se extend far beyond park boundaries. Environ Toxicol Chem2015;9999:1–10

  15. Topographic Change Detection at Select Archeological Sites in Grand Canyon National Park, Arizona, 2006-2007

    Science.gov (United States)

    Collins, Brian D.; Minasian, Diane L.; Kayen, Robert

    2009-01-01

    Topographic change of archeological sites within the Colorado River corridor of Grand Canyon National Park (GCNP) is a subject of interest to National Park Service managers and other stakeholders in the Glen Canyon Dam Adaptive Management Program. Although long-term topographic change resulting from a variety of natural processes is typical in the Grand Canyon region, a continuing debate exists on whether and how controlled releases from Glen Canyon Dam, located immediately upstream of GCNP, are impacting rates of site erosion, artifact transport, and the preservation of archeological resources. Continued erosion of archeological sites threatens both the archeological resources and our future ability to study evidence of past cultural habitation. Understanding the causes and effects of archaeological site erosion requires a knowledge of several factors including the location and magnitude of the changes occurring in relation to archeological resources, the rate of the changes, and the relative contribution of several potential causes, including sediment depletion associated with managed flows from Glen Canyon Dam, site-specific weather patterns, visitor impacts, and long-term climate change. To obtain this information, highly accurate, spatially specific data are needed from sites undergoing change. Using terrestrial lidar data collection techniques and novel TIN- and GRID-based change-detection post-processing methods, we analyzed topographic data for nine archeological sites. The data were collected using three separate data collection efforts spanning 16 months (May 2006 to September 2007). Our results documented positive evidence of erosion, deposition, or both at six of the nine sites investigated during this time interval. In addition, we observed possible signs of change at two of the other sites. Erosion was concentrated in established gully drainages and averaged 12 cm to 17 cm in depth with maximum depths of 50 cm. Deposition was concentrated at specific

  16. Automated remote cameras for monitoring alluvial sandbars on the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Grams, Paul E.; Tusso, Robert B.; Buscombe, Daniel

    2018-02-27

    Automated camera systems deployed at 43 remote locations along the Colorado River corridor in Grand Canyon National Park, Arizona, are used to document sandbar erosion and deposition that are associated with the operations of Glen Canyon Dam. The camera systems, which can operate independently for a year or more, consist of a digital camera triggered by a separate data controller, both of which are powered by an external battery and solar panel. Analysis of images for categorical changes in sandbar size show deposition at 50 percent or more of monitoring sites during controlled flood releases done in 2012, 2013, 2014, and 2016. The images also depict erosion of sandbars and show that erosion rates were highest in the first 3 months following each controlled flood. Erosion rates were highest in 2015, the year of highest annual dam release volume. Comparison of the categorical estimates of sandbar change agree with sandbar change (erosion or deposition) measured by topographic surveys in 76 percent of cases evaluated. A semiautomated method for quantifying changes in sandbar area from the remote-camera images by rectifying the oblique images and segmenting the sandbar from the rest of the image is presented. Calculation of sandbar area by this method agrees with sandbar area determined by topographic survey within approximately 8 percent and allows quantification of sandbar area monthly (or more frequently).

  17. Remote sensing of tamarisk beetle (Diorhabda carinulata) impacts along 412 km of the Colorado River in the Grand Canyon, Arizona, USA

    Science.gov (United States)

    Bedford, Ashton; Sankey, Temuulen T.; Sankey, Joel B.; Durning, Laura E.C.; Ralston, Barbara

    2018-01-01

    Tamarisk (Tamarix spp.) is an invasive plant species that is rapidly expanding along arid and semi-arid rivers in the western United States. A biocontrol agent, tamarisk beetle (Diorhabda carinulata), was released in 2001 in California, Colorado, Utah, and Texas. In 2009, the tamarisk beetle was found further south than anticipated in the Colorado River ecosystem within the Grand Canyon National Park and Glen Canyon National Recreation Area. Our objectives were to classify tamarisk stands along 412 km of the Colorado River from the Glen Canyon Dam through the Grand Canyon National Park using 2009 aerial, high spatial resolution multispectral imagery, and then quantify tamarisk beetle impacts by comparing the pre-beetle images from 2009 with 2013 post-beetle images. We classified tamarisk presence in 2009 using the Mahalanobis Distance method with a total of 2500 training samples, and assessed the classification accuracy with an independent set of 7858 samples across 49 image quads. A total of 214 ha of tamarisk were detected in 2009 along the Colorado River, where each image quad, on average, included an 8.4 km segment of the river. Tamarisk detection accuracies varied across the 49 image quads, but the combined overall accuracy across the entire study region was 74%. Using the Normalized Difference Vegetation Index (NDVI) from 2009 and 2013 with a region-specific ratio of >1.5 decline between the two image dates (2009NDVI/2013NDVI), we detected tamarisk defoliation due to beetle herbivory. The total beetle-impacted tamarisk area was 32 ha across the study region, where tamarisk defoliation ranged 1–86% at the local levels. Our tamarisk classification can aid long-term efforts to monitor the spread and impact of the beetle along the river and the eventual mortality of tamarisk due to beetle impacts. Identifying areas of tamarisk defoliation is a useful ecological indicator for managers to plan restoration and tamarisk removal efforts.

  18. 2008 High-Flow Experiment at Glen Canyon Dam-Morphologic Response of Eddy-Deposited Sandbars and Associated Aquatic Backwater Habitats along the Colorado River in Grand Canyon National Park

    Science.gov (United States)

    Grams, Paul E.; Schmidt, John C.; Andersen, Matthew E.

    2010-01-01

    The March 2008 high-flow experiment (HFE) at Glen Canyon Dam resulted in sandbar deposition and sandbar reshaping such that the area and volume of associated backwater aquatic habitat in Grand Canyon National Park was greater following the HFE. Analysis of backwater habitat area and volume for 116 locations at 86 study sites, comparing one month before and one month after the HFE, shows that total habitat area increased by 30 percent to as much as a factor of 3 and that volume increased by 80 percent to as much as a factor of 15. These changes resulted from an increase in the area and elevation of sandbars, which isolate backwaters from the main channel, and the scour of eddy return-current channels along the bank where the habitat occurs. Because of this greater relief on the sandbars, backwaters were present across a broader range of flows following the HFE than before the experiment. Reworking of sandbars during diurnal fluctuating flow operations in the first 6 months following the HFE caused sandbar erosion and a reduction of backwater size and abundance to conditions that were 5 to 14 percent greater than existed before the HFE. In the months following the HFE, erosion of sandbars and deposition in eddy return-current channels caused reductions of backwater area and volume. However, sandbar relief was still greater in October 2008 such that backwaters were present across a broader range of discharges than in February 2008. Topographic analyses of the sandbar and backwater morphologic data collected in this study demonstrate that steady flows are associated with a greater amount of continuously available backwater habitat than fluctuating flows, which result in a greater amount of intermittently available habitat. With the exception of the period immediately following the HFE, backwater habitat in 2008 was greater for steady flows associated with dam operations of relatively lower monthly volume (about 227 m3/s) than steady flows associated with dam operations

  19. Grand Canyon 1/sup 0/ x 2/sup 0/ NTMS area: Arizona. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Koller, G R

    1979-01-01

    This data report presents results of ground water and stream/surface sediment reconnaissance in the National Topographic Map Series (NTMS) Grand Canyon 1/sup 0/ x 2/sup 0/ quadrangle. Surface samples (sediment) were collected from 1013 sites. The target sampling density was one site per 16 square kilometers (six square miles). Ground water samples were collected at 84 sites. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements and observations are reported for each site. Analytical data and field measurements are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from ground water sites (on microfiche in pocket) include (1) water chemistry measurements (pH, conductivity, and alkalinity), (2) physical measurements where applicable (water temperature, well description, and scintillometer reading), and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from sediment sites (also on microfiche in pocket) include (1) stream water chemistry measurements (pH, conductivity, and alkalinity), and (2) elemental analyses for sediment samples (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Areal distribution maps, histograms, and cumulative frequency plots for most elements, U/Th, U/Hf, and Th/La ratios, and scintillometer readings for sediment samples are included on the microfiche.

  20. A sand budget for Marble Canyon, Arizona: implications for long-term monitoring of sand storage change

    Science.gov (United States)

    Grams, Paul E.

    2013-01-01

    Recent U.S. Geological Survey research is providing important insights into how best to monitor changes in the amount of tributary-derived sand stored on the bed of the Colorado River and in eddies in Marble Canyon, Arizona. Before the construction of Glen Canyon Dam and other dams upstream, sandbars in Glen, Marble, and Grand Canyons were replenished each year by sediment-rich floods. Sand input into the Colorado River is crucial to protecting endangered native fish, animals, and plants and cultural and recreational resources along the river in Glen Canyon National Recreation Area and Grand Canyon National Park.

  1. Effect of prescribed burning on mortality of resettlement ponderosa pines in Grand Canyon National Park

    Science.gov (United States)

    G. Alan Kaufmann; W. Wallace Covington

    2001-01-01

    Ponderosa pine (Pinus ponderosa) trees established before Euro-American settlement are becoming rare on the landscape. Prescribed fire is the prime tool used to restore ponderosa pine ecosystems, but can cause high mortality in presettlement ponderosa pines. This study uses retrospective techniques to estimate mortality from prescribed burns within Grand Canyon...

  2. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    Management of sediment in rivers downstream from dams requires knowledge of both the sediment supply and downstream sediment transport. In some dam-regulated rivers, the amount of sediment supplied by easily measured major tributaries may overwhelm the amount of sediment supplied by the more difficult to measure lesser tributaries. In this first class of rivers, managers need only know the amount of sediment supplied by these major tributaries. However, in other regulated rivers, the cumulative amount of sediment supplied by the lesser tributaries may approach the total supplied by the major tributaries. The Colorado River downstream from Glen Canyon has been hypothesized to be one such river. If this is correct, then management of sediment in the Colorado River in the part of Glen Canyon National Recreation Area downstream from the dam and in Grand Canyon National Park may require knowledge of the sediment supply from all tributaries. Although two major tributaries, the Paria and Little Colorado Rivers, are well documented as the largest two suppliers of sediment to the Colorado River downstream from Glen Canyon Dam, the contributions of sediment supplied by the ephemeral lesser tributaries of the Colorado River in the lowermost Glen Canyon, and Marble and Grand Canyons are much less constrained. Previous studies have estimated amounts of sediment supplied by these tributaries ranging from very little to almost as much as the amount supplied by the Paria River. Because none of these previous studies relied on direct measurement of sediment transport in any of the ephemeral tributaries in Glen, Marble, or Grand Canyons, there may be significant errors in the magnitudes of sediment supplies estimated during these studies. To reduce the uncertainty in the sediment supply by better constraining the sediment yield of the ephemeral lesser tributaries, the U.S. Geological Survey Grand Canyon Monitoring and Research Center established eight sediment-monitoring gaging

  3. The Grand Canyon of the Colorado: a challenge to float, a challenge to manage

    Science.gov (United States)

    David N. Cole

    1989-01-01

    Last summer, I finally got my chance to float the Colorado River through the Grand Canyon, one of the world’s premier adventure trips. For 18 days and 280 miles, my group floated through some of the most spectacular scenery imaginable, spacing our days with hikes through slickrock alcoves, along terraced pools of blue-green water, to waterfalls plunging out of holes on...

  4. Marble Canyon 10 x 20 NTMS area Arizona: data report

    International Nuclear Information System (INIS)

    Heffner, J.D.

    1980-07-01

    Results of ground water and stream/surface sediment reconnaissance (HSSR) in the National Topographic Map Series (NTMS) Marble Canyon 1 0 x 2 0 quadrangle are presented. The target sampling density for all media collected was one site per 12 square kilometers. This resulted in 884 sediment samples being collected; however, dry conditions and sparse population resulted in the collection of only 2 ground water samples. Grand Canyon National Park, Glen Canyon National Recreation Area, and much Indian tribal land in the southern half of the quadrangle were not sampled. Neutron activation analysis (NAA) results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Field measurements for sediment samples are presented in tables and maps. Statistical summaries of data and a brief description of results are given. A generalized geologic map and a summary of the geology of the area are included. Data from ground water include: water chemistry measurements (pH, conductivity, and alkalinity); physical measurements (water temperature, and scintillometer readings); and elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na, and V). Data from sediment sites include: water chemistry measurements (where available) for pH, conductivity, and alkalinity; and elemental analyses(U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors (stream characteristics, vegetation, etc.) are also tabulated. Histograms, cumulative frequency, and areal distribution plots for most elements; Log U/Th, Log U/Hf, and Log U/(Th + Hf) ratios; and scintillometer readings are included

  5. Red Rock Canyon National Conservation Area Transportation Feasibility Study

    Science.gov (United States)

    2012-07-31

    Red Rock Canyon National Conservation Area is a popular Bureau of Land Management natural area located near Las Vegas, Nevada. Red Rock Canyon experiences heavy congestion on its Scenic Drive and associated parking areas, due to high volumes of visit...

  6. Annotated bibliography for the humpback chub (Gila cypha) with emphasis on the Grand Canyon population.

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, C. T.; LaGory, K. E.; Environmental Science Division

    2009-10-05

    Glen Canyon Dam is a hydroelectric facility located on the Colorado River in Arizona that is operated by the U.S. Bureau of Reclamation (Reclamation) for multiple purposes including water storage, flood control, power generation, recreation, and enhancement of fish and wildlife. Glen Canyon Dam operations have been managed for the last several years to improve conditions for the humpback chub (Gila cypha) and other ecosystem components. An extensive amount of literature has been produced on the humpback chub. We developed this annotated bibliography to assist managers and researchers in the Grand Canyon as they perform assessments, refine management strategies, and develop new studies to examine the factors affecting humpback chub. The U.S. Geological Survey recently created a multispecies bibliography (including references on the humpback chub) entitled Bibliography of Native Colorado River Big Fishes (available at www.fort.usgs.gov/Products/data/COFishBib). That bibliography, while quite extensive and broader in scope than ours, is not annotated, and, therefore, does not provide any of the information in the original literature. In developing this annotated bibliography, we have attempted to assemble abstracts from relevant published literature. We present here abstracts taken unmodified from individual reports and articles except where noted. The bibliography spans references from 1976 to 2009 and is organized in five broad topical areas, including: (1) biology, (2) ecology, (3) impacts of dam operations, (4) other impacts, and (5) conservation and management, and includes twenty subcategories. Within each subcategory, we present abstracts alphabetically by author and chronologically by year. We present relevant articles not specific to either the humpback chub or Glen Canyon Dam, but cited in other included reports, under the Supporting Articles subcategory. We provide all citations in alphabetical order in Section 7.

  7. Feral Cattle in the White Rock Canyon Reserve at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hansen, Leslie A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-27

    At the request of the Los Alamos Field Office (the Field Office), Los Alamos National Security (LANS) biologists placed remote-triggered wildlife cameras in and around the mouth of Ancho Canyon in the White Rock Canyon Reserve (the Reserve) to monitor use by feral cattle. The cameras were placed in October 2012 and retrieved in January 2013. Two cameras were placed upstream in Ancho Canyon away from the Rio Grande along the perennial flows from Ancho Springs, two cameras were placed at the north side of the mouth to Ancho Canyon along the Rio Grande, and two cameras were placed at the south side of the mouth to Ancho Canyon along the Rio Grande. The cameras recorded three different individual feral cows using this area as well as a variety of local native wildlife. This report details our results and issues associated with feral cattle in the Reserve. Feral cattle pose significant risks to human safety, impact cultural and biological resources, and affect the environmental integrity of the Reserve. Regional stakeholders have communicated to the Field Office that they support feral cattle removal.

  8. Sandbar Response in Marble and Grand Canyons, Arizona, Following the 2008 High-Flow Experiment on the Colorado River

    Science.gov (United States)

    Hazel, Joseph E.; Grams, Paul E.; Schmidt, John C.; Kaplinski, Matt

    2010-01-01

    A 60-hour release of water at 1,203 cubic meters per second (m3/s) from Glen Canyon Dam in March 2008 provided an opportunity to analyze channel-margin response at discharge levels above the normal, diurnally fluctuating releases for hydropower plant operations. We compare measurements at sandbars and associated campsites along the mainstem Colorado River, downstream from Glen Canyon Dam, at 57 locations in Marble and Grand Canyons. Sandbar and main-channel response to the 2008 high-flow experiment (2008 HFE) was documented by measuring bar and bed topography at the study sites before and after the controlled flood and twice more in the following 6 months to examine the persistence of flood-formed deposits. The 2008 HFE caused widespread deposition at elevations above the stage equivalent to a flow rate of 227 m3/s and caused an increase in the area and volume of the high-elevation parts of sandbars, thereby increasing the size of campsite areas. In this study, we differentiate between four response styles, depending on how sediment was distributed throughout each study site. Then, we present the longitudinal pattern relevant to the different response styles and place the site responses in context with two previous high-release experiments conducted in 1996 and 2004. We find that (1) nearly every measured sandbar aggraded above the 227-m3/s water-surface elevation, resulting in sandbars as large or larger than occurred following previous high flows; (2) reaches closest to Glen Canyon Dam were characterized by a greater percentage of sites that incurred net erosion, although the total sand volume in all sediment-flux monitoring reaches was greater following the 2008 HFE than following previous high flows; and (3) longitudinal differences in topographic response in eddies and in the channel suggest a greater and more evenly distributed sediment supply than existed during previous controlled floods from Glen Canyon Dam.

  9. Raptor Use of the Rio Grande Gorge

    Energy Technology Data Exchange (ETDEWEB)

    Ponton, David A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-20

    The Rio Grande Gorge is a 115 km long river canyon located in Southern Colorado (15 km) and Northern New Mexico (100 km). The majority of the canyon is under the administration of the Bureau of Land Management {BLM), and 77 km of the canyon south of the Colorado/New Mexico border are designated Wild River under the National Wild and Scenic Rivers Act of 1968. Visits I have made to the Rio Grande Gorge over the past 15 .years disclosed some raptor utilization. As the Snake River Birds of Prey Natural Area gained publicity, its similarity to the Rio Grande Gorge became obvious, and I was intrigued by the possibility of a high raptor nesting density in the Gorge. A survey in 1979 of 20 km of the northern end of the canyon revealed a moderately high density of red-tailed hawks and prairie falcons. With the encouragement of that partial survey, and a need to assess the impact of river-running on nesting birds of prey, I made a more comprehensive survey in 1980. The results of my surveys, along with those of a 1978 helicopter survey by the BLM, are presented in this report, as well as general characterization of the area, winter use by raptors, and an assessment of factors influencing the raptor population.

  10. Using large-scale flow experiments to rehabilitate Colorado River ecosystem function in Grand Canyon: Basis for an adaptive climate-resilient strategy: Chapter 17

    Science.gov (United States)

    Melis, Theodore S.; Pine, William E.; Korman, Josh; Yard, Michael D.; Jain, Shaleen; Pulwarty, Roger S.; Miller, Kathleen; Hamlet, Alan F.; Kenney, Douglas S.; Redmond, Kelly T.

    2016-01-01

    Adaptive management of Glen Canyon Dam is improving downstream resources of the Colorado River in Glen Canyon National Recreation Area and Grand Canyon National Park. The Glen Canyon Dam Adaptive Management Program (AMP), a federal advisory committee of 25 members with diverse special interests tasked to advise the U.S. Department of the Interior), was established in 1997 in response to the 1992 Grand Canyon Protection Act. Adaptive management assumes that ecosystem responses to management policies are inherently complex and unpredictable, but that understanding and management can be improved through monitoring. Best known for its high-flow experiments intended to benefit physical and biological resources by simulating one aspect of pre-dam conditions—floods, the AMP promotes collaboration among tribal, recreation, hydropower, environmental, water and other natural resource management interests. Monitoring has shown that high flow experiments move limited new tributary sand inputs below the dam from the bottom of the Colorado River to shorelines; rebuilding eroded sandbars that support camping areas and other natural and cultural resources. Spring-timed high flows have also been shown to stimulate aquatic productivity by disturbing the river bed below the dam in Glen Canyon. Understanding about how nonnative tailwater rainbow trout (Oncorhynchus mykiss), and downstream endangered humpback chub (Gila cypha) respond to dam operations has also increased, but this learning has mostly posed “surprise” adaptation opportunities to managers. Since reoperation of the dam to Modified Low Fluctuating Flows in 1996, rainbow trout now benefit from more stable daily flows and high spring releases, but possibly at a risk to humpback chub and other native fishes downstream. In contrast, humpback chub have so far proven robust to all flows, and native fish have increased under the combination of warmer river temperatures associated with reduced storage in Lake Powell, and a

  11. BLANCO MOUNTAIN AND BLACK CANYON ROADLESS AREAS, CALIFORNIA.

    Science.gov (United States)

    Diggles, Michael F.; Rains, Richard L.

    1984-01-01

    The mineral survey of the Blanco Mountain and Black Canyon Roadless Areas, California indicated that areas of probable and substantiated mineral-resource potential exist only in the Black Canyon Roadless Area. Gold with moderate amounts of lead, silver, zinc, and tungsten, occurs in vein deposits and in tactite. The nature of the geological terrain indicates little likelihood for the occurrence of energy resources in the roadless areas. Detailed geologic mapping might better define the extent of gold mineralization. Detailed stream-sediment sampling and analysis of heavy-mineral concentrations could better define tungsten resource potential.

  12. Channel mapping river miles 29–62 of the Colorado River in Grand Canyon National Park, Arizona, May 2009

    Science.gov (United States)

    Kaplinski, Matt; Hazel, Joseph E.; Grams, Paul E.; Kohl, Keith; Buscombe, Daniel D.; Tusso, Robert B.

    2017-03-23

    Bathymetric, topographic, and grain-size data were collected in May 2009 along a 33-mi reach of the Colorado River in Grand Canyon National Park, Arizona. The study reach is located from river miles 29 to 62 at the confluence of the Colorado and Little Colorado Rivers. Channel bathymetry was mapped using multibeam and singlebeam echosounders, subaerial topography was mapped using ground-based total-stations, and bed-sediment grain-size data were collected using an underwater digital microscope system. These data were combined to produce digital elevation models, spatially variable estimates of digital elevation model uncertainty, georeferenced grain-size data, and bed-sediment distribution maps. This project is a component of a larger effort to monitor the status and trends of sand storage along the Colorado River in Grand Canyon National Park. This report documents the survey methods and post-processing procedures, digital elevation model production and uncertainty assessment, and procedures for bed-sediment classification, and presents the datasets resulting from this study.

  13. Complementary Research on Student Geoscience Learning at Grand Canyon by Means of In-situ and Virtual Modalities

    Science.gov (United States)

    Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.

    2016-12-01

    Education through exploration—typically in the field—is fundamental in geoscience. But not all students enjoy equal access to field-based learning, while technological advances afford ever more immersive, rich, and student-centered virtual field experiences. No virtual modalities yet conceived can supplant field-based learning, but logistical and financial contraints can render them the only practical option for enabling most students to explore pedagogically powerful but inaccessible places located across and even beyond Earth. We are producers of a growing portfolio of immersive virtual field trips (iVFTs) situated around the globe, and engaged in research on iVFT effectiveness. Our methods are more complementary than comparative, given that virtual and in-situ modalities have distinct advantages and disadvantages. In the case of iVFTs, these factors have not yet been well-studied. We conducted a mixed-methods complementary study in an introductory historical-geology class (n = 120) populated mostly by non-majors and representing the diversity of our large urban Southwestern research university. For the same course credit, students chose either an in-person field trip (ipFT) to Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group) to be done in the same time interval. We collected quantitative and qualitative data from both groups before, during, and after both interventions. Learning outcomes based on content elements of the Trail of Time Exhibition at Grand Canyon were assessed using pre/post concept sketching and formative inquiry exercises. Student attitudes and novelty-space factors were assessed pre- and post-intervention using the PANAS instrument of Watson and Clark and with questionnaires tailored to each modality. Coding and comparison of pre/post concept sketches showed improved conceptual knowledge in both groups, but more so in the experimental (iVFT) group. Emergent themes from the pre/post questionnaires

  14. Vascular effects and electrolyte homeostasis of the natriuretic peptide isolated from Crotalus oreganus abyssus (North American Grand Canyon rattlesnake) venom

    NARCIS (Netherlands)

    Da Silva, S.L.; Dias-Junior, C.A.; Baldasso, P.A.; Damico, D.C.; Carvalho, B.M.; Garanto, A.; Acosta, G.; Oliveira, E.; Albericio, F.; Soares, A.M.; Marangoni, S.; Resende, R.R.

    2012-01-01

    Crotalus oreganus abyssus is a rattlesnake that is usually found in the Grand Canyon, United States of America. Knowledge regarding the composition of C. o. abyssus venom is scarce. New natriuretic peptides (NPs) have been isolated and characterized from the venoms of members of the Crotalinae

  15. 33 CFR 165.1171 - Copper Canyon, Lake Havasu, Colorado River-Regulated Navigation Area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Copper Canyon, Lake Havasu... Guard District § 165.1171 Copper Canyon, Lake Havasu, Colorado River—Regulated Navigation Area. (a) Location. The following is a regulated navigation area: (1) In the water area of Copper Canyon, Lake Havasu...

  16. Element concentrations in surface soils of the Coconino Plateau, Grand Canyon region, Coconino County, Arizona

    Science.gov (United States)

    Van Gosen, Bradley S.

    2016-09-15

    This report provides the geochemical analyses of a large set of background soils collected from the surface of the Coconino Plateau in northern Arizona. More than 700 soil samples were collected at 46 widespread areas, sampled from sites that appear unaffected by mineralization and (or) anthropogenic contamination. The soils were analyzed for 47 elements, thereby providing data on metal concentrations in soils representative of the plateau. These background concentrations can be used, for instance, for comparison to metal concentrations found in soils potentially affected by natural and anthropogenic influences on the Coconino Plateau in the Grand Canyon region of Arizona.The soil sampling survey revealed low concentrations for the metals most commonly of environmental concern, such as arsenic, cobalt, chromium, copper, mercury, manganese, molybdenum, lead, uranium, vanadium, and zinc. For example, the median concentrations of the metals in soils of the Coconino Plateau were found to be comparable to the mean values previously reported for soils of the western United States.

  17. Gully monitoring at two locations in the Grand Canyon National Park, Arizona, 1996-2010, with emphasis on documenting effects of the March 2008 high-flow experiment

    Science.gov (United States)

    Schott, Nathan D.; Hazel, Joseph E.; Fairley, Helen C.; Kaplinski, Matt; Parnell, Roderic A.

    2014-01-01

    Many archeological sites in the Grand Canyon are being impacted by gully incision. In March 2008, a high-flow experiment (2008 HFE) was conducted with the intention of redistributing fine sediment (sand, silt, and clay) from the bed of the Colorado River to higher elevations along the channel margin. Deposition of fine sediment in gully mouths has been hypothesized to slow gully erosion rates and lessen impacts to archeological sites. The effects of the 2008 HFE on gullies were evaluated by comparing the topographic changes of three gullies at two study sites before and after the 2008 HFE. Comparison results indicated that sediment was deposited in gully mouths during the 2008 HFE, and that the inundated areas nearest to the river can be extensively altered by mainstream flow during high-flow events. Additionally, the history of gully evolution at the two study sites was examined between 1996 and 2010 and indicated that gullies have been subjected to thalweg incision and gully widening processes over a decadal timescale. Although the small sample size precludes extrapolating the results to other gullies, the findings contribute to the understanding of gully erosion in archeologically significant areas and have implications for future monitoring of gully erosion and evaluating the effectiveness of check dams intended to mitigate that erosion at archaeological sites in the Grand Canyon National Park.

  18. Geologic Map of the House Rock Valley Area, Coconino County, Northern Arizona

    Science.gov (United States)

    Billingsley, George H.; Priest, Susan S.

    2010-01-01

    This geologic map is a cooperative effort of the U.S. Geological Survey (USGS), the Bureau of Land Management, the National Park Service, and the U.S. Forest Service to provide a geologic database for resource management officials and visitor information services. This map was produced in response to information needs related to a proposed withdrawal of three segregated land areas near Grand Canyon National Park, Arizona, from new hard rock mining activity. House Rock Valley was designated as the east parcel of the segregated lands near the Grand Canyon. This map was needed to provide connectivity for the geologic framework of the Grand Canyon segregated land areas. This geologic map of the House Rock Valley area encompasses approximately 280 mi2 (85.4 km2) within Coconino County, northern Arizona, and is bounded by longitude 111 degrees 37'30' to 112 degrees 05' W. and latitude 36 degrees 30' to 36 degrees 50' N. The map area is in the eastern part of the Arizona Strip, which lies within the southern Colorado Plateaus geologic province (herein Colorado Plateau). The Arizona Strip is the part of Arizona lying north of the Colorado River. The map is bound on the east by the Colorado River in Marble Canyon within Grand Canyon National Park and Glen Canyon National Recreation Area, on the south and west by the Kaibab National Forest and Grand Canyon National Game Preserve, and on the north by the Vermilion Cliffs Natural Area, the Paria Canyon Vermilion Cliffs Wilderness Area, and the Vermilion Cliffs National Monument. House Rock State Buffalo Ranch also bounds the southern edge of the map area. The Bureau of Land Management Arizona Field Office in St. George, Utah, manages public lands of the Vermilion Cliffs Natural Area, Paria Canyon - Vermilion Cliffs Wilderness and Vermilion Cliffs National Monument. The North Kaibab Ranger District in Fredonia, Arizona, manages U.S. Forest Service land along the west edge of the map area and House Rock State Buffalo Ranch

  19. The Cause of Tourism Seasonality and Development Countermeasures on the Grand Canyon Scenic%地下大峡谷景区旅游季节性成因及应对策略

    Institute of Scientific and Technical Information of China (English)

    谢爱良

    2011-01-01

    This paper clearly shows the tourism seasonaliy of the grand canyon scenic with an analysis of visitors and income monthly. Tourism seasonality influence the grand canyon scenic on the carrying capacity in tourism, the tourist facilities, cost-effective, quality of service and so on.And then we analyze the cause of the tourism seasonality of the grand canyon scenic in the location, climate, tourism resources, holiday arrangements, source markets, tourism product development.Finally, to slove the tourism seasonality of the grand canyon scenic,we should design the tourism product, use of price leverage, play an intermediary role in the hotel and travel agency and focuse on collaboration with the surrounding scenic areas and so on.%通过分析地下大峡谷景区月际游客量、月收入,得出地下大峡谷景区明显呈现旅游季节性,淡旺季明显等结论。旅游季节性在旅游承载力、旅游接待设施、经济效益、服务质量等方面对地下大峡谷景区造成影响,然后从区位、气候、旅游资源、节假日安排、客源市场、旅游产品开发等方面分析了地下大峡谷景区旅游季节性的成因,最后从旅游产品设计、加强宣传、利用价格杠杆、发挥酒店旅行社中介作用、注重与周边景区协作等方面提出了解决地下大峡谷景区旅游季节性的应对策略。

  20. 77 FR 22801 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2012-04-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group...). SUMMARY: The Glen Canyon Dam Adaptive Management Work Group (AMWG) makes recommendations to the Secretary..., the AMWG, a technical work group, a Grand Canyon Monitoring and Research Center, and independent...

  1. Phenology of the adult angel lichen moth (Cisthene angelus) in Grand Canyon, USA

    Science.gov (United States)

    Metcalfe, Anya; Kennedy, Theodore A.; Muehlbauer, Jeffrey D.

    2016-01-01

    We investigated the phenology of adult angel lichen moths (Cisthene angelus) along a 364-km long segment of the Colorado River in Grand Canyon, Arizona, USA, using a unique data set of 2,437 light-trap samples collected by citizen scientists. We found that adults of C. angelus were bivoltine from 2012 to 2014. We quantified plasticity in wing lengths and sex ratios among the two generations and across a 545-m elevation gradient. We found that abundance, but not wing length, increased at lower elevations and that the two generations differed in size and sex distributions. Our results shed light on the life history and morphology of a common, but poorly known, species of moth endemic to the southwestern United States and Mexico.

  2. USGS Workshop on Scientific Aspects of a Long-Term Experimental Plan for Glen Canyon Dam, April 10-11, 2007, Flagstaff, Arizona

    Science.gov (United States)

    ,

    2008-01-01

    Executive Summary Glen Canyon Dam is located in the lower reaches of Glen Canyon National Recreation Area on the Colorado River, approximately 15 miles upriver from Grand Canyon National Park (fig. 1). In 1992, Congress passed and the President signed into law the Grand Canyon Protection Act (GCPA; title XVIII, sec. 1801?1809, of Public Law 102-575), which seeks ?to protect, mitigate adverse impacts to, and improve the values for which Grand Canyon National Park and Glen Canyon National Recreation Area were established.? The Glen Canyon Dam Adaptive Management Program (GCDAMP) was implemented as a result of the 1996 Record of Decision on the Operation of Glen Canyon Dam Final Environmental Impact Statement to ensure that the primary mandate of the GCPA is met through advances in information and resources management (U.S. Department of the Interior, 1995). On November 3, 2006, the Bureau of Reclamation (Reclamation) announced it would develop a long-term experimental plan environmental impact statement (LTEP EIS) for operational activities at Glen Canyon Dam and other management actions on the Colorado River. The purpose of the long-term experimental plan is twofold: (1) to increase the scientific understanding of the ecosystem and (2) to improve and protect important downstream resources. The proposed plan would implement a structured, longterm program of experimentation to include dam operations, potential modifications to Glen Canyon Dam intake structures, and other management actions such as removal of nonnative fish species. The development of the long-term experimental plan continues efforts begun by the GCDAMP to protect resources downstream of Glen Canyon Dam, including Grand Canyon, through adaptive management and scientific experimentation. The LTEP EIS will rely on the extensive scientific studies that have been undertaken as part of the adaptive management program by the U.S. Geological Survey?s (USGS) Grand Canyon Monitoring and Research Center (GCMRC

  3. Effects of canyon geometry on the distribution of traffic-related air pollution in a large urban area: Implications of a multi-canyon air pollution dispersion model

    Science.gov (United States)

    Fu, Xiangwen; Liu, Junfeng; Ban-Weiss, George A.; Zhang, Jiachen; Huang, Xin; Ouyang, Bin; Popoola, Olalekan; Tao, Shu

    2017-09-01

    Street canyons are ubiquitous in urban areas. Traffic-related air pollutants in street canyons can adversely affect human health. In this study, an urban-scale traffic pollution dispersion model is developed considering street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. In the model, vehicle exhausts generated from traffic flows first disperse inside street canyons along the micro-scale wind field generated by computational fluid dynamics (CFD) model. Then, pollutants leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing. We found that an increase in building height leads to heavier pollution inside canyons and lower pollution outside canyons at pedestrian level, resulting in higher domain-averaged concentrations over the area. In addition, canyons with highly even or highly uneven building heights on each side of the street tend to lower the urban-scale air pollution concentrations at pedestrian level. Further, increasing street widths tends to lead to lower pollutant concentrations by reducing emissions and enhancing ventilation simultaneously. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry while considering traffic demand as well as local weather patterns may significantly reduce inhalation of unhealthy air by urban residents.

  4. Geologic map and upper Paleozoic stratigraphy of the Marble Canyon area, Cottonwood Canyon quadrangle, Death Valley National Park, Inyo County, California

    Science.gov (United States)

    Stone, Paul; Stevens, Calvin H.; Belasky, Paul; Montañez, Isabel P.; Martin, Lauren G.; Wardlaw, Bruce R.; Sandberg, Charles A.; Wan, Elmira; Olson, Holly A.; Priest, Susan S.

    2014-01-01

    This geologic map and pamphlet focus on the stratigraphy, depositional history, and paleogeographic significance of upper Paleozoic rocks exposed in the Marble Canyon area in Death Valley National Park, California. Bedrock exposed in this area is composed of Mississippian to lower Permian (Cisuralian) marine sedimentary rocks and the Jurassic Hunter Mountain Quartz Monzonite. These units are overlain by Tertiary and Quaternary nonmarine sedimentary deposits that include a previously unrecognized tuff to which we tentatively assign an age of late middle Miocene (~12 Ma) based on tephrochronologic analysis, in addition to the previously recognized Pliocene tuff of Mesquite Spring. Mississippian and Pennsylvanian rocks in the Marble Canyon area represent deposition on the western continental shelf of North America. Mississippian limestone units in the area (Tin Mountain, Stone Canyon, and Santa Rosa Hills Limestones) accumulated on the outer part of a broad carbonate platform that extended southwest across Nevada into east-central California. Carbonate sedimentation was interrupted by a major eustatic sea-level fall that has been interpreted to record the onset of late Paleozoic glaciation in southern Gondwana. Following a brief period of Late Mississippian clastic sedimentation (Indian Springs Formation), a rise in eustatic sea level led to establishment of a new carbonate platform that covered most of the area previously occupied by the Mississippian platform. The Pennsylvanian Bird Spring Formation at Marble Canyon makes up the outer platform component of ten third-order (1 to 5 m.y. duration) stratigraphic sequences recently defined for the regional platform succession. The regional paleogeography was fundamentally changed by major tectonic activity along the continental margin beginning in middle early Permian time. As a result, the Pennsylvanian carbonate shelf at Marble Canyon subsided and was disconformably overlain by lower Permian units (Osborne Canyon and

  5. Water quality and quantity of selected springs and seeps along the Colorado River corridor, Utah and Arizona: Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park, 1997-98

    Science.gov (United States)

    Taylor, Howard E.; Spence, John R.; Antweiler, Ronald C.; Berghoff, Kevin; Plowman, Terry I.; Peart, Dale B.; Roth, David A.

    2004-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service conducted an intensive assessment of selected springs along the Colorado River Corridor in Arches National Park, Canyonlands National Park, Glen Canyon National Recreation Area, and Grand Canyon National Park in 1997 and 1998, for the purpose of measuring and evaluating the water quality and quantity of the resource. This study was conducted to establish baseline data for the future evaluation of possible effects from recreational use and climate change. Selected springs and seeps were visited over a study period from 1997 to 1998, during which, discharge and on-site chemical measurements were made at selected springs and seeps, and samples were collected for subsequent chemical laboratory analysis. This interdisciplinary study also includes simultaneous studies of flora and fauna, measured and sampled coincidently at the same sites. Samples collected during this study were transported to U.S. Geological Survey laboratories in Boulder, Colorado, where analyses were performed using state-of-the-art laboratory technology. The location of the selected springs and seeps, elevation, geology, aspect, and onsite measurements including temperature, discharge, dissolved oxygen, pH, and specific conductance, were recorded. Laboratory analyses include determinations for alkalinity, aluminum, ammonium (nitrogen), antimony, arsenic, barium, beryllium, bismuth, boron, bromide, cadmium, calcium, cerium, cesium, chloride, chromium, cobalt, copper, dissolved inorganic carbon, dissolved organic carbon, dysprosium, erbium, europium, fluoride, gadolinium, holmium, iodine, iron, lanthanum, lead, lithium, lutetium, magnesium, manganese, mercury, molybdenum, neodymium, nickel, nitrate (nitrogen), nitrite (nitrogen), phosphate, phosphorus, potassium, praseodymium, rhenium, rubidium, samarium, selenium, silica, silver, sodium, strontium, sulfate, tellurium, terbium, thallium, thorium, thulium, tin, titanium, tungsten

  6. Identification of discontinuous sand pulses on the bed of the Colorado River in Grand Canyon

    Science.gov (United States)

    Mueller, E. R.; Grams, P. E.; Buscombe, D.; Topping, D. J.

    2017-12-01

    Decades of research on alluvial sandbars and sand transport on the Colorado River in Grand Canyon has contributed to in-depth understanding of the sand budget and lead to management actions designed to rebuild eroded sandbars. However, some basic, but difficult to address, questions about the processes and rates of sand movement through the system still limit our ability to predict geomorphic responses. The coarse fraction of the bed is heterogeneous and varies among boulders, cobble, gravel, and bedrock. Sand covers these substrates in patches of variable size and thickness, fills interstices to varying degrees, and forms mixed sand/coarse bed configurations such as linear stripes. Understanding the locations of sand accumulation, the quantities of sand contained in those locations, and the processes by which sand is exchanged among depositional locations is needed to predict the morphological response of sandbars to management actions, such as the controlled flood releases, and to predict whether sandbars are likely to increase or decrease in size over long (i.e. decadal) time periods. Here, we present evidence for the downstream translation of the sand component of tributary sediment inputs as discontinuous sand pulses. The silt and clay (mud) fraction of sediment introduced episodically by seasonal floods from tributary streams is transported entirely in suspension and moves through the 400 km series of canyons in a few days. The sand fraction of this sediment, which is transported on the bed and in suspension, moves downstream in sand pulses that we estimate range in length from a few km to tens of km. Owing to the complex geomorphic organization, the sand pulses are not detectable as coherent bed features; each individual sand pulse is comprised of many isolated storage locations, separated by rapids and riffles where sand cover is sparse. The presence of the sand pulses is inferred by the existence of alternating segments of sand accumulation and depletion

  7. AVTA federal fleet PEV readiness data logging and characterization study for the National Park Service: Grand Canyon National Park

    Energy Technology Data Exchange (ETDEWEB)

    Schey, Stephen [Intertek Testing Services, Phoenix, AZ (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nienhueser, Ian [Intertek Testing Services, Phoenix, AZ (United States)

    2014-08-01

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  8. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  9. Transport and deposition of plutonium-contaminated sediments by fluvial processes, Los Alamos Canyon, New Mexico

    International Nuclear Information System (INIS)

    Graf, W.L.

    1996-01-01

    Between 1945 and 1952 the development of nuclear weapons at Los Alamos National Laboratory, New Mexico, resulted in the disposal of plutonium into the alluvium of nearby Acid and (to a lesser degree) DP Canyons. The purpose of this paper is to explore the connection between the disposal sites and the main river, a 20 km link formed by the fluvial system of Acid, Pueblo, DP, and Los Alamos Canyons. Empirical data from 15 yr of annual sediment sampling throughout the canyon system has produced 458 observations of plutonium concentration in fluvial sediments. These data show that, overall, mean plutonium concentrations in fluvial sediment decline from 10,000 fCi/g near the disposal area to 100 fCi/g at the confluence of the canyon system and the Rio Grande. Simulations using a computer model for water, sediment, and plutonium routing in the canyon system show that discharges as large as the 25 yr event would fail to develop enough transport capacity to completely remove the contaminated sediments from Pueblo Canyon. Lesser flows would move some materials to the Rio Grande by remobilization of stored sediments. The simulations also show that the deposits and their contaminants have a predictable geography because they occur where stream power is low, hydraulic resistance is high, and the geologic and/or geomorphic conditions provide enough space for storage. 38 refs., 13 figs., 1 tab

  10. Colorado Canyons National Conservation Area 2003 visitor use survey: Completion report

    Science.gov (United States)

    Ponds, Phadrea; Gillette, Shana C.; Koontz, Lynne

    2004-01-01

    This report represents the analysis of research conducted by the U.S. Geological Survey (USGS) for the Bureau of Land Management (BLM). The purpose is to provide socio-economic and recreational use information that can be used in the development of a Resource Management Plan (RMP) for the Colorado Canyons National Conservation Area (CCNCA). The results reported here deal primarily with recreation-based activities in four areas: Kokopelli Loops, Rabbit Valley, Loma Boat Launch, and Devil’s Canyon.

  11. Review: The distribution, flow, and quality of Grand Canyon Springs, Arizona (USA)

    Science.gov (United States)

    Tobin, Benjamin W.; Springer, Abraham E.; Kreamer, David K.; Schenk, Edward

    2018-05-01

    An understanding of the hydrogeology of Grand Canyon National Park (GRCA) in northern Arizona, USA, is critical for future resource protection. The 750 springs in GRCA provide both perennial and seasonal flow to numerous desert streams, drinking water to wildlife and visitors in an otherwise arid environment, and habitat for rare, endemic and threatened species. Spring behavior and flow patterns represent local and regional patterns in aquifer recharge, reflect the geologic structure and stratigraphy, and are indicators of the overall biotic health of the canyon. These springs, however, are subject to pressures from water supply development, changes in recharge from forest fires and other land management activities, and potential contamination. Roaring Springs is the sole water supply for residents and visitors (>6 million/year), and all springs support valuable riparian habitats with very high species diversity. Most springs flow from the karstic Redwall-Muav aquifer and show seasonal patterns in flow and water chemistry indicative of variable aquifer porosities, including conduit flow. They have Ca/Mg-HCO3 dominated chemistry and trace elements consistent with nearby deep wells drilled into the Redwall-Muav aquifer. Tracer techniques and water-age dating indicate a wide range of residence times for many springs, supporting the concept of multiple porosities. A perched aquifer produces small springs which issue from the contacts between sandstone and shale units, with variable groundwater residence times. Stable isotope data suggest both an elevational and seasonal difference in recharge between North and South Rim springs. This review highlights the complex nature of the groundwater system.

  12. Public feelings and environmental impacts from uranium mining inside Kakadu National Park and around Grand Canyon National Park

    International Nuclear Information System (INIS)

    McKlveen, J.W.; Kvasnicka, J.

    1989-01-01

    There are two uranium mines in the Northern Territory of Australia, Ranger and Nabarlek. The Ranger mine, the only producing operation, is located in the Kakadu National Park, which has been listed on the United Nations' World Heritage list. The park is dedicated to preserving the Australian aboriginal culture: It contains several aboriginal villages and historic sites. Uranium mining in the park has been accepted quite well by the public and the aborigines. Employees of the Ranger mine and their relatives have established a public information program that includes tours of the mining and milling operations. There is no environmental impact to the area from the mining and milling of uranium at the Ranger site. The region around the Grand Canyon contains many highgrade uranium deposits. The ore is contained in unique breccia pipe formations. The pipes, which resemble a cylinder with a diemter of ∼ 100 m and a height of ∼ 300 m, originated as limestone solution cavities located ∼ 400 m below the plateau. There are several exposed deposits along the canyon walls, but no mining operations are allowed within the park boundaries. While the real environmental impact is insignificant, the perceived impact is tremendous. Many special-interest groups have attempted to halt the mining operations. No valid environmental impacts have been predicted or observed as a result of the current mining operations. However, one mine has been delayed for religious reasons by a local tribe or native Americans

  13. Cerro Grande Fire Impact to Water Quality and Stream Flow near Los Alamos National Laboratory: Results of Four Years of Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    B.M. Gallaher; R.J. Koch

    2004-09-15

    In May 2000, the Cerro Grande fire burned about 7400 acres of mixed conifer forest on the Los Alamos National Laboratory (LANL), and much of the 10,000 acres of mountainside draining onto LANL was severely burned. The resulting burned landscapes raised concerns of increased storm runoff and transport of contaminants by runoff in the canyons traversing LANL. The first storms after the fire produced runoff peaks that were more than 200 times greater than prefire levels. Total runoff volume for the year 2000 increased 50% over prefire years, despite a decline in total precipitation of 13% below normal and a general decrease in the number of monsoonal thunderstorms. The majority of runoff in 2000 occurred in the canyons at LANL south of Pueblo Canyon (70%), where the highest runoff volume occurred in Water Canyon and the peak discharge occurred in Pajarito Canyon. This report describes the observed effects of the Cerro Grande fire and related environmental impacts to watersheds at and near Los Alamos National Laboratory (LANL) for the first four runoff seasons after the fire, from 2000 through 2003. Spatial and temporal trends in radiological and chemical constituents that were identified as being associated with the Cerro Grande fire and those that were identified as being associated with historic LANL discharges are evaluated with regard to impacts to the Rio Grande and area reservoirs downstream of LANL. The results of environmental sampling performed by LANL, the New Mexico Environment Department (NMED), and U.S. Geological Survey (USGS) after the Cerro Grande fire are included in the evaluation. Effects are described for storm runoff, baseflow, stream sediments, and area regional reservoir sediment.

  14. Comment on “Apatite 4He/3He and (U-Th)/He Evidence for an Ancient Grand Canyon”

    Science.gov (United States)

    Karlstrom, Karl E.; Lee, John P.; Kelley, Shari A.; Crow, Ryan S.; Young, Richard A.; Lucchitta, Ivo; Beard, L. Sue; Dorsey, Rebecca; Ricketts, Jason; Dickinson, William R.; Crossey, Laura

    2013-01-01

    Flowers and Farley (Reports, 21 December 2012, p. 1616; published online 29 November 2012) propose that the Grand Canyon is 70 million years old. Starkly contrasting models for the age of the Grand Canyon—70 versus 6 million years—can be reconciled by a shallow paleocanyon that was carved in the eastern Grand Canyon 25 to 15 million years ago (Ma), negating the proposed 70 Ma and 55 Ma paleocanyons. Cooling models and geologic data are most consistent with a 5 to 6 Ma age for western Grand Canyon and Marble Canyon.

  15. 78 FR 21415 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-04-10

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning... Federal advisory committee, the AMWG, a technical work group, a Grand Canyon Monitoring and Research...

  16. Grain-size evolution in suspended sediment and deposits from the 2004 and 2008 controlled-flood experiments in Marble and Grand Canyons, Arizona

    Science.gov (United States)

    Draut, Amy E.; Topping, David J.; Rubin, David M.; Wright, Scott A.; Schmidt, John C.

    2010-01-01

    Since the closure of Glen Canyon Dam in 1963, the hydrology, sediment supply, and distribution and size of modern alluvial deposits in the Colorado River through Grand Canyon have changed substantially (e.g., Howard and Dolan, 1981; Johnson and Carothers, 1987; Webb et al., 1999; Rubin et al., 2002; Topping et al., 2000, 2003; Wright et al., 2005; Hazel et al., 2006). The dam has reduced the fluvial sediment supply at the upstream boundary of Grand Canyon National Park by about 95 percent. Regulation of river discharge by dam operations has important implications for the storage and redistribution of sediment in the Colorado River corridor. In the absence of natural floods, sediment is not deposited at elevations that regularly received sediment before dam closure. There has been a systemwide decrease in the size and number of subaerially exposed fluvial sand deposits since the 1960s, punctuated by episodic aggradation during the exceptional high-flow intervals in the early 1980s and by sediment input from occasional tributary floods (Beus and others, 1985; Schmidt and Graf, 1990; Kearsley et al., 1994; Schmidt et al., 2004; Wright et al., 2005; Hazel et al., 2006). Fluvial sandbars are an important component of riparian ecology that, among other functions, enclose eddy backwaters that form native-fish habitat, provide a source for eolian sand that protects some archaeological sites, and are used as campsites by thousands of river-runners annually (Rubin et al., 1990; Kearsley et al., 1994; Neal et al., 2000; Wright et al., 2005; Draut and Rubin, 2008).

  17. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distance below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy

  18. Environmental analysis of Acid/middle Pueblo Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distance below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy.

  19. 78 FR 7810 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2013-02-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and independent...

  20. 76 FR 24516 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2011-05-02

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Adaptive Management Work Group (AMWG) makes recommendations to the Secretary of the Interior concerning..., the AMWG, a technical work group (TWG), a Grand Canyon Monitoring and Research Center, and independent...

  1. Convergent validity between willingness to pay elicitation methods: an application to Grand Canyon whitewater boaters

    Science.gov (United States)

    Neher, Christopher; Bair, Lucas S.; Duffield, John; Patterson, David A.; Neher, Katherine

    2018-01-01

    We directly compare trip willingness to pay (WTP) values between dichotomous choice contingent valuation (DCCV) and discrete choice experiment (DCE) stated preference surveys of private party Grand Canyon whitewater boaters. The consistency of DCCV and DCE estimates is debated in the literature, and this study contributes to the body of work comparing the methods. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow-level scenarios. Boaters were found to most highly value mid-range flows, with very low and very high flows eliciting lower WTP estimates across both DCE and DCCV surveys. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the two methods at three of the four hypothetical flow levels.

  2. Parametric study of the dispersion aspects in a street-canyon area

    Energy Technology Data Exchange (ETDEWEB)

    Koutsourakis, N.; Neofytou, P.; Venetsanos, A.G.; Bartzis, J.G. [NCSR Demokritos (Greece). Environmental Research Lab.

    2004-07-01

    Continuously increasing vehicles' fleet is still considered to be the main emission factor in urban environments, despite the enormous progress of modern catalytic technology. Under that perspective, calculation of transportation induced pollutant dispersion is of augmented importance, especially within street canyons, where poor ventilation can result in awkward concentration levels. Computational Fluid Dynamics (CFD) studies have been conducted in the past by Neofytou, P. et al, so as to define appropriate locations for measuring-instrument placement by numerically simulating the flow and pollution dispersion fields in the vicinity of the measuring site taking into account the wind rose of the area and selecting locations of high pollution concentrations so that non-zero indications are assured. Vardoulakis, S. et al, provides a general overview of the street-canyon studies concerning both modelling and experimental investigations and offers plenty of references on air quality within street canyons. Besides air-quality, street canyon CFD studies have also been performed to evaluate accident consequences and hydrogen safety, Venetsanos A. et al. The current study examines a real street canyon in Thessaloniki, Greece. It was performed in order to examine dispersion patterns for different parameters' scenarios and help deciding where to place actual pollutant measurement instruments to better capture traffic pollution data. Various wind directions and speeds are examined and height influence on concentration levels is investigated. Complex area geometry is a key factor of the whole study. (orig.)

  3. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy E.

    2018-06-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  4. The response of source-bordering aeolian dunefields to sediment-supply changes 2: Controlled floods of the Colorado River in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Sankey, Joel B.; Caster, Joshua; Kasprak, Alan; East, Amy

    2018-01-01

    In the Colorado River downstream of Glen Canyon Dam in the Grand Canyon, USA, controlled floods are used to resupply sediment to, and rebuild, river sandbars that have eroded severely over the past five decades owing to dam-induced changes in river flow and sediment supply. In this study, we examine whether controlled floods, can in turn resupply aeolian sediment to some of the large source-bordering aeolian dunefields (SBDs) along the margins of the river. Using a legacy of high-resolution lidar remote-sensing and meteorological data, we characterize the response of four SBDs (a subset of 117 SBDs and other aeolian-sand-dominated areas in the canyon) during four sediment-laden controlled floods of the Colorado River in 2012, 2013, 2014, and 2016. We find that aeolian sediment resupply unambiguously occurred in 8 of the 16 instances of controlled flooding adjacent to SBDs. Resupply attributed to individual floods varied substantially among sites, and occurred with four, three, one, and zero floods at the four sites, respectively. We infer that the relative success of controlled floods as a regulated-river management tool for resupplying sediment to SBDs is analogous to the frequency of resupply observed for fluvial sandbars in this setting, in that sediment resupply was estimated to have occurred for roughly half of the instances of recent controlled flooding at sandbars monitored separately from this study. We find the methods developed in this, and a companion study, are effective tools to quantify geomorphic changes in sediment storage, along linked fluvial and aeolian pathways of sedimentary systems.

  5. Modeling Water-Surface Elevations and Virtual Shorelines for the Colorado River in Grand Canyon, Arizona

    Science.gov (United States)

    Magirl, Christopher S.; Breedlove, Michael J.; Webb, Robert H.; Griffiths, Peter G.

    2008-01-01

    Using widely-available software intended for modeling rivers, a new one-dimensional hydraulic model was developed for the Colorado River through Grand Canyon from Lees Ferry to Diamond Creek. Solving one-dimensional equations of energy and continuity, the model predicts stage for a known steady-state discharge at specific locations, or cross sections, along the river corridor. This model uses 2,680 cross sections built with high-resolution digital topography of ground locations away from the river flowing at a discharge of 227 m3/s; synthetic bathymetry was created for topography submerged below the 227 m3/s water surface. The synthetic bathymetry was created by adjusting the water depth at each cross section up or down until the model?s predicted water-surface elevation closely matched a known water surface. This approach is unorthodox and offers a technique to construct one-dimensional hydraulic models of bedrock-controlled rivers where bathymetric data have not been collected. An analysis of this modeling approach shows that while effective in enabling a useful model, the synthetic bathymetry can differ from the actual bathymetry. The known water-surface profile was measured using elevation data collected in 2000 and 2002, and the model can simulate discharges up to 5,900 m3/s. In addition to the hydraulic model, GIS-based techniques were used to estimate virtual shorelines and construct inundation maps. The error of the hydraulic model in predicting stage is within 0.4 m for discharges less than 1,300 m3/s. Between 1,300-2,500 m3/s, the model accuracy is about 1.0 m, and for discharges between 2,500-5,900 m3/s, the model accuracy is on the order of 1.5 m. In the absence of large floods on the flow-regulated Colorado River in Grand Canyon, the new hydraulic model and the accompanying inundation maps are a useful resource for researchers interested in water depths, shorelines, and stage-discharge curves for flows within the river corridor with 2002 topographic

  6. Landscape level influence: aquatic primary production in the Colorado River of Glen and Grand canyons

    Science.gov (United States)

    Yard, M. D.; Kennedy, T.; Yackulic, C. B.; Bennett, G. E.

    2012-12-01

    Irregular features common to canyon-bound regions intercept solar incidence (photosynthetic photon flux density [PPFD: μmol m-2 s-1]) and can affect ecosystem energetics. The Colorado River in Grand Canyon is topographically complex, typical of most streams and rivers in the arid southwest. Dam-regulated systems like the Colorado River have reduced sediment loads, and consequently increased water transparency relative to unimpounded rivers; however, sediment supply from tributaries and flow regulation that affects erosion and subsequent sediment transport, interact to create spatial and temporal variation in optical conditions in this river network. Solar incidence and suspended sediment loads regulate the amount of underwater light available for aquatic photosynthesis in this regulated river. Since light availability is depth dependent (Beer's law), benthic algae is often exposed to varying levels of desiccation or reduced light conditions due to daily flow regulation, additional factors that further constrain aquatic primary production. Considerable evidence suggests that the Colorado River food web is now energetically dependent on autotrophic production, an unusual condition since large river foodwebs are typically supported by allochthonous carbon synthesized and transported from terrestrial environments. We developed a mechanistic model to account for these regulating factors to predict how primary production might be affected by observed and alternative flow regimes proposed as part of ongoing adaptive management experimentation. Inputs to our model include empirical data (suspended sediment and temperature), and predictive relationships: 1) solar incidence reaching the water surface (topographic complexity), 2) suspended sediment-light extinction relationships (optical properties), 3) unsteady flow routing model (stage-depth relationship), 4) channel morphology (photosynthetic area), and 5) photosynthetic-irradiant response for dominant algae (Cladophora

  7. Identification and evaluation of scientific uncertainties related to fish and aquatic resources in the Colorado River, Grand Canyon - summary and interpretation of an expert-elicitation questionnaire

    Science.gov (United States)

    Kennedy, Theodore A.

    2013-01-01

    Identifying areas of scientific uncertainty is a critical step in the adaptive management process (Walters, 1986; Runge, Converse, and Lyons, 2011). To identify key areas of scientific uncertainty regarding biologic resources of importance to the Glen Canyon Dam Adaptive Management Program, the Grand Canyon Monitoring and Research Center (GCMRC) convened Knowledge Assessment Workshops in May and July 2005. One of the products of these workshops was a set of strategic science questions that highlighted key areas of scientific uncertainty. These questions were intended to frame and guide the research and monitoring activities conducted by the GCMRC in subsequent years. Questions were developed collaboratively by scientists and managers. The questions were not all of equal importance or merit—some questions were large scale and others were small scale. Nevertheless, these questions were adopted and have guided the research and monitoring efforts conducted by the GCMRC since 2005. A new round of Knowledge Assessment Workshops was convened by the GCMRC in June and October 2011 and January 2012 to determine whether the research and monitoring activities conducted since 2005 had successfully answered some of the strategic science questions. Oral presentations by scientists highlighting research findings were a centerpiece of all three of the 2011–12 workshops. Each presenter was also asked to provide an answer to the strategic science questions that were specific to the presenter’s research area. One limitation of this approach is that these answers represented the views of the handful of scientists who developed the presentations, and, as such, they did not incorporate other perspectives. Thus, the answers provided by presenters at the Knowledge Assessment Workshops may not have accurately captured the sentiments of the broader group of scientists involved in research and monitoring of the Colorado River in Glen and Grand Canyons. Yet a fundamental ingredient of

  8. Environmental assessment of remedial action, acid/middle Pueblo Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    1982-08-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, and Pueblo Canyon found residual radioactivity at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons, all the way to the Rio Grande. The largest reservoir of radioactive material is in lower Pueblo Canyon, which is on DOE property. The only areas where residual radioactivity exceeds the proposed cleanup criteria are at the former vehicle decontamination facility, located between the former treatment plant site and Acid Canyon, around the former untreated waste outfall and for a short distance below, and in two small areas farther down in Acid Canyon. The three alternatives proposed are (1) to take no action, (2) to fence the areas where the residual radioactivity exceeds the proposed criteria (minimal action), and (3) to clean up the former vehicle decontamination facility and around the former untreated waste outfall. Calculations based on actual measurements indicate that the annual dose at the location having the greatest residual radioactivity would be about 12% of the applicable guideline. Most doses are much smaller than that. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is very small. The preferred alternative is to clean up the areas around the former vehicle decontamination facility and the untreated waste outfall. This course of action is recommended not because of any real danger associated with the residual radioactivity, but rather because the cleanup operation is a minor effort and would conform with the ALARA (as low as reasonably achievable) philosophy

  9. The Glen Canyon Dam adaptive management program: progress and immediate challenges

    Science.gov (United States)

    Hamill, John F.; Melis, Theodore S.; Boon, Philip J.; Raven, Paul J.

    2012-01-01

    Adaptive management emerged as an important resource management strategy for major river systems in the United States (US) in the early 1990s. The Glen Canyon Dam Adaptive Management Program (‘the Program’) was formally established in 1997 to fulfill a statutory requirement in the 1992 Grand Canyon Protection Act (GCPA). The GCPA aimed to improve natural resource conditions in the Colorado River corridor in the Glen Canyon National Recreation Area and Grand Canyon National Park, Arizona that were affected by the Glen Canyon dam. The Program achieves this by using science and a variety of stakeholder perspectives to inform decisions about dam operations. Since the Program started the ecosystem is now much better understood and several biological and physical improvements have been achieved. These improvements include: (i) an estimated 50% increase in the adult population of endangered humpback chub (Gila cypha) between 2001 and 2008, following previous decline; (ii) a 90% decrease in non-native rainbow trout (Oncorhynchus mykiss), which are known to compete with and prey on native fish, as a result of removal experiments; and (iii) the widespread reappearance of sandbars in response to an experimental high-flow release of dam water in March 2008.Although substantial progress has been made, the Program faces several immediate challenges. These include: (i) defining specific, measurable objectives and desired future conditions for important natural, cultural and recreational attributes to inform science and management decisions; (ii) implementing structural and operational changes to improve collaboration among stakeholders; (iii) establishing a long-term experimental programme and management plan; and (iv) securing long-term funding for monitoring programmes to assess ecosystem and other responses to management actions. Addressing these challenges and building on recent progress will require strong and consistent leadership from the US Department of the Interior

  10. Evaluation of Terrestrial LIDAR for Monitoring Geomorphic Change at Archeological Sites in Grand Canyon National Park, Arizona

    Science.gov (United States)

    Collins, Brian D.; Brown, Kristin M.; Fairley, Helen C.

