WorldWideScience

Sample records for gram-negative facultative chemolithoautotroph

  1. Non-oral gram-negative facultative rods in chronic periodontitis microbiota

    NARCIS (Netherlands)

    van Winkelhoff, Arie J; Rurenga, Patrick; Wekema-Mulder, Gepke J; Singadji, Zadnach; Rams, Thomas E

    OBJECTIVE: The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. METHODS:

  2. Antimicrobial Susceptibility of Enteric Gram Negative Facultative Anaerobe Bacilli in Aerobic versus Anaerobic Conditions

    Science.gov (United States)

    Amachawadi, Raghavendra G.; Renter, David G.; Volkova, Victoriya V.

    2016-01-01

    Antimicrobial treatments result in the host’s enteric bacteria being exposed to the antimicrobials. Pharmacodynamic models can describe how this exposure affects the enteric bacteria and their antimicrobial resistance. The models utilize measurements of bacterial antimicrobial susceptibility traditionally obtained in vitro in aerobic conditions. However, in vivo enteric bacteria are exposed to antimicrobials in anaerobic conditions of the lower intestine. Some of enteric bacteria of food animals are potential foodborne pathogens, e.g., Gram-negative bacilli Escherichia coli and Salmonella enterica. These are facultative anaerobes; their physiology and growth rates change in anaerobic conditions. We hypothesized that their antimicrobial susceptibility also changes, and evaluated differences in the susceptibility in aerobic vs. anaerobic conditions of generic E. coli and Salmonella enterica of diverse serovars isolated from cattle feces. Susceptibility of an isolate was evaluated as its minimum inhibitory concentration (MIC) measured by E-Test® following 24 hours of adaptation to the conditions on Mueller-Hinton agar, and on a more complex tryptic soy agar with 5% sheep blood (BAP) media. We considered all major antimicrobial drug classes used in the U.S. to treat cattle: β-lactams (specifically, ampicillin and ceftriaxone E-Test®), aminoglycosides (gentamicin and kanamycin), fluoroquinolones (enrofloxacin), classical macrolides (erythromycin), azalides (azithromycin), sulfanomides (sulfamethoxazole/trimethoprim), and tetracyclines (tetracycline). Statistical analyses were conducted for the isolates (n≥30) interpreted as susceptible to the antimicrobials based on the clinical breakpoint interpretation for human infection. Bacterial susceptibility to every antimicrobial tested was statistically significantly different in anaerobic vs. aerobic conditions on both media, except for no difference in susceptibility to ceftriaxone on BAP agar. A satellite experiment

  3. Non-oral gram-negative facultative rods in chronic periodontitis microbiota.

    Science.gov (United States)

    van Winkelhoff, Arie J; Rurenga, Patrick; Wekema-Mulder, Gepke J; Singadji, Zadrach M; Rams, Thomas E

    2016-05-01

    The subgingival prevalence of gram-negative facultative rods not usually inhabiting or indigenous to the oral cavity (non-oral GNFR), as well as selected periodontal bacterial pathogens, were evaluated by culture in untreated and treated chronic periodontitis patients. Subgingival biofilm specimens from 102 untreated and 101 recently treated adults with chronic periodontitis in the Netherlands were plated onto MacConkey III and Dentaid selective media with air-5% CO2 incubation for isolation of non-oral GNFR, and onto enriched Oxoid blood agar with anaerobic incubation for recovery of selected periodontal bacterial pathogens. Suspected non-oral GNFR clinical isolates were identified to a species level with the VITEK 2 automated system. A total of 87 (42.9%) out of 203 patients yielded subgingival non-oral GNFR. Patients recently treated with periodontal mechanical debridement therapy demonstrated a greater prevalence of non-oral GNFR (57.4% vs 28.4%, P chronic periodontitis patients yielded cultivable non-oral GNFR in periodontal pockets, particularly among those recently treated with periodontal mechanical debridement therapy. Since non-oral GNFR species may resist mechanical debridement from periodontal pockets, and are often not susceptible to many antibiotics frequently used in periodontal practice, their subgingival presence may complicate periodontal treatment in species-positive patients and increase risk of potentially dangerous GNFR infections developing at other body sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A primordial and reversible TCA cycle in a facultatively chemolithoautotrophic thermophile.

    Science.gov (United States)

    Nunoura, Takuro; Chikaraishi, Yoshito; Izaki, Rikihisa; Suwa, Takashi; Sato, Takaaki; Harada, Takeshi; Mori, Koji; Kato, Yumiko; Miyazaki, Masayuki; Shimamura, Shigeru; Yanagawa, Katsunori; Shuto, Aya; Ohkouchi, Naohiko; Fujita, Nobuyuki; Takaki, Yoshihiro; Atomi, Haruyuki; Takai, Ken

    2018-02-02

    Inorganic carbon fixation is essential to sustain life on Earth, and the reductive tricarboxylic acid (rTCA) cycle is one of the most ancient carbon fixation metabolisms. A combination of genomic, enzymatic, and metabolomic analyses of a deeply branching chemolithotrophic Thermosulfidibacter takaii ABI70S6 T revealed a previously unknown reversible TCA cycle whose direction was controlled by the available carbon source(s). Under a chemolithoautotrophic condition, a rTCA cycle occurred with the reverse reaction of citrate synthase (CS) and not with the adenosine 5'-triphosphate-dependent citrate cleavage reactions that had been regarded as essential for the conventional rTCA cycle. Phylometabolic evaluation suggests that the TCA cycle with reversible CS may represent an ancestral mode of the rTCA cycle and raises the possibility of a facultatively chemolithomixotrophic origin of life. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Rapid changes in the serum total protein and globulin levels in complications caused by facultatively pathogenic Gram-negative bacteria.

    Science.gov (United States)

    Petrás, G; Kiss, S; Juraszek, J; Merétey, K

    1978-01-01

    The changes in the levels of total protein and four globulin fractions were followed up throughout the entire course of complications caused by Gram-negative facultative pathogens in 37 acute cases of respiratory insufficiency accompanying different underlying illnesses and in 9 chronic, bedridden patients given artificial ventilation. At the onset of the infectious complications, in the first place in septic shock, the levels of various globulin fractions showed a decrease corresponding to a half-life of 2 to 4 days. Neither the increased catabolism, nor the protein losses by the urine and tracheal secretions offer a sufficient explanation for the escape of globulins of this extent from the plasma. It seems that this is a consequence of the increase in capillary permeability due to the effect of antigen-antibody reactions and that of endotoxin. As a result, in the critical phase of the infectious complications, at the point of culmination, e.g. in septic shock, diminished amount of different globulins is transported to the site of utilization, that is, to the inflammatory area.

  6. Effectiveness of oral hygiene interventions against oral and oropharyngeal reservoirs of aerobic and facultatively anaerobic gram-negative bacilli.

    Science.gov (United States)

    Lam, Otto L T; McGrath, Colman; Li, Leonard S W; Samaranayake, Lakshman P

    2012-03-01

    Aerobic and facultatively anaerobic gram-negative bacilli (AGNB) are opportunistic pathogens and continue to cause a large number of hospital-acquired infections. AGNB residing in the oral cavity and oropharynx have been linked to nosocomial pneumonia and septicemia. Although AGNB are not considered members of the normal oral and oropharyngeal flora, medically compromised patients have been demonstrated to be susceptible to AGNB colonization. A literature search was conducted to retrieve articles that evaluated the effectiveness of oral hygiene interventions in reducing the oral and oropharyngeal carriage of AGNB in medically compromised patients. Few studies have documented the use of mechanical oral hygiene interventions alone against AGNB. Although a number of studies have employed oral hygiene interventions complemented by antiseptic agents such as chlorhexidine and povidone iodine, there appears to be a discrepancy between their in vitro and in vivo effectiveness. With the recognition of the oral cavity and oropharynx as a reservoir of AGNB and the recent emergence of multidrug and pandrug resistance in hospital settings, there is a pressing need for additional high-quality randomized controlled trials to determine which oral hygiene interventions or combination of interventions are most effective in eliminating or reducing AGNB carriage. Copyright © 2012 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  7. Procalcitonin levels in gram-positive, gram-negative, and fungal bloodstream infections.

    Science.gov (United States)

    Leli, Christian; Ferranti, Marta; Moretti, Amedeo; Al Dhahab, Zainab Salim; Cenci, Elio; Mencacci, Antonella

    2015-01-01

    Procalcitonin (PCT) can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR) 3.4-44.1) bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6-7.6) or fungal (0.5 ng/mL, IQR 0.4-1) infections (P Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919-0.969, P Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9-48.5 versus 3.5 ng/mL, IQR 0.8-21.5; P Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  8. Antimicrobial susceptibility of Gram-negative bacteria causing intra-abdominal infections in China: SMART China 2011.

    Science.gov (United States)

    Zhang, Hui; Yang, Qiwen; Xiao, Meng; Chen, Minjun; Badal, Robert E; Xu, Yingchun

    2014-01-01

    The Study for Monitoring Antimicrobial Resistance Trends program monitors the activity of antibiotics against aerobic and facultative Gram-negative bacilli (GNBs) from intra-abdominal infections (IAIs) in patients worldwide. In 2011, 1 929 aerobic and facultative GNBs from 21 hospitals in 16 cities in China were collected. All isolates were tested using a panel of 12 antimicrobial agents, and susceptibility was determined following the Clinical Laboratory Standards Institute guidelines. Among the Gram-negative pathogens causing IAIs, Escherichia coli (47.3%) was the most commonly isolated, followed by Klebsiella pneumoniae (17.2%), Pseudomonas aeruginosa (10.1%), and Acinetobacter baumannii (8.3%). Enterobacteriaceae comprised 78.8% (1521/1929) of the total isolates. Among the antimicrobial agents tested, ertapenem and imipenem were the most active agents against Enterobacteriaceae, with susceptibility rates of 95.1% and 94.4%, followed by amikacin (93.9%) and piperacillin/tazobactam (87.7%). Susceptibility rates of ceftriaxone, cefotaxime, ceftazidime, and cefepime against Enterobacteriaceae were 38.3%, 38.3%, 61.1%, and 50.8%, respectively. The leastactive agent against Enterobacteriaceae was ampicillin/sulbactam (25.9%). The extended-spectrum β-lactamase (ESBL) rates among E. coli, K. pneumoniae, Klebsiella oxytoca, and Proteus mirabilis were 68.8%, 38.1%, 41.2%, and 57.7%, respectively. Enterobacteriaceae were the major pathogens causing IAIs, and the most active agents against the study isolates (including those producing ESBLs) were ertapenem, imipenem, and amikacin. Including the carbapenems, most agents exhibited reduced susceptibility against ESBL-positive and multidrug-resistant isolates.

  9. Procalcitonin Levels in Gram-Positive, Gram-Negative, and Fungal Bloodstream Infections

    Directory of Open Access Journals (Sweden)

    Christian Leli

    2015-01-01

    Full Text Available Procalcitonin (PCT can discriminate bacterial from viral systemic infections and true bacteremia from contaminated blood cultures. The aim of this study was to evaluate PCT diagnostic accuracy in discriminating Gram-positive, Gram-negative, and fungal bloodstream infections. A total of 1,949 samples from patients with suspected bloodstream infections were included in the study. Median PCT value in Gram-negative (13.8 ng/mL, interquartile range (IQR 3.4–44.1 bacteremias was significantly higher than in Gram-positive (2.1 ng/mL, IQR 0.6–7.6 or fungal (0.5 ng/mL, IQR 0.4–1 infections (P<0.0001. Receiver operating characteristic analysis showed an area under the curve (AUC for PCT of 0.765 (95% CI 0.725–0.805, P<0.0001 in discriminating Gram-negatives from Gram-positives at the best cut-off value of 10.8 ng/mL and an AUC of 0.944 (95% CI 0.919–0.969, P<0.0001 in discriminating Gram-negatives from fungi at the best cut-off of 1.6 ng/mL. Additional results showed a significant difference in median PCT values between Enterobacteriaceae and nonfermentative Gram-negative bacteria (17.1 ng/mL, IQR 5.9–48.5 versus 3.5 ng/mL, IQR 0.8–21.5; P<0.0001. This study suggests that PCT may be of value to distinguish Gram-negative from Gram-positive and fungal bloodstream infections. Nevertheless, its utility to predict different microorganisms needs to be assessed in further studies.

  10. Gram-negative, but not Gram-positive, bacteria elicit strong PGE2 production in human monocytes.

    Science.gov (United States)

    Hessle, Christina C; Andersson, Bengt; Wold, Agnes E

    2003-12-01

    Gram-positive and Gram-negative bacteria induce different cytokine patterns in human mononuclear cells. We have seen that Gram-positives preferentially induce IL-12 and TNF-alpha, whereas Gram-negatives induce more IL-10, IL-6, and IL-8. In this study, we compared the capacity of these two groups of bacteria to induce PGE2. Monocytes stimulated with Gram-negative bacterial species induced much more PGE2 than did Gram-positive bacteria (5600 +/- 330 vs. 1700 +/- 670 pg/mL, p Gram-positive and Gram-negative bacteria. We suggest that Gram-positive and Gram-negative bacteria may stimulate different innate effector functions; Gram-positive bacteria promoting cell-mediated effector functions whereas Gram-negative bacteria inducing mediators inhibiting the same.

  11. Veillonella, Firmicutes: Microbes disguised as Gram negatives

    DEFF Research Database (Denmark)

    Vesth, Tammi Camilla; Ozen, Asli; Andersen, Sandra Christine

    2013-01-01

    Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared......, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely...... related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the (mainly) Gram positive phylum of the Firmicutes. Further studies are required to unveil the evolutionary history...

  12. The Causes of Post-Operative Meningitis: The Comparison Of Gram-Negative and Gram-Positive Pathogens.

    Science.gov (United States)

    Kurtaran, Behice; Kuscu, Ferit; Ulu, Aslihan; Inal, Ayse Seza; Komur, Suheyla; Kibar, Filiz; Cetinalp, Nuri Eralp; Ozsoy, Kerem Mazhar; Arslan, Yusuf Kemal; Aksu, Hasan Salih; Tasova, Yesim

    2017-06-20

    In this study, we aim to determine the microbiological etiology in critically ill neurosurgical patients with nosocomial meningitis (NM) and show the impact of Gram-negative rods and differences of patient's characteristics, clinical and prognostic measures between Gram-negative and Gram-positive meningitis. In this prospective, one center study we reviewed all adult patients hospitalized during a 12-year period and identified pathogens isolated from post-neurosurgical cases of NM. Demographic, clinical, and treatment characteristics were noted from the medical records. Of the 134 bacterial NM patients, 78 were male and 56 were female, with a mean age of 46±15.9 and median age of 50 (18-80) years. 141 strains isolated; 82 (58.2%) were Gram negative, 59 (41.8%) were Gram positive. Most common isolated microorganism was Acinetobacter baumannii (%34.8). In comparison of mortality data shows that the patients who have meningitis with Gram-negative pathogens have higher mortality than with Gram positives (p=0.034). The duration between surgery and meningitis was shorter in Gram negative meningitis cases compared to others (p=0.045) but the duration between the diagnosis and death was shorter in Gram-positive meningitis cases compared to Gram negatives (p= 0.017). CSF protein and lactate level were higher and glucose level was lower in cases of NM with Gram negatives (p value were respectively, 0.022, 0.039 and 0.049). As conclusions; in NM, Gram-negative pathogens were seen more frequently; A.baumanni was the predominant pathogen; and NM caused by Gram negatives had worse clinical and laboratory characteristic and prognostic outcome than Gram positives.

  13. Distribution of multi-resistant Gram-negative versus Gram-positive bacteria in the hospital inanimate environment.

    Science.gov (United States)

    Lemmen, S W; Häfner, H; Zolldann, D; Stanzel, S; Lütticken, R

    2004-03-01

    We prospectively studied the difference in detection rates of multi-resistant Gram-positive and multi-resistant Gram-negative bacteria in the inanimate environment of patients harbouring these organisms. Up to 20 different locations around 190 patients were surveyed. Fifty-four patients were infected or colonized with methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococci (VRE) and 136 with multi-resistant Gram-negative bacteria. The environmental detection rate for MRSA or VRE was 24.7% (174/705 samples) compared with 4.9% (89/1827 samples) for multi-resistant Gram-negative bacteria (PGram-positive bacteria were isolated more frequently than Gram-negatives from the hands of patients (PGram-positive and Gram-negative isolates. Our results suggest that the inanimate environment serves as a secondary source for MRSA and VRE, but less so for Gram-negative bacteria. Thus, strict contact isolation in a single room with complete barrier precautions is recommended for MRSA or VRE; however, for multi-resistant Gram-negative bacteria, contact isolation with barrier precautions for close contact but without a single room seems sufficient. This benefits not only the patients, but also the hospital by removing some of the strain placed on already over-stretched resources.

  14. Gram-negative diabetic foot osteomyelitis: risk factors and clinical presentation.

    Science.gov (United States)

    Aragón-Sánchez, Javier; Lipsky, Benjamin A; Lázaro-Martínez, Jose L

    2013-03-01

    Osteomyelitis frequently complicates infections in the feet of patients with diabetes. Gram-positive cocci, especially Staphylococcus aureus, are the most commonly isolated pathogens, but gram-negative bacteria also cause some cases of diabetic foot osteomyelitis (DFO). These gram-negatives require different antibiotic regimens than those commonly directed at gram-positives. There are, however, few data on factors related to their presence and how they influence the clinical picture. We conducted a retrospective study to determine the variables associated with the isolation of gram-negative bacteria from bone samples in cases of DFO and the clinical presentation of these infections. Among 341 cases of DFO, 150 had a gram-negative isolate (alone or combined with a gram-positive isolate) comprising 44.0% of all patients and 50.8% of those with a positive bone culture. Compared with gram-positive infections, wounds with gram-negative organisms more often had a fetid odor, necrotic tissue, signs of soft tissue infection accompanying osteomyelitis, and clinically severe infection. By multivariate analysis, the predictive variables related to an increased likelihood of isolating gram-negatives from bone samples were glycated hemoglobin gram-negatives had a statistically significantly higher prevalence of leukocytosis and higher white blood cell counts than those without gram-negatives. In conclusion, gram-negative organisms were isolated in nearly half of our cases of DFO and were associated with more severe infections, higher white blood cell counts, lower glycated hemoglobin levels, and wounds of traumatic etiology.

  15. Drug-resistant gram-negative uropathogens: A review.

    Science.gov (United States)

    Khoshnood, Saeed; Heidary, Mohsen; Mirnejad, Reza; Bahramian, Aghil; Sedighi, Mansour; Mirzaei, Habibollah

    2017-10-01

    Urinary tract infection(UTI) caused by Gram-negative bacteria is the second most common infectious presentation in community medical practice. Approximately 150 million people are diagnosed with UTI each year worldwide. Drug resistance in Gram-negative uropathogens is a major global concern which can lead to poor clinical outcomes including treatment failure, development of bacteremia, requirement for intravenous therapy, hospitalization, and extended length of hospital stay. The mechanisms of drug resistance in these bacteria are important due to they are often not identified by routine susceptibility tests and have an exceptional potential for outbreaks. Treatment of UTIs depends on the access to effective drugs, which is now threatened by antibiotic resistant Gram-negative uropathogens. Although several effective antibiotics with activity against highly resistant Gram-negatives are available, there is not a unique antibiotic with activity against the high variety of resistance. Therefore, antimicrobial susceptibility tests, correlation between clinicians and laboratories, development of more rapid diagnostic methods, and continuous monitoring of drug resistance are urgent priorities. In this review, we will discuss about the current global status of drug-resistant Gram-negative uropathogens and their mechanisms of drug resistance to provide new insights into their treatment options. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Comparative antimicrobial susceptibility of aerobic and facultative bacteria from community-acquired bacteremia to ertapenem in Taiwan

    Directory of Open Access Journals (Sweden)

    Fung Chang-Phone

    2007-07-01

    Full Text Available Abstract Background Ertapenem is a once-a-day carbapenem and has excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The susceptibility of isolates of community-acquired bacteremia to ertapenem has not been reported yet. The present study assesses the in vitro activity of ertapenem against aerobic and facultative bacterial pathogens isolated from patients with community-acquired bacteremia by determining and comparing the MICs of cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin. The prevalence of extended broad spectrum β-lactamases (ESBL producing strains of community-acquired bacteremia and their susceptibility to these antibiotics are investigated. Methods Aerobic and facultative bacteria isolated from blood obtained from hospitalized patients with community-acquired bacteremia within 48 hours of admission between August 1, 2004 and September 30, 2004 in Chang Gung Memorial Hospital at Keelung, Taiwan, were identified using standard procedures. Antimicrobial susceptibility was evaluated by Etest according to the standard guidelines provided by the manufacturer and document M100-S16 Performance Standards of the Clinical Laboratory of Standard Institute. Antimicrobial agents including cefepime, cefoxitin, ceftazidime, ceftriaxone, ertapenem, piperacillin, piperacillin-tazobactam, ciprofloxacin, amikacin and gentamicin were used against the bacterial isolates to test their MICs as determined by Etest. For Staphylococcus aureus isolates, MICs of oxacillin were also tested by Etest to differentiate oxacillin-sensitive and oxacillin-resistant S. aureus. Results Ertapenem was highly active in vitro against many aerobic and facultative bacterial pathogens commonly recovered from patients with community-acquired bacteremia (128/159, 80.5 %. Ertapenem had more potent activity than ceftriaxone, piperacillin

  17. Gram positive and Gram negative bacteria differ in their sensitivity to cold plasma

    Science.gov (United States)

    Mai-Prochnow, Anne; Clauson, Maryse; Hong, Jungmi; Murphy, Anthony B.

    2016-12-01

    Cold atmospheric-pressure plasma (CAP) is a relatively new method being investigated for antimicrobial activity. However, the exact mode of action is still being explored. Here we report that CAP efficacy is directly correlated to bacterial cell wall thickness in several species. Biofilms of Gram positive Bacillus subtilis, possessing a 55.4 nm cell wall, showed the highest resistance to CAP, with less than one log10 reduction after 10 min treatment. In contrast, biofilms of Gram negative Pseudomonas aeruginosa, possessing only a 2.4 nm cell wall, were almost completely eradicated using the same treatment conditions. Planktonic cultures of Gram negative Pseudomonas libanensis also had a higher log10 reduction than Gram positive Staphylococcus epidermidis. Mixed species biofilms of P. aeruginosa and S. epidermidis showed a similar trend of Gram positive bacteria being more resistant to CAP treatment. However, when grown in co-culture, Gram negative P. aeruginosa was more resistant to CAP overall than as a mono-species biofilm. Emission spectra indicated OH and O, capable of structural cell wall bond breakage, were present in the plasma. This study indicates that cell wall thickness correlates with CAP inactivation times of bacteria, but cell membranes and biofilm matrix are also likely to play a role.

  18. Veillonella, Firmicutes: Microbes disguised as Gram negatives.

    Science.gov (United States)

    Vesth, Tammi; Ozen, Aslı; Andersen, Sandra C; Kaas, Rolf Sommer; Lukjancenko, Oksana; Bohlin, Jon; Nookaew, Intawat; Wassenaar, Trudy M; Ussery, David W

    2013-12-20

    The Firmicutes represent a major component of the intestinal microflora. The intestinal Firmicutes are a large, diverse group of organisms, many of which are poorly characterized due to their anaerobic growth requirements. Although most Firmicutes are Gram positive, members of the class Negativicutes, including the genus Veillonella, stain Gram negative. Veillonella are among the most abundant organisms of the oral and intestinal microflora of animals and humans, in spite of being strict anaerobes. In this work, the genomes of 24 Negativicutes, including eight Veillonella spp., are compared to 20 other Firmicutes genomes; a further 101 prokaryotic genomes were included, covering 26 phyla. Thus a total of 145 prokaryotic genomes were analyzed by various methods to investigate the apparent conflict of the Veillonella Gram stain and their taxonomic position within the Firmicutes. Comparison of the genome sequences confirms that the Negativicutes are distantly related to Clostridium spp., based on 16S rRNA, complete genomic DNA sequences, and a consensus tree based on conserved proteins. The genus Veillonella is relatively homogeneous: inter-genus pair-wise comparison identifies at least 1,350 shared proteins, although less than half of these are found in any given Clostridium genome. Only 27 proteins are found conserved in all analyzed prokaryote genomes. Veillonella has distinct metabolic properties, and significant similarities to genomes of Proteobacteria are not detected, with the exception of a shared LPS biosynthesis pathway. The clade within the class Negativicutes to which the genus Veillonella belongs exhibits unique properties, most of which are in common with Gram-positives and some with Gram negatives. They are only distantly related to Clostridia, but are even less closely related to Gram-negative species. Though the Negativicutes stain Gram-negative and possess two membranes, the genome and proteome analysis presented here confirm their place within the

  19. Revisiting the Gram-negative lipoprotein paradigm.

    Science.gov (United States)

    LoVullo, Eric D; Wright, Lori F; Isabella, Vincent; Huntley, Jason F; Pavelka, Martin S

    2015-05-01

    The processing of lipoproteins (Lpps) in Gram-negative bacteria is generally considered an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein N-acyltransferase. The mature lipoproteins are then sorted by the Lol system, with most Lpps inserted into the outer membrane (OM). We demonstrate here that the lnt gene is not essential to the Gram-negative pathogen Francisella tularensis subsp. tularensis strain Schu or to the live vaccine strain LVS. An LVS Δlnt mutant has a small-colony phenotype on sucrose medium and increased susceptibility to globomycin and rifampin. We provide data indicating that the OM lipoprotein Tul4A (LpnA) is diacylated but that it, and its paralog Tul4B (LpnB), still sort to the OM in the Δlnt mutant. We present a model in which the Lol sorting pathway of Francisella has a modified ABC transporter system that is capable of recognizing and sorting both triacylated and diacylated lipoproteins, and we show that this modified system is present in many other Gram-negative bacteria. We examined this model using Neisseria gonorrhoeae, which has the same Lol architecture as that of Francisella, and found that the lnt gene is not essential in this organism. This work suggests that Gram-negative bacteria fall into two groups, one in which full lipoprotein processing is essential and one in which the final acylation step is not essential, potentially due to the ability of the Lol sorting pathway in these bacteria to sort immature apolipoproteins to the OM. This paper describes the novel finding that the final stage in lipoprotein processing (normally considered an essential process) is not required by Francisella tularensis or Neisseria gonorrhoeae. The paper provides a potential reason for this and shows that it may be widespread in other Gram-negative bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. Surveillance of antimicrobial susceptibility of aerobic and facultative Gram-negative bacilli isolated from patients with intra-abdominal infections in China: the 2002-2009 Study for Monitoring Antimicrobial Resistance Trends (SMART).

    Science.gov (United States)

    Yang, Qiwen; Wang, Hui; Chen, Minjun; Ni, Yuxing; Yu, Yunsong; Hu, Bijie; Sun, Ziyong; Huang, Wenxiang; Hu, Yunjian; Ye, Huifen; Badal, Robert E; Xu, Yingchun

    2010-12-01

    The objective of this study was to investigate the distribution and susceptibility of aerobic and facultative Gram-negative bacilli (GNB) isolated from patients with intra-abdominal infections (IAIs) in China. From 2002 to 2009, minimum inhibitory concentrations of 14 antibiotics for 3420 aerobic and facultative GNB from up to eight hospitals in six cities were determined by the broth microdilution method. Enterobacteriaceae comprised 82.9% (2834/3420) of the total isolates, with Escherichia coli (49.2%) being the most commonly isolated species followed by Klebsiella pneumoniae (17.0%), Enterobacter cloacae (5.8%) and Citrobacter freundii (2.3%). Amongst the antimicrobial agents tested, the three carbapenems (ertapenem, imipenem and meropenem) were the most active agents against Enterobacteriaceae, with susceptibility rates of 96.1-99.6% (2002-2009), 98.2-100% (2002-2009) and 99.6-100% (2002-2004), respectively, followed by amikacin (86.8-95.1%) and piperacillin/tazobactam (84.5-94.3%). Susceptibility rates of all tested third- and fourth-generation cephalosporins against Enterobacteriaceae declined by nearly 30%, with susceptibility rates of 40.2%, 39.1%, 56.3% and 51.8% in 2009 for ceftriaxone, cefotaxime, ceftazidime and cefepime, respectively. The occurrence of extended-spectrum β-lactamases increased rapidly, especially for E. coli (from 20.8% in 2002 to 64.9% in 2009). Susceptibility of E. coli to ciprofloxacin decreased from 57.6% in 2002 to 24.2% in 2009. The least active agent against Enterobacteriaceae was ampicillin/sulbactam (SAM) (25.3-44.3%). In conclusion, Enterobacteriaceae were the major pathogens causing IAIs, and carbapenems retained the highest susceptibility rates over the 8-year study period. Third- and fourth-generation cephalosporins, fluoroquinolones and SAM may not be ideal choices for empirical therapy of IAIs in China. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Silver enhances antibiotic activity against gram-negative bacteria.

    Science.gov (United States)

    Morones-Ramirez, J Ruben; Winkler, Jonathan A; Spina, Catherine S; Collins, James J

    2013-06-19

    A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.

  2. Prognostic factors and monomicrobial necrotizing fasciitis: gram-positive versus gram-negative pathogens

    Directory of Open Access Journals (Sweden)

    Hsu Wei-Hsiu

    2011-01-01

    Full Text Available Abstract Background Monomicrobial necrotizing fasciitis is rapidly progressive and life-threatening. This study was undertaken to ascertain whether the clinical presentation and outcome for patients with this disease differ for those infected with a gram-positive as compared to gram-negative pathogen. Methods Forty-six patients with monomicrobial necrotizing fasciitis were examined retrospectively from November 2002 to January 2008. All patients received adequate broad-spectrum antibiotic therapy, aggressive resuscitation, prompt radical debridement and adjuvant hyperbaric oxygen therapy. Eleven patients were infected with a gram-positive pathogen (Group 1 and 35 patients with a gram-negative pathogen (Group 2. Results Group 2 was characterized by a higher incidence of hemorrhagic bullae and septic shock, higher APACHE II scores at 24 h post-admission, a higher rate of thrombocytopenia, and a higher prevalence of chronic liver dysfunction. Gouty arthritis was more prevalent in Group 1. For non-survivors, the incidences of chronic liver dysfunction, chronic renal failure and thrombocytopenia were higher in comparison with those for survivors. Lower level of serum albumin was also demonstrated in the non-survivors as compared to those in survivors. Conclusions Pre-existing chronic liver dysfunction, chronic renal failure, thrombocytopenia and hypoalbuminemia, and post-operative dependence on mechanical ventilation represent poor prognostic factors in monomicrobial necrotizing fasciitis. Patients with gram-negative monobacterial necrotizing fasciitis present with more fulminant sepsis.