    2008-01-01

    This report presents the results of an evaluation of terrestrial light detection and ranging (LIDAR) for monitoring geomorphic change at archeological sites located within Grand Canyon National Park, Ariz. Traditionally, topographic change-detection studies have used total station methods for the collection of data related to key measurable features of site erosion such as the location of thalwegs and knickpoints of gullies that traverse archeological sites (for example, Pederson and others, 2003). Total station methods require survey teams to walk within and on the features of interest within the archeological sites to take accurate measurements. As a result, site impacts may develop such as trailing, damage to cryptogamic crusts, and surface compaction that can exacerbate future erosion of the sites. National Park Service (NPS) resource managers have become increasingly concerned that repeated surveys for research and monitoring purposes may have a detrimental impact on the resources that researchers are trying to study and protect. Beginning in 2006, the Sociocultural Program of the U.S. Geological Survey's (USGS) Grand Canyon Monitoring and Research Center (GCMRC) initiated an evaluation of terrestrial LIDAR as a new monitoring tool that might enhance data quality and reduce site impacts. This evaluation was conducted as one part of an ongoing study to develop objective, replicable, quantifiable monitoring protocols for tracking the status and trend of variables affecting archeological site condition along the Colorado River corridor. The overall study consists of two elements: (1) an evaluation of the methodology through direct comparison to geomorphologic metrics already being collected by total station methods (this report) and (2) an evaluation of terrestrial LIDAR's ability to detect topographic change through the collection of temporally different datasets (a report on this portion of the study is anticipated early in 2009). The main goals of the first

  11. Interpreting Hydraulic Conditions from Morphology, Sedimentology, and Grain Size of Sand Bars in the Colorado River in Grand Canyon

    Science.gov (United States)

    Rubin, D. M.; Topping, D. J.; Schmidt, J. C.; Grams, P. E.; Buscombe, D.; East, A. E.; Wright, S. A.

    2015-12-01

    During three decades of research on sand bars and sediment transport in the Colorado River in Grand Canyon, we have collected unprecedented quantities of data on bar morphology, sedimentary structures, grain size of sand on the riverbed (~40,000 measurements), grain size of sand in flood deposits (dozens of vertical grain-size profiles), and time series of suspended sediment concentration and grain size (more than 3 million measurements using acoustic and laser-diffraction instruments sampling every 15 minutes at several locations). These data, which include measurements of flow and suspended sediment as well as sediment within the deposits, show that grain size within flood deposits generally coarsens or fines proportionally to the grain size of sediment that was in suspension when the beds were deposited. The inverse problem of calculating changing flow conditions from a vertical profile of grain size within a deposit is difficult because at least two processes can cause similar changes. For example, upward coarsening in a deposit can result from either an increase in discharge of the flow (causing coarser sand to be transported to the depositional site), or from winnowing of the upstream supply of sand (causing suspended sand to coarsen because a greater proportion of the bed that is supplying sediment is covered with coarse grains). These two processes can be easy to distinguish where suspended-sediment observations are available: flow-regulated changes cause concentration and grain size of sand in suspension to be positively correlated, whereas changes in supply can cause concentration and grain size of sand in suspension to be negatively correlated. The latter case (supply regulation) is more typical of flood deposits in Grand Canyon.

  12. Mine and prospect map of the Vermilion Cliffs-Paria Canyon Instant Study Area and adjacent wilderness areas, Coconino County, Arizona, and Kane County, Utah

    Science.gov (United States)

    Lane, Michael

    1983-01-01

    Vermilion Cliffs-Paria Canyon Instant Study Area and adjacent wilderness areas are mostly in Coconino County Ariz., but extend into Kane County, Utah. The area studied in this report encompasses about 560 mi2 (1,450 km2). The study area includes the established Paria Canyon Primitive and Vermilion Cliffs Natural Areas between U.S. Highways 89 and 89A.

  13. Safety analysis, 200 Area, Savannah River Plant H-Canyon operations. Supplement 5

    Energy Technology Data Exchange (ETDEWEB)

    Beary, M M; Collier, C D; Fairobent, L A; Graham, R F; Mason, C L; McDuffee, W T; Owen, T L; Walker, D H [Science Applications International Corp., San Diego, CA (United States)

    1986-02-01

    The H-Canyon facility is located in the 200 Separations Area and uses the HM process to separate uranium, neptunium, plutonium, and fission products. Irradiated uranium fuels containing {sup 235}U at enrichments from 1.1% to 94% are processed and recovered, along with neptunium and plutonium isotopes. This Safety Analysis Report (SAR) documents an analysis of the H-Canyon operations and is an update to a section of a previous SAR. This SAR documents an analysis of the H-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the Conclusions of this SAR is found in the Systems Analysis. Some H-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the H-Carbon can be operated without due risk to onsite or offsite populations and to the environment. In this report, risk is defined an the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological does are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  14. Modern landscape processes affecting archaeological sites along the Colorado River corridor downstream of Glen Canyon Dam, Glen Canyon National Recreation Area, Arizona

    Science.gov (United States)

    East, Amy E.; Sankey, Joel B.; Fairley, Helen C.; Caster, Joshua J.; Kasprak, Alan

    2017-08-29

    The landscape of the Colorado River through Glen Canyon National Recreation Area formed over many thousands of years and was modified substantially after the completion of Glen Canyon Dam in 1963. Changes to river flow, sediment supply, channel base level, lateral extent of sedimentary terraces, and vegetation in the post-dam era have modified the river-corridor landscape and have altered the effects of geologic processes that continue to shape the landscape and its cultural resources. The Glen Canyon reach of the Colorado River downstream of Glen Canyon Dam hosts many archaeological sites that are prone to erosion in this changing landscape. This study uses field evaluations from 2016 and aerial photographs from 1952, 1973, 1984, and 1996 to characterize changes in potential windblown sand supply and drainage configuration that have occurred over more than six decades at 54 archaeological sites in Glen Canyon and uppermost Marble Canyon. To assess landscape change at these sites, we use two complementary geomorphic classification systems. The first evaluates the potential for aeolian (windblown) transport of river-derived sand from the active river channel to higher elevation archaeological sites. The second identifies whether rills, gullies, or arroyos (that is, overland drainages that erode the ground surface) exist at the archaeological sites as well as the geomorphic surface, and therefore the relative base level, to which those flow paths drain. Results of these assessments are intended to aid in the management of irreplaceable archaeological resources by the National Park Service and stakeholders of the Glen Canyon Dam Adaptive Management Program.

  15. 78 FR 48670 - Boulder Canyon Project

    Science.gov (United States)

    2013-08-09

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  16. 77 FR 48151 - Boulder Canyon Project

    Science.gov (United States)

    2012-08-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Canyon Project (BCP) electric service provided by the Western Area Power Administration (Western). The... INFORMATION: Hoover Dam, authorized by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits...

  17. The Whittard Canyon - A case study of submarine canyon processes

    Science.gov (United States)

    Amaro, T.; Huvenne, V. A. I.; Allcock, A. L.; Aslam, T.; Davies, J. S.; Danovaro, R.; De Stigter, H. C.; Duineveld, G. C. A.; Gambi, C.; Gooday, A. J.; Gunton, L. M.; Hall, R.; Howell, K. L.; Ingels, J.; Kiriakoulakis, K.; Kershaw, C. E.; Lavaleye, M. S. S.; Robert, K.; Stewart, H.; Van Rooij, D.; White, M.; Wilson, A. M.

    2016-08-01

    Submarine canyons are large geomorphological features that incise continental shelves and slopes around the world. They are often suggested to be biodiversity and biomass hotspots, although there is no consensus about this in the literature. Nevertheless, many canyons do host diverse faunal communities but owing to our lack of understanding of the processes shaping and driving this diversity, appropriate management strategies have yet to be developed. Here, we integrate all the current knowledge of one single system, the Whittard Canyon (Celtic Margin, NE Atlantic), including the latest research on its geology, sedimentology, geomorphology, oceanography, ecology, and biodiversity in order to address this issue. The Whittard Canyon is an active system in terms of sediment transport. The net suspended sediment transport is mainly up-canyon causing sedimentary overflow in some upper canyon areas. Occasionally sediment gravity flow events do occur, some possibly the result of anthropogenic activity. However, the role of these intermittent gravity flows in transferring labile organic matter to the deeper regions of the canyon appears to be limited. More likely, any labile organic matter flushed downslope in this way becomes strongly diluted with bulk material and is therefore of little food value for benthic fauna. Instead, the fresh organic matter found in the Whittard Channel mainly arrives through vertical deposition and lateral transport of phytoplankton blooms that occur in the area during spring and summer. The response of the Whittard Canyon fauna to these processes is different in different groups. Foraminiferal abundances are higher in the upper parts of the canyon and on the slope than in the lower canyon. Meiofaunal abundances in the upper and middle part of the canyon are higher than on adjacent slopes, but lower in the deepest part. Mega- and macrofauna abundances are higher in the canyon compared with the adjacent slope and are higher in the eastern than

  18. Geochemical characterization of groundwater discharging from springs north of the Grand Canyon, Arizona, 2009–2016

    Science.gov (United States)

    Beisner, Kimberly R.; Tillman, Fred D.; Anderson, Jessica R.; Antweiler, Ronald C.; Bills, Donald J.

    2017-08-01

    A geochemical study was conducted on 37 springs discharging from the Toroweap Formation, Coconino Sandstone, Hermit Formation, Supai Group, and Redwall Limestone north of the Grand Canyon near areas of breccia-pipe uranium mining. Baseline concentrations were established for the elements As, B, Li, Se, SiO2, Sr, Tl, U, and V. Three springs exceeded U.S. Environmental Protection Agency drinking water standards: Fence Spring for arsenic, Pigeon Spring for selenium and uranium, and Willow (Hack) Spring for selenium. The majority of the spring sites had uranium values of less than 10 micrograms per liter (μg/L), but six springs discharging from all of the geologic units studied that are located stratigraphically above the Redwall Limestone had uranium values greater than 10 μg/L (Cottonwood [Tuckup], Grama, Pigeon, Rock, and Willow [Hack and Snake Gulch] Springs). The geochemical characteristics of these six springs with elevated uranium include Ca-Mg-SO4 water type, circumneutral pH, high specific conductance, correlation and multivariate associations between U, Mo, Sr, Se, Li, and Zn, low 87Sr/86Sr, low 234U/238U activity ratios (1.34–2.31), detectable tritium, and carbon isotopic interpretation indicating they may be a mixture of modern and pre-modern waters. Similar geochemical compositions of spring waters having elevated uranium concentrations are observed at sites located both near and away from sites of uranium-mining activities in the present study. Therefore, mining does not appear to explain the presence of elevated uranium concentrations in groundwater at the six springs noted above. The elevated uranium at the six previously mentioned springs may be influenced by iron mineralization associated with mineralized breccia pipe deposits. Six springs discharging from the Coconino Sandstone (Upper Jumpup, Little, Horse, and Slide Springs) and Redwall Limestone (Kanab and Side Canyon Springs) contained water with corrected radiocarbon ages as much as 9

  19. Sharing Perspectives and Learning from One Another: Southern Paiutes, Scientists, and Policymakers in the Glen Canyon Dam Adaptive Management Program

    Science.gov (United States)

    Austin, D. E.; Bulletts, K.; Bulletts, C.

    2017-12-01

    The traditional lands of the Southern Paiute people in the United States are bounded by more than 600 miles of the Colorado River from the Kaiparowits Plateau in the north to Blythe, California in the south. According to Southern Paiute traditional knowledge, Southern Paiutes were the first inhabitants of this region and are responsible for protecting and managing this land along with the water and all that is upon and within it. In 1963, the Bureau of Reclamation completed construction of Glen Canyon Dam on the Colorado River, and in 1972, the Glen Canyon National Recreation Area was established, encompassing Lake Mead above the Dam and a world class trout fishery on the Colorado River between the Dam and Lees Ferry. Below Lees Ferry on its way to Lake Mead and Hoover Dam, the Colorado River flows through Grand Canyon National Park and the Navajo and Hualapai reservations. U.S. federal law requires that Glen Canyon Dam be operated with minimal impact to the natural, recreational, and cultural resources of the region of the Colorado River that is potentially impacted by flows from the Dam. The Grand Canyon Protection Act and the Environmental Impact Statement (EIS) for the Operation of the Glen Canyon Dam established a program of long-term research and monitoring of the effects of the Dam on these resources. In 1991, three Southern Paiute tribes - the Kaibab Band of Paiute Indians, the Paiute Indian Tribe of Utah, and the San Juan Southern Paiute Tribe - agreed to participate in studies to identify cultural resources impacted by Glen Canyon Dam and to recommend strategies for their protection, In 1995, the EIS was completed and transition to the Adaptive Management Program (AMP) called for in the Grand Canyon Protection Act was begun. At that time, Southern Paiute activities expanded to include assessing potential environmental and cultural impacts of the dam, developing monitoring procedures, and interacting with scientists, other tribal representatives, and

  20. Effects of street canyon design on pedestrian thermal comfort in the hot-humid area of China.

    Science.gov (United States)

    Zhang, Yufeng; Du, Xiaohan; Shi, Yurong

    2017-08-01

    The design characteristics of street canyons were investigated in Guangzhou in the hot-humid area of China, and the effects of the design factors and their interactions on pedestrian thermal comfort were studied by numerical simulations. The ENVI-met V4.0 (BASIC) model was validated by field observations and used to simulate the micrometeorological conditions and the standard effective temperature (SET) at pedestrian level of the street canyons for a typical summer day of Guangzhou. The results show that the micrometeorological parameters of mean radiant temperature (MRT) and wind speed play key roles in pedestrian thermal comfort. Street orientation has the largest contribution on SET at pedestrian level, followed by aspect ratio and greenery, while surface albedo and interactions between factors have small contributions. The street canyons oriented southeast-northwest or with a higher aspect ratio provide more shade, higher wind speed, and better thermal comfort conditions for pedestrians. Compared with the east-west-oriented street canyons, the north-south-oriented street canyons have higher MRTs and worse pedestrian thermal comfort due to their wider building spacing along the street. The effects of greenery change with the road width and the time of the day. Street canyon design is recommended to improve pedestrian thermal comfort. This study provides a better understanding of the effects of street canyon design on pedestrian thermal comfort and is a useful guide on urban design for the hot-humid area of China.

  1. Chemical stratigraphy of Grande Ronde Basalt, Pasco Basin, south-central Washington

    International Nuclear Information System (INIS)

    Long, P.E.; Ledgerwood, R.K.; Myers, C.W.; Reidel, S.P.; Landon, R.D.; Hooper, P.R.

    1980-02-01

    Grande Ronde Basalt in the Pasco Basin, south-central Washington, can be subdivided into three chemical types and two chemical subtypes based on x-ray fluorescence major element analysis of samples from seven deep core holes and three surface sections. These chemical types are: (1) high-Mg Grande Ronde chemical type; (2) low-Mg Grande Ronde chemical type; (3) low-K (very high-Mg.) Grande Ronde chemical type; and (4) Umtanum Grande Ronde chemical subtype. A possible fifth subdivision is the McCoy Canyon Grande Ronde chemical subtype. The Umtanum and the McCoy Canyon subtypes are both single flows which belong to the low Mg and high-Mg chemical types, respectively. These subdivisions are all distinguished on a plot of MgO versus TiO 2 and/or MgO versus P 2 O 5 , but other major and minor elements, as well as trace elements, also reflect consistent chemical differences between the chemical types. Identification of these chemical types in the Pasco Basin subsurface shows that the high-Mg and low-Mg chemical types are ubiquitous, but the low-K chemical type is limited to the central, southern, and eastern parts of the basin. The Umtanum chemical subtype is present throughout the Pasco Basin subsurface, although it thins in the northeastern part of the basin and is apparently absent from surface exposures 40 kilometers (25 miles) north of the basin. The McCoy Canyon chemical subtype is also present throughout the basin

  2. Geomorphic process fingerprints in submarine canyons

    Science.gov (United States)

    Brothers, Daniel S.; ten Brink, Uri S.; Andrews, Brian D.; Chaytor, Jason D.; Twichell, David C.

    2013-01-01

    Submarine canyons are common features of continental margins worldwide. They are conduits that funnel vast quantities of sediment from the continents to the deep sea. Though it is known that submarine canyons form primarily from erosion induced by submarine sediment flows, we currently lack quantitative, empirically based expressions that describe the morphology of submarine canyon networks. Multibeam bathymetry data along the entire passive US Atlantic margin (USAM) and along the active central California margin near Monterey Bay provide an opportunity to examine the fine-scale morphology of 171 slope-sourced canyons. Log–log regression analyses of canyon thalweg gradient (S) versus up-canyon catchment area (A) are used to examine linkages between morphological domains and the generation and evolution of submarine sediment flows. For example, canyon reaches of the upper continental slope are characterized by steep, linear and/or convex longitudinal profiles, whereas reaches farther down canyon have distinctly concave longitudinal profiles. The transition between these geomorphic domains is inferred to represent the downslope transformation of debris flows into erosive, canyon-flushing turbidity flows. Over geologic timescales this process appears to leave behind a predictable geomorphic fingerprint that is dependent on the catchment area of the canyon head. Catchment area, in turn, may be a proxy for the volume of sediment released during geomorphically significant failures along the upper continental slope. Focused studies of slope-sourced submarine canyons may provide new insights into the relationships between fine-scale canyon morphology and down-canyon changes in sediment flow dynamics.

  3. Aerial radiological survey of the Diablo Canyon Nuclear Power Plant and surrounding area, Diablo Canyon, California. Date of survey: September-October 1984

    International Nuclear Information System (INIS)

    1985-03-01

    An aerial radiological survey was conducted over the area surrounding the Diablo Canyon Nuclear Power Plant in Diablo Canyon, California. The survey was conducted between 20 September and 3 October 1984. A series of flight lines parallel to the coastline were flown at an altitude of 91 meters (300 feet) and were spaced 152 meters (500 feet) apart. The survey covered an area of 250 square kilometers (100 square miles). The resulting background exposure rates over the survey area ranged from 5 to 21 microroentgens per hour (μR/h). The reported exposure rate values include an estimated cosmics ray contribution of 3.6 μR/h. Soil samples were also collected at several locations within the survey areas and analyzed in the laboratory for isotopic composition. The results of the survey showed only the presence of naturally occurring background radiation. No man-made radioactivity was detected. 4 refs., 4 figs., 4 tabs

  4. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Drake, R.M. II

    1998-01-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited

  5. Geologic map of the Paintbrush Canyon Area, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, R.P. [Geological Survey, Denver, CO (United States); Drake, R.M. II [Pacific Western Technologies, Ltd., Lakewood, CO (United States)

    1998-11-01

    This geologic map is produced to support site characterization studies of Yucca Mountain, Nevada, site of a potential nuclear waste storage facility. The area encompassed by this map lies between Yucca Wash and Fortymile Canyon, northeast of Yucca Mountain. It is on the southern flank of the Timber Mountain caldera complex within the southwest Nevada volcanic field. Miocene tuffs and lavas of the Calico Hills Formation, the Paintbrush Group, and the Timber Mountain Group crop out in the area of this map. The source vents of the tuff cones and lava domes commonly are located beneath the thickest deposits of pyroclastic ejecta and lava flows. The rocks within the mapped area have been deformed by north- and northwest-striking, dominantly west-dipping normal faults and a few east-dipping normal faults. Faults commonly are characterized by well developed fault scarps, thick breccia zones, and hanging-wall grabens. Latest movement as preserved by slickensides on west-dipping fault scarps is oblique down towards the southwest. Two of these faults, the Paintbrush Canyon fault and the Bow Ridge fault, are major block-bounding faults here and to the south at Yucca Mountain. Offset of stratigraphic units across faults indicates that faulting occurred throughout the time these volcanic units were deposited.

  6. Extending the turbidity record: making additional use of continuous data from turbidity, acoustic-Doppler, and laser diffraction instruments and suspended-sediment samples in the Colorado River in Grand Canyon

    Science.gov (United States)

    Voichick, Nicholas; Topping, David J.

    2014-01-01

    range of sediment concentrations in the study area using data from the ADP instruments is particularly useful for biological studies. In Grand Canyon, turbidity has been correlated with food availability for aquatic organisms (gross primary production) as well as with fish behavior specific to predator-prey interactions. On the basis of the complete “extended” turbidity record and the relation between suspended-sediment concentration and turbidity, levels were higher before the construction of Glen Canyon Dam by a factor of approximately 2,000 at the Lees Ferry monitoring station (15 miles downstream from the dam) and by a factor of approximately 20 at the monitoring station 87 miles downstream from Lees Ferry (102 miles downstream from the dam). A comparison of turbidity data with data from Laser In-Situ Scattering and Transmissometry (LISST) laser-diffraction instruments, suspended-sediment concentration data, and ADP data shows the influence of the physical properties of suspended sediment. Apparent outliers in relations between turbidity, ADP, and suspended-sediment data during two events within the study period, a 2007 tributary flood from a watershed altered by a recent wildfire and a 2008 experimental controlled-flood release from Glen Canyon Dam, are explained in part by atypical grain sizes, shapes, densities, colors, and (or) clay mineral assemblages of suspended sediment occurring in the Colorado River during these two events. These analyses demonstrate the value of using multiple data-collection strategies for turbidity and sediment-transport studies and of continuous monitoring for capturing the full range and duration of turbidity and sediment-transport conditions, identifying the provenance of the sediment causing turbidity, and detecting physical and chemical processes that may be important for management of critical physical and biological resources.

  7. The Black Canyon of the Gunnison: Today and Yesterday

    Science.gov (United States)

    Hansen, Wallace R.

    1965-01-01

    Black Canyon in the immensity of its void, though its flaring walls lack the alarming verticality of the Black Canyon. Arizona's Grand Canyon of the Colorado is acknowledged as the greatest of them all; it is not as deep as Hells Canyon, but it is wider, longer, more rugged, and far more colorful. Its depth is two to three times that of the Black Canyon. Zion Canyon, Utah, combines depth, sheerness, serenity, and color in a chasm that ranges from capacious to extremely narrow. Its Narrows have a depth-to-width ratio unmatched by any other major American canyon. California's Yosemite Valley, in a setting of sylvan verdure, is unique among the gorges shown in profile in figure 1 in being the only glacial trough; its monolithic walls bear witness to the abrasive power of moving ice. Few cliffs in the world match the splendor of its El Capitan. Lodore Canyon, on the Green River in Dinosaur National Monument, Colorado, is best known, perhaps, for its noisy splashy rapids, first made famous by John Wesley Powell. Lodore Canyon also features towering cliffs of deep-red quartzite. Grand Canyon of the Yellowstone River, Wyoming, is noted for its great waterfalls, dashing river, and bright coloration. The Royal Gorge of the Arkansas River, Colorado, features the 'world's highest suspension bridge'. The profiles shown in figure 1 afford some basis for comparing one canyon with another. They cannot abstract in two dimensions the overall impression that each canyon makes. Color, vegetation, outcrop habit, vantage point, season of year, length of visit - even the roar of the river or lack thereof - all contribute to this highly personal effect. For a river of its size, the Gunnison has an unusually steep gradient through the Black Canyon. The river falls about 2,150 feet from the head of the canyon at Sapinero to the mouth at its junction with North Fork - a distance of about 50 miles and an average rate of fall of about 43 feet per mile. By comparison, the Green

  8. Geology of the Nine Canyon Map Area

    International Nuclear Information System (INIS)

    Jones, M.G.; Landon, R.D.

    1978-09-01

    The basalt stratigraphy and structure of a 175-square kilometer area (the Nine Canyon Map Area) along the southern margin of the Pasco Basin have been studied to help assess the feasibility of a nuclear waste terminal storage facility. Detailed mapping shows that uplift of the Horse Heaven Hills began prior to extrusion of the Priest Rapids Member of the Wanapum Basalt, Columbia River Basalt Group. Both the Pomoma and the Elephant Mountain members (Saddle Mountains Basalt, Columbia River Basalt Group) are wide-spread throughout the basin, but thin considerably along the Horse Heaven Hills in the vicinity of Wallula Gap. The Ice Harbor Member is present only along the northern margin of the map area and possibly occupies a paleo-channel. The Rattlesnake Hills-Wallula Gap Lineament trends north 60 degrees west and intersects the older Horse Heaven Hills anticline in Wallula Gap. Four faults of short length and small vertical displacement are located along this structure. Within the map area, the intensity of folding increases, and the style of faulting changes from normal to reverse with proximity to the Wallula Gap area. No evidence for Quaternary deformation was found

  9. Eleventh-century shift in timber procurement areas for the great houses of Chaco Canyon.

    Science.gov (United States)

    Guiterman, Christopher H; Swetnam, Thomas W; Dean, Jeffrey S

    2016-02-02

    An enduring mystery from the great houses of Chaco Canyon is the origin of more than 240,000 construction timbers. We evaluate probable timber procurement areas for seven great houses by applying tree-ring width-based sourcing to a set of 170 timbers. To our knowledge, this is the first use of tree rings to assess timber origins in the southwestern United States. We found that the Chuska and Zuni Mountains (>75 km distant) were the most likely sources, accounting for 70% of timbers. Most notably, procurement areas changed through time. Before 1020 Common Era (CE) nearly all timbers originated from the Zunis (a previously unrecognized source), but by 1060 CE the Chuskas eclipsed the Zuni area in total wood imports. This shift occurred at the onset of Chaco florescence in the 11th century, a time with substantial expansion of existing great houses and the addition of seven new great houses in the Chaco Core area. It also coincides with the proliferation of Chuskan stone tools and pottery in the archaeological record of Chaco Canyon, further underscoring the link between land use and occupation in the Chuska area and the peak of great house construction. Our findings, based on the most temporally specific and replicated evidence of Chacoan resource procurement obtained to date, corroborate the long-standing but recently challenged interpretation that large numbers of timbers were harvested and transported from distant mountain ranges to build the great houses at Chaco Canyon.

  10. Testing the Limits of Temporal Stability: Willingness to Pay Values among Grand Canyon Whitewater Boaters Across Decades

    Science.gov (United States)

    Neher, Chris; Duffield, John; Bair, Lucas; Patterson, David; Neher, Katherine

    2017-12-01

    We directly compare trip willingness to pay (WTP) values between 1985 and 2015 stated preference surveys of private party Grand Canyon boaters using identically designed valuation methods. The temporal gap of 30 years between these two studies is well beyond that of any tests of WTP temporal stability in the literature. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow level scenarios. WTP values from the 1985 survey were adjusted to 2015 levels using the consumer price index. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the adjusted Bishop et al. (1987) and the current study mean WTP estimates. Examination of pooled models of the data from the studies suggest that while the estimated WTP values are stable over time, the underlying valuation functions may not be, particularly when the data and models are corrected to account for differing bid structures and possible panel effects.

  11. 76 FR 56430 - Boulder Canyon Project

    Science.gov (United States)

    2011-09-13

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Project (BCP) electric service provided by the Western Area Power Administration (Western). The Rates will... by the Boulder Canyon Project Act (45 Stat. 1057, December 21, 1928), sits on the Colorado River...

  12. Decontamination of Savannah River Plant H-Area hot-canyon crane

    International Nuclear Information System (INIS)

    Rankin, W.N.; Sims, J.R.

    1985-01-01

    Decontamination techniques applicable to the remotely operated bridge cranes in canyon buildings at the Savannah River Plant (SRP) were identified and were evaluated in laboratory-scale tests. High pressure Freon blasting was found to be the most attractive process available for this application. Strippable coatings were selected as an alternative technique in selected applications. The ability of high pressure Freon blasting plus two strippable coatings (Quadcoat 100 and Alara 1146) to remove the type of contamination expected on SRP cranes was demonstrated in laboratory-scale tests. Quadrex HPS was given a contract to decontaminate the H-Area hot canyon crane. Decontamination operations were successfully carried out within the specified time-frame window. The radiation level goals specified by SRP were met and decontamination was accomplished with 85% less personnel exposure than estimated by SRP before the job started. This reduction is attributed to the increased efficiency of the new decontamination techniques used. 6 refs., 1 tab

  13. Uranium deposits at the Jomac mine, White Canyon area, San Juan County, Utah

    Science.gov (United States)

    Trites, A.F.; Hadd, G.A.

    1955-01-01

    The Jomac mine is in the White Canyon area. San Juan County, Utah, about 13 miles northeast of the town of White Canyon, Utah. The mine is owned by the Ellihill Mining Company, White Canyon, Utah. Mine workings consist pf two adits connected by a crosscut. Two hundred feet of exploratory drifting and 2,983.5 feet of exploratory core drilling were completed during 1953 by the owners with Defense Minerals Exploration Administration assistance. Sedimentary rocks exposed in the area of the Jomac mine are of Permian to Late Triassic age, having a combined thickness of more than 1,700 feet. An ancient channel, from 200 to 400 feet wide and about 4 feet deep, enters the mine area from the southwest, swinging abruptly northwest near the mine workings and continuing to the northern tip of the Jomac Hillo This channel was cut into the upper beds of the Moenkopi formation and filled in part by Chinle and in part by Shinarump sediments. This channel is marked by depressions that apparently were scoured into its floor; a tributary channel may have joined it from the southeast at a point near the mine workings. Chinle beds Intertongue with Shinarump beds along the southwestern part of the channel. After the main channel was partly filled by siltstone of the Chinle formation, the stream was apparently diverted into the tributary channel, and scours were cut into

  14. 76 FR 8359 - Boulder Canyon Project

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area... Western Area Power Administration (Western) is proposing an adjustment to the Boulder Canyon Project (BCP... Reclamation Project Act of 1939 (43 U.S.C. 485h(c)), and other acts that specifically apply to the project...

  15. Mesohabitats, fish assemblage composition, and mesohabitat use of the Rio Grande silvery minnow over a range of seasonal flow regimes in the Rio Grande/Rio Bravo del Norte, in and near Big Bend National Park, Texas, 2010-11

    Science.gov (United States)

    Moring, J. Bruce; Braun, Christopher L.; Pearson, Daniel K.

    2014-01-01

    In 2010–11, the U.S. Geological Survey (USGS), in cooperation with the U.S. Fish and Wildlife Service, evaluated the physical characteristics and fish assemblage composition of mapped river mesohabitats at four sites on the Rio Grande/Rio Bravo del Norte (hereinafter Rio Grande) in and near Big Bend National Park, Texas. The four sites used for the river habitat study were colocated with sites where the U.S. Fish and Wildlife Service has implemented an experimental reintroduction of the Rio Grande silvery minnow (Hybognathus amarus), a federally listed endangered species, into part of the historical range of this species. The four sites from upstream to downstream are USGS station 08374340 Rio Grande at Contrabando Canyon near Lajitas, Tex. (hereinafter the Contrabando site), USGS station 290956103363600 Rio Grande at Santa Elena Canyon, Big Bend National Park, Tex. (hereinafter the Santa Elena site), USGS station 291046102573900 Rio Grande near Ranger Station at Rio Grande Village, Tex. (hereinafter the Rio Grande Village site), and USGS station 292354102491100 Rio Grande above Stillwell Crossing near Big Bend National Park, Tex. (hereinafter the Stillwell Crossing site).

  16. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  17. 78 FR 7775 - Boulder Canyon Project

    Science.gov (United States)

    2013-02-04

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates... subsequent laws, particularly section 9(c) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and...

  18. 77 FR 2533 - Boulder Canyon Project

    Science.gov (United States)

    2012-01-18

    ... DEPARTMENT OF ENERGY Western Area Power Administration Boulder Canyon Project AGENCY: Western Area...), is proposing an adjustment to the Boulder Canyon Project (BCP) electric service base charge and rates...) of the Reclamation Project Act of 1939 (43 U.S.C. 485h(c)); and other acts that specifically apply to...

  19. Radionuclide and Heavy Metal Concentrations in Fish from the Confluences of Major Canyons That Cross Los Alamos National Laboratory Lands with the Rio Grande

    International Nuclear Information System (INIS)

    Kraig, D.H.; Naranjo, L. Jr.; Mullen, M.A.; Fresquez, P.R.

    1999-01-01

    Bottom-feeding fish--catfish, suckers, and carp--that were collected from the confluences of some of the major canyons that cross LANL lands with the Rio Grande (RG) exhibited similar radionuclide (with the exception of 90 Sr), and nonradionuclide concentrations to fish collected upstream of any potential LANL contamination sources. Strontium-90 concentrations in fish from LANL canyons/RG may be associated with LANL operations; however, the concentrations of 90 Sr in fish decrease to background concentrations further downstream of LANL at CR. And, based on the most conservative assumptions (a 95% source term and maximum consumption rate), LANL operations do not result in significant doses to the general public from consuming fish along the length of the RG as it passes through the eastern edge of LANL lands to CR. Moreover, since over 85% of the doses were a result of 90 Sr detected in the muscle plus bone portions of the fish and most of the 90 Sr is associated with the bone, the doses to people that consume only the edible portions of the fish (muscle only), would be significantly lower

  20. Geochemical discrimination of five pleistocene Lava-Dam outburst-flood deposits, western Grand Canyon, Arizona

    Science.gov (United States)

    Fenton, C.R.; Poreda, R.J.; Nash, B.P.; Webb, R.H.; Cerling, T.E.

    2004-01-01

    Pleistocene basaltic lava dams and outburst-flood deposits in the western Grand Canyon, Arizona, have been correlated by means of cosmogenic 3He (3Hec) ages and concentrations of SiO2, Na2O, K2O, and rare earth elements. These data indicate that basalt clasts and vitroclasts in a given outburst-flood deposit came from a common source, a lava dam. With these data, it is possible to distinguish individual dam-flood events and improve our understanding of the interrelations of volcanism and river processes. At least five lava dams on the Colorado River failed catastrophically between 100 and 525 ka; subsequent outburst floods emplaced basalt-rich deposits preserved on benches as high as 200 m above the current river and up to 53 km downstream of dam sites. Chemical data also distinguishes individual lava flows that were collectively mapped in the past as large long-lasting dam complexes. These chemical data, in combination with age constraints, increase our ability to correlate lava dams and outburst-flood deposits and increase our understanding of the longevity of lava dams. Bases of correlated lava dams and flood deposits approximate the elevation of the ancestral river during each flood event. Water surface profiles are reconstructed and can be used in future hydraulic models to estimate the magnitude of these large-scale floods.

  1. Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA

    Science.gov (United States)

    Fenton, Cassandra R.; Webb, Robert H.; Cerling, Thure E.

    2006-03-01

    The failure of a lava dam 165,000 yr ago produced the largest known flood on the Colorado River in Grand Canyon. The Hyaloclastite Dam was up to 366 m high, and geochemical evidence linked this structure to outburst-flood deposits that occurred for 32 km downstream. Using the Hyaloclastite outburst-flood deposits as paleostage indicators, we used dam-failure and unsteady flow modeling to estimate a peak discharge and flow hydrograph. Failure of the Hyaloclastite Dam released a maximum 11 × 10 9 m 3 of water in 31 h. Peak discharges, estimated from uncertainty in channel geometry, dam height, and hydraulic characteristics, ranged from 2.3 to 5.3 × 10 5 m 3 s -1 for the Hyaloclastite outburst flood. This discharge is an order of magnitude greater than the largest known discharge on the Colorado River (1.4 × 10 4 m 3 s -1) and the largest peak discharge resulting from failure of a constructed dam in the USA (6.5 × 10 4 m 3 s -1). Moreover, the Hyaloclastite outburst flood is the oldest documented Quaternary flood and one of the largest to have occurred in the continental USA. The peak discharge for this flood ranks in the top 30 floods (>10 5 m 3 s -1) known worldwide and in the top ten largest floods in North America.

  2. Tectonic activity and the evolution of submarine canyons: The Cook Strait Canyon system, New Zealand

    Science.gov (United States)

    Micallef, Aaron; Mountjoy, Joshu; Barnes, Philip; Canals, Miquel; Lastras, Galderic

    2016-04-01

    Submarine canyons are Earth's most dramatic erosional features, comprising steep-walled valleys that originate in the continental shelf and slope. They play a key role in the evolution of continental margins by transferring sediments into deep water settings and are considered important biodiversity hotspots, pathways for nutrients and pollutants, and analogues of hydrocarbon reservoirs. Although comprising only one third of continental margins worldwide, active margins host more than half of global submarine canyons. We still lack of thorough understanding of the coupling between active tectonics and submarine canyon processes, which is necessary to improve the modelling of canyon evolution in active margins and derive tectonic information from canyon morphology. The objectives of this study are to: (i) understand how tectonic activity influences submarine canyon morphology, processes, and evolution in an active margin, and (2) formulate a generalised model of canyon development in response to tectonic forcing based on morphometric parameters. We fulfil these objectives by analysing high resolution geophysical data and imagery from Cook Strait Canyon system, offshore New Zealand. Using these data, we demonstrate that tectonic activity, in the form of major faults and structurally-generated tectonic ridges, leaves a clear topographic signature on submarine canyon location and morphology, in particular their dendritic and sinuous planform shapes, steep and linear longitudinal profiles, and cross-sectional asymmetry and width. We also report breaks/changes in canyon longitudinal slope gradient, relief and slope-area regression models at the intersection with faults. Tectonic activity gives rise to two types of knickpoints in the Cook Strait Canyon. The first type consists of low slope gradient, rounded and diffusive knickpoints forming as a result of short wavelength folds or fault break outs and being restored to an equilibrium profile by upstream erosion and

  3. Canyons off northwest Puerto Rico

    International Nuclear Information System (INIS)

    Gardner, W.D.; Glover, L.K.; Hollister, C.D.

    1980-01-01

    The Nuclear-Research Submarine NR-1 was used to study morphoplogy, sediment, and sediment-water interactions off the northwest coast of Puerto Rico. New detailed bathymetry from the surface-support ship, USS Portland, shows several submarine canyons in the area, some of them unreported previously. The north coast canyons, Arecibo, Tiberones and Quebradillas, are primarily erosional features although no recent turbidity-current evidence is seen. The canyons are presently filling with river-transported sediments. (orig./ME)

  4. Hydrogeology and sources of water to select springs in Black Canyon, south of Hoover Dam, Lake Mead National Recreation Area, Nevada and Arizona

    Science.gov (United States)

    Moran, Michael J.; Wilson, Jon W.; Beard, L. Sue

    2015-11-03

    Springs in Black Canyon of the Colorado River, directly south of Hoover Dam in the Lake Mead National Recreation Area, Nevada and Arizona, are important hydrologic features that support a unique riparian ecosystem including habitat for endangered species. Rapid population growth in areas near and surrounding Black Canyon has caused concern among resource managers that such growth could affect the discharge from these springs. The U.S. Geological Survey studied the springs in Black Canyon between January 2008, and May 2014. The purposes of this study were to provide a baseline of discharge and hydrochemical data from selected springs in Black Canyon and to better understand the sources of water to the springs.

  5. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative

  6. Environmental analysis of Lower Pueblo/Lower Los Alamos Canyon, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Becker, N.M.; Rodgers, J.C.; Hansen, W.R.

    1994-12-01

    The radiological survey of the former radioactive waste treatment plant site (TA-45), Acid Canyon, Pueblo Canyon, and Los Alamos Canyon found residual contamination at the site itself and in the channel and banks of Acid, Pueblo, and lower Los Alamos Canyons all the way to the Rio Grande. The largest reservoir of residual radioactivity is in lower Pueblo Canyon, which is on DOE property. However, residual radioactivity does not exceed proposed cleanup criteria in either lower Pueblo or lower Los Alamos Canyons. The three alternatives proposed are (1) to take no action, (2) to construct a sediment trap in lower Pueblo Canyon to prevent further transport of residual radioactivity onto San Ildefonso Indian Pueblo land, and (3) to clean the residual radioactivity from the canyon system. Alternative 2, to cleanup the canyon system, is rejected as a viable alternative. Thousands of truckloads of sediment would have to be removed and disposed of, and this effort is unwarranted by the low levels of contamination present. Residual radioactivity levels, under either present conditions or projected future conditions, will not result in significant radiation doses to persons exposed. Modeling efforts show that future transport activity will not result in any residual radioactivity concentrations higher than those already existing. Thus, although construction of a sediment trap in lower Pueblo Canyon is a viable alternative, this effort also is unwarranted, and the no-action alternative is the preferred alternative.

  7. Learning outcomes of in-person and virtual field-based geoscience instruction at Grand Canyon National Park: complementary mixed-methods analyses

    Science.gov (United States)

    Semken, S. C.; Ruberto, T.; Mead, C.; Bruce, G.; Buxner, S.; Anbar, A. D.

    2017-12-01

    Students with limited access to field-based geoscience learning can benefit from immersive, student-centered virtual-reality and augmented-reality field experiences. While no digital modalities currently envisioned can truly supplant field-based learning, they afford students access to geologically illustrative but inaccessible places on Earth and beyond. As leading producers of immersive virtual field trips (iVFTs), we investigate complementary advantages and disadvantages of iVFTs and in-person field trips (ipFTs). Settings for our mixed-methods study were an intro historical-geology class (n = 84) populated mostly by non-majors and an advanced Southwest geology class (n = 39) serving mostly majors. Both represent the diversity of our urban Southwestern research university. For the same credit, students chose either an ipFT to the Trail of Time (ToT) Exhibition at Grand Canyon National Park (control group) or an online Grand Canyon iVFT (experimental group), in the same time interval. Learning outcomes for each group were identically drawn from elements of the ToT and assessed using pre/post concept sketching and inquiry exercises. Student attitudes and cognitive-load factors for both groups were assessed pre/post using the PANAS instrument (Watson et al., 1998) and with affective surveys. Analysis of pre/post concept sketches indicated improved knowledge in both groups and classes, but more so in the iVFT group. PANAS scores from the intro class showed the ipFT students having significantly stronger (p = .004) positive affect immediately prior to the experience than the iVFT students, possibly reflecting their excitement about the trip to come. Post-experience, the two groups were no longer significantly different, possibly due to the fatigue associated with a full-day ipFT. Two lines of evidence suggest that the modalities were comparable in expected effectiveness. First, the information relevant for the concept sketch was specifically covered in both

  8. The End of Monterey Submarine Canyon Incision and Potential River Source Areas-Os, Nd, and Pb Isotope Constraints from Hydrogenetic Fe-Mn Crusts

    Science.gov (United States)

    Conrad, T. A.; Nielsen, S.; Ehrenbrink, B. P. E.; Blusztajn, J.; Hein, J. R.; Paytan, A.

    2015-12-01

    The Monterey Canyon off central California is the largest submarine canyon off North America and is comparable in scale to the Grand Canyon. The age and history of the Monterey Canyon are poorly constrained due to thick sediment cover and sediment disruption from turbidity currents. To address this deficit we analyzed isotopic proxies (Os, Pb, Nd) from hydrogenetic ferromanganese (Fe-Mn) crusts, which grow over millions of years on elevated rock surfaces by precipitation of metals from seawater. Fe-Mn crusts were studied from Davidson Seamount near the base of the Monterey submarine fan, the Taney Seamount Chain, and from Hoss Seamount, which serves as a regional control (Fig.). Fe-Mn crusts were dated using Os isotope ratios compared to those that define the Cenozoic Os isotope seawater curve. Four Fe-Mn crust samples from Davidson and Taney Seamounts deviate from the Os isotopic seawater curve towards radiogenic values after 4.5±1 Ma. Osmium is well mixed in the global ocean and is not subject to significant diffusive reequilibration in Fe-Mn crusts. We therefore attribute deviations from the Os isotope seawater curve to large-scale terrestrial input that ended about 4.5±1 Ma. The two Davidson samples also show more radiogenic Nd isotope values from about 4.5±1 Ma. Lead isotopes in one Davidson Seamount crust, measured by LA-ICPMS, deviate from regional values after 4.5±1 Ma for about 500 ka towards terrestrial sources. The Taney Seamount Fe-Mn crust does not deviate from regional Nd nor Pb isotope values due to its greater distance from Monterey Canyon and the shorter marine residence times of Nd and Pb. Isotope plots of our crust data and compiled data for potential source rocks indicate that the river that carved Monterey Canyon carried sediment with values closer to the Sierra Nevada than to a Colorado Plateau source, with cessation of major riverine input occurring approximately 4.5±1 Ma, an age that we interpret as the end of the Monterey Canyon

  9. Atlanto-occipital fusion and spondylolisthesis in an Anasazi skeleton from Bright Angel Ruin, Grand Canyon National Park, Arizona.

    Science.gov (United States)

    Merbs, C F; Euler, R C

    1985-08-01

    The skeleton of a middle-aged female showing an unusual pattern of congenital, traumatic, and degenerative pathology was recovered from a small Kayenta Anasazi site located near the confluence of Bright Angel Creek with the Colorado River in the Inner Gorge of Grand Canyon. The atlas is fused with the base of the skull and C2 is fused with C3. The cervical region was subjected to hyperextension, perhaps through use of a tumpline, with resultant reduction of the neural canal to 8 mm, a condition that quite likely led to neurological problems. The skeleton also includes a depression fracture of the lateral condyle of the left tibia. Complete, bilateral spondylolysis of L5 led to an olisthesis of approximately 15 mm. The disc between L5 and S1 then ossified, most likely from staphylococcus bacteremia, making the olisthesis permanent and thereby creating a unique arachaeological specimen. Although spondylolysis is usually viewed as a stress fracture, the general pattern of pathology in this individual makes it necessary to consider an etiology of acute trauma.

  10. Use of flux and morphologic sediment budgets for sandbar monitoring on the Colorado River in Marble Canyon, Arizona

    Science.gov (United States)

    Grams, Paul E.; Buscombe, Daniel D.; Topping, David J.; Hazel, Joseph E.; Kaplinski, Matt

    2015-01-01

    The magnitude and pfattern of streamflow and sediment supply of the Colorado River in Grand Canyon (Figure 1) has been affected by the existence and operations of Glen Canyon Dam since filling of Lake Powell Reservoir began in March 1963. In the subsequent 30 years, fine sediment was scoured from the downstream channel (Topping et al., 2000; Grams et al., 2007), resulting in a decline in the number and size of sandbars in the eastern half of Grand Canyon National Park (Wright et al., 2005; Schmidt et al., 2004). The Glen Canyon Dam Adaptive Management Program (GCDAMP) administered by the U.S. Department of Interior oversees efforts to manage the Colorado River ecosystem downstream from Glen Canyon Dam. One of the goals of the GCDAMP is to maintain and increase the number and size of sandbars in this context of a limited sand supply. Management actions to benefit sandbars have included curtailment of daily streamflow fluctuations, which occur for hydropower generation, and implementation of controlled floods, also called high-flow experiments.Studies of controlled floods, defined as intentional releases that exceed the maximum discharge capacity of the Glen Canyon Dam powerplant, implemented between 1996 and 2008, have demonstrated that these events cause increases in sandbar size throughout Marble and Grand Canyons (Hazel et al., 2010; Schmidt and Grams, 2011; Mueller et al., 2014), although the magnitude of response is spatially variable (Hazel et al., 1999; 2010). Controlled floods may build some sandbars at the expense of erosion of sand from other, upstream, sandbars (Schmidt, 1999). To increase the frequency and effectiveness of sandbar building, the U.S. Department of Interior adopted a “high-flow experimental protocol” to implement controlled floods regularly under conditions of enriched sand supply (U.S. Department of Interior, 2012). Because the supply of sand available to build sandbars has been substantially reduced by Glen Canyon Dam (Topping et al

  11. Data from synoptic water-quality studies on the Colorado River in the Grand Canyon, Arizona, November 1990 and June 1991

    Science.gov (United States)

    Taylor, Howard E.; Peart, D.B.; Antweiler, Ronald C.; Brinton, T.I.; Campbell, W.L.; Barbarino, J.R.; Roth, D.A.; Hart, R.J.; Averett, R.C.

    1996-01-01

    Two water-quality synoptic studies were made on the Colorado River in the Grand Canyon, Arizona. Field measurements and the collection of water samples for laboratory analysis were made at 10 mainstem and 6 tributary sites every 6 hours for a 48-hour period on November 5-6, 1990, and again on June 18-20, 1991. Field measurements included discharge, alkalinity, water temperature, light penetration, pH, specific conductance, and dissolved oxygen. Water samples were collected for the laboratory analysis of major and minor ions (calcium, magnesium, sodium, potassium, strontium, chloride, sulfate, silica as SiO2), trace elements (aluminum, arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, iron, lead, lithium, manganese, molybdenum, nickel, selenium, thallium, uranium, vanadium and zinc), and nutrients (phosphate, nitrate, ammonium, nitrite, total dissolved nitrogen, total dissolved phosphorus and dissolved organic carbon). Biological measurements included drift (benthic invertebrates and detrital material), and benthic invertebrates from the river bottom.

  12. The influence of controlled floods on fine sediment storage in debris fan-affected canyons of the Colorado River basin

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Schmidt, John C.; Hazel, Joseph E.; Alexander, Jason S.; Kaplinski, Matt

    2014-01-01

    Prior to the construction of large dams on the Green and Colorado Rivers, annual floods aggraded sandbars in lateral flow-recirculation eddies with fine sediment scoured from the bed and delivered from upstream. Flows greater than normal dam operations may be used to mimic this process in an attempt to increase time-averaged sandbar size. These controlled floods may rebuild sandbars, but sediment deficit conditions downstream from the dams restrict the frequency that controlled floods produce beneficial results. Here, we integrate complimentary, long-term monitoring data sets from the Colorado River in Marble and Grand Canyons downstream from Glen Canyon dam and the Green River in the Canyon of Lodore downstream from Flaming Gorge dam. Since the mid-1990s, several controlled floods have occurred in these canyon rivers. These controlled floods scour fine sediment from the bed and build sandbars in eddies, thus increasing channel relief. These changes are short-lived, however, as interflood dam operations erode sandbars within several months to years. Controlled flood response and interflood changes in bed elevation are more variable in Marble Canyon and Grand Canyon, likely reflecting more variable fine sediment supply and stronger transience in channel bed sediment storage. Despite these differences, neither system shows a trend in fine-sediment storage during the period in which controlled floods were monitored. These results demonstrate that controlled floods build eddy sandbars and increase channel relief for short interflood periods, and this response may be typical in other dam-influenced canyon rivers. The degree to which these features persist depends on the frequency of controlled floods, but careful consideration of sediment supply is necessary to avoid increasing the long-term sediment deficit.

  13. California State Waters Map Series—Monterey Canyon and vicinity, California

    Science.gov (United States)

    Dartnell, Peter; Maier, Katherine L.; Erdey, Mercedes D.; Dieter, Bryan E.; Golden, Nadine E.; Johnson, Samuel Y.; Hartwell, Stephen R.; Cochrane, Guy R.; Ritchie, Andrew C.; Finlayson, David P.; Kvitek, Rikk G.; Sliter, Ray W.; Greene, H. Gary; Davenport, Clifton W.; Endris, Charles A.; Krigsman, Lisa M.; Dartnell, Peter; Cochran, Susan A.

    2016-06-10

    IntroductionIn 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within the 3-nautical-mile limit of California’s State Waters. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath bathymetry data, acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow subsurface geology.The Monterey Canyon and Vicinity map area lies within Monterey Bay in central California. Monterey Bay is one of the largest embayments along the west coast of the United States, spanning 36 km from its northern to southern tips (in Santa Cruz and Monterey, respectively) and 20 km along its central axis. Not only does it contain one of the broadest sections of continental shelf along California’s coast, it also contains Monterey Canyon, one of the largest and deepest submarine canyons in the world. Note that the California’s State Waters limit extends farther offshore between Santa Cruz and Monterey so that it encompasses all of Monterey Bay.The coastal area within the map area is lightly populated. The community of Moss Landing (population, 204) hosts the largest commercial fishing fleet in Monterey Bay in its harbor. The map area also includes parts of the cities of Marina (population, about 20,000) and Castroville (population, about 6,500). Fertile lowlands of the Salinas River and Pajaro River valleys largely occupy the inland part of the map area, and land use is primarily agricultural.The offshore part of the map area lies completely within the Monterey Bay National Marine Sanctuary. The

  14. Suprabenthic assemblages from the Capbreton area (SE Bay of Biscay). Faunal recovery after a canyon turbidity disturbance

    Science.gov (United States)

    Frutos, Inmaculada; Sorbe, Jean Claude

    2017-12-01

    In the Capbreton area, suprabenthic assemblages were sampled with a sledge towed over the bottom, at different sites located within the upper part of a 'gouf-type' canyon (8 hauls between 642 m and 797 m, on the axis of the thalweg or on flat perched flank terraces such as site K), on the northern adjacent open slope (2 hauls between 500 and 567 m) and on the northern adjacent shelf margin (2 hauls between 151 m and 158 m). A multivariate analysis carried on the faunal data discriminated different assemblages in this area: a near-canyon shelf assemblage (55 species, mainly amphipods and decapods; 3496 ind./100 m2, 40% mysids; dominant species: Nyctiphanes couchii, Leptomysis gracilis, Weswoodilla rectirostris, Anchialina agilis, Scopelocheirus hopei and Philocheras bispinosus); an open slope assemblage (111 species, mainly amphipods and isopods; 249 ind./100 m2, 36% amphipods; dominant species: Disconectes phalangium, Munnopsurus atlanticus and Boreomysis arctica); a canyon E assemblage (129 species, mainly amphipods, mysids and cumaceans; 1172 ind./100 m2, 58% amphipods; dominant species: Melphidippa sp. B, Chelator insignis); a canyon E' assemblage (107 species, mainly amphipods and mysids; 507 ind./100 m2, 73% amphipods; dominant species: Cleonardopsis carinata, Bonnierella abyssorum, Rhachotropis caeca and Arcturopsis giardi); and a temporary canyon assemblage at site K (34 species, mainly amphipods and mysids; 899 ind./100 m2, 85% amphipods; dominant species: Tmetomyx similis, Caeconyx caeculus, Nebalia sp. A and Cleonardopsis carinata). Site K was sampled only four months after a turbidity event, detected on sediment cores (18 cm thick Bouma sequence) taken during the same cruise and triggered by the violent storm ('ouragan Martin', wind up to 200 km/h) which affected the French Atlantic coast on 27 December 1999. The corresponding suprabenthic assemblage showed evidence of deep structural changes after this catastrophic event, characterized by relative low

  15. An individual-based model for population viability analysis of humpback chub in Grand Canyon

    Science.gov (United States)

    Pine, William Pine; Healy, Brian; Smith, Emily Omana; Trammell, Melissa; Speas, Dave; Valdez, Rich; Yard, Mike; Walters, Carl; Ahrens, Rob; Vanhaverbeke, Randy; Stone, Dennis; Wilson, Wade

    2013-01-01

    We developed an individual-based population viability analysis model (females only) for evaluating risk to populations from catastrophic events or conservation and research actions. This model tracks attributes (size, weight, viability, etc.) for individual fish through time and then compiles this information to assess the extinction risk of the population across large numbers of simulation trials. Using a case history for the Little Colorado River population of Humpback Chub Gila cypha in Grand Canyon, Arizona, we assessed extinction risk and resiliency to a catastrophic event for this population and then assessed a series of conservation actions related to removing specific numbers of Humpback Chub at different sizes for conservation purposes, such as translocating individuals to establish other spawning populations or hatchery refuge development. Our results suggested that the Little Colorado River population is generally resilient to a single catastrophic event and also to removals of larvae and juveniles for conservation purposes, including translocations to establish new populations. Our results also suggested that translocation success is dependent on similar survival rates in receiving and donor streams and low emigration rates from recipient streams. In addition, translocating either large numbers of larvae or small numbers of large juveniles has generally an equal likelihood of successful population establishment at similar extinction risk levels to the Little Colorado River donor population. Our model created a transparent platform to consider extinction risk to populations from catastrophe or conservation actions and should prove useful to managers assessing these risks for endangered species such as Humpback Chub.

  16. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-01-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon building so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered

  17. Separations canyon decontamination facilities

    International Nuclear Information System (INIS)

    Hershey, J.H.

    1975-05-01

    Highly radioactive process equipment is decontaminated at the Savannah River Plant in specially equipped areas of the separations canyon buildings so that direct mechanical repairs or alterations can be made. Using these facilities it is possible to decontaminate and repair equipment such as 10- x 11-ft storage tanks, 8- x 8-ft batch evaporator pots and columns, 40-in. Bird centrifuges, canyon pumps and agitators, and various canyon piping systems or ''jumpers.'' For example, centrifuge or evaporator pots can be decontaminated and rebuilt for about 60 percent of the 1974 replacement cost. The combined facilities can decontaminate and repair 6 to 10 pieces of major equipment per year. Decontamination time varies with type of equipment and radioactivity levels encountered. (U.S.)

  18. Geomorphic Thresholds of Submarine Canyons Along the U.S. Atlantic Continental Margin

    Science.gov (United States)

    Brothers, D. S.; ten Brink, U. S.; Andrews, B. D.; Chaytor, J. D.

    2011-12-01

    Vast networks of submarine canyons and associated channels are incised into the U.S. Atlantic continental slope and rise. Submarine canyons form by differential erosion and deposition, primarily from sedimentary turbidity flows. Theoretical and laboratory studies have investigated the initiation of turbidity flows and their capacity to erode and entrain sedimentary material at distances far from the shelf edge. The results have helped understand the nature of turbidite deposits on the continental slope and rise. Nevertheless, few studies have examined the linkages between down-canyon sediment transport and the morphology of canyon/channel networks using mesoscale analyses of swath bathymetry data. We present quantitative analysis of 100-m resolution multibeam bathymetry data spanning ~616,000 km2 of the slope and rise between Georges Banks and the Blake Plateau (New England to North Carolina). Canyons are categorized as shelf-indenting or slope-confined based on spatial scale, vertical relief and connection with terrestrial river systems during sea level low stands. Shelf-indenting canyons usually represent the trunk-canyon of submerged channel networks. On the rise, shelf-indenting canyons have relatively well-developed channel-levees and sharp inner-thalwag incision suggesting much higher frequency and volume of turbidity flows. Because of the similarities between submarine canyon networks and terrestrial river systems, we apply methods originally developed to study fluvial morphology. Along-canyon profiles are extracted from the bathymetry data and the power-law relationship between thalwag gradient and drainage area is examined for more than 180 canyons along an ~1200 km stretch of the US Atlantic margin. We observe distinct thresholds in the power-law relationship between drainage area and gradient. Almost all canyons with heads on the upper slope contain at least two linear segments when plotted in log-log form. The first segment along the upper slope is flat

  19. Hydrogeology of Middle Canyon, Oquirrh Mountains, Tooele County, Utah

    Science.gov (United States)

    Gates, Joseph Spencer

    1963-01-01

    Geology and climate are the principal influences affecting the hydrology of Middle Canyon, Tooele County, Utah. Reconnaissance in the canyon indicated that the geologic influences on the hydrology may be localized; water may be leaking through fault and fracture zones or joints in sandstone and through solution openings in limestone of the Oquirrh formation of Pennsylvanian and Permian age. Surficial deposits of Quaternary age serve as the main storage material for ground water in the canyon and transmit water from the upper canyon to springs and drains at the canyon mouth. The upper canyon is a more important storage area than the lower canyon because the surficial deposits are thicker, and any zones of leakage in the underlying bedrock of the upper canyon probably would result in greater leakage than would similar outlets in the lower canyon.The total annual discharge from Middle Canyon, per unit of precipitation, decreased between 1910 and 1939. Similar decreases occurred in Parleys Canyon in the nearby Wasatch Range and in other drainage basins in Utah, and it is likely that most of the decrease in discharge from Middle Canyon and other canyons in Utah is due to a change in climate.Chemical analyses of water showed that the high content of sulfate and other constituents in the water from the Utah Metals tunnel, which drains into Middle Canyon, does not have a significant effect on water quality at the canyon mouth. This suggests that much of the tunnel water is lost from the channel by leakage, probably in the upper canyon, during the dry part of the year.Comparison of the 150 acre-feet of water per square mile of drainage area discharged by Middle Canyon in 1947 with the 623 and 543 acre-feet per square mile discharged in 1948 by City Creek and Mill Creek Canyons, two comparable drainage basins in the nearby Wasatch Range, also suggests that there is leakage in Middle Canyon.A hydrologic budget of the drainage basin results in an estimate that about 3,000 acre

  20. A Vegetation Database for the Colorado River Ecosystem from Glen Canyon Dam to the Western Boundary of Grand Canyon National Park, Arizona

    Science.gov (United States)

    Ralston, Barbara E.; Davis, Philip A.; Weber, Robert M.; Rundall, Jill M.