  3. Mid-infrared spectroscopic assessment of nanotoxicity in gram-negative vs. gram-positive bacteria.

    Science.gov (United States)

    Heys, Kelly A; Riding, Matthew J; Strong, Rebecca J; Shore, Richard F; Pereira, M Glória; Jones, Kevin C; Semple, Kirk T; Martin, Francis L

    2014-03-07

    Nanoparticles appear to induce toxic effects through a variety of mechanisms including generation of reactive oxygen species (ROS), physical contact with the cell membrane and indirect catalysis due to remnants from manufacture. The development and subsequent increasing usage of nanomaterials has highlighted a growing need to characterize and assess the toxicity of nanoparticles, particularly those that may have detrimental health effects such as carbon-based nanomaterials (CBNs). Due to interactions of nanoparticles with some reagents, many traditional toxicity tests are unsuitable for use with CBNs. Infrared (IR) spectroscopy is a non-destructive, high throughput technique, which is unhindered by such problems. We explored the application of IR spectroscopy to investigate the effects of CBNs on Gram-negative (Pseudomonas fluorescens) and Gram-positive (Mycobacterium vanbaalenii PYR-1) bacteria. Two types of IR spectroscopy were compared: attenuated total reflection Fourier-transform infrared (ATR-FTIR) and synchrotron radiation-based FTIR (SR-FTIR) spectroscopy. This showed that Gram-positive and Gram-negative bacteria exhibit differing alterations when exposed to CBNs. Gram-positive bacteria appear more resistant to these agents and this may be due to the protection afforded by their more sturdy cell wall. Markers of exposure also vary according to Gram status; Amide II was consistently altered in Gram-negative bacteria and carbohydrate altered in Gram-positive bacteria. ATR-FTIR and SR-FTIR spectroscopy could both be applied to extract biochemical alterations induced by each CBN that were consistent across the two bacterial species; these may represent potential biomarkers of nanoparticle-induced alterations. Vibrational spectroscopy approaches may provide a novel means of fingerprinting the effects of CBNs in target cells.

  4. Pulmonary infiltrates during community acquired Gram-negative bacteremia

    DEFF Research Database (Denmark)

    Fjeldsøe-Nielsen, Hans; Gjeraa, Kirsten; Berthelsen, Birgitte G

    2013-01-01

    The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark.......The primary aim of this study was to describe the frequency of pulmonary infiltrates on chest X-ray (CXR) during community acquired Gram-negative bacteremia at a single centre in Denmark....

  5. Comparative activity of ceftobiprole against Gram-positive and Gram-negative isolates from Europe and the Middle East: the CLASS study.

    Science.gov (United States)

    Rossolini, Gian M; Dryden, Matthew S; Kozlov, Roman S; Quintana, Alvaro; Flamm, Robert K; Läuffer, Jörg M; Lee, Emma; Morrissey, Ian; CLASS Study Group

    2011-01-01

    to assess the in vitro activity of ceftobiprole and comparators against a recent collection of Gram-positive and Gram-negative pathogens, in order to detect potential changes in susceptibility patterns, and to evaluate the Etest assay for ceftobiprole susceptibility testing. contemporary Gram-positive and Gram-negative isolates (excluding extended-spectrum β-lactamase-producing isolates) from across Europe and the Middle East were collected, and their susceptibility to ceftobiprole, vancomycin, teicoplanin, linezolid, ceftazidime and cefepime was assessed using the Etest method. Quality testing [using Etest and broth microdilution (BMD)] was conducted at a central reference laboratory. some 5041 Gram-positive and 4026 Gram-negative isolates were included. Against Gram-positive isolates overall, ceftobiprole had the lowest MIC50 (0.5 mg/L), compared with 1 mg/L for its comparators (vancomycin, teicoplanin and linezolid). Against methicillin-resistant Staphylococcus aureus, all four agents had a similar MIC90 (2 mg/L), but ceftobiprole had a 4-fold better MIC90 (0.5 mg/L) against methicillin-susceptible strains. Only 38 Gram-positive isolates were confirmed as ceftobiprole resistant. Among Gram-negative strains, 86.9%, 91.7% and 95.2% were susceptible to ceftobiprole, ceftazidime and cefepime, respectively. Pseudomonas aeruginosa was less susceptible to all three antimicrobials than any other Gram-negative pathogen. There was generally good agreement between local Etest results and those obtained at the reference laboratory (for ceftobiprole: 86.8% with Gram-negatives; and 94.7% with Gram-positives), as well as between results obtained by BMD and Etest methods (for ceftobiprole: 98.2% with Gram-negatives; and 98.4% with Gram-positives). ceftobiprole exhibits in vitro activity against a wide range of Gram-positive and Gram-negative pathogens, including multidrug-resistant strains. No changes in its known susceptibility profile were identified.

  6. Prediction of lipoprotein signal peptides in Gram-negative bacteria.

    Science.gov (United States)

    Juncker, Agnieszka S; Willenbrock, Hanni; Von Heijne, Gunnar; Brunak, Søren; Nielsen, Henrik; Krogh, Anders

    2003-08-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor was able to predict 96.8% of the lipoproteins correctly with only 0.3% false positives in a set of SPaseI-cleaved, cytoplasmic, and transmembrane proteins. The results obtained were significantly better than those of previously developed methods. Even though Gram-positive lipoprotein signal peptides differ from Gram-negatives, the HMM was able to identify 92.9% of the lipoproteins included in a Gram-positive test set. A genome search was carried out for 12 Gram-negative genomes and one Gram-positive genome. The results for Escherichia coli K12 were compared with new experimental data, and the predictions by the HMM agree well with the experimentally verified lipoproteins. A neural network-based predictor was developed for comparison, and it gave very similar results. LipoP is available as a Web server at www.cbs.dtu.dk/services/LipoP/.

  7. Protamine-induced permeabilization of cell envelopes of gram-positive and gram-negative bacteria

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Verheul, A.; Gram, Lone

    1997-01-01

    carboxyfluorescein and ATP after 2 to 5 min. Maximum antibacterial activity was reached at alkaline pH and in the absence of divalent cations. The efficient permeabilization of cell envelopes of both gram-positive and gram-negative bacteria suggests that protamine causes a general disruption of the cell envelope...

  8. An optimized staining technique for the detection of Gram positive and Gram negative bacteria within tissue.

    Science.gov (United States)

    Becerra, Sandra C; Roy, Daniel C; Sanchez, Carlos J; Christy, Robert J; Burmeister, David M

    2016-04-12

    Bacterial infections are a common clinical problem in both acute and chronic wounds. With growing concerns over antibiotic resistance, treatment of bacterial infections should only occur after positive diagnosis. Currently, diagnosis is delayed due to lengthy culturing methods which may also fail to identify the presence of bacteria. While newer costly bacterial identification methods are being explored, a simple and inexpensive diagnostic tool would aid in immediate and accurate treatments for bacterial infections. Histologically, hematoxylin and eosin (H&E) and Gram stains have been employed, but are far from optimal when analyzing tissue samples due to non-specific staining. The goal of the current study was to develop a modification of the Gram stain that enhances the contrast between bacteria and host tissue. A modified Gram stain was developed and tested as an alternative to Gram stain that improves the contrast between Gram positive bacteria, Gram negative bacteria and host tissue. Initially, clinically relevant strains of Pseudomonas aeruginosa and Staphylococcus aureus were visualized in vitro and in biopsies of infected, porcine burns using routine Gram stain, and immunohistochemistry techniques involving bacterial strain-specific fluorescent antibodies as validation tools. H&E and Gram stain of serial biopsy sections were then compared to a modification of the Gram stain incorporating a counterstain that highlights collagen found in tissue. The modified Gram stain clearly identified both Gram positive and Gram negative bacteria, and when compared to H&E or Gram stain alone provided excellent contrast between bacteria and non-viable burn eschar. Moreover, when applied to surgical biopsies from patients that underwent burn debridement this technique was able to clearly detect bacterial morphology within host tissue. We describe a modification of the Gram stain that provides improved contrast of Gram positive and Gram negative microorganisms within host

  9. Probing interaction of Gram-positive and Gram-negative bacterial cells with ZnO nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Aanchal; Bhargava, Richa; Poddar, Pankaj, E-mail: p.poddar@ncl.res.in

    2013-04-01

    In the present work, the physiological effects of the ZnO nanorods on the Gram positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli and Aerobacter aerogenes) bacterial cells have been studied. The analysis of bacterial growth curves for various concentrations of ZnO nanorods indicates that Gram positive and Gram negative bacterial cells show inhibition at concentrations of ∼ 64 and ∼ 256 μg/mL respectively. The marked difference in susceptibility towards nanorods was also validated by spread plate and disk diffusion methods. In addition, the scanning electron micrographs show a clear damage to the cells via changed morphology of the cells from rod to coccoid etc. The confocal optical microscopy images of these cells also demonstrate the reduction in live cell count in the presence of ZnO nanorods. These, results clearly indicate that the antibacterial activity of ZnO nanorods is higher towards Gram positive bacterium than Gram negative bacterium which indicates that the structure of the cell wall might play a major role in the interaction with nanostructured materials and shows high sensitivity to the particle concentration. Highlights: ► Effect of ZnO nanorods on the growth cycles of four bacterial strains. ► A relation has been established between growth rate of bacteria and concentration. ► Serious damage in the morphology of bacterial cells in the presence of ZnO nanorods. ► Microscopic studies to see the time dependent effect on bacterial cells.

  10. Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

    International Nuclear Information System (INIS)

    Varghese, S.; Jose, S.; Varghese, S.; Kuriakose, S.; Jose, S.

    2013-01-01

    This paper describes the isolation of carbon nanoparticles (CNPs) from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains

  11. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  12. Will new antimicrobials overcome resistance among Gram-negatives?

    Science.gov (United States)

    Bassetti, Matteo; Ginocchio, Francesca; Mikulska, Małgorzata; Taramasso, Lucia; Giacobbe, Daniele Roberto

    2011-10-01

    The spread of resistance among Gram-positive and Gram-negative bacteria represents a growing challenge for the development of new antimicrobials. The pace of antibiotic drug development has slowed during the last decade and, especially for Gram-negatives, clinicians are facing a dramatic shortage in the availability of therapeutic options to face the emergency of the resistance problem throughout the world. In this alarming scenario, although there is a shortage of compounds reaching the market in the near future, antibiotic discovery remains one of the keys to successfully stem and maybe overcome the tide of resistance. Analogs of already known compounds and new agents belonging to completely new classes of antimicrobials are in early stages of development. Novel and promising anti-Gram-negative antimicrobials belong both to old (cephalosporins, carbapenems, β-lactamase inhibitors, monobactams, aminoglycosides, polymyxin analogues and tetracycline) and completely new antibacterial classes (boron-containing antibacterial protein synthesis inhibitors, bis-indoles, outer membrane synthesis inhibitors, antibiotics targeting novel sites of the 50S ribosomal subunit and antimicrobial peptides). However, all of these compounds are still far from being introduced into clinical practice. Therefore, infection control policies and optimization in the use of already existing molecules are still the most effective approaches to reduce the spread of resistance and preserve the activity of antimicrobials.

  13. Revisiting the gram-negative lipoprotein paradigm

    Science.gov (United States)

    The processing of lipoproteins (lpps) in Gram-negative bacteria is generally considered to be an essential pathway. Mature lipoproteins in these bacteria are triacylated, with the final fatty acid addition performed by Lnt, an apolipoprotein n-acyltransferase. The mature lipoproteins are then sorted...

  14. Antimicrobial Photodynamic Therapy to Kill Gram-negative Bacteria

    Science.gov (United States)

    Sperandio, Felipe F; Huang, Ying-Ying; Hamblin, Michael R

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) or photodynamic inactivation (PDI) is a new promising strategy to eradicate pathogenic microorganisms such as Gram-positive and Gram-negative bacteria, yeasts and fungi. The search for new approaches that can kill bacteria but do not induce the appearance of undesired drug-resistant strains suggests that PDT may have advantages over traditional antibiotic therapy. PDT is a non-thermal photochemical reaction that involves the simultaneous presence of visible light, oxygen and a dye or photosensitizer (PS). Several PS have been studied for their ability to bind to bacteria and efficiently generate reactive oxygen species (ROS) upon photostimulation. ROS are formed through type I or II mechanisms and may inactivate several classes of microbial cells including Gram-negative bacteria such as Pseudomonas aeruginosa, which are typically characterized by an impermeable outer cell membrane that contains endotoxins and blocks antibiotics, dyes, and detergents, protecting the sensitive inner membrane and cell wall. This review covers significant peer-reviewed articles together with US and World patents that were filed within the past few years and that relate to the eradication of Gram-negative bacteria via PDI or PDT. It is organized mainly according to the nature of the PS involved and includes natural or synthetic food dyes; cationic dyes such as methylene blue and toluidine blue; tetrapyrrole derivatives such as phthalocyanines, chlorins, porphyrins, chlorophyll and bacteriochlorophyll derivatives; functionalized fullerenes; nanoparticles combined with different PS; other formulations designed to target PS to bacteria; photoactive materials and surfaces; conjugates between PS and polycationic polymers or antibodies; and permeabilizing agents such as EDTA, PMNP and CaCl2. The present review also covers the different laboratory animal models normally used to treat Gram-negative bacterial infections with antimicrobial PDT. PMID

  15. Dustborne and airborne gram-positive and gram-negative bacteria in high versus low ERMI homes

    Science.gov (United States)

    The study aimed at investigating Gram-positive and Gram-negative bacteria in moldy and non-moldy homes, as defined by the home's Environmental Relative Moldiness Index (ERMI) value. The ERMI values were determined from floor dust samples in 2010 and 2011 and homes were classified...

  16. How bacterial cell division might cheat turgor pressure - a unified mechanism of septal division in Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Erickson, Harold P

    2017-08-01

    An important question for bacterial cell division is how the invaginating septum can overcome the turgor force generated by the high osmolarity of the cytoplasm. I suggest that it may not need to. Several studies in Gram-negative bacteria have shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence suggests that this is also true for Gram-positive bacteria. In this case the invagination of the septum takes place within the uniformly high osmotic pressure environment, and does not have to fight turgor pressure. A related question is how the V-shaped constriction of Gram-negative bacteria relates to the plate-like septum of Gram-positive bacteria. I collected evidence that Gram-negative bacteria have a latent capability of forming plate-like septa, and present a model in which septal division is the basic mechanism in both Gram-positive and Gram-negative bacteria. © 2017 WILEY Periodicals, Inc.

  17. Risk factors for multidrug-resistant Gram-negative infection in burn patients.

    Science.gov (United States)

    Vickers, Mark L; Dulhunty, Joel M; Ballard, Emma; Chapman, Paul; Muller, Michael; Roberts, Jason A; Cotta, Menino O

    2018-05-01

    Infection with multidrug-resistant (MDR) Gram-negative organisms leads to poorer outcomes in the critically ill burn patient. The aim of this study was to identify the risk factors for MDR Gram-negative pathogen infection in critically ill burn patients admitted to a major tertiary referral intensive care unit (ICU) in Australia. A retrospective case-control study of all adult burn patients admitted over a 7-year period was conducted. Twenty-one cases that cultured an MDR Gram-negative organism were matched with 21 controls of similar age, gender, burn size and ICU stay. Multivariable conditional logistic regression was used to individually assess risk factors after adjusting for Acute Burn Severity Index. Adjusted odds ratios (ORs) were reported. P-values negative infection included superficial partial thickness burn size (OR: 1.08; 95% confidence interval (CI): 1.01-1.16; P-value: 0.034), prior meropenem exposure (OR: 10.39; 95% CI: 0.96-112.00; P-value: 0.054), Gram-negative colonization on admission (OR: 9.23; 95% CI: 0.65-130.15; P-value: 0.10) and escharotomy (OR: 2.66; 95% CI: 0.52-13.65; P-value: 0.24). For cases, mean age was 41 (SD: 13) years, mean total body surface area burned was 47% (SD: 18) and mean days in ICU until MDR specimen collection was 17 (SD: 10) days. Prior meropenem exposure, Gram-negative colonization on admission, escharotomy and superficial partial thickness burn size may be potentially important factors for increasing the risk of MDR Gram-negative infection in the critically ill burn patient. © 2017 Royal Australasian College of Surgeons.

  18. Antibacterial Activity of Silver-Graphene Quantum Dots Nanocomposites Against Gram-Positive and Gram-Negative Bacteria

    Science.gov (United States)

    Habiba, Khaled (Inventor); Makarov, Vladimir (Inventor); Weiner, Brad R (Inventor); Morell, Gerardo (Inventor)

    2018-01-01

    The invention provides a composite of silver nanoparticles decorated with graphene quantum dots (Ag-GQDs) using pulsed laser synthesis. The nanocomposites were functionalized with polyethylene glycol (PEG). A concentration of 150 .mu.g/mL of Ag-GQDs, a non-toxic level for human cells, exhibits strong antibacterial activity against both Gram-Positive and Gram-Negative Bacteria.

  19. Combating multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Xu, Ze-Qi; Flavin, Michael T; Flavin, John

    2014-02-01

    Multidrug-resistant (MDR) bacterial infections, especially those caused by Gram-negative pathogens, have emerged as one of the world's greatest health threats. The development of novel antibiotics to treat MDR Gram-negative bacteria has, however, stagnated over the last half century. This review provides an overview of recent R&D activities in the search for novel antibiotics against MDR Gram-negatives. It provides emphasis in three key areas. First, the article looks at new analogs of existing antibiotic molecules such as β-lactams, tetracyclines, and aminoglycoside as well as agents against novel bacterial targets such as aminoacyl-tRNA synthetase and peptide deformylase. Second, it also examines alternative strategies to conventional approaches including cationic antimicrobial peptides, siderophores, efflux pump inhibitors, therapeutic antibodies, and renewed interest in abandoned treatments or those with limited indications. Third, the authors aim to provide an update on the current clinical development status for each drug candidate. The traditional analog approach is insufficient to meet the formidable challenge brought forth by MDR superbugs. With the disappointing results of the genomics approach for delivering novel targets and drug candidates, alternative strategies to permeate the bacterial cell membrane, enhance influx, disrupt efflux, and target specific pathogens via therapeutic antibodies are attractive and promising. Coupled with incentivized business models, governmental policies, and a clarified regulatory pathway, it is hoped that the antibiotic pipeline will be filled with an effective armamentarium to safeguard global health.

  20. Volatile metabolites from some gram-negative bacteria

    DEFF Research Database (Denmark)

    Schöller, Charlotte; Molin, Søren; Wilkins, Ken

    1997-01-01

    A survey of volatile organic compounds (VOCs) excreted from various Gram-negative bacteria (Pseudomonas spp., Serratia spp. and Enterobacter spp.) was carried out. Compounds were identified by gas chromatography-mass spectrometry. VOCs identified included dimethyl disulphide, dimethyl trisulphide...

  1. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Science.gov (United States)

    Azzopardi, Ernest A; Azzopardi, Elayne; Camilleri, Liberato; Villapalos, Jorge; Boyce, Dean E; Dziewulski, Peter; Dickson, William A; Whitaker, Iain S

    2014-01-01

    Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. Studies investigating adult hospitalised patients (2000-2010) were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20) = 1.1, p = 0.3797; r2 = 9.84). Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  2. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study.

    Science.gov (United States)

    Lanini, Simone; Costa, Alessandro Nanni; Puro, Vincenzo; Procaccio, Francesco; Grossi, Paolo Antonio; Vespasiano, Francesca; Ricci, Andrea; Vesconi, Sergio; Ison, Michael G; Carmeli, Yehuda; Ippolito, Giuseppe

    2015-01-01

    Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients. Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients' mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively). Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days). Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%). Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s) positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days) during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not. The isolation of gram-negative bacteria is most frequent among recipient with hospital stays >48 hours prior to transplant and in those

  3. Incidence of carbapenem-resistant gram negatives in Italian transplant recipients: a nationwide surveillance study.

    Directory of Open Access Journals (Sweden)

    Simone Lanini

    Full Text Available Bacterial infections remain a challenge to solid organ transplantation. Due to the alarming spread of carbapenem-resistant gram negative bacteria, these organisms have been frequently recognized as cause of severe infections in solid organ transplant recipients.Between 15 May and 30 September 2012 we enrolled 887 solid organ transplant recipients in Italy with the aim to describe the epidemiology of gram negative bacteria spreading, to explore potential risk factors and to assess the effect of early isolation of gram negative bacteria on recipients' mortality during the first 90 days after transplantation. During the study period 185 clinical isolates of gram negative bacteria were reported, for an incidence of 2.39 per 1000 recipient-days. Positive cultures for gram negative bacteria occurred early after transplantation (median time 26 days; incidence rate 4.33, 1.67 and 1.14 per 1,000 recipient-days in the first, second and third month after SOT, respectively. Forty-nine of these clinical isolates were due to carbapenem-resistant gram negative bacteria (26.5%; incidence 0.63 per 1000 recipient-days. Carbapenems resistance was particularly frequent among Klebsiella spp. isolates (49.1%. Recipients with longer hospital stay and those who received either heart or lung graft were at the highest risk of testing positive for any gram negative bacteria. Moreover recipients with longer hospital stay, lung recipients and those admitted to hospital for more than 48h before transplantation had the highest probability to have culture(s positive for carbapenem-resistant gram negative bacteria. Forty-four organ recipients died (0.57 per 1000 recipient-days during the study period. Recipients with at least one positive culture for carbapenem-resistant gram negative bacteria had a 10.23-fold higher mortality rate than those who did not.The isolation of gram-negative bacteria is most frequent among recipient with hospital stays >48 hours prior to transplant

  4. Glycosaminoglycans are involved in pathogen adherence to corneal epithelial cells differently for Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Beatriz García

    2016-11-01

    Full Text Available The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies.

  5. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria.

    Science.gov (United States)

    Huang, Liyi; Xuan, Yi; Koide, Yuichiro; Zhiyentayev, Timur; Tanaka, Masamitsu; Hamblin, Michael R

    2012-08-01

    Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in Na

  6. Gram negative wound infection in hospitalised adult burn patients--systematic review and metanalysis-.

    Directory of Open Access Journals (Sweden)

    Ernest A Azzopardi

    Full Text Available BACKGROUND: Gram negative infection is a major determinant of morbidity and survival. Traditional teaching suggests that burn wound infections in different centres are caused by differing sets of causative organisms. This study established whether Gram-negative burn wound isolates associated to clinical wound infection differ between burn centres. METHODS: Studies investigating adult hospitalised patients (2000-2010 were critically appraised and qualified to a levels of evidence hierarchy. The contribution of bacterial pathogen type, and burn centre to the variance in standardised incidence of Gram-negative burn wound infection was analysed using two-way analysis of variance. PRIMARY FINDINGS: Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumanni, Enterobacter spp., Proteus spp. and Escherichia coli emerged as the commonest Gram-negative burn wound pathogens. Individual pathogens' incidence did not differ significantly between burn centres (F (4, 20 = 1.1, p = 0.3797; r2 = 9.84. INTERPRETATION: Gram-negative infections predominate in burn surgery. This study is the first to establish that burn wound infections do not differ significantly between burn centres. It is the first study to report the pathogens responsible for the majority of Gram-negative infections in these patients. Whilst burn wound infection is not exclusive to these bacteria, it is hoped that reporting the presence of this group of common Gram-negative "target organisms" facilitate clinical practice and target research towards a defined clinical demand.

  7. Bioengineered nisin A derivatives with enhanced activity against both Gram positive and Gram negative pathogens.

    Directory of Open Access Journals (Sweden)

    Des Field

    Full Text Available Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G, with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.

  8. Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens

    Science.gov (United States)

    Field, Des; Begley, Maire; O’Connor, Paula M.; Daly, Karen M.; Hugenholtz, Floor; Cotter, Paul D.; Hill, Colin; Ross, R. Paul

    2012-01-01

    Nisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria. PMID:23056510

  9. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    Science.gov (United States)

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  10. Multiplex identification of sepsis-causing Gram-negative pathogens from the plasma of infected blood.

    Science.gov (United States)

    Chung, Boram; Park, Chulmin; Cho, Sung-Yeon; Shin, Juyoun; Shin, Sun; Yim, Seon-Hee; Lee, Dong-Gun; Chung, Yeun-Jung

    2018-02-01

    Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood. We designed five MLPA probe sets targeting the genes specific to major Gram-negative pathogens (uidA and lacY for E. coli, ompA for A. baumannii, phoE for K. pneumoniae, and ecfX for P. aeruginosa) and one set targeting the CTX-M group 1 to identify the ESBL producing Gram-negative pathogens. All six target-specific peaks were clearly separated without any non-specific peaks in a multiplex reaction condition. The minimum detection limit was 100 fg of pathogen DNA. When we tested 28 Gram-negative clinical isolates, all of them were successfully identified without any non-specific peaks. To evaluate the clinical applicability, we tested seven blood samples from febrile patients. Three blood culture positive cases showed E. coli specific peaks, while no peak was detected in the other four culture negative samples. This technology can be useful for detection of major sepsis-causing, drug-resistant Gram-negative pathogens and also the major ESBL producing Gram-negatives from the blood of sepsis patients in a clinical setting. This system can help early initiation of effective antimicrobial treatment against Gram-negative pathogens for sepsis patients, which is very crucial for better treatment outcomes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Gram-positive and gram-negative bacteria induce different patterns of cytokine production in human mononuclear cells irrespective of taxonomic relatedness.

    Science.gov (United States)

    Skovbjerg, Susann; Martner, Anna; Hynsjö, Lars; Hessle, Christina; Olsen, Ingar; Dewhirst, Floyd E; Tham, Wilhelm; Wold, Agnes E

    2010-01-01

    Upon bacterial stimulation, tissue macrophages produce a variety of cytokines that orchestrate the immune response that clears the infection. We have shown that Gram-positives induce higher levels of interleukin-12 (IL-12), interferon-gamma (IFN-gamma), and tumor necrosis factor (TNF) from human peripheral blood mononuclear cells (PBMCs) than do Gram-negatives, which instead induce more of IL-6, IL-8, and IL-10. Here, we study whether these patterns follows or crosses taxonomic borders. PBMCs from blood donors were incubated with UV-inactivated bacteria representing 37 species from five phyla. IL-12, TNF, IL-1beta, IL-6, IL-8, and IL-10 were measured in the supernatants after 24 h and IFN-gamma after 5 days. Irrespective of phylogenetic position, Gram-positive bacteria induced much more IL-12 (nine times more on average) and IFN-gamma (seven times), more TNF (three times), and slightly more IL-1beta (1.5 times) than did Gram-negatives, which instead induced more IL-6 (1.5 times), IL-8 (1.9 times), and IL-10 (3.3 times) than did Gram-positives. A notable exception was the Gram-positive Listeria monocytogenes, which induced very little IL-12, IFN-gamma, and TNF. The results confirm the fundamental difference in innate immune responses to Gram-positive and Gram-negative bacteria, which crosses taxonomic borders and probably reflects differences in cell wall structure.

  12. Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Directory of Open Access Journals (Sweden)

    Ruolin Li

    2016-05-01

    Full Text Available OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1 patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2 patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L, p<0.01. The area under the receiver operator characteristic curve was 0.689 (95% confidence interval: 0.570, 0.792, p<0.01 at the cutoff value of 86 U/L. Additionally, pleural adenosine deaminase had a sensitivity of 63.2% (46.0-78.2%; a specificity of 73.7% (56.9-86.6%; positive and negative likelihood ratios of 2.18 and 0.50, respectively; and positive and negative predictive values of 70.6% and 66.7%, respectively. CONCLUSIONS: Pleural effusion adenosine deaminase is a helpful alternative biomarker for early and quick discrimination of Gram-negative from Gram-positive bacterial infections of the

  13. The structures of lipopolysaccharides from plant-associated gram-negative bacteria

    DEFF Research Database (Denmark)

    Molinaro, Antonio; Newman, Mari-Anne; Lanzetta, Rosa

    2009-01-01

    Gram-negative bacterial lipopolysaccharides (LPSs) have multiple roles in plant-microbe interactions. LPSs contribute to the low permeabilities of bacterial outer membranes, which act as barriers to protect bacteria from plant-derived antimicrobial substances. Conversely, perception of LPSs...... is an important prerequisite for any further understanding of the biological processes in plant-microbe interactions. Moreover, the LPSs from Gram-negative bacteria - especially those originating from plant-associated bacteria - are a great source of novel monosaccharides with unusual and occasionally astounding...

  14. Different Use of Cell Surface Glycosaminoglycans As Adherence Receptors to Corneal Cells by Gram Positive and Gram Negative Pathogens

    Science.gov (United States)

    García, Beatriz; Merayo-Lloves, Jesús; Rodríguez, David; Alcalde, Ignacio; García-Suárez, Olivia; Alfonso, José F.; Baamonde, Begoña; Fernández-Vega, Andrés; Vazquez, Fernando; Quirós, Luis M.

    2016-01-01

    The epithelium of the cornea is continuously exposed to pathogens, and adhesion to epithelial cells is regarded as an essential first step in bacterial pathogenesis. In this article, the involvement of glycosaminoglycans in the adhesion of various pathogenic bacteria to corneal epithelial cells is analyzed. All microorganisms use glycosaminoglycans as receptors, but arranged in different patterns depending on the Gram-type of the bacterium. The heparan sulfate chains of syndecans are the main receptors, though other molecular species also seem to be involved, particularly in Gram-negative bacteria. Adherence is inhibited differentially by peptides, including heparin binding sequences, indicating the participation of various groups of Gram-positive, and -negative adhesins. The length of the saccharides produces a major effect, and low molecular weight chains inhibit the binding of Gram-negative microorganisms but increase the adherence of Gram-positives. Pathogen adhesion appears to occur preferentially through sulfated domains, and is very dependent on N- and 6-O-sulfation of the glucosamine residue and, to a lesser extent, 2-O sulfation of uronic acid. These data show the differential use of corneal receptors, which could facilitate the development of new anti-infective strategies. PMID:27965938

  15. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    International Nuclear Information System (INIS)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D’Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-01-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  16. Rationalizing the permeation of polar antibiotics into Gram-negative bacteria

    Science.gov (United States)

    Scorciapino, Mariano Andrea; Acosta-Gutierrez, Silvia; Benkerrou, Dehbia; D'Agostino, Tommaso; Malloci, Giuliano; Samanta, Susruta; Bodrenko, Igor; Ceccarelli, Matteo

    2017-03-01

    The increasing level of antibiotic resistance in Gram-negative bacteria, together with the lack of new potential drug scaffolds in the pipeline, make the problem of infectious diseases a global challenge for modern medicine. The main reason that Gram-negative bacteria are particularly challenging is the presence of an outer cell-protecting membrane, which is not present in Gram-positive species. Such an asymmetric bilayer is a highly effective barrier for polar molecules. Several protein systems are expressed in the outer membrane to control the internal concentration of both nutrients and noxious species, in particular: (i) water-filled channels that modulate the permeation of polar molecules and ions according to concentration gradients, and (ii) efflux pumps to actively expel toxic compounds. Thus, besides expressing specific enzymes for drugs degradation, Gram-negative bacteria can also resist by modulating the influx and efflux of antibiotics, keeping the internal concentration low. However, there are no direct and robust experimental methods capable of measuring the permeability of small molecules, thus severely limiting our knowledge of the molecular mechanisms that ultimately control the permeation of antibiotics through the outer membrane. This is the innovation gap to be filled for Gram-negative bacteria. This review is focused on the permeation of small molecules through porins, considered the main path for the entry of polar antibiotics into Gram-negative bacteria. A fundamental understanding of how these proteins are able to filter small molecules is a prerequisite to design/optimize antibacterials with improved permeation. The level of sophistication of modern molecular modeling algorithms and the advances in new computer hardware has made the simulation of such complex processes possible at the molecular level. In this work we aim to share our experience and perspectives in the context of a multidisciplinary extended collaboration within the IMI

  17. Neither Single nor a Combination of Routine Laboratory Parameters can Discriminate between Gram-positive and Gram-negative Bacteremia

    Science.gov (United States)

    Ratzinger, Franz; Dedeyan, Michel; Rammerstorfer, Matthias; Perkmann, Thomas; Burgmann, Heinz; Makristathis, Athanasios; Dorffner, Georg; Loetsch, Felix; Blacky, Alexander; Ramharter, Michael

    2015-01-01

    Adequate early empiric antibiotic therapy is pivotal for the outcome of patients with bloodstream infections. In clinical practice the use of surrogate laboratory parameters is frequently proposed to predict underlying bacterial pathogens; however there is no clear evidence for this assumption. In this study, we investigated the discriminatory capacity of predictive models consisting of routinely available laboratory parameters to predict the presence of Gram-positive or Gram-negative bacteremia. Major machine learning algorithms were screened for their capacity to maximize the area under the receiver operating characteristic curve (ROC-AUC) for discriminating between Gram-positive and Gram-negative cases. Data from 23,765 patients with clinically suspected bacteremia were screened and 1,180 bacteremic patients were included in the study. A relative predominance of Gram-negative bacteremia (54.0%), which was more pronounced in females (59.1%), was observed. The final model achieved 0.675 ROC-AUC resulting in 44.57% sensitivity and 79.75% specificity. Various parameters presented a significant difference between both genders. In gender-specific models, the discriminatory potency was slightly improved. The results of this study do not support the use of surrogate laboratory parameters for predicting classes of causative pathogens. In this patient cohort, gender-specific differences in various laboratory parameters were observed, indicating differences in the host response between genders. PMID:26522966

  18. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study

    Directory of Open Access Journals (Sweden)

    Azam A

    2012-12-01

    Full Text Available Ameer Azam,1,2 Arham S Ahmed,2 Mohammad Oves,3 Mohammad S Khan,3 Sami S Habib,1 Adnan Memic11Centre of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia; 2Centre of Excellence in Materials Science (Nanomaterials, 3Department of Agricultural Microbiology, Aligarh Muslim University, Aligarh, IndiaBackground: Nanomaterials have unique properties compared to their bulk counterparts. For this reason, nanotechnology has attracted a great deal of attention from the scientific community. Metal oxide nanomaterials like ZnO and CuO have been used industrially for several purposes, including cosmetics, paints, plastics, and textiles. A common feature that these nanoparticles exhibit is their antimicrobial behavior against pathogenic bacteria. In this report, we demonstrate the antimicrobial activity of ZnO, CuO, and Fe2O3 nanoparticles against Gram-positive and Gram-negative bacteria.Methods and results: Nanosized particles of three metal oxides (ZnO, CuO, and Fe2O3 were synthesized by a sol–gel combustion route and characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, and transmission electron microscopy techniques. X-ray diffraction results confirmed the single-phase formation of all three nanomaterials. The particle sizes were observed to be 18, 22, and 28 nm for ZnO, CuO, and Fe2O3, respectively. We used these nanomaterials to evaluate their antibacterial activity against both Gram-negative (Escherichia coli and Pseudomonas aeruginosa and Gram-positive (Staphylococcus aureus and Bacillus subtilis bacteria.Conclusion: Among the three metal oxide nanomaterials, ZnO showed greatest antimicrobial activity against both Gram-positive and Gram-negative bacteria used in this study. It was observed that ZnO nanoparticles have excellent bactericidal potential, while Fe2O3 nanoparticles exhibited the least bactericidal activity. The order of antibacterial activity was demonstrated to be the following: ZnO > CuO > Fe2O3

  19. In vitro susceptibility of gram-negative bacterial isolates to chlorhexidine gluconate.

    Science.gov (United States)

    Mengistu, Y; Erge, W; Bellete, B

    1999-05-01

    To investigate the susceptibility of clinical isolates of gram-negative bacteria to chlorhexidine gluconate. Prospective laboratory study. Tikur Anbessa Hospital, Addis Ababa, Ethiopia. Clinical specimens from 443 hospital patients. Significant number of gram negative bacteria were not inhibited by chlorhexidine gluconate (0.02-0.05%) used for antisepsis. Four hundred and forty three strains of gram-negative bacteria were isolated from Tikur Anbessa Hospital patients. Escherichia coli (31.6%) and Klebsiella pneumoniae (23%) were the most frequently isolated bacteria followed by Proteus species (13.3%), Pseudomonas species (9.2%), and Citrobacter species (6.1%). Each organism was tested to chlorhexidine gluconate (CHG), minimum inhibitory concentration (MIC) ranging from 0.0001% to 1%w/v. All Salmonella species and E. coli were inhibited by CHG, MIC or = 0.1%). Our results showed that a significant number of the gram-negative bacterial isolates were not inhibited by CHG at the concentration used for disinfection of wounds or instruments (MIC 0.02-0.05% w/v). It is therefore important to select appropriate concentration of this disinfectant and rationally use it for disinfection and hospital hygiene. Continuing follow up and surveillance is also needed to detect resistant bacteria to chlorhexidine or other disinfectants in time.

  20. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tamboli, Dhawal P.; Lee, Dae Sung, E-mail: daesung@knu.ac.kr

    2013-09-15

    Highlights: • Bacterial extracelluar enzymes stabilized the silver nanoparticles (AgNPs). • AgNPs formation was characterized by analytical techniques such as UV–vis, TEM, and FTIR. • AgNPs showed obvious antimicrobial activity against both gram positive and gram negative microorganisms. • A mechanism of AgNPs’ antimicrobial activity was proposed. -- Abstract: The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO{sub 3} solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV–vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5–50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis.

  1. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria

    International Nuclear Information System (INIS)

    Tamboli, Dhawal P.; Lee, Dae Sung

    2013-01-01

    Highlights: • Bacterial extracelluar enzymes stabilized the silver nanoparticles (AgNPs). • AgNPs formation was characterized by analytical techniques such as UV–vis, TEM, and FTIR. • AgNPs showed obvious antimicrobial activity against both gram positive and gram negative microorganisms. • A mechanism of AgNPs’ antimicrobial activity was proposed. -- Abstract: The development of eco-friendly and reliable processes for the synthesis of nanoparticles has attracted considerable interest in nanotechnology. In this study, an extracellular enzyme system of a newly isolated microorganism, Exiguobacterium sp. KNU1, was used for the reduction of AgNO 3 solutions to silver nanoparticles (AgNPs). The extracellularly biosynthesized AgNPs were characterized by UV–vis spectroscopy, Fourier transform infra-red spectroscopy and transmission electron microscopy. The AgNPs were approximately 30 nm (range 5–50 nm) in size, well-dispersed and spherical. The AgNPs were evaluated for their antimicrobial effects on different gram negative and gram positive bacteria using the minimum inhibitory concentration method. Reasonable antimicrobial activity against Salmonella typhimurium, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus was observed. The morphological changes occurred in all the microorganisms tested. In particular, E. coli exhibited DNA fragmentation after being treated with the AgNPs. Finally, the mechanism for their bactericidal activity was proposed according to the results of scanning electron microscopy and single cell gel electrophoresis

  2. Antimicrobial-resistant Gram-negative bacteria in febrile neutropenic patients with cancer: current epidemiology and clinical impact.

    Science.gov (United States)

    Trecarichi, Enrico M; Tumbarello, Mario

    2014-04-01

    In the recent years, several studies involving cancer patients have demonstrated a clear trend in the epidemiology of bacterial infections showing a shift in the prevalence from Gram-positive to Gram-negative bacteria and the extensive emergence of antimicrobial-resistant strains among Gram-negatives isolated from the blood. The aim of this systematic review was to examine the recent trends in epidemiology and antimicrobial resistance in Gram-negatives recovered from neutropenic cancer patients, with particular emphasis on the impact of antimicrobial resistance on the clinical outcome of severe infections caused by such microorganisms. Overall, from 2007 to date, the rate of Gram-negative bacteria recovery ranged from 24.7 to 75.8% (mean 51.3%) in cancer patient cohorts. Escherichia coli represented the most common species (mean frequency of isolation 32.1%) among the Gram-negatives, followed by Pseudomonas aeruginosa (mean frequency of isolation 20.1%). An increasing frequency of Acinetobacter spp. and Stenotrophomonas maltophilia was also reported. Increased rates of multidrug-resistant Gram-negative strains have been highlighted among Enterobacteriaceae and nonfermenting Gram-negative rods, despite discontinuation of fluoroquinolone-based antibacterial prophylaxis for neutropenic patients. In addition, antimicrobial resistance and/or the inadequacy of empirical antibiotic treatment have been frequently linked to a worse outcome in cancer patients with bloodstream infections caused by Gram-negative isolates. Sound knowledge of the local distribution of pathogens and their susceptibility patterns and prompt initiation of effective antimicrobial treatment for severe infections caused by Gram-negative bacteria are essential in cancer patients.

  3. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens.

    Science.gov (United States)

    Randall, Christopher P; Mariner, Katherine R; Chopra, Ian; O'Neill, Alex J

    2013-01-01

    Antistaphylococcal agents commonly lack activity against Gram-negative bacteria like Escherichia coli owing to the permeability barrier presented by the outer membrane and/or the action of efflux transporters. When these intrinsic resistance mechanisms are artificially compromised, such agents almost invariably demonstrate antibacterial activity against Gram negatives. Here we show that this is not the case for the antibiotic daptomycin, whose target appears to be absent from E. coli and other Gram-negative pathogens.

  4. Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections.

    Science.gov (United States)

    Kutob, Leila F; Justo, Julie Ann; Bookstaver, P Brandon; Kohn, Joseph; Albrecht, Helmut; Al-Hasan, Majdi N

    2016-11-01

    There is paucity of data evaluating intravenous-to-oral antibiotic switch options for Gram-negative bloodstream infections (BSIs). This retrospective cohort study examined the effectiveness of oral antibiotics for definitive treatment of Gram-negative BSI. Patients with Gram-negative BSI hospitalised for antibiotics were included in this study. The cohort was stratified into three groups based on bioavailability of oral antibiotics prescribed (high, ≥95%; moderate, 75-94%; and low, antibiotics were prescribed to 106, 179 and 77 patients, respectively, for definitive therapy of Gram-negative BSI. Mean patient age was 63 years, 217 (59.9%) were women and 254 (70.2%) had a urinary source of infection. Treatment failure rates were 2%, 12% and 14% in patients receiving oral antibiotics with high, moderate and low bioavailability, respectively (P = 0.02). Risk of treatment failure in the multivariate Cox model was higher in patients receiving antibiotics with moderate [adjusted hazard ratio (aHR) = 5.9, 95% CI 1.6-38.5; P = 0.005] and low bioavailability (aHR = 7.7, 95% CI 1.9-51.5; P = 0.003) compared with those receiving oral antimicrobial agents with high bioavailability. These data demonstrate the effectiveness of oral antibiotics with high bioavailability for definitive therapy of Gram-negative BSI. Risk of treatment failure increases as bioavailability of the oral regimen declines. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. Extended spectrum beta-lactamases in urinary gram-negative bacilli and their susceptibility pattern

    International Nuclear Information System (INIS)

    Mumtaz, S.

    2008-01-01

    Beta-lactamases of gram-negative bacteria are the most important mechanism of resistance against beta lactams. Two types of beta-lactamases can confer resistance against third generation cephalosporins inducible Chromosomal beta -lactamases and extended-spectrum beta-lactamases. The extended-spectrum beta lactamases producing Strains of Enterobacteriaceae have emerged as a major problem in hospitalized as well as community based infections resulting in range of infections from uncomplicated urinary tract infection to life threatening sepsis. The study was conducted at the Microbiology Department of Fauji Foundation Hospital, Rawalpindi over a period of two years (April 2004-March 2006). Multidrug resistance and extended spectrum beta-lactamases production was studied in 111 enteric Gram-negative bacilli isolated from urine of symptomatic patients (1- 70 years) including males and females from indoor and outdoor patients by using double disc diffusion technique. Prevalence of extended-spectrum beta-lactamases production was seen in 71 (61.2%) enteric gram-negative organisms, the most prevalent gram-negative organism was Klebsiella pneumoniae 40 (71.4%) followed by Escherichia coli 27 (62.8%) and Pseudomonas aeruginosa 3 (25%). The extended-spectrum beta-lactamases producers were more prevalent in indoor patients 63 (88.7%) compared to outdoor patients 8 (11.3%), more in females 43 (60.6%) than males, 28 (39.4%). The extended-spectrum beta-lactamases producing gram-negative rods had more antibiotic-resistant profile than non-producers. All enteric gram negative rods should be tested for the production of extended-spectrum beta-lactamases in routine microbiology laboratory. (author)

  6. Widespread Fosfomycin Resistance in Gram-Negative Bacteria Attributable to the Chromosomal fosA Gene

    Directory of Open Access Journals (Sweden)

    Ryota Ito

    2017-08-01

    Full Text Available Fosfomycin is a decades-old antibiotic which is being revisited because of its perceived activity against many extensively drug-resistant Gram-negative pathogens. FosA proteins are Mn2+ and K+-dependent glutathione S-transferases which confer fosfomycin resistance in Gram-negative bacteria by conjugation of glutathione to the antibiotic. Plasmid-borne fosA variants have been reported in fosfomycin-resistant Escherichia coli strains. However, the prevalence and distribution of fosA in other Gram-negative bacteria are not known. We systematically surveyed the presence of fosA in Gram-negative bacteria in over 18,000 published genomes from 18 Gram-negative species and investigated their contribution to fosfomycin resistance. We show that FosA homologues are present in the majority of genomes in some species (e.g., Klebsiella spp., Enterobacter spp., Serratia marcescens, and Pseudomonas aeruginosa, whereas they are largely absent in others (e.g., E. coli, Acinetobacter baumannii, and Burkholderia cepacia. FosA proteins in different bacterial pathogens are highly divergent, but key amino acid residues in the active site are conserved. Chromosomal fosA genes conferred high-level fosfomycin resistance when expressed in E. coli, and deletion of chromosomal fosA in S. marcescens eliminated fosfomycin resistance. Our results indicate that FosA is encoded by clinically relevant Gram-negative species and contributes to intrinsic fosfomycin resistance.

  7. Raman Spectroscopy of Xylitol Uptake and Metabolism in Gram-Positive and Gram-Negative Bacteria▿

    Science.gov (United States)

    Palchaudhuri, Sunil; Rehse, Steven J.; Hamasha, Khozima; Syed, Talha; Kurtovic, Eldar; Kurtovic, Emir; Stenger, James

    2011-01-01

    Visible-wavelength Raman spectroscopy was used to investigate the uptake and metabolism of the five-carbon sugar alcohol xylitol by Gram-positive viridans group streptococcus and the two extensively used strains of Gram-negative Escherichia coli, E. coli C and E. coli K-12. E. coli C, but not E. coli K-12, contains a complete xylitol operon, and the viridans group streptococcus contains an incomplete xylitol operon used to metabolize the xylitol. Raman spectra from xylitol-exposed viridans group streptococcus exhibited significant changes that persisted even in progeny grown from the xylitol-exposed mother cells in a xylitol-free medium for 24 h. This behavior was not observed in the E. coli K-12. In both viridans group streptococcus and the E. coli C derivative HF4714, the metabolic intermediates are stably formed to create an anomaly in bacterial normal survival. The uptake of xylitol by Gram-positive and Gram-negative pathogens occurs even in the presence of other high-calorie sugars, and its stable integration within the bacterial cell wall may discontinue bacterial multiplication. This could be a contributing factor for the known efficacy of xylitol when taken as a prophylactic measure to prevent or reduce occurrences of persistent infection. Specifically, these bacteria are causative agents for several important diseases of children such as pneumonia, otitis media, meningitis, and dental caries. If properly explored, such an inexpensive and harmless sugar-alcohol, alone or used in conjunction with fluoride, would pave the way to an alternative preventive therapy for these childhood diseases when the causative pathogens have become resistant to modern medicines such as antibiotics and vaccine immunotherapy. PMID:21037297

  8. Combinatorial events of insertion sequences and ICE in Gram-negative bacteria.

    Science.gov (United States)

    Toleman, Mark A; Walsh, Timothy R

    2011-09-01

    The emergence of antibiotic and antimicrobial resistance in Gram-negative bacteria is incremental and linked to genetic elements that function in a so-called 'one-ended transposition' manner, including ISEcp1, ISCR elements and Tn3-like transposons. The power of these elements lies in their inability to consistently recognize one of their own terminal sequences, while recognizing more genetically distant surrogate sequences. This has the effect of mobilizing the DNA sequence found adjacent to their initial location. In general, resistance in Gram-negatives is closely linked to a few one-off events. These include the capture of the class 1 integron by a Tn5090-like transposon; the formation of the 3' conserved segment (3'-CS); and the fusion of the ISCR1 element to the 3'-CS. The structures formed by these rare events have been massively amplified and disseminated in Gram-negative bacteria, but hitherto, are rarely found in Gram-positives. Such events dominate current resistance gene acquisition and are instrumental in the construction of large resistance gene islands on chromosomes and plasmids. Similar combinatorial events appear to have occurred between conjugative plasmids and phages constructing hybrid elements called integrative and conjugative elements or conjugative transposons. These elements are beginning to be closely linked to some of the more powerful resistance mechanisms such as the extended spectrum β-lactamases, metallo- and AmpC type β-lactamases. Antibiotic resistance in Gram-negative bacteria is dominated by unusual combinatorial mistakes of Insertion sequences and gene fusions which have been selected and amplified by antibiotic pressure enabling the formation of extended resistance islands. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Prevalence of Gram-negative Pathogens and their antimicrobial ...

    African Journals Online (AJOL)

    The present study was conducted to find out the prevalence and spectrum of Gram negative pathogens causing bacterial meningitis and their antimicrobial susceptibility pattern in a tertiary care hospital. The cerebrospinal fluid (CSF) (3-5 ml) was collected from 638 admitted children clinically suspected of septic meningitis.

  10. Sinus surgery postpones chronic gram-negative lung infection

    DEFF Research Database (Denmark)

    Alanin, M C; Aanaes, K; Høiby, N

    2016-01-01

    Background: In patients with cystic fibrosis (CF) the sinuses are a bacterial reservoir for Gram-negative bacteria (GNB). From the sinuses the GNB can repeatedly migrate to the lungs. In a one-year follow-up study, endoscopic sinus surgery (ESS) with adjuvant therapy reduced the frequency...

  11. Black-pigmented gram-negative anaerobes in endodontic infections.

    Science.gov (United States)

    Haapasalo, M

    1993-03-01

    Necrotic dental root canal infections are polymicrobial infections dominated by anaerobic bacteria. The number of different species in one canal is usually low, approx. 4-7 species. The species isolated most frequently belong to the genera Prevotella, Porphyromonas, Fusobacterium, Peptostreptococcus, Eubacterium and Streptococcus. The frequency of isolation of black-pigmented Gram-negative anaerobes in endodontic infections varies from 25% to > 50%. Pr. intermedia is the most commonly found pigmented species, followed by Pr. denticola and two Porphyromonas species, P. gingivalis and P. endodontalis. Several studies have shown that P. gingivalis and P. endodontalis are closely related to the presence of acute symptoms in endodontic infections, whereas other black-pigmented Gram-negative anaerobes are not. However, several other species may also be involved in acute infections. Moreover, Porphyromonas species have occasionally been isolated from cases with no symptoms. Although Porphyromonas spp. are clearly related to symptoms at the beginning of therapy, they are not important for the prognosis of the treatment.

  12. Breaking barriers: expansion of the use of endolysins as novel antibacterials against Gram-negative bacteria.

    Science.gov (United States)

    Briers, Yves; Lavigne, Rob

    2015-01-01

    The emergence and spread of antibiotic-resistant bacteria drives the search for novel classes of antibiotics to replenish our armamentarium against bacterial infections. This is particularly critical for Gram-negative pathogens, which are intrinsically resistant to many existing classes of antibiotics due to the presence of a protective outer membrane. In addition, the antibiotics development pipeline is mainly oriented to Gram-positive pathogens such as methicillin-resistant Staphylococcus aureus. A promising novel class of antibacterials is endolysins. These enzymes encoded by bacterial viruses hydrolyze the peptidoglycan layer with high efficiency, resulting in abrupt osmotic lysis and cell death. Their potential as novel antibacterials to treat Gram-positive bacteria has been extensively demonstrated; however, the Gram-negative outer membrane has presented a formidable barrier for the use of endolysins against Gram-negatives until recently. This review reports on the most recent advances in the development of endolysins to kill Gram-negative species with a special focus on endolysin-engineered Artilysins(®).

  13. Inhaled Antibiotics for Gram-Negative Respiratory Infections

    Science.gov (United States)

    Fraidenburg, Dustin R.; Scardina, Tonya

    2016-01-01

    SUMMARY Gram-negative organisms comprise a large portion of the pathogens responsible for lower respiratory tract infections, especially those that are nosocomially acquired, and the rate of antibiotic resistance among these organisms continues to rise. Systemically administered antibiotics used to treat these infections often have poor penetration into the lung parenchyma and narrow therapeutic windows between efficacy and toxicity. The use of inhaled antibiotics allows for maximization of target site concentrations and optimization of pharmacokinetic/pharmacodynamic indices while minimizing systemic exposure and toxicity. This review is a comprehensive discussion of formulation and drug delivery aspects, in vitro and microbiological considerations, pharmacokinetics, and clinical outcomes with inhaled antibiotics as they apply to disease states other than cystic fibrosis. In reviewing the literature surrounding the use of inhaled antibiotics, we also highlight the complexities related to this route of administration and the shortcomings in the available evidence. The lack of novel anti-Gram-negative antibiotics in the developmental pipeline will encourage the innovative use of our existing agents, and the inhaled route is one that deserves to be further studied and adopted in the clinical arena. PMID:27226088

  14. Resistance trends in gram-negative bacteria: surveillance results from two Mexican hospitals, 2005–2010

    Directory of Open Access Journals (Sweden)

    Morfin-Otero Rayo

    2012-06-01

    Full Text Available Abstract Background Hospital-acquired infections caused by multiresistant gram-negative bacteria are difficult to treat and cause high rates of morbidity and mortality. The analysis of antimicrobial resistance trends of gram-negative pathogens isolated from hospital-acquired infections is important for the development of antimicrobial stewardship programs. The information obtained from antimicrobial resistant programs from two hospitals from Mexico will be helpful in the selection of empiric therapy for hospital-acquired gram-negative infections. Findings Two thousand one hundred thirty two gram-negative bacteria collected between January 2005 and December 2010 from hospital-acquired infections occurring in two teaching hospitals in Mexico were evaluated. Escherichia coli was the most frequently isolated gram-negative bacteria, with >50% of strains resistant to ciprofloxacin and levofloxacin. Klebsiella spp. showed resistance rates similar to Escherichia coli for ceftazidime (33.1% vs 33.2%, but exhibited lower rates for levofloxacin (18.2% vs 56%. Of the samples collected for the third most common gram-negative bacteria, Pseudomonas aeruginosa, >12.8% were resistant to the carbapenems, imipenem and meropenem. The highest overall resistance was found in Acinetobacter spp. Enterobacter spp. showed high susceptibility to carbapenems. Conclusions E. coli was the most common nosocomial gram-negative bacilli isolated in this study and was found to have the second-highest resistance to fluoroquinolones (>57.9%, after Acinetobacter spp. 81.2%. This finding represents a disturbing development in a common nosocomial and community pathogen.

  15. A Synthetic Dual Drug Sideromycin Induces Gram-Negative Bacteria To Commit Suicide with a Gram-Positive Antibiotic.

    Science.gov (United States)

    Liu, Rui; Miller, Patricia A; Vakulenko, Sergei B; Stewart, Nichole K; Boggess, William C; Miller, Marvin J

    2018-05-10

    Many antibiotics lack activity against Gram-negative bacteria because they cannot permeate the outer membrane or suffer from efflux and, in the case of β-lactams, are degraded by β-lactamases. Herein, we describe the synthesis and studies of a dual drug conjugate (1) of a siderophore linked to a cephalosporin with an attached oxazolidinone. The cephalosporin component of 1 is rapidly hydrolyzed by purified ADC-1 β-lactamase to release the oxazolidinone. Conjugate 1 is active against clinical isolates of Acinetobacter baumannii as well as strains producing large amounts of ADC-1 β-lactamase. Overall, the results are consistent with siderophore-mediated active uptake, inherent activity of the delivered dual drug, and in the presence of β-lactamases, intracellular release of the oxazolidinone upon cleavage of the cephalosporin to allow the freed oxazolidinone to inactivate its target. The ultimate result demonstrates that Gram-positive oxazolidinone antibiotics can be made to be effective against Gram-negative bacteria by β-lactamase triggered release.

  16. [Influence of serious infections due to Gram-negative bacteria on the hospital economy].

    Science.gov (United States)

    Martínez, B; Gómez, J; Gómez Vargas, J; Guerra, B; Ruiz Gómez, J; Simarro, E; Baños, V; Canteras, M; Valdes, M

    2000-12-01

    Nosocomial infections due to Gram-negative bacteria are very important since they are associated with high morbidity and high hospital costs. A prospective study of 250 inpatients was carried out, 200 of whom had Gram-negative bacterial infections. Patients were divided into groups of 50 according to the localization of the infection (urinary, surgical wound, respiratory tract and bacteremia), with a control group of 50 patients with similar characteristics but no infection. We calculated the cost for the different groups by multiplying the average length of hospital stay in days by the daily cost of the stay. Significant differences were observed in the average length of stay per patient according to the type of infection and how it was acquired. In terms of cost, nosocomial infection due to Gram-negative bacteria was 1,049,139 pesetas more expensive than community-acquired infection. The cost of the stay for patients with postsurgical infection due to Gram-negative bacteria was 1,108, 252 pesetas more expensive than for the group of control patients. Nosocomial infection due to Gram-negative bacteria is associated with a prolongation in hospital stay of 9 to 28 days, which is the factor that most reflects the cost that can be attributed to nosocomial infection. Consensual and protocolized measures which allow for better clinical management need to be developed.

  17. Changing epidemiology of central venous catheter-related bloodstream infections: increasing prevalence of Gram-negative pathogens.

    Science.gov (United States)

    Marcos, Miguel; Soriano, Alex; Iñurrieta, Amaia; Martínez, José A; Romero, Alberto; Cobos, Nazaret; Hernández, Cristina; Almela, Manel; Marco, Francesc; Mensa, Josep

    2011-09-01

    Gram-positive microorganisms have been the predominant pathogens in central venous catheter-related bloodstream infections (CRBSIs). Recent guidelines recommend empirical therapy according to this and restrict coverage for Gram-negatives to specific circumstances. This study aimed to analyse the epidemiological changes in CRBSIs over the 1991-2008 period and to analyse predictors of Gram-negative CRBSIs. A prospectively collected cohort of patients with confirmed CRBSIs was analysed. Strains isolated and antimicrobial susceptibility, as well as clinical and demographic variables were recorded. Differences observed during the study period were analysed by means of a χ² trend test and factors associated with Gram-negative CRBSIs by means of multivariable analysis. Between 1991 and 2008, 1129 episodes of monomicrobial CRBSIs were recorded. There was an increase in the incidence of CRBSIs, from 0.10 (1991-92) to 0.31 (2007-08) episodes/1000 patient-days. A significant increase in the number of Gram-negative strains among the total isolates was also found, from 3 (4.7%) in 1991-92 to 70 (40.23%) in 2007-08, with a parallel decrease in the percentage of Gram-positives. Solid organ transplantation, prior use of penicillins and hospital stay longer than 11 days were independently associated with a significantly higher risk of Gram-negative CRBSIs, while cirrhosis, diabetes and use of quinolones were associated with a higher risk of Gram-positives. Gram-negative strains are an increasing cause of CRBSIs, reaching a prevalence of 40% in the 2007-08 period in our hospital. If this trend is confirmed in other centres, a broad-spectrum empirical therapy should be considered in managing these infections.