    2008-01-01

    A vegetation database of the riparian vegetation located within the Colorado River ecosystem (CRE), a subsection of the Colorado River between Glen Canyon Dam and the western boundary of Grand Canyon National Park, was constructed using four-band image mosaics acquired in May 2002. A digital line scanner was flown over the Colorado River corridor in Arizona by ISTAR Americas, using a Leica ADS-40 digital camera to acquire a digital surface model and four-band image mosaics (blue, green, red, and near-infrared) for vegetation mapping. The primary objective of this mapping project was to develop a digital inventory map of vegetation to enable patch- and landscape-scale change detection, and to establish randomized sampling points for ground surveys of terrestrial fauna (principally, but not exclusively, birds). The vegetation base map was constructed through a combination of ground surveys to identify vegetation classes, image processing, and automated supervised classification procedures. Analysis of the imagery and subsequent supervised classification involved multiple steps to evaluate band quality, band ratios, and vegetation texture and density. Identification of vegetation classes involved collection of cover data throughout the river corridor and subsequent analysis using two-way indicator species analysis (TWINSPAN). Vegetation was classified into six vegetation classes, following the National Vegetation Classification Standard, based on cover dominance. This analysis indicated that total area covered by all vegetation within the CRE was 3,346 ha. Considering the six vegetation classes, the sparse shrub (SS) class accounted for the greatest amount of vegetation (627 ha) followed by Pluchea (PLSE) and Tamarix (TARA) at 494 and 366 ha, respectively. The wetland (WTLD) and Prosopis-Acacia (PRGL) classes both had similar areal cover values (227 and 213 ha, respectively). Baccharis-Salix (BAXX) was the least represented at 94 ha. Accuracy assessment of the

  1. The Glen Canyon Dam Adaptive Management Program: An experiment in science-based resource management

    Science.gov (United States)

    kaplinski, m

    2001-12-01

    In 1996, Glen Canyon Dam Adaptive Management (GCDAMP) program was established to provide input on Glen Canyon Dam operations and their affect on the Colorado Ecosystem in Grand Canyon. The GCDAMP is a bold experiment in federal resource management that features a governing partnership with all relevant stakeholders sitting at the same table. It is a complicated, difficult process where stakeholder-derived management actions must balance resource protection with water and power delivery compacts, the Endangered Species Act, the National Historical Preservation Act, the Grand Canyon Protection Act, National Park Service Policy, and other stakeholder concerns. The program consists of four entities: the Adaptive Management Workgroup (AMWG), the Technical Workgroup (TWG), the Grand Canyon Monitoring and Research Center (GCMRC), and independent review panels. The AMWG and TWG are federal advisory committees that consists of federal and state resource managers, Native American tribes, power, environmental and recreation interests. The AMWG is develops, evaluates and recommends alternative dam operations to the Secretary. The TWG translates AMWG policy and goals into management objectives and information needs, provides questions that serve as the basis for long-term monitoring and research activities, interprets research results from the GCMRC, and prepares reports as required for the AMWG. The GCMRC is an independent science center that is responsible for all GCDAMP monitoring and research activities. The GCMRC utilizes proposal requests with external peer review and an in-house staff that directs and synthesizes monitoring and research results. The GCMRC meets regularly with the TWG and AMWG and provides scientific information on the consequences of GCDAMP actions. Independent review panels consist of external peer review panels that provide reviews of scientific activities and the program in general, technical advice to the GCMRC, TWG and AMWG, and play a critical

  2. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona

    Science.gov (United States)

    Choudhury, A.; Hoffnagle, T.L.; Cole, Rebecca A.

    2004-01-01

    A 2-yr, seasonal, parasitological study of 1,435 fish, belonging to 4 species of native fishes and 7 species of nonnative fishes from the lower Little Colorado River (LCR) and tributary creeks, Grand Canyon, Arizona, yielded 17 species of parasites. These comprised 1 myxozoan (Henneguya exilis), 2 copepods (Ergasilus arthrosis and Lernaea cyprinacea), 1 acarine (Oribatida gen. sp.), 1 piscicolid leech (Myzobdella lugubris), 4 monogeneans (Gyrodactylus hoffmani, Gyrodactylus sp., Dactylogyrus extensus, and Ligictaluridus floridanus), 4 nematodes (Contracaecum sp., Eustrongylides sp., Rhabdochona sp., and Truttaedacnitis truttae), 3 cestodes (Bothriocephalus acheilognathi, Corallobothrium fimbriatum, and Megathylacoides giganteum), and 2 trematodes (Ornithodiplostomum sp. and Posthodiplostomum sp.). Rhabdochona sp. was the only adult parasite native to the LCR. Infection intensities of Ornithodiplostomum sp. and B. acheilognathi were positively correlated with length of the humpback chub Gila cypha. Adult helminths showed a high degree of host specificity, except B. acheilognathi, which was recovered from all fish species examined but was most abundant in cyprinids. Abundance of B. acheilognathi in the humpback chub was highest in the fall and lowest in the summer in both reaches of the LCR. There was no major taxonomic difference in parasite assemblages between the 2 different reaches of the river (LC1 and LC2). Parasite community diversity was very similar in humpback chub, regardless of sampling site or time. The parasite fauna of the LCR is numerically dominated by B. acheilognathi and metacercariae of Ornithodiplostomum sp. The richest and most diverse component community occurred in a nonnative species, the channel catfish Ictalurus punctatus, but infracommunity species richness was highest in a native host, humpback chub.

  3. Vertical profiles of lung deposited surface area concentration of particulate matter measured with a drone in a street canyon.

    Science.gov (United States)

    Kuuluvainen, Heino; Poikkimäki, Mikko; Järvinen, Anssi; Kuula, Joel; Irjala, Matti; Dal Maso, Miikka; Keskinen, Jorma; Timonen, Hilkka; Niemi, Jarkko V; Rönkkö, Topi

    2018-05-23

    The vertical profiles of lung deposited surface area (LDSA) concentration were measured in an urban street canyon in Helsinki, Finland, by using an unmanned aerial system (UAS) as a moving measurement platform. The street canyon can be classified as an avenue canyon with an aspect ratio of 0.45 and the UAS was a multirotor drone especially modified for emission measurements. In the experiments of this study, the drone was equipped with a small diffusion charge sensor capable of measuring the alveolar LDSA concentration of particles. The drone measurements were conducted during two days on the same spatial location at the kerbside of the street canyon by flying vertically from the ground level up to an altitude of 50 m clearly above the rooftop level (19 m) of the nearest buildings. The drone data were supported by simultaneous measurements and by a two-week period of measurements at nearby locations with various instruments. The results showed that the averaged LDSA concentrations decreased approximately from 60 μm 2 /cm 3 measured close to the ground level to 36-40 μm 2 /cm 3 measured close to the rooftop level of the street canyon, and further to 16-26 μm 2 /cm 3 measured at 50 m. The high-resolution measurement data enabled an accurate analysis of the functional form of vertical profiles both in the street canyon and above the rooftop level. In both of these regions, exponential fits were used and the parameters obtained from the fits were thoroughly compared to the values found in literature. The results of this study indicated that the role of turbulent mixing caused by traffic was emphasized compared to the street canyon vortex as a driving force of the dispersion. In addition, the vertical profiles above the rooftop level showed a similar exponential decay compared to the profiles measured inside the street canyon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. 77 FR 55829 - Western Area Power Administration; Grapevine Canyon Wind Project Record of Decision (DOE/EIS-0427)

    Science.gov (United States)

    2012-09-11

    ... DEPARTMENT OF ENERGY Western Area Power Administration; Grapevine Canyon Wind Project Record of... one or more phases, dependent on one or more power sale contracts. The proposed wind park would... that limit construction vehicle speed limits. Foresight indicated that the wind park contractor will...

  5. Mineral resource potential map of the Blanco Mountain and Black Canyon roadless areas, Inyo and Mono counties, California

    Science.gov (United States)

    Diggles, Michael F.; Blakely, Richard J.; Rains, Richard L.; Schmauch, Steven W.

    1983-01-01

    On the basis of geologic, geochemical, and geophysical investigations and a survey of mines and prospects, the mineral resource potential for gold, silver, lead, zinc, tungsten, and barite of the Blanco Mountain and Black Canyon Roadless Areas is judged to be low to moderate, except for one local area that has high potential for gold and tungsten resources.

  6. Pre-mining trace element and radiation exposure to biota from a breccia pipe uranium mine in the Grand Canyon (Arizona, USA) watershed.

    Science.gov (United States)

    Hinck, Jo Ellen; Cleveland, Danielle; Brumbaugh, William G; Linder, Greg; Lankton, Julia

    2017-02-01

    The risks to wildlife and humans from uranium (U) mining in the Grand Canyon watershed are largely unknown. In addition to U, other co-occurring ore constituents contribute to risks to biological receptors depending on their toxicological profiles. This study characterizes the pre-mining concentrations of total arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni), selenium (Se), thallium (Tl), U, and zinc (Zn); radiation levels; and histopathology in biota (vegetation, invertebrates, amphibians, birds, and mammals) at the Canyon Mine. Gross alpha levels were below the reporting limit (4 pCi/g) in all samples, and gross beta levels were indicative of background in vegetation (<10-17 pCi/g) and rodents (<10-43.5 pCi/g). Concentrations of U, Tl, Pb, Ni, Cu, and As in vegetation downwind from the mine were likely the result of aeolian transport. Chemical concentrations in rodents and terrestrial invertebrates indicate that surface disturbance during mine construction has not resulted in statistically significant spatial differences in fauna concentrations adjacent to the mine. Chemical concentrations in egg contents and nestlings of non-aquatic birds were less than method quantification limits or did not exceed toxicity thresholds. Bioaccumulation of As, Pb, Se, Tl, and U was evident in Western spadefoot (Spea multiplicata) tadpoles from the mine containment pond; concentrations of As (28.9-31.4 μg/g) and Se (5.81-7.20 μg/g) exceeded toxicity values and were significantly greater than in tadpoles from a nearby water source. Continued evaluation of As and Se in biota inhabiting and forging in the mine containment pond is warranted as mining progresses.

  7. Submarine canyons as coral and sponge habitat on the eastern Bering Sea slope

    Directory of Open Access Journals (Sweden)

    Robert J. Miller

    2015-07-01

    Full Text Available Submarine canyons have been shown to positively influence pelagic and benthic biodiversity and ecosystem function. In the eastern Bering Sea, several immense canyons lie under the highly productive “green belt” along the continental slope. Two of these, Pribilof and Zhemchug canyons, are the focus of current conservation interest. We used a maximum entropy modeling approach to evaluate the importance of these two canyons, as well as canyons in general, as habitat for gorgonian (alcyonacean corals, pennatulacean corals, and sponges, in an area comprising most of the eastern Bering Sea slope and outer shelf. These invertebrates create physical structure that is a preferred habitat for many mobile species, including commercially important fish and invertebrates. We show that Pribilof canyon is a hotspot of structure-forming invertebrate habitat, containing over 50% of estimated high-quality gorgonian habitat and 45% of sponge habitat, despite making up only 1.7% of the total study area. The amount of quality habitat for gorgonians and sponges varied in other canyons, but canyons overall contained more high-quality habitat for structure-forming invertebrates compared to other slope areas. Bottom trawling effort was not well correlated with habitat quality for structure-forming invertebrates, and bottom-contact fishing effort in general, including longlining and trawling, was not particularly concentrated in the canyons examined. These results suggest that if conserving gorgonian coral habitat is a management goal, canyons, particularly Pribilof Canyon, may be a prime location to do this without excessive impact on fisheries.

  8. 78 FR 59234 - Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA

    Science.gov (United States)

    2013-09-26

    ... 1625-AA11 Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans... New Orleans, or his designated representative. DATES: This rule is effective September 26, 2013... Sullivan, Coast Guard Sector New Orleans; telephone 504-365-2281, email [email protected] . If...

  9. 78 FR 24987 - Regulated Navigation Area, Gulf of Mexico; Mississippi Canyon Block 20, South of New Orleans, LA

    Science.gov (United States)

    2013-04-29

    ...-AA11 Regulated Navigation Area, Gulf of Mexico; Mississippi Canyon Block 20, South of New Orleans, LA... Captain of the Port New Orleans, or his designated representative. DATES: This rule is enforced with... email Lieutenant Commander Brandon Sullivan, Coast Guard Sector New Orleans; telephone 504-365-2281...

  10. Grand Canyon as a universally accessible virtual field trip for intro Geoscience classes using geo-referenced mobile game technology

    Science.gov (United States)

    Bursztyn, N.; Pederson, J. L.; Shelton, B.

    2012-12-01

    There is a well-documented and nationally reported trend of declining interest, poor preparedness, and lack of diversity within U.S. students pursuing geoscience and other STEM disciplines. We suggest that a primary contributing factor to this problem is that introductory geoscience courses simply fail to inspire (i.e. they are boring). Our experience leads us to believe that the hands-on, contextualized learning of field excursions are often the most impactful component of lower division geoscience classes. However, field trips are becoming increasingly more difficult to run due to logistics and liability, high-enrollments, decreasing financial and administrative support, and exclusivity of the physically disabled. Recent research suggests that virtual field trips can be used to simulate this contextualized physical learning through the use of mobile devices - technology that exists in most students' hands already. Our overarching goal is to enhance interest in introductory geoscience courses by providing the kinetic and physical learning experience of field trips through geo-referenced educational mobile games and test the hypothesis that these experiences can be effectively simulated through virtual field trips. We are doing this by developing "serious" games for mobile devices that deliver introductory geology material in a fun and interactive manner. Our new teaching strategy will enhance undergraduate student learning in the geosciences, be accessible to students of diverse backgrounds and physical abilities, and be easily incorporated into higher education programs and curricula at institutions globally. Our prototype involves students virtually navigating downstream along a scaled down Colorado River through Grand Canyon - physically moving around their campus quad, football field or other real location, using their smart phone or a tablet. As students reach the next designated location, a photo or video in Grand Canyon appears along with a geological

  11. 77 FR 8895 - Jimbilnan, Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and...

    Science.gov (United States)

    2012-02-15

    ..., Pinto Valley, Black Canyon, Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon..., Eldorado, Ireteba Peaks, Nellis Wash, Spirit Mountain, and Bridge Canyon Wilderness Areas, Lake Mead... wilderness character; providing for reasonable use of Spirit Mountain and adjacent areas in a manner meeting...

  12. Use of a handheld, battery-operated chemistry analyzer for evaluation of heat-related symptoms in the backcountry of Grand Canyon National Park: a brief report.

    Science.gov (United States)

    Backer, H D; Collins, S

    1999-04-01

    To test the feasibility of using handheld, battery-operated chemical analyzers by EMS personnel in a wilderness environment to aid in the diagnosis and management of heat illness. During the summer of 1996, 3 portable clinical analyzers (i-STAT Corp, Princeton, NJ) were kept at different locations along the main hiking trail into the Grand Canyon. An operational protocol was designed for field use, and Park Service EMS personnel used the instruments at their discretion, primarily to determine serum sodium concentration and identify cases of hyponatremia. Data were collected on all EMS encounters. This study reviews our experience with the instruments. The i-STAT analyzer was used for 64 patients in the backcountry; of these uses, at least 22 were in the field and the remainder in backcountry ranger stations. Eight error messages were recorded in 6 patients. Subsequently, all but 1 had a successful determination. Among patients evacuated for further evaluation and care, serum sodium values were highly consistent with later analysis using standard laboratory equipment. The instrument was used in 31 (48%) of 64 of patients evaluated and released for self-treatment and self-evacuation, and 31 (36%) of 87 of patients evacuated by EMS personnel from the canyon. Nine cases of hyponatremia were confirmed in the field, allowing appropriate intervention. Portable clinical analyzers can reliably be used in a hot wilderness environment. In our application, it allowed identification of exercise-associated hyponatremia, an important cause of serious heat illness during endurance exercise in a hot environment. The results helped make treatment and disposition decisions.

  13. 78 FR 34894 - Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA...

    Science.gov (United States)

    2013-06-11

    ...-AA11 Regulated Navigation Area, Gulf of Mexico: Mississippi Canyon Block 20, South of New Orleans, LA... Sullivan, Coast Guard Sector New Orleans; telephone 504-365-2281, email [email protected] Transportation West Building, 1200 New Jersey Avenue SE., Washington, DC 20590, between 9 a.m. and 5 p.m., Monday...

  14. Preliminary report on the geology and hydrology of Mortandad Canyon near Los Alamos, New Mexico, with reference to disposal of liquid low-level radioactive waste

    Science.gov (United States)

    Baltz, E.H.; Abrahams, J.H.; Purtyman, W.D.

    1963-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Atomic Energy Commission and the Los Alamos Scientific Laboratory, selected the upper part of Mortandad Canyon near Los Alamos, New Mexico for a site for disposal of treated liquid low-level radioactive waste. This report summarizes the part of a study of the geology and hydrology that was done from October 1960 through June 1961. Additional work is being continued. Mortandad Canyon is a narrow east-southeast-trending canyon about 9? miles long that heads on the central part of the Pajarito Plateau at an altitude of about 7,340 feet. The canyon is tributary to the Rio Grande. The drainage area of the part of Mortandad Canyon that was investigated is about 2 square miles, and the total drainage area is about 4.9 square miles. The Pajarito Plateau is capped by the Bandelier Tuff of Pleistocene age. Mortandad Canyon is cut in the Bandelier, and alluvium covers the floor of the canyon to depths ranging from less than 1 foot to as much as 100 feet. The Bandelier is underlain by silt, sand, conglomerate, and interbedded basalt of the Santa Fe Group of Miocene, Pliocene, and Pleistocene(?) age. Some ground water is perched in the alluvium in the canyon; however, the top of the main aquifer is in the Santa Fe Group at a depth of about 990 feet below the canyon floor. Joints in the Bandelier Tuff probably were caused by shrinkage of the tuff during cooling. The joints range in width from hairline cracks to fissures several inches wide. Water can infiltrate along the open joints where the Bandelier is at the surface; however, soil, alluvial fill, and autochthonous clay inhibit infiltration on the tops of mesas and probably in the alluvium-floored canyons also. Thirty-three test holes, each less than 100 feet deep, were drilled in 10 lies across Mortandad Canyon from the western margin of the study area to just west of the Los Alamos-Santa Fe County line. Ten of the holes were cased for observation wells to measure

  15. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    Science.gov (United States)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  16. Preliminary Report on the White Canyon Area, San Juan County, Utah

    Science.gov (United States)

    Benson, William Edward Barnes; Trites, A.F.; Beroni, E.P.; Feeger, J.A.

    1952-01-01

    The White Canyon area in San Juan County, Utah, contains known deposits of copper-uranium ore and is currently being mapped and studied by the Geological Survey. To date, approximately 75 square miles, or about 20 percent of the area, has been mapped on a scale 1 inch=1 mile. The White Canyon area is underlain by more than 2,000 feet of sedimentary rocks, Carboniferous to Jurassic(?) in age. The area is on the flank of the Elk Ridge anticline, and the strata have a regional dip of 1 deg to 2 deg SW. The Shinarump conglomerate of Late Triassic age is the principal ore-bearing formation. The Shinarump consists of lenticular beds of sandstone, conglomeratic sandstone, clay, and siltstone, and ranges in thickness from a feather edge to as much as 75 feet. Locally the sandstones contain silicified and carbonized wood and fragments of charcoal. These vegetal remains are especially common in channel-fill deposits. Jointing is prominent in the western part of the area, and apparently affects all formations. Adjacent to the joints some of the redbeds in the sequence are bleached. Deposits of copper-uranium minerals have been found in the Moenkopi, Shinarump, and Chinle formations, but the only production of ore has been from the Shinarump conglomerate. The largest concentration of these minerals is in the lower third of the Shinarump, and the deposits seem to be controlled in part by ancient channel fills and in part by fractures. Locally precipitation of the copper and uranium minerals apparently has been aided by charcoal and clays. Visible uranium minerals include both hard and soft pitchblende and secondary hydrosulfates, phosphates, and silicates. In addition, unidentified uranium compounds are present in carbonized wood and charcoal, and in veinlets of hydrocarbons. Base-metal sulfides have been identified in all prospects that extend beyond the oxidized zone. Secondary copper minerals in the oxidized zone include the hydrous sulfates and carbonates, and possibly

  17. Land-cover mapping of Red Rock Canyon National Conservation Area and Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern, Clark County, Nevada

    Science.gov (United States)

    Smith, J. LaRue; Damar, Nancy A.; Charlet, David A.; Westenburg, Craig L.

    2014-01-01

    DigitalGlobe’s QuickBird satellite high-resolution multispectral imagery was classified by using Visual Learning Systems’ Feature Analyst feature extraction software to produce land-cover data sets for the Red Rock Canyon National Conservation Area and the Coyote Springs, Piute-Eldorado Valley, and Mormon Mesa Areas of Critical Environmental Concern in Clark County, Nevada. Over 1,000 vegetation field samples were collected at the stand level. The field samples were classified to the National Vegetation Classification Standard, Version 2 hierarchy at the alliance level and above. Feature extraction models were developed for vegetation on the basis of the spectral and spatial characteristics of selected field samples by using the Feature Analyst hierarchical learning process. Individual model results were merged to create one data set for the Red Rock Canyon National Conservation Area and one for each of the Areas of Critical Environmental Concern. Field sample points and photographs were used to validate and update the data set after model results were merged. Non-vegetation data layers, such as roads and disturbed areas, were delineated from the imagery and added to the final data sets. The resulting land-cover data sets are significantly more detailed than previously were available, both in resolution and in vegetation classes.

  18. Diablo Canyon

    International Nuclear Information System (INIS)

    Bindon, F.J.L.

    1986-01-01

    The paper traces the history of Diablo Canyon nuclear power station, California, which took 18 years to reach full-power testing from the planning stage. The major delays during the construction are outlined, as well as the costs of Diablo Canyon. (UK)

  19. Ghost Dancing the Grand Canyon. Southern Paiute Rock Art, Ceremony, and Cultural Landscapes.

    Science.gov (United States)

    Stoffle; Loendorf; Austin; Halmo; Bulletts

    2000-02-01

    Combining rock art studies with ethnohistory, contemporary ethnographic analysis, and the interpretations of people who share the cultural traditions being studied, this paper documents a rock art site in Kanab Creek Canyon that appears to have been the location of a Ghost Dance ceremony performed by Southern Paiute and perhaps Hualapai people in the late 1800s. Using the site as a point of departure, it focuses on the way in which synergistic associations among place, artifact, resources, events, and historic and contemporary Indian people contribute to the construction of a contextual cultural landscape.

  20. Big Canyon Creek Ecological Restoration Strategy.

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lynn; Richardson, Shannon

    2007-10-01

    He-yey, Nez Perce for steelhead or rainbow trout (Oncorhynchus mykiss), are a culturally and ecologically significant resource within the Big Canyon Creek watershed; they are also part of the federally listed Snake River Basin Steelhead DPS. The majority of the Big Canyon Creek drainage is considered critical habitat for that DPS as well as for the federally listed Snake River fall chinook (Oncorhynchus tshawytscha) ESU. The Nez Perce Soil and Water Conservation District (District) and the Nez Perce Tribe Department of Fisheries Resources Management-Watershed (Tribe), in an effort to support the continued existence of these and other aquatic species, have developed this document to direct funding toward priority restoration projects in priority areas for the Big Canyon Creek watershed. In order to achieve this, the District and the Tribe: (1) Developed a working group and technical team composed of managers from a variety of stakeholders within the basin; (2) Established geographically distinct sub-watershed areas called Assessment Units (AUs); (3) Created a prioritization framework for the AUs and prioritized them; and (4) Developed treatment strategies to utilize within the prioritized AUs. Assessment Units were delineated by significant shifts in sampled juvenile O. mykiss (steelhead/rainbow trout) densities, which were found to fall at fish passage barriers. The prioritization framework considered four aspects critical to determining the relative importance of performing restoration in a certain area: density of critical fish species, physical condition of the AU, water quantity, and water quality. It was established, through vigorous data analysis within these four areas, that the geographic priority areas for restoration within the Big Canyon Creek watershed are Big Canyon Creek from stream km 45.5 to the headwaters, Little Canyon from km 15 to 30, the mainstem corridors of Big Canyon (mouth to 7km) and Little Canyon (mouth to 7km). The District and the Tribe

  1. Influence of roadside hedgerows on air quality in urban street canyons

    Science.gov (United States)

    Gromke, Christof; Jamarkattel, Nabaraj; Ruck, Bodo

    2016-08-01

    Understanding pollutant dispersion in the urban environment is an important aspect of providing solutions to reduce personal exposure to vehicle emissions. To this end, the dispersion of gaseous traffic pollutants in urban street canyons with roadside hedges was investigated. The study was performed in an atmospheric boundary layer wind tunnel using a reduced-scale (M = 1:150) canyon model with a street-width-to-building-height ratio of W/H = 2 and a street-length-to-building-height ratio of L/H = 10. Various hedge configurations of differing height, permeability and longitudinal segmentation (continuous over street length L or discontinuous with clearings) were investigated. Two arrangements were examined: (i) two eccentric hedgerows sidewise of the main traffic lanes and (ii) one central hedgerow between the main traffic lanes. In addition, selected configurations of low boundary walls, i.e. solid barriers, were examined. For a perpendicular approach wind and in the presence of continuous hedgerows, improvements in air quality in the center area of the street canyon were found in comparison to the hedge-free reference scenario. The pollutant reductions were greater for the central hedge arrangements than for the sidewise arrangements. Area-averaged reductions between 46 and 61% were observed at pedestrian head height level on the leeward side in front of the building for the centrally arranged hedges and between 18 and 39% for the two hedges arranged sidewise. Corresponding area-averaged reductions ranging from 39 to 55% and from 1 to 20% were found at the bottom of the building facades on the leeward side. Improvements were also found in the areas at the lateral canyon ends next to the crossings for the central hedge arrangements. For the sidewise arrangements, increases in traffic pollutants were generally observed. However, since the concentrations in the end areas were considerably lower compared to those in the center area, an overall improvement remained

  2. Floodplain Assessment for the North Ancho Canyon Aggregate Area Cleanup in Technical Area 39 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-26

    This floodplain assessment was prepared in accordance with 10 Code of Federal Regulations (CFR) 1022 Compliance with Floodplain and Wetland Environmental Review Requirements, which was promulgated to implement the U.S. Department of Energy (DOE) requirements under Executive Order 11988 Floodplain Management and Executive Order 11990 Wetlands Protection. According to 10 CFR 1022, a 100-year floodplain is defined as “the lowlands adjoining inland and coastal waters and relatively flat areas and flood prone areas of offshore islands.” In this action, DOE is proposing to collect soil investigation samples and remove contaminated soil within and around selected solid waste management units (SWMUs) near and within the 100-year floodplain (hereafter “floodplain”) in north Ancho Canyon at Los Alamos National Laboratory (LANL). The work is being performed to comply with corrective action requirements under the 2016 Compliance Order on Consent.

  3. Variability in eddy sandbar dynamics during two decades of controlled flooding of the Colorado River in the Grand Canyon

    Science.gov (United States)

    Mueller, Erich R.; Grams, Paul E.; Hazel, Joseph E.; Schmidt, John C.

    2018-01-01

    Sandbars are iconic features of the Colorado River in the Grand Canyon, Arizona, U.S.A. Following completion of Glen Canyon Dam in 1963, sediment deficit conditions caused erosion of eddy sandbars throughout much of the 360 km study reach downstream from the dam. Controlled floods in 1996, 2004, and 2008 demonstrated that sand on the channel bed could be redistributed to higher elevations, and that floods timed to follow tributary sediment inputs would increase suspended sand concentrations during floods. Since 2012, a new management protocol has resulted in four controlled floods timed to follow large inputs of sand from a major tributary. Monitoring of 44 downstream eddy sandbars, initiated in 1990, shows that each controlled flood deposited significant amounts of sand and increased the size of subaerial sandbars. However, the magnitude of sandbar deposition varied from eddy to eddy, even over relatively short distances where main-stem suspended sediment concentrations were similar. Here, we characterize spatial and temporal trends in sandbar volume and site-scale (i.e., individual eddy) sediment storage as a function of flow, channel, and vegetation characteristics that reflect the reach-scale (i.e., kilometer-scale) hydraulic environment. We grouped the long-term monitoring sites based on geomorphic setting and used a principal component analysis (PCA) to correlate differences in sandbar behavior to changes in reach-scale geomorphic metrics. Sites in narrow reaches are less-vegetated, stage changes markedly with discharge, sandbars tend to remain dynamic, and sand storage change dominantly occurs in the eddy compared to the main channel. In wider reaches, where stage-change during floods may be half that of narrow sites, sandbars are more likely to be stabilized by vegetation, and floods tend to aggrade the vegetated sandbar surfaces. In these locations, deposition during controlled floods is more akin to floodplain sedimentation, and the elevation of sandbar

  4. On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons

    Science.gov (United States)

    Liu, Chun-Ho; Wong, Colman C. C.

    2014-01-01

    Pollutant dispersion over urban areas is not that well understood, in particular at the street canyon scale. This study is therefore conceived to examine how urban morphology modifies the pollutant removal, dispersion, and entrainment over urban areas. An idealized computational domain consisting of 12 two-dimensional (2D) identical street canyons of unity aspect ratio is employed. The large-eddy simulation (LES) is used to calculate the turbulent flows and pollutant transport in the urban boundary layer (UBL). An area source of uniform pollutant concentration is applied on the ground of the first street canyon. A close examination on the roof-level turbulence reveals patches of low-speed air masses in the streamwise flows and narrow high-speed downdrafts in the shear layer. Different from the flows over a smooth surface, the turbulence intensities are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses quickly in the UBL over the buildings. Partitioning the vertical pollutant flux into its mean and turbulent components demystifies that the pollutant removal is mainly governed by turbulence. Whereas, mean wind carries pollutant into and out of a street canyon simultaneously. In addition to wind speed promotion, turbulent mixing is thus required to dilute the ground-level pollutants, which are then removed from the street canyon to the UBL. Atmospheric flows slow down rapidly after the leeward buildings, leading to updrafts carrying pollutants away from the street canyons (the basic pollutant removal mechanism).

  5. Thermal bioclimate in idealized urban street canyons in Campinas, Brazil

    Science.gov (United States)

    Abreu-Harbich, Loyde V.; Labaki, Lucila C.; Matzarakis, Andreas

    2014-01-01

    Among several urban design parameters, the height-to-width ratio (H/W) and orientation are important parameters strongly affecting thermal conditions in cities. This paper quantifies changes in thermal comfort due to typical urban canyon configurations in Campinas, Brazil, and presents urban guidelines concerning H/W ratios and green spaces to adapt urban climate change. The study focuses on thermal comfort issues of humans in urban areas and performs evaluation in terms of physiologically equivalent temperature (PET), based on long-term data. Meteorological data of air temperature, relative humidity, wind speed and solar radiation over a 7-year period (2003-2010) were used. A 3D street canyon model was designed with RayMan Pro software to simulate the influence of urban configuration on urban thermal climate. The following configurations and setups were used. The model canyon was 500 m in length, with widths 9, 21, and 44 m. Its height varied in steps of 2.5 m, from 5 to 40 m. The canyon could be rotated in steps of 15°. The results show that urban design parameters such as width, height, and orientation modify thermal conditions within street canyons. A northeast-southwest orientation can reduce PET during daytime more than other scenarios. Forestry management and green areas are recommended to promote shade on pedestrian areas and on façades, and to improve bioclimate thermal stress, in particular for H/W ratio less than 0.5. The method and results can be applied by architects and urban planners interested in developing responsive guidelines for urban climate issues.

  6. 76 FR 36450 - Approval and Promulgation of Air Quality Implementation Plans; State of Nevada; Regional Haze...

    Science.gov (United States)

    2011-06-22

    ... regional haze. This legislation established the Grand Canyon Visibility Transport Commission (GCVTC), which... Canyon National Park (NP), Sycamore Canyon Wilderness Area (WA), Pine Mountain WA, Mazatal WA, and Sierra Ancha WA. In California, they are Desolation WA, Dome Land WA, Hoover WA, Joshua Tree NP, Kaiser WA...

  7. Megabenthic assemblages at the Hudson Canyon head (NW Atlantic margin): Habitat-faunal relationships

    Science.gov (United States)

    Pierdomenico, Martina; Gori, Andrea; Guida, Vincent G.; Gili, Josep-Maria

    2017-09-01

    The distribution of megabenthic communities at the head of Hudson Canyon and adjacent continental shelf was studied by means of underwater video transects and still photo imagery collected using a towed camera system. The goal was to explore the relationships between faunal distribution and physical seafloor conditions and to test the hypothesis that increased seafloor heterogeneity in the Hudson Canyon supports a larger diversity of benthic communities, compared with the adjacent continental shelf. Hierarchical cluster analysis was performed to identify benthic assemblages as defined in imagery. The BIO-ENV procedure and the Canonical Correspondence Analysis were carried out to elucidate species groupings in relation to terrain variables extracted from bathymetric data. Species accumulation curves were generated to evaluate species turn over in and out of Hudson Canyon. The results indicate that seafloor morphology is the main physical factor related to benthic community composition and distribution. Assemblages dominated by sponges, zoanthids and cup corals colonized the canyon margins and flanks, and were associated with coarse-grained sediments, while sea pen assemblages were observed along muddy seafloor within the thalweg. An assemblage dominated by sea stars occurred on the shelf, associated with a sandy seafloor. Some assemblages were exclusively observed in the canyon area, suggesting that the increased variability of seafloor composition, together with the oceanographic processes specific to the canyon area, enhance beta diversity. The colonization by benthic suspension feeders within the canyon, in contrast to shelf assemblages, mainly composed of carnivores and detritus feeders could be favored the intense hydrodynamics at the canyon head that increase the availability of suspended organic matter. From the perspective of management and conservation of marine resources, the results obtained support the relevance of Hudson Canyon as a biodiversity hotspot

  8. Vegetative communities, Davis and Lavender Canyons, Paradox Basin, Utah: ecosystem studies

    International Nuclear Information System (INIS)

    1983-04-01

    The major vegetative communities of Davis and Lavender canyons located in southeastern Utah are characterized. The report identifies potential secondary impacts and appropriate mitigation options. The Davis Canyon and Lavender Canyon Study Area contains nine major vegetative communities: galleta-shadscale, juniper-blackbrush, juniper-shadscale-ephedra, shadscale-ephedra, grayia-shadscale, juniper, drywash, greasewood, and riparian. The natural recovery times of these communities are exceedingly long. Natural reinvasion of various species would take from 15 to 100 years. No threatened or endangered plant species were identified in the study area. Davis and Lavender canyons have been subject to off-road vehicle activity and extensive grazing. The plant communities may be subject to additional impacts as a result of increased human activity and off-highway activities such as camping, hiking, and hunting could result in changes in cover, composition, and frequency of plant species. Mitigation options for potential impacts include shuttle-busing workers to the site from the highway and fencing site access roads to prevent vehicles from leaving the roads

  9. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  10. 2010 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Diablo Canyon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Diablo Canyon (2010), and San...

  11. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  12. Impacts of traffic composition and street-canyon geometry on on-road air quality in a high-rise building area

    Science.gov (United States)

    Kwak, Kyung-Hwan; Kim, Kyung Hwan; Lee, Seung-Bok; Woo, Sung Ho; Bae, Gwi-Nam; Sunwoo, Young; Baik, Jong-Jin

    2016-04-01

    Mobile measurements using a mobile laboratory and numerical simulations using a computational fluid dynamics (CFD) model were conducted over different time periods of multiple days in a high-rise building area, Seoul, Republic of Korea. Mobile measurement can provide actual on-road emission levels of air pollutants from vehicles as well as validation dataset of a CFD model. On the other hand, CFD modeling is required for the process analysis of mobile measurement data and the quantitative estimation of determining factors in complex phenomena. The target area is characterized as a busy street canyon elongated along a major road with hourly traffic volumes of approximately 4000 vehicles during working hours on weekdays. Nitrogen oxides (NOx), black carbon (BC), particle-bound polycyclic aromatic hydrocarbons (pPAH), and particle number (PN) concentrations were measured during 39 round trips of mobile laboratory. The associations of the measured NOx, BC, pPAH, and PN concentrations with the traffic volumes of individual compositions are analyzed by calculating the correlation coefficients (R2) based on linear regressions. It is found that SUV, truck, van, and bus are heavy emitters responsible for the on-road air pollution in the street canyon. Among the measured pollutants, the largest R2 is shown for pPAH. The measured NOx, BC, pPAH, and PN concentrations are unevenly distributed in the street canyon. The measured concentrations around an intersection are higher than those in between intersections, particularly for NOx and pPAH. The CFD modeling for different dispersion scenarios reveals that the intersection has counterbalancing roles in determining the on-road concentrations. The emission process acts to increase the on-road concentrations due to accelerating and idling vehicles, whereas the dispersion process acts to decrease the on-road concentrations due to lateral ventilations along the crossing street. It is needed to control the number of heavy emitters and

  13. Macrofaunal Patterns in and around du Couedic and Bonney Submarine Canyons, South Australia.

    Directory of Open Access Journals (Sweden)

    Kathleen E Conlan

    Full Text Available Two South Australian canyons, one shelf-incising (du Couedic and one slope-limited (Bonney were compared for macrofaunal patterns on the shelf and slope that spanned three water masses. It was hypothesized that community structure would (H1 significantly differ by water mass, (H2 show significant regional differences and (H3 differ significantly between interior and exterior of each canyon. Five hundred and thirty-one species of macrofauna ≥ 1 mm were captured at 27 stations situated in depth stratified transects inside and outside the canyons from 100 to 1500 m depth. The macrofauna showed a positive relationship to depth in abundance, biomass, species richness and community composition while taxonomic distinctness and evenness remained high at all depths. Biotic variation on the shelf was best defined by variation in bottom water primary production while sediment characteristics and bottom water oxygen, temperature and nutrients defined biotic variation at greater depth. Community structure differed significantly (p<0.01 among the three water masses (shelf-flowing South Australian current, upper slope Flinders current and lower slope Antarctic Intermediate Water (H1. Although community differences between the du Couedic and Bonney regions were marginally above significance at p = 0.05 (H2, over half of the species captured were unique to each region. This supports the evidence from fish and megafaunal distributions that the du Couedic and Bonney areas are in different bioregions. Overall, the canyon interiors were not significantly different in community composition from the exterior (H3. However, both canyons had higher abundance and/or biomass, increased species dominance, different species composition and coarser sediments near the canyon heads compared to outside the canyons at the same depth (500 m, suggestive of heightened currents within the canyons that influence community composition there. At 1000-1500 m, the canyon interiors were

  14. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    Science.gov (United States)

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (tamarisk seed production, or in 1986, a year following several

  15. Carbon transport in Monterey Submarine Canyon

    Science.gov (United States)

    Barry, J.; Paull, C. K.; Xu, J. P.; Clare, M. A.; Gales, J. A.; Buck, K. R.; Lovera, C.; Gwiazda, R.; Maier, K. L.; McGann, M.; Parsons, D. R.; Simmons, S.; Rosenberger, K. J.; Talling, P. J.

    2017-12-01

    Submarine canyons are important conduits for sediment transport from continental margins to the abyss, but the rate, volume, and time scales of material transport have been measured only rarely. Using moorings with current meters, sediment traps (10 m above bottom) and optical backscatter sensors, we measured near-bottom currents, suspended sediment concentrations, and sediment properties at 1300 m depth in Monterey Canyon and at a non-canyon location on the continental slope at the same depth. Flow and water column backscatter were used to characterize "ambient" conditions when tidal currents dominated the flow field, and occasional "sediment transport events" when anomalously high down-canyon flow with sediment-laden waters arrived at the canyon mooring. The ambient sediment flux measured in sediment traps in Monterey Canyon was 350 times greater than measured at the non-canyon location. Although the organic carbon content of the canyon sediment flux during ambient periods was low (1.8 %C) compared to the slope location (4.9 %C), the ambient carbon transport in the canyon was 130 times greater than at the non-canyon site. Material fluxes during sediment transport events were difficult to measure owing to clogging of sediment traps, but minimal estimates indicate that mass transport during events exceeds ambient sediment fluxes through the canyon by nearly 3 orders of magnitude, while carbon transport is 380 times greater. Estimates of the instantaneous and cumulative flux of sediment and carbon from currents, backscatter, and sediment properties indicated that: 1) net flux is down-canyon, 2) flux is dominated by sediment transport events, and 3) organic carbon flux through 1300 m in Monterey Canyon was ca. 1500 MT C per year. The injection of 1500 MTCy-1 into the deep-sea represents ca. 260 km2 of the sediment C flux measured at the continental slope station (5.8 gCm-2y-1) and is sufficient to support a benthic community carbon demand of 5 gCm-2y-1 over 300 km2.

  16. Numerical model of turbulence, sediment transport, and morphodynamics tested in the Colorado River at Grand Canyon

    Science.gov (United States)

    Alvarez, L. V.; Grams, P.

    2017-12-01

    We present a parallelized, three-dimensional, turbulence-resolving model using the Detached-Eddy Simulation (DES) technique, tested at the scale of the river-reach in the Colorado River. DES is a hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS). RANS is applied to the near-bed grid cells, where grid resolution is not sufficient to fully resolve wall turbulence. LES is applied in the flow interior. We utilize the Spalart-Allmaras one equation turbulence closure with a rough wall extension. The model resolves large-scale turbulence using DES and simultaneously integrates the suspended sediment advection-diffusion equation. The Smith and McLean suspended sediment boundary condition is used to calculate the upward and downward settling of sediment fluxes in the grid cells attached to the bed. Model results compare favorably with ADCP measurements of flow taken on the Colorado River in Grand Canyon during the High Flow Experiment (HFE) of 2008. The model accurately reproduces the size and position of the major recirculation currents, and the error in velocity magnitude was found to be less than 17% or 0.22 m/s absolute error. The mean deviation of the direction of velocity with respect to the measured velocity was found to be 20 degrees. Large-scale turbulence structures with vorticity predominantly in the vertical direction are produced at the shear layer between the main channel and the separation zone. However, these structures rapidly become three-dimensional with no preferred orientation of vorticity. Cross-stream velocities, into the main recirculation zone just upstream of the point of reattachment and out of the main recirculation region just downstream of the point of separation, are highest near the bed. Lateral separation eddies are more efficient at storing and exporting sediment than previously modeled. The input of sediment to the eddy recirculation zone occurs in the interface of the eddy and main channel. Pulsation of the

  17. Giant landslides and turbidity currents in the Agadir Canyon Region, NW-Africa

    Science.gov (United States)

    Krastel, Sebastian; Wynn, Russell B.; Stevenson, Christopher; Feldens, Peter; Mehringer, Lisa; Schürer, Anke

    2017-04-01

    Coring and drilling of the Moroccan Turbidite System off NW-Africa revealed a long sequence of turbidites, mostly sourced from the Moroccan continental margin and the volcanic Canary Islands. The largest individual flow deposits in the Moroccan Turbidite System contain sediment volumes >100 km3, although these large-scale events are relatively infrequent with a recurrence interval of 10,000 years (over the last 200,000 years). The largest siliciclastic flow in the last 200,000 years was the 'Bed 5 event', which transported 160 km3 of sediment up to 2000 km from the Agadir Canyon region to the southwest Madeira Abyssal Plain. While the Moroccan Turbidite System is extremely well investigated, almost no data from the source region, i.e. the Agadir Canyon, are available. Understanding why some submarine landslides remain as coherent blocks of sediment throughout their passage downslope, while others mix and disintegrate almost immediately after initial failure, is a major scientific challenge, which was addressed in the Agadir Canyon source region during RV Maria S. Merian Cruise MSM32 in late 2013. A major landslide area was identified 200 km south of the Agadir Canyon. A landslide was traced from this failure area to the Agadir Canyon. This landslide entered the canyon in about 2500 m water depth. Despite a significant increase in slope angle, the landslide did not disintegrate into a turbidity current when entering the canyon but moved on as landslide for at least another 200 km down the canyon. The age of the landslide ( 145 ka) does not correspond to any major turbidte deposit in the Moroccan Turbidite System, further supporting the fact that the landslide did not disintegrate into a major turbidity current. A core taken about 350 m above the thalweg in the head region of Agadir Canyon shows a single coarse-grained turbidite, which resembles the composition of the Bed 5 event in the Madeira Abyssal Plain. Hence, the Bed 5 turbidite originated as a failure in the

  18. Formative flow in bedrock canyons

    Science.gov (United States)

    Venditti, J. G.; Kwoll, E.; Rennie, C. D.; Church, M. A.

    2017-12-01

    In alluvial channels, it is widely accepted that river channel configuration is set by a formative flow that represents a balance between the magnitude and frequency of flood flows. The formative flow is often considered to be one that is just capable of filling a river channel to the top of its banks. Flows much above this formative flow are thought to cause substantial sediment transport and rearrange the channel morphology to accommodate the larger flow. This idea has recently been extended to semi-alluvial channels where it has been shown that even with bedrock exposed, the flows rarely exceed that required to entrain the local sediment cover. What constitutes a formative flow in a bedrock canyon is not clear. By definition, canyons have rock walls and are typically incised vertically, removing the possibility of the walls being overtopped, as can occur in an alluvial channel at high flows. Canyons are laterally constrained, have deep scour pools and often have width to maximum depth ratios approaching 1, an order of magnitude lower than alluvial channels. In many canyons, there are a sequence of irregularly spaced scour pools. The bed may have intermittent or seasonal sediment cover, but during flood flows the sediment bed is entrained leaving a bare bedrock channel. It has been suggested that canyons cut into weak, well-jointed rock may adjust their morphology to the threshold for block plucking because the rock bed is labile during exceptionally large magnitude flows. However, this hypothesis does not apply to canyons cut into massive crystalline rock where abrasion is the dominant erosion process. Here, we argue that bedrock canyon morphology is adjusted to a characteristic flow structure developed in bedrock canyons. We show that the deeply scoured canyon floor is adjusted to a velocity inversion that is present at low flows, but gets stronger at high flows. The effect is to increase boundary shear stresses along the scour pool that forms in constricted

  19. Let's Bet on Sediments! Hudson Canyon Cruise--Grades 9-12. Focus: Sediments of Hudson Canyon.

    Science.gov (United States)

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD.

    These activities are designed to teach about the sediments of Hudson Canyon. Students investigate and analyze the patterns of sedimentation in the Hudson Canyon, observe how heavier particles sink faster than finer particles, and learn that submarine landslides are avalanches of sediment in deep ocean canyons. The activity provides learning…

  20. The Jurassic section along McElmo Canyon in southwestern Colorado

    Science.gov (United States)

    O'Sullivan, Robert B.

    1997-01-01

    In McElmo Canyon, Jurassic rocks are 1500-1600 ft thick. Lower Jurassic rocks of the Glen Canyon Group include (in ascending order) Wingate Sandstone, Kayenta Formation and Navajo Sandstone. Middle Jurassic rocks are represented by the San Rafael Group, which includes the Entrada Sandstone and overlying Wanakah Formation. Upper Jurassic rocks comprise the Junction Creek Sandstone overlain by the Morrison Formation. The Burro Canyon Formation, generally considered to be Lower Cretaceous, may be Late Jurassic in the McElmo Canyon area and is discussed with the Jurassic. The Upper Triassic Chinle Formation in the subsurface underlies, and the Upper Cretaceous Dakota Sandstone overlies, the Jurassic section. An unconformity is present at the base of the Glen Canyon Group (J-0), at the base of the San Rafael Group (J-2), and at the base of the Junction Creek Sandstone (J-5). Another unconformity of Cretaceous age is at the base of the Dakota Sandstone. Most of the Jurassic rocks consist of fluviatile, lacustrine and eolian deposits. The basal part of the Entrada Sandstone and the Wanakah Formation may be of marginal marine origin.

  1. Marine litter in submarine canyons of the Bay of Biscay

    Science.gov (United States)

    van den Beld, Inge M. J.; Guillaumont, Brigitte; Menot, Lénaïck; Bayle, Christophe; Arnaud-Haond, Sophie; Bourillet, Jean-François

    2017-11-01

    Marine litter is a matter of increasing concern worldwide, from shallow seas to the open ocean and from beaches to the deep-seafloor. Indeed, the deep sea may be the ultimate repository of a large proportion of litter in the ocean. We used footage acquired with a Remotely Operated Vehicle (ROV) and a towed camera to investigate the distribution and composition of litter in the submarine canyons of the Bay of Biscay. This bay contains many submarine canyons housing Vulnerable Marine Ecosystems (VMEs) such as scleractinian coral habitats. VMEs are considered to be important for fish and they increase the local biodiversity. The objectives of the study were to investigate and discuss: (i) litter density, (ii) the principal sources of litter, (iii) the influence of environmental factors on the distribution of litter, and (iv) the impact of litter on benthic communities. Litter was found in all 15 canyons and at three sites on the edge of the continental shelf/canyon, in 25 of 29 dives. The Belle-île and Arcachon Canyons contained the largest amounts of litter, up to 12.6 and 9.5 items per 100 images respectively. Plastic items were the most abundant (42%), followed by fishing-related items (16%). The litter had both a maritime and a terrestrial origin. The main sources could be linked to fishing activities, major shipping lanes and river discharges. Litter appeared to accumulate at water depths of 801-1100 m and 1401-1700 m. In the deeper of these two depth ranges, litter accumulated on a geologically structured area, accounting for its high frequency at this depth. A larger number of images taken in areas of coral in the shallower of these two depth ranges may account for the high frequency of litter detection at this depth. A larger number of litter items, including plastic objects in particular, were observed on geological structures and in coral areas than on areas of bare substratum. The distribution of fishing-related items was similar for the various types of

  2. Yellowcake National Park

    International Nuclear Information System (INIS)

    Dagget, D.

    1985-01-01

    Exploration for and mining of uranium ore is going on within 10 miles of the Grand Canyon National Park. The current rush started in 1980, when a Denver-based company, Energy Fuels Nuclear, took over a claim in Hack Canyon and uncovered a very rich deposit of uranium ore. Recent explorations have resulted in some 1300 claims in the area around the Grand Canyon, many of them in the Arizona Strip, the land between the Canyon and Utah. The center of current controversy is the 1872 Mining Law. Replacement of the law with a leasing system similar to that used for leasable minerals such as coal, oil shale, oil and gas, potash, and phosphate is advocated. 1 figure

  3. Scientific monitoring plan in support of the selected alternative of the Glen Canyon Dam Long-Term Experimental and Management Plan

    Science.gov (United States)

    Vanderkooi, Scott P.; Kennedy, Theodore A.; Topping, David J.; Grams, Paul E.; Ward, David L.; Fairley, Helen C.; Bair, Lucas S.; Sankey, Joel B.; Yackulic, Charles B.; Schmidt, John C.

    2017-01-18

    IntroductionThe purpose of this document is to describe a strategy by which monitoring and research data in the natural and social sciences will be collected, analyzed, and provided to the U.S. Department of the Interior (DOI), its bureaus, and to the Glen Canyon Dam Adaptive Management Program (GCDAMP) in support of implementation of the Glen Canyon Dam Long-Term Experimental and Management Plan (LTEMP) (U.S. Department of the Interior, 2016a). The selected alternative identified in the LTEMP Record of Decision (ROD) (U.S. Department of the Interior, 2016b) describes various data collection, analysis, modeling, and interpretation efforts to be conducted by the U.S. Geological Survey’s (USGS) Grand Canyon Monitoring and Research Center (GCMRC), partner agencies, and cooperators that will inform decisions about operations of Glen Canyon Dam and management of downstream resources between 2017 and 2037, the performance period of the LTEMP. General data collection, analysis, modeling, and interpretation activities are described in this science plan, whereas specific monitoring and research activities and detailed study plans are to be described in the GCDAMP’s triennial work plans (TWPs) to be developed by the Bureau of Reclamation and GCMRC with input from partner agencies and cooperators during the LTEMP period, which are to be reviewed and recommended by the GCDAMP and approved by the Secretary of the Interior. The GCDAMP consists of several components, the primary committee being the Adaptive Management Work Group (AMWG). This Federal advisory committee is composed of 25 agencies and stakeholder groups and is chaired by the Secretary of the Interior’s designee. The AMWG makes recommendations to the Secretary of the Interior concerning operations of Glen Canyon Dam and other experimental management actions that are intended to fulfill some obligations of the Grand Canyon Protection Act of 1992. The Technical Work Group (TWG) is a subcommittee of the AMWG and

  4. Contemporary sediment-transport processes in submarine canyons.

    Science.gov (United States)

    Puig, Pere; Palanques, Albert; Martín, Jacobo

    2014-01-01

    Submarine canyons are morphological incisions into continental margins that act as major conduits of sediment from shallow- to deep-sea regions. However, the exact mechanisms involved in sediment transfer within submarine canyons are still a subject of investigation. Several studies have provided direct information about contemporary sedimentary processes in submarine canyons that suggests different modes of transport and various triggering mechanisms. Storm-induced turbidity currents and enhanced off-shelf advection, hyperpycnal flows and failures of recently deposited fluvial sediments, dense shelf-water cascading, canyon-flank failures, and trawling-induced resuspension largely dominate present-day sediment transfer through canyons. Additionally, internal waves periodically resuspend ephemeral deposits within canyons and contribute to dispersing particles or retaining and accumulating them in specific regions. These transport processes commonly deposit sediments in the upper- and middle-canyon reaches for decades or centuries before being completely or partially flushed farther down-canyon by large sediment failures.

  5. Hydrogeology and deformation of sandbars in response to fluctuations in flow of the Colorado River in the Grand Canyon, Arizona

    Science.gov (United States)

    Carpenter, M.C.; Carruth, R.L.; Fink, J.B.; Boling, J.K.; Cluer, B.L.

    1995-01-01

    Rill erosion, slumping, and fissuring develop on seepage faces of many sandbars along the Colorado River in the Grand Canyon. These processes, observed at low river stage, are a response to residual head gradients in the sandbars caused by the river-stage fluctuation. Three sandbars were instrumented with sensors for continual monitoring of pore pressure and ground-water temperature within the sandbars and river stage. Two of the sandbars also had tilt sensors to aid in determining the relation between ground-water flow within and out of the sandbars and sandbar deformation. Tilting at sandbar 43.1L occurred on the downward limb of the hydrograph in the absence of scour, indicating slumping or a slump-creep sequence. The deformation was caused by outward-flowing bank storage, oversteepening of the lower part of the slope in the zone of fluctuating river stage by filling, and increased effective stress. At sandbar 172.3L, tilts were probably all related to scour and occurred on the rising limb of a hydrograph. Tilt occurred on April 17, May 7, May 13, June 18, and September 1, 1991. On September 1, the entire face of sandbar 172.3L was scoured. Rill erosion and slumping accompanied by measured tilts continued in reduced magnitude on sandbar 43.1L during interim flows. Thus, reduction in the range of discharge does not eliminate degradation caused by rill erosion, slumping, and fissuring. The importance of the ground-water processes is that they occur on every sandbar and become increasingly important on all sandbars in the absence of sandbar-building flows.

  6. Effectiveness of green infrastructure for improvement of air quality in urban street canyons.

    Science.gov (United States)

    Pugh, Thomas A M; Mackenzie, A Robert; Whyatt, J Duncan; Hewitt, C Nicholas

    2012-07-17

    Street-level concentrations of nitrogen dioxide (NO(2)) and particulate matter (PM) exceed public health standards in many cities, causing increased mortality and morbidity. Concentrations can be reduced by controlling emissions, increasing dispersion, or increasing deposition rates, but little attention has been paid to the latter as a pollution control method. Both NO(2) and PM are deposited onto surfaces at rates that vary according to the nature of the surface; deposition rates to vegetation are much higher than those to hard, built surfaces. Previously, city-scale studies have suggested that deposition to vegetation can make a very modest improvement (street canyons. This study shows that increasing deposition by the planting of vegetation in street canyons can reduce street-level concentrations in those canyons by as much as 40% for NO(2) and 60% for PM. Substantial street-level air quality improvements can be gained through action at the scale of a single street canyon or across city-sized areas of canyons. Moreover, vegetation will continue to offer benefits in the reduction of pollution even if the traffic source is removed from city centers. Thus, judicious use of vegetation can create an efficient urban pollutant filter, yielding rapid and sustained improvements in street-level air quality in dense urban areas.

  7. Effect of stable stratification on dispersion within urban street canyons: A large-eddy simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex; Norford, Leslie K.

    2016-11-01

    This study employs a validated large-eddy simulation (LES) code with high tempo-spatial resolution to investigate the effect of a stably stratified roughness sublayer (RSL) on scalar transport within an urban street canyon. The major effect of stable stratification on the flow and turbulence inside the street canyon is that the flow slows down in both streamwise and vertical directions, a stagnant area near the street level emerges, and the vertical transport of momentum is weakened. Consequently, the transfer of heat between the street canyon and overlying atmosphere also gets weaker. The pollutant emitted from the street level 'pools' within the lower street canyon, and more pollutant accumulates within the street canyon with increasing stability. Under stable stratification, the dominant mechanism for pollutant transport within the street canyon has changed from ejections (flow carries high-concentration pollutant upward) to unorganized motions (flow carries high-concentration pollutant downward), which is responsible for the much lower dispersion efficiency under stable stratifications.

  8. Aquatic macroinvertebrates and water quality in Sandia Canyon

    International Nuclear Information System (INIS)

    Bennett, K.

    1994-05-01

    In 1990, field studies of water quality and stream macroinvertebrate communities were initiated in Sandia Canyon at Los Alamos National Laboratory. The studies were designed to establish baseline data and to determine the effects of routine discharges of industrial and sanitary waste. Water quality measurements were taken and aquatic macroinvertebrates sampled at three permanent stations within the canyon. Two of the three sample stations are located where the stream regularly receives industrial and sanitary waste effluents. These stations exhibited a low diversity of macroinvertebrates and slightly degraded water quality. The last sample station, located approximately 0.4 km (0.25 mi) downstream from the nearest wastewater outfall, appears to be in a zone of recovery where water quality parameters more closely resemble those found in natural streams in the Los Alamos area. A large increase in macroinvertebrate diversity was also observed at the third station. These results indicate that effluents discharged into Sandia Canyon have a marked effect on water quality and aquatic macroinvertebrate communities

  9. Marble Canyon spring sampling investigation

    International Nuclear Information System (INIS)

    McCulley, B.

    1985-10-01

    The Mississippian Leadville Limestone is the most permeable formation in the lower hydrostratigraphic unit underlying the salt beds of the Paradox Formation in Gibson Dome, Paradox Basin, Utah, which is being considered as a potential nuclear waste repository site. The closest downgradient outcrop of the Mississippian limestone is along the Colorado River in Marble Canyon, Arizona. This report describes the sampling and interpretation of springs in that area to assess the relative contribution of Gibson Dome-type Leadville Limestone ground water to that spring discharge. The high-volume (hundreds of liters per second or thousands of gallons per minute) springs discharging from fault zones in Marble Canyon are mixtures of water recharged west of the Colorado River on the Kaibab Plateau and east of the river in the Kaiparowits basin. No component of Gibson Dome-type Leadville Limestone ground water is evident in major and trace element chemistry or isotopic composition of the Marble Canyon Springs. A low-volume (0.3 liters per second or 5 gallons per minute) spring with some chemical and isotopic characteristics of Gibson Dome-type Leadville Limestone water diluted by Kaiparowits basin-type water issues from a travertine mound in the Bright Angel Shale on the Little Colorado River. However, the stable isotopic composition and bromide levels of that spring discharge, in addition to probable ground-water flow paths, contradict the dilution hypothesis

  10. Assessment of changes at Glen Canyon Dam

    International Nuclear Information System (INIS)

    Cherry, D.; McCoy, J.; Crandall, S.

    1991-01-01

    This paper describes the complexity associated with the assessment of financial impacts of proposed and actual short-term restrictions at Glen Canyon Dam. The reasons for these restrictions are discussed as well as the methods used to measure their financial impact to Western Area Power Administration

  11. Street canyon aerosol pollutant transport measurements.

    Science.gov (United States)

    Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D

    2004-12-01

    Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.

  12. Potential of breccia pipes in the Mohawk Canyon Area, Hualapai Indian Reservation, Arizona

    International Nuclear Information System (INIS)

    Wenrich, K.J.; Billingsley, G.H.; Van Gosen, B.S.

    1990-01-01

    The Hualapai Indian Reservation is on the southwestern corner of the Colorado Plateau in northern Arizona. Hundreds of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northern Arizona. The pipes originated in the Mississippian Redwall Limestone and stoped their way upward through the upper Paleozoic strata, locally extending into the Triassic Moenkopi and Chinle Formations. The occurrence of high-grade U ore, associated with potentially economic concentrations of Cu, Ag, Pb, Zn, V, Co, and Ni in some of these pipes, has stimulated mining activity in northern Arizona despite the depressed market for most of these metals. Two breccia pipes, 241, and 242, have significant mineralized rock exposed on the Esplanade erosion surface; unfortunately, their economic potential is questionable because of their inaccessibility at the bottom of Mohawk Canyon. All warrant further exploration

  13. Carbon isotopes from fossil packrat pellets and elevational movements of Utah agave plants reveal the Younger Dryas cold period in Grand Canyon, Arizona

    Science.gov (United States)

    Cole, K.L.; Arundel, S.T.

    2005-01-01

    Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.

  14. Durable terrestrial bedrock predicts submarine canyon formation

    Science.gov (United States)

    Smith, Elliot; Finnegan, Noah J.; Mueller, Erich R.; Best, Rebecca J.

    2017-01-01

    Though submarine canyons are first-order topographic features of Earth, the processes responsible for their occurrence remain poorly understood. Potentially analogous studies of terrestrial rivers show that the flux and caliber of transported bedload are significant controls on bedrock incision. Here we hypothesize that coarse sediment load could exert a similar role in the formation of submarine canyons. We conducted a comprehensive empirical analysis of canyon occurrence along the West Coast of the contiguous United States which indicates that submarine canyon occurrence is best predicted by the occurrence of durable crystalline bedrock in adjacent terrestrial catchments. Canyon occurrence is also predicted by the flux of bed sediment to shore from terrestrial streams. Surprisingly, no significant correlation was observed between canyon occurrence and the slope or width of the continental shelf. These findings suggest that canyon incision is promoted by greater yields of durable terrestrial clasts to the shore.

  15. Megafauna of vulnerable marine ecosystems in French mediterranean submarine canyons: Spatial distribution and anthropogenic impacts

    Science.gov (United States)

    Fabri, M.-C.; Pedel, L.; Beuck, L.; Galgani, F.; Hebbeln, D.; Freiwald, A.

    2014-06-01

    impacts show that seafloor disturbance by benthic fishing is mainly attributable to trawling in the Gulf of Lion and to long lines where rocky substrates are present. The bauxite residue (red mud) expelled in the Cassidaigne canyon was seen to prevent fauna from settling at the bottom of the canyon and it covered much of the flanks. Litter was present in all of the canyons and especially in considerable quantities in the Ligurian Sea, where the heads of the canyons are closer to the coast. Three Marine Protected Areas and one fishing area with restricted access have recently been established and should permit the preservation of these deep ecosystems.

  16. Floodplain Assessment for the Middle Los Alamos Canyon Aggregate Area Investigations in Technical Area 02 at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hathcock, Charles Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    The proposed action being assessed in this document occurs in TA-02 in the bottom of Los Alamos Canyon. The DOE proposes to conduct soil sampling at AOC 02-011 (d), AOC 02- 011(a)(ii), and SWMU 02-005, and excavate soils in AOC 02-011(a)(ii) as part of a corrective actions effort. Additional shallow surface soil samples (soil grab samples) will be collected throughout the TA-02 area, including within the floodplain, to perform ecotoxicology studies (Figures 1 and 2). The excavation boundaries in AOC 02-011(a)(ii) are slightly within the delineated 100-year floodplain. The project will use a variety of techniques for soil sampling and remediation efforts to include hand/digging, standard hand auger/sampling, excavation using machinery such as backhoe and front end loader and small drill rig. Heavy equipment will traverse the floodplain and spoils piles will be staged in the floodplain within developed or previously disturbed areas (e.g., existing paved roads and parking areas). The project will utilize and maintain appropriate best management practices (BMPs) to contain excavated materials, and all pollutants, including oil from machinery/vehicles. The project will stabilize disturbed areas as appropriate at the end of the project.