  18. Community-acquired multidrug-resistant Gram-negative bacterial infective endocarditis.

    Science.gov (United States)

    Naha, Sowjanya; Naha, Kushal; Acharya, Vasudev; Hande, H Manjunath; Vivek, G

    2014-08-05

    We describe two cases of bacterial endocarditis secondary to multidrug-resistant Gram-negative organisms. In both cases, the diagnosis was made in accordance with the modified Duke's criteria and confirmed by histopathological analysis. Furthermore, in both instances there were no identifiable sources of bacteraemia and no history of contact with hospital or other medical services prior to the onset of symptoms. The patients were managed in similar fashion with prolonged broad-spectrum antibiotic therapy and surgical intervention and made complete recoveries. These cases highlight Gram-negative organisms as potential agents for endocarditis, as well as expose the dissemination of such multidrug-resistant bacteria into the community. The application of an integrated medical and surgical approach and therapeutic dilemmas encountered in managing these cases are described. 2014 BMJ Publishing Group Ltd.

  19. Gram-negative folliculitis. A rare problem or is it underdiagnosed? Case report and literature review

    Directory of Open Access Journals (Sweden)

    Sierra-Téllez Daniela, Ponce-Olivera Rosa María, Tirado-Sánchez Andrés

    2011-07-01

    Full Text Available AbstractGram-negative folliculitis may be the result of prolonged antibacterial treatments in patients with acne and rosacea. It is caused by alteration of facial skin flora and the nasal mucous, a decrease of Gram-positive bacteria and a proliferation of Gram-negative bacteria (for example Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella sp. and Proteus mirabilis. It should be considered in patients with acne who have not had a clinical improvement after 3-6 months of treatment with tetracyclines. The disease is underestimated, probably because bacteriological studies are rarely requested and the increased use of oral isotretinoin for acne management. One of the most effective treatments for Gram-negative folliculitis is oral isotretinoin (0.5-1 mg / kg / day for 4-5 months. We report the case of Gram negative folliculitis successfully treated with oral isotretinoin.

  20. Metabolic engineering in chemolithoautotrophic hosts for the production of fuels and chemicals.

    Science.gov (United States)

    Nybo, S Eric; Khan, Nymul E; Woolston, Benjamin M; Curtis, Wayne R

    2015-07-01

    The ability of autotrophic organisms to fix CO2 presents an opportunity to utilize this 'greenhouse gas' as an inexpensive substrate for biochemical production. Unlike conventional heterotrophic microorganisms that consume carbohydrates and amino acids, prokaryotic chemolithoautotrophs have evolved the capacity to utilize reduced chemical compounds to fix CO2 and drive metabolic processes. The use of chemolithoautotrophic hosts as production platforms has been renewed by the prospect of metabolically engineered commodity chemicals and fuels. Efforts such as the ARPA-E electrofuels program highlight both the potential and obstacles that chemolithoautotrophic biosynthetic platforms provide. This review surveys the numerous advances that have been made in chemolithoautotrophic metabolic engineering with a focus on hydrogen oxidizing bacteria such as the model chemolithoautotrophic organism (Ralstonia), the purple photosynthetic bacteria (Rhodobacter), and anaerobic acetogens. Two alternative strategies of microbial chassis development are considered: (1) introducing or enhancing autotrophic capabilities (carbon fixation, hydrogen utilization) in model heterotrophic organisms, or (2) improving tools for pathway engineering (transformation methods, promoters, vectors etc.) in native autotrophic organisms. Unique characteristics of autotrophic growth as they relate to bioreactor design and process development are also discussed in the context of challenges and opportunities for genetic manipulation of organisms as production platforms. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Epidemiology of infections caused by multiresistant gram-negatives: ESBLs, MBLs, panresistant strains.

    Science.gov (United States)

    Rossolini, Gian Maria; Mantengoli, Elisabetta; Docquier, Jean-Denis; Musmanno, Rosa Anna; Coratza, Grazietta

    2007-07-01

    Microbial drug resistance is a growing problem of global magnitude. In gram-negative pathogens, the most important resistance problems are encountered in Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter, with increasing trends observed for all major anti-gram-negative agents (beta-lactams, fluoroquinolones and aminoglycosides). A matter of major concern is the emergence of new beta-lactamases capable of degrading the expanded-spectrum cephalosporins and/or carbapenems, such as the extended-spectrum beta-lactamases (ESBLs) and the carbapenemases. These beta-lactamase genes are often associated with resistance determinants to non-beta-lactam agents (e.g. aminoglycosides and fluoroquinolones), and strains producing ESBLs or carbapenemases often exhibit complex multidrug resistant phenotypes and sometimes are panresistant. The problem is worsened by the dearth of new agents active on multidrug-resistant Gram-negatives in the pipeline. The importance to develop better strategies to control resistance is underscored.

  2. STUDY ON SURGICAL SITE INFECTIONS CAUSED BY ESBL PRODUCING GRAM NEGATIVE BACTERIA

    Directory of Open Access Journals (Sweden)

    Rambabu

    2015-09-01

    Full Text Available Surgical site infections have been a major problem, because of the emergence of drug resistant bacteria, in particular B - lactamase producing bacteria. Extended spectrum beta lactamase producing gram negative organisms pose a great challenge in treatment o f SSI present study is aimed at determining multiple drug resistance in gram negative bacteria & to find out ESBL producers, in correlation with treatment outcome. A total of 120 wound infected cases were studied. Staphylococcus aureus was predominant bact erium - 20.Among gram negative bacteria, Pseudomonas species is predominant (14 followed by Escherichia coli (13 , Klebsiella species (12 , Proteus (9 Citrobacter (4 Providencia (2 & Acinetobacter species (2 . Out of 56 gramnegative bacteria isolated, 20 were i dentified as ESBL producers, which was statistically significant. Delay in wound healing correlated with infection by ESBL producers, which alarms the need of abstinence from antibiotic abuse

  3. Quorum sensing in gram-negative bacteria

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.J.; Høiby, N.

    2004-01-01

    Bacteria can communicate with each other by means of signal molecules to coordinate the behavior of the entire community, and the mechanism is referred to as quorum sensing (QS). Signal systems enable bacteria to sense the size of their densities by monitoring the concentration of the signal...... molecules. Among Gram-negative bacteria N-acyl-L-homoserine lactone (acyl-HSL)-dependent quorum sensing systems are particularly widespread. These systems are used to coordinate expression of phenotypes that are fundamental to the interaction of bacteria with each other and with their environment...

  4. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria.

    Science.gov (United States)

    Arzanlou, Mohsen; Chai, Wern Chern; Venter, Henrietta

    2017-02-28

    Gram-negative bacteria are responsible for a large proportion of antimicrobial-resistant infections in humans and animals. Among this class of bacteria are also some of the most successful environmental organisms. Part of this success is their adaptability to a variety of different niches, their intrinsic resistance to antimicrobial drugs and their ability to rapidly acquire resistance mechanisms. These mechanisms of resistance are not exclusive and the interplay of several mechanisms causes high levels of resistance. In this review, we explore the molecular mechanisms underlying resistance in Gram-negative organisms and how these different mechanisms enable them to survive many different stress conditions. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  5. Organo-Selenium Coatings Inhibit Gram-Negative and Gram-Positive Bacterial Attachment to Ophthalmic Scleral Buckle Material.

    Science.gov (United States)

    Tran, Phat; Arnett, Avery; Jarvis, Courtney; Mosley, Thomas; Tran, Khien; Hanes, Rob; Webster, Dan; Mitchell, Kelly; Dominguez, Leo; Hamood, Abdul; Reid, Ted W

    2017-09-01

    Biofilm formation is a problem for solid and sponge-type scleral buckles. This can lead to complications that require removal of the buckle, and result in vision loss due to related ocular morbidity, primarily infection, or recurrent retinal detachment. We investigate the ability of a covalent organo-selenium coating to inhibit biofilm formation on a scleral buckle. Sponge and solid Labtican brand scleral buckles were coated with organo-selenium coupled to a silyation reagent. Staphylococcus aureus biofilm formation was monitored by a standard colony-forming unit assay and the confocal laser scanning microscopy, while Pseudomonas aeruginosa biofilm formation was examined by scanning electron microscopy. Stability studies were done, by soaking in phosphate buffer saline (PBS) at room temperature for 2 months. Toxicity against human corneal epithelial cell was examined by growing the cells in the presence of organo-selenium-coated scleral buckles. The organo-selenium coating inhibited biofilm formation by gram-negative and gram-positive bacteria. The buckle coatings also were shown to be fully active after soaking in PBS for 2 months. The organo-selenium coatings had no effect on the viability of human corneal epithelial cells. Organo-selenium can be used to covalently coat a scleral buckle, which is stable and inhibits biofilm formation for gram-negative and gram-positive bacteria. The organo-selenium buckle coating was stable and nontoxic to cell culture. This technology provides a means to inhibit bacterial attachment to devices attached to the eye, without damage to ocular cells.

  6. [Diagnostic and therapeutic management of Gram-negative infections].

    Science.gov (United States)

    Bassetti, Matteo; Repetto, Ernestina

    2008-04-01

    Among Gram negative bacteria, Pseudomonas aeruginosa, the extended spectrum beta-lactamases (ESBL)-producing strains, Acinetobacter spp, in particular the multiresistant Acinetobacter baumannii, and Stenotrophomonas maltophilia are the most implicated micrororganisms in the ever more increasing problem of bacterial resistance. Possible solutions have to be searched, on one hand, in the use of new drugs but, on the other hand, in the re-evaluation of those already available drugs, possibly considering a new role for old drugs such as colistine and fosfomycin. Concerning ESBL-producing strains, the most recent data provided by EARSS report, in Italy, an incidence rate of 10-25 percent. The insurgence of an infection sustained by an ESBL+ve strain is strictly related to some well known risk factors, like the hospital stay itself, the disease severity, the length of stay in ICU, intubation and mechanical ventilation, catheterization, urinary or artery, and the past exposure to antibiotics. The raise in ESBL producing strains is closely related to the increasing use of cephalosporins. In the setting of a Gram negative infection, the combination therapy guarantees a higher coverage by reducing insurgence of possible resistance mechanisms, possibly resulting synergistic, and allowing a de-escalation therapy, although to this latter other problems, such as tolerability, costs and compliance, can be related. Another basic aspect to take into account of, in order to achieve the maximal efficacy of the antibiotic treatment, is the right dosage. In the idea to look for the best approach for the antibiotic treatment of a severe infection in a hospital setting, when a Gram negative aetiology is implicated, it can be possibly presumed that the right way consists in avoiding inappropriate antibiotic therapies, making therapeutic choices based on guidelines resulted from local epidemiological data, initiating the therapy promptly, avoiding excessive use of antibiotics, possibly

  7. Bacteremias in liver transplant recipients: shift toward gram-negative bacteria as predominant pathogens.

    Science.gov (United States)

    Singh, Nina; Wagener, Marilyn M; Obman, Asia; Cacciarelli, Thomas V; de Vera, Michael E; Gayowski, Timothy

    2004-07-01

    During the 1990s, gram-positive bacteria emerged as major pathogens after liver transplantation. We sought to determine whether the pathogens associated with bacteremias in liver transplant recipients have changed. Patients included 233 liver transplant recipients transplanted between 1989 and 2003. The proportion of all infections due to bacteremias increased significantly over time (P gram-negatives increased from 25% in the period of 1989-1993 to 51.8% in 1998-03, that of gram-positive bacteria decreased from 75% in the period of 1989-93 to 48.2% in the period of 1998-2003. Methicillin-resistant Staphylococcus aureus (MRSA), Klebsiella pneumoniae, and Pseudomonas aeruginosa were the most frequent pathogens in bacteremic patients. The incidence of bacteremias due to MRSA and Pseudomonas aeruginosa has remained unchanged (P gram-negative bacteria, particularly Klebsiella pneumoniae has increased (P =.02). Klebsiella pneumoniae isolates in the current quartile were not clonally related. In conclusion, bacteremias as a proportion of all infections in liver transplant recipients have increased significantly over time, due in part to a decline in infections due to other major pathogens, e.g., fungi, primarily Candida species, and CMV. Gram-negative bacteria have emerged as predominant pathogens in bacteremic liver transplant recipients.

  8. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    Science.gov (United States)

    Richmond, Robert Chaffee (Inventor); Schramm, Jr., Harry F. (Inventor); Defalco, Francis G. (Inventor); Farris, III, Alex F. (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  9. Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive

    Energy Technology Data Exchange (ETDEWEB)

    Cournet, Amandine [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France); Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Delia, Marie-Line; Bergel, Alain [Laboratoire de Genie Chimique CNRS, Universite de Toulouse, 4 allee Emile Monso, BP 84234, 31432 Toulouse cedex 04 (France); Roques, Christine; Berge, Mathieu [Universite de Toulouse, UPS, LU49, Adhesion Bacterienne et Formation de Biofilms, 35 chemin des Maraichers, 31 062 Toulouse cedex 09 (France)

    2010-04-15

    Most bacteria known to be electrochemically active have been harvested in the anodic compartments of microbial fuel cells (MFCs) and are able to use electrodes as electron acceptors. The reverse phenomenon, i.e. using solid electrodes as electron donors, is not so widely studied. To our knowledge, most of the electrochemically active bacteria are Gram-negative. The present study implements a transitory electrochemical technique (cyclic voltammetry) to study the microbial catalysis of the electrochemical reduction of oxygen. It is demonstrated that a wide range of aerobic and facultative anaerobic bacteria are able to catalyze oxygen reduction. Among these electroactive bacteria, several were Gram-positive. The transfer of electrons was direct since no activity was obtained with the filtrate. These findings, showing a widespread property among bacteria including Gram-positive ones, open new and interesting routes in the field of electroactive bacteria research. (author)

  10. Prediction of lipoprotein signal peptides in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Willenbrock, Hanni; Von Heijne, G.

    2003-01-01

    A method to predict lipoprotein signal peptides in Gram-negative Eubacteria, LipoP, has been developed. The hidden Markov model (HMM) was able to distinguish between lipoproteins (SPaseII-cleaved proteins), SPaseI-cleaved proteins, cytoplasmic proteins, and transmembrane proteins. This predictor ...

  11. Multidrug resistance in enteric and other gram-negative bacteria.

    Science.gov (United States)

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  12. Carbapenem-Resistant Non-Glucose-Fermenting Gram-Negative Bacilli: the Missing Piece to the Puzzle

    Science.gov (United States)

    Gniadek, Thomas J.; Carroll, Karen C.

    2016-01-01

    The non-glucose-fermenting Gram-negative bacilli Pseudomonas aeruginosa and Acinetobacter baumannii are increasingly acquiring carbapenem resistance. Given their intrinsic antibiotic resistance, this can cause extremely difficult-to-treat infections. Additionally, resistance gene transfer can occur between Gram-negative species, regardless of their ability to ferment glucose. Thus, the acquisition of carbapenemase genes by these organisms increases the risk of carbapenemase spread in general. Ultimately, infection control practitioners and clinical microbiologists need to work together to determine the risk carried by carbapenem-resistant non-glucose-fermenting Gram-negative bacilli (CR-NF) in their institution and what methods should be considered for surveillance and detection of CR-NF. PMID:26912753

  13. False-Negative Rate of Gram-Stain Microscopy for Diagnosis of Septic Arthritis: Suggestions for Improvement

    Directory of Open Access Journals (Sweden)

    Paul Stirling

    2014-01-01

    Full Text Available We quantify the false-negative diagnostic rate of septic arthritis using Gram-stain microscopy of synovial fluid and compare this to values reported in the peer-reviewed literature. We propose a method of improving the diagnostic value of Gram-stain microscopy using Lithium Heparin containers that prevent synovial fluid coagulation. Retrospective study of the Manchester Royal Infirmary microbiology database of patients undergoing synovial fluid Gram-stain and culture between December 2003 and March 2012 was undertaken. The initial cohort of 1896 synovial fluid analyses for suspected septic arthritis was reduced to 143 after exclusion criteria were applied. Analysis of our Gram-stain microscopy yielded 111 false-negative results from a cohort size of 143 positive synovial fluid cultures, giving a false-negative rate of 78%. We report a false-negative rate of Gram-stain microscopy for septic arthritis of 78%. Clinicians should therefore avoid the investigation until a statistically significant data set confirms its efficacy. The investigation's value could be improved by using Lithium Heparin containers to collect homogenous synovial fluid samples. Ongoing research aims to establish how much this could reduce the false-negative rate.

  14. Gram-negative and -positive bacteria differentiation in blood culture samples by headspace volatile compound analysis.

    Science.gov (United States)

    Dolch, Michael E; Janitza, Silke; Boulesteix, Anne-Laure; Graßmann-Lichtenauer, Carola; Praun, Siegfried; Denzer, Wolfgang; Schelling, Gustav; Schubert, Sören

    2016-12-01

    Identification of microorganisms in positive blood cultures still relies on standard techniques such as Gram staining followed by culturing with definite microorganism identification. Alternatively, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or the analysis of headspace volatile compound (VC) composition produced by cultures can help to differentiate between microorganisms under experimental conditions. This study assessed the efficacy of volatile compound based microorganism differentiation into Gram-negatives and -positives in unselected positive blood culture samples from patients. Headspace gas samples of positive blood culture samples were transferred to sterilized, sealed, and evacuated 20 ml glass vials and stored at -30 °C until batch analysis. Headspace gas VC content analysis was carried out via an auto sampler connected to an ion-molecule reaction mass spectrometer (IMR-MS). Measurements covered a mass range from 16 to 135 u including CO2, H2, N2, and O2. Prediction rules for microorganism identification based on VC composition were derived using a training data set and evaluated using a validation data set within a random split validation procedure. One-hundred-fifty-two aerobic samples growing 27 Gram-negatives, 106 Gram-positives, and 19 fungi and 130 anaerobic samples growing 37 Gram-negatives, 91 Gram-positives, and two fungi were analysed. In anaerobic samples, ten discriminators were identified by the random forest method allowing for bacteria differentiation into Gram-negative and -positive (error rate: 16.7 % in validation data set). For aerobic samples the error rate was not better than random. In anaerobic blood culture samples of patients IMR-MS based headspace VC composition analysis facilitates bacteria differentiation into Gram-negative and -positive.

  15. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L.) on Two Gram-Negative and Gram-Positive Bacteria

    Science.gov (United States)

    Biswas, Bipul; Rogers, Kimberly; McLaughlin, Fredrick; Yadav, Anand

    2013-01-01

    Aim. To determine the antimicrobial potential of guava (Psidium guajava) leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis) and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water). The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties. PMID:24223039

  16. Antimicrobial Activities of Leaf Extracts of Guava (Psidium guajava L. on Two Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Bipul Biswas

    2013-01-01

    Full Text Available Aim. To determine the antimicrobial potential of guava (Psidium guajava leaf extracts against two gram-negative bacteria (Escherichia coli and Salmonella enteritidis and two gram-positive bacteria (Staphylococcus aureus and Bacillus cereus which are some of foodborne and spoilage bacteria. The guava leaves were extracted in four different solvents of increasing polarities (hexane, methanol, ethanol, and water. The efficacy of these extracts was tested against those bacteria through a well-diffusion method employing 50 μL leaf-extract solution per well. According to the findings of the antibacterial assay, the methanol and ethanol extracts of the guava leaves showed inhibitory activity against gram-positive bacteria, whereas the gram-negative bacteria were resistant to all the solvent extracts. The methanol extract had an antibacterial activity with mean zones of inhibition of 8.27 and 12.3 mm, and the ethanol extract had a mean zone of inhibition of 6.11 and 11.0 mm against B. cereus and S. aureus, respectively. On the basis of the present finding, guava leaf-extract might be a good candidate in the search for a natural antimicrobial agent. This study provides scientific understanding to further determine the antimicrobial values and investigate other pharmacological properties.

  17. Dual beta-lactam therapy for serious Gram-negative infections: is it time to revisit?

    Science.gov (United States)

    Rahme, Christine; Butterfield, Jill M; Nicasio, Anthony M; Lodise, Thomas P

    2014-12-01

    We are rapidly approaching a crisis in antibiotic resistance, particularly among Gram-negative pathogens. This, coupled with the slow development of novel antimicrobial agents, underscores the exigency of redeploying existing antimicrobial agents in innovative ways. One therapeutic approach that was heavily studied in the 1980s but abandoned over time is dual beta-lactam therapy. This article reviews the evidence for combination beta-lactam therapy. Overall, in vitro, animal and clinical data are positive and suggest that beta-lactam combinations produce a synergistic effect against Gram-negative pathogens that rivals that of beta-lactam-aminoglycoside or beta-lactam-fluoroquinolone combination therapy. Although the precise mechanism of improved activity is not completely understood, it is likely attributable to an enhanced affinity to the diverse penicillin-binding proteins found among Gram negatives. The collective data indicate that dual beta-lactam therapy should be revisited for serious Gram-negative infections, especially in light of the near availability of potent beta-lactamase inhibitors, which neutralize the effect of problematic beta-lactamases. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Bovine mastitis caused by gram negative bacteria in Mosul

    Directory of Open Access Journals (Sweden)

    S. Y. A. Al-Dabbagh

    2012-01-01

    Full Text Available A total of 90 milk samples were collected from cows with clinical and subclinical mastitis from different areas in Mosul city, in a period from October 2009 to June 2010, for the detection of gram negative bacteriological causative agents. The bacteria were identified using morphological, cultural and biochemical characteristics. thirty tow (35.3% gram negative bacterial isolates were obtained from the total count which included 14 isolates (15.5% for Escherichia coli, 7 isolates (7.7% for Klebsiella spp, 4 isolates (4.4% for Pseudomonas aeruginosa, 3 isolates (3.3% for Enterobacter aerogenes ,2 isolates for Serratia marcescens and one isolates (1.1% for each of Aeromonas hydrophila and Pasteurella multocida. Results of antibiotic sensitivity test indicated that most of these isolates were sensitive to Ciprofloxacin following by Gentamycin and Cotrimoxazole, while most of these organisms were resistant to Ampicillin, the isolates showed different percentages of sensitivity to Doxycycline, Tetracycline, Neomycin and Chloramphenicol.

  19. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    Directory of Open Access Journals (Sweden)

    Maria Rosa Anna Plano

    2009-01-01

    Full Text Available This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD. Forty-six of 55 (83.6% food samples and 14 of 17 (82.3% environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  20. Antibiotic-resistant gram negative bacilli in meals delivered at a general hospital, Italy.

    Science.gov (United States)

    Plano, Maria Rosa Anna; Di Noto, Anna Maria; Firenze, Alberto; Sciortino, Sonia; Mammina, Caterina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July-September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs were culture positive for Gram negative bacilli resistant to at least one group of antibacterial drugs. A total of 134 antibiotic resistant strains, 51 fermenters and 83 non-fermenters, were recovered. Fermenters and non-fermenters showed frequencies as high as 97.8% of resistance to two or more groups of antibiotics and non fermenters were 28.9% resistant to more than three groups. Molecular typing detected 34 different profiles among the fermenters and 68 among the non-fermenters. Antibiotic resistance was very common among both fermenters and non-fermenters. However, the wide heterogeneity of RAPD patterns seems to support a prominent role of cross-contamination rather than a clonal expansion of a few resistant isolates. A contribution of commensal Gram negatives colonizing foods to a common bacterial resistance pool should not been overlooked.

  1. Outcomes of single organism peritonitis in peritoneal dialysis: gram negatives versus gram positives in the Network 9 Peritonitis Study.

    Science.gov (United States)

    Bunke, C M; Brier, M E; Golper, T A

    1997-08-01

    The use of the "peritonitis rate" in the management of patients undergoing peritoneal dialysis is assuming importance in comparing the prowess of facilities, care givers and new innovations. For this to be a meaningful outcome measure, the type of infection (causative pathogen) must have less clinical significance than the number of infections during a time interval. The natural history of Staphylococcus aureus, pseudomonas, and fungal peritonitis would not support that the outcome of an episode of peritonitis is independent of the causative pathogen. Could this concern be extended to other more frequently occurring pathogens? To address this, the Network 9 Peritonitis Study identified 530 episodes of single organism peritonitis caused by a gram positive organism and 136 episodes caused by a single non-pseudomonal gram negative (NPGN) pathogen. Coincidental soft tissue infections (exit site or tunnel) occurred equally in both groups. Outcomes of peritonitis were analyzed by organism classification and by presence or absence of a soft tissue infection. NPGN peritonitis was associated with significantly more frequent catheter loss, hospitalization, and technique failure and was less likely to resolve regardless of the presence or absence of a soft tissue infection. Hospitalization and death tended to occur more frequently with enterococcal peritonitis than with other gram positive peritonitis. The outcomes in the NPGN peritonitis group were significantly worse (resolution, catheter loss, hospitalization, technique failure) compared to coagulase negative staphylococcal or S. aureus peritonitis, regardless of the presence or absence of a coincidental soft tissue infection. Furthermore, for the first time, the poor outcomes of gram negative peritonitis are shown to be independent of pseudomonas or polymicrobial involvement or soft tissue infections. The gram negative organism appears to be the important factor. In addition, the outcome of peritonitis caused by S. aureus

  2. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  3. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  4. [Characteristic of clinical strains of gram-negative obligate anaerobes].

    Science.gov (United States)

    Kadzielska, Joanna; Kierzkowska, Marta; Sawicka-Grzelak, Anna; Rokosz, Alicja; Łuczak, Mirosław

    2007-01-01

    The aim of the study was to assess prevalence and antibiotic susceptibility profiles ofGram-negative strictly anaerobic bacteria isolated from clinical specimens taken from hospitalized patients in 2005-2006. Biochemical identification and antibiotic susceptibility were done in an automated system ATB Expression (bioMerieux sa). From 12262 specimens examined 867 strains of obligate anaerobes were isolated. Gram-negative strictly anaerobic bacteria were cultured in number of 138 strains (15,9%). All cultures were performed on Columbia agar and Schaedler agar media (bioMerieux sa) supplemented with 5% sheep blood and incubated at 37 degrees C for 48-120 h in 85% N2, 10% H2, 5% CO2. Most frequently isolated was Bacteroides spp. (41,3%). For this group beta-lactamase activity was evaluated by using nitrocefin disc test (Cefinase BBL, Becton Dickinson and Co., Cockeysville, MD, USA). Production of ESBLs was detected with the use of two disc diffusion methods: the double-disc synergy test (DDST) according to Jarlier et al. and the diagnostic disc (DD) test according to Appleton. ESBLs were produced by 5,3% strains of Bacteroides spp. For all Bacteroides spp. strains MIC values were determined by gradient diffusion method Etest (AB BIODISK, Sweden). ESBLs and MIC were performed on Wilkins-Chalgren solid medium supplemented with 5% sheep blood (Difco Lab., USA) and all plates were incubated at 35 degrees C for 48 hours in 85% N2, 10% H2, 5% CO2. Most Gram-negative obligate anaerobes isolated from clinical specimens are still susceptible to imipenem (100%), metronidazole (99,3%) and beta-lactam antibiotics with beta-lactamase inhibitors: piperacillin/tazobactam (99,3%), ticarcillin/clavulanate (99.3%), amoxicillin/clavulanate (97.8%).

  5. Rapid, highly sensitive detection of Gram-negative bacteria with lipopolysaccharide based disposable aptasensor.

    Science.gov (United States)

    Zhang, Jian; Oueslati, Rania; Cheng, Cheng; Zhao, Ling; Chen, Jiangang; Almeida, Raul; Wu, Jayne

    2018-07-30

    Gram-negative bacteria are one of the most common microorganisms in the environment. Their differential detection and recognition from Gram-positive bacteria has been attracting much attention over the years. Using Escherichia coli (E. coli) as a model, we demonstrated on-site detection of Gram-negative bacteria by an AC electrokinetics-based capacitive sensing method using commercial microelectrodes functionalized with an aptamer specific to lipopolysaccharides. Dielectrophoresis effect was utilized to enrich viable bacteria to the microelectrodes rapidly, achieving a detection limit of 10 2 cells/mL within a 30 s' response time. The sensor showed a negligible response to Staphylococcus aureus (S. aureus), a Gram-positive species. The developed sensor showed significant advantages in sensitivity, selectivity, cost, operation simplicity, and response time. Therefore, this sensing method has shown great application potential for environmental monitoring, food safety, and real-time diagnosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    Science.gov (United States)

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  7. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    OpenAIRE

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  8. Associations Between Enteral Colonization With Gram-Negative Bacteria and Intensive Care Unit-Acquired Infections and Colonization of the Respiratory Tract.

    Science.gov (United States)

    Frencken, Jos F; Wittekamp, Bastiaan H J; Plantinga, Nienke L; Spitoni, Cristian; van de Groep, Kirsten; Cremer, Olaf L; Bonten, Marc J M

    2018-02-01

    Enteral and respiratory tract colonization with gram-negative bacteria may lead to subsequent infections in critically ill patients. We aimed to clarify the interdependence between gut and respiratory tract colonization and their associations with intensive care unit (ICU)-acquired infections in patients receiving selective digestive tract decontamination (SDD). Colonization status of the rectum and respiratory tract was determined using twice-weekly microbiological surveillance in mechanically ventilated subjects receiving SDD between May 2011 and June 2015 in a tertiary medical-surgical ICU in the Netherlands. Acquisition of infections was monitored daily by dedicated observers. Marginal structural models were used to determine the associations between gram-negative rectal colonization and respiratory tract colonization, ICU-acquired gram-negative infection, and ICU-acquired gram-negative bacteremia. Among 2066 ICU admissions, 1157 (56.0%) ever had documented gram-negative carriage in the rectum during ICU stay. Cumulative incidences of ICU-acquired gram-negative infection and bacteremia were 6.0% (n = 124) and 2.1% (n = 44), respectively. Rectal colonization was an independent risk factor for both respiratory tract colonization (cause-specific hazard ratio [CSHR], 2.93 [95% confidence interval {CI}, 2.02-4.23]) and new gram-negative infection in the ICU (CSHR, 3.04 [95% CI, 1.99-4.65]). Both rectal and respiratory tract colonization were associated with bacteremia (CSHR, 7.37 [95% CI, 3.25-16.68] and 2.56 [95% CI, 1.09-6.03], respectively). Similar associations were observed when Enterobacteriaceae and glucose nonfermenting gram-negative bacteria were analyzed separately. Gram-negative rectal colonization tends to be stronger associated with subsequent ICU-acquired gram-negative infections than gram-negative respiratory tract colonization. Gram-negative rectal colonization seems hardly associated with subsequent ICU-acquired gram-negative respiratory tract

  9. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    Science.gov (United States)

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  10. Brevibacterium siliguriense sp nov., a facultatively oligotrophic bacterium isolated from river water

    NARCIS (Netherlands)

    Kumar, A.; Ince, I.A.; Kati, A.; Chakraborty, R.

    2013-01-01

    A Gram-positive-staining, rod-shaped, facultatively oligotrophic bacterial strain, designated MB18(T), was isolated from a water sample collected from the River Mahananda at Siliguri (26 degrees 44' 23.20' N, 88 degrees 25' 22.89' a West-Bengal, India. On the basis of 16S rRNA gene sequence

  11. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.

    Science.gov (United States)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J; Zhou, Pei; Sebbane, Florent

    2017-07-25

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria. IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of Lpx

  12. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Energy Technology Data Exchange (ETDEWEB)

    Lemaître, Nadine; Liang, Xiaofei; Najeeb, Javaria; Lee, Chul-Jin; Titecat, Marie; Leteurtre, Emmanuelle; Simonet, Michel; Toone, Eric J.; Zhou, Pei; Sebbane, Florent; Nacy, Carol A.

    2017-07-25

    ABSTRACT

    The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effectivein vitroagainst a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacteriumYersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

    IMPORTANCEThe rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are activein vitroagainst a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad

  13. Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact.

    Science.gov (United States)

    Mukerji, Shewli; O'Dea, Mark; Barton, Mary; Kirkwood, Roy; Lee, Terence; Abraham, Sam

    2017-02-28

    Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  14. Enhanced fatty acid production in engineered chemolithoautotrophic bacteria using reduced sulfur compounds as energy sources

    DEFF Research Database (Denmark)

    Beller, Harry R.; Zhou, Peng; Jewell, Talia N.M.

    2016-01-01

    Chemolithoautotrophic bacteria that oxidize reduced sulfur compounds, such as H2S, while fixing CO2 are an untapped source of renewable bioproducts from sulfide-laden waste, such as municipal wastewater. In this study, we report engineering of the chemolithoautotrophic bacterium Thiobacillus...

  15. Cytokine profile in severe gram-positive and gram-negative abdominal sepsis

    Science.gov (United States)

    Surbatovic, Maja; Popovic, Nada; Vojvodic, Danilo; Milosevic, Ivan; Acimovic, Gordana; Stojicic, Milan; Veljovic, Milic; Jevdjic, Jasna; Djordjevic, Dragan; Radakovic, Sonja

    2015-01-01

    Sepsis is a principal cause of death in critical care units worldwide and consumes considerable healthcare resources. The aim of our study was to determine whether the early cytokine profile can discriminate between Gram-positive and Gram-negative bacteraemia (GPB and GNB, respectively) and to assess the prognostic value regarding outcome in critically ill patients with severe abdominal sepsis. The outcome measure was hospital mortality. Blood samples were obtained from 165 adult patients with confirmed severe abdominal sepsis. Levels of the proinflammatory mediators TNF-α, IL-8, IL-12 and IFN-γ and the anti-inflammatory mediators IL-1ra, IL-4, IL-10 and TGF-β1 were determined and correlated with the nature of the bacteria isolated from the blood culture and outcome. The cytokine profile in our study indicated that the TNF-α levels were 2-fold, IL-8 were 3.3-fold, IFN-γ were 13-fold, IL-1ra were 1.05-fold, IL-4 were 1.4-fold and IL-10 were 1.83-fold higher in the GNB group compared with the GPB group. The TNF-α levels were 4.7-fold, IL-8 were 4.6-fold, IL-1ra were 1.5-fold and IL-10 were 3.3-fold higher in the non-survivors compared with the survivors. PMID:26079127

  16. Surface-Exposed Lipoproteins: An Emerging Secretion Phenomenon in Gram-Negative Bacteria.

    Science.gov (United States)

    Wilson, Marlena M; Bernstein, Harris D

    2016-03-01

    Bacterial lipoproteins are hydrophilic proteins that are anchored to a cell membrane by N-terminally linked fatty acids. It is widely believed that nearly all lipoproteins produced by Gram-negative bacteria are either retained in the inner membrane (IM) or transferred to the inner leaflet of the outer membrane (OM). Lipoproteins that are exposed on the cell surface have also been reported but are generally considered to be rare. Results from a variety of recent studies, however, now suggest that the prevalence of surface-exposed lipoproteins has been underestimated. In this review we describe the evidence that the surface exposure of lipoproteins in Gram-negative bacteria is a widespread phenomenon and discuss possible mechanisms by which these proteins might be transported across the OM. Published by Elsevier Ltd.

  17. In vitro activity of XF-73, a novel antibacterial agent, against antibiotic-sensitive and -resistant Gram-positive and Gram-negative bacterial species.

    Science.gov (United States)

    Farrell, David J; Robbins, Marion; Rhys-Williams, William; Love, William G

    2010-06-01

    The antibacterial activity of XF-73, a dicationic porphyrin drug, was investigated against a range of Gram-positive and Gram-negative bacteria with known antibiotic resistance profiles, including resistance to cell wall synthesis, protein synthesis, and DNA and RNA synthesis inhibitors as well as cell membrane-active antibiotics. Antibiotic-sensitive strains for each of the bacterial species tested were also included for comparison purposes. XF-73 was active [minimum inhibitory concentration (MIC) 0.25-4 mg/L] against all of the Gram-positive bacteria tested, irrespective of the antibiotic resistance profile of the isolates, suggesting that the mechanism of action of XF-73 is unique compared with the major antibiotic classes. Gram-negative activity was lower (MIC 1 mg/L to > 64 mg/L). Minimum bactericidal concentration data confirmed that the activity of XF-73 was bactericidal. Time-kill kinetics against healthcare-associated and community-associated meticillin-resistant Staphylococcus aureus isolates demonstrated that XF-73 was rapidly bactericidal, with > 5 log(10) kill obtained after 15 min at 2 x MIC, the earliest time point sampled. The post-antibiotic effect (PAE) for XF-73 under conditions where the PAE for vancomycin was 5.4 h. XF-73 represents a novel broad-spectrum Gram-positive antibacterial drug with potentially beneficial characteristics for the treatment and prevention of Gram-positive bacterial infections. 2010. Published by Elsevier B.V.

  18. Amplifiable DNA from Gram-negative and Gram-positive bacteria by a low strength pulsed electric field method

    Science.gov (United States)

    Vitzthum, Frank; Geiger, Georg; Bisswanger, Hans; Elkine, Bentsian; Brunner, Herwig; Bernhagen, Jürgen

    2000-01-01

    An efficient electric field-based procedure for cell disruption and DNA isolation is described. Isoosmotic suspensions of Gram-negative and Gram-positive bacteria were treated with pulsed electric fields of Pulses had an exponential decay waveform with a time constant of 3.4 µs. DNA yield was linearly dependent on time or pulse number, with several thousand pulses needed. Electrochemical side-effects and electrophoresis were minimal. The lysates contained non-fragmented DNA which was readily amplifiable by PCR. As the method was not limited to samples of high specific resistance, it should be applicable to physiological fluids and be useful for genomic and DNA diagnostic applications. PMID:10734214

  19. Comparative activity of tigecycline and tetracycline on Gram-negative and Gram-positive bacteria revealed by a multicentre study in four North European countries

    DEFF Research Database (Denmark)

    Nilsson, Lennart E; Frimodt-Møller, Niels; Vaara, Martti

    2011-01-01

    This study involves a multicentre surveillance of tigecycline and tetracycline activity against Gram-negative and Gram-positive bacteria from primary care centres (PCCs), general hospital wards (GHWs) and intensive care units (ICUs) in Denmark (n = 9), Finland (n = 10), Norway (n = 7) and Sweden (n...

  20. Prevalence of AmpC β-lactamase among Gram-negative bacteria ...

    African Journals Online (AJOL)

    Purpose: Infections caused by AmpC-positive bacteria results in high patient morbidity and mortality making their detection clinically important as they cannot be detected in routine susceptibility testing. This study aim to determine the prevalence of AmpC β-lactamase among Gram negative bacteria recovered from clinical ...

  1. Restriction of cephalosporins and control of extended spectrum beta-lactamase producing gram negative bacteria in a neonatal intensive care unit.

    Science.gov (United States)

    Murki, Srinivas; Jonnala, Sravanthi; Mohammed, Faheemuddin; Reddy, Anupama

    2010-09-01

    This interventional study with historical controls was conducted to study the effect of cephalosporin restriction on the incidence of extended spectrum beta-lactamase (ESBL) gram negative infections in neonates admitted to intensive care unit. All gram negative isolates from the blood were evaluated for beta lactamase production. The incidence of ESBL production was compared before (year 2007) and after cephalosporin restriction (year 2008). Thirty two neonates (3% of NICU admissions) in the year 2007 and fifty six (5.2%) in the year 2008, had gram negative septicemia. The incidence of ESBL gram negatives decreased by 22% (47% to 25%, P=0.03). Restriction of all class of cephalosporins significantly decreased the incidence of ESBL gram negative infections.

  2. Gram staining.

    Science.gov (United States)

    Coico, Richard

    2005-10-01

    Named after Hans Christian Gram who developed the method in 1884, the Gram stain allows one to distinguish between Gram-positive and Gram-negative bacteria on the basis of differential staining with a crystal violet-iodine complex and a safranin counterstain. The cell walls of Gram-positive organisms retain this complex after treatment with alcohol and appear purple, whereas gram-negative organisms decolorize following such treatment and appear pink. The method described here is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures.

  3. NDM 1 Gene Carrying Gram negative Bacteria Isolated from Rats ...

    African Journals Online (AJOL)

    In this study, we screened 56 Gram negative bacteria comprising: 3 isolates of Enterobacter ludwigii, 30 Pseudomonas aeruginosa, 22 Proteus mirabilis, and 1 Aeromonas caviae isolated from oral cavity and rectum of rats captured from commercial poultry houses in Ibadan, Oyo State, Nigeria that were resistant to at least ...

  4. The Growing Threat of Multidrug-Resistant Gram-Negative Infections in Patients with Hematologic Malignancies

    Science.gov (United States)

    Baker, Thomas M.; Satlin, Michael J.

    2016-01-01

    Prolonged neutropenia and chemotherapy-induced mucositis render patients with hematologic malignancies highly vulnerable to Gram-negative bacteremia. Unfortunately, multidrug-resistant (MDR) Gram-negative bacteria are increasingly encountered globally, and current guidelines for empirical antibiotic coverage in these patients may not adequately treat these bacteria. This expansion of resistance, coupled with traditional culturing techniques requiring 2-4 days for bacterial identification and antimicrobial susceptibility results, have grave implications for these immunocompromised hosts. This review characterizes the epidemiology, risk factors, resistance mechanisms, recommended treatments, and outcomes of the MDR Gram-negative bacteria that commonly cause infections in patients with hematologic malignancies. We also examine infection prevention strategies in hematology patients, such as infection control practices, antimicrobial stewardship, and targeted decolonization. Finally, we assess strategies to improve outcomes of infected patients, including gastrointestinal screening to guide empirical antibiotic therapy, new rapid diagnostic tools for expeditious identification of MDR pathogens, and use of two new antimicrobial agents, ceftolozane/tazobactam and ceftazidime/avibactam. PMID:27339405

  5. Integrating rapid diagnostics and antimicrobial stewardship improves outcomes in patients with antibiotic-resistant Gram-negative bacteremia.

    Science.gov (United States)

    Perez, Katherine K; Olsen, Randall J; Musick, William L; Cernoch, Patricia L; Davis, James R; Peterson, Leif E; Musser, James M

    2014-09-01

    An intervention for Gram-negative bloodstream infections that integrated mass spectrometry technology for rapid diagnosis with antimicrobial stewardship oversight significantly improved patient outcomes and reduced hospital costs. As antibiotic resistance rates continue to grow at an alarming speed, the current study was undertaken to assess the impact of this intervention in a challenging patient population with bloodstream infections caused by antibiotic-resistant Gram-negative bacteria. A total of 153 patients with antibiotic-resistant Gram-negative bacteremia hospitalized prior to the study intervention were compared to 112 patients treated post-implementation. Outcomes assessed included time to optimal antibiotic therapy, time to active treatment when inactive, hospital and intensive care unit length of stay, all-cause 30-day mortality, and total hospital expenditures. Integrating rapid diagnostics with antimicrobial stewardship improved time to optimal antibiotic therapy (80.9 h in the pre-intervention period versus 23.2 h in the intervention period, P Gram-negatives. The intervention decreased hospital and intensive care unit length of stay, total hospital costs, and reduced all-cause 30-day mortality. Copyright © 2014. Published by Elsevier Ltd.

  6. Performance of Gram staining on blood cultures flagged negative by an automated blood culture system.

    Science.gov (United States)

    Peretz, A; Isakovich, N; Pastukh, N; Koifman, A; Glyatman, T; Brodsky, D

    2015-08-01

    Blood is one of the most important specimens sent to a microbiology laboratory for culture. Most blood cultures are incubated for 5-7 days, except in cases where there is a suspicion of infection caused by microorganisms that proliferate slowly, or infections expressed by a small number of bacteria in the bloodstream. Therefore, at the end of incubation, misidentification of positive cultures and false-negative results are a real possibility. The aim of this work was to perform a confirmation by Gram staining of the lack of any microorganisms in blood cultures that were identified as negative by the BACTEC™ FX system at the end of incubation. All bottles defined as negative by the BACTEC FX system were Gram-stained using an automatic device and inoculated on solid growth media. In our work, 15 cultures that were defined as negative by the BACTEC FX system at the end of the incubation were found to contain microorganisms when Gram-stained. The main characteristic of most bacteria and fungi growing in the culture bottles that were defined as negative was slow growth. This finding raises a problematic issue concerning the need to perform Gram staining of all blood cultures, which could overload the routine laboratory work, especially laboratories serving large medical centers and receiving a large number of blood cultures.

  7. Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC

    Directory of Open Access Journals (Sweden)

    Nadine Lemaître

    2017-07-01

    Full Text Available The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis. Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.

  8. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  9. ClubSub-P: Cluster-Based Subcellular Localization Prediction for Gram-Negative Bacteria and Archaea

    Science.gov (United States)

    Paramasivam, Nagarajan; Linke, Dirk

    2011-01-01

    The subcellular localization (SCL) of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned SCLs. This and other problems in SCL prediction, such as the relatively high false-positive and false-negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing SCL prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false-positive and false-negative predictions. ClubSub-P can assign the SCL of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the SCL prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/ PMID:22073040

  10. Protein secretion and membrane insertion systems in gram-negative bacteria.

    Science.gov (United States)

    Saier, Milton H

    2006-01-01

    In contrast to other organisms, gram-negative bacteria have evolved numerous systems for protein export. Eight types are known that mediate export across or insertion into the cytoplasmic membrane, while eight specifically mediate export across or insertion into the outer membrane. Three of the former secretory pathway (SP) systems, type I SP (ISP, ABC), IIISP (Fla/Path) and IVSP (Conj/Vir), can export proteins across both membranes in a single energy-coupled step. A fourth generalized mechanism for exporting proteins across the two-membrane envelope in two distinct steps (which we here refer to as type II secretory pathways [IISP]) utilizes either the general secretory pathway (GSP or Sec) or the twin-arginine targeting translocase for translocation across the inner membrane, and either the main terminal branch or one of several protein-specific export systems for translocation across the outer membrane. We here survey the various well-characterized protein translocation systems found in living organisms and then focus on the systems present in gram-negative bacteria. Comparisons between these systems suggest specific biogenic, mechanistic and evolutionary similarities as well as major differences.

  11. VIP as a potential therapeutic agent in gram negative sepsis.

    Science.gov (United States)

    Ibrahim, Hiba; Barrow, Paul; Foster, Neil

    2012-12-01

    Gram negative sepsis remains a high cause of mortality and places a great burden on public health finance in both the developed and developing world. Treatment of sepsis, using antibiotics, is often ineffective since pathology associated with the disease occurs due to dysregulation of the immune system (failure to return to steady state conditions) which continues after the bacteria, which induced the immune response, have been cleared. Immune modulation is therefore a rational approach to the treatment of sepsis but to date no drug has been developed which is highly effective, cheap and completely safe to use. One potential therapeutic agent is VIP, which is a natural peptide and is highly homologous in all vertebrates. In this review we will discuss the effect of VIP on components of the immune system, relevant to gram negative sepsis, and present data from animal models. Furthermore we will hypothesise on how these studies could be improved in future and speculate on the possible different ways in which VIP could be used in clinical medicine.

  12. Metallo- β-lactamases among Multidrug Resistant (MDR Gram Negative Bacteria Isolated from Clinical Specimens during 2009 in Sanandaj, Kurdistan Province

    Directory of Open Access Journals (Sweden)

    Himen Salimizand

    2012-08-01

    Full Text Available Background: Today, there are numerous reports about emerging multi drug resistant gram negative bacteria all around the world, especially in ICUs. Rarely, Metallo-β-lactamase (MBL enzymes are responsible for these cases. Study of MBLs for diagnosing and preventing distribution of the origin of infection are critical issues. In addition, we would like to compare the efficacy of Iranian and foreign- made antibiotic disks. Materials and Methods: During 2009 all entered clinical specimens to the laboratory tested for detecting gram negative bacteria. Isolated bacteria were tested by Kirby-Bauer method to antibiotic susceptibility test by Iranian and foreign (MAST disks. For gram negative carbapenem resistant isolates, PCR technique used to detect VIM, GIM, and SIM variants of MBLs.Results: During one year, 17890 clinical specimens referred Besat laboratory. The most specimen was Urine (8172 followed by blood culture (5190 that in which 1110 gram negative and positives isolated. Out of which, 778 (70% of isolates were gram negatives. MDR gram negatives were 157 (20.2%. Imipenem and meropenem were the most efficient antibiotics (all susceptible and ceftriaxone was the least (19 % susceptible. E. coli was the most prevalent isolate. 79 Gram negative isolates (10.1% were resistant to Iranian-made discs but all susceptible for foreign ones. All 79 isolates were tested by PCR for MBL genes, that, all were negative. Besides, Iranian imipenem and cefepime disks have had distinguishable difference in susceptibility of isolates.Conclusion: Fortunately, none of gram negative isolates were MBL producer, which revealed no colonization of MBL producing bacteria. Iranian-made disks appear efficient except for imipenem and cefepime.

  13. Risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country

    International Nuclear Information System (INIS)

    Kalam, K.; Kumar, S.; Ali, S.; Baqi, S.; Qamar, F.

    2014-01-01

    Objective: To identify the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia in a developing country. Methods: A prospective cohort study was conducted at the Sindh Institute of Urology and Transplantation (SIUT) from June to October 2012. Hospitalized patients > 15 years of age with gram negative bacteraemia were included and followed for a period of 2 weeks for in hospital mortality. Data was collected and analyzed for 243 subjects. Multivariate analysis was used to determine the risk factors for carbapenem resistant bacteraemia and mortality due to gram negative bacteraemia. Crude and adjusted odds ratio and 95% CI are reported. Results: A total of 729 out of 1535 (47.5%) cultures were positive for gram negative isolates. Out of 243 subjects, 117 (48%) had an MDR isolate. Having an MDR isolate on culture (AOR, 2.33; 95% CI, 1.35 -4.0), having multiple positive cultures (AOR, 1.8; 95% CI, 0.94 -3.4) and stay in ICU >48 hours (AOR, 2.0 ; 95% CI, 1.12 -3.78) were identified as significant risk factors for mortality due to gram negative organisms. Risk factors for carbapenem resistant bacteraemia were age >50 years (AOR, 1.83; 95% CI, 1.0-3.5), septic shock on presentation (AOR 2.53; 95% CI, 1.03 -6.2) , ICU stay of >72 hours (AOR 2.40; 95% CI, 1.14-5.0) and receiving immunosuppressant medications (AOR 2.23; 95% CI, 0.74 - 6.7). Conclusion: There is a high burden of MDR and carbapenem resistant gram negative bacteraemia, with a high mortality rate. (author)

  14. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The Role of Monitoring Gentamicin Levels in Patients with Gram-Negative Peritoneal Dialysis-Associated Peritonitis

    Science.gov (United States)

    Tang, Wen; Cho, Yeoungjee; Hawley, Carmel M.; Badve, Sunil V.; Johnson, David W.

    2014-01-01

    ♦ Background: There is limited available evidence regarding the role of monitoring serum gentamicin concentrations in peritoneal dialysis (PD) patients receiving this antimicrobial agent in gram-negative PD-associated peritonitis. ♦ Methods: Using data collected in all patients receiving PD at a single center who experienced a gram-negative peritonitis episode between 1 January 2005 and 31 December 2011, we investigated the relationship between measured serum gentamicin levels on day 2 following initial empiric antibiotic therapy and subsequent clinical outcomes of confirmed gram-negative peritonitis. ♦ Results: Serum gentamicin levels were performed on day 2 in 51 (77%) of 66 first gram-negative peritonitis episodes. Average serum gentamicin levels on day 2 were 1.83 ± 0.84 mg/L with levels exceeding 2 mg/L in 22 (43%) cases. The overall cure rate was 64%. No cases of ototoxicity were observed. Day-2 gentamicin levels were not significantly different between patients who did and did not have a complication or cure. Using multivariable logistic regression analysis, failure to cure peritonitis was not associated with either day-2 gentamicin level (adjusted odds ratio (OR) 0.96, 95% confidence interval (CI) 0.25 - 3.73) or continuation of gentamicin therapy beyond day 2 (OR 0.28, 0.02 - 3.56). The only exception was polymicrobial peritonitis, where day-2 gentamicin levels were significantly higher in episodes that were cured (2.06 ± 0.41 vs 1.29 ± 0.71, p = 0.01). In 17 (26%) patients receiving extended gentamicin therapy, day-5 gentamicin levels were not significantly related to peritonitis cure. ♦ Conclusion: Day-2 gentamicin levels did not predict gentamicin-related harm or efficacy during short-course gentamicin therapy for gram-negative PD-related peritonitis, except in cases of polymicrobial peritonitis, where higher levels were associated with cure. PMID:24385334

  16. Antimicrobial resistance pattern of Gramnegative bacilli isolated of Vali-Asr Hospital wards in Arak

    Directory of Open Access Journals (Sweden)

    Farshid Didgar

    2014-11-01

    Full Text Available Background: Infectious diseases are of the most important causes of mortality all around the world particular in developing countries. Recently, the most important thing that has worried medical society is antibiotic resistance. Multi-resistant gram_negative rods are important pathogens in hospitals, causing high rate of mortality.The main goal of this study was to investigate the antimicrobial resistance patterns among common gram-negative bacilli isolated from patients of Vali-Asr Hospital. Material and Methods: This is a cross-sectional descriptive study conducted between the years 2010-2012 in Vali-Asr hospital in Arak. In this study 1120 specimen were examined. Bacterial strains were isolated by conventional methods from various clinical samples of patients including: blood, urine, wound, sputum, CSF, andetc.All isolates were examined for antimicrobial resistance using disc diffusion method. Results: In this study 737 specimen were positive cultures. A total of 332 isolates of Gram-negative bacilli were identified. The most frequent gram negative bacteria were isolated from urine, wound, blood, respiratory secretion and catheter. The most frequent pathogens were E.coli followed by k.pneumonia, entrobacter, p.oaeruginosa, Acinetobacter spp, citrobacter and proteus. High rate of resistance to third generation of cephalospoins & carbapenems observed amang isolates of Acintobacter spp.Prodution of extended spectrum beralactamases (ESBLS was found in 51.4% of all Gram negative bacteria. Conclusion: Antibiotic resistance, particularly multi-drug resistance is frequent among microorganisms of ValiAsr Hospital. Resistance in our country, like other countries have been shown to be increased, so it is highly recommended to prohibit unnecessary prescription of antibiotics.

  17. ClubSub-P: Cluster-based subcellular localization prediction for Gram-negative bacteria and Archaea.

    Directory of Open Access Journals (Sweden)

    Nagarajan eParamasivam

    2011-11-01

    Full Text Available The subcellular localization of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned subcellular localizations. This and other problems in subcellular localization prediction, such as the relatively high false positive and false negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing subcellular localization prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false positive and false negative predictions. ClubSub-P can assign the subcellular localization of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the subcellular localization prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/

  18. The Toll pathway underlies host sexual dimorphism in resistance to both Gram-negative and Gram-positive bacteria in mated Drosophila.

    Science.gov (United States)

    Duneau, David F; Kondolf, Hannah C; Im, Joo Hyun; Ortiz, Gerardo A; Chow, Christopher; Fox, Michael A; Eugénio, Ana T; Revah, J; Buchon, Nicolas; Lazzaro, Brian P

    2017-12-21

    Host sexual dimorphism is being increasingly recognized to generate strong differences in the outcome of infectious disease, but the mechanisms underlying immunological differences between males and females remain poorly characterized. Here, we used Drosophila melanogaster to assess and dissect sexual dimorphism in the innate response to systemic bacterial infection. We demonstrated sexual dimorphism in susceptibility to infection by a broad spectrum of Gram-positive and Gram-negative bacteria. We found that both virgin and mated females are more susceptible than mated males to most, but not all, infections. We investigated in more detail the lower resistance of females to infection with Providencia rettgeri, a Gram-negative bacterium that naturally infects D. melanogaster. We found that females have a higher number of phagocytes than males and that ablation of hemocytes does not eliminate the dimorphism in resistance to P. rettgeri, so the observed dimorphism does not stem from differences in the cellular response. The Imd pathway is critical for the production of antimicrobial peptides in response to Gram-negative bacteria, but mutants for Imd signaling continued to exhibit dimorphism even though both sexes showed strongly reduced resistance. Instead, we found that the Toll pathway is responsible for the dimorphism in resistance. The Toll pathway is dimorphic in genome-wide constitutive gene expression and in induced response to infection. Toll signaling is dimorphic in both constitutive signaling and in induced activation in response to P. rettgeri infection. The dimorphism in pathway activation can be specifically attributed to Persephone-mediated immune stimulation, by which the Toll pathway is triggered in response to pathogen-derived virulence factors. We additionally found that, in absence of Toll signaling, males become more susceptible than females to the Gram-positive Enterococcus faecalis. This reversal in susceptibility between male and female Toll

  19. Doripenem: an expected arrival in the treatment of infections caused by multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Poulakou, Garyphallia; Giamarellou, Helen

    2008-05-01

    Potent new drugs against multidrug-resistant Gram-negative bacteria, namely Pseudomonas aeruginosa and Acinetobacter spp. and pan-drug-resistant Klebsiella pneumoniae, which constitute an increasing medical threat, are almost absent from the future pharmaceutical pipeline. This drug evaluation focuses on the position of doripenem, a novel forthcoming carbapenem. Mechanisms of resistance and new drugs with anti-Gram-negative activity are also briefly reviewed. Literature search was performed for new carbapenems, new antibiotics, doripenem, metallo-beta-lactamase inhibitors, multidrug-resistant pathogens, antipseudomonal antibiotics and multidrug-resistant epidemiology. Doripenem possesses a broad spectrum of activity against Gram-negative bacteria, similar to that of meropenem, while retaining the spectrum of imipenem against Gram-positive pathogens. Against P. aeruginosa, doripenem exhibits rapid bactericidal activity with 2 - 4-fold lower MIC values, compared to meropenem. Exploitation of pharmacokinetic/pharmacodynamic applications could offer a treatment opportunity against strains exhibiting borderline resistance to doripenem. Stability against numerous beta-lactamases, low adverse event potential and more potent in vitro antibacterial activity against P. aeruginosa and A. baumanni compared to the existing carbapenems, are its principal features.

  20. In vitro activity of aminoglycosides against clinical isolates of Acinetobacter baumannii complex and other nonfermentative Gram-negative bacilli causing healthcare-associated bloodstream infections in Taiwan.

    Science.gov (United States)

    Liu, Jyh-You; Wang, Fu-Der; Ho, Mao-Wang; Lee, Chen-Hsiang; Liu, Jien-Wei; Wang, Jann-Tay; Sheng, Wang-Huei; Hseuh, Po-Ren; Chang, Shan-Chwen

    2016-12-01

    Aminoglycosides possess in vitro activity against aerobic and facultative Gram-negative bacilli. However, nationwide surveillance on susceptibility data of Acinetobacter baumannii complex and Pseudomonas aeruginosa to aminoglycosides was limited, and aminoglycoside resistance has emerged in the past decade. We study the in vitro susceptibility of A. baumannii complex and other nonfermentative Gram-negative bacilli (NFGNB) to aminoglycosides. A total of 378 NFGNB blood isolates causing healthcare-associated bloodstream infections during 2008 and 2013 at four medical centers in Taiwan were tested for their susceptibilities to four aminoglycosides using the agar dilution method (gentamicin, amikacin, tobramycin, and isepamicin) and disc diffusion method (isepamicin). A. baumannii was highly resistant to all four aminoglycosides (range of susceptibility, 0-4%), whereas >80% of Acinetobacter nosocomialis and Acinetobacter pittii blood isolates were susceptible to amikacin (susceptibility: 96% and 91%, respectively), tobramycin (susceptibility: 92% and 80%, respectively), and isepamicin (susceptibility: 96% and 80%, respectively). All aminoglycosides except gentamicin possessed good in vitro activity (>94%) against P. aeruginosa. Amikacin has the best in vitro activity against P. aeruginosa (susceptibility, 98%), followed by A. nosocomialis (96%), and A. pittii (91%), whereas tobramycin and isepamicin were less potent against A. pittii (both 80%). Aminoglycoside resistances were prevalent in Stenotrophomonas maltophilia and Burkholderia cepacia complex blood isolates in Taiwan. Genospecies among the A. baumannii complex had heterogeneous susceptibility profiles to aminoglycosides. Aminoglycosides, except gentamicin, remained good in vitro antimicrobial activity against P. aeruginosa. Further in vivo clinical data and continuous resistance monitoring are warranted for clinical practice guidance. Copyright © 2015. Published by Elsevier B.V.