  17. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    Science.gov (United States)

    Stevens, Thomas; Paull, Charles K.; Ussler, William III; McGann, Mary; Buylaert, Jan-Pieter; Lundsten, Eve M.

    2013-01-01

    While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry into the canyon head while the 14C ages of benthic foraminifera record the deposition of hemipelagic sediments that bound the sand horizons. We use both single-grain and small (∼2 mm area) single-aliquot regeneration approaches on vibracore samples from fining-upward sequences at various water depths to demonstrate relatively rapid, decadal-scale sand transport to at least 1.1 km depth and more variable decadal- to millennial-scale transport to a least 3.5 km depth on the fan. Significant differences between the time sand was last exposed at the canyon head (OSL age) and the timing of deposition of the sand (from 14C ages of benthic foraminifera in bracketing hemipelagic sediments) are interpreted as indicating that the sand does not pass through the entire canyon instantly in large individual events, but rather moves multiple times before emerging onto the fan. The increased spread in single-grain OSL dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL ages that are consistent with a sub-decadal recurrence frequency while the fining-upward sand sequences on the fan indicate that the channel is still experiencing events with a 150

  18. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs

  19. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization.

  20. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has fond that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 181 figs., 175 tabs.

  1. Environmental assessment: Davis Canyon site, Utah

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization.

  2. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considering for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization

  3. Environmental assessment: Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high- level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. These evaluations were reported in draft environmental assessments (EAs), which were issued for public review and comment. After considering the comments received on the draft EAs, the DOE prepared the final EA. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site -- the Lavender Canyon site. Although the Lavender Canyon site is suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. Furthermore, the DOE has found that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of the five sites suitable for characterization

  4. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Science.gov (United States)

    Miller, Robert J; Hocevar, John; Stone, Robert P; Fedorov, Dmitry V

    2012-01-01

    Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  5. Late Holocene earthquake history of the Brigham City segment of the Wasatch fault zone at the Hansen Canyon, Kotter Canyon, and Pearsons Canyon trench sites, Box Elder County, Utah

    Science.gov (United States)

    DuRoss, Christopher B.; Personius, Stephen F.; Crone, Anthony J.; McDonald, Greg N.; Briggs, Richard W.

    2012-01-01

    Of the five central segments of the Wasatch fault zone (WFZ) having evidence of recurrent Holocene surface-faulting earthquakes, the Brigham City segment (BCS) has the longest elapsed time since its most recent surface-faulting event (~2.1 kyr) compared to its mean recurrence time between events (~1.3 kyr). Thus, the BCS has the highest time-dependent earthquake probability of the central WFZ. We excavated trenches at three sites––the Kotter Canyon and Hansen Canyon sites on the north-central BCS and Pearsons Canyon site on the southern BCS––to determine whether a surface-faulting earthquake younger than 2.1 ka occurred on the BCS. Paleoseismic data for Hansen Canyon and Kotter Canyon confirm that the youngest earthquake on the north-central BCS occurred before 2 ka, consistent with previous north-central BCS investigations at Bowden Canyon and Box Elder Canyon. At Hansen Canyon, the most recent earthquake is constrained to 2.1–4.2 ka and had 0.6–2.5 m of vertical displacement. At Kotter Canyon, we found evidence for two events at 2.5 ± 0.3 ka and 3.5 ± 0.3 ka, with an average displacement per event of 1.9–2.3 m. Paleoseismic data from Pearsons Canyon, on the previously unstudied southern BCS, indicate that a post-2 ka earthquake ruptured this part of the segment. The Pearsons Canyon earthquake occurred at 1.2 ± 0.04 ka and had 0.1–0.8 m of vertical displacement, consistent with our observation of continuous, youthful scarps on the southern 9 km of the BCS having 1–2 m of late Holocene(?) surface offset. The 1.2-ka earthquake on the southern BCS likely represents rupture across the Weber–Brigham City segment boundary from the penultimate Weber-segment earthquake at about 1.1 ka. The Pearsons Canyon data result in a revised length of the BCS that has not ruptured since 2 ka (with time-dependent probability implications), and provide compelling evidence of at least one segment-boundary failure and multi-segment rupture on the central WFZ. Our

  6. Traveler Information Services in Rural Tourism Areas. Appendix B: Qualitative Interviews and Focus Groups

    Science.gov (United States)

    2000-06-30

    Qualitative interviews were conducted with key informants and with tourists in northwest Arizona in Flagstaff and near the Grand Canyon National Park, Arizona, and in Branson, Missouri, in August and September 1998 (respectively). The interviews aske...

  7. Study of traffic-related pollutant removal from street canyon with trees: dispersion and deposition perspective.

    Science.gov (United States)

    Morakinyo, Tobi Eniolu; Lam, Yun Fat

    2016-11-01

    Numerical experiments involving street canyons of varying aspect ratio with traffic-induced pollutants (PM 2.5 ) and implanted trees of varying aspect ratio, leaf area index, leaf area density distribution, trunk height, tree-covered area, and tree planting pattern under different wind conditions were conducted using a computational fluid dynamics (CFD) model, ENVI-met. Various aspects of dispersion and deposition were investigated, which include the influence of various tree configurations and wind condition on dispersion within the street canyon, pollutant mass at the free stream layer and street canyon, and comparison between mass removal by surface (leaf) deposition and mass enhancement due to the presence of trees. Results revealed that concentration level was enhanced especially within pedestrian level in street canyons with trees relative to their tree-free counterparts. Additionally, we found a dependence of the magnitude of concentration increase (within pedestrian level) and decrease (above pedestrian level) due to tree configuration and wind condition. Furthermore, we realized that only ∼0.1-3 % of PM 2.5 was dispersed to the free stream layer while a larger percentage (∼97 %) remained in the canyon, regardless of its aspect ratio, prevailing wind condition, and either tree-free or with tree (of various configuration). Lastly, results indicate that pollutant removal due to deposition on leaf surfaces is potentially sufficient to counterbalance the enhancement of PM 2.5 by such trees under some tree planting scenarios and wind conditions.

  8. Large-eddy simulation of pollutant dispersion from a ground-level area source over urban street canyons with irreversible chemical reactions

    Science.gov (United States)

    Du, T. Z.; Liu, C.-H.; Zhao, Y. B.

    2014-10-01

    In this study, the dispersion of chemically reactive pollutants is calculated by large-eddy simulation (LES) in a neutrally stratified urban canopy layer (UCL) over urban areas. As a pilot attempt, idealized street canyons of unity building-height-to-street-width (aspect) ratio are used. Nitric oxide (NO) is emitted from the ground surface of the first street canyon into the domain doped with ozone (O3). In the absence of ultraviolet radiation, this irreversible chemistry produces nitrogen dioxide (NO2), developing a reactive plume over the rough urban surface. A range of timescales of turbulence and chemistry are utilized to examine the mechanism of turbulent mixing and chemical reactions in the UCL. The Damköhler number (Da) and the reaction rate (r) are analyzed along the vertical direction on the plane normal to the prevailing flow at 10 m after the source. The maximum reaction rate peaks at an elevation where Damköhler number Da is equal or close to unity. Hence, comparable timescales of turbulence and reaction could enhance the chemical reactions in the plume.

  9. A description of the katabatic ''plume'' from Coal Creek Canyon and its fate in the Rocky Flats Area

    International Nuclear Information System (INIS)

    Coulter, R.L.; Shannon, J.D.

    1993-01-01

    Katabatic flow from Coal Creek Canyon often affects the region that includes the Rocky Flats Plant near Denver, Colorado. The flow from the canyon enters a wide, gently sloping plain approximately 5 km upwind of the plant. Measurements of this flow are combined with a theoretical analysis that describes the dimensions and strength of the flow across the plains as a function of downwind distance from Coal Creek

  10. Structure-forming corals and sponges and their use as fish habitat in Bering Sea submarine canyons.

    Directory of Open Access Journals (Sweden)

    Robert J Miller

    Full Text Available Continental margins are dynamic, heterogeneous settings that can include canyons, seamounts, and banks. Two of the largest canyons in the world, Zhemchug and Pribilof, cut into the edge of the continental shelf in the southeastern Bering Sea. Here currents and upwelling interact to produce a highly productive area, termed the Green Belt, that supports an abundance of fishes and squids as well as birds and marine mammals. We show that in some areas the floor of these canyons harbors high densities of gorgonian and pennatulacean corals and sponges, likely due to enhanced surface productivity, benthic currents and seafloor topography. Rockfishes, including the commercially important Pacific ocean perch, Sebastes alutus, were associated with corals and sponges as well as with isolated boulders. Sculpins, poachers and pleuronectid flounders were also associated with corals in Pribilof Canyon, where corals were most abundant. Fishes likely use corals and sponges as sources of vertical relief, which may harbor prey as well as provide shelter from predators. Boulders may be equivalent habitat in this regard, but are sparse in the canyons, strongly suggesting that biogenic structure is important fish habitat. Evidence of disturbance to the benthos from fishing activities was observed in these remote canyons. Bottom trawling and other benthic fishing gear has been shown to damage corals and sponges that may be very slow to recover from such disturbance. Regulation of these destructive practices is key to conservation of benthic habitats in these canyons and the ecosystem services they provide.

  11. Hudson Canyon benthic habitats characterization and mapping by integrated analysis of multidisciplinary data

    Science.gov (United States)

    Pierdomenico, Martina; Guida, Vincent G.; Rona, Peter A.; Macelloni, Leonardo; Scranton, Mary I.; Asper, Vernon; Diercks, Arne

    2013-04-01

    Hudson Canyon, about 180 km SE of New York City, is the largest eastern U.S. submarine canyon and is under consideration for HAPC (Habitat Area of Particular Concern) status, representing a fisheries and biodiversity hot spot. Interest in the area, within the perspective of ecosystem based management, marine spatial planning, habitat and species conservation, led to a joint project between NOAA Northeast Fisheries, U.S. Geological Survey (USGS), Mississippi Mineral Research Institute (MMRI), National Institute for Undersea Science and Technology (NIUST), Stony Brook and Rutgers Universities for the study of benthic habitats, that includes the assembly of existing data with newly collected ones: acoustic mapping, visual ground-truthing, hydrographic, sedimentological, and trawl data collections. Acoustic mapping, performed using AUV-mounted multibeam sonar, provided ultra-high resolution bathymetric and backscatter imagery (3m and 1m respectively) at all water depths for identification of geomorphological features and for the characterization of surficial sediments along the two thirds of the shelf portion of the canyon. Identification of benthic and demersal communities was accomplished by visual ground thruthing with underwater vehicle video and still cameras, and from trawl catch data. A CTD-rosette sampler provided water column salinity-temperature profiles and water samples for dissolved methane analysis in the vicinity of suspected bottom sources. Analysis of data revealed a complex of topographic structures and hydrological patterns that provide a wide range of physical habitats in a relatively small area. A mosaic of sandy and muddy substrates, gravel beds, rock outcrops, and semilithified clay outcrops host rich and varied faunal assemblages, including deepwater corals and sponge communities. Pockmark fields, occurring below 300 m depth, suggest that methane-based chemosynthetic carbonate deposition contributes to creation of specific hard bottom habitats

  12. Flow dynamics around downwelling submarine canyons

    Directory of Open Access Journals (Sweden)

    J. M. Spurgin

    2014-10-01

    Full Text Available Flow dynamics around a downwelling submarine canyon were analysed with the Massachusetts Institute of Technology general circulation model. Blanes Canyon (northwestern Mediterranean was used for topographic and initial forcing conditions. Fourteen scenarios were modelled with varying forcing conditions. Rossby and Burger numbers were used to determine the significance of Coriolis acceleration and stratification (respectively and their impacts on flow dynamics. A new non-dimensional parameter (χ was introduced to determine the significance of vertical variations in stratification. Some simulations do see brief periods of upwards displacement of water during the 10-day model period; however, the presence of the submarine canyon is found to enhance downwards advection of density in all model scenarios. High Burger numbers lead to negative vorticity and a trapped anticyclonic eddy within the canyon, as well as an increased density anomaly. Low Burger numbers lead to positive vorticity, cyclonic circulation, and weaker density anomalies. Vertical variations in stratification affect zonal jet placement. Under the same forcing conditions, the zonal jet is pushed offshore in more uniformly stratified domains. The offshore jet location generates upwards density advection away from the canyon, while onshore jets generate downwards density advection everywhere within the model domain. Increasing Rossby values across the canyon axis, as well as decreasing Burger values, increase negative vertical flux at shelf break depth (150 m. Increasing Rossby numbers lead to stronger downwards advection of a passive tracer (nitrate, as well as stronger vorticity within the canyon. Results from previous studies are explained within this new dynamic framework.

  13. Multibeam bathymetric survey of the Ipala Submarine Canyon, Jalisco, Mexico (20°N): The southern boundary of the Banderas Forearc Block?

    Science.gov (United States)

    Urías Espinosa, J.; Bandy, W. L.; Mortera Gutiérrez, C. A.; Núñez Cornú, Fco. J.; Mitchell, N. C.

    2016-03-01

    The Middle America Trench bends sharply northward at 20°N. This, along with the close proximity of the Rivera-North America Euler pole to the northern end of this trench, sharply increases the obliquity of subduction at 20°N. By analogy with other subduction zones with similar sharply changing obliquity, significant trench parallel extension is expected to exist in the forearc region near the bend. To evaluate this possibility, multibeam bathymetric, seafloor backscatter and sub-bottom seismic reflection data were collected in this area during the MORTIC08 campaign of the B.O. El Puma. These data image in detail a large submarine canyon (the Ipala Canyon) extending from the coast at 20°05‧N to the Middle America Trench at 19°50‧N. This canyon is 114 km long and is fed by sediments originating from two, possibly three, small rivers: the Ipala, Tecolotlán and Maria Garza. This canyon deeply incises (up to 600 m) the entire continental slope and at least the outer part of the shelf. Within the canyon, we observe meanders and narrow channels produced by turbidity flows indicating that the canyon is active. In the marginal areas of the canyon slumps, rills, and uplifts suggest that mass movements and fluid flow have had a major impact on the seafloor morphology. The seafloor bathymetry, backscatter images and sub-bottom reflection profiles evidence the tectonic processes occurring in this area. Of particular interest, the canyon is deflected by almost 90° at three locations, the deflections all having a similar azimuth of between 125° and 130°. Given the prominence and geometry of this canyon, along with its tectonic setting, we propose that the presence of the canyon is related to extension produced by the sharp change in the plate convergence. If so, the canyon may lie along the southeast boundary of a major forearc block (the Banderas Forearc Block).

  14. 76 FR 66034 - Proposed Foreign-Trade Zone-Ada and Canyon Counties, ID, Under Alternative Site Framework...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF COMMERCE Foreign-Trade Zones Board [Docket 65-2011] Proposed Foreign-Trade Zone--Ada... establish a general-purpose foreign-trade zone at sites in Ada and Canyon Counties, Idaho, adjacent to the... proposed service area under the ASF would be Ada and Canyon Counties, Idaho. If approved, the applicant...

  15. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections.

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-08-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The Influence of Roof Material on Diurnal Urban Canyon Breathing

    Science.gov (United States)

    Abuhegazy, Mohamed; Yaghoobian, Neda

    2017-11-01

    Improvements in building energy use, air quality in urban canyons and in general urban microclimates require understanding the complex interaction between urban morphology, materials, climate, and inflow conditions. Review of the literature indicates that despite a long history of valuable urban microclimate studies, more comprehensive approaches are needed to address energy, and heat and flow transport in urban areas. In this study, a more comprehensive simulation of the diurnally varying street canyon flow and associated heat transport is numerically investigated, using Large-eddy Simulation (LES). We use computational modeling to examine the impact of diurnal variation of the heat fluxes from urban surfaces on the air flow and temperature distribution in street canyons with a focus on the role of roof materials and their temperature footprints. A detailed building energy model with a three-dimensional raster-type geometry provides urban surface heat fluxes as thermal boundary conditions for the LES to determine the key aero-thermodynamic factors that affect urban street ventilation.

  17. Uranium-bearing breccia pipes of northwestern Arizona - an overview

    International Nuclear Information System (INIS)

    Chenoweth, W.L.

    1986-01-01

    During the 1950s and 1960s, the uranium deposits in breccia pipes of the Grand Canyon region were regarded as geologic curiosities. Today this area is the site of numerous exploration projects for ore-bearing pipes. The classic example of the older mines is the Orphan Lode, a patented claim within Grand Canyon National Park. Between 1956 and 1969, this deposit produced 4.26 million lb U 3 O 8 . Exploration since the mid-1970s has developed numerous new deposits in the Grand Canyon region. The Hack 1, 2, and 3, Pigeon, Kanab North, Canyon, and Pinenut deposits are, or will be, mined. The pipes are circular and originated by dissolution of the Mississippian Redwall Limestone and collapse of the overlying strata. Uraninite ore occurs in both the pipe fill and in association with the peripheral shear zone. The principal host rocks are the Coconino Sandstone, Hermit Shale, and Esplanade Sandstone. Although small (3 to 5 million lb U 3 O 8 ), the high grade (60 to 70% U 3 O 8 ) of the deposits makes the pipes attractive exploration targets

  18. 236-Z canyon utilization study

    International Nuclear Information System (INIS)

    Dixon, D.R.

    1977-01-01

    The 236-Z canyon contains equipment for repurification of plutonium and recovery of plutonium from scrap material. To meet production requirements of Fast Flux Test Facility/Clinch River Breeder Reactor oxide with the existing plant, several new pieces of equipment will be needed in the future. More storage space and a better accountability system are needed to support this increased production. The available canyon space needs to be utilized to its fullest in order to accommodate the new equipment. The purpose of this document is to identify the new pieces of equipment, show how they fit into the flowsheet, and locate them in the canyon

  19. Ventilation Processes in a Three-Dimensional Street Canyon

    Science.gov (United States)

    Nosek, Štěpán; Kukačka, Libor; Kellnerová, Radka; Jurčáková, Klára; Jaňour, Zbyněk

    2016-05-01

    The ventilation processes in three different street canyons of variable roof geometry were investigated in a wind tunnel using a ground-level line source. All three street canyons were part of an urban-type array formed by courtyard-type buildings with pitched roofs. A constant roof height was used in the first case, while a variable roof height along the leeward or windward walls was simulated in the two other cases. All street-canyon models were exposed to a neutrally stratified flow with two approaching wind directions, perpendicular and oblique. The complexity of the flow and dispersion within the canyons of variable roof height was demonstrated for both wind directions. The relative pollutant removals and spatially-averaged concentrations within the canyons revealed that the model with constant roof height has higher re-emissions than models with variable roof heights. The nomenclature for the ventilation processes according to quadrant analysis of the pollutant flux was introduced. The venting of polluted air (positive fluctuations of both concentration and velocity) from the canyon increased when the wind direction changed from perpendicular to oblique, irrespective of the studied canyon model. Strong correlations (>0.5) between coherent structures and ventilation processes were found at roof level, irrespective of the canyon model and wind direction. This supports the idea that sweep and ejection events of momentum bring clean air in and detrain the polluted air from the street canyon, respectively.

  20. Impact of roof height non-uniformity on pollutant transport between a street canyon and intersections

    International Nuclear Information System (INIS)

    Nosek, Štěpán; Kukačka, Libor; Jurčáková, Klára; Kellnerová, Radka; Jaňour, Zbyněk

    2017-01-01

    This paper presents an extension of our previous wind-tunnel study (Nosek et al., 2016) in which we highlighted the need for investigation of the removal mechanisms of traffic pollution from all openings of a 3D street canyon. The extension represents the pollution flux (turbulent and advective) measurements at the lateral openings of three different 3D street canyons for the winds perpendicular and oblique to the along-canyon axis. The pollution was simulated by emitting a passive gas (ethane) from a homogeneous ground-level line source positioned along the centreline of the investigated street canyons. The street canyons were formed by courtyard-type buildings of two different regular urban-array models. The first model has a uniform building roof height, while the second model has a non-uniform roof height along each building's wall. The mean flow and concentration fields at the canyons' lateral openings confirm the findings of other studies that the buildings' roof-height variability at the intersections plays an important role in the dispersion of the traffic pollutants within the canyons. For the perpendicular wind, the non-uniform roof-height canyon appreciably removes or entrains the pollutant through its lateral openings, contrary to the uniform canyon, where the pollutant was removed primarily through the top. The analysis of the turbulent mass transport revealed that the coherent flow structures of the lateral momentum transport correlate with the ventilation processes at the lateral openings of all studied canyons. These flow structures coincide at the same areas and hence simultaneously transport the pollutant in opposite directions. - Highlights: • The pollutant transport strongly depends on the roof-height arrangement. • The non-uniform canyons also remove the pollutants through their lateral openings. • The higher the upstream wall, the more pollutant is removed through the top. • The lateral coherent structures correlate

  1. Transient simulation of groundwater levels within a sandbar of the Colorado River, Marble Canyon, Arizona, 2004

    Science.gov (United States)

    Sabol, Thomas A.; Springer, Abraham E.

    2013-01-01

    Seepage erosion and mass failure of emergent sandy deposits along the Colorado River in Grand Canyon National Park, Arizona, are a function of the elevation of groundwater in the sandbar, fluctuations in river stage, the exfiltration of water from the bar face, and the slope of the bar face. In this study, a generalized three-dimensional numerical model was developed to predict the time-varying groundwater level, within the bar face region of a freshly deposited eddy sandbar, as a function of river stage. Model verification from two transient simulations demonstrates the ability of the model to predict groundwater levels within the onshore portion of the sandbar face across a range of conditions. Use of this generalized model is applicable across a range of typical eddy sandbar deposits in diverse settings. The ability to predict the groundwater level at the onshore end of the sandbar face is essential for both physical and numerical modeling efforts focusing on the erosion and mass failure of eddy sandbars downstream of Glen Canyon Dam along the Colorado River.

  2. H-Canyon Recovery Crawler

    Energy Technology Data Exchange (ETDEWEB)

    Kriikku, E. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hera, K. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Marzolf, A. D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Phillips, M. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-08-01

    The Nuclear Material Disposition Project group asked the Savannah River National Lab (SRNL) Research and Development Engineering (R&DE) department to help procure, test, and deploy a remote crawler to recover the 2014 Inspection Crawler (IC) that tipped over in the H-Canyon Air Exhaust Tunnel. R&DE wrote a Procurement Specification for a Recovery Crawler (RC) and SRNS Procurement Department awarded the contract to Power Equipment Manufacturing Inc. (PEM). The PEM RC was based on their standard sewer inspection crawler with custom arms and forks added to the front. The arms and forks would be used to upright the 2014 Inspection Crawler. PEM delivered the RC and associated cable reel, 2014 Inspection Crawler mockup, and manuals in late April 2015. R&DE and the team tested the crawler in May of 2015 and made modifications based on test results and Savannah River Site (SRS) requirements. R&DE delivered the RC to H-Area at the end of May. The team deployed the RC on June 9, 10, and 11, 2015 in the H-Canyon Air Exhaust Tunnel. The RC struggled with some obstacles in the tunnel, but eventually made it to the IC. The team spent approximately five hours working to upright the IC and eventually got it on its wheels. The IC travelled approximately 20 feet and struggled to drive over debris on the air tunnel floor. Unfortunately the IC tripped over trying to pass this obstacle. The team decided to leave the IC in this location and inspect the tunnel with the RC. The RC passed the IC and inspected the tunnel as it travelled toward H-Canyon. The team turned the RC around when it was about 20 feet from the H-Canyon crossover tunnel. From that point, the team drove the RC past the manway towards the new sand filter and stopped approximately 20 feet from the new sand filter. The team removed the RC from the tunnel, decontaminated the RC, and stored it the manway building, 294-2H. The RC deployment confirmed the IC was not in a condition to perform useful tunnel inspections and

  3. A Study of the Effects of Gas Well Compressor Noise on Breeding Bird Populations of the Rattlesnake Canyon Habitat Management Area, San Juan County, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    LaGory, K.E.; Chang, Young-Soo; Chun, K.C.; Reeves, T.; Liebich, R.; Smith, K.

    2001-06-04

    This report, conducted from May through July 2000, addressed the potential effect of compressor noise on breeding birds in gas-production areas administered by the FFO, specifically in the Rattlesnake Canyon Habitat Management Area northeast of Farmington, New Mexico. The study was designed to quantify and characterize noise output from these compressors and to determine if compressor noise affected bird populations in adjacent habitat during the breeding season.

  4. Archaeological Test and Data Recovery Program at Telegraph Canyon, Chula Vista, California,

    Science.gov (United States)

    1978-09-01

    Several areas in the immediate vicinity were known to contain subsurface cables used to control SDG &E’s power network, and required avoidance. Addi...3 oEST FACE A TRENCH 4 Corps of Engineers Telegraph Canyon Creek WESTEC Servjces. Inr . compass bearing 20 7 ;7777,77 .77 7 1 METERS 170 c{ METERS...666 1.00 ~ 0 1.33 E -2.*00 -2.33 2.66 3.00 FUREf TRENCH 4 Corps of EngineersgTelegraph Canyon Creek; compass bearing 20 28 ’Lb..--._ .. *.* o •- -. o

  5. High resolution morphobathymetric analysis and short-term evolution of the upper part of the Capbreton submarine canyon (south-east Bay of Biscay - French Atlantic coast)

    Science.gov (United States)

    Gillet, Hervé; Mazières, Alaïs; Mulder, Thierry; Cremer, Michel

    2013-04-01

    The Capbreton Canyon stands out by its deep incision through continental shelf and slope and its present turbidite activity. The head of the canyon is anthropically disconnected from the Adour River since 1310 AD, but is located close enough to the coast to allow a direct supply by longshore drift. Sedimentary processes in upper part of the Capbreton Canyon are poorly documented. Several evidences, including sandy slide scars in the head, suggest that this area plays a major role in triggering downstream gravity currents). However, no modern sedimentary activity in the upper canyon had so far been evidenced. Our study is based on the analysis and comparison of several sets of multibeam bathymetric data acquired in 1998, 2010 and 2012 (up to 1.5 m resolution). The morphobathymetric analysis brought the following key observations: - The upper part of the canyon is characterised by a meandering talweg underlined by two kinds of terraces: (1) small elongated terraces standing only 10 to 15 m above the talweg axis and (2) large terraces standing 45 to 100 m above the talweg axis. - The regular 1° longitudinal slope of the talweg is interrupted by several 10 m high knickpoints. - The floor of the talweg shows some rough areas scattered with transversal bedforms similar to the sediment waves described in the Monterey Canyon upper part (Smith et al, 2005). The morphological evolutions in the upper part of the canyon over the last 14 years especially affect the floor of the talweg: - Between 1998 and 2010, we observe a downstream succession of accretion areas (up to 11m thick) and erosion areas (reaching -25 m). The largest and highest terraces remain stable over this period, whereas the smallest and lowest elongated terraces show active sedimentation (+5 to +8 m). - Difference between 2010 and 2012 DEMs reveals three localized erosion spots corresponding to 200 m backward stepping of the knickpoints. Such observation confirms the active headward erosion in this part of

  6. Fluctuating helical asymmetry and morphology of snails (Gastropoda in divergent microhabitats at 'Evolution Canyons I and II,' Israel.

    Directory of Open Access Journals (Sweden)

    Shmuel Raz

    Full Text Available Developmental instability of shelled gastropods is measured as deviations from a perfect equiangular (logarithmic spiral. We studied six species of gastropods at 'Evolution Canyons I and II' in Carmel and the Galilee Mountains, Israel, respectively. The xeric, south-facing, 'African' slopes and the mesic, north-facing, 'European' slopes have dramatically different microclimates and plant communities. Moreover, 'Evolution Canyon II' receives more rainfall than 'Evolution Canyon I.'We examined fluctuating asymmetry, rate of whorl expansion, shell height, and number of rotations of the body suture in six species of terrestrial snails from the two 'Evolution Canyons.' The xeric 'African' slope should be more stressful to land snails than the 'European' slope, and 'Evolution Canyon I' should be more stressful than 'Evolution Canyon II.' Only Eopolita protensa jebusitica showed marginally significant differences in fluctuating helical asymmetry between the two slopes. Contrary to expectations, asymmetry was marginally greater on the 'European' slope. Shells of Levantina spiriplana caesareana at 'Evolution Canyon I,' were smaller and more asymmetric than those at 'Evolution Canyon II.' Moreover, shell height and number of rotations of the suture were greater on the north-facing slopes of both canyons.Our data is consistent with a trade-off between drought resistance and thermoregulation in snails; Levantina was significantly smaller on the 'African' slope, for increasing surface area and thermoregulation, while Eopolita was larger on the 'African' slope, for reducing water evaporation. In addition, 'Evolution Canyon I' was more stressful than Evolution Canyon II' for Levantina.

  7. Final environmental statement related to the Plateau Resources Limited Shootering Canyon Uranium Project (Garfield County, Utah)

    International Nuclear Information System (INIS)

    1979-07-01

    The proposed action is the issuance of a Source Material License to Plateau Resources, Ltd., for the construction and operation of the proposed Shootering Canyon Uranium Project with a product (U 3 O 8 ) production limited to 2.2 x 10 5 kg (4.9 x 10 5 lb) per year. Impacts to the area from the operation of the Shootering Canyon Uranium Project will include the following: alterations of up to 140 ha (350 acres) that will be occupied by the mill, mill facilities, borrow areas, tailings areas, and roads; an increase in the existing background radiation levels of the mill area as a result of continuous but small releases of uranium, radium, radon, and other, radioactive materials during construction and operation; socioeconomic effects on the local area, particularly the proposed community of Ticaboo, where the majority of workers will be housed during project construction and operation; and production of solid waste material (tailings) from the mill at a rate of about 680 MT (750 tons) per day and deposition as a slurry in an onsite impoundment area; construction and operation of the Shootering Canyon mill will provide employment and induced economic benefits for the region but may also result in some socioeconomic stress. On the basis of the analysis and evaluation set forth in this Environmental Statement, it is proposed that any license issued for the Shootering Canyon mill should be subject to certain conditions for the protection of the environment. A list is included. Nine appendices are also included

  8. Bell Canyon test summary report

    International Nuclear Information System (INIS)

    Christensen, C.L.; Peterson, E.W.

    1981-04-01

    The Bell Canyon Test was an in situ evaluation of the ability of a cement grout plug to seal boreholes. It consisted of a 2-m-long, 20-cm-diameter grout plug in an anhydrite formation at a depth of 1370 m, directly above an aquifer that provided a 12.4 MPa (1800 psi) differential pressure. The aquifer had a production capability of 38,000 l/day (240 bbl/day, 10 4 gal/day). The observed leakage after plug installation was 0.6 l/day, which is equivalent to a 50 microdarcy flow path assuming all flow occurred through the plug cross-sectional area. Laboratory results and analysis of field data indicate that the bulk of the flow occurred through a microstructure at the interface between the plug and the host rock. The Bell Canyon Test demonstrated that a plug could be formulated, emplaced, and tested under actual conditions and provide acceptable performance. When these results are related to the WIPP performance assessment models, they provide additional confidence that borehole plugging can be accomplished satisfactorily. The Bell Canyon results can also be used as basis for future activities in the generic repository sealing program for similar emplacements and performance assessment evaluations. If the observed leakage rates are not acceptable at other sites, the BCT results would indicate that the first step in improving such emplacements should deal with improved bonding of the plug to the rock at these sites. The results obtained from the BCT, when coupled with results from long-term durability assessments, form a plug performance data basis for repository designers at other proposed waste repository sites

  9. Morphodynamic Model of Submarine Canyon Incision by Sandblasting

    Science.gov (United States)

    Zhang, L.; Parker, G.; Izumi, N.; Cartigny, M.; Li, T.; Wang, G.

    2017-12-01

    Submarine canyons are carved by turbidity currents under the deep sea. As opposed to subaerial canyons, the relevant processes are not easy to observe directly. Turbidity currents are bottom-hugging sediment gravity flows of that can incise or deposit on the seafloor to create submarine canyons or fans. The triggers of turbidity currents can be storms, edge waves, internal waves, canyon wall sapping, delta failure, breaching and hyperpycnal flows. The formation and evolution mechanisms of submarine canyons are similar to those of subaerial canyons, but have substantial differences. For example, sandblasting, rather than wear due to colliding gravel clasts is more likely to be the mechanism of bedrock incision. Submarine canyons incise downward, and often develop meander bends and levees within the canyon, so defining "fairways". Here we propose a simple model for canyon incision. The starting point of our model is the Macro Roughness Saltation Abrasion Alluviation model of Zhang et al. [2015], designed for bedrock incision by gravel clasts in mixed bedrock-alluvial rivers. We adapt this formulation to consider sandblasting as a means of wear. We use a layer-averaged model for turbidity current dynamics. The current contains a mixture of mud, which helps drive the flow but which does not cause incision, and sand, which is the agent of incision. We show that the model can successfully model channel downcutting, and indeed illustrate the early formation of net incisional cyclic steps, i.e. upstream-migrating undulations on the bed associated with transcritical (in the Froude sense) flow. These steps can be expected to abet the process of incision.

  10. Environmental assessment overview, Davis Canyon site, Utah

    International Nuclear Information System (INIS)

    1986-05-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah as one of the nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for the Nuclear Waste Repositories. The Davis Canyon site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. On the basis of the evaluations reported in this EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. On the basis of these findings, the DOE is nominating the Davis Canyon site as one of five sites suitable for characterization. 3 figs

  11. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    International Nuclear Information System (INIS)

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-01-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site

  12. Migration of Sr-20, Cs-137, and Pu-239/240 in Canyon below Los Alamos outfall

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J.M.; Mason, C.F.V.; Boak, J.M.; Longmire, P.A.

    1996-04-01

    Technical Area-21 (TA-21) of Los Alamos National Laboratory (LANL) is on a mesa bordered by two canyons DP Canyon and Los Alamos (LA) Canyon. DP Canyon is a small semiarid watershed with a well defined channel system where the stream flow is ephemeral. TA-21 has had a complex history of waste disposal as research to determine the chemical and metallurgical properties of nuclear materials occurred here from 1945-1978. Due to these operations, the TA-21 mesa top and bordering canyons have been monitored and characterized by the LANL Environmental Restoration Program. Results identify radionuclide values at outfall. 21-011 (k) which exceed Screening Action Levels, and points along DP Canyon which exceed regional background levels. The radiocontaminants considered in this study are strontium-90, cesium-137, and plutonium-239. This research examines sediment transport and speciation of radionuclide contaminant migration from a source term named SWMU 21-011 (k) down DP Canyon. Three dimensional surface plots of data from 1977-1994 are used to portray the transport and redistribution of radioactive contaminants in an alluvial stream channel. An overall decrease in contamination concentration since 1983 has been observed which could be due to more stringent laboratory controls and also to the removal of main plutonium processing laboratories to another site.

  13. Leishmaniasis transmission in an ecotourism area: potential vectors in Ilha Grande, Rio de Janeiro State, Brazil.

    Science.gov (United States)

    Carvalho, Bruno Moreira; Maximo, Michele; Costa, Wagner Alexandre; de Santana, Antonio Luís Ferreira; da Costa, Simone Miranda; da Costa Rego, Taiana Amancio Neves; de Pita Pereira, Daniela; Rangel, Elizabeth Ferreira

    2013-11-13

    The south coast of Rio de Janeiro State, in Brazil, is endemic for cutaneous and visceral leishmaniases and is frequently visited by tourists from different parts of the world. Since the complex epidemiology of leishmaniases demands local studies, the goal of this study was to investigate the phlebotomine sand fly fauna and leishmaniases transmission in Ilha Grande, an ecotourism area of Angra dos Reis municipality. Sand fly fauna was sampled in three monitoring stations using HP light traps in domiciles, peridomiciles and forests. Species abundance was evaluated by the Index of Species Abundance. A Leishmania natural infection survey was done using multiplex PCR and dot blot hybridization. During 15 consecutive months of sand fly monitoring, 1093 specimens from 16 species were captured. The potential leishmaniases vectors found were Lutzomyia (Nyssomyia) intermedia, L. migonei, L. (N.) flaviscutellata, L. (Psychodopygus) ayrozai and L. (Lutzomyia) longipalpis. Five species were new records in Ilha Grande: L. (Sciopemyia) microps, L. termitophila, L. firmatoi, L. rupicola and L. (P.) ayrozai. Higher species richness was found inside forest areas, although potential leishmaniases vectors were present in deforested areas, peridomiciles and inside houses. Lutzomyia (N.) intermedia and L. migonei were the most abundant species. Females of L. migonei showed a high rate (10.3%) of natural infection by Leishmania (Viannia) sp., probably Leishmania (V.) braziliensis. The detection of leishmaniases transmission and potential vectors in Ilha Grande is of public health concern, especially because tourists are frequently visiting the island. Besides reinforcing the epidemiological importance of L. (N.) intermedia in Rio de Janeiro State, the role of L. migonei in cutaneous leishmaniasis transmission is highlighted with its high rate of Leishmania natural infection. The finding of L. (L.) longipalpis confirmed the human autochthonous case of visceral leishmaniasis from the

  14. 78 FR 79436 - Boulder Canyon Project-Post-2017 Resource Pool

    Science.gov (United States)

    2013-12-30

    ... customers of electric utilities. The marketing criteria should include municipal corporations and political... Pool AGENCY: Western Area Power Administration, DOE. ACTION: Notice of final marketing criteria and... marketing agency of the Department of Energy (DOE), announces the Boulder Canyon Project (BCP) post-2017...

  15. Optimizing hourly hydro operations at the Salt Lake City Area integrated projects

    International Nuclear Information System (INIS)

    Veselka, T.D.; Hamilton, S.; McCoy, J.

    1995-01-01

    The Salt Lake City Area (SLCA) office of the Western Area Power Administration (Western) is responsible for marketing the capacity and energy generated by the Colorado Storage, Collbran, and Rio Grande hydropower projects. These federal resources are collectively called the Salt Lake City Area Integrated Projects (SLCA/IP). In recent years, stringent operational limitations have been placed on several of these hydropower plants including the Glen Canyon Dam, which accounts for approximately 80% of the SLCA/IP resources. Operational limitations on SLCA/IP hydropower plants continue to evolve as a result of decisions currently being made in the Glen Canyon Dam Environmental Impact Statement (EIS) and the Power Marketing EIS. To analyze a broad range of issues associated with many possible future operational restrictions, Argonne National Laboratory (ANL), with technical assistance from Western has developed the Hydro LP (Linear Program) Model. This model simulates hourly operations at SLCA/IP hydropower plants for weekly periods with the objective of maximizing Western's net revenues. The model considers hydropower operations for the purpose of serving SLCA firm loads, loads for special projects, Inland Power Pool (IPP) spinning reserve requirements, and Western's purchasing programs. The model estimates hourly SLCA/IP generation and spot market activities. For this paper, hourly SLCA/IP hydropower plant generation is simulated under three operational scenarios and three hydropower conditions. For each scenario an estimate of Western's net revenue is computed

  16. Planning and Execution of a Marine Methane Hydrate Pressure Coring Program for the Walker Ridge and Green Canyon Areas of the Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Humphrey, Gary [Fugro Geoconsulting Inc., Houston, TX (United States)

    2015-09-14

    The objective of this project (and report) is to produce a guide to developing scientific, operational, and logistical plans for a future methane hydrate-focused offshore pressure coring program. This report focuses primarily on a potential coring program in the Walker Ridge 313 and Green Canyon 955 blocks where previous investigations were undertaken as part of the 2009 Department of Energy JIP Leg II expedition, however, the approach to designing a pressure coring program that was utilized for this project may also serve as a useful model for planning pressure coring programs for hydrates in other areas. The initial portion of the report provides a brief overview of prior investigations related to gas hydrates in general and at the Walker Ridge 313 and Green Canyon 955 blocks in particular. The main content of the report provides guidance for various criteria that will come into play when designing a pressure coring program.

  17. Pollutant Removal, Dispersion and Entrainment over Two-Dimensional Idealized Street Canyons: an LES Approach

    Science.gov (United States)

    Wong, C.; Liu, C.

    2010-12-01

    Unlike pollutant transport over flat terrain, the mechanism and plume dispersion over urban areas is not well known. This study is therefore conceived to examine how urban morphology modifies the pollutant transport over urban areas. The computational domain and boundary condition used in this study is shown in Figure 1. The LES shows that inside the street canyon, the ground-level pollutants are carried to roof-level by the re-circulating flow, which are then removed from the street canyon to the UBL. Right above the roof level, narrow high-speed air masses in the streamwise flows and intensive downdrafts have been found in the shear layer. Different from the flows over a smooth surface, the maximum turbulence intensities descend that are peaked near the top of the building roughness. The pollutant is rather uniformly distributed inside a street canyon but disperses rapidly over the buildings exhibiting a Gaussian-plume form in the UBL. The mean component of vertical pollutant flux shows that the mean wind contributes to pollutant removal and entrainment simultaneously. Whereas, the fluctuating component demystifies that pollutant removal is mainly governed by atmospheric turbulence. Over the roof level, atmospheric flows slow down rapidly in the wake behind leeward building, suggesting the momentum entrainment into the street canyons. The decelerating streamwise flows in turn lead to upward flows carrying pollutants away from the street canyons, illustrating the basic pollutant removal mechanism in the skimming flow regime. Figure 1: Computational domain and boundary conditions Figure 2: Ensemble average vertical pollutant flux along the roof level. (a). Mean component; (b). turbulent component.

  18. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    International Nuclear Information System (INIS)

    Kathy Bennett; Sherri Sherwood; Rhonda Robinson

    2006-01-01

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  19. Small Mammal Sampling in Mortandad and Los Alamos Canyons, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Kathy; Sherwood, Sherri; Robinson, Rhonda

    2006-08-15

    As part of an ongoing ecological field investigation at Los Alamos National Laboratory, a study was conducted that compared measured contaminant concentrations in sediment to population parameters for small mammals in the Mortandad Canyon watershed. Mortandad Canyon and its tributary canyons have received contaminants from multiple solid waste management units and areas of concern since establishment of the Laboratory in the 1940s. The study included three reaches within Effluent and Mortandad canyons (E-1W, M-2W, and M-3) that had a spread in the concentrations of metals and radionuclides and included locations where polychlorinated biphenyls and perchlorate had been detected. A reference location, reach LA-BKG in upper Los Alamos Canyon, was also included in the study for comparison purposes. A small mammal study was initiated to assess whether potential adverse effects were evident in Mortandad Canyon due to the presence of contaminants, designated as contaminants of potential ecological concern, in the terrestrial media. Study sites, including the reference site, were sampled in late July/early August. Species diversity and the mean daily capture rate were the highest for E-1W reach and the lowest for the reference site. Species composition among the three reaches in Mortandad was similar with very little overlap with the reference canyon. Differences in species composition and diversity were most likely due to differences in habitat. Sex ratios, body weights, and reproductive status of small mammals were also evaluated. However, small sample sizes of some species within some sites affected the analysis. Ratios of males to females by species of each site (n = 5) were tested using a Chi-square analysis. No differences were detected. Where there was sufficient sample size, body weights of adult small mammals were compared between sites. No differences in body weights were found. Reproductive status of species appears to be similar across sites. However, sample

  20. Modeling the Effect of Wider Canyons on Urban Heating

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-04-01

    Full Text Available The k-? turbulence model is adopted in this study to simulate the impact of street canyon AR (Aspect Ratios on heating within street canyon. The two-dimensional model was validated for RANS (Reynolds Averaged Navier Stokes and energy transport equations. The validation process confirms that the results of the model for airtemperature and wind speed could be trusted. The application of the said model is carried out to ideal street canyons of ARs (ratio of building-height-to-street-width from 0.4 to 2 with the same boundary conditions. Notably, street canyon aspect ratio was calculated by varying the street width while keeping the building height constant. Results show that the weighted-average-air-temperature within AR 0.4 was around 0.8% (i.e. 2.4K higher than that within AR 2.0. Conversely, there was strong correlation (i.e., R2>0.9 between air temperature within the street canyon and street canyon AR. Results demonstrate stronger influence of vertical velocity on heating within street canyon. Evidently, increased vertical velocity decreased the temperatures. Conversely, temperatures were higher along the leeward side of the canyon in lower ARs.

  1. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the /sup 90/Sr activity will decay to levels permitting unrestricted usage in about 160 y.

  2. Environmenal analysis of the Bayo Canyon (TA-10) Site, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Buhl, T.E.; Stoker, A.K.; Hansen, W.R.

    1982-05-01

    The radiological survey of the old TA-10 site in Bayo Canyon found low levels of surface contamination in the vicinity of the firing sites and subsurface contamination in the old waste disposal area. The three alternatives proposed for the site are: (1) to take no action; (2) to restrict usage of the area of subsurface contamination to activities that cause no subsurface disturbance (minimal action); and (3) to remove the subsurface conamination to levels below the working criteria. Dose calculations indicate that doses from surface contamination for recreational users of the canyon, permanent residents, and construction workers and doses for workers involved in excavation of contaminated soil under the clean up alternative are only small percentages of applicable guidelines. No environmental impacts are associated with either the no-action or minimal action alternatives. The impact associated with the cleanup alternative is small, especially considering that the area already has been affected by the original TA-10 decommissioning action, but nevertheless, the preferred alternative is the minimal action alternative, where 0.6 hectare of land is restricted to surface activities. This leaves the rest of the canyon available for development with up to 400 homes. The restricted area can be used for a park, tennis courts, etc., and the 90 Sr activity will decay to levels permitting unrestricted usage in about 160 y

  3. New York Canyon Stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Raemy, Bernard

    2012-06-21

    The New York Canyon Stimulation Project was to demonstrate the commercial application of Enhanced Geothermal System techniques in Buena Vista Valley area of Pershing County, Nevada. From October 2009 to early 2012, TGP Development Company aggressively implemented Phase I of Pre-Stimulation and Site/Wellbore readiness. This included: geological studies; water studies and analyses and procurement of initial permits for drilling. Oversubscription of water rights and lack of water needed for implementation of EGS were identified and remained primary obstacles. Despite extended efforts to find alternative solutions, the water supply circumstances could not be overcome and led TGP to determine a "No Go" decision and initiate project termination in April 2012.

  4. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  5. Pollutant Dilution and Diffusion in Urban Street Canyon Neighboring Streets

    Science.gov (United States)

    Sun, Z.; Fu, Zh. M.

    2011-09-01

    In the present study we investigated the airflow patterns and air quality of a series of typical street canyon combinations, developed a mass balance model to determine the local pollutant dilution rate, and discuss the impact of upstream canyon on the air quality of downstream canyon. The results indicated that the geometrical size of upstream and downstream buildings have significant impacts on the ambient airflow patterns. The pollution distribution within the canyons varies with different building combinations and flow patterns. Within the upstream canyon, pollution always accumulates to the low building side for non-symmetrical canyon, and for symmetrical canyon high level of pollution occurs at the leeward side. The height of the middle and downstream buildings can evidently change the pollutant dispersion direction during the transport process. Within the polluted canyon, the pollutant dilution rate (PDR) also varies with different street canyon combinations. The highest PDR is observed when the upstream buildings are both low buildings no matter the height of downstream building. However, the two cases are likely to contribution pollution to the downstream canyon. The H-L-H combination is mostly against local pollution remove, while the L-H-L case is considered the best optimistic building combination with both the ability of diluting local pollution and not remarkably decreasing air quality of downstream canyon. The current work is expected instructive for city designers to optimize traffic patterns under typical existing geometry or in the development of urban geometry modification for air quality control.

  6. The effects of wildfire on the peak streamflow magnitude and frequency, Frijoles and Capulin Canyons, Bandelier National Monument, New Mexico

    Science.gov (United States)

    Veenhuis, J.E.

    2004-01-01

    In June of 1977, the La Mesa fire burned 15,270 acres in and around Frijoles Canyon, Bandelier National Monument and the adjacent Santa Fe National Forest, New Mexico. The Dome fire occurred in April of 1996 in Bandelier National Monument, burned 16,516 acres in Capulin Canyon and the surrounding Dome Wilderness area. Both canyons are characterized by extensive archeological artifacts, which could be threatened by increased runoff and accelerated rates of erosion after a wildfire. The U.S. Geological Survey (USGS) in cooperation with the National Park Service monitored the fires' effects on streamflow in both canyons. Copyright 2004 ASCE.

  7. Anatomy of La Jolla submarine canyon system; offshore southern California

    Science.gov (United States)

    Paull, C.K.; Caress, D.W.; Lundsten, E.; Gwiazda, R.; Anderson, K.; McGann, M.; Conrad, J.; Edwards, B.; Sumner, E.J.

    2013-01-01

    An autonomous underwater vehicle (AUV) carrying a multibeam sonar and a chirp profiler was used to map sections of the seafloor within the La Jolla Canyon, offshore southern California, at sub-meter scales. Close-up observations and sampling were conducted during remotely operated vehicle (ROV) dives. Minisparker seismic-reflection profiles from a surface ship help to define the overall geometry of the La Jolla Canyon especially with respect to the pre-canyon host sediments. The floor of the axial channel is covered with unconsolidated sand similar to the sand on the shelf near the canyon head, lacks outcrops of the pre-canyon host strata, has an almost constant slope of 1.0° and is covered with trains of crescent shaped bedforms. The presence of modern plant material entombed within these sands confirms that the axial channel is presently active. The sand on the canyon floor liquefied during vibracore collection and flowed downslope, illustrating that the sediment filling the channel can easily fail even on this gentle slope. Data from the canyon walls help constrain the age of the canyon and extent of incision. Horizontal beds of moderately cohesive fine-grained sediments exposed on the steep canyon walls are consistently less than 1.232 million years old. The lateral continuity of seismic reflectors in minisparker profiles indicate that pre-canyon host strata extend uninterrupted from outside the canyon underneath some terraces within the canyon. Evidence of abandoned channels and point bar-like deposits are noticeably absent on the inside bend of channel meanders and in the subsurface of the terraces. While vibracores from the surface of terraces contain thin (< 10 cm) turbidites, they are inferred to be part of a veneer of recent sediment covering pre-canyon host sediments that underpin the terraces. The combined use of state of the art seafloor mapping and exploration tools provides a uniquely detailed view of the morphology within an active submarine canyon.

  8. PCB usage at the Grand Junction Area Office Facility. Final report

    International Nuclear Information System (INIS)

    Miller, M.E.; Donivan, S.

    1982-06-01

    The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility

  9. UV Radiation in an Urban Canyon in Southeast Queensland

    Science.gov (United States)

    McKinley, A. R.; Moore, M. R.; Kimlin, M. G.

    2006-12-01

    Ultraviolet radiation (UV) has the possibility to both harm and to benefit human beings when unprotected exposure occurs. After receiving small amounts of UV our bodies begin to synthesise vitamin D, which is essential for maintaining healthy bones, however excessive UV exposure can result in a variety of damaging outcomes ranging from sunburn to skin cancer and cataracts. For this reason it is very important to understand the different environments in which people encounter UV so as to better prepare the public to make smart and healthy sun exposure decisions. Each day more and more people are moving into large cities around the world and spending their time inside the urban canyon, however UV measurements are generally taken at scientific stations in open areas or on top of tall buildings, meaning that at times the environmental characteristics measured may not accurately represent those found at street-level in these highly urbanized areas. Urban canyons are home to both very tall buildings and tropospheric air pollution, each of which reduces the amount of UV reaching street-level. This study measured the varying difference between UV measurements taken at street-level and at a standard UV monitoring site on top of a building outside of the urban canyon. Investigation was conducted in the central business district (CBD) of Brisbane, Australia, which models the CBDs of large cities around the world in that it boasts a great number of tall buildings, including many skyscrapers. Data was collected under clear sky conditions at five different street-level sites in the CBD (on either side of two streets running perpendicular to one another (four sites) and in a public square) and then compared to that obtained on the same day at the Queensland University of Technology's Australian Sun and Health Research Laboratory (ASHRL), which is located 2.5 kilometres outside Brisbane's CBD. Minimum erythemal dose (MED) data was collected at each location and it was found that

  10. A Numerical Study on Characteristics of Flow and Reactive Pollutant Dispersion in Step‒up Street Canyons

    Science.gov (United States)

    Kim, E. R.; Kim, J.

    2014-12-01

    For decades, many metro‒ and/or mega‒cities have grown and densities of population and building have increased. Because pollutants released from sources near ground surface such as vehicles are not easy to escape from street canyons which are spaces between buildings standing along streets pedestrians, drivers and residents are likely to be exposed to high concentrations of hazardous pollutants. Therefore, it is important to understand characteristics of flow and pollutant dispersion in street canyons. In this study, step‒up street canyons with higher downwind buildings are considered for understanding flow and reactive pollutants' dispersion characteristics there as a basic step to understand the characteristics in wider urban areas. This study used a CFD model coupled to a chemistry module. Detailed flow and air pollutant concentration are analyzed in step‒up street canyons with different upwind building heights.

  11. Environmental and human impact on the sedimentary dynamic in the Rhone Delta subaquatic canyons (France-Switzerland)

    Science.gov (United States)

    Arantegui, A.; Corella, J. P.; Loizeau, J. L.; Anselmetti, F. S.; Girardclos, S.

    2012-04-01

    sediment dynamics during whether extreme flood events or mass-movements due to deltaic scarp failures. The active canyon shows a classic turbiditic system with frequent spillover processes in the canyon floor/levee complex. Geotechnical measurements, a decrease in the frequency of turbidites and a fining upward sequence along the levee suggest that erosion dominates sedimentation in the canyon floor, while sedimentation dominates in the rapid levee building-up process, with sedimentation rates that exceed 3cm/yr in the proximal areas. Therefore, mechanisms controlling the sedimentary evolution on the active canyon result in a complex interplay between erosion and sedimentation. Further research will provide a detailed evaluation of the human impact on sedimentary dynamic in the Rhone Delta subaquatic canyons.

  12. Interstratified arkosic and volcanic rocks of the Miocene Spanish Canyon Formation, Alvord Mountain area, California: descriptions and interpretations

    Science.gov (United States)

    Buesch, David C.

    2014-01-01

    The Spanish Canyon Foundation in the Alvord Mountain area, California, varies from about 50 to 120 m thick and records the interstratification of arkosic sandstone and conglomerate with tuffaceous deposits and lava flows. In the lower third of the formation, arkosic sandstone and conglomerate are interstratified with tuffaceous deposits. Some tuffs might have been deposited as primary, nonwelded to partially welded ignimbrites or fallout tephra. Many of the tuffaceous deposits represent redeposited material that formed tuffaceous sandstone, and many of these deposits contain arkosic grains that represent mixing of different source matieral. Arkosic sandstone, and especially conglomerate (some with maximum clast lengths up to 1 m), represent intermittent incursions of coarser plutoniclastic fan deposits into other finer grained and mostly volcaniclastic basin deposits. After deposition of the 18.78 Ma Peach Spring Tuff, the amount of tuffaceous material decreased. The upper two-thirds of the formation has arkosic sandstone and conglomerate interstratified with two olivine basalt lave flows. locally, conglomerate clasts in this part of the section have maximum lengths up to 1 m. Many tuffaceous and arkosic sandstone beds of the Spanish Canyon Formation have tabular to broad (low-relief) lenticular geometry, and locally, some arkosic conglomerate fills channels as much as 1.5 m deep. These bedforms are consistent with deposition in medial to distal alluvial-fan or fluvial environments; some finer-grained deposits might have formed in lacustrine environments.

  13. Deepwater Canyons 2013: Pathways to the Abyss

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Leg I focused on biological objectives in Norfolk Canyon, with some sampling in Baltimore Canyon. Leg II focused on archaeological targets in and around the Norfolk...

  14. Of travertine and time: otolith chemistry and microstructure detect provenance and demography of endangered humpback chub in Grand Canyon, USA

    Science.gov (United States)

    Limburg, Karin E.; Hayden, Todd A.; Pine, William E.; Yard, Michael D.; Kozdon, Reinhard; Valley, John W.

    2013-01-01

    We developed a geochemical atlas of the Colorado River in Grand Canyon and in its tributary, the Little Colorado River, and used it to identify provenance and habitat use by Federally Endangered humpback chub, Gila cypha. Carbon stable isotope ratios (δ13C) discriminate best between the two rivers, but fine scale analysis in otoliths requires rare, expensive instrumentation. We therefore correlated other tracers (SrSr, Ba, and Se in ratio to Ca) to δ13C that are easier to quantify in otoliths with other microchemical techniques. Although the Little Colorado River’s water chemistry varies with major storm events, at base flow or near base flow (conditions occurring 84% of the time in our study) its chemistry differs sufficiently from the mainstem to discriminate one from the other. Additionally, when fish egress from the natal Little Colorado River to the mainstem, they encounter cold water which causes the otolith daily growth increments to decrease in size markedly. Combining otolith growth increment analysis and microchemistry permitted estimation of size and age at first egress; size at first birthday was also estimated. Emigrants < 1 year old averaged 51.2 ± 4.4 (SE) days and 35.5 ± 3.6 mm at egress; older fish that had recruited to the population averaged 100 ± 7.8 days old and 51.0 ± 2.2 mm at egress, suggesting that larger, older emigrants recruit better. Back-calculated size at age 1 was unimodal and large (78.2 ± 3.3 mm) in Little Colorado caught fish but was bimodally distributed in Colorado mainstem caught fish (49.9 ± 3.6 and 79 ± 4.9 mm) suggesting that humpback chub can also rear in the mainstem. The study demonstrates the coupled usage of the two rivers by this fish and highlights the need to consider both rivers when making management decisions for humpback chub recovery.

  15. Exposure pathways and biological receptors: baseline data for the canyon uranium mine, Coconino County, Arizona

    Science.gov (United States)

    Hinck, Jo E.; Linder, Greg L.; Darrah, Abigail J.; Drost, Charles A.; Duniway, Michael C.; Johnson, Matthew J.; Méndez-Harclerode, Francisca M.; Nowak, Erika M.; Valdez, Ernest W.; van Riper, Charles; Wolff, S.W.

    2014-01-01

    Recent restrictions on uranium mining within the Grand Canyon watershed have drawn attention to scientific data gaps in evaluating the possible effects of ore extraction to human populations as well as wildlife communities in the area. Tissue contaminant concentrations, one of the most basic data requirements to determine exposure, are not available for biota from any historical or active uranium mines in the region. The Canyon Uranium Mine is under development, providing a unique opportunity to characterize concentrations of uranium and other trace elements, as well as radiation levels in biota, found in the vicinity of the mine before ore extraction begins. Our study objectives were to identify contaminants of potential concern and critical contaminant exposure pathways for ecological receptors; conduct biological surveys to understand the local food web and refine the list of target species (ecological receptors) for contaminant analysis; and collect target species for contaminant analysis prior to the initiation of active mining. Contaminants of potential concern were identified as arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, thallium, uranium, and zinc for chemical toxicity and uranium and associated radionuclides for radiation. The conceptual exposure model identified ingestion, inhalation, absorption, and dietary transfer (bioaccumulation or bioconcentration) as critical contaminant exposure pathways. The biological survey of plants, invertebrates, amphibians, reptiles, birds, and small mammals is the first to document and provide ecological information on .200 species in and around the mine site; this study also provides critical baseline information about the local food web. Most of the species documented at the mine are common to ponderosa pine Pinus ponderosa and pinyon–juniper Pinus–Juniperus spp. forests in northern Arizona and are not considered to have special conservation status by state or federal agencies; exceptions

  16. A Numerical Study of the Temperature Reduction by Water Spray Systems within Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Ying-Chen Lee

    2018-04-01

    Full Text Available To reduce energy demand (both fossil fuel and renewable energy for cooling the urban heat island environment, some solutions have been studied. Among these methods, the water spray system is considered more flexible due to its dynamic controls. This study investigated the cooling effect of water spray systems in the street canyon under different aspect ratios and high relative humidity environments using a computational fluid dynamics model. This model was validated with water channel and wind tunnel experiments. The results showed that the most effective cooling area was the area just under the spray nozzles. However, in a narrow street canyon, people in the middle of the street may feel the cooling effect because of the dispersion and accumulation of the cooled air. Our simulations demonstrated that air under the nozzles was saturated and this revealed that under drier conditions the water spray systems will have higher cooling performance. We also found that using large water droplets created a wider cooling area in the middle of the street canyon, and this phenomenon was not changed much if the nozzle height was increased from 2.5 m to 3.5 m.

  17. Characteristics of flow and reactive pollutant dispersion in urban street canyons

    Science.gov (United States)

    Park, Soo-Jin; Kim, Jae-Jin; Kim, Minjoong J.; Park, Rokjin J.; Cheong, Hyeong-Bin

    2015-05-01

    In this study, the effects of aspect ratio defined as the ratio of building height to street width on the dispersion of reactive pollutants in street canyons were investigated using a coupled CFD-chemistry model. Flow characteristics for different aspect ratios were analyzed first. For each aspect ratio, six emission scenarios with different VOC-NOX ratios were considered. One vortex was generated when the aspect ratio was less than 1.6 (shallow street canyon). When the aspect ratio was greater than 1.6 (deep street canyon), two vortices were formed in the street canyons. Comparing to previous studies on two-dimensional street canyons, the vortex center is slanted toward the upwind building and reverse and downward flows are dominant in street canyons. Near the street bottom, there is a marked difference in flow pattern between in shallow and deep street canyons. Near the street bottom, reverse and downward flows are dominant in shallow street canyon and flow convergence exists near the center of the deep street canyons, which induces a large difference in the NOX and O3 dispersion patterns in the street canyons. NOX concentrations are high near the street bottom and decreases with height. The O3 concentrations are low at high NO concentrations near the street bottom because of NO titration. At a low VOC-NOX ratio, the NO concentrations are sufficiently high to destroy large amount of O3 by titration, resulting in an O3 concentration in the street canyon much lower than the background concentration. At high VOC-NOX ratios, a small amount of O3 is destroyed by NO titration in the lower layer of the street canyons. However, in the upper layer, O3 is formed through the photolysis of NO2 by VOC degradation reactions. As the aspect ratio increases, NOX (O3) concentrations averaged over the street canyons decrease (increase) in the shallow street canyons. This is because outward flow becomes strong and NOX flux toward the outsides of the street canyons increases

  18. Origin and transport of trace metals deposited in the canyons off Lisboa and adjacent slopes (Portuguese Margin) in the last century

    NARCIS (Netherlands)

    Costa, A.M.; Mil-Homens, M.; Lebreiro, S.M.; Richter, T.O.; de Stigter, H.; Boer, W.; Trancoso, M.A.; Melo, Z.; Mouro, F.; Mateus, M.; Canário, J.; Branco, V.; Caetano, M.