  1. Characterization of carbapenem-resistant Gram-negative bacteria from Tamil Nadu.

    Science.gov (United States)

    Nachimuthu, Ramesh; Subramani, Ramkumar; Maray, Suresh; Gothandam, K M; Sivamangala, Karthikeyan; Manohar, Prasanth; Bozdogan, Bülent

    2016-10-01

    Carbapenem resistance is disseminating worldwide among Gram-negative bacteria. The aim of this study was to identify carbapenem-resistance level and to determine the mechanism of carbapenem resistance among clinical isolates from two centres in Tamil Nadu. In the present study, a total of 93 Gram-negative isolates, which is found to be resistant to carbapenem by disk diffusion test in two centres, were included. All isolates are identified at species level by 16S rRNA sequencing. Minimal inhibitory concentrations (MICs) of isolates for Meropenem were tested by agar dilution method. Presence of blaOXA, blaNDM, blaVIM, blaIMP and blaKPC genes was tested by PCR in all isolates. Amplicons were sequenced for confirmation of the genes. Among 93 isolates, 48 (%52) were Escherichia coli, 10 (%11) Klebsiella pneumoniae, nine (%10) Pseudomonas aeruginosa. Minimal inhibitory concentration results showed that of 93 suspected carbapenem-resistant isolates, 27 had meropenem MICs ≥ 2 μg/ml. The MIC range, MIC50 and MIC90 were 128 μg/ml, 0.12 and 16 μg/ml, respectively. Fig. 1 . Among meropenem-resistant isolates, E. coli were the most common (9/48, 22%), followed by K. pneumoniae (7/9, 77%), P. aeruginosa (6/10, 60%), Acinetobacter baumannii (2/2, 100%), Enterobacter hormaechei (2/3, 67%) and one Providencia rettgeri (1/1, 100%). PCR results showed that 16 of 93 carried blaNDM, three oxa181, and one imp4. Among blaNDM carriers, nine were E. coli, four Klebsiella pneumoniae, two E. hormaechei and one P. rettgeri. Three K. pneumoniae were OXA-181 carriers. The only imp4 carrier was P. aeruginosa. A total of seven carbapenem-resistant isolates were negatives by PCR for the genes studied. All carbapenem-resistance gene-positive isolates had meropenem MICs >2 μg/ml. Our results confirm the dissemination of NDM and emergence of OXA-181 beta-lactamase among Gram-negative bacteria in South India. This study showed the emergence of NDM producer in clinical isolates of E

  2. Resistant gram-negative bacilli and antibiotic consumption in zarqa, jordan

    International Nuclear Information System (INIS)

    Bataineh, H.A.; Alrashed, K.M.

    2007-01-01

    To investigate the prevalence of antibiotic resistance among gram-negative bacteria in relation to antibiotic use in Prince Hashem Hospital (PHH), Jordan. One hundred consecutive gram-negative bacterial isolates from different sites were collected from patients admitted to the ICU at PHH. The susceptibilities of the strains to 12 antibiotics were performed and interpreted. The quantities and the numbers of the patients discharged on antibiotics and the quantities consumed were obtained from the hospital pharmacy records. The most common isolate was P. aeruginosa (n=21) The most common site of isolation was the respiratory tract (65%), The highest susceptibility was to piperacillin/ tazobactam(78%), and the lowest was to cefuroxime(34%). The aminoglycosides gentamicin and amikacin were active against 71% and 73% of the isolates respectively, Ciprofloxacin was active against 75% of the isolates. The most frequently used antibiotics were the third-generation cephalosporins ceftriaxone and ceftazidime, followed by imipenem and amikacin. Antibiotic resistance surveillance programs associated with registration of antibiotic consumption are necessary to promote optimal use of antibiotics. Rational prescribing of antibiotics should be encouraged through educational programs, surveillance and audit. Proper infection control measures should be practiced to prevent horizontal transfer of drug-resistant organisms. (author)

  3. Comparison of the Cathra Repliscan II, the AutoMicrobic system Gram-Negative General Susceptibility-Plus Card, and the Micro-Media System Fox Panel for dilution susceptibility testing of gram-negative bacilli.

    Science.gov (United States)

    Reiber, N E; Kelly, M T; Latimer, J M; Tison, D L; Hysmith, R M

    1985-06-01

    A comparative evaluation was done to test the accuracy of the Cathra Repliscan II agar dilution system (Diagnostic Equipment, Inc., St. Paul, Minn.), the AutoMicrobic system with Gram-Negative General Susceptibility-Plus Card (Vitek Systems, Inc., Hazelwood, Mo.), and the Micro-Media Fox Panel micro broth dilution system (Micro-Media Systems, Inc., San Jose, Calif.) in determining MICs of 12 antibiotics for 200 gram-negative bacilli. Of the 200 strains tested, 12 isolates did not grow in one of the three systems. The 188 remaining organisms included 158 members of the family Enterobacteriaceae, 20 Pseudomonas spp., 5 Acinetobacter sp., 3 Aeromonas spp., and 2 Vibrio spp. A total of 2,256 organism-antibiotic combinations were analyzed for each system. An MIC was considered correct if two of the three systems were in agreement. When disagreements occurred, correct MICs were determined by the standard agar dilution method. With this criterion, overall agreements of the Cathra Repliscan II system, AutoMicrobic system, and Micro-Media Fox Panel system were 94.7, 94.9, and 95.5%, respectively. Tetracycline (20%), nitrofurantoin (20%), and ampicillin (16%) accounted for 56% of the discrepancies observed. These results indicate that all three systems perform with a high degree of accuracy for susceptibility testing of gram-negative bacilli.

  4. Trojan Horse Antibiotics-A Novel Way to Circumvent Gram-Negative Bacterial Resistance?

    Science.gov (United States)

    Tillotson, Glenn S

    2016-01-01

    Antibiotic resistance has been emerged as a major global health problem. In particular, gram-negative species pose a significant clinical challenge as bacteria develop or acquire more resistance mechanisms. Often, these bacteria possess multiple resistance mechanisms, thus nullifying most of the major classes of drugs. Novel approaches to this issue are urgently required. However, the challenges of developing new agents are immense. Introducing novel agents is fraught with hurdles, thus adapting known antibiotic classes by altering their chemical structure could be a way forward. A chemical addition to existing antibiotics known as a siderophore could be a solution to the gram-negative resistance issue. Siderophore molecules rely on the bacterial innate need for iron ions and thus can utilize a Trojan Horse approach to gain access to the bacterial cell. The current approaches to using this potential method are reviewed.

  5. Gram-negative bacteria account for main differences between faecal microbiota from patients with ulcerative colitis and healthy controls

    DEFF Research Database (Denmark)

    Vigsnæs, Louise Kristine; Brynskov, J.; Steenholdt, C.

    2012-01-01

    process of the gut mucosa. The aim of this study was to investigate the faecal microbiota in patients either with UC in remission (n=6) or with active disease (n=6), and in healthy controls (n=6). The composition of Gram-negative bacteria and Gram-positive bacteria was examined. Antigenic structures...... of Gram-negative bacteria such as lipopolysaccharides have been related to the inflammatory responses and pathogenesis of inflammatory bowel disease. Dice cluster analysis and principal component analysis of faecal microbiota profiles obtained by denaturing gradient gel electrophoresis and quantitative...... PCR, respectively, revealed that the composition of faecal bacteria from UC patients with active disease differed from the healthy controls and that this difference should be ascribed to Gram-negative bacteria. The analysis did not show any clear grouping of UC patients in remission. Even...

  6. DMPD: Gram-negative endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1916089 Gram-negative endotoxin: an extraordinary lipid with profound effects oneuk...ep;5(12):2652-60. (.png) (.svg) (.html) (.csml) Show Gram-negative endotoxin: an extraordinary lipid with profound effects...tive endotoxin: an extraordinary lipid with profound effects oneukaryotic signal transduction. Authors Raetz

  7. Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans

    Directory of Open Access Journals (Sweden)

    Esparza Mario

    2010-08-01

    Full Text Available Abstract Background Acidithiobacillus ferrooxidans is chemolithoautotrophic γ-proteobacterium that thrives at extremely low pH (pH 1-2. Although a substantial amount of information is available regarding CO2 uptake and fixation in a variety of facultative autotrophs, less is known about the processes in obligate autotrophs, especially those living in extremely acidic conditions, prompting the present study. Results Four gene clusters (termed cbb1-4 in the A. ferrooxidans genome are predicted to encode enzymes and structural proteins involved in carbon assimilation via the Calvin-Benson-Bassham (CBB cycle including form I of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO, EC 4.1.1.39 and the CO2-concentrating carboxysomes. RT-PCR experiments demonstrated that each gene cluster is a single transcriptional unit and thus is an operon. Operon cbb1 is divergently transcribed from a gene, cbbR, encoding the LysR-type transcriptional regulator CbbR that has been shown in many organisms to regulate the expression of RubisCO genes. Sigma70-like -10 and -35 promoter boxes and potential CbbR-binding sites (T-N11-A/TNA-N7TNA were predicted in the upstream regions of the four operons. Electrophoretic mobility shift assays (EMSAs confirmed that purified CbbR is able to bind to the upstream regions of the cbb1, cbb2 and cbb3 operons, demonstrating that the predicted CbbR-binding sites are functional in vitro. However, CbbR failed to bind the upstream region of the cbb4 operon that contains cbbP, encoding phosphoribulokinase (EC 2.7.1.19. Thus, other factors not present in the assay may be required for binding or the region lacks a functional CbbR-binding site. The cbb3 operon contains genes predicted to encode anthranilate synthase components I and II, catalyzing the formation of anthranilate and pyruvate from chorismate. This suggests a novel regulatory connection between CO2 fixation and tryptophan biosynthesis. The presence of a form II Rubis

  8. [Development and Evaluation of a New Selective Culture Medium, KBM Anaero RS-GNR, for Detection of Anaerobic Gram Negative Rods].

    Science.gov (United States)

    Narita, Taeko; Kato, Kyohei; Hanaiwa, Hiroki; Harada, Tetsuhiro; Funashima, Yumiko; Akiwa, Makoto; Sekiguchi, Jun-Ichiro; Nagasawa, Zenzo; Umemura, Tsukuru

    2017-03-22

    The laboratory culture methods for isolating drug-resistant pathogens has been the gold standard in medical microbiology, and play pivotal roles in the overall management of infectious diseases. Recently, several reports have emphasized the development of antibiotics-resistance among anaerobic gram-negative rods, especially Genus Bacteroides and Prevotella . Therefore, a selective culture method to detect these pathogens is needed. We developed here the new selective culture medium, termed "KBM Anaero RS-GNR," for detecting anaerobic Gram-negative rods. Growth capability and selectivity of the agar medium were assessed by using the pure culture suspensions of more than 100 bacterial strains as well as the 13 samples experimentally contaminated with these bacterial strains. This new medium, "KBM Anaero RS-GNR," successfully showed the selective isolation of anaerobic Gram-negative rods. Compared with commercially available medium, "PV Brucella HK Agar, " which is also designed to detect anaerobic Gram-negative rods, there was no significant difference of the overall detection efficiency between two media. However, "KBM Anaero RS-GNR" showed superior to selectivity for anaerobic Gram-negative rods, especially from the samples contaminated with Candida species. Thus, the culture method using KBM Anaero RS-GNR is relevant for isolation of anaerobic Gram-negative rods especially from clinical specimens.

  9. Higher order structure in the 3'-minor domain of small subunit ribosomal RNAs from a gram negative bacterium, a gram positive bacterium and a eukaryote

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1983-01-01

    of additional higher order structure in the renatured free RNA. It can be concluded that a high level of conservation of higher order structure has occurred during the evolution of the gram negative and gram positive eubacteria and the eukaryote in both the double helical regions and the "unstructured" regions...

  10. Gram-Negative Infections in Adult Intensive Care Units of Latin America and the Caribbean

    Directory of Open Access Journals (Sweden)

    Carlos M. Luna

    2014-01-01

    Full Text Available This review summarizes recent epidemiology of Gram-negative infections in selected countries from Latin American and Caribbean adult intensive care units (ICUs. A systematic search of the biomedical literature (PubMed was performed to identify articles published over the last decade. Where appropriate, data also were collected from the reference list of published articles, health departments of specific countries, and registries. Independent cohort data from all countries (Argentina, Brazil, Chile, Colombia, Cuba, Mexico, Trinidad and Tobago, and Venezuela signified a high rate of ICU infections (prevalence: Argentina, 24%; Brazil, 57%. Gram-negative pathogens, predominantly Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli, accounted for >50% of ICU infections, which were often complicated by the presence of multidrug-resistant strains and clonal outbreaks. Empirical use of antimicrobial agents was identified as a strong risk factor for resistance development and excessive mortality. Infection control strategies utilizing hygiene measures and antimicrobial stewardship programs reduced the rate of device-associated infections. To mitigate the poor health outcomes associated with infections by multidrug-resistant Gram-negative bacteria, urgent focus must be placed on infection control strategies and local surveillance programs.

  11. Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

    Science.gov (United States)

    Zou, Lili; Lu, Jun; Wang, Jun; Ren, Xiaoyuan; Zhang, Lanlan; Gao, Yu; Rottenberg, Martin E; Holmgren, Arne

    2017-08-01

    Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  12. Mucositis and oral infections secondary to gram negative rods in patients with prolonged neutropenia

    Directory of Open Access Journals (Sweden)

    Mindy M. Sampson

    2017-01-01

    Full Text Available Patients with prolonged neutropenia are at risk for a variety of complications and infections including the development of mucositis and oral ulcers. The changes in oral flora during chemotherapy and its effects on the development of infections of the oral cavity have been studied with inconsistent results. However, there is evidence that supports the colonization of gram negative rods in patients undergoing chemotherapy. In this report, we present two leukemic patients who developed oral ulcers secondary to multi-drug resistant Pseudomonas aeruginosa. It is important to suspect multi-drug resistant gram negative rods in patients with prolonged neutropenia who develop gum infections despite appropriate antibiotic coverage.

  13. Bio sorption of some Rare Earth Elements and Yttrium by Gram Positive and Gram Negative Bacteria

    International Nuclear Information System (INIS)

    Ibrahim, H.A.

    2012-01-01

    The separate bio sorption of the REEs La, Sm, Eu and Dy together with yttrium upon the Gram positive bacteria Bacillus subtilis (B.subtilis) and Bacillus Licheniformis (B. Licheniformis),the Gram negative bacterium Escherichia coli (E. coli ) and Saccharomyces cervisiae (Yeast) was studied. The revelant factors of ph 1-6, contact time (30-180 min), the initial rare earth concentration (50-200 mg/l) have been studied. The amount of the accumulated element was strongly affected by its concentration.In addition, bio sorptive fractionation of Y and the studied REEs from a solution containing a mixture of these elements was also studied. From the obtained data, it was found that Langmuir isotherm model for both B.licheniformis and E.coli gives a best fit for the studied elements over the working range of concentration (50-200 mg/I). Transmission electron microscopy exhibited accumulation throughout the bacterial cell with some granular deposits in both the cell periphery and cytoplasm

  14. Probing the Penetration of Antimicrobial Polymyxin Lipopeptides into Gram-Negative Bacteria

    Science.gov (United States)

    2015-01-01

    The dry antibiotic development pipeline coupled with the emergence of multidrug resistant Gram-negative ‘superbugs’ has driven the revival of the polymyxin lipopeptide antibiotics. Polymyxin resistance implies a total lack of antibiotics for the treatment of life-threatening infections. The lack of molecular imaging probes that possess native polymyxin-like antibacterial activity is a barrier to understanding the resistance mechanisms and the development of a new generation of polymyxin lipopeptides. Here we report the regioselective modification of the polymyxin B core scaffold at the N-terminus with the dansyl fluorophore to generate an active probe that mimics polymyxin B pharmacologically. Time-lapse laser scanning confocal microscopy imaging of the penetration of probe (1) into Gram-negative bacterial cells revealed that the probe initially accumulates in the outer membrane and subsequently penetrates into the inner membrane and finally the cytoplasm. The implementation of this polymyxin-mimetic probe will advance the development of platforms for the discovery of novel polymyxin lipopeptides with efficacy against polymyxin-resistant strains. PMID:24635310

  15. Expression levels of matrix metalloproteinase-9 and gram-negative bacteria in symptomatic and asymptomatic periapical lesions.

    Science.gov (United States)

    Ahmed, Geraldine M; El-Baz, Alaa A; Hashem, Ahmed Abdel Rahman; Shalaan, Abeer K

    2013-04-01

    The aim of this study was to test the hypothesis that the expression of matrix metalloproteinase (MMP)-9 is significantly elevated in patients with symptomatic apical periodontitis and to correlate this with the detected amount of gram-negative bacteria. Twenty-six patients with periapical lesions involving at least 2 teeth were included in this study. The patients were divided into 2 groups: the symptomatic (SYM) group included 13 patients expressing pain with periapical lesions, and the asymptomatic (ASYM) group included 13 patients expressing no pain. Root canal treatment was performed followed by endodontic surgery and periapical lesion collection. Periapical lesions were serially cut into 4-μ sections. Some sections were processed for histologic examination using hematoxylin-eosin stain. Other sections were processed for immunohistochemical examination. For MMP-9, the area fraction of the positive cells was measured, and the percentage of the MMP-9-immunopositive area to the total area of the microscopic field was calculated. For gram-negative stain cells, the number of cells showing the pink-red color was counted per microscopic field. The Student's t test was used to compare the SYM and ASYM groups. The Pearson correlation coefficient was used to determine a significant correlation between the number of cells and the MMP-9 level. The significance level was set at P ≤ .05. The SYM group showed a statistically significantly higher mean number of gram-negative cells (P = .001) and MMP-9 area percent (P < .001) than the ASYM group. There was a statistically significant positive (r = .927) correlation between the number of gram-negative cells and the MMP-9 area percent (P< .001). There is good evidence to suspect a significant role of gram-negative bacteria and MMP-9 in symptomatic periapical lesions. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. [Left-sided endocarditis due to gram-negative bacilli: epidemiology and clinical characteristics].

    Science.gov (United States)

    Noureddine, Mariam; de la Torre, Javier; Ivanova, Radka; Martínez, Francisco José; Lomas, Jose María; Plata, Antonio; Gálvez, Juan; Reguera, Jose María; Ruiz, Josefa; Hidalgo, Carmen; Luque, Rafael; García-López, María Victoria; de Alarcón, Arístides

    2011-04-01

    The aim of this study is to describe the epidemiological, clinical characteristics, and outcome of patients with left-side endocarditis caused by gram-negative bacteria. Prospective multicenter study of left-sided infective endocarditis reported in the Andalusian Cohort for the Study of Cardiovascular Infections between 1984 and 2008. Among the 961 endocarditis, 24 (2.5%) were caused by gram-negative bacilli. The most common pathogens were Escherichia coli, Pseudomonas aeruginosa and Salmonella enterica. Native valves (85.7%) were mainly affected, most of them with previous valve damage (57%). Comorbidity was greater (90% vs 39%; P=.05) than in endocarditis due to other microorganism, the most frequent being, diabetes, hepatic cirrhosis and neoplasm. A previous manipulation was found in 47.6% of the cases, and 37% were considered hospital-acquired. Renal failure (41%), central nervous system involvement (33%) and ventricular dysfunction (45%) were the most frequent complications. Five cases (21%) required cardiac surgery, mostly due to ventricular dysfunction. More than 50% of cases were treated with aminoglycosides, but this did not lead to a better outcome or prognosis. Mortality (10 patients) was higher than that reported with other microorganisms (41% vs 35%; P=.05). Left-sided endocarditis due to gram-negative bacilli is a rare disease, which affects patients with major morbidities and often with a previous history of hospital manipulations. Cardiac, neurological and renal complications are frequent and associated with a high mortality. The association of aminoglycosides in the antimicrobial treatment did not involve a better outcome or prognosis. Copyright © 2010 Elsevier España, S.L. All rights reserved.

  17. Nosocomial bloodstream infections in a Turkish university hospital: study of Gram-negative bacilli and their sensitivity patterns.

    Science.gov (United States)

    Köseoğlu , O; Kocagöz, S; Gür, D; Akova, M

    2001-06-01

    Treatment of nosocomial bacteraemia is usually governed by the surveillance results of the particular unit. Such results are especially important when antimicrobial resistance rates are high. Multiresistant isolates including Gram-negatives producing extended-spectrum beta-lactamases have been frequently reported in tertiary care units in Turkey. In this study, antimicrobial susceptibilities of Gram-negative blood isolates (n=348) were determined by microbroth dilution tests. The results showed carbapenems (meropenem and imipenem) to be uniformly more potent in vitro than any other drug against the Enterobacteriaceae. Quinolone antibiotics were more active in vitro than aminoglycosides against a range of bacteria. Gram-negative bloodstream isolates were highly resistant to many antimicrobial agents in the hospital. In order to prevent hospital infection and antimicrobial resistance, surveillance of aetiological agents must be performed regularly.

  18. Rapid and reliable identification of Gram-negative bacteria and Gram-positive cocci by deposition of bacteria harvested from blood cultures onto the MALDI-TOF plate.

    Science.gov (United States)

    Barnini, Simona; Ghelardi, Emilia; Brucculeri, Veronica; Morici, Paola; Lupetti, Antonella

    2015-06-18

    Rapid identification of the causative agent(s) of bloodstream infections using the matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) methodology can lead to increased empirical antimicrobial therapy appropriateness. Herein, we aimed at establishing an easier and simpler method, further referred to as the direct method, using bacteria harvested by serum separator tubes from positive blood cultures and placed onto the polished steel target plate for rapid identification by MALDI-TOF. The results by the direct method were compared with those obtained by MALDI-TOF on bacteria isolated on solid media. Identification of Gram-negative bacilli was 100 % concordant using the direct method or MALDI-TOF on isolated bacteria (96 % with score > 2.0). These two methods were 90 % concordant on Gram-positive cocci (32 % with score > 2.0). Identification by the SepsiTyper method of Gram-positive cocci gave concordant results with MALDI-TOF on isolated bacteria in 87 % of cases (37 % with score > 2.0). The direct method herein developed allows rapid identification (within 30 min) of Gram-negative bacteria and Gram-positive cocci from positive blood cultures and can be used to rapidly report reliable and accurate results, without requiring skilled personnel or the use of expensive kits.

  19. Prevalence and risk factors for CTX-M gram-negative bacteria in hospitalized patients at a tertiary care hospital in Kilimanjaro, Tanzania

    DEFF Research Database (Denmark)

    Sonda, Tolbert; Kumburu, Happiness; van Zwetselaar, Marco

    2018-01-01

    Emergence and spread of extended spectrum beta-lactamase (ESBL)-producing gram-negative bacteria, mainly due to CTX-M, is a major global public health problem. Patients infected with ESBL-producing gram-negative bacteria have an increased risk of treatment failure and death. We investigated...... 2015 were fully genome sequenced. The prevalence of ESBL-producing gram-negative bacteria was determined based on the presence of blaCTX-M. The odds ratio (OR) and risk factors for ESBL-producing gram-negative bacteria due to CTX-M were assessed using logistic regression models. The overall CTX......-M prevalence (95% CI) was 13.6% (10.1–18.1). Adjusted for other factors, the OR of CTX-M gram-negative bacteria for patients previously hospitalized was 0.26 (0.08–0.88), p = 0.031; the OR for patients currently on antibiotics was 4.02 (1.29–12.58), p = 0.017; the OR for patients currently on ceftriaxone was 0...

  20. High resistance rate against 15 different antibiotics in aerobic gram-negative bacteria isolates of cardiology intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Küçükates E

    2002-01-01

    Full Text Available Aerobic gram negative bacteria were isolated and examined microbiologically from various clinical samples of 602 patients hospitalized between January 1997 and December 2000 in surgical and coronary intensive care units (ICUs. A total of 827 isolates were obtained from 602 patients. The majority of microorganisms were isolated from the respiratory tract (50.3% and blood (39.9%. Pseudomonas spp. were the most frequently isolated gram negative species (32.7%, followed by Acinetobacter spp. (24.0% and Klebsiella pneumoniae (19.4%. High resistance rates to all antibiotics studied were observed. Imipenem and meropenem were the most effective antibiotics against gram negatives.

  1. Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts

    International Nuclear Information System (INIS)

    Peszke, Jerzy; Nowak, Anna; Szade, Jacek; Szurko, Agnieszka; Zygadło, Dorota; Michałowska, Marlena; Krzyściak, Paweł; Zygoń, Patrycja; Ratuszna, Alicja; Ostafin, Marek M.

    2016-01-01

    Engineered nanomaterials, especially metallic nanoparticles, are the most popular system applied in daily life products. The study of their biological and toxicity properties seems to be indispensable. In this paper, we present results of biological activity of Ag/Cu nanoparticles. These nanoparticles show more promising killing/inhibiting properties on Gram-negative bacteria than for Gram-positive ones. The Gram-negative bacteria show strong effect already at the concentration of 1 ppm after 15 min of incubation. Moreover, in vitro tests of toxicity made on normal human dermal fibroblast cultures showed that after 72 h of incubation with Ag/Cu nanoparticles, they are less toxic then Cu 2 O/CuO nanoparticles.

  2. Effect of silver/copper and copper oxide nanoparticle powder on growth of Gram-negative and Gram-positive bacteria and their toxicity against the normal human dermal fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Peszke, Jerzy; Nowak, Anna, E-mail: ana.maria.nowak@gmail.com; Szade, Jacek; Szurko, Agnieszka; Zygadło, Dorota; Michałowska, Marlena [University of Silesia, A. Chelkowski Institute of Physics (Poland); Krzyściak, Paweł [Jagiellonian University Medical College, Department of Mycology Chair of Microbiology (Poland); Zygoń, Patrycja [Czestochowa University of Technology, Institute of Materials Engineering (Poland); Ratuszna, Alicja [University of Silesia, A. Chelkowski Institute of Physics (Poland); Ostafin, Marek M. [Department of Microbiology University of Agriculture (Poland)

    2016-12-15

    Engineered nanomaterials, especially metallic nanoparticles, are the most popular system applied in daily life products. The study of their biological and toxicity properties seems to be indispensable. In this paper, we present results of biological activity of Ag/Cu nanoparticles. These nanoparticles show more promising killing/inhibiting properties on Gram-negative bacteria than for Gram-positive ones. The Gram-negative bacteria show strong effect already at the concentration of 1 ppm after 15 min of incubation. Moreover, in vitro tests of toxicity made on normal human dermal fibroblast cultures showed that after 72 h of incubation with Ag/Cu nanoparticles, they are less toxic then Cu{sub 2}O/CuO nanoparticles.

  3. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria

    Science.gov (United States)

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D.

    2014-01-01

    Objectives An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. Methods E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. Results The anthracycline Antibiotic 301A1 was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure–activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A1 abolishes activity. Conclusions Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. PMID:24627312

  4. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria.

    Science.gov (United States)

    Sperandeo, Paola; Martorana, Alessandra M; Polissi, Alessandra

    2017-11-01

    The outer membrane (OM) of Gram-negative bacteria is an asymmetric lipid bilayer containing a unique glycolipid, lipopolysaccharide (LPS) in its outer leaflet. LPS molecules confer to the OM peculiar permeability barrier properties enabling Gram-negative bacteria to exclude many toxic compounds, including clinically useful antibiotics, and to survive harsh environments. Transport of LPS poses several problems to the cells due to the amphipatic nature of this molecule. In this review we summarize the current knowledge on the LPS transport machinery, discuss the challenges associated with this process and present the solutions that bacterial cells have evolved to address the problem of LPS transport and assembly at the cell surface. Finally, we discuss how knowledge on LPS biogenesis can be translated for the development of novel antimicrobial therapies. This article is part of a Special Issue entitled: Bacterial Lipids edited by Russell E. Bishop. Copyright © 2016. Published by Elsevier B.V.

  5. Multiparametric Profiling for Identification of Chemosensitizers against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Vincent Lôme

    2018-02-01

    Full Text Available Antibiotic resistance is now a worldwide therapeutic problem. Since the beginning of anti-infectious treatment bacteria have rapidly shown an incredible ability to develop and transfer resistance mechanisms. In the last decades, the design variation of pioneer bioactive molecules has strongly improved their activity and the pharmaceutical companies partly won the race against the clock. Since the 1980s, the new classes of antibiotics that emerged were mainly directed to Gram-positive bacteria. Thus, we are now facing to multidrug-resistant Gram-negative bacteria, with no therapeutic options to deal with them. These bacteria are mainly resistant because of their double membrane that conjointly impairs antibiotic accumulation and extrudes these molecules when entered. The main challenge is to allow antibiotics to cross the impermeable envelope and reach their targets. One promising solution would be to associate, in a combination therapy, a usual antibiotic with a non-antibiotic chemosensitizer. Nevertheless, for effective drug discovery, there is a prominent lack of tools required to understand the rules of permeation and accumulation into Gram-negative bacteria. By the use of a multidrug-resistant enterobacteria, we introduce a high-content screening procedure for chemosensitizers discovery by quantitative assessment of drug accumulation, alteration of barriers, and deduction of their activity profile. We assembled and analyzed a control chemicals library to perform the proof of concept. The analysis was based on real-time monitoring of the efflux alteration and measure of the influx increase in the presence of studied compounds in an automatized bio-assay. Then, synergistic activity of compounds with an antibiotic was studied and kinetic data reduction was performed which led to the calculation of a score for each barrier to be altered.

  6. Activation of toll-like receptors 2 and 4 by gram-negative periodontal bacteria

    NARCIS (Netherlands)

    Kikkert, R.; Laine, M. L.; Aarden, L. A.; van Winkelhoff, A. J.

    2007-01-01

    BACKGROUND/AIMS: Periodontitis is a chronic infectious disease associated with a gram-negative subgingival microflora. Bacterial components stimulate, among other receptors, Toll-like receptor (TLR) 2 and/or TLR4. Accumulating evidence indicates that both qualitatively and quantitatively distinct

  7. Silver-doped manganese dioxide and trioxide nanoparticles inhibit both gram positive and gram negative pathogenic bacteria.

    Science.gov (United States)

    Kunkalekar, R K; Prabhu, M S; Naik, M M; Salker, A V

    2014-01-01

    Palladium, ruthenium and silver-doped MnO2 and silver doped Mn2O3 nanoparticles were synthesized by simple co-precipitation technique. SEM-TEM analysis revealed the nano-size of these synthesized samples. XPS data illustrates that Mn is present in 4+ and 3+ oxidation states in MnO2 and Mn2O3 respectively. Thermal analysis gave significant evidence for the phase changes with increasing temperature. Antibacterial activity of these synthesized nanoparticles on three Gram positive bacterial cultures (Staphylococcus aureus ATCC 6538, Streptococcus epidermis ATCC 12228, Bacillus subtilis ATCC 6633) and three Gram negative cultures (Escherichia coli ATCC 8739, Salmonella abony NCTC 6017 and Klebsiella pneumoniae ATCC 1003) was investigated using a disc diffusion method and live/dead assay. Only Ag-doped MnO2 and Ag-doped Mn2O3 nanoparticles showed antibacterial property against all six-test bacteria but Ag-doped MnO2 was found to be more effective than Ag-doped Mn2O3. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Nanoparticle targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens

    Science.gov (United States)

    Lu, Hoang D.; Yang, Shirley S.; Wilson, Brian K.; McManus, Simon A.; Chen, Christopher V. H.-H.; Prud'homme, Robert K.

    2017-04-01

    Antimicrobial resistance is a healthcare problem of increasing significance, and there is increasing interest in developing new tools to address bacterial infections. Bacteria-targeting nanoparticles hold promise to improve drug efficacy, compliance, and safety. In addition, nanoparticles can also be used for novel applications, such as bacterial imaging or bioseperations. We here present the use of a scalable block-copolymer-directed self-assembly process, Flash NanoPrecipitation, to form zinc(II)-bis(dipicolylamine) modified nanoparticles that bind to both Gram-positive and Gram-negative bacteria with specificity. Particles have tunable surface ligand densities that change particle avidity and binding efficacy. A variety of materials can be encapsulated into the core of the particles, such as optical dyes or iron oxide colloids, to produce imageable and magnetically active bacterial targeting constructs. As a proof-of-concept, these particles are used to bind and separate bacteria from solution in a magnetic column. Magnetic manipulation and separation would translate to a platform for pathogen identification or removal. These magnetic and targeted nanoparticles enable new methods to address bacterial infections.

  9. Survival and detection of coliforms, Enterobacteriaceae, and gram-negative bacteria in Greek yogurt.

    Science.gov (United States)

    Hervert, C J; Martin, N H; Boor, K J; Wiedmann, M

    2017-02-01

    Despite the widespread use of coliforms as indicator bacteria, increasing evidence suggests that the Enterobacteriaceae (EB) and total gram-negative groups more accurately reflect the hygienic status of high-temperature, short-time pasteurized milk and processing environments. If introduced into milk as postpasteurization contamination, these bacteria may grow to high levels and produce a wide range of sensory-related defects. However, limited information is available on the use and survival of bacterial hygiene indicators in dairy products outside of pasteurized fluid milk and cheese. The goal of this study was to (1) provide information on the survival of a diverse set of bacterial hygiene indicators in the low pH environment of Greek yogurt, (2) compare traditional and alternative detection methods for their ability to detect bacterial hygiene indicators in Greek yogurt, and (3) offer insight into optimal hygiene indicator groups for use in low-pH fermented dairy products. To this end, we screened 64 bacterial isolates, representing 24 dairy-relevant genera, for survival and detection in Greek yogurt using 5 testing methods. Before testing, isolates were inoculated into plain, 0% fat Greek yogurt (pH 4.35 to 4.65), followed by a 12-h hold period at 4 ± 1°C. Yogurts were subsequently tested using Coliform Petrifilm (3M, St. Paul, MN) to detect coliforms; Enterobacteriaceae Petrifilm (3M), violet red bile glucose agar and the D-Count (bioMérieux, Marcy-l'Étoile, France) to detect EB; and crystal violet tetrazolium agar (CVTA) to detect total gram-negative bacteria. Overall, the non-EB gram-negative isolates showed significantly larger log reductions 12 h after inoculation into Greek yogurt (based on bacterial numbers recovered on CVTA) compared with the coliform and noncoliform EB isolates tested. The methods evaluated varied in their ability to detect different microbial hygiene indicators in Greek yogurt. Crystal violet tetrazolium agar detected the highest

  10. O-antigen protects gram-negative bacteria from histone killing.

    Directory of Open Access Journals (Sweden)

    Catherine Chaput

    Full Text Available Beyond their traditional role of wrapping DNA, histones display antibacterial activity to Gram-negative and -positive bacteria. To identify bacterial components that allow survival to a histone challenge, we selected resistant bacteria from homologous Escherichia coli libraries that harbor plasmids carrying pieces of the chromosome in different sizes. We identified genes required for exopolysaccharide production and for the synthesis of the polysaccharide domain of the lipopolysaccharide, called O-antigen. Indeed, O-antigen and exopolysaccharide conferred further resistance to histones. Notably, O-antigen also conferred resistance to histones in the pathogens Shigella flexneri and Klebsiella pneumoniae.

  11. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit

    Directory of Open Access Journals (Sweden)

    Orlei Ribeiro de Araujo

    Full Text Available Antibiotic restriction can be useful in maintaining bacterial susceptibility. The objective of this study was verify if restriction of cefepime, the most frequently used cephalosporin in our neonatal intensive care unit (NICU, would ameliorate broad-spectrum susceptibility of Gram-negative isolates. Nine hundred and ninety-five premature and term newborns were divided into 3 cohorts, according to the prevalence of cefepime use in the unit: Group 1 (n=396 comprised patients admitted from January 2002 to December 2003, period in which cefepime was the most used broad-spectrum antibiotic. Patients in Group 2 (n=349 were admitted when piperacillin/tazobactam replaced cefepime (January to December 2004 and in Group 3 (n=250 when cefepime was reintroduced (January to September 2005. Meropenem was the alternative third-line antibiotic for all groups. Multiresistance was defined as resistance to 2 or more unrelated antibiotics, including necessarily a third or fourth generation cephalosporin, piperacillin/tazobactam or meropenem. Statistics involved Kruskal-Wallis, Mann-Whitney and logrank tests, Kaplan-Meier analysis. Groups were comparable in length of stay, time of mechanical ventilation, gestational age and birth weight. Ninety-eight Gram-negative isolates were analyzed. Patients were more likely to remain free of multiresistant isolates by Kaplan-Meier analysis in Group 2 when compared to Group 1 (p=0.017 and Group 3 (p=0.003. There was also a significant difference in meropenem resistance rates. Cefepime has a greater propensity to select multiresistant Gram-negative pathogens than piperacillin/tazobactam and should not be used extensively in neonatal intensive care.

  12. A Trojan-Horse Strategy Including a Bacterial Suicide Action for the Efficient Use of a Specific Gram-Positive Antibiotic on Gram-Negative Bacteria.

    Science.gov (United States)

    Schalk, Isabelle J

    2018-05-10

    In the alarming context of rising bacterial antibiotic resistance, there is an urgent need to discover new antibiotics or increase and/or enlarge the activity of those currently in use. The need for new antibiotics is even more urgent in the case of Gram-negative bacteria, such as Acinetobacter, Pseudomonas, and Enterobacteria, which have become resistant to many antibiotics and have an outer membrane with very low permeability to drugs. Vectorization of antibiotics using siderophores may be a solution to bypass such a bacterial wall: the drugs use the iron transporters of the outer membrane as gates to enter bacteria in a Trojan-horse strategy. Designing siderophore-antibiotics that can cross outer membranes has become almost routine, but their transport across the inner membrane is still a limiting step, as well as a strategy that allows dissociation of the antibiotic from the siderophore once inside the bacteria. Liu et al. ( J. Med. Chem. 2018 , DOI: 10.1021/acs.jmedchem.8b00218 ) report the synthesis of a siderophore-cephalosporin compound and demonstrate that β-lactams, such as cephalosporins, can serve as β-lactamase-triggered releasable linkers to allow intracellular delivery of Gram-positive antibiotics to Gram-negative bacteria.

  13. The gram-negative bacterial periplasm: Size matters.

    Directory of Open Access Journals (Sweden)

    Samuel I Miller

    2018-01-01

    Full Text Available Gram-negative bacteria are surrounded by two membrane bilayers separated by a space termed the periplasm. The periplasm is a multipurpose compartment separate from the cytoplasm whose distinct reducing environment allows more efficient and diverse mechanisms of protein oxidation, folding, and quality control. The periplasm also contains structural elements and important environmental sensing modules, and it allows complex nanomachines to span the cell envelope. Recent work indicates that the size or intermembrane distance of the periplasm is controlled by periplasmic lipoproteins that anchor the outer membrane to the periplasmic peptidoglycan polymer. This periplasm intermembrane distance is critical for sensing outer membrane damage and dictates length of the flagellar periplasmic rotor, which controls motility. These exciting results resolve longstanding debates about whether the periplasmic distance has a biological function and raise the possibility that the mechanisms for maintenance of periplasmic size could be exploited for antibiotic development.

  14. Methods for Confirming the Gram Reaction of Gram-variable Bacillus Species Isolated from Tobacco

    Directory of Open Access Journals (Sweden)

    Morin A

    2014-12-01

    Full Text Available Bacillus is a predominant genus of bacteria isolated from tobacco. The Gram stain is the most commonly used and most important of all diagnostic staining techniques in microbiology. In order to help confirm the Gram positivity of Bacillus isolates from tobacco, three methods using the chemical differences of the cell wall and membrane of Gram-positive and Gram-negative bacteria were investigated: the KOH (potassium hydroxide, the LANA (L-alanine-4-nitroanilide, and the vancomycin susceptibility tests. When colonies of Gram-negative bacteria are treated with 3% KOH solution, a slimy suspension is produced, probably due to destruction of the cell wall and liberation of deoxyribonucleic acid (DNA. Gram-positive cell walls resist KOH treatment. The LANA test reveals the presence of a cell wall aminopeptidase that hydrolyzes the L-alanine-4-nitroanilide in Gram-negative bacteria. This enzyme is absent in Gram-positive bacteria. Vancomycin is a glycopeptide antibiotic inhibiting the cell wall peptido-glycan synthesis of Gram-positive microorganisms. Absence of lysis with KOH, absence of hydrolysis of LANA, and susceptibility to vancomycin were used with the Gram reaction to confirm the Gram positivity of various Bacillus species isolated from tobacco. B. laevolacticus excepted, all Bacillus species tested showed negative reactions to KOH and LANA tests, and all species were susceptible to vancomycin (5 and 30 µg.

  15. In vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive organisms: tigecycline Evaluation and Surveillance Trial 2004 to 2007.

    Science.gov (United States)

    Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J

    2009-11-01

    The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.

  16. Detection of Extended Spectrum Beta-Lactamases Among Gram Negative Bacilli Recovered from Cattle Feces In Benin City, Nigeria

    Directory of Open Access Journals (Sweden)

    Helen Oroboghae OGEFERE

    2017-06-01

    Full Text Available This study was carried out to determine the prevalence of extended spectrum beta-lactamase (ESBL among Gram negative bacteria isolated from cattle feces in Benin City, Nigeria. A total of 250 Gram negative bacteria isolates were recovered from cattle feces and were processed microbiologically using standard techniques. Emergent colonies were identified and antibacterial susceptibility tests were determined using Kirby-Bauer disk diffusion method. All bacterial isolates were screened for the presence of ESBL using the double-disc synergy method. A total of 37 (14.8% isolates were positive for ESBL, with 33 (13.2% indicated by ceftazidime, while only 4 (1.6% were indicated by both ceftazidime and cefotaxime (P < 0.0001. Of the Gram negative bacterial isolates recovered, Salmonella species was the most prevalent ESBL-producer with 55.0% prevalence (P = 0.0092, while no isolate of Pseudomonas aeruginosa produced ESBL. ESBL-positive isolates showed poor susceptibility to the tested antibacterial agents in comparison with non-ESBL-producers and imipenem was the most active antibiotic. The prevalence of ESBL among Gram negative bacilli recovered from cattle feces was 14.8%. The study advises prudent use of antibiotics in the treatment of cattle and harps on improved hygiene in managing cattle, as they are potential reservoirs of ESBL-producing organisms.

  17. An unusual class of anthracyclines potentiate Gram-positive antibiotics in intrinsically resistant Gram-negative bacteria.

    Science.gov (United States)

    Cox, Georgina; Koteva, Kalinka; Wright, Gerard D

    2014-07-01

    An orthogonal approach taken towards novel antibacterial drug discovery involves the identification of small molecules that potentiate or enhance the activity of existing antibacterial agents. This study aimed to identify natural-product rifampicin adjuvants in the intrinsically resistant organism Escherichia coli. E. coli BW25113 was screened against 1120 actinomycete fermentation extracts in the presence of subinhibitory (2 mg/L) concentrations of rifampicin. The active molecule exhibiting the greatest rifampicin potentiation was isolated using activity-guided methods and identified using mass and NMR spectroscopy. Susceptibility testing and biochemical assays were used to determine the mechanism of antibiotic potentiation. The anthracycline Antibiotic 301A(1) was isolated from the fermentation broth of a strain of Streptomyces (WAC450); the molecule was shown to be highly synergistic with rifampicin (fractional inhibitory concentration index = 0.156) and moderately synergistic with linezolid (FIC index = 0.25) in both E. coli and Acinetobacter baumannii. Activity was associated with inhibition of efflux and the synergistic phenotype was lost when tested against E. coli harbouring mutations within the rpoB gene. Structure-activity relationship studies revealed that other anthracyclines do not synergize with rifampicin and removal of the sugar moiety of Antibiotic 301A(1) abolishes activity. Screening only a subsection of our natural product library identified a small-molecule antibiotic adjuvant capable of sensitizing Gram-negative bacteria to antibiotics to which they are ordinarily intrinsically resistant. This result demonstrates the great potential of this approach in expanding antibiotic effectiveness in the face of the growing challenge of resistance in Gram-negatives. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Inhibition of various gram-positive and gram-negative bacteria growth on selenium nanoparticle coated paper towels.

    Science.gov (United States)

    Wang, Qi; Larese-Casanova, Philip; Webster, Thomas J

    2015-01-01

    There are wide spread bacterial contamination issues on various paper products, such as paper towels hanging in sink splash zones or those used to clean surfaces, filter papers used in water and air purifying systems, and wrappings used in the food industry; such contamination may lead to the potential spread of bacteria and consequent severe health concerns. In this study, selenium nanoparticles were coated on normal paper towel surfaces through a quick precipitation method, introducing antibacterial properties to the paper towels in a healthy way. Their effectiveness at preventing biofilm formation was tested in bacterial assays involving Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus epidermidis. The results showed significant and continuous bacteria inhibition with about a 90% reduction from 24 to 72 hours for gram-positive bacteria including S. aureus and S. epidermidis. The selenium coated paper towels also showed significant inhibition of gram-negative bacteria like P. aeruginosa and E. coli growth at about 57% and 84%, respectively, after 72 hours of treatment. Therefore, this study established a promising selenium-based antibacterial strategy to prevent bacterial growth on paper products, which may lead to the avoidance of bacteria spreading and consequent severe health concerns.

  19. Gram-Negative Bacterial Sensors for Eukaryotic Signal Molecules

    Directory of Open Access Journals (Sweden)

    Olivier Lesouhaitier

    2009-09-01

    Full Text Available Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction

  20. Antimicrobial Resistance in Gram-Negative Rods Causing Bacteremia in Hematopoietic Stem Cell Transplant Recipients

    DEFF Research Database (Denmark)

    Averbuch, Diana; Tridello, Gloria; Hoek, Jennifer

    2017-01-01

    Background: This intercontinental study aimed to study gram-negative rod (GNR) resistance in hematopoietic stem cell transplantation (HSCT). Methods: GNR bacteremias occurring during 6 months post-HSCT (February 2014-May 2015) were prospectively collected, and analyzed for rates and risk factors...

  1. In vitro Efficacy of Meropenem, Colistin and Tigecycline Against the Extended Spectrum Beta-Lactamase Producing Gram Negative Bacilli

    International Nuclear Information System (INIS)

    Gill, M. M.; Usman, J.; Hassan, A.; Kaleem, F.; Anjum, R.

    2015-01-01

    Objective:To compare the in vitroefficacy of meropenem, colistin and tigecycline against extended spectrum Betalactamase producing Gram negative bacilli by minimal inhibitory concentration. Study Design:Cross-sectional descriptive study. Place and Duration of Study: Department of Microbiology, Army Medical College, National University of Sciences and Technology, Rawalpindi, from June to December 2010. Methodology: Routine clinical specimens were subjected to standard microbiological procedures and the isolates were identified to species level. Extended spectrum beta-lactamase producing Gram negative bacilli were detected by Jarlier disc synergy method and confirmed by ceftazidime and ceftazidime-clavulanate Etest. Minimum Inhibitory Concentration (MIC90) of meropenem, colistin and tigecycline was determined by Etest (AB BIOMERIUX) and the results were interpreted according to the manufacturer's instructions and Clinical and Laboratory Standards Institute guidelines and Food and Drug Authority recommendations. Results were analyzed by using Statistical Package for the Social Sciences version 20. Results: A total of 52 non-duplicate extended spectrum Beta-lactamase-producing Gram negative bacilli were included in the study. The MIC90 of tigecycline (0.75 micro g/ml) was lowest as compared to the meropenem (2 micro g/ml) and colistin (3 micro g/ml). Conclusion: Tigecycline is superior in efficacy against the extended spectrum Beta-lactamase producing Gram negative bacilli as compared to colistin and meropenem. (author)

  2. The Effect of Charge at the Surface of Silver Nanoparticles on Antimicrobial Activity against Gram-Positive and Gram-Negative Bacteria: A Preliminary Study

    International Nuclear Information System (INIS)

    Abbaszadegan, A.; Ghahramani, Y.; Nabavizadeh, M.; Gholami, A.; Hemmateenejad, I.; Dorostkar, S.; Sharghi, H.

    2014-01-01

    The bactericidal efficiency of various positively and negatively charged silver nanoparticles has been extensively evaluated in literature, but there is no report on efficacy of neutrally charged silver nanoparticles. The goal of this study is to evaluate the role of electrical charge at the surface of silver nanoparticles on antibacterial activity against a panel of microorganisms. Three different silver nanoparticles were synthesized by different methods, providing three different electrical surface charges (positive, neutral, and negative). The antibacterial activity of these nanoparticles was tested against gram-positive (i.e., Staphylococcus aureus, Streptococcus mutans, and Streptococcus pyogenes) and gram-negative (i.e., Escherichia coli and Proteus vulgaris) bacteria. Well diffusion and micro-dilution tests were used to evaluate the bactericidal activity of the nanoparticles. According to the obtained results, the positively-charged silver nanoparticles showed the highest bactericidal activity against all microorganisms tested. The negatively charged silver nanoparticles had the least and the neutral nanoparticles had intermediate antibacterial activity. The most resistant bacteria were Proteus vulgaris. We found that the surface charge of the silver nanoparticles was a significant factor affecting bactericidal activity on these surfaces. Although the positively charged nanoparticles showed the highest level of effectiveness against the organisms tested, the neutrally charged particles were also potent against most bacterial species.

  3. Antibacterial activity of sphingoid bases and fatty acids against Gram-positive and Gram-negative bacteria.

    Science.gov (United States)

    Fischer, Carol L; Drake, David R; Dawson, Deborah V; Blanchette, Derek R; Brogden, Kim A; Wertz, Philip W

    2012-03-01

    There is growing evidence that the role of lipids in innate immunity is more important than previously realized. How lipids interact with bacteria to achieve a level of protection, however, is still poorly understood. To begin to address the mechanisms of antibacterial activity, we determined MICs and minimum bactericidal concentrations (MBCs) of lipids common to the skin and oral cavity--the sphingoid bases D-sphingosine, phytosphingosine, and dihydrosphingosine and the fatty acids sapienic acid and lauric acid--against four Gram-negative bacteria and seven Gram-positive bacteria. Exact Kruskal-Wallis tests of these values showed differences among lipid treatments (P 500 μg/ml). Sapienic acid (MBC range, 31.3 to 375.0 μg/ml) was active against Streptococcus sanguinis, Streptococcus mitis, and Fusobacterium nucleatum but not active against Escherichia coli, Staphylococcus aureus, S. marcescens, P. aeruginosa, Corynebacterium bovis, Corynebacterium striatum, and Corynebacterium jeikeium (MBC > 500 μg/ml). Lauric acid (MBC range, 6.8 to 375.0 μg/ml) was active against all bacteria except E. coli, S. marcescens, and P. aeruginosa (MBC > 500 μg/ml). Complete killing was achieved as early as 0.5 h for some lipids but took as long as 24 h for others. Hence, sphingoid bases and fatty acids have different antibacterial activities and may have potential for prophylactic or therapeutic intervention in infection.

  4. Risk score for identifying adults with CSF pleocytosis and negative CSF Gram stain at low risk for an urgent treatable cause

    NARCIS (Netherlands)

    Hasbun, Rodrigo; Bijlsma, Merijn; Brouwer, Matthijs C.; Khoury, Nabil; Hadi, Christiane M.; van der Ende, Arie; Wootton, Susan H.; Salazar, Lucrecia; Hossain, Md Monir; Beilke, Mark; van de Beek, Diederik

    2013-01-01

    We aimed to derive and validate a risk score that identifies adults with cerebrospinal fluid (CSF) pleocytosis and a negative CSF Gram stain at low risk for an urgent treatable cause. Patients with CSF pleocytosis and a negative CSF Gram stain were stratified into a prospective derivation (n = 193)

  5. Relative uptake of technetium 99m stannous colloid by neutrophils and monocytes is altered by gram-negative infection

    International Nuclear Information System (INIS)

    Ramsay, Stuart C.; Maggs, Jacqueline A.; Ketheesan, Natkunam; Norton, Robert; LaBrooy, Justin

    2005-01-01

    Gram-negative infection alters phagocytic cell function; hence, it could affect phagocytic uptake of inorganic colloids by these cells. Neutrophil and monocyte uptake of technetium 99m stannous colloid ( 99m Tc SnC) in whole blood was measured in 10 patients with gram-negative infection (Burkholderia pseudomallei) and 7 controls. Mean uptake per individual neutrophil was reduced in infection. Uptake per monocyte was not significantly different. Blood from six normal individuals was incubated with lysed B. pseudomallei and colloid, which showed reduced neutrophil uptake, but increased monocyte uptake. These results indicate that uptake of 99m Tc SnC stannous colloid can be used to measure alteration in phagocytic cell function. They suggest that infection with B. pseudomallei is associated with reduced phagocytosis by individual neutrophils, possibly through toxic effects of bacterial products. This could have immunopathogenic consequences for this gram-negative infection and may explain why it responds to granulocyte colony-stimulating factor

  6. A study of gram-negative bacterial resistance to Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Maleknejad P

    1993-05-01

    Full Text Available From hygienic and economical point of view, drug therapy and prophylaxy in infectious diseases are of great importance. After the world war II, a reduction in the efficacy of sulfonamide in the treatment of shigellosis was observed and later on it led to a survey on drug resistance and the way of its transmission. The aim of this survey, during which 100 cases of gram-negative bacteria were identified, is to study the drug resistance of this bacteria against five types of aminoglycosides by antibiotic sensitivity test (disc-diffusion. Out of 100 strains, 47% were resistant to gentamycin, 70% to kanamycin, 82% to streptomycin, 53% to tobramycin, and 8% to amikacin

  7. DMPD: Lipopolysaccharide sensing an important factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available se toGram-negative bacterial infections: benefits and hazards of LPShypersensitivity. Freudenberg MA, Tchapt...portant factor in the innate immune response toGram-negative bacterial infections: benefits and hazards of L...une response toGram-negative bacterial infections: benefits and hazards of LPShyp

  8. Sinus surgery postpones chronic Gram-negative lung infection

    DEFF Research Database (Denmark)

    Alanin, M C; Aanaes, K; Høiby, N

    2016-01-01

    of pulmonary samples positive for GNB. We investigated whether the effect is sustained. METHODOLOGY: We report the effect of ESS and adjuvant therapy three years postoperatively in a CF cohort participating in this prospective clinical follow-up study. The primary endpoint was the lung infection status defined......BACKGROUND: In patients with cystic fibrosis (CF) the sinuses are a bacterial reservoir for Gram-negative bacteria (GNB). From the sinuses the GNB can repeatedly migrate to the lungs. In a one-year follow-up study, endoscopic sinus surgery (ESS) with adjuvant therapy reduced the frequency....... The total cohort had decreasing lung function during follow-up; however, in 27 patients with improved lung infection status lung function was stable. Revision surgery was performed in 31 patients (28%). CONCLUSION: ESS with adjuvant therapy significantly improves the lung infection status for at least three...

  9. Optimizing empiric therapy for Gram-negative bloodstream infections in children.

    Science.gov (United States)

    Chao, Y; Reuter, C; Kociolek, L K; Patel, R; Zheng, X; Patel, S J

    2018-06-01

    Antimicrobial stewardship can be challenging in children with bloodstream infections (BSIs) caused by Gram-negative bacilli (GNB). This retrospective cohort study explored how data elements in the electronic health record could potentially optimize empiric antibiotic therapy for BSIs caused by GNB, via the construction of customized antibiograms for categorical GNB infections and identification of opportunities to minimize organism-drug mismatch and decrease time to effective therapy. Our results suggest potential strategies that could be implemented at key decision points in prescribing at initiation, modification, and targeting of therapy. Copyright © 2017 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  10. Emerging Gram negative resistance to last-line antimicrobial agents fosfomycin, colistin and ceftazidime-avibactam - epidemiology, laboratory detection and treatment implications.

    Science.gov (United States)

    Sherry, Norelle; Howden, Benjamin

    2018-04-01

    Multidrug-resistant (MDR) and extensively-drug-resistant (XDR) Gram-negative bacteria have emerged as a major threat to human health globally. This has resulted in the 're-discovery' of some older antimicrobials and development of new agents, however resistance has also rapidly emerged to these agents. Areas covered: Here we describe recent developments in resistance to three of the most important last-line antimicrobials for treatment of MDR and XDR Gram negatives: fosfomycin, colistin and ceftazidime-avibactam. Expert commentary: A key challenge for microbiologists and clinicians using these agents for treating patients with MDR and XDR Gram negative infections is the need to ensure appropriate reference methods are being used to test susceptibility to these agents, especially colistin and fosfomycin. These methods are not available in all laboratories meaning accurate results are either delayed, or potentially inaccurate as non-reference methods are employed. Combination therapy for MDR and XDR Gram negatives is likely to become more common, and future studies should focus on the clinical effects of monotherapy vs combination therapy, as well as validation of synergy testing methods. Effective national and international surveillance systems to detect and respond to resistance to these last line agents are also critical.

  11. Septicemia caused by the gram-negative bacterium CDC IV c-2 in an immunocompromised human.

    OpenAIRE

    Dan, M; Berger, S A; Aderka, D; Levo, Y

    1986-01-01

    A 37-year-old man with plasma cell leukemia developed nonfatal septicemia caused by the gram-negative bacterium CDC IV c-2. Recovery followed appropriate treatment with antibiotics. The biochemical features of this organism are reviewed.

  12. Gram staining for the treatment of peritonsillar abscess.

    Science.gov (United States)

    Takenaka, Yukinori; Takeda, Kazuya; Yoshii, Tadashi; Hashimoto, Michiko; Inohara, Hidenori

    2012-01-01

    Objective. To examine whether Gram staining can influence the choice of antibiotic for the treatment of peritonsillar abscess. Methods. Between 2005 and 2009, a total of 57 cases of peritonsillar abscess were analyzed with regard to cultured bacteria and Gram staining. Results. Only aerobes were cultured in 16% of cases, and only anaerobes were cultured in 51% of cases. Mixed growth of aerobes and anaerobes was observed in 21% of cases. The cultured bacteria were mainly aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. Phagocytosis of bacteria on Gram staining was observed in 9 cases. The bacteria cultured from these cases were aerobic Streptococcus, anaerobic Gram-positive cocci, and anaerobic Gram-negative rods. The sensitivity of Gram staining for the Gram-positive cocci and Gram-negative rods was 90% and 64%, respectively. The specificity of Gram staining for the Gram-positive cocci and Gram-negative rods was 62% and 76%, respectively. Most of the Gram-positive cocci were sensitive to penicillin, but some of anaerobic Gram-negative rods were resistant to penicillin. Conclusion. When Gram staining shows only Gram-positive cocci, penicillin is the treatment of choice. In other cases, antibiotics effective for the penicillin-resistant organisms should be used.

  13. Differential staining of bacteria: gram stain.

    Science.gov (United States)

    Moyes, Rita B; Reynolds, Jackie; Breakwell, Donald P

    2009-11-01

    In 1884, Hans Christian Gram, a Danish doctor, developed a differential staining technique that is still the cornerstone of bacterial identification and taxonomic division. This multistep, sequential staining protocol separates bacteria into four groups based on cell morphology and cell wall structure: Gram-positive cocci, Gram-negative cocci, Gram-positive rods, and Gram-negative rods. The Gram stain is useful for assessing bacterial contamination of tissue culture samples or for examining the Gram stain status and morphological features of bacteria isolated from mixed or isolated bacterial cultures. (c) 2009 by John Wiley & Sons, Inc.

  14. Distinction of Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts with a selection medium.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Higuchi, Tomoko; Shiga, Masanobu; Noguchi, Katsuya; Matsumoto, Kiyoshi

    2011-01-01

    Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5µg/ml crystal violet, 5.0 µg/ml daptomycin, and 5.0µg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.

  15. Exploring the hidden potential of fosfomycin for the fight against severe Gram-negative infections

    Directory of Open Access Journals (Sweden)

    P V Saiprasad

    2016-01-01

    Full Text Available Gram-negative resistance is a serious global crisis putting the world on the cusp of 'pre-antibiotic era'. This serious crisis has been catalysed by the rapid increase in carbapenem-resistant Enterobacteriaceae (CRE. Spurge in colistin usage to combat CRE infections leads to the reports of (colistin and carbapenem resistant enterobacteriaceae CCRE (resistance to colistin in isolates of CRE infections further jeopardising our last defence. The antibacterial apocalypse imposed by global resistance crisis requires urgent alternative therapeutic options. Interest in the use of fosfomycin renewed recently for serious systemic infections caused by multidrug-resistant Enterobacteriaceae. This review aimed at analysing the recent evidence on intravenous fosfomycin to explore its hidden potential, especially when fosfomycin disodium is going to be available in India. Although a number of promising evidence are coming up for fosfomycin, there are still areas where more work is required to establish intravenous fosfomycin as the last resort antibacterial for severe Gram-negative infections.

  16. Low antibiotic resistance among anaerobic Gram-negative bacteria in periodontitis 5 years following metronidazole therapy.