    2011-01-01

    Submarine canyons play an important role in the transfer of contaminated sediments from shelf areas to the deeper ocean. To evaluate the importance of submarine canyons adjacent to the Tagus and Sado estuaries (Portuguese Margin) as sediment pathway major and trace elements, (210)Pb radionuclides,

  19. The down canyon evolution of submarine sediment density flows

    Science.gov (United States)

    Parsons, D. R.; Barry, J.; Clare, M. A.; Cartigny, M.; Chaffey, M. R.; Gales, J. A.; Gwiazda, R.; Maier, K. L.; McGann, M.; Paull, C. K.; O'Reilly, T. C.; Rosenberger, K. J.; Simmons, S.; Sumner, E. J.; Talling, P.; Xu, J.

    2017-12-01

    Submarine density flows, known as turbidity currents, transfer globally significant volumes of terrestrial and shelf sediments, organic carbon, nutrients and fresher-water into the deep ocean. Understanding such flows has wide implications for global organic carbon cycling, the functioning of deep-sea ecosystems, seabed infrastructure hazard assessments, and interpreting geological archives of Earth history. Only river systems transport comparable volumes of sediment over such large areas of the globe. Despite their clear importance, there are remarkably few direct measurements of these oceanic turbidity currents in action. Here we present results from the multi-institution Coordinated Canyon Experiment (CCE) which deployed multiple moorings along the axis of Monterey Canyon (offshore California). An array of six moorings, with downward looking acoustic Doppler current profilers (ADCP) were positioned along the canyon axis from 290 m to 1850 m water depth. The ADCPs reveal the internal flow structure of submarine density flows at each site. We use a novel inversion method to reconstruct the suspended sediment concentration and flow stratification field during each event. Together the six moorings provide the first ever views of the internal structural evolution of turbidity current events as they evolve down system. Across the total 18-month period of deployment at least 15 submarine sediment density flows were measured with velocities up to 8.1 m/sec, with three of these flows extending 50 kms down the canyon beyond the 1850 m water depth mooring. We use these novel data to highlight the controls on ignition, interval structure and collapse of individual events and discuss the implications for the functioning and deposits produced by these enigmatic flows.

  20. Ensonifying Change: Repeat Ultra-High-Resolution Surveys in Monterey Canyon before and after Passage of a Turbidity Current

    Science.gov (United States)

    Wolfson-Schwehr, M.; Paull, C. K.; Caress, D. W.; Carvajal, C.; Thomas, H. J.; Maier, K. L.; Parsons, D. R.; Simmons, S.

    2017-12-01

    Turbidity currents are one of the primary means of global sediment transport, yet our understanding of how they interact with the seafloor is hindered by the limited number of direct measurements. The Coordinated Canyon Experiment (CCE; October 2015 - April 2017) has made great strides in addressing this issue by providing direct measurements of turbidity currents and detailed observations of the resulting seafloor change in Monterey Canyon, offshore California. Here we focus on a section of the canyon at 1850-m water depth, where a Seafloor Instrument Node (SIN) recorded passage of three turbidity currents using a range of sensors, including three upward-looking acoustic Doppler current profilers. The fastest event at this site had a maximum velocity of 2.8 m/s, and dragged the 430-Kg SIN 26 m down-canyon. Repeat mapping surveys were conducted four times during the CCE, utilizing a prototype ultra-high-resolution mapping system mounted on the ROV Doc Ricketts. The survey platform hosts a 400-kHz Reson 7125 multibeam sonar, a 3DatDepth SL1 subsea LiDAR, two stereo color cameras, and a Kearfott SeaDevil INS. At a survey altitude of 2.5 m above the bed, the system provides remarkable 5-cm resolution multibeam bathymetry, 1-cm resolution LiDAR bathymetry, and 2-mm resolution photomosaics, and can cover a 100-m2 survey area. Surveys of the SIN site prior to and after the fastest event show areas of net deposition/erosion of 60 cm and 20 cm, respectively. Net deposition occurred in the topographic lows between bedforms, while erosion was focused on the bedform crests. At the end of the experiment, transects of sediment cores were taken by ROV within areas of net deposition. The cores show a variety of sedimentary facies, including muds, sands, gravel, and organic rich layers. Gravel layers have sharp erosive bases. The repeat surveys document the dynamic nature of flute-like scours as the flow events erode and deposit material along the canyon floor, as well as the

  1. Effects of Building‒roof Cooling on Flow and Distribution of Reactive Pollutants in street canyons

    Science.gov (United States)

    Park, S. J.; Choi, W.; Kim, J.; Jeong, J. H.

    2016-12-01

    The effects of building‒roof cooling on flow and dispersion of reactive pollutants were investigated in the framework of flow dynamics and chemistry using a coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons in the presence of building‒roof cooling. A portal vortex was generated in street canyon, producing dominant reverse and outward flows near the ground in all the cases. The building‒roof cooling increased horizontal wind speeds at the building roof and strengthened the downward motion near the downwind building in the street canyon, resultantly intensifying street canyon vortex strength. The flow affected the distribution of primary and secondary pollutants. Concentrations of primary pollutants such as NOx, VOC and CO was high near the upwind building because the reverse flows were dominant at street level, making this area the downwind region of emission sources. Concentration of secondary pollutant such as O3 was lower than the background near the ground, where NOX concentrations were high. Building‒roof cooling decreased the concentration of primary pollutants in contrasted to those under non‒cooling conditions. In contrast, building‒roof cooling increased O3 by reducing NO concentrations in urban street canyon compared to concentrations under non‒cooling conditions.

  2. Estimating Air Pollution Removal Through an Analysis of Vegetation Communities in Government Canyon State Natural Area

    Science.gov (United States)

    Medrano, Nicolas W.

    Ambient air pollution is a major issue in urban environments, causing negative health impacts and increasing costs for metropolitan economies. Vegetation has been shown to remove these pollutants at a substantial rate. This study utilizes the i-Tree Eco (UFORE) and i-Tree Canopy models to estimate air pollution removal services provided by trees in Government Canyon State Natural Area (GCSNA), an approximately 4,700 hectare area in San Antonio, Texas. For i-Tree Eco, a stratified project of the five prominent vegetation types was completed. A comparison of removal services provided by vegetation communities indicated there was no significant difference in removal rates. Total pollution removal of GCSNA was estimated to be 239.52 metric tons/year at a rate of 64.42 kg/ha of tree cover/year. By applying this value to the area within Bexar County, Texas belonging to the Balcones Canyonlands ecoregion, it was determined that for 2013 an estimated 2,598.45 metric tons/year of air pollution was removed at a health value to society of 19.4 million. This is a reduction in pollution removal services since 2003, in which 3,050.35 metric tons/year were removed at a health value of 22.8 million. These results suggest urban sprawl taking place in San Antonio is reducing air pollution removal services provided by trees.

  3. Project MOHAVE data analysis plan

    International Nuclear Information System (INIS)

    Watson, J.G.; Green, M.; Hoffer, T.E.; Lawson, D.R.; Pitchford, M.; Eatough, D.J.; Farber, R.J.; Malm, W.C.; McDade, C.E.

    1993-01-01

    Project MOHAVE is intended to develop ambient and source emissions data for use with source models, receptor models, and data analysis methods in order to explain the nature and causes of visibility degradation in the Grand Canyon. Approximately 50% of the modeling and data analysis effort will be directed toward understanding the contributions from the Mohave Power Project to haze in the Grand Canyon and other nearby Class areas; the remaining resources will be used to understand the contribution from other sources. The major goals of Project MOHAVE and data analysis are: to evaluate the measurement for applicability to modeling and data analysis activities; to describe the visibility, air quality and meteorology during the field study period and to determine the degree to which these measurements represent typical visibility events at the Grand Canyon; to further develop conceptual models of physical and chemical processes which affect visibility impairment at the Grand Canyon; to estimate the contributions from different emission sources to visibility impairment at the Grand Canyon, and to quantitatively evaluate the uncertainties of those estimates; to reconcile different scientific interpretations of the same data and to present this reconciliation to decision-makers. Several different approaches will be applied. Each approach will involve explicit examination of measurement uncertainties, compliance with implicit and explicit assumptions, and representativeness of the measurements. Scientific disagreements will be sought, expressed, explained, quantified, and presented. Data which can be used to verify methods will be withheld for independent evaluation of the validity of those methods. All assumptions will be stated and evaluated against reality. Data analysis results not supporting hypotheses will be presented with those results supporting the hypotheses. Uncertainty statements will be quantitative and consistent with decision-making needs

  4. Sediment transport along the Cap de Creus Canyon flank during a mild, wet winter

    Directory of Open Access Journals (Sweden)

    J. Martín

    2013-05-01

    direction (from SE to NW on 16 March, downwelling ceased, currents inside the canyon reversed from down- to up-canyon, and the turbid shelf plume was evacuated from the canyon, most probably flowing along the southern canyon flank and being entrained by the general SW circulation after leaving the canyon confinement. This study highlights that remarkable sediment transport occurs in the CCC, and particularly along its southern flank, even during mild and wet winters, in absence of cascading and under limited external forcing. The sediment transport associated with eastern storms like the ones described in this paper tends to enter the canyon by its downstream flank, partially affecting the canyon head region. Sediment transport during these events is not constrained near the seafloor but distributed in a depth range of 200–300 m above the bottom. Our paper broadens the understanding of the complex set of atmosphere-driven sediment transport processes acting in this highly dynamic area of the northwestern Mediterranean Sea.

  5. Modelling the air flow in symmetric and asymmetric street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Santiago, J.L.; Martin, F. [Research Center for Energy, Environment and Technology (CIEMAT), Madrid (Spain). Fossil Fuels Dept., Numerical Simulation and Modelling Program

    2004-07-01

    In recent years a large amount of research has been conducted on urban scale and street canyon. Control of air quality inside cities is important for human health. To achieve this objective, street canyon modelling plays a significant role. Pollutant dispersion inside canyons are determined by wind flow around this complex geometry. Experimental investigations have been made by means of field measurements such as Vachon, G. et al. or wind tunnel experiences as Meroney, R.N. et al. or Kastner-Klein, P. and E.J. Plate. In many of these researches, they have used CFD models in several configurations, for instance Assimakopoulos, V.D. et al. or Sini, J.-F. et al. These models are based on a numerical resolution of Navier-Stokes equations with a turbulence closure. In this study, the aim is contribute to the understanding of air circulation inside street canyons. In order to achieve this purpose, several configurations of canyons are investigated. Two-dimensional sequences of real-scale street canyons (order to obstacles height is meters) with different features (symmetric canyons and asymmetric canyons forming step-up and step-down notch configurations) are simulated. These general configurations are modified to investigate some parameters such as aspect ratio, W/H, where W is the width of street and H is the height of buildings. Flows with high Reynolds numbers are modelling. FLUENT CFD software is used. (orig.)

  6. Crossing fitness canyons by a finite population

    Science.gov (United States)

    Saakian, David B.; Bratus, Alexander S.; Hu, Chin-Kun

    2017-06-01

    We consider the Wright-Fisher model of the finite population evolution on a fitness landscape defined in the sequence space by a path of nearly neutral mutations. We study a specific structure of the fitness landscape: One of the intermediate mutations on the mutation path results in either a large fitness value (climbing up a fitness hill) or a low fitness value (crossing a fitness canyon), the rest of the mutations besides the last one are neutral, and the last sequence has much higher fitness than any intermediate sequence. We derive analytical formulas for the first arrival time of the mutant with two point mutations. For the first arrival problem for the further mutants in the case of canyon crossing, we analytically deduce how the mean first arrival time scales with the population size and fitness difference. The location of the canyon on the path of sequences has a crucial role. If the canyon is at the beginning of the path, then it significantly prolongs the first arrival time; otherwise it just slightly changes it. Furthermore, the fitness hill at the beginning of the path strongly prolongs the arrival time period; however, the hill located near the end of the path shortens it. We optimize the first arrival time by applying a nonzero selection to the intermediate sequences. We extend our results and provide a scaling for the valley crossing time via the depth of the canyon and population size in the case of a fitness canyon at the first position. Our approach is useful for understanding some complex evolution systems, e.g., the evolution of cancer.

  7. [Effect of greenbelt on pollutant dispersion in street canyon].

    Science.gov (United States)

    Xu, Wei-Jia; Xing, Hong; Yu, Zhi

    2012-02-01

    The effect feature of greenbelt on flow field and pollutant dispersion in urban street canyon was researched. The greenbelt was assumed as uniform porous media and its aerodynamics property defined by the pressure loss coefficient. Subsequently, the pollutant dispersion in the street canyon of which there was greenbelt in the middle was simulated with the steady-state standard kappa-epsilon turbulence model and species transport equation. The simulated results agreed well with the wind-tunnel data. Compared with the treeless case, it finds that the street canyon contain a clockwise vortex, the pollutant concentration of the leeward was several times than the windward and the growth rate of pollutant concentration was 46.0%. The further simulation for the impact of tree crown position on the airflow and pollutant dispersion finds that the height of major vortex center in the street canyon increases with the height of tree crown and gradually closes the top of windward building This causes that the average wind speed in the street canyon decreases. Especially when the top of tree crown over the roof and hinder the air flow above the street canyon, the average pollutant concentration increases with the height of tree crown rapidly.

  8. An Investigation of Amphitheater-Headed Canyon Distribution, Morphology Variation, and Longitudinal Profile Controls in Escalante and Tarantula Mesa, Utah.

    Science.gov (United States)

    Ryan, A. J.; Whipple, K. X.

    2014-12-01

    Amphitheater-headed canyons are primarily distinguished from typical fluvial channels by their abrupt headwall terminations. A key goal in the study of river canyons is to establish a reliable link between form and formation processes. This is of particular significance for Mars, where, if such links can be established, amphitheater-headed canyons could be used to determine ancient erosion mechanisms and, by inference, climate conditions. Type examples in arid regions on Earth, such as in Escalante River, Utah, previously have been interpreted as products of groundwater seepage erosion. We investigate amphitheater-headed canyons in Escalante and Tarantula Mesa where variations in canyon head morphology may hold clues for the relative roles of rock properties and fluvial and groundwater processes. In lower Escalante, amphitheaters are only present where canyons have breached the Navajo Sandstone - Kayenta Formation contact. In some canyons, amphitheater development appears to have been inhibited by an abundance of coarse bedload. In Tarantula Mesa, canyons have a variety of headwalls, from amphitheaters to stepped knickzones. Headwall morphology distribution is directly related to the spatially variable presence of knickpoint-forming, fine-grained interbeds within cliff-forming sandstones. Amphitheaters only form where the sandstone unit is undisrupted by these interbeds. Finally, most canyons in Escalante and Tarantula Mesa, regardless of substrate lithology, amphitheater presence, or groundwater spring intensity, are well described by a slope-area power law relationship with regionally constant concavity and normalized steepness indices. This suggests that all channels here are subject to the same erosion rates, independent of groundwater weathering intensity. Thus: 1) variations in canyon headwall form do not necessary relate to differences in fluvial history, 2) stratigraphic variations are clearly of importance in sedimentary canyon systems, and 3) although

  9. Geo-hazard by sediment mass movements in submarine canyons

    Science.gov (United States)

    Ghaith, Afif; Fakhri, Milad; Ivaldi, Roberta; Ciavola, Paolo

    2017-04-01

    Submarine mass movements and their consequences are of major concern for coastal communities and infrastructures but also for the exploitation and the development of seafloor resources. Elevated awareness of the need for better understanding of the underwater mass movement is coupled with great advances in underwater mapping technologies over the past two decades. The seafloor in the Nahr Ibrahim and Saida regions (Lebanon) is characterized by deep canyons, reaching one thousand meters depths in proximity of the coast. Signs of submarine mass movement instability related to these canyons create a connection between shallow and deep water. The presence of these canyons in a tectonically active area generates a particular drained mechanism to the sediment in form of mass movement and slumping. Identification of potential areas where slope movements could be triggered requires data with high spatial resolution. Since this area is poorly explored, in the framework of an international project between Lebanese Navy, Lebanese National Center for Marine Sciences, University of Ferrara and Italian Hydrographic Institute, we analyse the morpho-bathymetric and sedimentological characters of the coastal and shelf sectors. Multibeam echosounder and sub-bottom profiler acoustic systems calibrated with ground truths (sediment grab and core samples) allow us to characterize the nature of seafloor and sub-seafloor with particular detail to the geotechnical properties of sediments and high resolution seismic stratigraphy of the shallow layers. The detection of particular undersea features provides detail maps which are in support to littoral morpho-dynamics, coastal transport and sediment budget. Multilayer hydro-oceanographic map, referring to the seafloor dynamics in connection with deep water environment and drainage system, in accordance to the International Hydrographic Standards and nautical supports, are produced. This high resolution multibeam bathymetry dataset, integrated

  10. Radiochemical quality of water in the shallow aquifer in Mortandad Canyon, 1967-1978

    International Nuclear Information System (INIS)

    Purtymun, W.D.; Hansen, W.R.; Peters, R.J.

    1983-03-01

    Mortandad Canyon receives treated industrial liquid effluents that contain trace amounts of radionuclides. The effluents, other waste water, and storm runoff recharge a shallow aquifer in the alluvium of the canyon. The aquifer lies within the Los Alamos National Laboratory boundaries. Analyses for gross alpha, gross beta, 137 Cs, 238 Pu, 239 Pu, 241 Am, 90 Sr, 3 H, and total U have been made of water in the aquifer from 1967 through 1978. Average concentrations of the radionuclides in solution decrease downgradient in the canyon with the exception of 3 H. Average 3 H concentrations were highest in the Middle Canyon. Inventories of most radionuclides in the water indicate that in 1978 less than 1% of the total amount released with the effluents in the canyon from 1963 through 1978 remained in solution. The amount of total U in solution in 1978 was about 16% of the total amount released. If there is no significant change in the amounts of radionuclides received at the treatment plant and methods of treatment remain the same, the projected estimates of radionuclide concentrations in the aquifer will increase about 80% from 1978 to 1990. The average concentrations in 1978 and projected concentrations in 1990 of gross alpha, 137 Cs, 238 Pu, 239 Pu, 241 Am, 90 Sr, 3 H, and total U are less than 1% of the Department of Energy's concentration guides (CG) for areas with controlled public access. Gross beta radioactivity in 1978 was 2% of the CG and is projected to increase to 3% of the CG by 1990

  11. Geology of the Wallula Gap Area, Washington

    International Nuclear Information System (INIS)

    Gardner, J.N.; Snow, M.G.; Fecht, K.R.

    1981-12-01

    This study focuses on the structure and stratigraphy of an 80-km 2 area at the southern margin of the Pasco Basin in Wallula Gap. Field stratigraphy, petrography, natural remanent magnetism, and major-element chemistry indicate that the tholeiitic basalt flows of the Wallula Gap area correlate with units of the Grande Ronde, Wanapum, and Saddle Mountains Formations of the Yakima Subgroup of the Columbia River Basalt Group. Flows of the Frenchman Springs, Umatilla, Pomona, Elephant Mountain, and Ice Harbor Mmebers are present in the area. The Frenchman Springs Member exposed in the Wallula Gap is more than 185 m thick and consists of eight to nine flows. Its thickness and possible contemporaneous structural deformation apparently prevented emplacement of both the Roza and Priest Rapids Members at this locality. Structural uplift of the Horse Heaven Hills began prior to extrusion of the Pomona flow. Both the Pomona and Elephant Mountain Members thin and pinch out over the crest of the uplift near Mound Pond. The Ice Harbor flow was apparently confined to the basin north of the Horse Heaven uplift, but an exposure at Mound Pond suggests it flowed through Wallula Gap as an intracanyon flow. The Wallula Gap fault zone trends N65 0 W and can be traced for at least 11 km along the north flank of the Horse Heaven Hills uplift. Where the fault intersects the Olympic-Wallowa Lineament at Van Sycle Canyon 8 km east of Wallula Gap, it is a broad zone of normal faulting, 300 m wide, with as much as 310 m of displacement of the basalt stratigraphy. Two faults occur in the northern portion of Van Sycle Canyon and define a graben trending N45 0 W. A third fault, roughly parallel to the Wallula Gap fault, transects the The Nub and offsets 14 m of Ice Harbor basalt

  12. H Canyon Processing In Correlation With FH Analytical Labs

    International Nuclear Information System (INIS)

    Weinheimer, E.

    2012-01-01

    Management of radioactive chemical waste can be a complicated business. H Canyon and F/H Analytical Labs are two facilities present at the Savannah River Site in Aiken, SC that are at the forefront. In fact H Canyon is the only large-scale radiochemical processing facility in the United States and this processing is only enhanced by the aid given from F/H Analytical Labs. As H Canyon processes incoming materials, F/H Labs provide support through a variety of chemical analyses. Necessary checks of the chemical makeup, processing, and accountability of the samples taken from H Canyon process tanks are performed at the labs along with further checks on waste leaving the canyon after processing. Used nuclear material taken in by the canyon is actually not waste. Only a small portion of the radioactive material itself is actually consumed in nuclear reactors. As a result various radioactive elements such as Uranium, Plutonium and Neptunium are commonly found in waste and may be useful to recover. Specific processing is needed to allow for separation of these products from the waste. This is H Canyon's specialty. Furthermore, H Canyon has the capacity to initiate the process for weapons-grade nuclear material to be converted into nuclear fuel. This is one of the main campaigns being set up for the fall of 2012. Once usable material is separated and purified of impurities such as fission products, it can be converted to an oxide and ultimately turned into commercial fuel. The processing of weapons-grade material for commercial fuel is important in the necessary disposition of plutonium. Another processing campaign to start in the fall in H Canyon involves the reprocessing of used nuclear fuel for disposal in improved containment units. The importance of this campaign involves the proper disposal of nuclear waste in order to ensure the safety and well-being of future generations and the environment. As processing proceeds in the fall, H Canyon will have a substantial

  13. The benefits of visibility

    International Nuclear Information System (INIS)

    Krupnick, A.; DeWitt, D.

    1994-01-01

    The benefits of visibility improvement (or the damages with additional degradation) refer to increases (or decreases) in utility obtained in three different dimensions. The first of these is associated with the nature of the visibility change. Visual range may be improved so that features of an area become more distinct or the sky becomes clearer. Alternatively, normal features of an area may be marred, say by the site of a power plant or its plume (called plume blight). The second dimension is the location of the change: in an urban area, in a rural setting, or in a recreational area or area of particular beauty, such as the Grand Canyon. The third dimension is the type of value: use or non-use. Thus, a person who visits the Grand Canyon (or may visit it in the future) may hold use values for improving his view of the Canyon or its surroundings and may also old non-use values for improved visibility (whether for altruistic or other reasons) irrespective of present or planned visits. In all, therefore, there are 12 possible combinations of the elements in these three dimension, each of which is logically distinct from the others and which demands attention in the literature to derive willingness to pay (WTP)

  14. The benefits of visibility

    Energy Technology Data Exchange (ETDEWEB)

    Krupnick, A; DeWitt, D

    1994-07-01

    The benefits of visibility improvement (or the damages with additional degradation) refer to increases (or decreases) in utility obtained in three different dimensions. The first of these is associated with the nature of the visibility change. Visual range may be improved so that features of an area become more distinct or the sky becomes clearer. Alternatively, normal features of an area may be marred, say by the site of a power plant or its plume (called plume blight). The second dimension is the location of the change: in an urban area, in a rural setting, or in a recreational area or area of particular beauty, such as the Grand Canyon. The third dimension is the type of value: use or non-use. Thus, a person who visits the Grand Canyon (or may visit it in the future) may hold use values for improving his view of the Canyon or its surroundings and may also old non-use values for improved visibility (whether for altruistic or other reasons) irrespective of present or planned visits. In all, therefore, there are 12 possible combinations of the elements in these three dimension, each of which is logically distinct from the others and which demands attention in the literature to derive willingness to pay (WTP)

  15. CODASC : a database for the validation of street canyon dispersion models

    OpenAIRE

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect ratios subjected to various wind directions and also for street canyons with tree-avenues. The database includes concentration data of tree-avenue configurations of different tree arrangement, tree...

  16. Dispersion and photochemical evolution of reactive pollutants in street canyons

    Science.gov (United States)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Lee, Kwang-Yeon

    2013-05-01

    Dispersion and photochemical evolution of reactive pollutants in street canyons with canyon aspect ratios of 1 and 2 are investigated using a computational fluid dynamics (CFD) model coupled with the carbon bond mechanism IV (CBM-IV). Photochemical ages of NOx and VOC are expressed as a function of the NO2-to-NOx and toluene-to-xylene ratios, respectively. These are found to be useful for analyzing the O3 and OH oxidation processes in the street canyons. The OH oxidation process (O3 oxidation process) is more pronounced in the upper (lower) region of the street canyon with a canyon aspect ratio of 2, which is characterized by more (less) aged air. In the upper region of the street canyon, O3 is chemically produced as well as transported downward across the roof level, whereas O3 is chemically reduced in the lower region of the street canyon. The O3 chemical production is generally favorable when the normalized photochemical ages of NOx and VOC are larger than 0.55 and 0.28, respectively. The sensitivities of O3 chemical characteristics to NOx and VOC emission rates, photolysis rate, and ambient wind speed are examined for the lower and upper regions of the street canyon with a canyon aspect ratio of 2. The O3 concentration and the O3 chemical production rate divided by the O3 concentration increase as the NOx emission rate decreases and the VOC emission rate and photolysis rate increase. The O3 concentration is less sensitive to the ambient wind speed than to other factors considered. The relative importance of the OH oxidation process compared to the O3 oxidation process increases with increasing NOx emission rate and photolysis rate and decreasing VOC emission rate. In this study, both O3 and OH oxidation processes are found to be important in street-canyon scale chemistry. The methodology of estimating the photochemical ages can potentially be adopted to neighborhood scale chemistry.

  17. Digital geologic map of the Thirsty Canyon NW quadrangle, Nye County, Nevada

    Science.gov (United States)

    Minor, S.A.; Orkild, P.P.; Sargent, K.A.; Warren, R.G.; Sawyer, D.A.; Workman, J.B.

    1998-01-01

    This digital geologic map compilation presents new polygon (i.e., geologic map unit contacts), line (i.e., fault, fold axis, dike, and caldera wall), and point (i.e., structural attitude) vector data for the Thirsty Canyon NW 7 1/2' quadrangle in southern Nevada. The map database, which is at 1:24,000-scale resolution, provides geologic coverage of an area of current hydrogeologic and tectonic interest. The Thirsty Canyon NW quadrangle is located in southern Nye County about 20 km west of the Nevada Test Site (NTS) and 30 km north of the town of Beatty. The map area is underlain by extensive layers of Neogene (about 14 to 4.5 million years old [Ma]) mafic and silicic volcanic rocks that are temporally and spatially associated with transtensional tectonic deformation. Mapped volcanic features include part of a late Miocene (about 9.2 Ma) collapse caldera, a Pliocene (about 4.5 Ma) shield volcano, and two Pleistocene (about 0.3 Ma) cinder cones. Also documented are numerous normal, oblique-slip, and strike-slip faults that reflect regional transtensional deformation along the southern part of the Walker Lane belt. The Thirsty Canyon NW map provides new geologic information for modeling groundwater flow paths that may enter the map area from underground nuclear testing areas located in the NTS about 25 km to the east. The geologic map database comprises six component ArcINFO map coverages that can be accessed after decompressing and unbundling the data archive file (tcnw.tar.gz). These six coverages (tcnwpoly, tcnwflt, tcnwfold, tcnwdike, tcnwcald, and tcnwatt) are formatted here in ArcINFO EXPORT format. Bundled with this database are two PDF files for readily viewing and printing the map, accessory graphics, and a description of map units and compilation methods.

  18. The timing of sediment transport down Monterey Submarine Canyon, offshore California

    DEFF Research Database (Denmark)

    Stevens, Thomas; Paull, C.K.; Ussler, W., III

    2014-01-01

    luminescence (OSL) ages of quartz sand deposits and accelerator mass spectrometry 14C ages measured on benthic foraminifera to examine the timing of sediment transport through the axial channel of Monterey Submarine Canyon and Fan, offshore California. The OSL ages date the timing of sediment entry...... dates with water depth provides evidence of mixing and temporary storage of sediment as it moves through the canyon system. The ages also indicate that the frequency of sediment transport events decreases with distance down the canyon channel system. The amalgamated sands near the canyon head yield OSL......While submarine canyons are the major conduits through which sediments are transported from the continents out into the deep sea, the time it takes for sediment to pass down through a submarine canyon system is poorly constrained. Here we report on the first study to couple optically stimulated...

  19. Ecological baseline studies in Los Alamos and Guaje Canyons County of Los Alamos, New Mexico. A two-year study

    Energy Technology Data Exchange (ETDEWEB)

    Foxx, T.S. [comp.

    1995-11-01

    During the summers of 1993 and 1994, the Biological Resource Evaluations Team (BRET) of the Environmental Protection Group (ESH-8) conducted baseline studies within two canyon systems, Los Alamos and Guaje Canyons. Biological data was collected within each canyon to provide background and baseline information for Ecological Risk models. Baseline studies included establishment of permanent vegetation plots within each canyon along the elevational gradient. Then, in association with the various vegetation types, surveys were conducted for ground dwelling insects, birds, and small mammals. The stream channels associated with the permanent vegetation plots were characterized and aquatic macroinvertebrates collected within the stream monthly throughout a six-month period. The Geographic Position System (GPS) in combination with ARC INFO was used to map the study areas. Considerable data was collected during these surveys and are summarized in individual chapters.

  20. Evolution and Submarine Landslide Potential of Monterey Canyon Head, Offshore Central California

    Science.gov (United States)

    Maier, K. L.; Johnson, S. Y.; Hart, P. E.; Hartwell, S. R.

    2016-12-01

    Monterey Canyon, offshore central California, incises the shelf from near the shoreline to 30 km seaward where axial water depths approach 2,000 m. It is one of the world's most studied submarine canyons, yet debate continues concerning its age, formation, and associated geologic hazards. To address these issues, the USGS, with partial support from the California Seafloor Mapping Program, collected hundreds of kilometers of high-resolution, mini-sparker, single-channel (2009 and 2011 surveys) and multichannel (2015 survey) seismic-reflection profiles near the canyon head. The seismic data were combined with multibeam bathymetry to generate a geologic map of the proximal canyon, which delineates numerous faults and compound submarine landslide headwall scarps (covering up to 4 km2) along canyon walls. Seismic-reflection data reveal a massive ( 100 km2 lateral extent) paleochannel cut-and-fill complex underlying the proximal canyon. These subsurface cut-and-fill deposits span both sides of the relatively narrow modern canyon head, crop out in canyon walls, and incise into Purisima Formation (late Miocene and Pliocene) bedrock to depths of up to 0.3 s two-way travel time ( 240 m) below the modern shelf. We propose that the paleochannel complex represents previous locations of a migrating canyon head, and attribute its origin to multiple alternating cycles of fluvial and submarine canyon erosion and deposition linked to fluctuating sea levels. Thus, the canyon head imaged in modern bathymetry is a relatively young feature, perhaps forming in the last 20,000 years of sea-level rise. The paleocanyon deposits are significantly less consolidated than bedrock in deeper canyon walls, and therefore, are probably more prone to submarine landsliding. Nearby mapped faults occur within the active, distributed, San Andreas fault system, and earthquake-generated strong ground motions are likely triggers for past and future submarine landslides and potential associated tsunamis.

  1. Assessing the Importance of Cross-Stream Transport in Bedload Flux Estimates from Migrating Dunes: Colorado River, Grand Canyon National Park

    Science.gov (United States)

    Leary, K. P.; Buscombe, D.; Schmeeckle, M.; Kaplinski, M. A.

    2017-12-01

    Bedforms are ubiquitous in sand-bedded rivers, and understanding their morphodynamics is key to quantifying bedload transport. As such, mechanistic understanding of the spatiotemporal details of sand transport through and over bedforms is paramount to quantifying total sediment flux in sand-bedded river systems. However, due to the complexity of bedform field geometries and migration in natural settings, our ability to relate migration to bedload flux, and to quantify the relative role of tractive and suspended processes in their dynamics, is incomplete. Recent flume and numerical investigations indicate the potential importance of cross-stream transport, a process previously regarded as secondary and diffusive, to the three-dimensionality of bedforms and spatially variable translation and deformation rates. This research seeks to understand and quantify the importance of cross-stream transport in bedform three-dimensionality in a field setting. This work utilizes a high-resolution (0.25 m grid) data set of bedforms migrating in the channel of the Colorado River in Grand Canyon National Park. This data set comprises multi-beam sonar surveys collected at 3 different flow discharges ( 283, 566, and 1076 m3/s) along a reach of the Colorado River just upstream of the Diamond Creek USGS gage. Data were collected every 6 minutes almost continuously for 12 hours. Using bed elevation profiles (BEPs), we extract detailed bedform geometrical data (i.e. bedform height, wavelength) and spatial sediment flux data over a suite of bedforms at each flow. Coupling this spatially extensive data with a generalized Exner equation, we conduct mass balance calculations that evaluate the possibility, and potential importance, of cross-stream transport in the spatial variability of translation and deformation rates. Preliminary results suggest that intra-dune cross-stream transport can partially account for changes in the planform shape of dunes and may play an important role in spatially

  2. Strategic guidelines for street canyon geometry to achieve sustainable street air quality

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Andy T.; So, Ellen S.P.; Samad, Subash C. [Hong Kong Univ., Dept. of Mechanical Engineering, Hong Kong (China)

    2001-08-01

    This paper is concerned with the motion of air within the urban street canyon and is directed towards a deeper understanding of pollutant dispersion with respect to various simple canyon geometries and source positions. Taking into account the present days typical urban configurations, three principal flow regimes 'isolated roughness flow', 'skimming flow' and 'wake interference flow' (Boundary Layer Climates, 2nd edition, Methuen, London) and their corresponding pollutant dispersion characteristics are studied for various canopies aspect ratios, namely relative height (h{sub 2}/H{sub 1}), canyon height to width ratio (h/w) and canyon length to height ratio (l/h). A field-size canyon has been analysed through numerical simulations using the standard k-{sup {epsilon}} turbulence closure model. It is found that the pollutant transport and diffusion is strongly dependent upon the type of flow regime inside the canyon and exchange between canyon and the above roof air. Some rules of thumbs have been established to get urban canyon geometries for efficient dispersion of pollutants. (Author)

  3. CODASC : a database for the validation of street canyon dispersion models

    NARCIS (Netherlands)

    Gromke, C.B.

    2013-01-01

    CODASC stands for Concentration Data of Street Canyons (CODASC 2008, www.codasc.de). It is a database which provides traffic pollutant concentrations in urban street canyons obtained from wind-tunnel dispersion experiments. CODASC comprises concentration data of street canyons with different aspect

  4. Is Canyon Width a Diagnostic Indicator of the Discharge of Megafloods on Earth and Mars?

    Science.gov (United States)

    Lapotre, M. G.; Lamb, M. P.

    2013-12-01

    On Earth, large floods have carved steep-walled and amphitheater-headed canyons from the Pleistocene (e.g. Box Canyon, ID) through the Holocene (e.g. Asbyrgi Canyon, Iceland), to historic times (e.g. Canyon Lake Gorge, TX). The geologic record on Mars suggests that similar floods have carved canyons by waterfall retreat about 3.5 billion years ago, when the red planet was wetter and possibly warmer. We currently lack robust paleo-hydraulic tools to reconstruct the discharge of ancient floods, especially on Mars where sediment sizes are obscured from observation. To address this issue, we hypothesize that the width of canyon escarpment is controlled by the hydraulics of the canyon-carving flood due to focusing of the flood into the canyon head. We compiled field data from multiple canyons and floods on Earth and Mars and show that there is a correlation between estimated flood discharge and canyon headwall width. To explore what sets this relationship, we identified five important parameters using dimensional analysis: the Froude number, the ratio of backwater length to canyon length, the ratio of backwater length to flood width, the ratio of canyon width to flood width, and the topographic slope upstream of the canyon. We used the hydraulic numerical modeling suite ANUGA to simulate overland flow over different canyon geometries and flood parameters to systematically explore the relative bed shear stresses along the canyon rim as a metric for flow focusing. Results show that canyons that exceed a certain length, scaling with the hydraulic backwater length, have shear stresses at their heads that are significantly higher than near the canyon mouth. Shear stresses along the rim of the canyon sidewalls are limited, in comparison to stresses along the canyon head, when the flood width is of the order of the backwater length. Flow focusing only occurs for subcritical flow. Together, these results suggest that canyons may only grow from a perturbation that is large

  5. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico

    Science.gov (United States)

    Garcia-Pineda, Oscar; MacDonald, Ian; Silva, Mauricio; Shedd, William; Daneshgar Asl, Samira; Schumaker, Bonny

    2016-07-01

    Analysis of the magnitude of oil discharged from natural hydrocarbon seeps can improve understanding of the carbon cycle and the Gulf of Mexico (GOM) ecosystem. With use of a large archive of remote sensing data, in combination with geophysical and multibeam data, we identified, mapped, and characterized natural hydrocarbon seeps in the Macondo prospect region near the wreck site of the drill-rig Deepwater Horizon (DWH). Satellite image processing and the cluster analysis revealed locations of previously undetected seep zones. Including duplicate detections, a total of 562 individual gas plumes were also observed in multibeam surveys. In total, SAR imagery confirmed 52 oil-producing seep zones in the study area. In almost all cases gas plumes were associated with oil-producing seep zones. The cluster of seeps in the vicinity of lease block MC302 appeared to host the most persistent and prolific oil vents. Oil slicks and gas plumes observed over the DWH site were consistent with discharges of residual oil from the wreckage. In contrast with highly persistent oil seeps observed in the Green Canyon and Garden Banks lease areas, the seeps in the vicinity of Macondo Prospect were intermittent. The difference in the number of seeps and the quantity of surface oil detected in Green Canyon was almost two orders of magnitude greater than in Mississippi Canyon.

  6. A decision support tool for evaluating the air quality and wind comfort induced by different opening configurations for buildings in canyons.

    Science.gov (United States)

    Fan, M; Chau, C K; Chan, E H W; Jia, J

    2017-01-01

    This study formulated a new index for evaluating both the air quality and wind comfort induced by building openings at the pedestrian level of street canyons. The air pollutant concentrations and wind velocities induced by building openings were predicted by a series of CFD simulations using ANSYS Fluent software based on standard k-ɛ model. The types of opening configurations investigated inside isolated and non-isolated canyons included separations, voids and permeable elements. It was found that openings with permeability values of 10% were adequate for improving the air quality and wind comfort conditions for pedestrians after considering the reduction in development floor areas. Openings were effective in improving the air quality in isolated canyons and different types of opening configurations were suggested for different street aspect ratios. On the contrary, openings were not always found effective for non-isolated canyons if there were pollutant sources in adjacent street canyons. As such, it would also be recommended introducing openings to adjacent canyons along with openings to the target canyons. The formulated index can help city planners and building designers to strike an optimal balance between air quality and wind comfort for pedestrians when designing and planning buildings inside urban streets and thus promoting urban environmental sustainability. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Canyon formation constraints on the discharge of catastrophic outburst floods of Earth and Mars

    Science.gov (United States)

    Lapotre, Mathieu G. A.; Lamb, Michael P.; Williams, Rebecca M. E.

    2016-07-01

    Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the steep headwalls of these canyons suggest that some formed by upstream headwall propagation through waterfall erosion processes. Because topography evolves in concert with water flow during canyon erosion, we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is related to flood discharge. We develop a new theory for bedrock canyon formation by megafloods based on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and show that predicted flood discharges are nearly 3 orders of magnitude less than previously estimated, and predicted flood durations are longer than previously estimated, from less than a day to a few months. Results also show a positive correlation between flood discharge per unit width and canyon width, which supports our hypothesis that canyon width is set in part by flood discharge. Despite lower discharges than previously estimated, the flood volumes remain large enough for individual outburst floods to have perturbed the global hydrology of Mars.

  8. Facies and depositional model of Almada Canyon, Almada Basin, Bahia, Brazil; Facies e modelo deposicional do Canyon de Almada, Bacia de Almada, Bahia

    Energy Technology Data Exchange (ETDEWEB)

    D' Avila, Roberto Salvador Francisco; Souza Cruz, Carlos Emanoel de; Oliveira Filho, Jose Souto; Jesus, Candida Menezes de; Cesero, Pedro de; Dias Filho, Dorval Carvalho; Lima, Claudio Coelho de; Queiroz, Claudia Lima de; Santos, Saulo Ferreira; Ferreira, Eduardo Araripe [PETROBRAS, Santos, SP (Brazil). Unidade de Negocio de Exploracao]. E-mail: rdavila@petrobras.com.br

    2004-11-01

    In the continental portion of the Almada Basin outcrops of canyon filling deposits are represented by turbidite channels and associated facies from Urucutuca Formation. The canyon - semi-exhumated - eroded basement and pre-Cenomanian sedimentary rocks. The field study of the outcrops and cores obtained in adjacent perforations lead to the understanding of the facies and processes that controlled the deposition of these channeled turbidite that can be compared to the reservoirs of many oil fields in Brazil. The Almada canyon is a submarine conduct of tectonic origin that was enlarged by the repeated passing of turbidity currents. During the rift phase and the Albian period, compressive events reactivated old N E and N W faults in the basement as trans current fault systems. The continuation of these stresses, from the Cenomanian to the Maastrichtian, developed normal faults that controlled a submarine canyon that connected the continent, where an estuary was formed between the mountains, to the deep marine region of the basin. The canyon has received sediments brought by catastrophic fluvial floods coming from the surrounding mountains, which formed hyperpicnal flows that have evolved as turbidity currents, thus causing erosion of the substrate and carrying a huge volume of sediments to the basin. A part of that load was deposited in the canyon and formed turbidite channels filled by conglomerates, sandstones and shales. These moderately to highly efficient turbidite are intercalated to pro delta pelites and low density turbid plumes deposits, which have mostly been re mobilized as slump and debris flows (chaotic deposits). Pelites were accumulated mainly in the normal fluvial sedimentation phases, when the sandy sediment was retained next to the canyon head and were reworked by the tides on the upper part of the estuary. (author)

  9. Marine litter on the floor of deep submarine canyons of the Northwestern Mediterranean Sea: The role of hydrodynamic processes

    Science.gov (United States)

    Tubau, Xavier; Canals, Miquel; Lastras, Galderic; Rayo, Xavier; Rivera, Jesus; Amblas, David

    2015-05-01

    Marine litter represents a widespread type of pollution in the World's Oceans. This study is based on direct observation of the seafloor by means of Remotely Operated Vehicle (ROV) dives and reports litter abundance, type and distribution in three large submarine canyons of the NW Mediterranean Sea, namely Cap de Creus, La Fonera and Blanes canyons. Our ultimate objective is establishing the links between active hydrodynamic processes and litter distribution, thus going beyond previous, essentially descriptive studies. Litter was monitored using the Liropus 2000 ROV. Litter items were identified in 24 of the 26 dives carried out in the study area, at depths ranging from 140 to 1731 m. Relative abundance of litter objects by type, size and apparent weight, and distribution of litter in relation to depth and canyon environments (i.e. floor and flanks) were analysed. Plastics are the dominant litter component (72%), followed by lost fishing gear, disregarding their composition (17%), and metal objects (8%). Most of the observed litter seems to be land-sourced. It reaches the ocean through wind transport, river discharge and after direct dumping along the coastline. While coastal towns and industrial areas represent a permanent source of litter, tourism and associated activities relevantly increase litter production during summer months ready to be transported to the deep sea by extreme events. After being lost, fishing gear such as nets and long-lines has the potential of being harmful for marine life (e.g. by ghost fishing), at least for some time, but also provides shelter and a substrate on which some species like cold-water corals are capable to settle and grow. La Fonera and Cap de Creus canyons show the highest mean concentrations of litter ever seen on the deep-sea floor, with 15,057 and 8090 items km-2, respectively, and for a single dive litter observed reached 167,540 items km-2. While most of the largest concentrations were found on the canyon floors at

  10. Slope instabilities along the Western Andean Escarpment and the main canyons in Northern Chile

    Science.gov (United States)

    Crosta, G.; Hermanns, R. L.; Valbuzzi, E.; Dehls, J.; Yugsi Molina, F. X.; Sepulveda, S.

    2012-04-01

    The western slope of the Andes of northern Chile - southern Perù is generally subdivided from the west to the east into the morphological units of: the Coastal Cordillera, Central Depression, the Western Escarpment-Precordillera and the Western Andean Cordillera. The western escarpment and Precordillera are formed by the Azapa coarse-grained clastic formation (sandstones, conglomerates, mudstones) and the Oxaya (rhyodacitic ignimbrites) and Diablo volcanoclastic formations (Oligocene and Miocene). Important uplift has been suggested between the deposition of the Oxaya and Diablo formations. The entire area has been characterized by a long-term hyperaridity (Atacama desert), initially established between 20 and 15 Ma, and this caused a strong difference between the long term continuous uplift and low denudation rates. This long sector of the central western escarpment and Precordillera is incised by deep canyons and subparallel drainage network in the upper part. The drainage network developed in two main phases: a lower-middle Miocene phase with formation of a parallel poorly structured drainage network cutting into the Oxaya formation, and presently well preserved; the canyons have been incised in the initial topography starting around 9 Ma and up to about 3.8 Ma with subsequent refilling episodes. Valley incision (ave. rate of 0.2 mm yr-1) has been controlled by topographic uplift and less arid climate (after 7 Ma). As a consequence of these geologic and climatic settings the evolution of this area has been characterized by canyon incision and extremely large slope instabilities. These slope instabilities occur in the "interfluvial" sectors of the western escarpment and Precordillera and along the canyon flanks. Landslides affecting the preserved paleosurfaces, interested by the parallel drainage network in the Oxaya formation, involve volumes of various cubic kilometres (Lluta collapse, Latagualla Landslide) and can control the drainage network. These mega

  11. Simulation of ground-water flow and solute transport in the Glen Canyon aquifer, East-Central Utah

    Science.gov (United States)

    Freethey, Geoffrey W.; Stolp, Bernard J.

    2010-01-01

    The extraction of methane from coal beds in the Ferron coal trend in central Utah started in the mid-1980s. Beginning in 1994, water from the extraction process was pressure injected into the Glen Canyon aquifer. The lateral extent of the aquifer that could be affected by injection is about 7,600 square miles. To address regional-scale effects of injection over a decadal time frame, a conceptual model of ground-water movement and transport of dissolved solids was formulated. A numerical model that incorporates aquifer concepts was then constructed and used to simulate injection.The Glen Canyon aquifer within the study area is conceptualized in two parts—an active area of ground-water flow and solute transport that exists between recharge areas in the San Rafael Swell and Desert, Waterpocket Fold, and Henry Mountains and discharge locations along the Muddy, Dirty Devil, San Rafael, and Green Rivers. An area of little or negligible ground-water flow exists north of Price, Utah, and beneath the Wasatch Plateau. Pressurized injection of coal-bed methane production water occurs in this area where dissolved-solids concentrations can be more than 100,000 milligrams per liter. Injection has the potential to increase hydrologic interaction with the active flow area, where dissolved-solids concentrations are generally less than 3,000 milligrams per liter.Pressurized injection of coal-bed methane production water in 1994 initiated a net addition of flow and mass of solutes into the Glen Canyon aquifer. To better understand the regional scale hydrologic interaction between the two areas of the Glen Canyon aquifer, pressurized injection was numerically simulated. Data constraints precluded development of a fully calibrated simulation; instead, an uncalibrated model was constructed that is a plausible representation of the conceptual flow and solute-transport processes. The amount of injected water over the 36-year simulation period is about 25,000 acre-feet. As a result

  12. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin

    Science.gov (United States)

    Obelcz, Jeffrey; Brothers, Daniel S.; Chaytor, Jason D.; ten Brink, Uri S.; Ross, Steve W.; Brooke, Sandra

    2013-01-01

    Shelf-sourced submarine canyons are common features of continental margins and are fundamental to deep-sea sedimentary systems. Despite their geomorphic and geologic significance, relatively few passive margin shelf-breaching canyons worldwide have been mapped using modern geophysical methods. Between 2007 and 2012 a series of geophysical surveys was conducted across four major canyons of the US Mid-Atlantic margin: Wilmington, Baltimore, Washington, and Norfolk canyons. More than 5700 km2 of high-resolution multibeam bathymetry and 890 line-km of sub-bottom CHIRP profiles were collected along the outer shelf and uppermost slope (depths of 80-1200 m). The data allowed us to compare and contrast the fine-scale morphology of each canyon system. The canyons have marked differences in the morphology and orientation of canyon heads, steepness and density of sidewall gullies, and the character of the continental shelf surrounding canyon rims. Down-canyon axial profiles for Washington, Baltimore and Wilmington canyons have linear shapes, and each canyon thalweg exhibits morphological evidence for recent, relatively small-scale sediment transport. For example, Washington Canyon displays extremely steep wall gradients and contains ~100 m wide, 5–10 m deep, v-shaped incisions down the canyon axis, suggesting modern or recent sediment transport. In contrast, the convex axial thalweg profile, the absence of thalweg incision, and evidence for sediment infilling at the canyon head, suggest that depositional processes strongly influence Norfolk Canyon during the current sea-level high-stand. The north walls of Wilmington, Washington and Norfolk canyons are steeper than the south walls due to differential erosion, though the underlying cause for this asymmetry is not clear. Furthermore, we speculate that most of the geomorphic features observed within the canyons (e.g., terraces, tributary canyons, gullies, and hanging valleys) were formed during the Pleistocene, and show only

  13. Geomorphic evolution of the San Luis Basin and Rio Grande in southern Colorado and northern New Mexico

    Science.gov (United States)

    Ruleman, Chester A.; Machette, Michael; Thompson, Ren A.; Miggins, Dan M; Goehring, Brent M; Paces, James B.

    2016-01-01

    The San Luis Basin encompasses the largest structural and hydrologic basin of the Rio Grande rift. On this field trip, we will examine the timing of transition of the San Luis Basin from hydrologically closed, aggrading subbasins to a continuous fluvial system that eroded the basin, formed the Rio Grande gorge, and ultimately, integrated the Rio Grande from Colorado to the Gulf of Mexico. Waning Pleistocene neotectonic activity and onset of major glacial episodes, in particular Marine Isotope Stages 11–2 (~420–14 ka), induced basin fill, spillover, and erosion of the southern San Luis Basin. The combined use of new geologic mapping, fluvial geomorphology, reinterpreted surficial geology of the Taos Plateau, pedogenic relative dating studies, 3He surface exposure dating of basalts, and U-series dating of pedogenic carbonate supports a sequence of events wherein pluvial Lake Alamosa in the northern San Luis Basin overflowed, and began to drain to the south across the closed Sunshine Valley–Costilla Plain region ≤400 ka. By ~200 ka, erosion had cut through topographic highs at Ute Mountain and the Red River fault zone, and began deep-canyon incision across the southern San Luis Basin. Previous studies indicate that prior to 200 ka, the present Rio Grande terminated into a large bolson complex in the vicinity of El Paso, Texas, and systematic, headward erosional processes had subtly integrated discontinuously connected basins along the eastern flank of the Rio Grande rift and southern Rocky Mountains. We propose that the integration of the entire San Luis Basin into the Rio Grande drainage system (~400–200 ka) was the critical event in the formation of the modern Rio Grande, integrating hinterland basins of the Rio Grande rift from El Paso, Texas, north to the San Luis Basin with the Gulf of Mexico. This event dramatically affected basins southeast of El Paso, Texas, across the Chisos Mountains and southeastern Basin and Range province, including the Rio

  14. On the escape of pollutants from urban street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Baik, J.J.; Kim, J.J. [Kwangju Inst. of Science and Technology (Korea). Dept. of Environmental Science and Engineering

    2002-07-01

    Pollutant transport from urban street canyons is numerically investigated using a two-dimensional flow and dispersion model. The ambient wind blows perpendicular to the street and passive pollutants are released at the street level. Results from the control experiment with a street aspect ratio of 1 show that at the roof level of the street canyon, the vertical turbulent flux of pollutants is upward everywhere and the vertical flux of pollutants by mean flow is upward or downward. The horizontally integrated vertical flux of pollutants by mean flow at the roof level of the street canyon is downward and its magnitude is much smaller than that by turbulent process. These results indicate that pollutants escape from the street canyon mainly by turbulent process and that the net effect of mean flow is to make some escaped pollutants reenter the street canyon. Further experiments with different inflow turbulence intensities, inflow wind speeds, and street aspect ratio confirm the findings from the control experiment. In the case of two isolated buildings, the horizontally integrated vertical flux of pollutants by mean flow is upward due to flow separation but the other main results are the same as those from the control experiment. (author)

  15. Are deep-sea organisms dwelling within a submarine canyon more at risk from anthropogenic contamination than those from the adjacent open slope? A case study of Blanes canyon (NW Mediterranean)

    Science.gov (United States)

    Koenig, Samuel; Fernández, Pilar; Company, Joan B.; Huertas, David; Solé, Montserrat

    2013-11-01

    Due to their geomorphological structure and proximity to the coastline, submarine canyons may act as natural conduit routes for anthropogenic contaminants that are transported from surface waters to the deep-sea. Organisms dwelling in these canyon environments might thus be at risk of experiencing adverse health effects due to higher pollution exposure. To address this question, chemical and biochemical analyses were conducted on two of the most abundant deep-sea fish species in the study area, namely Alepocephalus rostratus and Lepidion lepidion, and the most abundant deep-sea commercial decapod crustacean Aristeus antennatus sampled inside Blanes canyon (BC) and on the adjacent open slope (OS). Persistent organic pollutants (POPs) levels, including polychlorinated biphenyl (PCB), dichlorodiphenyltrichloroethane (DDT) and derivatives, hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) were determined in muscle tissue of selected samples from 900 m and 1500 m depth. Potential effects resulting from contaminant exposure were determined using hepatic biomarkers such as ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-deethylase (PROD), catalase (CAT), carboxylesterase (CbE), glutathione-S-transferase (GST), total glutathione peroxidase (GPX), glutathione reductase (GR) and superoxide-dismutase (SOD) enzyme activities and lipid peroxidation levels (LP). L. lepidion and A. antennatus tissues exhibited higher POP levels inside BC compared to the OS at 900 m depth. These findings were consistent with biomarker data (i.e. enzymatic response to presence of contaminant agents). Elevated xenobiotic-metabolizing (EROD and PROD) and antioxidant enzymes (CAT and GPX) indicated higher contaminant exposure in both species caught within BC. No difference in POP accumulation between sites was observed in L. lepidion at 1500 m depth, nor in biomarker data, suggesting that the pollution gradient was less pronounced at greater depths. This trend was further corroborated

  16. Hydraulics of outburst floods spilling over a steep-walled canyon: Implications for paleo-discharges on Mars

    Science.gov (United States)

    Lapotre, Mathieu; Lamb, Michael

    2013-04-01

    Canyons carved by outburst floods are common landforms on Earth and Mars. These canyons are generally found in fractured basalts and jointed sedimentary rocks. Flood-carved canyons commonly have steep headwalls and a roughly constant width, and are often thought to have formed from upstream headwall propagation due to waterfall erosion. Because morphology is readily available from satellite imagery, these canyons offer a unique opportunity to quantify the discharge of rare, catastrophic paleo-floods on Earth and Mars. However, mechanistic relationships that relate canyon size to flood discharge have yet to be developed. We propose that the width of a canyon headwall in fractured rock is set by the spatial distribution of erosion around the rim of the canyon, which is controlled by the distribution of shear stresses induced by the overflowing water as it is focused into the canyon head. We test this hypothesis by performing a series of numerical simulations of flood-water focusing using ANUGA Hydro, a 2D-depth averaged, fully turbulent, hydraulic numerical modeling suite allowing for Froude-number transitions. The numerical simulations were designed to explore five dimensionless variables: the aspect ratio of the canyon (length normalized by width), the canyon width to flood-water width ratio, the canyon width to normal-flow depth ratio, the Froude number, and the topographic gradient upstream of the canyon. Preliminary results show that flow focusing leads to increased shear stresses at the canyon head compared to the sides of the canyon for subcritical floods and higher canyon aspect ratios. This suggests that proto-canyons start growing from a topographic defect in all directions until they reach a critical length for the side walls to dry. Once this critical length is attained, canyons focus most of the flood waters into their heads, and propagate upstream only, maintaining roughly constant widths. Preliminary results suggest that canyon width may be used to

  17. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, November 1993--October 1994

    Energy Technology Data Exchange (ETDEWEB)

    Cross, S.

    1995-08-01

    The Ecological Studies Team (EST) of ESH-20 at Los Alamos National Laboratory (LANL) has collected samples from the stream within Sandia Canyon since the summer of 1990. These field studies gather water quality measurements and collect aquatic macroinvertebrates from permanent sampling sites. Reports by Bennett (1994) and Cross (1994) discuss previous EST aquatic studies in Sandia Canyon. This report updates and expands those findings. EST collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon from November 1993 through October 1994. The two upstream stations are located below outfalls that discharge industrial and sanitary waste effluent into the stream, thereby maintaining year-round flow. Some water quality parameters are different at the first three stations from those expected of natural streams in the area, indicating degraded water quality due to effluent discharges. The aquatic habitat at the upper stations has also been degraded by sedimentation and channelization. The macroinvertebrate communities at these stations are characterized by low diversities and unstable communities. In contrast, the two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. The two lower stations have increased macroinvertebrate diversity and stable communities, further indications of downstream water quality improvement.

  18. Increases in both acute and chronic temperature potentiate tocotrienol concentrations in wild barley at 'Evolution Canyon'.

    Science.gov (United States)

    Shen, Yu; Lansky, Ephraim; Traber, Maret; Nevo, Eviatar

    2013-09-01

    Biosynthesis of tocols (vitamin E isoforms) is linked to response to temperature in plants. 'Evolution Canyon', an ecogeographical microcosm extending over an average of 200 meters (range 100-400) wide area in the Carmel Mountains of northern Israel, has been suggested as a model for studying global warming. Both domestic (Hordeum vulgare) and wild (Hordeum spontaneum) barley compared with wheat, oat, corn, rice, and rye show high tocotrienol/tocopherol ratios. Therefore, we hypothesized that tocol distribution might change in response to global warming. α-, β-, γ-, and δ-tocopherol, and α-, β-, γ-, and δ-tocotrienol concentrations were measured in wild barley (H. spontaneum) seeds harvested from the xeric (African) and mesic (European) slopes of Evolution Canyon over a six-year period from 2005-2011. Additionally, we examined seeds from areas contiguous to and distant from the part of the Canyon severely burned during the Carmel Fire of December 2010. Increased α-tocotrienol (pslope in contrast to the cooler 'European' slope, and 3) to propinquity to the fire. The study illustrates the role of α-tocotrienol in both chronic and acute temperature adaptation in wild barley and suggests future research into thermoregulatory mechanisms in plants. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Application of a new genetic classification and semi-automated geomorphic mapping approach in the Perth submarine canyon, Australia

    Science.gov (United States)

    Picard, K.; Nanson, R.; Huang, Z.; Nichol, S.; McCulloch, M.

    2017-12-01

    The acquisition of high resolution marine geophysical data has intensified in recent years (e.g. multibeam echo-sounding, sub-bottom profiling). This progress provides the opportunity to classify and map the seafloor in greater detail, using new methods that preserve the links between processes and morphology. Geoscience Australia has developed a new genetic classification approach, nested within the Harris et al (2014) global seafloor mapping framework. The approach divides parent units into sub-features based on established classification schemes and feature descriptors defined by Bradwell et al. (2016: http://nora.nerc.ac.uk/), the International Hydrographic Organization (https://www.iho.int) and the Coastal Marine and Ecological Classification Standard (https://www.cmecscatalog.org). Owing to the ecological significance of submarine canyon systems in particular, much recent attention has focused on defining their variation in form and process, whereby they can be classified using a range of topographic metrics, fluvial dis/connection and shelf-incising status. The Perth Canyon is incised into the continental slope and shelf of southwest Australia, covering an area of >1500 km2 and extending from 4700 m water depth to the shelf break in 170 m. The canyon sits within a Marine Protected Area, incorporating a Marine National Park and Habitat Protection Zone in recognition of its benthic and pelagic biodiversity values. However, detailed information of the spatial patterns of the seabed habitats that influence this biodiversity is lacking. Here we use 20 m resolution bathymetry and acoustic backscatter data acquired in 2015 by the Schmidt Ocean Institute plus sub-bottom datasets and sediment samples collected Geoscience Australia in 2005 to apply the new geomorphic classification system to the Perth Canyon. This presentation will show the results of the geomorphic feature mapping of the canyon and its application to better defining potential benthic habitats.

  20. Seven years of geomorphic change in the head of Monterey Canyon, CA: Steady state equilibrium or monotonic change?

    Science.gov (United States)

    Smith, D. P.; Kvitek, R. G.; Ross, E.; Iampietro, P.; Paull, C. K.; Sandersfeld, M.

    2010-12-01

    The head of Monterey submarine canyon has been surveyed with high-precision multibeam sonar at least once each year since September 2002. This poster provides a summary of changes between September 2002 and September 2008. Data were collected with a variety of Reson mulitbeam sonar heads, and logged with an ISIS data acquisition system. Vessel attitude was corrected using an Applanix POS MV equipped with an auxillary C-Nav 2050 GPS receiver. Data were processed and filtered and cleaned in Caris HIPS. Depth changes for various time spans were determined through raster subtraction of pairs of 3-m resolution bathymetric grids in ArcMap. The depth change analyses focused on the canyon floor, except where a landslide occurred on a wall, and where obvious gullying near the headwall had occurred during the time of our study. Canyon walls were generally excluded from analysis. The analysis area was 1,414,240 sq meters. The gross changes between 2002 and 2008 include net erosion of 2,300,000 m^3 +/- 800,000 m^3 of material from the canyon. The annualized rate of net sediment loss from this time frame agrees within an order of magnitude with our previously published estimates from earlier (shorter) time frames, so the erosion events seem to be moderate magnitude and frequent, rather than infrequent and catastrophic. The greatest sediment loss appears to be from lateral erosion of channel-bounding terraces rather than deepening or scouring of the existing channel axis. A single landslide event that occurred in summer 2003 had an initial slide scar (void) volume of 71,000 m^3. The scar was observed to increase annually, and had grown to approximately 96,000 m^3 by 2008. The initial slide was too small to be tsunamigenic. In contrast to the monotonic canyon axis widening, the shoreward terminus of the canyon (canyon lip) appears to be in steady state equilibrium with sediment supply entering the canyon from the littoral zone. The lip position, indicated by the clearly defined

  1. Partly standing internal tides in a dendritic submarine canyon observed by an ocean glider

    Science.gov (United States)

    Hall, Rob A.; Aslam, Tahmeena; Huvenne, Veerle A. I.

    2017-08-01

    An autonomous ocean glider is used to make the first direct measurements of internal tides within Whittard Canyon, a large, dendritic submarine canyon system that incises the Celtic Sea continental slope and a site of high benthic biodiversity. This is the first time a glider has been used for targeted observations of internal tides in a submarine canyon. Vertical isopycnal displacement observations at different stations fit a one-dimensional model of partly standing semidiurnal internal tides - comprised of a major, incident wave propagating up the canyon limbs and a minor wave reflected back down-canyon by steep, supercritical bathymetry near the canyon heads. The up-canyon internal tide energy flux in the primary study limb decreases from 9.2 to 2.0 kW m-1 over 28 km (a dissipation rate of 1 - 2.5 ×10-7 Wkg-1), comparable to elevated energy fluxes and internal tide driven mixing measured in other canyon systems. Within Whittard Canyon, enhanced mixing is inferred from collapsed temperature-salinity curves and weakened dissolved oxygen concentration gradients near the canyon heads. It has previously been hypothesised that internal tides impact benthic fauna through elevated near-bottom current velocities and particle resuspension. In support of this, we infer order 20 cm s-1 near-bottom current velocities in the canyon and observe high concentrations of suspended particulate matter. The glider observations are also used to estimate a 1 °C temperature range and 12 μmol kg-1 dissolved oxygen concentration range, experienced twice a day by organisms on the canyon walls, due to the presence of internal tides. This study highlights how a well-designed glider mission, incorporating a series of tide-resolving stations at key locations, can be used to understand internal tide dynamics in a region of complex topography, a sampling strategy that is applicable to continental shelves and slopes worldwide.

  2. Sedimentation in Rio La Venta Canyon in Netzahualcoyotl Reservoir, Chiapas, Mexico

    Science.gov (United States)

    de La Fuente, J. A.; Lisle, T.; Velasquez, J.; Allison, B. L.; Miller, A.

    2002-12-01

    Sedimentation of Rio La Venta as it enters the Netzahualcoyotl Reservoir in Chiapas, Mexico, threatens a unique part of the aquatic ecosystem. Rio La Venta enters the reservoir via a narrow canyon about 16 km long with spectacular, near-vertical limestone bluffs up to 320 m high and inhabited by the flora and fauna of a pristine tropical forest. Karst terrain underlies most of the Rio La Venta basin in the vicinity of the reservoir, while deeply weathered granitic terrain underlies the Rio Negro basin, and the headwaters of the Rio La Venta to the south. The Rio Negro joins Rio La Venta 3 km downstream of the upper limit of the reservoir and delivers the bulk of the total clastic sediment (mostly sand and finer material). The canyon and much of the contributing basin lie within the Reserva de la Biosfera, Selva El Ocote, administered by the Comision Nacional de Areas Naturales Protegidas, part of the Secretaria de Medioambiente y Recursos Naturales. The Klamath National Forest Forest has cooperated with its Mexican counterparts since 1993 in natural resource management, neo-tropical bird inventories, wildfire management, and more recently in watershed analyses. Rates of sedimentation are estimated from bathymetric surveys conducted in March, 2002. A longitudinal profile down the inundated canyon during a high reservoir level shows an inflection from a slope of 0.0017 to one of 0.0075 at 7.2 km downstream of the mouth of Rio Negro. The bed elevation at this point corresponds to the lowest reservoir level, suggesting that the gentler sloping bed upstream is formed by fluvial processes during drawdown and that downstream by pluvial processes. Using accounts that boats could access Rio Negro during low water levels in 1984, we estimate an annual sedimentation rate of roughly 3 million cubic meters per year. This suggests that boats might no longer be able to access the most spectacular section of canyon upstream of Rio Negro within a decade, depending on how the

  3. Evaluation of seismic reflection data in the Davis and Lavender Canyons study area, Paradox Basin, Utah

    International Nuclear Information System (INIS)

    Kitcho, C.A.; Wong, I.G.; Turcotte, F.T.

    1986-08-01

    Seismic reflection data purchased from petroleum industry brokers and acquired through group speculative surveys were interpreted for information on the regional subsurface geologic structure and stratigraphy within and surrounding the Davis and Lavender Canyons study area in the Paradox Basin of southeastern Utah. Structures of interest were faults, folds, joints, and collapse structures related to salt dissolution. The seismic reflection data were used to interpret stratigraphy by identifying continuous and discontinuous reflectors on the seismic profiles. Thickening and thinning of strata and possible areas of salt flowage or dissolution could be identified from the seismic data. Identifiable reflectors included the tops of the Precambrian and Mississippian, a distinctive interbed close to the middle of the Pennsylvanian Paradox salt formation (probably the interval between Salt Cycles 10 and 13), and near the top of the Paradox salt. Of the 56 faults identified from the seismic reflection interpretation, 33 trend northwest, west-northwest, or west, and most affect only the deeper part of the stratigraphic section. These faults are part of the deep structural system found throughout the Paradox Basin, including the fold and fault belt in the northeast part of the basin. The faults bound basement Precambrian blocks that experienced minor activity during Mississippian and early Pennsylvanian deposition, and showed major displacement during early Paradox salt deposition as the Paradox Basin subsided. Based on the seismic data, most of these faults appear to have an upward terminus between the top of the Mississippian and the salt interbed reflector

  4. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  5. Gamma ray and neutrino detector facility (GRANDE), Task C

    International Nuclear Information System (INIS)

    Sobel, H.W.; Yodh, G.B.

    1991-08-01

    GRANDE is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. We proposed that the detector be constructed in phases, beginning with an active detector area of 31,000 m 2 (GRANDE-I) 2 and expanding to a final size of 100,000--150,00 m 2 . Some of the characteristics of GRANDE-I are discussed in this paper

  6. Event-driven sediment flux in Hueneme and Mugu submarine canyons, southern California

    Science.gov (United States)

    Xu, J. P.; Swarzenski, P.W.; Noble, M.; Li, A.-C.

    2010-01-01

    Vertical sediment fluxes and their dominant controlling processes in Hueneme and Mugu submarine canyons off south-central California were assessed using data from sediment traps and current meters on two moorings that were deployed for 6 months during the winter of 2007. The maxima of total particulate flux, which reached as high as 300+ g/m2/day in Hueneme Canyon, were recorded during winter storm events when high waves and river floods often coincided. During these winter storms, wave-induced resuspension of shelf sediment was a major source for the elevated sediment fluxes. Canyon rim morphology, rather than physical proximity to an adjacent river mouth, appeared to control the magnitude of sediment fluxes in these two submarine canyon systems. Episodic turbidity currents and internal bores enhanced sediment fluxes, particularly in the lower sediment traps positioned 30 m above the canyon floor. Lower excess 210Pb activities measured in the sediment samples collected during periods of peak total particulate flux further substantiate that reworked shelf-, rather than newly introduced river-borne, sediments supply most of the material entering these canyons during storms.

  7. Submarine canyons represent an essential habitat network for krill hotspots in a Large Marine Ecosystem.

    Science.gov (United States)

    Santora, Jarrod A; Zeno, Ramona; Dorman, Jeffrey G; Sydeman, William J

    2018-05-15

    Submarine canyon systems are ubiquitous features of marine ecosystems, known to support high levels of biodiversity. Canyons may be important to benthic-pelagic ecosystem coupling, but their role in concentrating plankton and structuring pelagic communities is not well known. We hypothesize that at the scale of a large marine ecosystem, canyons provide a critical habitat network, which maintain energy flow and trophic interactions. We evaluate canyon characteristics relative to the distribution and abundance of krill, critically important prey in the California Current Ecosystem. Using a geological database, we conducted a census of canyon locations, evaluated their dimensions, and quantified functional relationships with krill hotspots (i.e., sites of persistently elevated abundance) derived from hydro-acoustic surveys. We found that 76% of krill hotspots occurred within and adjacent to canyons. Most krill hotspots were associated with large shelf-incising canyons. Krill hotspots and canyon dimensions displayed similar coherence as a function of latitude and indicate a potential regional habitat network. The latitudinal migration of many fish, seabirds and mammals may be enhanced by using this canyon-krill network to maintain foraging opportunities. Biogeographic assessments and predictions of krill and krill-predator distributions under climate change may be improved by accounting for canyons in habitat models.

  8. Mobile Monitoring of Methane During and After the Aliso Canyon Natural Gas Leak

    Science.gov (United States)

    Polidori, A.; Pikelnaya, O.; Low, J.; Wimmer, R.; Zhou, Q.

    2016-12-01

    The Aliso Canyon gas leak was discovered inside the SoCalGas (SCG) facility on October 23, 2015. This incident represented the worst natural gas leak in the US history, and spurred a number of odor nuisance complaints from local residents. The community of Porter Ranch, located directly south of the SCG Aliso Canyon facility, was the most affected by the leak although complaints have been also reported in other neighboring communities of the San Fernando Valley. Therefore, monitoring of air quality was and remains crucial for measuring the impact of methane emissions from this leak and assessing the well-being of all residents. As the main local air quality agency for this area, South Coast Air Quality Management District (SCAQMD) organized a set of monitoring activities in response to the leak. Since December 21, 2015 SCAQMD has been conducting mobile survey measurements in and around Porter Ranch to characterize methane levels and concentration gradients within the community. For this purpose, a fast-response optical methane analyzer (LI-COR 7700) and a Global Positioning System (GPS) were mounted on top of a hybrid vehicle and driven around Porter Ranch and other surrounding areas. Following the permanent seal of the leaking well on February 18, 2016 mobile measurements have also been expanded to inside the Aliso Canyon SCG facility. During this presentation we will describe the experimental setup designed for mobile methane surveys and the monitoring strategy used for this study. We will discuss the main results of our mobile measurements including long-term methane trends since the end of the leak.

  9. B-Plant Canyon Ventilation Control System Description; FINAL

    International Nuclear Information System (INIS)

    MCDANIEL, K.S.

    1999-01-01

    Project W-059 installed a new B Plant Canyon Ventilation System. Monitoring and control of the system is implemented by the Canyon Ventilation Control System (CVCS). This document describes the CVCS system components which include a Programmable Logic Controller (PLC) coupled with an Operator Interface Unit (OIU) and application software. This document also includes an Alarm Index specifying the setpoints and technical basis for system analog and digital alarms

  10. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    International Nuclear Information System (INIS)

    Keller, David Charles

    2016-01-01

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  11. Floodplain statement of findings for corrective actions in Potrillo Canyon technical area-36, Los Alamos National Laboratory, Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Keller, David Charles [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-18

    In 2014, baseline storm water monitoring samples for Potrillo Canyon Sample Management Area at Los Alamos National Laboratory (LANL) exceeded the National Pollutant Discharge Elimination System Individual Permit No. NM0030759 target action level (TAL) of 15 picocuries per liter (pCi/L) for gross-alpha radioactivity (393 pCi/L) and a TAL of 30 pCi/L for radium-226 and radium-228 (95.9 pCi/L). Consequently, erosion control measures within the management area are proposed to minimize sediment migration, a corrective action under the permit that is a requirement of the New Mexico Environment Department consent decree and a good management practice to limit off-site sediment migration. The area proposed for erosion controls consists of portions of Technical Area 36 that were used as firing sites primarily involving high explosives (HE) and metal (e.g., depleted uranium, lead, copper, aluminum, and steel), small-explosives experiments and burn pits (burn pits were used for burning and disposal of test debris). In addition, underground explosive tests at an approximate depth of 100 feet were also conducted. These watershed-based storm water controls will focus on addressing erosion occurring within the floodplain through mitigating and reducing both current and future channelization and head cutting.

  12. Sedimentology of the Westwater Canyon and Brushy Basin Members, Upper Jurassic Morrison Formation, Colorado Plateau, and relationship to uranium mineralization

    International Nuclear Information System (INIS)

    Turner-Peterson, C.E.

    1987-01-01

    The Westwater Canyon Member was deposited by eastward-flowing, high energy, intermittent streams that drained a source area of diverse lithologies. Multi-channel river systems exhibited only minor downstream changes, most notably a slight increase in the amount of lateral accretion deposition. During deposition of the overlying Brushy Basin Member, a large saline, alkaline lake developed in an area that encompasses both the San Juan basin and the Paradox basin. Alteration of airborne volcanic ash that became incorporated in the lake sediments resulted in a lateral zonation of authigenic minerals that resembles the zonation characteristic of Cenozoic saline, alkaline lakes. The lake, named Lake T'oo'dichi, is the largest and oldest saline, alkaline lake known. Localization of primary uranium ore in the Grants uranium region, New Mexico, is more related to depositional facies in the Brushy Basin Member than to any special attribute of the host sandstones in the Westwater Canyon Member. Coincidence of depositional facies in the Brushy Basin Member with ore distribution and ore-related alteration patterns in the Westwater Canyon Member suggests a model in which humic acids originated in pore waters of smectitic mudstones of the Brushy Basin Member and moved downward into the underlying sandstones of the Westwater Canyon Member. Here, the humic acids precipitated to form humin layers that subsequently concentrated uranium from ground water to form the orebodies

  13. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  14. Rapid formation of a modern bedrock canyon by a single flood event

    Science.gov (United States)

    Lamb, Michael P.; Fonstad, Mark A.

    2010-07-01

    Deep river canyons are thought to form slowly over geological time (see, for example, ref. 1), cut by moderate flows that reoccur every few years. In contrast, some of the most spectacular canyons on Earth and Mars were probably carved rapidly during ancient megaflood events. Quantification of the flood discharge, duration and erosion mechanics that operated during such events is hampered because we lack modern analogues. Canyon Lake Gorge, Texas, was carved in 2002 during a single catastrophic flood. The event offers a rare opportunity to analyse canyon formation and test palaeo-hydraulic-reconstruction techniques under known topographic and hydraulic conditions. Here we use digital topographic models and visible/near-infrared aerial images from before and after the flood, discharge measured during the event, field measurements and sediment-transport modelling to show that the flood moved metre-sized boulders, excavated ~7m of limestone and transformed a soil-mantled valley into a bedrock canyon in just ~3days. We find that canyon morphology is strongly dependent on rock type: plucking of limestone blocks produced waterfalls, inner channels and bedrock strath terraces, whereas abrasion of cemented alluvium sculpted walls, plunge pools and streamlined islands. Canyon formation was so rapid that erosion might have been limited by the ability of the flow to transport sediment. We suggest that our results might improve hydraulic reconstructions of similar megafloods on Earth and Mars.

  15. Implications of tree planting on pollutant dispersion in street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    Traffic pollutant dispersion processes inside urban street canyons with avenue-like tree planting have been studied in wind tunnel experiments. Tree planting of different crown porosities and their effects on the pollutant concentrations at the canyon walls have been investigated for wind

  16. Urban air quality management : effects of trees on air pollution concentration in urban street canyon

    NARCIS (Netherlands)

    Salim, S.M.; Buccolieri, R.; Chan, A.; Sabatino, Di S.; Gromke, C.

    2009-01-01

    The aerodynamic effects of avenue-like tree planting on air flow and traffic-originated pollutant dispersion in urban built-up areas (i.e. street canyons of width to height ratio, W/H=1) are investigated using computational fluid dynamics techniques and complemented with extensive wind tunnel

  17. Numerical Study of Traffic Pollutant Dispersion within Different Street Canyon Configurations

    Directory of Open Access Journals (Sweden)

    Yucong Miao

    2014-01-01

    Full Text Available The objective of this study is to numerically study flow and traffic exhaust dispersion in urban street canyons with different configurations to find out the urban-planning strategies to ease the air pollution. The Computational Fluid Dynamics (CFD model used in this study—Open Source Field Operation and Manipulation (OpenFOAM software package—was firstly validated against the wind-tunnel experiment data by using three different k-ε turbulence models. And then the patterns of flow and dispersion within three different kinds of street canyon configuration under the perpendicular approaching flow were numerically studied. The result showed that the width and height of building can dramatically affect the pollution level inside the street canyon. As the width or height of building increases, the pollution at the pedestrian level increases. And the asymmetric configuration (step-up or step-down street canyon could provide better ventilation. It is recommended to design a street canyon with nonuniform configurations. And the OpenFOAM software package can be used as a reliable tool to study flows and dispersions around buildings.

  18. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    Memon, R.A.; Lal, K.

    2011-01-01

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  19. Distributions and habitat associations of deep-water corals in Norfolk and Baltimore Canyons, Mid-Atlantic Bight, USA

    NARCIS (Netherlands)

    Brooke, S.D.; Watts, M.W.; Heil, A.D.; Rhode, M.; Mienis, F.; Duineveld, G.C.A.; Davies, A.J.; Ross, S.W.

    2017-01-01

    A multi-disciplinary study of two major submarine canyons, Baltimore Canyon and Norfolk Canyon, off the US mid-Atlantic coast focused on the ecology and biology of canyon habitats, particularly those supporting deep-sea corals. Historical data on deep-sea corals from these canyons were sparse with

  20. Loss of residual heat removal system: Diablo Canyon, Unit 2, April 10, 1987

    International Nuclear Information System (INIS)

    1987-06-01

    This report presents the findings of an NRC Augmented Inspection Team (AIT) investigation into the circumstances associated with the loss of residual heat removal (RHR) system capability for a period of approximately one and one-half hours at the Diablo Canyon, Unit 2 reactor facility on April 10, 1987. This event occurred while the Diablo Canyon, Unit 2, a pressurized water reactor, was shutdown with the reactor coolant system (RCS) water level drained to approximately mid-level of the hot leg piping. The reactor containment building equipment hatch was removed at the time of the event, and plant personnel were in the process of removing the primary side manways to gain access into the steam generator channel head areas. Thus, two fission product barriers were breached throughout the event. The RCS temperature increased from approximately 87 0 F to bulk boiling conditions without RCS temperature indication available to the plant operators. The RCS was subsequently pressurized to approximately 7 to 10 psig. The NRC AIT members concluded that the Diablo Canyon, Unit 2 plant was, at the time of the event, in a condition not previously analyzed by the NRC staff. The AIT findings from this event appear significant and generic to other pressurized water reactor facilities licensed by the NRC

  1. Draft environmental assessment: Lavender Canyon site, Utah. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Lavender Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Lavender Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations contained in this draft EA, the DOE has found that the Lavender Canyon site is not disqualified under the guidelines. The site is contained in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Davis Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site rather than the Lavender Canyon site as one of the five sites suitable for characterization

  2. Archaeological Sites Inventory in the Black Hills of the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    National Research Council Canada - National Science Library

    Owens, Mark

    2000-01-01

    .... These tree-covered areas located adjacent to open plains, appear black on the horizon. This setting of open steppes and juxtaposed hills is found along the eastern portion of the Pinon Canyon Maneuver Site (PCMS), a U.S...

  3. Deep-Sea, Deep-Sequencing: Metabarcoding Extracellular DNA from Sediments of Marine Canyons.

    Directory of Open Access Journals (Sweden)

    Magdalena Guardiola

    Full Text Available Marine sediments are home to one of the richest species pools on Earth, but logistics and a dearth of taxonomic work-force hinders the knowledge of their biodiversity. We characterized α- and β-diversity of deep-sea assemblages from submarine canyons in the western Mediterranean using an environmental DNA metabarcoding. We used a new primer set targeting a short eukaryotic 18S sequence (ca. 110 bp. We applied a protocol designed to obtain extractions enriched in extracellular DNA from replicated sediment corers. With this strategy we captured information from DNA (local or deposited from the water column that persists adsorbed to inorganic particles and buffered short-term spatial and temporal heterogeneity. We analysed replicated samples from 20 localities including 2 deep-sea canyons, 1 shallower canal, and two open slopes (depth range 100-2,250 m. We identified 1,629 MOTUs, among which the dominant groups were Metazoa (with representatives of 19 phyla, Alveolata, Stramenopiles, and Rhizaria. There was a marked small-scale heterogeneity as shown by differences in replicates within corers and within localities. The spatial variability between canyons was significant, as was the depth component in one of the canyons where it was tested. Likewise, the composition of the first layer (1 cm of sediment was significantly different from deeper layers. We found that qualitative (presence-absence and quantitative (relative number of reads data showed consistent trends of differentiation between samples and geographic areas. The subset of exclusively benthic MOTUs showed similar patterns of β-diversity and community structure as the whole dataset. Separate analyses of the main metazoan phyla (in number of MOTUs showed some differences in distribution attributable to different lifestyles. Our results highlight the differentiation that can be found even between geographically close assemblages, and sets the ground for future monitoring and conservation

  4. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    Science.gov (United States)

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  5. Passive air exchanges between building and urban canyon via openings in a single facade

    International Nuclear Information System (INIS)

    Syrios, K.; Hunt, G.R.

    2008-01-01

    The results of an experimental study examining the steady exchange of air and heat between a building and an urban canyon are presented. The focus is on the effect of the canyon aspect ratio on the airflow through openings made exclusively in one side of the building. The interaction of the external wind flow and the internal thermally-driven flow was shown to depend upon the ratio of the building height H b to the canyon width W (distance between buildings forming the canyons). The trends observed as this aspect ratio (H b /W) was varied allow for identification of canyon geometries that yield reduced or enhanced building ventilation airflow rates

  6. Cold-water coral ecosystems in Cassidaigne Canyon: An assessment of their environmental living conditions

    OpenAIRE

    Fabri, Marie-claire; Bargain, Annaelle; Pairaud, Ivane; Pedel, Laura; Taupier-letage, I.

    2017-01-01

    The Cassidaigne canyon is one of the two canyons (together with Lacaze-Duthiers) of the French Mediterranean coast in which cold-water corals have settled and formed large colonies, providing a structural habitat for other species. Nevertheless, the communities settled in the Cassidaigne canyon are physically impacted by discharges of bauxite residues. New information on the distribution of the species Madrepora oculata and the associated species diversity in Cassidaigne canyon was provid...

  7. The geology of Piz Pian Grand

    International Nuclear Information System (INIS)

    Huber, M.; Staeuble, J.

    1987-01-01

    Nagra has identified four potential sites for a repository for low- and intermediate-level waste. Exploration work is already underway at Oberbauenstock (UR) and Piz Pian Grand (GR). As part of the investigations in the Piz Pian Grand area, geological surface mapping was carried out between 1984 and 1987. Since the data obtained is still being evaluated, it would be premature to draw any interpretative conclusions at this stage. On the other hand, some of the most significant observations of this work can be summarised here. As a first step, the geological framework in which these investigations are to be seen should be defined. Observations will then be made on the rock content (lithology) and geometric structure (structural geology) of the area. (author) 6 figs

  8. 75 FR 34476 - Glen Canyon Dam Adaptive Management Work Group

    Science.gov (United States)

    2010-06-17

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Glen Canyon Dam Adaptive Management Work Group... Management Work Group. The purpose of the Adaptive Management Work Group is to advise and to provide... of the Glen Canyon Dam Adaptive Management Work Group is in the public interest in connection with...

  9. Draft environmental assessment: Davis Canyon site, Utah. Nuclear Waste Policy Act (Section 112)

    International Nuclear Information System (INIS)

    1984-12-01

    In February 1983, the US Department of Energy (DOE) identified the Davis Canyon site in Utah, as one of nine potentially acceptable sites for a mined geologic repository for spent nuclear fuel and high-level radioactive waste. To determine their suitability, the Davis Canyon site and the eight other potentially acceptable sites have been evaluated in accordance with the DOE's General Guidelines for the Recommendation of Sites for Nuclear Waste Repositories. These evaluations are reported in this draft environmental assessment (EA), which is being issued for public review and comment. The DOE findings and determinations that are based on these evaluations are preliminary and subject to public review and comment. A final EA will be prepared after considering the comments received. On the basis of the evaluations reported in this draft EA, the DOE has found that the Davis Canyon site is not disqualified under the guidelines. The site is in the Paradox Basin, which is one of five distinct geohydrologic settings considered for the first repository. This setting contains one other potentially acceptable site - the Lavender Canyon site. Although the Lavender Canyon site appears to be suitable for site characterization, the DOE has concluded that the Davis Canyon site is the preferred site in the Paradox Basin. Furthermore, the DOE finds that the site is suitable for site characterization because the evidence does not support a conclusion that the site will not be able to meet each of the qualifying conditions specified in the guidelines. On the basis of these findings, the DOE is proposing to nominate the Davis Canyon site as one of five sites suitable for characterization. Having compared the Davis Canyon site with the other four sites proposed for nomination, the DOE has determined that the Davis Canyon site is not one of the three preferred sites for recommendation to the President as candidates for characterization

  10. Biotic survey of Los Alamos radioactive liquid-effluent receiving areas

    International Nuclear Information System (INIS)

    Miera, F.R. Jr.; Bostick, K.V.; Hakonson, T.E.; Nyhan, J.W.

    A preliminary study was completed of the vegetation and small mammal communities and associated climatology in three canyon liquid waste receiving areas at the Los Alamos Scientific Laboratory. Data were gathered on plant and animal composition, distribution, and biomass, along with air temperature, humidity, and precipitation, as a function of elevation and where data were available with season. Initial studies of the understory vegetation in the spring of 1974 indicate grass species to be dominant at higher elevations, with forb species becoming dominant at lower elevations. Generally, the highest total mass estimates for standing green vegetation were obtained in the study sites located in the upper portions of the canyons where precipitation is greatest, and where the terrain and intermittent stream flow result in a wetter habitat. Fourteen species of small mammals were trapped or observed in canyon study areas during two trapping sessions of May--June 1974 and December 1974--February 1975. A greater number of species and the highest rodent biomass estimates in the spring were generally associated with the ponderosa pine/pinion--juniper woodland in the upper reaches of the canyons, and were lowest in the pinion--juniper woodland at the lower portions of the canyons. This trend was observed in only one of the canyons during the winter season. Climatological data gathered in the three canyons since 1973 are also presented to serve as a data base for future reference

  11. Are amphitheater headed canyons indicative of a particular formative process?

    Science.gov (United States)

    Ryan, A. J.; Whipple, K. X.; Johnson, J. P.

    2012-12-01

    Tributary canyons with amphitheater-shaped heads have previously been interpreted as evidence for groundwater seepage erosion, particularly in environments where fluvial processes are assumed to be negligible. However, some have questioned whether this canyon morphology is truly diagnostic of a particular formative process. We seek to determine the relative roles of fluvial and groundwater-related processes and the strength of stratigraphic control on the Colorado Plateau through a combination of fieldwork and GIS analysis. Amphitheater valleys may have overhanging or steep-sided headwalls with a semicircular plan-view pattern. It is reasonable to assume that this form is a result of focused erosion at the base of the headwall (i.e. sapping). Two frequently cited agents may lead to undermining: plunge-pool scour at the base of waterfalls and seepage induced weathering and erosion where the groundwater table intersects the land surface. Both processes are enhanced where weaker, less permeable layers underlie stronger cap rock. We conducted preliminary fieldwork in two locations on the Colorado Plateau, where there are many classic examples of amphitheater headed canyons. The Escalante River landscape is highly variable with a range of canyon and valley-head forms, many of which cut through the thick Navajo Sandstone into the underlying shale and sand of the Kayenta Formation. Northeast of Escalante National Monument, at the base of the Henry Mountains, is Tarantula Mesa. The canyons there are also considerably variable, with nearly all containing at least one abrupt amphitheater knickpoint at the valley head or farther downstream. Our observations are presented here with an analysis of the canyon profiles, surrounding topography, and potential structural controls. We have found that nearly all amphitheaters in both locales show signs of groundwater seepage weathering and plausibly seepage erosion. However, many also contain plunge pools and evidence of substantial

  12. Effects of building roof greening on air quality in street canyons

    Science.gov (United States)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  13. Near-inertial motions in the DeSoto Canyon during Hurricane Georges

    Science.gov (United States)

    Jordi, Antoni; Wang, Dong-Ping; Hamilton, Peter

    2016-09-01

    Hurricane Georges passed directly over an array of 13 moorings deployed in the DeSoto Canyon in the northern Gulf of Mexico on 27-28 September 1998. Current velocity data from the mooring array were analyzed together with a primitive-equation model simulation with realistic hurricane forcing, to characterize the generation and propagation of the hurricane-generated near-inertial waves. The model successfully reproduces the observed mean (sub-inertial) and near-inertial motions. The upper ocean response is strongly impacted by the canyon 'wall': a strong jet is formed along the slope, and the near-inertial motions on the shelf are rapidly suppressed. The model results moreover suggest that strong near-inertial waves in the mixed layer are mostly trapped in an energy flux recirculating gyre around the canyon. This gyre retains the near-inertial energy in the canyon region and enhances the transfer of near-inertial energy below the mixed layer. Additional simulations with idealized topographies show that the presence of a steep slope rather than the canyon is fundamental for the generation of this recirculating gyre. The near-inertial wave energy budget shows that during the study period the wind generated an input of 6.79 × 10-2 Wm-2 of which about 1/3, or 2.43 × 10-2 Wm-2, was transferred below the mixed layer. The horizontal energy flux into and out of the canyon region, in contrast, was relatively weak.

  14. Bedrock Canyons Carved by the Largest Known Floods on Earth and Mars

    Science.gov (United States)

    Lamb, M. P.; Lapôtre, M. G. A.; Larsen, I. J.; Williams, R. M. E.

    2017-12-01

    The surface of Earth is a dynamic and permeable interface where the rocky crust is sculpted by ice, wind and water resulting in spectacular mountain ranges, vast depositional basins and environments that support life. These landforms and deposits contain a rich, yet incomplete, record of Earth history that we are just beginning to understand. Some of the most dramatic landforms are the huge bedrock canyons carved by catastrophic floods. On Mars, similar bedrock canyons, known as Outflow Channels, are the most important indicators of large volumes of surface water in the past. Despite their importance and now decades of observations of canyon morphology, we lack a basic understanding of how the canyons formed, which limits our ability to reconstruct flood discharge, duration and water volume. In this presentation I will summarize recent work - using mechanistic numerical models and field observations - that suggests that bedrock canyons carved by megafloods rapidly evolve to a size and shape such that boundary shear stresses just exceed that required to entrain fractured blocks of rock. The threshold shear stress constraint allows for quantitative reconstruction of the largest known floods on Earth and Mars, and implies far smaller discharges than previous methods that assume flood waters fully filled the canyons to high water marks.

  15. Electromagnetic surveys to detect clay-rich sediment in the Rio Grande inner valley, Albuquerque area, New Mexico

    Science.gov (United States)

    Bartolino, James R.; Sterling, Joseph M.

    2000-01-01

    Information on the presence of clay-rich layers in the inner-valley alluvium is essential for quantifying the amount of water transmitted between the Rio Grande and the Santa Fe Group aquifer system. This report describes a study that used electromagnetic surveys to provide this information. In the first phase of the study, electromagnetic soundings were made using time-domain and frequency-domain electro- magnetic methods. On the basis of these initial results, the time- domain method was judged ineffective because of cultural noise in the study area, so subsequent surveys were made using the frequency-domain method. For the second phase of the study, 31 frequency-domain electromagnetic surveys were conducted along the inner valley and parallel to the Rio Grande in the Albuquerque area in the spring and summer of 1997 to determine the presence of hydrologically significant clay-rich layers buried in the inner-valley alluvium. For this report, the 31 survey sections were combined into 10 composite sections for ease of interpretation. Terrain-conductivity data from the surveys were modeled using interpretation software to produce geoelectric cross sections along the survey lines. This modeling used lithologic logs from two wells installed near the survey lines: the Bosque South and Rio Bravo 5 wells. Because of cultural interference, location of the wells and soundings, complex stratigraphy, and difficulty interpreting lithology, such interpretation was inconclusive. Instead, a decision process based on modeling results was developed using vertical and horizontal dipole 40-meter intercoil spacing terrain-conductivity values. Values larger than or equal to 20 millisiemens per meter were interpreted to contain a hydrologically significant thickness of clay-rich sediment. Thus, clay-rich sediment was interpreted to underlie seven segments of the 10 composited survey lines, totaling at least 2,660 meters of the Rio Grande inner valley. The longest of these clay

  16. Geologic map and profile of the north wall of the Snake River Canyon, Eden, Murtaugh, Milner Butte, and Milner quadrangles, Idaho

    Science.gov (United States)

    Covington, H.R.; Weaver, Jean N.

    1990-01-01

    The Snake River Plain is a broad, arcuate region of low relief that extends more than 300 mi across southern Idaho. The Snake River enters the plain near Idaho Falls and flows westward along the southern margin of the eastern Snake River Plain (fig 1), a position mainly determined by the basaltic lava flows that erupted near the axis of the plain. The highly productive Snake River Plain aquifer (water table) is typically less than 500 ft below the land surface, but us deeper than 1,000 ft in a few areas. The Snake River has excavated a canyon into the nearly flat lying basaltic and sedimentary rocks of the  eastern Snake River Plain between Milner Dam and King Hill (fig. 2), a distance of almost 90 mi. For much of its length the canyon intersects the Snake River Plain aquifer, which discharges form the northern canyon wall as springs of variable size, spacing and altitude. Geologic controls on wprings are of importance because nearly 60 percent of the aquifer's discharge occurs as spring flow along this reach of the canyon. This report is one of the several that describes the geologic occurrence of the springs along the northern wall of the Snake River canyone from Milner Dam to King Hill. 

  17. Submarine canyons off Madras Coast

    Digital Repository Service at National Institute of Oceanography (India)

    Setty, M.G.A.P.

    Submarine canyons off the coast of Madras, Tamil Nadu, India were studied during cruise of @iINS Kistna@@ as part of the IIOE programme They consist of hill-like projections and V-shaped valleys Their other features are also reported...

  18. Influence of the Nazaré Canyon, central Portuguese margin, on late winter coccolithophore assemblages

    NARCIS (Netherlands)

    Guerreiro, C.; Sá, C.; de Stigter, H.; Oliveira, A.; Cachão, M.; Cros, L.; Borges, C.; Quaresma, L.; Santos, A.I.; Fortuño, J.-M.; Rodrigez, A.

    2014-01-01

    This paper presents a first attempt to characterize coccolithophore assemblages occurring in the context of an active submarine canyon. Coccolithophores from the upper-middle sections of the Nazaré Canyon (central Portuguese margin) – one of the largest canyons of the European continental margin –

  19. THE INFLUENCE OF BUOYANCY ON FLOW AND POLLUTANT DISPERSION IN STREET CANYONS

    OpenAIRE

    Buccolieri, Riccardo; Pulvirenti, Beatrice; Di Sabatino, Silvana; Britter, Rex

    2008-01-01

    Abstract: In this paper, the effect of buoyancy on flow and pollutant dispersion within street canyons is studied by means of computational fluid dynamics simulations. We consider a neutral boundary layer approaching a 3D street canyon assuming a wind direction perpendicular to the street canyon. The Boussinesq hypothesis for incompressible fluids is chosen for modelling buoyancy. We distinguish three cases: leeward, ground and windward wall heating. Thermal effects on both the flow ...

  20. Pollutant Concentrations in Street Canyons of Different Aspect Ratio with Avenues of Trees for Various Wind Directions

    Science.gov (United States)

    Gromke, Christof; Ruck, Bodo

    2012-07-01

    This study summarizes the effects of avenues of trees in urban street canyons on traffic pollutant dispersion. We describe various wind-tunnel experiments with different tree-avenue models in combination with variations in street-canyon aspect ratio W/ H (with W the street-canyon width and H the building height) and approaching wind direction. Compared to tree-free street canyons, in general, higher pollutant concentrations are found. Avenues of trees do not suppress canyon vortices, although the air ventilation in canyons is hindered significantly. For a perpendicular wind direction, increases in wall-average and wall-maximum concentrations at the leeward canyon wall and decreases in wall-average concentrations at the windward wall are found. For oblique and perpendicular wind directions, increases at both canyon walls are obtained. The strongest effects of avenues of trees on traffic pollutant dispersion are observed for oblique wind directions for which also the largest concentrations at the canyon walls are found. Thus, the prevailing assumption that attributes the most harmful dispersion conditions to a perpendicular wind direction does not hold for street canyons with avenues of trees. Furthermore, following dimensional analysis, an estimate of the normalized wall-maximum traffic pollutant concentration in street canyons with avenues of trees is derived.

  1. 78 FR 8273 - Approval of Air Quality Implementation Plans; Navajo Nation; Regional Haze Requirements for...

    Science.gov (United States)

    2013-02-05

    ... Station B. Significance of NGS and Federal Collaboration C. Statutory and Regulatory Framework for.... These areas support an active tourism industry drawing over 4 million visitors to the Grand Canyon... Collaboration Federal participation in NGS was authorized in the Colorado River Basin Project Act of 1968 as a...

  2. [Grand Banks activity : updates and opportunities

    International Nuclear Information System (INIS)

    Bruce, G.

    1998-01-01

    An overview of the exploration and on-going activities by the petroleum industry on the Grand Banks of Newfoundland was presented. The two offshore oil developments underway are Hibernia and Terra Nova, both located in the Jeanne d'Arc Basin. Current production from Hibernia is 68,000 bopd, expected to rise to 130,000 bopd in 1999. The Terra Nova Field is still under development. Total recoverable reserves from the 17 discoveries made in the Jeanne d'Arc Basin are estimated at 1.6 billion barrels of oil and 4 trillion cubic feet of gas. Industry participants in the area include Amoco, Petro-Canada, Mobil, Chevron, Husky and Norsk Hydro. Petro-Canada believes the Grand Banks represent one of the best opportunities for oil anywhere in the world. There are currently 21 exploration licenses held on the Grand Banks. Major attractions of the area include the large reserve potential, the relatively low finding costs, the size of the pools being discovered, improvements in offshore technology that have substantially lowered development costs, and a profit-sensitive generic royalty regime that ensures reasonable rates of return for investors. figs

  3. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    International Nuclear Information System (INIS)

    P.R. Fresquez

    2006-01-01

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ( 3 H, 137 Cs, 238 Pu, 239,240 Pu, 90 Sr, 241 Am, 234 U, 235 U and 238 U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment

  4. Distribution and movement of Big Spring spinedace (Lepidomeda mollispinis pratensis) in Condor Canyon, Meadow Valley Wash, Nevada

    Science.gov (United States)

    Jezorek, Ian G.; Connolly, Patrick J.

    2013-01-01

    Big Spring spinedace (Lepidomeda mollispinis pratensis) is a cyprinid whose entire population occurs within a section of Meadow Valley Wash, Nevada. Other spinedace species have suffered population and range declines (one species is extinct). Managers, concerned about the vulnerability of Big Spring spinedace, have considered habitat restoration actions or translocation, but they have lacked data on distribution or habitat use. Our study occurred in an 8.2-km section of Meadow Valley Wash, including about 7.2 km in Condor Canyon and 0.8 km upstream of the canyon. Big Spring spinedace were present upstream of the currently listed critical habitat, including in the tributary Kill Wash. We found no Big Spring spinedace in the lower 3.3 km of Condor Canyon. We tagged Big Spring spinedace ≥70 mm fork length (range 70–103 mm) with passive integrated transponder tags during October 2008 (n = 100) and March 2009 (n = 103) to document movement. At least 47 of these individuals moved from their release location (up to 2 km). Thirty-nine individuals moved to Kill Wash or the confluence area with Meadow Valley Wash. Ninety-three percent of movement occurred in spring 2009. Fish moved both upstream and downstream. We found no movement downstream over a small waterfall at river km 7.9 and recorded only one fish that moved downstream over Delmue Falls (a 12-m drop) at river km 6.1. At the time of tagging, there was no significant difference in fork length or condition between Big Spring Spinedace that were later detected moving and those not detected moving. We found no significant difference in fork length or condition at time of tagging of Big Spring spinedace ≥70 mm fork length that were detected moving and those not detected moving. Kill Wash and its confluence area appeared important to Big Spring spinedace; connectivity with these areas may be key to species persistence. These areas may provide a habitat template for restoration or translocation. The lower 3.3 km of

  5. Instability and deformation in the sedimentary cover on the upper slope of the southern Aquitaine continental margin, north of the Capbreton canyon (Bay of Biscay

    Directory of Open Access Journals (Sweden)

    Eliane Gonthier

    2006-06-01

    Full Text Available Acoustic and core data have recently been collected on the shelf break and the upper part of the slope of the south Aquitaine continental margin. They reveal the major role played by mass-flow gravity processes in deposit erosion and redistribution, modelling of the sea-bed, and transfer of sediment toward the deep-sea. The study region is bounded in the south by the Capbreton canyon. The northern area, which shows a smooth morphology, is characterised by small-scale deformations due to sediment creep or low-amplitude slide processes. The deformations are associated with mini listric-like faults that bound packets of sediments in which the deposit geometry is typical of constructional sediment waves. These sediment waves result from the interaction of depositional and gravity deformation processes. In the southern area, closer to the canyon, wave-like structures are still present but mostly of smaller size. They only result from gravity deformation processes without any evidence of constructional processes. In the vicinity of the Capbreton canyon, the shelf break and upper slope have a much more uneven morphology with sedimentary reliefs, escarpments and depressions directed toward the canyon thalweg. The depressions look like slide scars, and could be the result of regressive slides initiated at the top of the canyon flank. The age of the sliding event responsible for the formation of the depression observed today could be middle to upper Quaternary. Since their formation, these depressions act as conduits that channel the transfer of shelf sediment into the canyon, as demonstrated by the occurrence of a meandering channel on the sea-floor of one depression.

  6. Fourmile Canyon Fire Findings

    Science.gov (United States)

    Russell Graham; Mark Finney; Chuck McHugh; Jack Cohen; Dave Calkin; Rick Stratton; Larry Bradshaw; Ned Nikolov

    2012-01-01

    The Fourmile Canyon Fire burned in the fall of 2010 in the Rocky Mountain Front Range adjacent to Boulder, Colorado. The fire occurred in steep, rugged terrain, primarily on privately owned mixed ponderosa pine and Douglas-fir forests. The fire started on September 6 when the humidity of the air was very dry (¡Ö

  7. Final Environmental Assessment: Installation of Digital Airport Surveillance Radar at Grand Forks Air Force Base, North Dakota

    Science.gov (United States)

    2011-05-11

    Grand Forks AFB public web site. Notices of Availability were published in the Grand Forks Herald on 10 Mar 2011 and on the Grand Forks AFB web site from...Squadron (319th) FTA Fire Training Area GATR Ground-Air Transmit Receive GFAFB Grand Forks Air Force Base GHG Greenhouse Gas Hz Hertz IEEE Institute of...feet west of the closed/capped ERP Site FT-02, the Fire Training Area/Old Sanitary Landfill Area ( FTA /OSLA), which encompasses 28 acres, five of

  8. Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California

    Science.gov (United States)

    Heimsund, S.; Xu, J.; Nemec, W.

    2007-12-01

    The method of computational fluid dynamics (CFD) has been used, in the form of a 3D numerical model (Flow- 3D®), to perform a full-scale simulation of turbidity currents measured in December 2002 by three moorings in the Soquel and Monterey canyons. The model was verified by simulation of laboratory flows, and was upscaled to the Monterey Canyon system on the basis of high-resolution bathymetric data and flow measurements. The measured velocity profiles were sufficient to assess the flow thickness, initial velocity and duration in the canyon head zone. A computational grid with a highest feasible resolution was used, and both bathymetry and hydrostatic pressure were accounted for. The volumetric sediment concentration and exact grain- size composition of the flows were unknown, and thus a range of values for the initial concentration and bed roughness were assumed and assessed on a trial-and-error basis. The simulations reveal the behavior of a turbidity current along its descent path, including its local hydraulic characteristics (the 3D field of velocity, sediment concentration, shear stress, strain rate, and dynamic viscosity, as well as the magnitude of velocity and turbulent shear). The results confirm that the velocity structure of turbidity current is highly sensitive to variation in seafloor topography. The December 17th flow in the Soquel Canyon appears to have lost capacity by dilution over a relatively short distance and shown significant velocity fluctuations, which is attributed to the rugged topography of the canyon floor. A major loss of momentum occurred when the flow plunged at high angle into the Monterey Canyon, crashing against its bend's southern wall. The December 20th flow in the Monterey Canyon, in contrast, developed a considerably longer body and strongly accelerated towards the canyon's sharp second bend before crashing against its western wall. The mooring data show a down-canyon decline of velocity and suggest gradual waning, but the

  9. Structure, Quaternary history, and general geology of the Corral Canyon area, Los Angeles County, California

    Science.gov (United States)

    Yerkes, R.F.; Wentworth, Carl M.

    1965-01-01

    The Corral Canyon nuclear power plant site consists of about 305 acres near the mouth of Corral Canyon in the central Santa Monica Mountains; it is located on an east-trending segment of the Pacific Coast between Point Dume and Malibu Canyon, about 28 miles due west of Los Angeles. The Santa Monica Mountains are the southwesternmost mainland part of the Transverse Ranges province, the east-trending features of which transect the otherwise relatively uniform northwesterly trend of the geomorphic and geologic features of coastal California. The south margin of the Transverse Ranges is marked by the Santa Monica fault system, which extends eastward near the 34th parallel for at least 145 miles from near Santa Cruz Island to the San Andreas fault zone. In the central Santa Monica Mountains area the Santa Monica fault system includes the Malibu Coast fault and Malibu Coast zone of deformation on the north; from the south it includes an inferred fault--the Anacapa fault--considered to follow an east-trending topographic escarpmemt on the sea floor about 5 miles south of the Malibu Coast fault. The low-lying terrain south of the fault system, including the Los Angeles basin and the largely submerged Continental Borderland offshore, are dominated by northwest-trending structural features. The Malibu Coat zone is a wide, east-trending band of asymmetrically folded, sheared, and faulted bedrock that extends for more than 20 miles along the north margin of the Santa Monica fault system west of Santa Monica. Near the north margin of the Malibu Coast zone the north-dipping, east-trending Malibu Coast fault juxtaposes unlike, in part contemporaneous sedimentary rock sections; it is inferred to be the near-surface expression of a major crustal boundary between completely unrelated basement rocks. Comparison of contemporaneous structural features and stratigraphic sections (Late Cretaceous to middle Miocene sedimentary, rocks and middle Miocene volcanic and intrusive igneous rocks

  10. Hualapai Tribal Utility Development Project

    Energy Technology Data Exchange (ETDEWEB)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  11. Influence of cetane improvers on the air quality in an urban street canyon

    International Nuclear Information System (INIS)

    Huang, H.; Akutsu, Y.; Arai, M.; Tamura, M.

    2000-01-01

    The concentration distributions of NO x , PM, HC and CO in an urban street canyon have been estimated using a two-dimensional air quality numerical model based on the k-e turbulent model and the atmospheric convection diffusion equation when various cetane improvers were used in diesel fuels. A wind vortex can be found within the street canyon, and the pollutants emitted from the bottom of the street canyon tend to follow the course of the wind field, moving circularly. The addition of cetane improvers can improve the air quality in a street canyon, all of the pollutants were found to decrease with increasing cetane number. (Author)

  12. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon

  13. Internal tides affect benthic community structure in an energetic submarine canyon off SW Taiwan

    Science.gov (United States)

    Liao, Jian-Xiang; Chen, Guan-Ming; Chiou, Ming-Da; Jan, Sen; Wei, Chih-Lin

    2017-07-01

    Submarine canyons are major conduits of terrestrial and shelf organic matter, potentially benefiting the seafloor communities in the food-deprived deep sea; however, strong bottom currents driven by internal tides and the potentially frequent turbidity currents triggered by storm surges, river flooding, and earthquakes may negatively impact the benthos. In this study, we investigated the upper Gaoping Submarine Canyon (GPSC), a high-sediment-yield canyon connected to a small mountain river (SMR) off southwest (SW) Taiwan. By contrasting the benthic meiofaunal and macrofaunal communities within and outside the GPSC, we examined how food supplies and disturbance influenced the benthic community assemblages. The benthic communities in the upper GPSC were mainly a nested subset of the adjacent slope assemblages. Several meiofaunal (e.g. ostracods) and macrofaunal taxa (e.g. peracarid crustaceans and mollusks) that typically occurred on the slope were lost from the canyon. The polychaete families switched from diverse feeding guilds on the slope to motile subsurface deposit feeders dominant in the canyon. The diminishing of epibenthic peracarids and proliferation of deep burrowing polychaetes in the GPSC resulted in macrofauna occurring largely within deeper sediment horizons in the canyon than on the slope. The densities and numbers of taxa were depressed with distinct and more variable composition in the canyon than on the adjacent slope. Both the densities and numbers of taxa were negatively influenced by internal tide flushing and positively influenced by food availability; however, the internal tides also negatively influenced the food supplies. While the meiofauna and macrofauna densities were both depressed by the extreme physical conditions in the GPSC, only the macrofaunal densities increased with depth in the canyon, presumably related to increased frequency and intensity of disturbance toward the canyon head. The population densities of meiofauna, on the

  14. An Improved Simulation of the Diurnally Varying Street Canyon Flow

    Science.gov (United States)

    Yaghoobian, Neda; Kleissl, Jan; Paw U, Kyaw Tha

    2012-11-01

    The impact of diurnal variation of temperature distribution over building and ground surfaces on the wind flow and scalar transport in street canyons is numerically investigated using the PArallelized LES Model (PALM). The Temperature of Urban Facets Indoor-Outdoor Building Energy Simulator (TUF-IOBES) is used for predicting urban surface heat fluxes as boundary conditions for a modified version of PALM. TUF-IOBES dynamically simulates indoor and outdoor building surface temperatures and heat fluxes in an urban area taking into account weather conditions, indoor heat sources, building and urban material properties, composition of the building envelope (e.g. windows, insulation), and HVAC equipment. Temperature (and heat flux) distribution over urban surfaces of the 3-D raster-type geometry of TUF-IOBES makes it possible to provide realistic, high resolution boundary conditions for the numerical simulation of flow and scalar transport in an urban canopy. Compared to some previous analyses using uniformly distributed thermal forcing associated with urban surfaces, the present analysis shows that resolving non-uniform thermal forcings can provide more detailed and realistic patterns of the local air flow and pollutant dispersion in urban canyons.

  15. Remedial action at the Acid/Pueblo Canyon site, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    1984-10-01

    The Acid/Pueblo Canyon site (TA-45) was designated in 1976 for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). During the period 1943 to 1964 untreated and treated liquid wastes generated by nuclear weapons research activities at the Los Alamos Scientific Laboratory (LASL) were discharged into the two canyons. A survey of the site conducted by LASL in 1976 to 1977 identified two areas where radiological contamination exceeded criteria levels. The selected remedial action was based on extensive radiological characterization and comprehensive engineering assessments and comprised the excavation and disposal of 390 yd 3 of contaminated soil and rock. This document describes the background to the remedial action, the parties involved in administering and executing it, the chronology of the work, verification of the adequacy of the remedial action, and the cost incurred. 14 references, 5 figures, 5 tables

  16. Savannah River Site: Canyons and associated facilities utilization study

    International Nuclear Information System (INIS)

    Ellison, D.; Dickenson, J.

    1995-01-01

    The Westinghouse Savannah River Company was asked by the U.S. Department of Energy (DOE) to study options for utilization of Savannah River Site (SRS) Canyons and Associated Facilities to support existing and potential future material stabilization and/or disposition missions. This report is WSRC's response to that request. It includes: (1) A compilation of pending DOE material stabilization and/or disposition decisions involving utilization of SRS canyons and associated facilities, including discussion of quantities and expected availability of materials for which SRS handling and/or processing capability is a reasonable alternative under consideration. (2) A description of SRS canyons and associated facilities affected by pending DOE material stabilization and/or disposition decisions, including discussion of material handling and/or processing capabilities and capacities. (3) A comparative evaluation of three proposed scenarios for SRS canyon utilization with respect to startup and operating schedules; annual and life cycle costs; impacts on completion of commitments in the DOE Implementation Plan (IP) for Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1; SRS ability to support alternatives under consideration in pending DOE materials stabilization and/or disposition decisions; and timing for potential transition to deactivation. (4) The sensitivity of the comparative evaluation of the three canyon utilization scenarios to the effect of the selection of other alternatives for individual stabilization missions or individual new missions. Briefings on the scope of this study have been presented to key representatives of several SRS public stakeholder groups. Briefings on the major conclusions from this study have been presented to WSRC Management, DOE-SR, EM-60, EM-1, and the DNFSB

  17. Information Summary, Area of Concern: Grand Calumet River, Indiana

    Science.gov (United States)

    1991-03-01

    Page 179-183) 56 Waste Fill and Lagoon Sites Mapped Within the Grand Calumet Watershed (Source R13, Table 2-15) 57 Waste Fills of Greatest Concern...Percent Response for Single Species Sediment Bioassays from Indiana Harbor (Source RI, Table 18) 78 Aquatic Macroinvertebrates Collected from Stations 1, 2...3, 4, 5, and 12a, 3-4 May 88 (Source Rl, Table 22) 79 Aquatic Macroinvertebrates Collected from Stations 6, 7, 8, 9a, 10a, and 11, 3-4 and 19 May 88

  18. Thermal effects on vehicle emission dispersion in an urban street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Xiaomin Xie; Zhen Huang; Jiasong Wang; Zheng Xie [Shanghai Jiao Tong Univ., School of Mechanical Engineering, Shanghai (China)

    2005-05-15

    The impact of the thermal effects on vehicle emission dispersion within street canyons is examined. The results show that heating from building wall surfaces and horizontal surfaces lead to strong buoyancy forces close to surfaces receiving direct solar radiation. This thermally induced flow is combined with mechanically induced flows formed in the canyon where there is no solar heating, and affects the transport of pollutants from the canyon to the layer aloft. The relative influence of each of these effects can be estimates by Gr/Re{sup 2}. When the windward wall is warmer than the air, an upward buoyancy flux opposes the downward advection flux along the wall; if Gr/Re{sup 2} > 2, the flow structure is divided into two counter-rotating cells, and pollutants are accumulated on the windward side of the canyon. When the horizontal surface is heated, and Gr/Re{sup 2} > 4, the flow structure is divided into two counter-rotating cells by upward buoyancy flux. Pollutants are accumulated at the windward side of the canyon. When the leeward side is heated, the buoyancy flux adds to the upward advection flux along the wall strengthening the original vortex and pollutant effects of transport compared to the isothermal case. (Author)

  19. Fault tree analysis of Project S-4404, Upgrade Canyon Exhaust System

    International Nuclear Information System (INIS)

    Browne, E.V.; Low, J.M.; Lux, C.R.

    1992-01-01

    Project S-4404, Upgrade Canyon Exhaust Systems, is a $177 million project with the purpose of upgrading the Exhaust Systems for both F and H Canyon Facilities. This upgrade will replace major portions of the F and H-Canyon exhaust systems, downstream of their respective sand filters with higher capacity and more reliable systems. Because of the high cost, DOE requested Program Control ampersand Integration (PC ampersand I) to examine specific deletions to the project. PC ampersand I requested Nuclear Processes Safety Research (NPSR) to perform an analysis to compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed exhaust system and specific proposed exhaust system alternatives. The objective of this work was to perform an analysis and compare failure rates for the existing F ampersand H Canyon exhaust systems with the proposed project exhaust system and proposed project alternatives. Based on fault tree analysis, two conclusions are made. First, D ampersand D activities can be eliminated from the project with no significant decrease to exhaust system safety. Deletion of D ampersand D activities would result in a cost savings of $29 million. Second, deletion of DOE Order 6430.1A requirements regarding DBAs would decrease exhaust system safety by a factor of 12

  20. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  1. Defining biological assemblages (biotopes) of conservation interest in the submarine canyons of the South West Approaches (offshore United Kingdom) for use in marine habitat mapping

    Science.gov (United States)

    Davies, Jaime S.; Howell, Kerry L.; Stewart, Heather A.; Guinan, Janine; Golding, Neil

    2014-06-01

    In 2007, the upper part of a submarine canyon system located in water depths between 138 and 1165 m in the South West (SW) Approaches (North East Atlantic Ocean) was surveyed over a 2 week period. High-resolution multibeam echosounder data covering 1106 km2, and 44 ground-truthing video and image transects were acquired to characterise the biological assemblages of the canyons. The SW Approaches is an area of complex terrain, and intensive ground-truthing revealed the canyons to be dominated by soft sediment assemblages. A combination of multivariate analysis of seabed photographs (184-1059 m) and visual assessment of video ground-truthing identified 12 megabenthic assemblages (biotopes) at an appropriate scale to act as mapping units. Of these biotopes, 5 adhered to current definitions of habitats of conservation concern, 4 of which were classed as Vulnerable Marine Ecosystems. Some of the biotopes correspond to descriptions of communities from other megahabitat features (for example the continental shelf and seamounts), although it appears that the canyons host modified versions, possibly due to the inferred high rates of sedimentation in the canyons. Other biotopes described appear to be unique to canyon features, particularly the sea pen biotope consisting of Kophobelemnon stelliferum and cerianthids.

  2. Evaluation of turbulence from traffic using experimental data obtained in a street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, N.A.; Venegas, L.E. [Univ. of Buenos Aires, Buenos Aires (Argentina). Dept. of Atmospheric and Oceanic Sciences, National Scientific and Technological Research Council

    2004-07-01

    High air pollution levels have been observed in street canyons. Within these streets, pedestrians, cyclists, drivers and residents are likely to be exposed to pollutant concentrations exceeding current air quality standards. Airflow and dispersion in street canyons are very complicated. Depending on the synoptic wind three main dispersion conditions can be identified: a) low wind conditions, b) perpendicular or near perpendicular flow for winds over 1.5-2.0 m/s blowing at an angle of more than 30 to the canyon axes, c) parallel or near parallel flow for winds over 1.5-2.0 m/s blowing from all other directions. Under condition b), airflow in canyons with H/W{approx}1 (H is the height and W is the width of the canyon) is characterised by the formation of a single vortex within the canyon. The dispersion of gaseous pollutants in a street canyon depends generally on the rate at which the street exchanges air vertically with the above roof-level atmosphere and laterally with connecting streets. There is evidence that when the synoptic wind speed is low, the mechanical traffic-produced turbulence (TPT) might place a significant role in dispersion of traffic-generated pollutants. In this paper, we analyse interactions between wind and traffic induced dispersive air motions. Data from full-scale measurements in Goettinger Strasse (Hannover, Germany) are used for application of parameterisation proposed by Di Sabatino, S. et al. (2003) and Kastner-Klein, P. et al. (2003). (orig.)

  3. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Deep-sea foraminifera from the Cassidaigne Canyon (NW Mediterranean): Assessing the environmental impact of bauxite red mud disposal

    NARCIS (Netherlands)

    Fontanier, C.; Fabri, M.-C.; Buscail, R.; Biscara, L.; Koho, K.A.; Reichart, G.-J.; Cossa, D.; Galaup, S.; Chabaud, G.; Pigot, L.

    2012-01-01

    Benthic foraminiferal assemblages were investigated from two sites along the axis of the Cassidaigne Canyon (NW Mediterranean Sea). Both areas are contaminated by bauxite red mud enriched in iron, titanium, vanadium and chromium. These elemental enrichments are related to bauxite-derived

  5. Modeling Air-Quality in Complex Terrain Using Mesoscale and ...

    African Journals Online (AJOL)

    Air-quality in a complex terrain (Colorado-River-Valley/Grand-Canyon Area, Southwest U.S.) is modeled using a higher-order closure mesoscale model and a higher-order closure dispersion model. Non-reactive tracers have been released in the Colorado-River valley, during winter and summer 1992, to study the ...

  6. Lightning protection for the process canyons at the Savannah River site

    International Nuclear Information System (INIS)

    McAfee, D.E.

    1995-01-01

    Westinghouse Savannah River Company (WSRC) has performed Lightning Studies for the existing Process Canyons at the Savannah River Site (SRS). These studies were initiated to verify the lightning protection systems for the facilities and to compare the installations to the National Fire Protection (NFPA) Standard 780, Lighting Protection Code, 1992. The original study of the F-Canyon was initiated to develop answers to concerns raised by the Defense Nuclear Facility Safety Board (DNFSB). Once this study was completed it was determined that a similar study for H-Canyon would be prudent; followed by an evaluation of the Defense Waste Processing Facility (DWPF) Vitrification Building (S-Canyon). This paper will provide an overview of the nature of lightning and the principals of lightning protection. This will provide the reader with a basic understanding of the phenomena of lighting and its potential for damaging structures, components, and injuring personnel in or near the structure

  7. Effects of High-Flow Experiments from Glen Canyon Dam on Abundance, Growth, and Survival Rates of Early Life Stages of Rainbow Trout in the Lees Ferry Reach of the Colorado River

    Science.gov (United States)

    Korman, Josh; Kaplinski, Matthew; Melis, Theodore S.

    2010-01-01

    High-flow experiments (HFEs) from Glen Canyon Dam are primarily intended to conserve fine sediment and improve habitat conditions for native fish in the Colorado River as it flows through Grand Canyon National Park, Arizona. These experimental flows also have the potential to affect the rainbow trout (Oncorhynchus mykiss) population in the Lees Ferry tailwater reach immediately below the dam, which supports a highly valued recreational fishery and likely influences the abundance of rainbow trout in Grand Canyon. Understanding how flow regimes affect the survival and growth of juvenile rainbow trout is critical to interpreting trends in adult abundance. This study reports on the effects of HFEs in 2004 and 2008 on early life stages of rainbow trout in the Lees Ferry reach on the basis of monthly sampling of redds (egg nests) and the abundance of the age-0 trout (fertilization to about 1 to 2 months from emergence) and their growth during a 7-year period between 2003 and 2009. Multiple lines of evidence indicate that the March 2008 HFE resulted in a large increase in early survival rates of age-0 trout because of an improvement in habitat conditions. A stock-recruitment analysis demonstrated that age-0 abundance in July 2008 was more than fourfold higher than expected, given the number of viable eggs that produced these fish. A hatch-date analysis showed that early survival rates were much higher for cohorts that hatched about 1 month after the 2008 HFE (about April 15, 2008) relative to those fish that hatched before this date. These cohorts, fertilized after the 2008 HFE, would have emerged into a benthic invertebrate community that had recovered, and was possibly enhanced by, the HFE. Interannual differences in growth of age-0 trout, determined on the basis of otolith microstructure, support this hypothesis. Growth rates in the summer and fall of 2008 (0.44 mm/day) were virtually the same as in 2006 (0.46 mm/day), the highest recorded during 6 years, even though

  8. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Science.gov (United States)

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  9. AT THE MARGINS OF ROADS AND JURUÁ’S HISTORY: AN ESSAY ON MBYÁ OCCUPATIONS IN THE GUAÍBA HYDROGRAPHIC AREA (STATE OF RIO GRANDE DO SUL

    Directory of Open Access Journals (Sweden)

    Maria Paula Prates

    2012-12-01

    Full Text Available In this article we seek to systematize historical and ethnographic informations about mbyá presence in the Guaíba hydrographic area (Rio Grande do Sul/Brazil, taking into account the relations between indians and non-indians through the process of territorial configuration of Bacia Platina. This discussion is based on fieldwork, literature and primary sources about three contemporary mbyá occupations -- Petim, Passo Grande and Arroio do Conde.

  10. Movement and effects of spilled oil over the outer continental shelf; inadequacy of existent data for the Baltimore Canyon Trough area

    Science.gov (United States)

    Knebel, Harley J.

    1974-01-01

    A deductive approach to the problem of determining the movement and effects of spilled oil over the Outer Continental Shelf requires that the potential paths of oil be determined first, in order that critical subareas may be defined for later studies. The paths of spilled oil, in turn, depend primarily on the temporal and spatial variability of four factors: the thermohaline structure of the waters, the circulation of the water, the winds, and the distribution of suspended matter. A review of the existent data concerning these factors for the Baltimore Canyon Trough area (a relatively well studied segment of the Continental Shelf) reveals that the movement and dispersal of potential oil spills cannot be reliably predicted. Variations in the thermohaline structure of waters and in the distribution of suspended matter are adequately known; the uncertainty is due to insufficient wind and storm statistics and to the lack of quantitative understanding of the relationship between the nontidal drift and its basic driving mechanisms. Similar inadequacies should be anticipated for other potentially leasable areas of the shelf because an understanding of the movement of spilled oil has not been the underlying aim of most previous studies.

  11. Morphology and sediment dynamics of the Capbreton canyon (Bay of Biscay, SW France)

    Science.gov (United States)

    Gaudin, M.; Umr 5805; Ifremer Team

    2003-04-01

    The Canyon of Capbreton extending in the Bay of Biscay (SW France) is the deepest canyon in the world. Its structure and morphology was studied using new multibeam bathymetry, acoustic imagery and high-resolution seismic data. The canyon head appears only 250 m away from the coast line and runs westward parallel to the north coast of Spain for 160 km due to structural control, then turns northward, widens and abruptly disappears in the continental rise by 3500 m water depth. Its northern margin is flat and progrades clearly westward. Conversely the southern margin is steep and progrades towards the north (i.e. towards the canyon). Down to 800 m water depth, the canyon deeply incises the continental shelf and the axial channel is meandering (sinuosity of 1.9). The canyon shows both major and minor stream beds, perched tributary valleys, nested terraces and abandoned meanders. The terraces have three morphologies: (1) flat, (2) with a raised side or (3) with a horseshoe structure. These morphologies have been interpreted as overbank deposits or nested levees (1 and 2) or as the result of meander abandon (3). Terraces of types (1) and (2) contain mainly fine deposits resulting from decantation of the top of turbulent surges that flow in the canyon. Westward (800 to 2000 m water depth) the main talweg remains sinuous (1.7). On the southern margin, several straight or slightly sinuous S-N tributary valleys are followed by alignments of pockmarks that also indicate a structural control. On the northern margin, a single large tributary valley with a sinuous central talweg, flowing from the upper Aquitaine continental slope, is interpreted as a giant slump scar due to sediment instability. This valley is bordered to the west by a topographic high with sediment waves on the external flank that might be interpreted as a sedimentary levee. The canyon recorded a recent turbidite activity. An 18 cm-thick turbidite was deposited at 650 m water depth by a turbidity current

  12. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    International Nuclear Information System (INIS)

    OBRIEN, J.H.

    2000-01-01

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments

  13. Safety Evaluation for Packaging (onsite) T Plant Canyon Items

    Energy Technology Data Exchange (ETDEWEB)

    OBRIEN, J.H.

    2000-07-14

    This safety evaluation for packaging (SEP) evaluates and documents the ability to safely ship mostly unique inventories of miscellaneous T Plant canyon waste items (T-P Items) encountered during the canyon deck clean off campaign. In addition, this SEP addresses contaminated items and material that may be shipped in a strong tight package (STP). The shipments meet the criteria for onsite shipments as specified by Fluor Hanford in HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments.

  14. Data Quality Objectives Summary Report for the 221-U Canyon Disposition Alternatives

    International Nuclear Information System (INIS)

    Miller, M.S.; Oaces, L.E.; Baxter, J.; Brown, T.M.; Enoke, D.E.; Carlson, D.; Rugg, J.E.

    1997-08-01

    The 221-U Canyon Disposition Alternatives Data Quality Objective (DQO) Process identifies the sampling and analytical requirements necessary to support future detailed evaluation of alternatives via the CERCLA process, for final disposition of the 221-U Canyon Facility. Viable alternatives for the disposition of the 221-U Facility have been identified in a CERCLA Phase I Feasibility Study (FS) (DOE-RL 1997) for the Canyon Disposition Initiative (CDI). The scope of this DQO Process is limited to the 221-U Process Canyon Building and equipment contained within the facility. Associated stacks, filters, solvent handling, vaults, and storage facilities external to the 221-U Building are not addressed in this DQO. This DQO focuses on the 221-U Building because it provides the greatest potential source of contaminant volumes and concentrations and the physical structure poses the greatest challenge for disposition decisions

  15. A Unified Grand Tour of Theoretical Physics

    CERN Document Server

    Lawrie, Ian D

    2002-01-01

    A unified account of the principles of theoretical physics, A Unified Grand Tour of Theoretical Physics, Second Edition stresses the inter-relationships between areas that are usually treated as independent. The profound unifying influence of geometrical ideas, the powerful formal similarities between statistical mechanics and quantum field theory, and the ubiquitous role of symmetries in determining the essential structure of physical theories are emphasized throughout.This second edition conducts a grand tour of the fundamental theories that shape our modern understanding of the physical wor

  16. Modeling In-Stream Hydro-Geomorphic Processes After 2012 Waldo Canyon Fire, Colorado

    Science.gov (United States)

    Nourbakhshbeidokhti, S.; Kinoshita, A. M.; Chin, A.

    2016-12-01

    Wildfires can have significant impacts on hydrologic and geomorphic processes. Post-fire sediment transport and runoff generation vary by burn severity, precipitation, and vegetation. A need exists to understand these variable relationships and improve parameterization of post-fire hydro-geomorphic models. This research aims to model pre-fire geomorphic and hydrologic processes in Williams Canyon, a watershed burned by the 2012 Waldo Canyon Fire in Colorado. We develop the KINematic Runoff and EROSion (KINEROS) model with Geographical Information System (GIS)-based information, including a Digital Elevation Model, land cover, soil classification, precipitation, and soil burn severity for a local reference watershed that is unburned. We transfer these parameters to a channel reach in Williams Canyon (Williams Downstream) and adjust them toward post-fire conditions. We model runoff and sediment yield for several storms following the fire. Three post-fire terrestrial Light Detection and Ranging (LiDAR) images (21 April 2013, 14 September 2013, and 16 September 2014) are used to estimate total erosion and deposition at the reach scale. We use the LiDAR-based information to calibrate the post-fire model. Preliminary modeling results indicate 3870-125 kg/ha of sediment in the Williams Downstream reach. The uncalibrated model overestimated (410% in the first year) and underestimated (87.2% in the second year) the erosion. Model calibration reduced the Root Mean Square Error (RMSE) of sediment to 0.016% for the first year and 0.09% for the second year. The parameters calibrated for the Williams Downstream channel reach will be used to develop models for seven other channel reaches within the area burned by the Waldo Canyon Fire, where the performance can be evaluated with LiDAR estimates. Results of this research will enhance our understanding of wildfire disturbance on coupled hydrologic and geomorphic processes. Findings will also improve model parameterization that can

  17. On the Pollutant Plume Dispersion in the Urban Canopy Layer over 2D Idealized Street Canyons: A Large-Eddy Simulation Approach

    Science.gov (United States)

    Wong, Colman C. C.; Liu, Chun-Ho

    2010-05-01

    Anthropogenic emissions are the major sources of air pollutants in urban areas. To improve the air quality in dense and mega cities, a simple but reliable prediction method is necessary. In the last five decades, the Gaussian pollutant plume model has been widely used for the estimation of air pollutant distribution in the atmospheric boundary layer (ABL) in an operational manner. Whereas, it was originally designed for rural areas with rather open and flat terrain. The recirculating flows below the urban canopy layer substantially modify the near-ground urban wind environment and so does the pollutant distribution. Though the plume height and dispersion are often adjusted empirically, the accuracy of applying the Gaussian pollutant plume model in urban areas, of which the bottom of the flow domain consists of numerous inhomogeneous buildings, is unclear. To elucidate the flow and pollutant transport, as well as to demystify the uncertainty of employing the Gaussian pollutant plume model over urban roughness, this study was performed to examine how the Gaussian-shape pollutant plume in the urban canopy layer is modified by the idealized two-dimensional (2D) street canyons at the bottom of the ABL. The specific objective is to develop a parameterization so that the geometric effects of urban morphology on the operational pollutant plume dispersion models could be taken into account. Because atmospheric turbulence is the major means of pollutant removal from street canyons to the ABL, the large-eddy simulation (LES) was adopted to calculate explicitly the flows and pollutant transport in the urban canopy layer. The subgrid-scale (SGS) turbulent kinetic energy (TKE) conservation was used to model the SGS processes in the incompressible, isothermal conditions. The computational domain consists of 12 identical idealized street canyons of unity aspect ratio which were placed evenly in the streamwise direction. Periodic boundary conditions (BCs) for the flow were applied

  18. The Characterization of Biotic and Abiotic Media Upgradient and Downgradient of the Los Alamos Canyon Weir

    Energy Technology Data Exchange (ETDEWEB)

    P.R. Fresquez

    2006-01-15

    As per the Mitigation Action Plan for the Special Environmental Analysis of the actions taken in response to the Cerro Grande Fire, sediments, vegetation, and small mammals were collected directly up- and downgradient of the Los Alamos Canyon weir, a low-head sediment control structure located on the northeastern boundary of Los Alamos National Laboratory, to determine contaminant impacts, if any. All radionuclides ({sup 3}H, {sup 137}Cs, {sup 238}Pu, {sup 239,240}Pu, {sup 90}Sr, {sup 241}Am, {sup 234}U, {sup 235}U and {sup 238}U) and trace elements (Ag, As, Ba, Be, Cd, Cr, Cu, Hg, Ni, Pb, Sb, Se, and Tl) in these media were low and most were below regional upper level background concentrations (mean plus three sigma). The very few constituents that were above regional background concentrations were far below screening levels (set from State and Federal standards) for the protection of the human food chain and the terrestrial environment.

  19. 75 FR 27550 - Electrical Interconnection of the Juniper Canyon I Wind Project

    Science.gov (United States)

    2010-05-17

    ... DEPARTMENT OF ENERGY Bonneville Power Administration Electrical Interconnection of the Juniper Canyon I Wind Project AGENCY: Bonneville Power Administration (BPA), Department of Energy (DOE). ACTION... would be generated from their proposed Juniper Canyon I Wind Energy Project (Wind Project) in Klickitat...

  20. Isotopic evidence for the influence of typhoons and submarine canyons on the sourcing and transport behavior of biospheric organic carbon to the deep sea

    Science.gov (United States)

    Zheng, Li-Wei; Ding, Xiaodong; Liu, James T.; Li, Dawei; Lee, Tsung-Yu; Zheng, Xufeng; Zheng, Zhenzhen; Xu, Min Nina; Dai, Minhan; Kao, Shuh-Ji

    2017-05-01

    Export of biospheric organic carbon from land masses to the ocean plays an important role in regulating the global carbon cycle. High-relief islands in the western Pacific are hotspots for such land-to-ocean carbon transport due to frequent floods and active tectonics. Submarine canyon systems serve as a major conduit to convey terrestrial organics into the deep sea, particularly during episodic floods, though the nature of ephemeral sediment transportation through such canyons remains unclear. In this study, we deployed a sediment trap in southwestern Taiwan's Gaoping submarine canyon during summer 2008, during which Typhoon Kalmaegi impacted the study area. We investigated sources of particulate organic carbon and quantified the content of fossil organic carbon (OCf) and biospheric non-fossil carbon (OCnf) during typhoon and non-typhoon periods, based on relations between total organic carbon (TOC), isotopic composition (δ13 C, 14C), and nitrogen to carbon ratios (N/C) of newly and previously reported source materials. During typhoons, flooding connected terrestrial rivers to the submarine canyon. Fresh plant debris was not found in the trap except in the hyperpycnal layer, suggesting that only hyperpycnal flow is capable of entraining plant debris, while segregation had occurred during non-hyperpycnal periods. The OCnf components in typhoon flood and trapped samples were likely sourced from aged organics buried in ancient landslides. During non-typhoon periods, the canyon is more connected to the shelf, where waves and tides cause reworking, thus allowing abiotic and biotic processes to generate isotopically uniform and similarly aged OCnf for transport into the canyon. Therefore, extreme events coupled with the submarine canyon system created an efficient method for deep-sea burial of freshly produced organic-rich material. Our results shed light on the ephemeral transport of organics within a submarine canyon system on an active tectonic margin.

  1. Diablo Canyon plant information management system and integrated communication system

    International Nuclear Information System (INIS)

    Stanley, J.W.; Groff, C.

    1990-01-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS

  2. Diablo Canyon plant information management system and integrated communication system

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, J.W.; Groff, C.

    1990-06-01

    The implementation of a comprehensive maintenance system called the plant information management system (PIMS) at the Diablo Canyon plant, together with its associated integrated communication system (ICS), is widely regarded as the most comprehensive undertaking of its kind in the nuclear industry. This paper provides an overview of the program at Diablo Canyon, an evaluation of system benefits, and highlights the future course of PIMS.

  3. Bioavailability of sinking organic matter in the Blanes canyon and the adjacent open slope (NW Mediterranean Sea)

    Science.gov (United States)

    Lopez-Fernandez, P.; Bianchelli, S.; Pusceddu, A.; Calafat, A.; Sanchez-Vidal, A.; Danovaro, R.

    2013-05-01

    Submarine canyons are sites of intense energy and material exchange between the shelf and the deep adjacent basins. To test the hypothesis that active submarine canyons represent preferential conduits of available food for the deep-sea benthos, two mooring lines were deployed at 1200 m depth from November 2008 to November 2009 inside the Blanes canyon and on the adjacent open slope (Catalan Margin, NW Mediterranean Sea). We investigated the fluxes, biochemical composition and food quality of sinking organic carbon (OC). OC fluxes in the canyon and the open slope varied among sampling periods, though not consistently in the two sites. In particular, while in the open slope the highest OC fluxes were observed in August 2009, in the canyon the highest OC fluxes occurred in April-May 2009. For almost the entire study period, the OC fluxes in the canyon were significantly higher than those in the open slope, whereas OC contents of sinking particles collected in the open slope were consistently higher than those in the canyon. This result confirms that submarine canyons are effective conveyors of OC to the deep sea. Particles transferred to the deep sea floor through the canyons are predominantly of inorganic origin, significantly higher than that reaching the open slope at a similar water depth. Using multivariate statistical tests, two major clusters of sampling periods were identified: one in the canyon that grouped trap samples collected in December 2008, concurrently with the occurrence of a major storm at the sea surface, and associated with increased fluxes of nutritionally available particles from the upper shelf. Another cluster grouped samples from both the canyon and the open slope collected in March 2009, concurrently with the occurrence of the seasonal phytoplankton bloom at the sea surface, and associated with increased fluxes of total phytopigments. Our results confirm the key ecological role of submarine canyons for the functioning of deep-sea ecosystems

  4. Western Area Power Administration. Combined power system financial statements

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-02-26

    This report presents the results of the independent certified public accountants` audit of the Western Area Power Administration`s combined power system statements of assets, Federal investment and liabilities, and the related combined statements of revenues, expenses and accumulated net revenues, and cash flows. The auditors` report on Westerns internal control structure disclosed three new reportable conditions concerning the lack of: (1) a reconciliation of stores inventory from subsidiary ledgers to summary financial information, (2) communication of interest during construction and related adjustments to interest on Federal investment, and (3) a system to prevent and detect power billing errors. None of the conditions were considered to be material weaknesses. Western provided concurrence and corrective action plans. The auditors` report on Western`s compliance with laws and regulations also disclosed two new instances of noncompliance. Western failed to calculate nonreimbursable expenses in accordance with the Grand Canyon Protection Act and had an unexplained difference in gross Federal investment balances used to calculate interest on Federal investment. Western provided concurrence and corrective action plans for the instances.

  5. US Geological Survey BLM/OCS Baltimore Canyon (Mid-Atlantic) Sediment Analyses (Samples collected 1 July 1975 to 30 June 1976)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains analytical data from samples acquired from the Baltimore Canyon (Mid-Atlantic) area of the Outer Continental Shelf, U.S. East Coast, by the...

  6. Earthquakes drive large-scale submarine canyon development and sediment supply to deep-ocean basins.

    Science.gov (United States)

    Mountjoy, Joshu J; Howarth, Jamie D; Orpin, Alan R; Barnes, Philip M; Bowden, David A; Rowden, Ashley A; Schimel, Alexandre C G; Holden, Caroline; Horgan, Huw J; Nodder, Scott D; Patton, Jason R; Lamarche, Geoffroy; Gerstenberger, Matthew; Micallef, Aaron; Pallentin, Arne; Kane, Tim

    2018-03-01

    Although the global flux of sediment and carbon from land to the coastal ocean is well known, the volume of material that reaches the deep ocean-the ultimate sink-and the mechanisms by which it is transferred are poorly documented. Using a globally unique data set of repeat seafloor measurements and samples, we show that the moment magnitude ( M w ) 7.8 November 2016 Kaikōura earthquake (New Zealand) triggered widespread landslides in a submarine canyon, causing a powerful "canyon flushing" event and turbidity current that traveled >680 km along one of the world's longest deep-sea channels. These observations provide the first quantification of seafloor landscape change and large-scale sediment transport associated with an earthquake-triggered full canyon flushing event. The calculated interevent time of ~140 years indicates a canyon incision rate of 40 mm year -1 , substantially higher than that of most terrestrial rivers, while synchronously transferring large volumes of sediment [850 metric megatons (Mt)] and organic carbon (7 Mt) to the deep ocean. These observations demonstrate that earthquake-triggered canyon flushing is a primary driver of submarine canyon development and material transfer from active continental margins to the deep ocean.

  7. Study of line source characteristics for 2-D physical modelling of pollutant dispersion in street canyons

    Energy Technology Data Exchange (ETDEWEB)

    Meroney, Robert N. [Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University Fort Collins, CO (United States); Pavageau, Michel; Rafailidis, Stilianos; Schatzmann, Michael [Meteorologisches Institut, Universitaet Hamburg, Hamburg (Germany)

    1996-08-01

    The University of Hamburg initiated a wind tunnel study of car exhaust dispersion from street canyons in an urban environment to investigate how pollution dispersion is affected by street geometry. Particular emphasis at the beginning of this work was put on the design of a line source to represent traffic exhaust. Pollution dispersion was studied in two dimensions (i.e., infinite-length streets were assumed). The case of an isolated street canyon in open country was examined first. The same street canyon geometry was subsequently studied in an urban environment, i.e., with additional canyons of similar geometry upstream and downstream of the test street. The dynamic and dispersion characteristics of the flow in the two cases were quite different. In the canyon amidst open country we observed better canyon ventilation than in the urban roughness case

  8. Review of the Diablo Canyon probabilistic risk assessment

    International Nuclear Information System (INIS)

    Bozoki, G.E.; Fitzpatrick, R.G.; Bohn, M.P.; Sabek, M.G.; Ravindra, M.K.; Johnson, J.J.

    1994-08-01

    This report details the review of the Diablo Canyon Probabilistic Risk Assessment (DCPRA). The study was performed under contract from the Probabilistic Risk Analysis Branch, Office of Nuclear Reactor Research, USNRC by Brookhaven National Laboratory. The DCPRA is a full scope Level I effort and although the review touched on all aspects of the PRA, the internal events and seismic events received the vast majority of the review effort. The report includes a number of independent systems analyses sensitivity studies, importance analyses as well as conclusions on the adequacy of the DCPRA for use in the Diablo Canyon Long Term Seismic Program

  9. Investigation of potential alternate study areas in the Paradox Basin region, Utah

    International Nuclear Information System (INIS)

    Grant, T.A.

    1984-03-01

    The Paradox Basin was re-evaluated to determine if any parts of the Basin that had not been identified in previous studies might be suitable for a more detailed evaluation as a nuclear waste repository site. The factors used in this re-evaluation were depth to salt and dedicated lands, because these factors directly address the engineering and environmental feasibility of a repository. Six areas (Happy Canyon, Green River, Dolores River, Expectation Mountain, Dark Canyon, and Kane Springs Canyon) were identified on this basis as potentially suitable areas for further study. These areas were assessed in more detail to review the feasibility of siting a repository. None of the six areas was recommended for further study as a repository site because the size of the areas, thickness of the salt beds, topography, and engineering factors resulting from the loading of nearby mesas generally did not allow the construction of a feasible repository. The content of this report was effective as of May 1983. 41 references, 17 figures

  10. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  11. Validation of a two-dimensional pollutant dispersion model in an isolated street canyon

    Energy Technology Data Exchange (ETDEWEB)

    Chan, T.L.; Dong, G.; Leung, C.W.; Cheung, C.S. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Research Centre for Combustion and Pollution Control, Department of Mechanical Engineering; Hung, W.T. [The Hong Kong Polytechnic University, Kowloon (Hong Kong). Department of Civil and Structural Engineering

    2002-07-01

    A two-dimensional numerical model based on Reynolds-averaged Navier-Stokes equations coupled with a series of standard, Renormalization Group (RNG) and realizable k-{epsilon} turbulence models was developed to simulate the fluid-flow development and pollutant dispersion within an isolated street canyon using the FLUENT code. In the present study, the validation of the numerical model was evaluated using an extensive experimental database obtained from the atmospheric boundary layer wind tunnel at the Meteorological Institute of Hamburg University, Germany (J. Wind Eng. Ind. Aerodyn. 62 (1996) 37). Among the studied turbulence models, the RNG k-{epsilon} turbulence model was found to be the most optimum turbulence model coupled with the two-dimensional street canyon model developed in the present study. Both the calculated and measured dimensionless pollutant concentrations have been shown to be less dependent on the variation of wind speed and source strength conditions for the studied street canyon aspect ratio of the B/H=1 case. However, the street canyon configuration has significant influence on the pollutant dispersion. The wider street and lower height of the buildings are favorable to pollutant dilution within the street canyon. The fluid-flow development has demonstrated that the rotative vortex or vortices generated within the urban street canyon can transport the pollutants from a line source to the wall surfaces of the buildings. (author)

  12. Geology of the Western Part of Los Alamos National Laboratory (TA-3 to TA-16), Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    C.J.Lewis; A.Lavine; S.L.Reneau; J.N.Gardner; R.Channell; C.W.Criswell

    2002-12-01

    We present data that elucidate the stratigraphy, geomorphology, and structure in the western part of Los Alamos National Laboratory between Technical Areas 3 and 16 (TA-3 and TA-16). Data include those gathered by geologic mapping of surficial, post-Bandelier Tuff strata, conventional and high-precision geologic mapping and geochemical analysis of cooling units within the Bandelier Tuff, logging of boreholes and a gas pipeline trench, and structural analysis using profiles, cross sections, structure contour maps, and stereographic projections. This work contributes to an improved understanding of the paleoseismic and geomorphic history of the area, which will aid in future seismic hazard evaluations and other investigations. The study area lies at the base of the main, 120-m (400-ft) high escarpment formed by the Pajarito fault, an active fault of the Rio Grande rift that bounds Los Alamos National Laboratory on the west. Subsidiary fracturing, faulting, and folding associated with the Pajarito fault zone extends at least 1,500 m (5,000 ft) to the east of the main Pajarito fault escarpment. Stratigraphic units in the study area include upper units of the Tshirege Member of the early Pleistocene Bandelier Tuff, early Pleistocene alluvial fan deposits that predate incision of canyons on this part of the Pajarito Plateau, and younger Pleistocene and Holocene alluvium and colluvium that postdate drainage incision. We discriminate four sets of structures in the area between TA-3 and TA-16: (a) north-striking faults and folds that mark the main zone of deformation, including a graben in the central part of the study area; (b) north-northwest-striking fractures and rare faults that bound the eastern side of the principal zone of deformation and may be the surface expression of deep-seated faulting; (c) rare northeast-striking structures near the northern limit of the area associated with the southern end of the Rendija Canyon fault; and (d) several small east

  13. A Numerical Study on the Effects of Street‒canyon Aspect‒ratio on Reactive Pollutant Dispersion

    Science.gov (United States)

    Park, S. J.; Kim, J.

    2014-12-01

    In this study, the effects of street‒canyon aspect‒ratio on reactive pollutant dispersion were investigated using the coupled CFD‒chemistry model. For this, flow characteristics were analyzed first in street canyons with different aspect ratios and flow regimes were classified according to the building height. For each flow regime, dispersion characteristics were investigated in views of reactive pollutant concentration and VOCs‒NOX ratio. Finally, the relations between pollutant concentration and aspect ratio in urban street canyons were investigated. In the case of H/S = 1.0 (H is building height and S is street width), one clockwise‒rotating vortex appeared vertically and the reverse and outward flows were dominant near the street bottom. In the case of H/S = 2.0, two counter‒rotating vortices appeared vertically in the street canyon. The primary (secondary) vortex rotating clockwise (counterclockwise) was formed in upper (lower) layer. The flow patterns affected the reactive pollutant concentration in street canyons. As building height increased, mean concentration of NO decreased when one vortex was generated in street canyons and increased when two vortexes appeared in street canyons. O3 concentration showed almost contrasted tendency with those of NO because O3 was depleted by the NO titration.

  14. Submarine canyons off the Coromandel coast

    Digital Repository Service at National Institute of Oceanography (India)

    Varadachari, V.V.R.; Nair, R.R.; Murty, P.S.N.

    During the 26th Cruise of I.N.S. `KISTNA', a bathymetric survey was carried out in some detail off the Pondicherry coast. This survey has revealed the existence of three sets of distinctly separate canyons between Cuddalore and Palar River...

  15. Large-Eddy Simulation of Flow and Pollutant Transport in Urban Street Canyons with Ground Heating

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Koh, Tieh Yong; Norford, Leslie K.; Liu, Chun-Ho; Entekhabi, Dara; Leung, Dennis Y. C.

    2010-11-01

    Our study employed large-eddy simulation (LES) based on a one-equation subgrid-scale model to investigate the flow field and pollutant dispersion characteristics inside urban street canyons. Unstable thermal stratification was produced by heating the ground of the street canyon. Using the Boussinesq approximation, thermal buoyancy forces were taken into account in both the Navier-Stokes equations and the transport equation for subgrid-scale turbulent kinetic energy (TKE). The LESs were validated against experimental data obtained in wind-tunnel studies before the model was applied to study the detailed turbulence, temperature, and pollutant dispersion characteristics in the street canyon of aspect ratio 1. The effects of different Richardson numbers ( Ri) were investigated. The ground heating significantly enhanced mean flow, turbulence, and pollutant flux inside the street canyon, but weakened the shear at the roof level. The mean flow was observed to be no longer isolated from the free stream and fresh air could be entrained into the street canyon at the roof-level leeward corner. Weighed against higher temperature, the ground heating facilitated pollutant removal from the street canyon.

  16. The urban canyon and building energy use: Urban density versus daylight and passive solar gains

    DEFF Research Database (Denmark)

    Strømann-Andersen, Jakob Bjørn; Sattrup, Peter Andreas

    2011-01-01

    .It was found that the geometry of urban canyons has an impact on total energy consumption in the range of up to +30% for offices and +19% for housing, which shows that the geometry of urban canyons is a key factor in energy use in buildings. It was demonstrated how the reflectivity of urban canyons plays...

  17. PRELIMINARY PALEOMAGNETIC RESULTS FROM OUTFLOW EOCENE-OLIGOCENE ASH FLOW TUFFS FROM THE WESTERN MARGIN OF THE SAN LUIS BASIN: IMPLICATION FOR THE KINEMATIC EVOLUTION OF THE RIO GRANDE RIFT

    Science.gov (United States)

    Mason, S. N.; Geissman, J. W.; Sussman, A. J.

    2009-12-01

    In the Rio Grande rift (RGR), a late Cenozoic continental rift from central Colorado to southern New Mexico, hanging wall margins typically contain en echelon normal fault systems with intervening areas of typically complex structure, called relay zones. Relay zones transfer displacement through complex strain patterns and eventual linkage of faults and hold clues as to how fault zones initiate and grow. The western margin of the RGR at the latitude of the San Luis basin (SLB) exposes laterally continuous Eocene-Oligocene volcanic rocks, well-correlated by 40Ar/39Ar data, and well-preserved rift structures. Ash flow tuffs are usually excellent recorders of the instantaneous geomagnetic field and five ash flow tuffs (ca. 32.3 to 27.3 Ma; including the Saguache Creek, La Jara Canyon, Masonic Park, Fish Canyon, and Carpenter Ridge tuffs) have been sampled in spatial detail along west to east transects of the eastern San Juan volcanic field to the westernmost margin of the RGR at the SLB. Data obtained from our sampling approach will yield a comprehensive definition of relative vertical-axis rotations across the area and will be used to assess the timing of RGR fault linkages. Preliminary paleomagnetic data from the Masonic Park tuff (ca. 28.2 Ma) suggest up to ~17° clockwise rotation between sample locations on the Colorado Plateau and locations to the east, nearest the western margin of the RGR. Preliminary data from the Fish Canyon tuff (ca. 27.8 Ma) show a ~12° clockwise rotation. The relative clockwise vertical-axis rotation of sampling sites in both ash flow tuffs nearest the RGR margin suggests that relay zone development with attending vertical-axis rotation played an important role in the opening of the northern RGR. Our data set is not sufficiently robust at present to test the hypothesis that rotation was taking place concurrently with eruption of these large-volume ash flow tuffs in the early Oligocene, but it is a possibility and if so, the RGR at the

  18. Evaluation of hydrologic processes affecting soil movement in the Hagerman fauna area, Hagerman, Idaho

    Science.gov (United States)

    Young, H.W.

    1984-01-01

    The Hagerman fauna area on the western slope of the Snake River canyon in south-central Idaho is one of the most important locations of upper Pliocene fossils in the world. The fossil beds are distributed vertically through a 500-foot stratigraphic section of the Glenns Ferry Formation. Accelerated soil movement caused by surface-water runoff from irrigated farmlands on the plateau above the canyon and discharge from springs and seeps along the slope of the canyon is eroding the fossil beds. Source of the springs and seeps is a perched aquifer, which is probably recharged by seepage losses from two irrigation canals that head near the canyon rim. Annual canal losses are about 1,900 acre-feet. Annual discharge from springs and seeps is about 420 acre-feet. Corrective measures that could be taken to stabilize the soil movement and preserve the fauna area include: (1) Lining or treating the canals, (2) eliminating the practice of flushing irrigation systems, (3) constructing road berms and cross dips, and (4) establishing an uncultivated strip of land between irrigated farmlands and the canyon rim. (USGS)

  19. Captured in Stone: Women in the Rock Art of Canyon de Chelly.

    Science.gov (United States)

    Travis, Tara

    1997-01-01

    Describes the pictographs (painted images on stone) and petroglyphs (pecked images on stone) found in the Canyon de Chelly National Monument in Arizona. Canyon de Chelly includes one of the largest concentrations of American Indian rock art in the southwest. Discusses the depiction of women in these images. (MJP)

  20. Trees as environmental modifier to improve street canyon for pedestrian activities in Muscat

    Science.gov (United States)

    Khudhayer, Wael A.; Shaaban, Awni K.; Sukor, Nur Sabahiah Abdul

    2017-10-01

    Street shading efficiency is a function of orientation and profile proportion of its height to width. Under high sun altitude conditions, minimization of solar irradiance within the urban environment may often be a significant criterion in urban design. This reduction in solar irradiance achieved when the obstruction angle is large (high H/W ratio, H=height, W=width). High H/W values often lessen the solar access to streets. The horizontal sprawl of Muscat region is an example of low H/W ratio represented the remarkable challenge that causes the lack of shading rates in the urban street. This characteristic proliferates the negative impact on the pedestrian activities in the urban street. This research aims to improve the morphology of the street to promote the pedestrian behavior. The amendment based on suggesting different configurations of trees to increase effective shading of the urban street in Muscat. The street canyon abstracted into a virtual elongated channel formed of floor and walls of equal heights on both sides. Four street orientations (E/W, N/S, NE/SW, NW/SE) and three H/W ratio (0.5,1 and 2) are considered sufficient representative of street typologies. A mathematical model developed for calculation of shading efficiency of each street canyon. The trees assumed in this study as canyon's modifier to adjust the low H/W ratio of a street canyon to a higher one. Local trees and other plants in Muscat were studied concerning their morphology. The analysis selected two case study in Muscat to investigate the shading performance of their street canyons subsequently propose the modifications to improve it. The research concluded that the suggested changes of the street canyon by using a particular type of trees could increase the H/W ratio of street canyon significantly.

  1. Wind tunnel simulation of air pollution dispersion in a street canyon.

    Science.gov (United States)

    Civis, Svatopluk; Strizík, Michal; Janour, Zbynek; Holpuch, Jan; Zelinger, Zdenek

    2002-01-01

    Physical simulation was used to study pollution dispersion in a street canyon. The street canyon model was designed to study the effect of measuring flow and concentration fields. A method of C02-laser photoacoustic spectrometry was applied for detection of trace concentration of gas pollution. The advantage of this method is its high sensitivity and broad dynamic range, permitting monitoring of concentrations from trace to saturation values. Application of this method enabled us to propose a simple model based on line permeation pollutant source, developed on the principle of concentration standards, to ensure high precision and homogeneity of the concentration flow. Spatial measurement of the concentration distribution inside the street canyon was performed on the model with reference velocity of 1.5 m/s.

  2. Traffic noise in shielded urban areas: comparison of experimental data with model results

    NARCIS (Netherlands)

    Randrianoelina, A.; Salomons, E.M.

    2008-01-01

    Noise maps of cities are commonly produced with rather simple engineering models for sound propagation. These models may be inaccurate in complex urban situations, in particular in situations with street canyons. Street canyons are urban areas that are partly or completely enclosed by buildings, for

  3. 77 FR 59607 - Black Canyon Hydro, LLC; Notice of Environmental Site Review

    Science.gov (United States)

    2012-09-28

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 14110-001] Black Canyon Hydro, LLC; Notice of Environmental Site Review On Wednesday, October 3, 2012, at 3 p.m., Commission staff will be participating in an environmental site review for the proposed Black Canyon Hydroelectric Project. All interested participants should mee...

  4. Factors Controlling Pre-Columbian and Early Historic Maize Productivity in the American Southwest, Part 1: The Southern Colorado Plateau and Rio Grande Regions

    Science.gov (United States)

    Benson, L.V.

    2011-01-01

    Maize is the New World's preeminent grain crop and it provided the economic basis for human culture in many regions within the Americas. To flourish, maize needs water, sunlight (heat), and nutrients (e. g., nitrogen). In this paper, climate and soil chemistry data are used to evaluate the potential for dryland (rainon-field) agriculture in the semiarid southeastern Colorado Plateau and Rio Grande regions. Processes that impact maize agriculture such as nitrogen mineralization, infiltration of precipitation, bare soil evaporation, and transpiration are discussed and evaluated. Most of the study area, excepting high-elevation regions, receives sufficient solar radiation to grow maize. The salinities of subsurface soils in the central San Juan Basin are very high and their nitrogen concentrations are very low. In addition, soils of the central San Juan Basin are characterized by pH values that exceed 8.0, which limit the availability of both nitrogen and phosphorous. In general, the San Juan Basin, including Chaco Canyon, is the least promising part of the study area in terms of dryland farming. Calculations of field life, using values of organic nitrogen for the upper 50 cm of soil in the study area, indicate that most of the study area could not support a 10-bushel/acre crop of maize. The concepts, methods, and calculations used to quantify maize productivity in this study are applicable to maize cultivation in other environmental settings across the Americas. ?? 2010 US Government.

  5. Development of a generic system for real-time data access and remote control of multiple in-situ water quality monitoring instruments

    Science.gov (United States)

    Wright, S. A.; Bennett, G. E.; Andrews, T.; Melis, T. S.; Topping, D. J.

    2005-05-01

    Currently, in-situ monitoring of water quality parameters (e.g. water temperature, conductivity, turbidity) in the Colorado River ecosystem typically consists of deploying instruments in the river, retrieving them at a later date, downloading the datalogger, then examining the data; an arduous process in the remote settings of Grand Canyon. Under this protocol, data is not available real-time and there is no way to detect problems with the instrumentation until after retrieval. The next obvious stage in the development of in-situ monitoring in Grand Canyon was the advent of one-way telemetry, i.e. streaming data in real-time from the instrument to the office and/or the world-wide-web. This protocol allows for real-time access to data and the identification of instrumentation problems, but still requires a site visit to address instrument malfunctions, i.e. the user does not have the ability to remotely control the instrument. At some field sites, such as the Colorado River in Grand Canyon, site visitation is restricted by remoteness and lack of traditional access routes (i.e. roads). Even at less remote sites, it may still be desirable to have two-way communication with instruments in order to, for example, diagnose and potentially fix instrumentation problems, change sampling parameters to save battery power, etc., without having to visit the site. To this end, the U.S. Geological Survey, Grand Canyon Monitoring and Research Center, is currently developing and testing a high-speed, two-way communication system that allows for real-time data access and remote control of instrumentation. The approach tested relies on internet access and may be especially useful in areas where land-line or cellular connections are unavailable. The system is composed of off-the-shelf products, uses a commercial broadband satellite service, and is designed in a generic way such that any instrument that communicates through RS-232 communication (i.e. a serial port) is compatible with

  6. Trees in urban street canyons and their impact on the dispersion of automobile exhausts

    OpenAIRE

    Gromke, Christof; Ruck, Bodo

    2007-01-01

    The aim of the present study is to clarify the influence of trees on the dispersion of automobile exhausts in urban street canyons. For this purpose, measurements have been performed with a small scale wind tunnel model of an idealized, isolated street canyon with model trees placed along the canyon center axis. Sulfur hexafluoride (SF6) was released from a line source embedded in the street surface, simulating vehicle exhaust emissions. The influence of various tree planting arrangements on ...

  7. Stratigraphic and structural configuration of the Navajo (Jurassic) through Ouray (Mississippian-Devonian) formations in the vicinity of Davis and Lavender Canyons, southeastern Utah

    International Nuclear Information System (INIS)

    McCleary, J.R.; Romie, J.E.

    1986-04-01

    This study developed a three-dimensional computer model of stratigraphic and structural relationships within a 3497-km 2 (1350-mi 2 ) study area centered on the proposed site for a high-level nuclear waste repository in southeastern Utah. The model consists of a sequence of internally reconciled isopach and structure contour maps horizontally registered and stored in stratigraphic order. This model can be used to display cross sections, perspective block diagrams, or fence diagrams at any orientation; estimate depth of formation contacts and thicknesses for any new stratigraphic or hydrologic boreholes; facilitate ground-water modeling studies; and evaluate the structural and stratigraphic evolution of the study area. This study also includes limited evaluations of aquifer continuity in the Elephant Canyon and Honaker Trail Formations, and of salt dissolution and flowage features as interpreted from geophysical logs. The study identified a long history of movement in the fault system in the north-central part of the study area and a major salt flowage feature in the northeastern part. It describes the Elephant Canyon Formation aquifer as laterally limited, the Honaker Trail Formation aquifer as fairly continuous over the area, and Beef Basin in the southern part of the area as a probable dissolution feature. It also concludes that the Shay-Bridger Jack-Salt Creek Graben system is apparently a vertically continuous feature between the basement and ground surface. No stratigraphic or structural discontinuities were detected in the vicinity of Davis Canyon that appear to be detrimental to the siting of a waste repository

  8. A numerical analysis of pollutant dispersion in street canyon: influence of the turbulent Schmidt number

    Directory of Open Access Journals (Sweden)

    Bouabdellah Abed

    2017-12-01

    Full Text Available Realizing the growing importance and availability of motor vehicles, we observe that the main source of pollution in the street canyons comes from the dispersion of automobile engine exhaust gas. It represents a substantial effect on the micro-climate conditions in urban areas. Seven idealized-2D building configurations are investigated by numerical simulations. The turbulent Schmidt number is introduced in the pollutant transport equation in order the take into account the proportion between the rate of momentum turbulent transport and the mass turbulent transport by diffusion. In the present paper, we attempt to approach the experimental test results by adjusting the values of turbulent Schmidt number to its corresponding application. It was with interest that we established this link for achieving our objectives, since the numerical results agree well with the experimental ones. The CFD code ANSYS CFX, the k, e and the RNGk-e models of turbulence have been adopted for the resolutions. From the simulation results, the turbulent Schmidt number is a range of 0.1 to 1.3 that has some effect on the prediction of pollutant dispersion in the street canyons. In the case of a flat roof canyon configuration (case: runa000, appropriate turbulent Schmidt number of 0.6 is estimated using the k-epsilon model and of 0.5 using the RNG k-e model.

  9. Human rhinovirus capsid dynamics is controlled by canyon flexibility

    International Nuclear Information System (INIS)

    Reisdorph, Nichole; Thomas, John J.; Katpally, Umesh; Chase, Elaine; Harris, Ken; Siuzdak, Gary; Smith, Thomas J.

    2003-01-01

    Quantitative enzyme accessibility experiments using nano liquid chromatography electrospray mass spectrometry combined with limited proteolysis and isotope-labeling was used to examine the dynamic nature of the human rhinovirus (HRV) capsid in the presence of three antiviral compounds, a neutralizing Fab, and drug binding cavity mutations. Using these methods, it was found that the antivirals WIN 52084 and picovir (pleconaril) stabilized the capsid, while dansylaziridine caused destabilization. Site-directed mutations in the drug-binding cavity were found to stabilize the HRV14 capsid against proteolytic digestion in a manner similar to WIN 52084 and pleconaril. Antibodies that bind to the NIm-IA antigenic site and penetrate the canyon were also observed to protect the virion against proteolytic cleavage. These results demonstrate that quantifying the effects of antiviral ligands on protein 'breathing' can be used to compare their mode of action and efficacy. In this case, it is apparent that hydrophobic antiviral agents, antibodies, or mutations in the canyon region block viral breathing. Therefore, these studies demonstrate that mobility in the canyon region is a major determinant in capsid breathing

  10. Turbulent ventilation of a street canyon

    DEFF Research Database (Denmark)

    Nielsen, Morten

    2000-01-01

    A selection of turbulence data corresponding to 185 days of field measurements has een analysed. The non-ideal building geometry influenced the circulation patterns in the street canyon and the largest average vertical velocities were observed in the wake of an unbroken line of buildings. The sta...

  11. Compilation of PRF Canyon Floor Pan Sample Analysis Results

    Energy Technology Data Exchange (ETDEWEB)

    Pool, Karl N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Minette, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wahl, Jon H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Greenwood, Lawrence R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coffey, Deborah S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McNamara, Bruce K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bryan, Samuel A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Scheele, Randall D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Delegard, Calvin H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sinkov, Sergey I. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Soderquist, Chuck Z. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fiskum, Sandra K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Brown, Garrett N. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clark, Richard A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-06-30

    On September 28, 2015, debris collected from the PRF (236-Z) canyon floor, Pan J, was observed to exhibit chemical reaction. The material had been transferred from the floor pan to a collection tray inside the canyon the previous Friday. Work in the canyon was stopped to allow Industrial Hygiene to perform monitoring of the material reaction. Canyon floor debris that had been sealed out was sequestered at the facility, a recovery plan was developed, and drum inspections were initiated to verify no additional reactions had occurred. On October 13, in-process drums containing other Pan J material were inspected and showed some indication of chemical reaction, limited to discoloration and degradation of inner plastic bags. All Pan J material was sealed back into the canyon and returned to collection trays. Based on the high airborne levels in the canyon during physical debris removal, ETGS (Encapsulation Technology Glycerin Solution) was used as a fogging/lock-down agent. On October 15, subject matter experts confirmed a reaction had occurred between nitrates (both Plutonium Nitrate and Aluminum Nitrate Nonahydrate (ANN) are present) in the Pan J material and the ETGS fixative used to lower airborne radioactivity levels during debris removal. Management stopped the use of fogging/lock-down agents containing glycerin on bulk materials, declared a Management Concern, and initiated the Potential Inadequacy in the Safety Analysis determination process. Additional drum inspections and laboratory analysis of both reacted and unreacted material are planned. This report compiles the results of many different sample analyses conducted by the Pacific Northwest National Laboratory on samples collected from the Plutonium Reclamation Facility (PRF) floor pans by the CH2MHill’s Plateau Remediation Company (CHPRC). Revision 1 added Appendix G that reports the results of the Gas Generation Rate and methodology. The scope of analyses requested by CHPRC includes the determination of

  12. Repeat Mapping in Upper Monterey Canyon Captures the Effect of Sediment Transport Events of Known Magnitude and Duration on the Seafloor Morphology

    Science.gov (United States)

    Lundsten, E. M.; Anderson, K.; Caress, D. W.; Thomas, H. J.; Paull, C. K.; Maier, K. L.; Gwiazda, R.; Gales, J. A.; Talling, P.; Xu, J.; Parsons, D. R.

    2017-12-01

    As part of a multi-institution submarine canyon study, the Coordinated Canyon Experiment (CCE), high-resolution multibeam bathymetric surveys of the floor of Monterey Canyon, offshore California, were conducted to capture the changes in seafloor morphology directly related to the passage of sediment density flows documented during the study. The goals of this study were to monitor the passage of sediment density flows as they move through the axis of a submarine canyon in order to understand the velocity structure of these flows and to document the associated changes in seafloor morphology and the resultant deposits. The CCE consisted of an array of moorings and sensors deployed on the canyon floor during the 18-month period between October 2015 and April 2017. In addition, a mapping AUV (Autonomous Underwater Vehicle) repeatedly surveyed two sites along the canyon during the study. Differencing the repeat grids quantified the morphological changes directly related to specifically documented, individual flow events. The AUV carried a Reson 7125 multibeam echosounder (vertical precision of 0.15 m and horizontal resolution of 1.0 m). An inertial navigation system combined with a Doppler velocity logger allowed the AUV to fly pre-programmed grids at 3 knots while maintaining an altitude of 50 m above the seafloor and obtain a nominal line spacing of 130 m. The axial channel between 200 and 540 m water depth was surveyed six times. At least fifteen density flow events were captured by the array of CCE instruments within this AUV survey area. These events caused moorings as well as several large and small instruments to move down canyon significant distances at least 30 times. Difference grids show the canyon experienced erosion and deposition of up to +/- 3 m between surveys. The pair of surveys that straddle a sediment transport event on December 1, 2015 show the seafloor was altered only down to 420 m water depth, consistent with the observations on the CCE

  13. Public response to the Diablo Canyon Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Pijawka, K D [Arizona State Univ., Tempe (USA)

    1982-08-01

    We examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response.

  14. Assesment of longwave radiation effects on air quality modelling in street canyons

    Science.gov (United States)

    Soucasse, L.; Buchan, A.; Pain, C.

    2016-12-01

    Computational Fluid Dynamics is widely used as a predictive tool to evaluate people's exposure to pollutants in urban street canyons. However, in low-wind conditions, flow and pollutant dispersion in the canyons are driven by thermal effects and may be affected by longwave (infrared) radiation due to the absorption and emission of water vapor contained in the air. These effects are mostly ignored in the literature dedicated to air quality modelling at this scale. This study aims at quantifying the uncertainties due to neglecting thermal radiation in air quality models. The Large-Eddy-Simulation of air flow in a single 2D canyon with a heat source on the ground is considered for Rayleigh and Reynolds numbers in the range of [10e8-10e10] and [5.10e3-5.10e4] respectively. The dispersion of a tracer is monitored once the statistically steady regime is reached. Incoming radiation is computed for a mid-latitude summer atmosphere and canyon surfaces are assumed to be black. Water vapour is the only radiating molecule considered and a global model is used to treat the spectral dependancy of its absorption coefficient. Flow and radiation fields are solved in a coupled way using the finite element solvers Fluidity and Fetch which have the capability of adapting their space and angular resolution according to an estimate of the solution error. Results show significant effects of thermal radiation on flow patterns and tracer dispersion. When radiation is taken into account, the air is heated far from the heat source leading to a stronger natural convection flow. The tracer is then dispersed faster out of the canyon potentially decreasing people's exposure to pollution within the street canyon.

  15. Turkish Straits System and Southern Black Sea: Exchange. Mixing and Shelf / Canyon Interactions

    Science.gov (United States)

    Özsoy, Emin; Gürses, Özgür; Tutsak, Ersin

    2015-04-01

    Based largely on an experiment employing high-resolution measurements carried out in June-July 2013 and re-interpretation of past experiments, the oceanographic variability of the exchange through the Turkish Straits System (TSS) and the interactions with the southern Black Sea are revealed through CTD, ADCP, oxygen and light transmission measurements. The exchange flow is primarily governed by the complex topography spanning two narrow straits, wide continental shelf regions, steep slopes and numerous canyons connecting deep basins. Water properties and currents in the high energy environment depends on the mosaic of fine-scale processes and pathways. The TSS, often approximated as a two-layer system has a hydraulically controlled, upper ocean and straits intensified regime, leading to surface jets and bottom plumes participating in mixing and renewal processes. The exit of the 'Mediterranean effluent' onto the Black Sea past a sill overflow from the Bosphorus passes through two subsequent hydraulic jumps and proceeds along a narrow canyon that veers to the west clear of the greater Bosphorus Canyon finally cascading down the few small canyons. A diffusive spread from the bottom vein of salty water reforms to the east and spills down the Bosphorus Canyon. The suspended particulate signature of the cascade, as well as its influence in hydrography is traced over the shelf and slope waters and through the numerous canyons into deep water where the reformed flow is found to sustain signatures of the past evolution of intrusive waters. An evaluation of the processes is given with reference to model development carried out in parallel to the analyses of the measurements.

  16. The flower-visiting social wasps (Hymenoptera, Vespidae, Polistinae in two areas of Rio Grande do Sul State, southern Brazil

    Directory of Open Access Journals (Sweden)

    Marcel G. Hermes

    2006-06-01

    Full Text Available The flower-visiting social wasps (Hymenoptera, Vespidae, Polistinae in two areas of Rio Grande do Sul State, southern Brazil. The structure of flower-visiting social wasps' assemblages in the CPCN Pró-Mata of São Francisco de Paula and in the Green Belt of Santa Cruz do Sul, Rio Grande do Sul, are characterized. A total of 879 polistine wasps were collected, of which 475 (11 spp. in the CPCN and 404 (21 spp. in the Green Belt, from September 1997 to April 2001 and from September 2001 to April 2004, respectively. Foraging social wasps were observed on flowers of 36 species of angiosperms (20 families in the Green Belt, and on flowers of 54 species of angiosperms (21 families in the CPCN. Asteraceae was the most visited plant family on both studied localities. A list of pant species visited by the polistines is provided.Vespas sociais (Hymenoptera, Vespidae, Polistinae visitantes de flores em duas áreas no Rio Grande do Sul, Brasil. A estrutura da assembléia de vespas sociais que visitam flores no CPCN Pró-Mata de São Francisco de Paula e no Cinturão Verde de Santa Cruz do Sul, Rio Grande do Sul, são caracterizadas. Do total de 879 polistíneos, 475 (11 spp. foram coletados no CPCN, e 404 (21 spp. no Cinturão Verde entre Setembro de 1997 a Abril de 2000 e Setembro de 2001 a Abril de 2004, respectivamente. Vespas sociais foram observadas em flores de 36 espécies de angiospermas (20 famílias no Cinturão Verde, e em flores de 54 espécies de angiospermas (21 famílias no CPCN. Asteraceae foi a família de planta que mais recebeu visitas por parte das vespas nas duas localidades estudadas. Uma lista com as espécies de plantas visitadas pelos polistíneos é apresentada.

  17. Herpetofauna of Núcleo Experimental de Iguaba Grande, Rio de Janeiro state, Brazil

    OpenAIRE

    Martins, AR; Bruno, SF.; Navegantes, AQ.

    2012-01-01

    The Atlantic Rain forest, which is considered the second largest pluvial forest in the American continent, has had an estimated 93% of its original area destroyed. Although studies concerning the herpetofaunal diversity in this biome have been intensified in the past years, its diversity is still underestimated. The Nucleo Experimental de Iguaba Grande (NEIG) is included in an Environmental Protection Area (APA de Sapeatiba) in the Iguaba Grande municipality, Rio de Janeiro state, Brazil (22º...

  18. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy's (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project's burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer

  19. Formerly utilized MED/AEC sites Remedial Action Program: radiological survey of the Bayo Canyon, Los Alamos, New Mexico. Final report

    International Nuclear Information System (INIS)

    Mayfield, D.L.; Stoker, A.K.; Ahlquist, A.J.

    1979-06-01

    A portion of Bayo Canyon, located in Los Alamos County in north-central New Mexico, was used between 1944 and 1961 as a site for experiments employing conventional high explosives in conjunction with research on nuclear weapons development. Radiochemistry operations conducted at the site resulted in the generation of liquid and solid radioactive wastes, which were disposed into subsurface pits and leaching fields. The site was decommissioned by 1963. The resurvey utilized information from a number of routine and special environmental surveillance studies as well as extensive new instrumental measurements, soil sampling, and radiochemical analyses. Results showed that residual surface contamination due to 90 Sr averaged about 1.4 pCi/g or approximately 3 times the level attributable to worldwide fallout. Surface uranium averaged about 4.9 μg/g or about 1.5 times the amount naturally present in the volcanic-derived soils of the area. Subsurface contamination associated with the former waste disposal locations is largely confined within a total area of about 10,000 m 2 and down to depths of about 5 m. Of 378 subsurface samples, fewer than 12% exceeded 13 pCi/g of gross beta activity, which is comparable to the upper range of activities for uncontaminated local soils. Health physics interpretation of the data indicates that the present population of Los Alamos living on mesas adjacent to Bayo Canyon is not receiving any incremental radiation doses due to the residual contamination. Potential future land uses of Bayo Canyon include development of a residential area

  20. Metazoan meiofauna in deep-sea canyons and adjacent open slopes: A large-scale comparison with focus on the rare taxa

    Science.gov (United States)

    Bianchelli, S.; Gambi, C.; Zeppilli, D.; Danovaro, R.

    2010-03-01

    Metazoan meiofaunal abundance, total biomass, nematode size and the richness of taxa were investigated along bathymetric gradients (from the shelf break down to ca. 5000-m depth) in six submarine canyons and on five adjacent open slopes of three deep-sea regions. The investigated areas were distributed along >2500 km, on the Portuguese to the Catalan and South Adriatic margins. The Portuguese and Catalan margins displayed the highest abundances, biomass and richness of taxa, while the lowest values were observed in the Central Mediterranean Sea. The comparison between canyons and the nearby open slopes showed the lack of significant differences in terms of meiofaunal abundance and biomass at any sampling depth. In most canyons and on most slopes, meiofaunal variables did not display consistent bathymetric patterns. Conversely, we found that the different topographic features were apparently responsible for significant differences in the abundance and distribution of the rare meiofaunal taxa (i.e. taxa accounting for Priapulida, Holothuroidea, Ascidiacea and Cnidaria, were encountered exclusively on open slopes, while others (including the Tanaidacea and Echinodea larvae) were found exclusively in canyons sediments. Results reported here indicate that, at large spatial scales, differences in deep-sea meiofaunal abundance and biomass are not only controlled by the available food sources, but also by the region or habitat specific topographic features, which apparently play a key role in the distribution of rare benthic taxa.

  1. History of Snake River Canyon Indicated by Revised Stratigraphy of Snake River Group Near Hagerman and King Hill, Idaho: With a Section on Paleomagnetism

    Science.gov (United States)

    Malde, Harold E.; Cox, Allan

    1971-01-01

    . From that place the former Snake River canyon, also now concealed by lava, continued west to Bancroft Springs and thence along a route close to the present canyon to King Hill. To become entrenched in a canyon 500 feet deep, the Snake River downstream from Hagerman became progressively more incised while its upstream route was pushed south in several earlier canyons by intermittent lava flows. Distinctive gravel deposits help to establish the episodes of progressive canyon cutting and to determine the routes of ancestral drainage, including the former position of the Wood River. As canyon cutting continued, springs began to emerge where lavas had filled the earlier canyons. When the Snake River canyon eventually attained its approximate present depth, the Wendell Grade Basalt erupted near Shoshone and, as several tongues, spread west to the canyon rim opposite Hagerman. One tongue crossed the future route of the Wood River, and another covered an upland area of Sand Springs Basalt that had previously reached the canyon floor at Hagerman. The McKinney Basalt then erupted from McKinney Butte northeast of Bliss and spread southward as a subaerial flow, covering part of the Wendell Grade Basalt. It filled the ancestral Wood River canyon and the Snake River canyon of that time west of Bliss as far downstream as King Hill. The resulting dam of lava impounded a deep lake, which extended upstream in the canyon beyond Hagerman. Copious amounts of the McKinney spilled into this temporary lake and produced pillow lava. About 2 miles west of Bliss, pillow lava 500 feet thick completely fills the former canyon and is protected by rimrock of the subaerial McKinney Basalt. From Bliss, the pillow facies extends upstream as far as the McKinney rimrock - about 5 miles. Eruption of the McKinney Basalt diverted the Wood River to a course along the southeast edge of this lava flow. The temporary lake that was dammed by McKinney Basalt west of Bliss spilled along the sou

  2. Prehistoric deforestation at Chaco Canyon?

    Science.gov (United States)

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  3. Live and dead benthic foraminiferal faunas from Whittard Canyon (NE Atlantic): Focus on taphonomic processes and paleo-environmental applications

    NARCIS (Netherlands)

    Duros, P.; Fontanier, C.; de Stigter, H.C.; Cesbron, F.; Metzger, E.; Jorissen, F.J.

    2012-01-01

    Dead benthic foraminiferal assemblages were studied in the > 150 mu m fraction of 4-5 cm deep sediment levels at 18 stations in the Whittard Canyon area in June 2007. This sediment layer is composed of fairly recent sediment (<312 years). The stations were located along 4 bathymetric transects

  4. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    Science.gov (United States)

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models.

  5. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    Science.gov (United States)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  6. 27 CFR 9.119 - Middle Rio Grande Valley.

    Science.gov (United States)

    2010-04-01

    ... Middle Rio Grande Valley. (a) Name. The name of the viticultural area described in this section is... 1979. (24) Veguita, N. Mex. (1952), revised 1979. (25) Wind Mesa, N. Mex. (1952), revised 1967. (c...

  7. Flow and Pollutant Transport in Urban Street Canyons of Different Aspect Ratios with Ground Heating: Large-Eddy Simulation

    Science.gov (United States)

    Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara

    2012-02-01

    A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.

  8. Partnering with Pueblos: Involving American Indians in environmental restoration activities at Los Alamos National Laboratory, New Mexico

    International Nuclear Information System (INIS)

    Shaner, M.H.; Naranjo, L. Jr.

    1995-01-01

    Many communities in the area surrounding Los Alamos are very concerned about the environmental impact past and current Laboratory operations have on their communities. Their main concerns are contamination of water, soil and air as well as the hazardous and radioactive wastes stored at the Laboratory site. Environmental surveillance results show that contamination may have migrated off-site through the canyons of the Pajarito Plateau to the Rio Grande. San Ildefonso Pueblo and Cochiti Pueblo are located downstream from the canyons that drain the Los Alamos town site and Laboratory lands. Several other pueblos are also located downstream from the Laboratory. The Pueblos located upstream from the laboratory indicated that contamination of air and worry about the contamination of the animals they hunt for food is a more important concern to them. There are many canyons that drain the areas where Los Alamos and Laboratory property are located. To be able to characterize those canyons that are known or suspected to have received contamination, the ER Project needs to prepare RCRA Facility Investigation (RFI) work plans for approval by the Environmental Protection Agency (EPA). Once EPA approves the work plant, characterization activities can start for the specific areas identified in the work plan

  9. Perfluoroalkyl substances in waters along the Grand Canal, China.

    Science.gov (United States)

    Piao, H T; Jiao, X C; Gai, N; Chen, S; Lu, G H; Yin, X C; Yamazaki, E; Yamashita, N; Tan, K Y; Yang, Y L; Pan, J

    2017-07-01

    The Grand Canal, also known as the Beijing-Hangzhou Grand Canal, is a UNESCO World Heritage Site and the longest canal in the world. It is an important trunk line of the South-to-North Water Diversion Project in China. The contamination status and spatial distributions of perfluoroalky substances (PFASs) in waters of the Grand Canal were investigated. The total concentrations of PFASs (∑PFASs) range from 7.8 ng/L to 218.0 ng/L, with high ∑PFASs occurring in the southern part of the Grand Canal which is located in a highly urbanized and economically developed region. The dominance of PFOA showed a decreasing trend toward north while shorter chain homologue proportions increased in the northern part of the Canal which mainly traverses underdeveloped and rural areas in Eastern China. Positive correlations were observed between ∑PFASs and the population density as well as GDP per capita. Intersection with large rivers may affect the contamination levels and composition of PFASs in the water of the Grand Canal near the intersection sites. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Quality of life on the Colorado Plateau: A report to camera-survey collaborators in southeast Utah

    Science.gov (United States)

    Taylor, Jonathan G.; Reis-Ruehrwein, Jessica B.; Sexton, Natalie R.; Blahna, Dale J.

    1999-01-01

    What constitutes quality of life among community residents in southeastern and central Utah? What critical areas, elements, and special outdoor places are essential to quality of life in those areas? Answering these questions was the goal of this "quality-of-life" research collaboration in the Colorado Plateau region. Collaborators include the Utah Travel Council (UTC), Canyon Country Partnership, Utah State University, and the county governments of Carbon, Emery, Grand, San Juan, and Wayne counties.

  11. Aquatic macroinvertebrates and water quality of Sandia Canyon, Los Alamos National Laboratory, December 1992--October 1993. Status report

    International Nuclear Information System (INIS)

    Cross, S.

    1994-09-01

    In the summer of 1990, an accidental spill from the TA-3 Power Plant Environment Tank released more than 3,785 liters of sulfuric acid into upper Sandia Canyon. The Biological Resource Evaluation Team (BRET) of EM-8 at Los Alamos National Laboratory (LANL) has collected aquatic samples from the stream within Sandia Canyon since then. These field studies gather water quality measurements and collect macroinvertebrates from permanent sampling sites. An earlier report by Bennett (1994) discusses previous BRET aquatic studies in Sandia Canyon. This report updates and expands Bennett's initial findings. During 1993, BRET collected water quality data and aquatic macroinvertebrates at five permanent stations within the canyon. The substrates of the upper three stations are largely sands and silts while the substrates of the two lower stations are largely rock and cobbles. The two upstream stations are located near outfalls that discharge industrial and sanitary waste effluent. The third station is within a natural cattail marsh, approximately 0.4 km (0.25 mi) downstream from Stations SC1 and SC2. Water quality parameters are slightly different at these first three stations from those expected of natural streams, suggesting slightly degraded water quality. Correspondingly, the macroinvertebrate communities at these stations are characterized by low diversities and poorly-developed community structures. The two downstream stations appear to be in a zone of recovery, where water quality parameters more closely resemble those found in natural streams of the area. Macroinvertebrate diversity increases and community structure becomes more complex at the two lower stations, which are further indications of improved water quality downstream

  12. Late Quaternary evolution of the San Antonio Submarine Canyon in the central Chile forearc (∼33°S)

    Science.gov (United States)

    Laursen, Jane; Normark, William R.

    2002-01-01

    Hydrosweep swath-bathymetry and seismic-reflection data reveal the morphology, sedimentary processes, and structural controls on the submarine San Antonio Canyon. The canyon crosses the forearc slope of the central Chile margin for more than 150 km before it empties into the Chile Trench near 33°S latitude. In its upper reaches, the nearly orthogonal segments of the San Antonio Canyon incise ∼1 km into thick sediment following underlying margin-perpendicular basement faults and along the landward side of a prominent margin-parallel thrust ridge on the outer mid-slope. At a breach in the outer ridge, the canyon makes a sharp turn into the San Antonio Reentrant. Resistance to erosion of outcropping basement at the head of the reentrant has prevented the development of a uniformly sloping thalweg, leaving gentle gradients (6°) across the lower slope. Emergence of an obstruction across the head of the San Antonio Reentrant has trapped sediment in the mid-slope segments of the canyon. Presently, little sediment appears to reach the Chile Trench through the San Antonio Canyon. The development of the San Antonio Canyon was controlled by the impact of a subducted seamount, which formed the San Antonio Reentrant and warped the middle slope along its landward advancing path. Incision of the canyon landward of the outer mid-slope ridge may be ascribed to a combination of headward erosion and entrenchment by captured unconfined turbidity currents. Flushing of the canyon was likely enhanced during the lowered sea level of the last glaciation. Where the canyon occupies the triangular embayment of the reentrant at the base of the slope, sediment has ponded behind a small accretionary ridge. On the trench floor opposite the San Antonio Canyon mouth, a 200-m-thick levee–overbank complex formed on the left side of a distributary channel emanating from a breach in the accretionary ridge. Axial transfer of sediment was inhibited to the north of the San Antonio Canyon mouth

  13. Relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy street canyon: Ambient wind effects

    International Nuclear Information System (INIS)

    Kwak, Kyung-Hwan; Lee, Sang-Hyun; Seo, Jaemyeong Mango; Park, Seung-Bu; Baik, Jong-Jin

    2016-01-01

    Rooftop and on-road measurements of O_3, NO_2, NO_x, and CO concentrations were conducted to investigate the relationship between rooftop and on-road concentrations in a busy and shallow street canyon with an aspect ratio of ∼0.3 in Seoul, Republic of Korea, from 15 April to 1 May 2014. The median road-to-roof concentration ratios, correlation coefficients between rooftop and on-road concentrations, and temporal variations of rooftop and on-road concentrations are analyzed according to the rooftop wind directions which are two cross-canyon and two along-canyon directions. The analysis results indicate that the relationship is strong when the rooftop is situated on the downwind side rather than on the upwind side. Relative to the cross-canyon wind directions, one of the along-canyon wind directions can more enhance the relationship. A conceptual framework is proposed to explain the effect of ambient wind direction on the relationship between rooftop and on-road concentrations in a street canyon. - One of the along-canyon wind directions can enhance the relationship between rooftop and on-road concentrations of traffic-related pollutants in a busy and shallow street canyon.

  14. Seismic reflection results of the GYRE 1997 Cruise at the Bryant Canyon of the Louisiana Gulf Coast

    Science.gov (United States)

    Nealon, Jeffrey W.; Dillon, William P.; Twichell, David

    2000-01-01

    The TexasLouisiana continental slope is one of the few remaining frontiers for hydrocarbon exploration within the US Exclusive Economic Zone.  This area has a complex seafloor morphology and highly discontinuous shallow stratigraphy that are the result of deformation by the highly mobile Louann salt that underlies much of this margin shoreward of the Sigsbee Escarpment.Gas hydrates exist both on the sea floor and at depth throughout the gas hydrate stability zone which extends to several hundred meters beneath the sea floor at greater water depths.  Multibeam bathymetry, GLORIA sidescan sonar imagery, and site-specific studies have identified the presence of faults, mass-wasting deposits, variable sediment types, and gas hydrates exposed on the seafloor.  The expression of these features on the seafloor suggests a tectonically active area.  The distribution of these different processes and their relation to the subsurface stratigraphy and tectonic setting are not well understood, yet an understanding of these issues is essential as exploration extends into this deep-water area.To address the questions of surficial processes and their connection with deeper structures underlying this continental margin, a three-week cruise was conducted by the USGS in April, 1997 aboard the RV GYRE. The study area focussed on Bryant Canyon, a former submarine canyon, through which turbidity currents transported sands from a shelf-edge delta upslope of the study area to the Bryant Fan on the rise seaward of the base of the slope.  The cruise was divided into two parts.  The first part was devoted to collecting seismic-reflection profiles across parts of the canyon system to define the shallow stratigraphy and to determine the presence and distribution of gas hydrates in this area.  Approximately 555 km of single-channel seismic-reflection data were collected during this first part of the cruise.  A track map showing the locations of the profiles, low-resolution images of the

  15. Extinction of Harrington's mountain goat

    International Nuclear Information System (INIS)

    Mead, J.I.; Martin, P.S.; Euler, R.C.; Long, A.; Jull, A.J.T.; Toolin, L.J.; Donahue, D.J.; Linick, T.W.

    1986-01-01

    Keratinous horn sheaths of the extinct Harrington's mountain goat, Oreamnos harringtoni, were recovered at or near the surface of dry caves of the Grand Canyon, Arizona. Twenty-three separate specimens from two caves were dated nondestructively by the tandem accelerator mass spectrometer (TAMS). Both the TAMS and the conventional dates indicate that Harrington's mountain goat occupied the Grand Canyon for at least 19,000 years prior to becoming extinct by 11,160 +/- 125 radiocarbon years before present. The youngest average radiocarbon dates on Shasta ground sloths, Nothrotheriops shastensis, from the region are not significantly younger than those on extinct mountain goats. Rather than sequential extinction with Harrington's mountain goat disappearing from the Grand Canyon before the ground sloths, as one might predict in view of evidence of climatic warming at the time, the losses were concurrent. Both extinctions coincide with the regional arrival of Clovis hunters

  16. 78 FR 43850 - Opportunity for Designation in Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ...

    Science.gov (United States)

    2013-07-22

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Opportunity for Designation in Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND and Plainview, TX; Areas; Request for Comments on the Official Agencies Servicing These Areas AGENCY: Grain...

  17. 75 FR 52925 - Opportunity for Designation in the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande...

    Science.gov (United States)

    2010-08-30

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration Opportunity for Designation in the Owensboro, KY; Bloomington, IL; Iowa Falls, IA; Casa Grande, AZ; Fargo, ND; Grand Forks, ND; and Plainview, TX Areas; Request for Comments on the Official Agencies Servicing These Areas AGENCY...

  18. Hydrogeochemical and stream sediment detailed geochemical survey for Thomas Range-Wasatch, Utah. Farmington Project area

    International Nuclear Information System (INIS)

    Butz, T.R.; Bard, C.S.; Witt, D.A.; Helgerson, R.N.; Grimes, J.G.; Pritz, P.M.

    1980-01-01

    Results of the Farmington project area of the Thomas Range-Wasatch detailed geochemical survey are reported. Field and laboratory data are presented for 71 groundwater samples, 345 stream sediment samples, and 178 radiometric readings. Statistical and areal distributions of uranium and possible uranium-related variables are given. A generalized geologic map of the project area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Uranium concentrations in groundwater range from <0.20 to 21.77 ppB. The highest values are from groundwaters producing from areas in or near the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations, and the Farmington Canyon Complex. The uranium:boron ratio delineates an anomalous trend associated with the Farmington Canyon Complex. Variables associated with uranium in groundwaters producing from the Norwood Tuff and Wasatch, Evanston, and/or Echo Canyon Formations include the uranium:sulfate ratio, boron, barium, potassium, lithium, silicon, chloride, selenium, and vanadium. Soluble uranium concentrations (U-FL) in stream sediments range from 0.99 to 86.41 ppM. Total uranium concentrations (U-NT) range from 1.60 to 92.40 ppM. Thorium concentrations range from <2 to 47 ppM. Anomalous concentrations of these variables are associated with the Farmington Canyon Complex. Variables which are associated with uranium include cerium, sodium, niobium, phosphorus, titanium, and yttrium

  19. Tracer Flux Balance at an Urban Canyon Intersection

    Science.gov (United States)

    Carpentieri, Matteo; Robins, Alan G.

    2010-05-01

    Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.

  20. Estimation of health damage due to emission of air pollutants by cars: the canyon effect

    Energy Technology Data Exchange (ETDEWEB)

    Spadaro, J.V. [Ecole des Mines, Centre d' Energetique, Paris, 75 (France); Rabl, A.

    1999-07-01

    Since current epidemiological evidence suggests that air pollution has harmful effects even at typical ambient concentrations and the dispersion is significant over hundreds to thousands of km, the estimation of total health damage involves consideration of local and regional effects. In recent years, several estimates have been published of health damage due to air pollution from cars, in particular by Delucchi et al of UC Davis and by the ExternE Project of the European Commission. To capture the geographic extent of pollutant dispersion, local and regional models have been used in combination. The present paper addresses a potentially significant contribution of the total damage, not yet taken into account in these studies: the increased concentration of pollutants inside urban street canyons. This canyon effect is appreciable only for primary pollutants, the time constants for the formation of secondary pollutants being long compared to the residence time in the canyon. We assumed linearity of incremental health impact with incremental concentration, in view of the lack of epidemiological evidence for no-effect thresholds or significant deviations from linearity at typical ambient concentrations; therefore, only long term average concentrations matter. We use the FLUENT software to model the dispersion inside a street canyon for a wide range of rectangular geometries and wind velocities. Our results suggest that the canyon effect is of marginal significance for total damages, the contribution of the canyon effect being roughly 10 to 20% of the total. The relative importance of the canyon effect is, of course, highly variable with local conditions; it could be much smaller but it is unlikely to add more than 100% to the flat terrain estimate. (Author)

  1. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    The authors examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response

  2. Public response to the Diablo Canyon Nuclear Generating Station

    International Nuclear Information System (INIS)

    Pijawka, K.D.

    1982-01-01

    We examine the nature of the public response to the Diablo Canyon Nuclear Generating Station located in San Luis Obispo, California, from the early 1960s to the present. Four distinct phases of public intervention were discerned, based on change in both plant-related issues and in the nature of the antinuclear constituencies in the region. The level of public concern varied both geographically and temporally and is related to the area's social structure, environmental predispositions, and distribution of plant-related economic benefits. External events, such as the prolonged debate over the risk assessment of the seismic hazard and the Three Mile Island accident were found to be important factors in explaining variation in public concern and political response. (author)

  3. A concentration correction scheme for Lagrangian particle model and its application in street canyon air dispersion modelling

    Energy Technology Data Exchange (ETDEWEB)

    Jiyang Xia [Shanghai Jiao Tong University, Shanghai (China). Department of Engineering Mechanics; Leung, D.Y.C. [The University of Hong Kong (Hong Kong). Department of Mechanical Engineering

    2001-07-01

    Pollutant dispersion in street canyons with various configurations was simulated by discharging a large number of particles into the computation domain after developing a time-dependent wind field. Trajectory of the released particles was predicted using a Lagrangian particle model developed in an earlier study. A concentration correction scheme, based on the concept of 'visibility', was adopted for the Lagrangian particle model to correct the calculated pollutant concentration field in street canyons. The corrected concentrations compared favourably with those from wind tunnel experiments and a linear relationship between the computed concentrations and wind tunnel data were found. The developed model was then applied to four simulations to test for the suitability of the correction scheme and to study pollutant distribution in street canyons with different configurations. For those cases with obstacles presence in the computation domain, the correction scheme gives more reasonable results compared with the one without using it. Different flow regimes are observed in the street canyons, which depend on building configurations. A counter-clockwise rotating vortex may appear in a two-building case with wind flow from left to right, causing lower pollutant concentration at the leeward side of upstream building and higher concentration at the windward side of downstream building. On the other hand, a stable clockwise rotating vortex is formed in the street canyon with multiple identical buildings, resulting in poor natural ventilation in the street canyon. Moreover, particles emitted in the downstream canyon formed by buildings with large height-to-width ratios will be transported to upstream canyons. (author)

  4. Three Years of Experience of Wet Gas Allocation on Canyon Express

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Aditya; Hall, James; Letton, Winsor

    2005-07-01

    In September 2002, production was begun from the three fields that together form the Canyon Express System- King's Peak, Aconcagua, and Camden Hills. The 9 wells from these fields are connected to a pair of 12-inch flow lines carrying the commingled wet gas a distance of approximately 92 kilometers back to the Canyon Station platform for processing. At the 21st NSFMW in October 2003, an initial report was given on the status of Wet Gas Allocation for the Canyon Express project. As discussed in that paper, dual-differential, subsea wet gas meters were chosen for the task of allocating gas and liquids back to individual wells. However, since the gas from all three fields was very dry (Lockhart-Martinelli parameter less than 0.01) and because the operating pressures were quite high (250 bar), application of the dual-differential function of the meters yielded errors in both liquid and gas flow rates. Furthermore, as these problems were being uncovered, scale was beginning to collect inside some of the meters. Taken together, these problems produced system imbalances as great as 20%. To address the problems, one of the individual flow metering elements within each wet gas meter was chosen as the allocation meter, operating as a single-phase gas meter. After three years of operation of the Canyon Express Project, considerable experience has been accumulated. Since at the time it held the record for deep water hydrocarbon production, application of the technologies discussed here were challenging and required considerable flexibility. It is believed that the Canyon Express experiences will benefit future deep water flow metering projects. The knowledge acquired thus far is surveyed and summarized. The emphasis is on the technical aspects. (tk)

  5. Eskers and bedrock gorges (tunnel valleys in the Pakasaivo area, western Finnish Lapland

    Directory of Open Access Journals (Sweden)

    Peter Johansson

    2003-01-01

    Full Text Available Studies of the deglaciation of the last Scandinavian Ice Sheet, including the behavior of the ice sheet and meltwater activity, were conducted in the vicinity of the Pakasaivo canyon lake, located in western Finnish Lapland. Pakasaivo itself, a circular basin up to 100 m deep, was formed in the broken bedrock by glacial erosion and meltwater streams. It was originally related to a former subglacial meltwater system, including the deep Keinokursu gorge. Both this gorge and the Pakasaivo canyon lake were formed subglacially duringan early stage of deglaciation. It was characterized by intense meltwater erosion, which in Pakasaivo also seems to have generated a strong whirl. Steep-crested esker ridges were subsequently deposited; subaerial meltwater activity then followed. Finally the meltwaterwas discharged from the ice-dammed lake north of the area and passed through the Pakasaivo canyon to the ice-free areas. This caused additional intense erosion of the canyon floor and walls, and the deep circular basin is highly similar to a plunge pool formed at the base of a cataract.

  6. Influence of local parameters on the dispersion of traffic-related pollutants within street canyons

    Science.gov (United States)

    Karra, Styliani; Malki-Epshtein, Liora; Martin Hyde Collaboration

    2011-11-01

    Ventilation within urban cities and street canyons and the associated air quality is a problem of increasing interest in the last decades. It is important for to minimise exposure of the population to traffic-related pollutants at street level. The residence time of pollutants within the street canyons depends on the meteorological conditions such as wind speed and direction, geometry layout and local parameters (position of traffic lane within the street). An experimental study was carried out to investigate the influence of traffic lane position on the dispersion of traffic-related pollutants within different street canyons geometries: symmetrical (equal building heights on both sides of the street), non-symmetrical (uniform building heights but lower on one side of the street) and heterogeneous (non-uniform building heights on both sides of the street) under constant meteorological conditions. Laboratory experiments were carried out within a water channel and simultaneous measurements of velocity field and concentration scalar levels within and above the street canyons using PIV and PLIF techniques. Traffic -related emissions were simulated using a line emission source. Two positions were examined for all street geometries: line emission source was placed in the centre of the street canyon; line emission source was placed off the centre of the street. TSI Incorporated.

  7. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach.

    Science.gov (United States)

    Scungio, M; Stabile, L; Rizza, V; Pacitto, A; Russi, A; Buonanno, G

    2018-08-01

    Combustion-generated nanoparticles are responsible for negative health effects due to their ability to penetrate in the lungs, carrying toxic compounds with them. In urban areas, the coexistence of nanoparticle sources and particular street-building configurations can lead to very high particle exposure levels. In the present paper, an innovative approach for the evaluation of lung cancer incidence in street canyon due to exposure to traffic-generated particles was proposed. To this end, the literature-available values of particulate matter, PAHs and heavy metals emitted from different kind of vehicles were used to calculate the Excess Lifetime Cancer Risk (ELCR) at the tailpipe. The estimated ELCR was then used as input data in a numerical CFD (Computational Fluid Dynamics) model that solves the mass, momentum, turbulence and species transport equations, in order to evaluate the cancer risk in every point of interest inside the street canyon. Thus, the influence of wind speed and street canyon geometry (H/W, height of building, H and width of the street, W) on the ELCR at street level was evaluated by means of a CFD simulation. It was found that the ELCR calculated on the leeward and windward sides of the street canyon at a breathable height of 1.5 m, for people exposed 15 min per day for 20 years, is equal to 1.5 × 10 -5 and 4.8 × 10 -6 , respectively, for wind speed of 1 m/s and H/W equal to 1. The ELCR at street level results higher on the leeward side for aspect ratios equal to 1 and 3, while for aspect ratio equal to 2 it is higher on the windward side. In addition, the simulations showed that with the increasing of wind speed the ELCR becomes lower everywhere in the street canyon, due to the increased in dispersion. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. ACUMEN 2012: Atlantic Canyons Undersea Mapping Expeditions

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Between February and August 2012, a team of NOAA and external partners will conduct a mapping ‘blitz’ focused on deepwater canyons off the northeastern...

  9. 2013 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): San Simeon, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  10. 2011 Pacific Gas and Electric Diablo Canyon Power Plant (DCPP): Los Osos, CA Central Coast

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Diablo Canyon Power Plant (DCPP) LiDAR and Imagery datasets are comprised of three separate LiDAR surveys: Diablo Canyon (2010), Los Osos (2011), and San Simeon...

  11. Rose Canyon Sustainable Aquaculture Project, San Diego, CA

    Science.gov (United States)

    Documents related to EPA's preparation of an Environmental Assessment (EA) to analyze the potential impacts related to the issuance of a National Pollutant Discharge Elimination System (NPDES) permit for the Rose Canyon Sustainable Aquaculture Project.

  12. Food-web dynamics and isotopic niches in deep-sea communities residing in a submarine canyon and on the adjacent open slopes

    Science.gov (United States)

    Demopoulos, Amanda W.J.; McClain-Counts, Jennifer; Ross, Steve W.; Brooke, Sandra; Mienis, Furu

    2017-01-01

    Examination of food webs and trophic niches provide insights into organisms' functional ecology, yet few studies have examined trophodynamics within submarine canyons, where the interaction of canyon morphology and oceanography influences habitat provision and food deposition. Using stable isotope analysis and Bayesian ellipses, we documented deep-sea food-web structure and trophic niches in Baltimore Canyon and the adjacent open slopes in the US Mid-Atlantic Region. Results revealed isotopically diverse feeding groups, comprising approximately 5 trophic levels. Regression analysis indicated that consumer isotope data are structured by habitat (canyon vs. slope), feeding group, and depth. Benthic feeders were enriched in 13C and 15N relative to suspension feeders, consistent with consuming older, more refractory organic matter. In contrast, canyon suspension feeders had the largest and more distinct isotopic niche, indicating they consume an isotopically discrete food source, possibly fresher organic material. The wider isotopic niche observed for canyon consumers indicated the presence of feeding specialists and generalists. High dispersion in δ13C values for canyon consumers suggests that the isotopic composition of particulate organic matter changes, which is linked to depositional dynamics, resulting in discrete zones of organic matter accumulation or resuspension. Heterogeneity in habitat and food availability likely enhances trophic diversity in canyons. Given their abundance in the world's oceans, our results from Baltimore Canyon suggest that submarine canyons may represent important havens for trophic diversity.

  13. Calcareous nannoplankton and benthic foraminiferal assemblages from the Nazare Canyon (Portuguese continental margin): Preliminary results

    International Nuclear Information System (INIS)

    Guerreiro, C; Oliveira, A; Rodrigues, A; Rosa, F; Cachao, M; Fatela, F

    2009-01-01

    Submarine canyons are assumed to play an important role in oceanic/neritic circulation, marine productivity and sedimentary processes, acting as preferential conduits between the littoral and deep oceanic domain. Here we present first results of a comparative micropalaeontological study on calcareous nannoplankton and benthic foraminifera from surface sediments from the surroundings of the upper Nazare Canyon (Portuguese continental margin) and from the shelf north of the canyon. Regardless of the difficulty to distinguish taphonomical from (palaeo)ecological effects in such a complex and still poorly known marine system, the first results suggest that the canyon's hydro-sedimentary dynamic regime act as a prolongation of the shore/inner shelf hydrodynamic conditions towards west, preventing deposition and/or preservation of the smaller and fragile species of calcareous nannoplankton (e.g. E. huxleyi and G. ericsonii) and enhancing the record of the larger and more opportunistic ones (e.g. G. oceanica); and disturbing benthic foraminiferal productivity and/or diversity, or their preservation in the fossil record. Both calcareous nannoplankton and benthic foraminifera are more abundant off the canyon's domain, suggesting that its highly energetic thalweg conditions are probably filtering the fossil record in the sediment. Still, preliminary results suggest that the occurrence of persistent physical phenomena related with the canyon's morphology and proximity to the coast (e.g. solitary internal waves) may be locally promoting favourable conditions for calcareous nannoplankton, as shown by high values of nannoliths, chlorophyll a and 19' hexanoyloxyfucoxantine (unpublished data) north of the canyon's head. It is our goal to test this hypothesis in the near future by (a) studying multicore and surficial sediments from more recent surveys, and (b) calibrating the sediment results with water column data presently in process at the Institute of Oceanography (IO).

  14. Calcareous nannoplankton and benthic foraminiferal assemblages from the Nazare Canyon (Portuguese continental margin): Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, C; Oliveira, A; Rodrigues, A [Division of Marine Geology, Portuguese Hydrographic Institute (IH), Rua das Trinas 49, 1249-093 Lisboa (Portugal); Rosa, F [CIACOMAR, Algarve University, Av. 16 de Julho s/n 8700-311 Olhao (Portugal); Cachao, M; Fatela, F [Geology Center and Geology Department, FCUL, Bloco C6, 3o Piso, sala 6.3.57 Campo Grande 1749-016 Lisboa (Portugal)], E-mail: catarina.guerreiro@hidrografico.pt

    2009-01-01

    Submarine canyons are assumed to play an important role in oceanic/neritic circulation, marine productivity and sedimentary processes, acting as preferential conduits between the littoral and deep oceanic domain. Here we present first results of a comparative micropalaeontological study on calcareous nannoplankton and benthic foraminifera from surface sediments from the surroundings of the upper Nazare Canyon (Portuguese continental margin) and from the shelf north of the canyon. Regardless of the difficulty to distinguish taphonomical from (palaeo)ecological effects in such a complex and still poorly known marine system, the first results suggest that the canyon's hydro-sedimentary dynamic regime act as a prolongation of the shore/inner shelf hydrodynamic conditions towards west, preventing deposition and/or preservation of the smaller and fragile species of calcareous nannoplankton (e.g. E. huxleyi and G. ericsonii) and enhancing the record of the larger and more opportunistic ones (e.g. G. oceanica); and disturbing benthic foraminiferal productivity and/or diversity, or their preservation in the fossil record. Both calcareous nannoplankton and benthic foraminifera are more abundant off the canyon's domain, suggesting that its highly energetic thalweg conditions are probably filtering the fossil record in the sediment. Still, preliminary results suggest that the occurrence of persistent physical phenomena related with the canyon's morphology and proximity to the coast (e.g. solitary internal waves) may be locally promoting favourable conditions for calcareous nannoplankton, as shown by high values of nannoliths, chlorophyll a and 19' hexanoyloxyfucoxantine (unpublished data) north of the canyon's head. It is our goal to test this hypothesis in the near future by (a) studying multicore and surficial sediments from more recent surveys, and (b) calibrating the sediment results with water column data presently in process at the Institute of

  15. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1998-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer

  16. Formation of Box Canyon, Idaho, by megaflood: implications for seepage erosion on Earth and Mars.

    Science.gov (United States)

    Lamb, Michael P; Dietrich, William E; Aciego, Sarah M; Depaolo, Donald J; Manga, Michael

    2008-05-23

    Amphitheater-headed canyons have been used as diagnostic indicators of erosion by groundwater seepage, which has important implications for landscape evolution on Earth and astrobiology on Mars. Of perhaps any canyon studied, Box Canyon, Idaho, most strongly meets the proposed morphologic criteria for groundwater sapping because it is incised into a basaltic plain with no drainage network upstream, and approximately 10 cubic meters per second of seepage emanates from its vertical headwall. However, sediment transport constraints, 4He and 14C dates, plunge pools, and scoured rock indicate that a megaflood (greater than 220 cubic meters per second) carved the canyon about 45,000 years ago. These results add to a growing recognition of Quaternary catastrophic flooding in the American northwest, and may imply that similar features on Mars also formed by floods rather than seepage erosion.

  17. 33 CFR 165.1155 - Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach, California.

    Science.gov (United States)

    2010-07-01

    ... Nuclear Power Plant, Avila Beach, California. 165.1155 Section 165.1155 Navigation and Navigable Waters... Coast Guard District § 165.1155 Security Zone; Diablo Canyon Nuclear Power Plant, Avila Beach... surface to bottom, within a 2,000 yard radius of Diablo Canyon Nuclear Power Plant centered at position 35...

  18. Adaptive management of the great barrier reef and the Grand Canyon world heritage areas

    NARCIS (Netherlands)

    Hughes, T.P.; Gunderson, L.H.; Folke, C.; Scheffer, M.

    2007-01-01

    Conventional perceptions of the interactions between people and their environment are rapidly transforming. Old paradigms that view humans as separate from nature, natural resources as inexhaustible or endlessly substitutable, and the world as stable, predictable, and in balance are no longer

  19. Fluid mechanical dispersion of airborne pollutants inside urban street canyons subjecting to multi-component ventilation and unstable thermal stratifications.

    Science.gov (United States)

    Mei, Shuo-Jun; Liu, Cheng-Wei; Liu, Di; Zhao, Fu-Yun; Wang, Han-Qing; Li, Xiao-Hong

    2016-09-15

    The pedestrian level pollutant transport in street canyons with multiple aspect ratios (H/W) is numerically investigated in the present work, regarding of various unstable thermal stratification scenarios and plain surrounding. Non-isothermal turbulent wind flow, temperature field and pollutant spread within and above the street canyons are solved by the realizable k-ε turbulence model along with the enhanced wall treatment. One-vortex flow regime is observed for shallow canyons with H/W=0.5, whereas multi-vortex flow regime is observed for deep canyons with H/W=2.0. Both one-vortex and multi-vortex regimes could be observed for the street canyons with H/W=1.0, where the secondary vortex could be initiated by the flow separation and intensified by unstable thermal stratification. Air exchange rate (AER) and pollutant retention time are adopted to respectively evaluate the street canyon ventilation and pollutant removal performance. A second-order polynomial functional relationship is established between AER and Richardson number (Ri). Similar functional relationship could be established between retention time and Ri, and it is only valid for canyons with one-vortex flow regime. In addition, retention time could be prolonged abruptly for canyons with multi-vortex flow regime. Very weak secondary vortex is presented at the ground level of deep canyons with mild stratification, where pollutants are highly accumulated. However, with the decrease of Ri, pollutant concentration adjacent to the ground reduces accordingly. Present research could be applied to guide the urban design and city planning for enhancing pedestrian environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Report on the mineral exploration in the San Jose and Arroyo Grande area Oriental Republic of Uruguay

    International Nuclear Information System (INIS)

    2001-01-01

    This survey is based on the scope of work signed between the Japanese government and the Oriental Republic of Uruguay on 24 November 2000. The purpose of this is to clarify both the geologic appearance and the occurrence of the ore fields of mineral deposits in the San Jose and Arroyo Grande area in this country, with the aim of discovering new ore deposits. In addition, another purpose is to transfer the technology to the involved organizations of the object country. The survey is conceived as a three year project initiated in 2000, and this fiscal year falls on the first phase.This survey consist of this existing data analysis, the geological interpretation of satellite image data, the geological survey and geochemical prospecting

  1. Report on the mineral exploration in the San Jose and Arroyo Grande area Oriental Republic of Uruguay

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This survey is based on the scope of work signed between the Japanese government and the Oriental Republic of Uruguay on 24 November 2000. The purpose of this is to clarify both the geologic appearance and the occurrence of the ore fields of mineral deposits in the San Jose and Arroyo Grande area in this country, with the aim of discovering new ore deposits. In addition, another purpose is to transfer the technology to the involved organizations of the object country. The survey is conceived as a three year project initiated in 2000, and this fiscal year falls on the first phase.This survey consist of this existing data analysis, the geological interpretation of satellite image data, the geological survey and geochemical prospecting

  2. Forest Creeks Research Natural Area: guidebook supplement 39

    Science.gov (United States)

    Reid Schuller; Ron Halvorson

    2010-01-01

    This guidebook describes Forest Creeks Research Natural Area, a 164-ha (405-ac) area comprising two geographically distinct canyons and associated drainages. The two units have been established as examples of first- to third-order streams originating within a ponderosa pine (Pinus ponderosa) zone. The two riparian areas also represent examples of...

  3. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  4. Determining the flux of methane into Hudson Canyon at the edge of methane clathrate hydrate stability

    Science.gov (United States)

    Weinsten, A.; Navarrete, L; Ruppel, Carolyn D.; Weber, T.C.; Leonte, M.; Kellermann, M.; Arrington, E.; Valentine, D.L.; Scranton, M.L; Kessler, John D.

    2016-01-01

    Methane seeps were investigated in Hudson Canyon, the largest shelf-break canyon on the northern US Atlantic Margin. The seeps investigated are located at or updip of the nominal limit of methane clathrate hydrate stability. The acoustic identification of bubble streams was used to guide water column sampling in a 32 km2 region within the canyon's thalweg. By incorporating measurements of dissolved methane concentration with methane oxidation rates and current velocity into a steady-state box model, the total emission of methane to the water column in this region was estimated to be 12 kmol methane per day (range: 6 – 24 kmol methane per day). These analyses suggest this methane is largely retained inside the canyon walls below 300 m water depth, and that it is aerobically oxidized to near completion within the larger extent of Hudson Canyon. Based on estimated methane emissions and measured oxidation rates, the oxidation of this methane to dissolved CO2 is expected to have minimal influences on seawater pH. This article is protected by copyright. All rights reserved.

  5. Grande Ronde Basin Spring Chinook Salmon Captive Broodstock Program, 1995-2002 Summary Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hoffnagle, Timothy; Carmichael, Richard; Noll, William

    2003-12-01

    The Grande Ronde Basin once supported large runs of chinook salmon Oncorhynchus tshawytscha and estimated peak escapements in excess of 10,000 occurred as recently as the late 1950's (U.S. Army Corps of Engineers 1975). Natural escapement declines in the Grande Ronde Basin have been severe and parallel those of other Snake River populations. Reduced productivity has primarily been attributed to increased mortality associated with downstream and upstream migration past eight dams and reservoirs in the Snake and Columbia rivers. Reduced spawner numbers, combined with human manipulation of previously important spawning and rearing habitat in the Grande Ronde Basin, have resulted in decreased spawning distribution and population fragmentation of chinook salmon in the Grande Ronde Basin (Figure 1; Table 1). Escapement of spring/summer chinook salmon in the Snake River basin included 1,799 adults in 1995, less than half of the previous record low of 3,913 adults in 1994. Catherine Creek, Grande Ronde River and Lostine River were historically three of the most productive populations in the Grande Ronde Basin (Carmichael and Boyce 1986). However, productivity of these populations has been poor for recent brood years. Escapement (based on total redd counts) in Catherine Creek and Grande Ronde and Lostine rivers dropped to alarmingly low levels in 1994 and 1995. A total of 11, 3 and 16 redds were observed in 1994 in Catherine Creek, upper Grande Ronde River and Lostine River, respectively, and 14, 6 and 11 redds were observed in those same streams in 1995. In contrast, the maximum number of redds observed in the past was 505 in Catherine Creek (1971), 304 in the Grande Ronde River (1968) and 261 in 1956 in the Lostine River (Tranquilli et al 2003). Redd counts for index count areas (a standardized portion of the total stream) have also decreased dramatically for most Grande Ronde Basin streams from 1964-2002, dropping to as low as 37 redds in the 119.5 km in the index

  6. Effects of trees on the dilution of vehicle exhaust emissions in urban street canyons

    NARCIS (Netherlands)

    Gromke, C.B.; Ruck, B.

    2009-01-01

    In order to investigate the natural ventilation and air quality of urban street canyons with trees, boundary layer wind tunnel studies at a small-scale model have been performed. Concentrations in street canyons with a tracer gas emitting line source at the ground level and one row of trees arranged

  7. Kakskümmend üheksa / Juhapekka Tukiainen

    Index Scriptorium Estoniae

    Tukiainen, Juhapekka

    2013-01-01

    TMi test: 29tollised maastikurattad, hinnaklass 1500 eurot. Bianchi Jab 29.2; Canyon Grand Canyon 8.9 AL 29; Corratec Superbow Team 29; Cube LTD SL 29; Felt Nine 30; Kona Kahuna DL; KTM Ultra Race 29; Merida Big Nine TFS XT Edition

  8. The tourism potential for birdwatching in three green areas in the city of Campo Grande, MS

    Directory of Open Access Journals (Sweden)

    Emilia Alibio Oppliger

    2016-05-01

    Full Text Available The objective of this study was to evaluate the tourism potential of birds found in three public green areas (a park, a square and a pond, in the city of Campo Grande. The qualitative survey of avifauna totaled 55 observation hours, by the method of direct observation by points. The species were recorded and the frequency of occurrence (FO of each species by analyzed area was calculated. We recorded 107 species, totaling 12% of the Cerrado biome and blue-and-gold macaws were the species with absolute frequency of occurrence in the three areas. Each of the areas presented exclusive species and the park, the largest number of recorded species, standing out as an appropriate place to hold the birdwatch. However, the tourism potential for observing these birds should be strengthened by other actions such as check for complementarity between supply and demand, planning and building elements themselves to the observation activities, organize and present the practical arrangements for the birds observation in accordance with the supply constraints and the level of involvement and expertise of birdwatchers. Local people should be mobilized and motivated to know about the birds that are part of the landscape; the private sector can use a formatted tourism product and create new products or needs, such as crafts or printed guides; and the participation of the government is essential in promoting the 'birdwatching urban script ' product, as in the maintenance of urban nature reserves.

  9. Guidebook to Rio Grande rift in New Mexico

    Science.gov (United States)

    Hawley, J.W.

    1978-01-01

    Discusses the details of geologic features along the rift zone. Included are short papers on topics relative to the overall region. These papers and the road logs are of special interest to any one pursuing further study of the rift. This book is a comprehensive guide to the middle and late Cenozoic geology of the Rio Grande region of Colorado and New Mexico. Though initially used on field trips for the International Symposium on Tectonics and Magmatism of the Rio Grande rift, the guidebook will be useful to anyone interested in the Cenozoic history of the 600-mi-long area extending from central Colorado to El Paso, Texas.

  10. A numerical study of air pollutant dispersion with bimolecular chemical reactions in an urban street canyon using large-eddy simulation

    Science.gov (United States)

    Kikumoto, Hideki; Ooka, Ryozo

    2012-07-01

    A large-eddy simulation is performed on a turbulent dispersion of chemically reactive air pollutants in a two-dimensional urban street canyon with an aspect ratio of 1.0. Nitrogen monoxide emitted from a line-source set on the bottom of the street canyon disperses and reacts with Ozone included in a free stream. The reactions have significant influences on the concentrations of pollutants in the canyon space, and they increase the concentrations of the reaction products relative to of the concentrations of the reactants. The transport of air pollutants through a free shear layer above the canyon is closely related to the structure of the turbulence. Gases in the canyon are mainly exhausted when low-speed regions appear above the canyon. In contrast, pollutants in the free stream flow into the canyon with high-speed fluid bodies. Consequently, the correlation between the time fluctuations of the reactants' concentrations strongly affects the reaction rates in the region near the free shear layer. In this calculation, the correlation term reaches to a value of 20% of the mean reaction rate at a maximum there.

  11. Numerical modeling of flow and pollutant dispersion in street canyons with tree planting

    Energy Technology Data Exchange (ETDEWEB)

    Balczo, Marton [Budapest Univ. of Technology and Economics (Hungary). Theodore von Karman Wind Tunnel Lab.; Gromke, Christof; Ruck, Bodo [Karlsruhe Univ. (Germany). Lab. of Building- and Environmental Aerodynamics

    2009-04-15

    Numerical simulations of the impact of tree planting on airflow and traffic pollutant dispersion in urban street canyons have been performed using the commercial CFD (Computational Fluid Dynamics) code MISKAM. A {kappa}-{epsilon} turbulence model including additional terms for the treatment of vegetation, has been employed to close the Reynolds-averaged-Navier-Stokes (RANS) equations. The numerical results were compared to wind tunnel data. In the case of the investigated wind direction perpendicular to the street axis, the presence of trees lead to increased pollutant concentrations inside the canyon. Concentrations increased strongly on the upstream side of the canyon, while on the downstream side a small concentration decrease could be observed. Lower flow velocities and higher pollutant concentrations were found in the numerical simulations when directly compared to the experimental results. However, the impact of tree planting on airflow and concentration fields when compared to the treeless street canyon as a reference configuration were simulated quite well, meaning that relative changes were similar in the wind tunnel investigations and numerical computations. This feature qualifies MISKAM for use as a tool for assessing the impacts of vegetation on local air quality. (orig.)

  12. 75 FR 26788 - Public Land Order No. 7742; Withdrawal of Public Land for the Manning Canyon Tailings Repository; UT

    Science.gov (United States)

    2010-05-12

    ... 79765] Public Land Order No. 7742; Withdrawal of Public Land for the Manning Canyon Tailings Repository... period of 5 years to protect the integrity of the Manning Canyon Tailings Repository and surrounding... withdrawal is to protect public health and safety and the Federal investment in the Manning Canyon Tailings...

  13. Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques

    Science.gov (United States)

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-05-01

    Traffic within urban street canyons can contribute significantly to ambient concentrations of particulate air pollution. In these settings, it is challenging to separate within-canyon source contributions from urban and regional background concentrations given the highly variable and complex emissions and dispersion characteristics. In this study, we used continuous mobile monitoring of traffic-related particulate air pollutants to assess the contribution to concentrations, above background, of traffic in the street canyons of midtown Manhattan. Concentrations of both ultrafine particles (UFP) and fine particles (PM 2.5) were measured at street level using portable instruments. Statistical modeling techniques accounting for autocorrelation were used to investigate the presence of spatial heterogeneity of pollutant concentrations as well as to quantify the contribution of within-canyon traffic sources. Measurements were also made within Central Park, to examine the impact of offsets from major roadways in this urban environment. On average, an approximate 11% increase in concentrations of UFP and 8% increase in concentrations of PM 2.5 over urban background was estimated during high-traffic periods in street canyons as opposed to low traffic periods. Estimates were 8% and 5%, respectively, after accounting for temporal autocorrelation. Within Central Park, concentrations were 40% higher than background (5% after accounting for temporal autocorrelation) within the first 100 m from the nearest roadway for UFP, with a smaller but statistically significant increase for PM 2.5. Our findings demonstrate the viability of a mobile monitoring protocol coupled with spatiotemporal modeling techniques in characterizing local source contributions in a setting with street canyons.

  14. A simple model for calculating air pollution within street canyons

    Science.gov (United States)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  15. SELF-DESTRUCTION AND SELF-EXCLUSION: THE SUICIDE IN THE RURAL AREAS OF RIO GRANDE DO SUL – BRAZIL

    Directory of Open Access Journals (Sweden)

    Jussara Maria Rosa Mendes

    2014-12-01

    Full Text Available This paper deals with suicide in rural areas of Rio Grande do Sul, Brazil, considering the relation of this phenomenon with the advance of the capitalism in the countryside. This change has been creating new living and working styles and, besides, processes which lead to illness. Among these processes, suicide becomes a reality as a process of self-destruction and self-exclusion. These are sociopathologies of the development which are created in demonstrations of mental illness, depression and suicides, driven by a model of development imposed in the rural area through the economic incentive and, also, through all the economic speech carrying a project of hope. It is about the social and economic systems acting as generators of precariousness, human, familiar and psycho-philosophical costs, desocialization processes, self-generated alienation and self-cleaving, showing that it is increasingly necessary to think about the relation between the social and the individual in life and death processes

  16. Algal and water-quality data for Rapid Creek and Canyon Lake near Rapid City, South Dakota, 2007

    Science.gov (United States)

    Hoogestraat, Galen K.; Putnam, Larry D.; Graham, Jennifer L.

    2008-01-01

    This report summarizes the results of algae and water-quality sampling on Rapid Creek and Canyon Lake during May and September 2007. The overall purpose of the study was to determine the algal community composition of Rapid Creek and Canyon Lake in relation to organisms that are known producers of unwanted tastes and odors in drinking-water supplies. Algal assemblage structure (phytoplankton and periphyton) was examined at 16 sites on Rapid Creek and Canyon Lake during May and September 2007, and actinomycetes bacteria were sampled at the Rapid City water treatment plant intake in May 2007, to determine if taste-and-odor producing organisms were present. During the May 2007 sampling, 3 Rapid Creek sites and 4 Canyon Lake sites were quantitatively sampled for phytoplankton in the water column, 7 Rapid Creek sites were quantitatively sampled for attached periphyton, and 4 lake and retention pond sites were qualitatively sampled for periphyton. Five Rapid Creek sites were sampled for geosmin and 2-methylisoborneol, two common taste-and-odor causing compounds known to affect water supplies. During the September 2007 sampling, 4 Rapid Creek sites were quantitatively sampled for attached periphyton, and 3 Canyon Lake sites were qualitatively sampled for periphyton. Water temperature, dissolved oxygen, pH, and specific conductance were measured during each sampling event. Methods of collection and sample analysis are presented for the various types of biological and chemical constituent samples. Diatoms comprised 91-100 percent of the total algal biovolume in periphyton samples collected during May and September. Cyanobacteria (also called blue-green algae) were detected in 7 of the 11 quantitative periphyton samples and ranged from 0.01 to 2.0 percent of the total biovolume. Cyanobacteria were present in 3 of the 7 phytoplankton samples collected in May, but the relative biovolumes were small (0.01-0.2 percent). Six of seven qualitative samples collected from Canyon Lake

  17. Mortandad Canyon: Elemental concentrations in vegetation, streambank soils, and stream sediments - 1979

    International Nuclear Information System (INIS)

    Ferenbaugh, R.W.; Gladney, E.S.

    1997-06-01

    In 1979, stream sediments, streambank soils, and streambank vegetation were sampled at 100 m intervals downstream of the outfall of the TA-50 radioactive liquid waste treatment facility in Mortandad Canyon. Sampling was discontinued at a distance of 3260 m at the location of the sediment traps in the canyon. The purpose of the sampling was to investigate the effect of the residual contaminants in the waste treatment facility effluent on elemental concentrations in various environmental media

  18. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  19. 76 FR 14745 - Notice To Rescind a Notice of Intent To Prepare an Environmental Impact Statement, Ada and Canyon...

    Science.gov (United States)

    2011-03-17

    ... To Prepare an Environmental Impact Statement, Ada and Canyon Counties, ID AGENCY: Federal Highway... prepare an Environmental Impact Statement for a proposed highway project in Ada and Canyon County, Idaho... Highway 44 from Exit 25 at Interstate 84 in Canyon County to Ballantyne Lane in Ada County. The project is...

  20. Demography of the California spotted owl in the Sierra National Forest and Sequoia/Kings Canyon National Parks

    Science.gov (United States)

    George N. Steger; Thomas E. Munton; Kenneth D. Johnson; Gary P. Eberlein

    2002-01-01

    Nine years (1990–1998) of demographic data on California spotted owls (Strix occidentalis occidentalis) in two study areas on the western slopes of the Sierra Nevada—one in the Sierra National Forest (SNF), the other in Sequoia/Kings Canyon National Parks (SNP)—are summarized. Numbers of territorial owls fluctuated from 85 to 50 in SNF and 80 to 58...

  1. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    Science.gov (United States)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured

  2. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, A.F.; Spangler, J.B.

    1995-04-05

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH& QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment.

  3. Operational Readiness Review Final Report For F-Canyon Restart. Phase 1

    International Nuclear Information System (INIS)

    McFarlane, A.F.; Spangler, J.B.

    1995-01-01

    An independent WSRC Operational Readiness Review was performed for the restart of Phase 1 processing in F-Canyon, Building 221-F. Readiness to restart the Second Plutonium Cycle process and solvent recovery was assessed. The ORR was conducted by an ORR board of ten members with the support of a subject matter expert. The chairman and four members were drawn from the Operational Safety Evaluation Department, ESH ampersand QA Division; additional members were drawn from other WSRC divisions, independent of the F-Canyon operating division (NMPD). Based on the results of the readiness verification assessments performed according to the ORR plan and the validation of pre-restart corrective actions, the WSRC independent ORR Board has concluded that the facility has achieved the state of readiness committed to in the Restart Plan. Also, based on the scope of the ORR, it is the opinion of the board that F-Canyon Phase 1 processes can be restarted without undue risk to the safety of the public and onsite workers and without undue risk to the environment

  4. Cool City Design: Integrating Real-Time Urban Canyon Assessment into the Design Process for Chinese and Australian Cities

    Directory of Open Access Journals (Sweden)

    Marcus White

    2016-09-01

    Full Text Available Many cities are undergoing rapid urbanisation and intensification with the unintended consequence of creating dense urban fabric with deep ‘urban canyons’. Urban densification can trap longwave radiation impacting on local atmospheric conditions, contributing to the phenomena known as the Urban Heat Island (UHI. As global temperatures are predicted to increase, there is a critical need to better understand urban form and heat retention in cities and integrate analysis tools into the design decision making process to design cooler cities. This paper describes the application and validation of a novel three-dimensional urban canyon modelling approach calculating Sky View Factor (SVF, one important indicator used in the prediction of UHI. Our modified daylighting system based approach within a design modelling environment allows iterative design decision making informed by SVF on an urban design scale. This approach is tested on urban fabric samples from cities in both Australia and China. The new approach extends the applicability in the design process of existing methods by providing ‘real-time’ SVF feedback for complex three-dimensional urban scenarios. The modelling approach enables city designers to mix intuitive compositional design modelling with dynamic canyon feedback. The approach allows a greater understanding of existing and proposed urban forms and identifying potential canyon problem areas, improved decision making and design advocacy, and can potentially have an impact on cities’ temperature.

  5. Distribution of cold-water corals in the Whittard Canyon, NE Atlantic Ocean

    OpenAIRE

    Morris, Kirsty J.; Tyler, Paul A.; Masson, Doug G.; Huvenne, Veerle A.I.; Rogers, Alex D.

    2013-01-01

    The deep-sea floor occupies about 60% of the surface of the planet and is covered mainly by fine sediments. Most studies of deep-sea benthic fauna therefore have concentrated on soft sediments with little sampling of hard substrata, such as rocky outcrops in submarine canyons. Here we assess the distribution and abundance of cold-water corals within the Whittard Canyon (NE Atlantic) using video footage from the ROV Isis. Abundances per 100 m of video transect were calculated and mapped using ...

  6. Seasonal monitoring of deep-sea megabenthos in Barkley Canyon cold seep by internet operated vehicle (IOV.

    Directory of Open Access Journals (Sweden)

    Carolina Doya

    Full Text Available Knowledge of the processes shaping deep-sea benthic communities at seasonal scales in cold-seep environments is incomplete. Cold seeps within highly dynamic regions, such as submarine canyons, where variable current regimes may occur, are particularly understudied. Novel Internet Operated Vehicles (IOVs, such as tracked crawlers, provide new techniques for investigating these ecosystems over prolonged periods. In this study a benthic crawler connected to the NEPTUNE cabled infrastructure operated by Ocean Networks Canada was used to monitor community changes across 60 m2 of a cold-seep area of the Barkley Canyon, North East Pacific, at ~890 m depth within an Oxygen Minimum Zone (OMZ. Short video-transects were run at 4-h intervals during the first week of successive calendar months, over a 14 month period (February 14th 2013 to April 14th 2014. Within each recorded transect video megafauna abundances were computed and changes in environmental conditions concurrently measured. The responses of fauna to environmental conditions as a proxy of seasonality were assessed through analysis of abundances in a total of 438 video-transects (over 92 h of total footage. 7698 fauna individuals from 6 phyla (Cnidaria, Ctenophora, Arthropoda, Echinodermata, Mollusca, and Chordata were logged and patterns in abundances of the 7 most abundant taxa (i.e. rockfish Sebastidae, sablefish Anoplopoma fimbria, hagfish Eptatretus stoutii, buccinids (Buccinoidea, undefined small crabs, ctenophores Bolinopsis infundibulum, and Scyphomedusa Poralia rufescens were identified. Patterns in the reproductive behaviour of the grooved tanner crab (Chionnecetes tanneri were also indicated. Temporal variations in biodiversity and abundance in megabenthic fauna was significantly influenced by variabilities in flow velocity flow direction (up or down canyon, dissolved oxygen concentration and month of study. Also reported here for the first time are transient mass aggregations of

  7. Habitat Mapping Cruise - Hudson Canyon (HB0904, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Objectives are to: 1) perform multibeam mapping of transitional and deepwater habitats in Hudson Canyon (off New Jersey) with the National Institute of Undersea...

  8. Middle Rio Grande Basin Research Report 2008

    Science.gov (United States)

    Deborah M. Finch; Catherine Dold

    2008-01-01

    An ecosystem is rarely static. A natural system composed of plants, animals, and microorganisms interacting with an area's physical factors, an ecosystem is always fluctuating and evolving. But sometimes, often at the hands of humans, ecosystems change too much. Such is the case with many of the ecosystems of the Middle Rio Grande Basin of New Mexico.

  9. Landscape Evolution Comparison between Sacra Mensa, Mars and the Grand Mesa, Colorado, USA

    Science.gov (United States)

    Chesnutt, J. M.; Wegmann, K. W.; Cole, R. D.; Byrne, P. K.

    2017-12-01

    The Grand Mesa in Colorado is one of the largest and highest flat-topped mountains on Earth, and as such provides a compelling analog for Mars' Sacra Mensa. Both basalt-capped landforms are morphologically similar, enabling a landscape evolution comparison between the two that considers key differences in locale, composition, and environmental conditions. Sacra Mensa is nearly 50 times the area of Grand Mesa and towers 3 km above the surrounding area. The 1,300 km2 Grand Mesa rises 2 km above Grand Valley, and is bracketed by the Colorado and Gunnison Rivers in much the same way as Sacra Mensa is bounded by braided channels of Kasei Valles. The sustained incision by the Gunnison and Colorado was a key erosive force in the creation of the Grand Mesa, whereas punctuated but voluminous Hesperian glacio-fluvial floods are thought to have carved the Sacra Mensa. The Grand Mesa is undergoing extensive mass wasting, ranging from deadly landslides like the 2014 West Salt Creek rock avalanche to hundreds of slower-moving retrogressive slump blocks calving off the Miocene basalt cap. The genesis and modification of both landforms includes volcanic and fluvial activity, albeit in an inverted sequence. The Grand Mesa basalt cap has preserved the landform during the incision around its sides, whereas Sacra Mensa was likely carved by floods, with those flood channels later modified by lava flows. Recent (2015-2017) LiDAR surveys revealed massive and possible ancient landslides in many stream valleys and extensive earthflows on all sides of the Grand Mesa. In the case of the Grand Mesa, the large landslides are mainly occurring in one stratigraphic unit. In comparison, the western half of Sacra Mensa contains substantial slumping accompanied by landslides and debris flows, whereas the eastern half has relatively few such phenomena. Here, we report on the first Mesa-Mensa landscape evolution analog study. The surficial and bedrock mapping and 14C dating of key features of the

  10. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-09-22

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  11. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    Energy Technology Data Exchange (ETDEWEB)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M. [Los Alamos National Lab., NM (United States); Stoker, A.K. [Science Applications, Inc., White Rock, NM (United States)

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the {sup 240}Pu/{sup 239}Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of {sup 235}U and {sup 236}U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary.

  12. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Efurd, D.W.; Rokop, D.J.; Benjamin, T.M.; Stoker, A.K.

    1997-10-01

    For more than three decades, Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry to determine the plutonium and uranium activity levels and atom ratios. By measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate that the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1,000-fold along a 3,000-ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory-derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicate off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  13. Survey of plutonium and uranium atom ratios and activity levels in Mortandad Canyon

    International Nuclear Information System (INIS)

    Gallaher, B.M.; Benjamin, T.M.; Rokop, D.J.; Stoker, A.K.

    1997-01-01

    For more than three decades Mortandad Canyon has been the primary release area of treated liquid radioactive waste from the Los Alamos National Laboratory (Laboratory). In this survey, six water samples and seven stream sediment samples collected in Mortandad Canyon were analyzed by thermal ionization mass spectrometry (TIMS) to determine the plutonium and uranium activity levels and atom ratios. Be measuring the 240 Pu/ 239 Pu atom ratios, the Laboratory plutonium component was evaluated relative to that from global fallout. Measurements of the relative abundance of 235 U and 236 U were also used to identify non-natural components. The survey results indicate the Laboratory plutonium and uranium concentrations in waters and sediments decrease relatively rapidly with distance downstream from the major industrial sources. Plutonium concentrations in shallow alluvial groundwater decrease by approximately 1000 fold along a 3000 ft distance. At the Laboratory downstream boundary, total plutonium and uranium concentrations were generally within regional background ranges previously reported. Laboratory derived plutonium is readily distinguished from global fallout in on-site waters and sediments. The isotopic ratio data indicates off-site migration of trace levels of Laboratory plutonium in stream sediments to distances approximately two miles downstream of the Laboratory boundary

  14. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    Science.gov (United States)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  15. Heavy mineral sorting in downwards injected Palaeocene sandstone, Siri Canyon, Danish North Sea

    DEFF Research Database (Denmark)

    Kazerouni, Afsoon Moatari; Friis, Henrik; Svendsen, Johan Byskov

    2011-01-01

    Post-depositional remobilization and injection of sand are often seen in deep-water clastic systems and has been recently recognised as a significant modifier of deep-water sandstone geometry. Large-scale injectite complexes have been interpreted from borehole data in the Palaeocene Siri Canyon...... of depositional structures in deep-water sandstones, the distinction between "in situ" and injected or remobilised sandstones is often ambiguous. Large scale heavy mineral sorting (in 10 m thick units) is observed in several reservoir units in the Siri Canyon and has been interpreted to represent the depositional...... sorting. In this study we describe an example of effective shear-zone sorting of heavy minerals in a thin downward injected sandstone dyke which was encountered in one of the cores in the Cecilie Field, Siri Canyon. Differences in sorting pattern of heavy minerals are suggested as a tool for petrographic...

  16. Numerical modeling of flows and pollutant dispersion within and above urban street canyons under unstable thermal stratification by large-eddy simulation

    Science.gov (United States)

    Chan, Ming-Chung; Liu, Chun-Ho

    2013-04-01

    Recently, with the ever increasing urban areas in developing countries, the problem of air pollution due to vehicular exhaust arouses the concern of different groups of people. Understanding how different factors, such as urban morphology, meteorological conditions and human activities, affect the characteristics of street canyon ventilation, pollutant dispersion above urban areas and pollutant re-entrainment from the shear layer can help us improve air pollution control strategies. Among the factors mentioned above, thermal stratification is a significant one determining the pollutant transport behaviors in certain situation, e.g. when the urban surface is heated by strong solar radiation, which, however, is still not widely explored. The objective of this study is to gain an in-depth understanding of the effects of unstable thermal stratification on the flows and pollutant dispersion within and above urban street canyons through numerical modeling using large-eddy simulation (LES). In this study, LES equipped with one-equation subgrid-scale (SGS) model is employed to model the flows and pollutant dispersion within and above two-dimensional (2D) urban street canyons (flanked by idealized buildings, which are square solid bars in these models) under different intensities of unstable thermal stratifications. Three building-height-to-street-width (aspect) ratios, 0.5, 1 and 2, are included in this study as a representation of different building densities. The prevailing wind flow above the urban canopy is driven by background pressure gradient, which is perpendicular to the street axis, while the condition of unstable thermal stratification is induced by applying a higher uniform temperature on the no-slip urban surface. The relative importance between stratification and background wind is characterized by the Richardson number, with zero value as a neutral case and negative value as an unstable case. The buoyancy force is modeled by Boussinesq approximation and the

  17. Capability to Recover Plutonium-238 in H-Canyon/HB-Line - 13248

    Energy Technology Data Exchange (ETDEWEB)

    Fuller, Kenneth S. Jr.; Smith, Robert H. Jr.; Goergen, Charles R. [Savannah River Nuclear Solutions, LLC, Savannah River Site, Aiken, SC 29802 (United States)

    2013-07-01

    Plutonium-238 is used in Radioisotope Thermoelectric Generators (RTGs) to generate electrical power and in Radioisotope Heater Units (RHUs) to produce heat for electronics and environmental control for deep space missions. The domestic supply of Pu-238 consists of scrap material from previous mission production or material purchased from Russia. Currently, the United States has no significant production scale operational capability to produce and separate new Pu-238 from irradiated neptunium-237 targets. The Department of Energy - Nuclear Energy is currently evaluating and developing plans to reconstitute the United States capability to produce Pu-238 from irradiated Np-237 targets. The Savannah River Site had previously produced and/or processed all the Pu-238 utilized in Radioisotope Thermoelectric Generators (RTGs) for deep space missions up to and including the majority of the plutonium for the Cassini Mission. The previous full production cycle capabilities included: Np- 237 target fabrication, target irradiation, target dissolution and Np-237 and Pu-238 separation and purification, conversion of Np-237 and Pu-238 to oxide, scrap recovery, and Pu-238 encapsulation. The capability and equipment still exist and could be revitalized or put back into service to recover and purify Pu-238/Np-237 or broken General Purpose Heat Source (GPHS) pellets utilizing existing process equipment in HB-Line Scrap Recovery, and H-Canyon Frame Waste Recovery processes. The conversion of Np-237 and Pu-238 to oxide can be performed in the existing HB-Line Phase-2 and Phase- 3 Processes. Dissolution of irradiated Np-237 target material, and separation and purification of Np-237 and Pu-238 product streams would be possible at production rates of ∼2 kg/month of Pu-238 if the existing H-Canyon Frames Process spare equipment were re-installed. Previously, the primary H-Canyon Frames equipment was removed to be replaced: however, the replacement project was stopped. The spare equipment

  18. A Study of Parental Attitudes and Values Towards Education on the Navajo and Hopi Reservations. Part II, Parental Attitudes [Keams Canyon].

    Science.gov (United States)

    Biglin, J. E.; And Others

    Objectives of this study were (1) to determine the parental attitudes of those parents who reside in the Chinle, Keams Canyon, Kayenta, Ganado, Window Rock, or Tuba City school district toward public education on the Navajo and Hopi reservations in the areas of teachers, curriculum, social behaviors of children, school services, school policies,…

  19. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Hofman, Jelle; Stokkaer, Ines; Snauwaert, Lies; Samson, Roeland

    2013-01-01

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  20. A new model for turbidity current behavior based on integration of flow monitoring and precision coring in a submarine canyon

    Science.gov (United States)

    Symons, William O.; Sumner, Esther J.; Paull, Charles K.; Cartigny, Matthieu J.B.; Xu, Jingping; Maier, Katherine L.; Lorenson, Thomas; Talling, Peter J.

    2017-01-01

    Submarine turbidity currents create some of the largest sediment accumulations on Earth, yet there are few direct measurements of these flows. Instead, most of our understanding of turbidity currents results from analyzing their deposits in the sedimentary record. However, the lack of direct flow measurements means that there is considerable debate regarding how to interpret flow properties from ancient deposits. This novel study combines detailed flow monitoring with unusually precisely located cores at different heights, and multiple locations, within the Monterey submarine canyon, offshore California, USA. Dating demonstrates that the cores include the time interval that flows were monitored in the canyon, albeit individual layers cannot be tied to specific flows. There is good correlation between grain sizes collected by traps within the flow and grain sizes measured in cores from similar heights on the canyon walls. Synthesis of flow and deposit data suggests that turbidity currents sourced from the upper reaches of Monterey Canyon comprise three flow phases. Initially, a thin (38–50 m) powerful flow in the upper canyon can transport, tilt, and break the most proximal moorings and deposit chaotic sands and gravel on the canyon floor. The initially thin flow front then thickens and deposits interbedded sands and silty muds on the canyon walls as much as 62 m above the canyon floor. Finally, the flow thickens along its length, thus lofting silty mud and depositing it at greater altitudes than the previous deposits and in excess of 70 m altitude.