    Science.gov (United States)

    Dahlen, G; Preus, H R

    2017-02-01

    The objective of this study was to assess antibiotic susceptibility among predominant Gram-negative anaerobic bacteria isolated from periodontitis patients who 5 years prior had been subject to mechanical therapy with or without adjunctive metronidazole. One pooled sample was taken from the 5 deepest sites of each of 161 patients that completed the 5 year follow-up after therapy. The samples were analyzed by culture. A total number of 85 anaerobic strains were isolated from the predominant subgingival flora of 65/161 patient samples, identified, and tested for antibiotic susceptibility by MIC determination. E-tests against metronidazole, penicillin, amoxicillin, amoxicillin + clavulanic acid and clindamycin were employed. The 73/85 strains were Gram-negative rods (21 Porphyromonas spp., 22 Prevotella/Bacteroides spp., 23 Fusobacterium/Filifactor spp., 3 Campylobacter spp. and 4 Tannerella forsythia). These were all isolated from the treated patients irrespective of therapy procedures (+/-metronidazole) 5 years prior. Three strains (Bifidobacterium spp., Propionibacterium propionicum, Parvimonas micra) showed MIC values for metronidazole over the European Committee on Antimicrobial Susceptibility Testing break point of >4 μg/mL. All Porphyromonas and Tannerella strains were highly susceptible. Metronidazole resistant Gram-negative strains were not found, while a few showed resistance against beta-lactam antibiotics. In this population of 161 patients who had been subject to mechanical periodontal therapy with or without adjunct metronidazole 5 years prior, no cultivable antibiotic resistant anaerobes were found in the predominant subgingival microbiota. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The comparison of pyrosequencing molecular Gram stain, culture, and conventional Gram stain for diagnosing orthopaedic infections.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Tuohy, Marion J; Lieberman, Isador H; Krebs, Viktor; Togawa, Daisuke; Fujishiro, Takaaki; Procop, Gary W

    2006-08-01

    We have developed a combined real-time PCR and pyrosequencing assay that successfully differentiated the vast majority of gram-positive and gram-negative bacteria when bacterial isolates were tested. The purpose of this study was to evaluate this assay on clinical specimens obtained from orthopedic surgeries, and to prospectively compare the results of "molecular Gram stain" with culture and conventional direct Gram stain. Forty-five surgical specimens were obtained from patients who underwent orthopedic surgery procedures. The DNA was extracted and a set of broad-range PCR primers that targeted a part of the 16S rDNA gene was used for pan-bacterial PCR. The amplicons were submitted for pyrosequencing and the resulting molecular Gram stain characteristics were recorded. Culture and direct Gram staining were performed using standard methods for all cases. Surgical specimens were reviewed histologically for all cases that had a discrepancy between culture and molecular results. There was an 86.7% (39/45) agreement between the traditional and molecular methods. In 12/14 (85.7%) culture-proven cases of bacterial infection, molecular Gram stain characteristics were in agreement with the culture results, while the conventional Gram stain result was in agreement only for five cases (35.7%). In the 31 culture negative cases, 27 cases were also PCR negative, whereas 4 were PCR positive. Three of these were characterized as gram negative and one as gram positive by this molecular method. Molecular determination of the Gram stain characteristics of bacteria that cause orthopedic infections may be achieved, in most instances, by this method. Further studies are necessary to understand the clinical importance of PCR-positive/culture-negative results.

  18. Beta-lactam resistance in the gram negatives: increasing complexity of conditional, composite and multiply resistant phenotypes.

    Science.gov (United States)

    Iredell, Jon; Thomas, Lee; Espedido, Björn

    2006-12-01

    The greatest impact of microbiology data on clinical care is in the critically ill. Unfortunately, this is also the area in which microbiology laboratories are most often non-contributive. Attempts to move to rapid, culture-independent diagnostics are driven by the need to expedite urgent results. This is difficult in Gram-negative infection because of the complexity of the antibiotic resistance phenotype. Here, we discuss resistance to modern beta-lactams as a case in point. Recent outbreaks of transmissible carbapenem resistance among Gram-negative enteric pathogens in Sydney and Melbourne serve to illustrate the pitfalls of traditional phenotypical approaches. A better understanding of the epidemiology and mosaic nature of antibiotic resistance elements in the microflora is needed for us to move forward.

  19. A New Take on an Old Remedy: Generating Antibodies against Multidrug-Resistant Gram-Negative Bacteria in a Postantibiotic World.

    Science.gov (United States)

    Motley, Michael P; Fries, Bettina C

    2017-01-01

    With the problem of multidrug-resistant Gram-negative pathogens becoming increasingly dire, new strategies are needed to protect and treat infected patients. Though abandoned in the past, monoclonal antibody therapy against Gram-negative bacteria remains a potential solution and has potential advantages over the broad-spectrum antibiotics they were once replaced by. This Perspective reviews the prospect of utilizing monoclonal antibody therapy against these pathogens, as well as the challenges of doing so and the current therapy targets under investigation.

  20. Facultative thermogenesis induced by carbohydrate

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Christensen, N J

    1986-01-01

    In addition to the obligatory thermogenesis due to processing and storage, carbohydrate ingestion is accompanied by a facultative thermogenesis mediated by catecholamines via beta-adrenoceptors. The anatomical origin of facultative thermogenesis has hitherto not been determined. The possible...

  1. A Thermostable Salmonella Phage Endolysin, Lys68, with Broad Bactericidal Properties against Gram-Negative Pathogens in Presence of Weak Acids

    DEFF Research Database (Denmark)

    Oliveira, Hugo; Thiagarajan, Viruthachalam; Walmagh, Maarten

    2014-01-01

    Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68) and demonstrates its potential antimicrobial effectiveness when combined...... with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min......, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species) in combination with the outer membrane permeabilizers EDTA, citric and malic acid...

  2. Isolation and characterization of two novel ethanol-tolerant facultative-anaerobic thermophilic bacteria strains from waste compost.

    Science.gov (United States)

    Fong, Jiunn C N; Svenson, Charles J; Nakasugi, Kenlee; Leong, Caine T C; Bowman, John P; Chen, Betty; Glenn, Dianne R; Neilan, Brett A; Rogers, Peter L

    2006-10-01

    In a search for potential ethanologens, waste compost was screened for ethanol-tolerant thermophilic microorganisms. Two thermophilic bacterial strains, M5EXG and M10EXG, with tolerance of 5 and 10% (v/v) ethanol, respectively, were isolated. Both isolates are facultative anaerobic, non-spore forming, non-motile, catalase-positive, oxidase-negative, Gram-negative rods that are capable of utilizing a range of carbon sources including arabinose, galactose, mannose, glucose and xylose and produce low amounts of ethanol, acetate and lactate. Growth of both isolates was observed in fully defined minimal media within the temperature range 50-80 degrees C and pH 6.0-8.0. Phylogenetic analysis of the 16S rDNA sequences revealed that both isolates clustered with members of subgroup 5 of the genus Bacillus. G+C contents and DNA-DNA relatedness of M5EXG and M10EXG revealed that they are strains belonging to Geobacillus thermoglucosidasius. However, physiological and biochemical differences were evident when isolates M5EXG and M10EXG were compared with G. thermoglucosidasius type strain (DSM 2542(T)). The new thermophilic, ethanol-tolerant strains of G. thermoglucosidasius may be candidates for ethanol production at elevated temperatures.

  3. Impact of Seasonal Hypoxia on Activity and Community Structure of Chemolithoautotrophic Bacteria in a Coastal Sediment.

    Science.gov (United States)

    Lipsewers, Yvonne A; Vasquez-Cardenas, Diana; Seitaj, Dorina; Schauer, Regina; Hidalgo-Martinez, Silvia; Sinninghe Damsté, Jaap S; Meysman, Filip J R; Villanueva, Laura; Boschker, Henricus T S

    2017-05-15

    Seasonal hypoxia in coastal systems drastically changes the availability of electron acceptors in bottom water, which alters the sedimentary reoxidation of reduced compounds. However, the effect of seasonal hypoxia on the chemolithoautotrophic community that catalyzes these reoxidation reactions is rarely studied. Here, we examine the changes in activity and structure of the sedimentary chemolithoautotrophic bacterial community of a seasonally hypoxic saline basin under oxic (spring) and hypoxic (summer) conditions. Combined 16S rRNA gene amplicon sequencing and analysis of phospholipid-derived fatty acids indicated a major temporal shift in community structure. Aerobic sulfur-oxidizing Gammaproteobacteria ( Thiotrichales ) and Epsilonproteobacteria ( Campylobacterales ) were prevalent during spring, whereas Deltaproteobacteria ( Desulfobacterales ) related to sulfate-reducing bacteria prevailed during summer hypoxia. Chemolithoautotrophy rates in the surface sediment were three times higher in spring than in summer. The depth distribution of chemolithoautotrophy was linked to the distinct sulfur oxidation mechanisms identified through microsensor profiling, i.e., canonical sulfur oxidation, electrogenic sulfur oxidation by cable bacteria, and sulfide oxidation coupled to nitrate reduction by Beggiatoaceae The metabolic diversity of the sulfur-oxidizing bacterial community suggests a complex niche partitioning within the sediment, probably driven by the availability of reduced sulfur compounds (H 2 S, S 0 , and S 2 O 3 2- ) and electron acceptors (O 2 and NO 3 - ) regulated by seasonal hypoxia. IMPORTANCE Chemolithoautotrophic microbes in the seafloor are dependent on electron acceptors, like oxygen and nitrate, that diffuse from the overlying water. Seasonal hypoxia, however, drastically changes the availability of these electron acceptors in the bottom water; hence, one expects a strong impact of seasonal hypoxia on sedimentary chemolithoautotrophy. A

  4. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Agnieszka E. Laudy

    2017-01-01

    Full Text Available The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs, against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC value determination in the presence of 1 mM MgSO4. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100–800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  5. Antimicrobial Peptide Potency is Facilitated by Greater Conformational Flexibility when Binding to Gram-negative Bacterial Inner Membranes

    Science.gov (United States)

    Amos, Sarah-Beth T. A.; Vermeer, Louic S.; Ferguson, Philip M.; Kozlowska, Justyna; Davy, Matthew; Bui, Tam T.; Drake, Alex F.; Lorenz, Christian D.; Mason, A. James

    2016-11-01

    The interaction of antimicrobial peptides (AMPs) with the inner membrane of Gram-negative bacteria is a key determinant of their abilities to exert diverse bactericidal effects. Here we present a molecular level understanding of the initial target membrane interaction for two cationic α-helical AMPs that share structural similarities but have a ten-fold difference in antibacterial potency towards Gram-negative bacteria. The binding and insertion from solution of pleurocidin or magainin 2 to membranes representing the inner membrane of Gram-negative bacteria, comprising a mixture of 128 anionic and 384 zwitterionic lipids, is monitored over 100 ns in all atom molecular dynamics simulations. The effects of the membrane interaction on both the peptide and lipid constituents are considered and compared with new and published experimental data obtained in the steady state. While both magainin 2 and pleurocidin are capable of disrupting bacterial membranes, the greater potency of pleurocidin is linked to its ability to penetrate within the bacterial cell. We show that pleurocidin displays much greater conformational flexibility when compared with magainin 2, resists self-association at the membrane surface and penetrates further into the hydrophobic core of the lipid bilayer. Conformational flexibility is therefore revealed as a key feature required of apparently α-helical cationic AMPs for enhanced antibacterial potency.

  6. Roseimarinus sediminis gen. nov., sp. nov., a facultatively anaerobic bacterium isolated from coastal sediment.

    Science.gov (United States)

    Wu, Wen-Jie; Liu, Qian-Qian; Chen, Guan-Jun; Du, Zong-Jun

    2015-07-01

    A Gram-stain-negative, facultatively anaerobic, non-motile and pink-pigmented bacterium, designated strain HF08(T), was isolated from marine sediment of the coast of Weihai, China. Cells were rod-shaped, and oxidase- and catalase-positive. The isolate grew optimally at 33 °C, at pH 7.5-8.0 and with 2-3% (w/v) NaCl. The dominant cellular fatty acids were iso-C15 : 0, anteiso-C15 : 0 and iso-C14 : 0. Menaquinone 7 (MK-7) was the major respiratory quinone and the DNA G+C content was 44.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate was a member of the class Bacteroidia, and shared 88-90% sequence similarity with the closest genera Sunxiuqinia, Prolixibacter, Draconibacterium, Mariniphaga and Meniscus. Based on the phylogenetic and phenotypic evidence presented, a novel species in a new genus of the family Prolixibacteraceae is proposed, with the name Roseimarinus sediminis gen. nov., sp. nov. The type strain of Roseimarinus sediminis is HF08(T) ( = KCTC 42261(T) = CICC 10901(T)).

  7. A resurgence of β-lactamase inhibitor combinations effective against multidrug-resistant Gram-negative pathogens.

    Science.gov (United States)

    Bush, Karen

    2015-11-01

    β-Lactamase inhibitors (BLIs) have played an important role in combatting β-lactam resistance in Gram-negative bacteria, but their effectiveness has diminished with the evolution of diverse and deleterious varieties of β-lactamases. In this review, a new generation of BLIs and inhibitor combinations is presented, describing epidemiological information, pharmacodynamic studies, resistance identification and current clinical status. Novel serine BLIs of major interest include the non-β-lactams of the diazabicyclo[3.2.1]octanone (DBO) series. The DBOs avibactam, relebactam and RG6080 inhibit most class A and class C β-lactamases, with selected inhibition of class D enzymes by avibactam. The novel boronic acid inhibitor RPX7009 has a similar inhibitory profile. All of these inhibitors are being developed in combinations that are targeting primarily carbapenemase-producing Gram-negative pathogens. Two BLI combinations (ceftolozane/tazobactam and ceftazidime/avibactam) were recently approved by the US Food and Drug Administration (FDA) under the designation of a Qualified Infectious Disease Product (QIDP). Other inhibitor combinations that have at least completed phase 1 clinical trials are ceftaroline fosamil/avibactam, aztreonam/avibactam, imipenem/relebactam, meropenem/RPX7009 and cefepime/AAI101. Although effective inhibitor combinations are in development for the treatment of infections caused by Gram-negative bacteria with serine carbapenemases, better options are still necessary for pathogens that produce metallo-β-lactamases (MBLs). The aztreonam/avibactam combination demonstrates inhibitory activity against MBL-producing enteric bacteria owing to the stability of the monobactam to these enzymes, but resistance is still an issue for MBL-producing non-fermentative bacteria. Because all of the inhibitor combinations are being developed as parenteral drugs, an orally bioavailable combination would also be of interest. Copyright © 2015 Elsevier B.V. and the

  8. A thermostable Salmonella phage endolysin, Lys68, with broad bactericidal properties against gram-negative pathogens in presence of weak acids.

    Directory of Open Access Journals (Sweden)

    Hugo Oliveira

    Full Text Available Resistance rates are increasing among several problematic Gram-negative pathogens, a fact that has encouraged the development of new antimicrobial agents. This paper characterizes a Salmonella phage endolysin (Lys68 and demonstrates its potential antimicrobial effectiveness when combined with organic acids towards Gram-negative pathogens. Biochemical characterization reveals that Lys68 is more active at pH 7.0, maintaining 76.7% of its activity when stored at 4°C for two months. Thermostability tests showed that Lys68 is only completely inactivated upon exposure to 100°C for 30 min, and circular dichroism analysis demonstrated the ability to refold into its original conformation upon thermal denaturation. It was shown that Lys68 is able to lyse a wide panel of Gram-negative bacteria (13 different species in combination with the outer membrane permeabilizers EDTA, citric and malic acid. While the EDTA/Lys68 combination only inactivated Pseudomonas strains, the use of citric or malic acid broadened Lys68 antibacterial effect to other Gram-negative pathogens (lytic activity against 9 and 11 species, respectively. Particularly against Salmonella Typhimurium LT2, the combinatory effect of malic or citric acid with Lys68 led to approximately 3 to 5 log reductions in bacterial load/CFUs after 2 hours, respectively, and was also able to reduce stationary-phase cells and bacterial biofilms by approximately 1 log. The broad killing capacity of malic/citric acid-Lys68 is explained by the destabilization and major disruptions of the cell outer membrane integrity due to the acidity caused by the organic acids and a relatively high muralytic activity of Lys68 at low pH. Lys68 demonstrates good (thermostability properties that combined with different outer membrane permeabilizers, could become useful to combat Gram-negative pathogens in agricultural, food and medical industry.

  9. DNA/Ag Nanoparticles as Antibacterial Agents against Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Tomomi Takeshima

    2015-03-01

    Full Text Available Silver (Ag nanoparticles were produced using DNA extracted from salmon milt as templates. Particles spherical in shape with an average diameter smaller than 10 nm were obtained. The nanoparticles consisted of Ag as the core with an outermost thin layer of DNA. The DNA/Ag hybrid nanoparticles were immobilized over the surface of cotton based fabrics and their antibacterial efficiency was evaluated using E. coli as the typical Gram-negative bacteria. The antibacterial experiments were performed according to the Antibacterial Standard of Japanese Association for the Functional Evaluation of Textiles. The fabrics modified with DNA/Ag nanoparticles showed a high enough inhibitory and killing efficiency against E. coli at a concentration of Ag ≥ 10 ppm.

  10. Long-term outcome of acute prosthetic joint infections due to gram-negative bacilli treated with retention of prosthesis.

    Science.gov (United States)

    Jaén, N; Martínez-Pastor, J C; Muñoz-Mahamud, E; García-Ramiro, S; Bosch, J; Mensa, J; Soriano, A

    2012-09-01

    To update the clinical information of the 47 patients with a prosthetic joint infection due to Gram-negative bacilli included in a previous study and to reassess the predictors of failure after a longer follow-up. Using the electronic files of our hospital, all the information regarding readmissions to the hospital, new surgical procedures and the reason for the new surgery (infection, aseptic loosening), and the last visit in the hospital were registered. The medical chart of the 35 patients that were considered in remission in the previous publication was reviewed. In 30 patients no clinical evidence of failure was detected and no additional surgery on the previously infected prosthesis was necessary and they were considered in long-term remission. In 5 cases a late complication was identified. One case had a reinfection due to coagulase-negative staphylococci after 22 months from the open debridement and required a 2-stage revision surgery. The other 4 cases developed an aseptic loosening and it was necessary to perform a 1-stage exchange. Receiving a fluoroquinolone when all the Gram-negatives involved in the infection were susceptible to fluoroquinolones was the only factor associated with remission in the univariate analysis (p=0.002). After a long-term follow-up, our results support the importance of using fluoroquinolones in acute PJI due to Gram-negative bacilli.

  11. Transient sensitivity to nisin in cold-shocked Gram negatives.

    Science.gov (United States)

    Boziaris, I S; Adams, M R

    2000-09-01

    Rapid chilling in the presence of nisin caused a dose-dependent reduction in the populations of several Gram-negative bacteria, despite the fact that appreciable structural injury to the outer membrane was not detected. Pseudomonas aeruginosa was most affected, followed by Pseudomonas fragi, Salmonella enteritidis PT4, PT7 and Escherichia coli, respectively. Addition of nisin after the chilling treatment had no effect. The results are ascribed to a transient susceptibility caused by phase changes in the lipids associated with the outer membrane, which are rapidly reversed when the cells return to higher temperatures. Combinations of chilling shock, nisin and EDTA gave much lower reductions of Salmonella and Pseudomonas on chicken skin in comparison with broths. This is attributed to a buffering of the temperature shock experienced by adherent bacteria and binding of the nisin by food particles.

  12. In Vitro Antibacterial Activity of Several Plant Extracts and Oils against Some Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Ayman Al-Mariri

    2014-01-01

    Full Text Available Background: Medicinal plants are considered new resources for producing agents that could act as alternatives to antibiotics in the treatment of antibiotic-resistant bacteria. The aim of this study was to evaluate the antibacterial activity of 28 plant extracts and oils against four Gram-negative bacterial species. Methods: Experimental, in vitro, evaluation of the activities of 28 plant extracts and oils as well as some antibiotics against E. coli O157:H7, Yersinia enterocolitica O9, Proteus spp., and Klebsiella pneumoniae was performed. The activity against 15 isolates of each bacterium was determined by disc diffusion method at a concentration of 5%. Microdilution susceptibility assay was used in order to determine the minimal inhibitory concentrations (MICs of the plant extracts, oils, and antibiotics. Results: Among the evaluated herbs, only Origanum syriacum L., Thymus syriacus Boiss., Syzygium aromaticum L., Juniperus foetidissima Wild, Allium sativum L., Myristica fragrans Houtt, and Cinnamomum zeylanicum L. essential oils and Laurus nobilis L. plant extract showed anti-bacterial activity. The MIC50 values of these products against the Gram-negative organisms varied from 1.5 (Proteus spp. and K. pneumoniae( and 6.25 µl/ml (Yersinia enterocolitica O9 to 12.5 µl/ml (E. coli O:157. Conclusion: Among the studied essential oils, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. essential oils were the most effective. Moreover, Cephalosporin and Ciprofloxacin were the most effective antibiotics against almost all the studied bacteria. Therefore, O. syriacum L., T. syriacus Boiss., C. zeylanicum L., and S. aromaticum L. could act as bactericidal agents against Gram-negative bacteria.

  13. The Genome of Deep-Sea Vent Chemolithoautotroph Thiomicrospira crunogena XCL-2

    Energy Technology Data Exchange (ETDEWEB)

    Scott, K M; Sievert, S M; Abril, F N; Ball, L A; Barrett, C J; Blake, R A; Boller, A J; Chain, P G; Clark, J A; Davis, C R; Detter, C; Do, K F; Dobrinski, K P; Faza, B I; Fitzpatrick, K A; Freyermuth, S K; Harmer, T L; Hauser, L J; Hugler, M; Kerfeld, C A; Klotz, M G; Kong, W W; Land, M; Lapidus, A; Larimer, F W; Longo, D L; Lucas, S; Malfatti, S A; Massey, S E; Martin, D D; McCuddin, Z; Meyer, F; Moore, J L; Ocampo Jr., L H; Paul, J H; Paulsen, I T; Reep, D K; Ren, Q; Ross, R L; Sato, P Y; Thomas, P; Tinkham, L E; Zerugh, G T

    2007-01-10

    Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 bp), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of CDSs encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. T. crunogena XCL-2 is unusual among obligate sulfur oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. A 38 kb prophage is present, and a high level of prophage induction was observed, which may play a role in keeping competing populations of close relatives in check. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

  14. Dose-Dependent Antimicrobial Activity of Silver Nanoparticles on Polycaprolactone Fibers against Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Erick Pazos-Ortiz

    2017-01-01

    Full Text Available The adhesion ability and adaptability of bacteria, coupled with constant use of the same bactericides, have made the increase in the diversity of treatments against infections necessary. Nanotechnology has played an important role in the search for new ways to prevent and treat infections, including the use of metallic nanoparticles with antibacterial properties. In this study, we worked on the design of a composite of silver nanoparticles (AgNPS embedded in poly-epsilon-caprolactone nanofibers and evaluated its antimicrobial properties against various Gram-positive and Gram-negative microorganisms associated with drug-resistant infections. Polycaprolactone-silver composites (PCL-AgNPs were prepared in two steps. The first step consisted in the reduction in situ of Ag+ ions using N,N-dimethylformamide (DMF in tetrahydrofuran (THF solution, and the second step involved the simple addition of polycaprolactone before electrospinning process. Antibacterial activity of PCL-AgNPs nanofibers against E. coli, S. mutans, K. pneumoniae, S. aureus, P. aeruginosa, and B. subtilis was evaluated. Results showed sensibility of E. coli, K. pneumoniae, S. aureus, and P. aeruginosa, but not for B. subtilis and S. mutans. This antimicrobial activity of PCL-AgNPs showed significant positive correlations associated with the dose-dependent effect. The antibacterial property of the PCL/Ag nanofibers might have high potential medical applications in drug-resistant infections.

  15. Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments

    NARCIS (Netherlands)

    Lipsewers, Y.A.

    2017-01-01

    SummaryThe role of chemolithoautotrophic microorganisms has been considered to be of minor importancein coastal marine sediments although it has not been investigated in depth. Additionally,the impact of seasonal hypoxic/anoxic conditions on microbial chemolithoautotrophy in coastalmarine sediments

  16. Different phenotypic and molecular mechanisms associated with multidrug resistance in Gram-negative clinical isolates from Egypt

    Directory of Open Access Journals (Sweden)

    Helmy OM

    2017-12-01

    Full Text Available Omneya M Helmy, Mona T Kashef Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt Objectives: We set out to investigate the prevalence, different mechanisms, and clonal relatedness of multidrug resistance (MDR among third-generation cephalosporin-resistant Gram-negative clinical isolates from Egypt.Materials and methods: A total of 118 third-generation cephalosporin-resistant Gram-negative clinical isolates were included in this study. Their antimicrobial susceptibility pattern was determined using Kirby–Bauer disk diffusion method. Efflux pump-mediated resistance was tested by the efflux-pump inhibitor-based microplate assay using chlorpromazine. Detection of different aminoglycoside-, β-lactam-, and quinolone-resistance genes was done using polymerase chain reaction. The genetic diversity of MDR isolates was investigated using random amplification of polymorphic DNA.Results: Most of the tested isolates exhibited MDR phenotypes (84.75%. The occurrence of efflux pump-mediated resistance in the different MDR species tested was 40%–66%. Acinetobacter baumannii isolates showed resistance to most of the tested antibiotics, including imipenem. The blaOXA-23-like gene was detected in 69% of the MDR A. baumannii isolates. The MDR phenotype was detected in 65% of Pseudomonas aeruginosa isolates, of which only 23% exhibited efflux pump-mediated resistance. On the contrary, efflux-mediated resistance to piperacillin and gentamicin was recorded in 47.5% of piperacillin-resistant and 25% of gentamicin-resistant MDR Enterobacteriaceae. Moreover, the plasmid-mediated quinolone-resistance genes (aac(6’-Ib-cr, qnrB, and qnrS were detected in 57.6% and 83.33% of quinolone-resistant MDR Escherichia coli and Klebsiella pneumoniae isolates, respectively. The β-lactamase-resistance gene blaSHV-31 was detected for the first time in one MDR K. pneumoniae isolate from an endotracheal tube specimen in Egypt

  17. Spread of resistant gram negatives in a Sri Lankan intensive care unit.

    Science.gov (United States)

    Tissera, Kavinda; Liyanapathirana, Veranja; Dissanayake, Nilanthi; Pinto, Vasanthi; Ekanayake, Asela; Tennakoon, Manjula; Adasooriya, Dinuka; Nanayakkara, Dulmini

    2017-07-11

    Infections with multi drug resistant (MDR) organisms are a major problem in intensive care units (ICUs). Proper infection control procedures are mandatory to combat the spread of resistant organisms within ICUs. Well stablished surveillance programmes will enhance the adherence of the staff to infection control protocols. The study was conducted to assess the feasibility of using basic molecular typing methods and routine hospital data for laboratory surveillance of resistance organisms in resource limited settings. A retrospective study was conducted using consecutive Gram negative isolates obtained from an ICU over a six month period. Antibiotic sensitivity patterns and random amplified polymorphic DNA (RAPD) based typing was performed on the given isolates. Of the seventy isolates included in the study, seven were E.coli. All E.coli were MDRs and Extended Spectrum β lactamse (ESBL) producers carrying bla CTX-M . Fourteen isolates were K.pneumoniae, and all were MDRs and ESBL producers. All K.pneumoniae harboured bla SHV while 13 harboured bla CTX-M . The MDR rate among P.aeruginosa was 13% (n=15) while all acinetobacters (n=30) were MDRs. Predominant clusters were identified within all four types of Gram negatives using RAPD and the ICU stay of patients overlapped temporally. We propose that simple surveillance methods like RAPD based typing and basic hospital data can be used to convince hospital staff to adhere to infection control protocols more effectively, in low and middle income countries.

  18. Pulmonary and systemic inflammatory responses in rabbits with gram-negative pneumonia.

    Science.gov (United States)

    Fox-Dewhurst, R; Alberts, M K; Kajikawa, O; Caldwell, E; Johnson, M C; Skerrett, S J; Goodman, R B; Ruzinski, J T; Wong, V A; Chi, E Y; Martin, T R

    1997-06-01

    The major goals of this study were to define the relationships between intrapulmonary and systemic inflammatory responses in animals with gram-negative pneumonia. We treated rabbits with intrapulmonary Escherichia coli (1 x 10(7) to 1 x 10(10) cfu/ml), and then measured physiologic, cellular, and molecular events in the lungs and systemic circulation for 24 h. The treatment protocols resulted in groups of animals that mimicked the stages of the septic inflammatory response in humans. Animals treated with low inocula had systemic changes consistent with systemic inflammatory response syndrome and cleared the bacteria and inflammatory products from the lungs. Animals treated with high inocula failed to clear bacteria from the lungs, had severe intrapulmonary inflammatory responses, and developed septic shock. Intrapulmonary leukocyte recruitment was directly related to the size of the bacterial inoculum, but lung protein accumulation was not. Tumor neurosis factor-alpha (TNF-alpha), interleukin-8 (IL-8), and GRO were detectable in lung lavage fluid at 4 h and declined by 24 h in animals that cleared intrapulmonary E. coli. In contrast, lavage TNF-alpha, IL-8, and GRO increased over 24 h in animals that failed to clear intrapulmonary bacteria. MCP-1 increased between 4 h and 24 h in the lungs of all of the animals as the histologic response evolved from neutrophilic to mononuclear cell predominance. Thus, the intensity of systemic inflammatory and physiologic responses to intrapulmonary gram-negative infection depends on the inoculum size and whether the bacteria are cleared from or proliferate in the lungs. The results provide experimental support for the recently proposed classification of septic responses in humans.

  19. Imipenem-resistant Gram-negative bacterial isolates carried by persons upon medical examination in Korea.

    Science.gov (United States)

    Kim, So Yeon; Shin, Sang Yop; Rhee, Ji-Young; Ko, Kwan Soo

    2017-08-01

    Carbapenem-resistant Gram-negative bacteria (CR-GNB) have emerged and disseminated worldwide, become a great concern worldwide including Korea. The prevalence of fecal carriage of imipenem-resistant Gram-negative bacteria (IR-GNB) in persons in Korea was investigated. Stool samples were collected from 300 persons upon medical examination. Samples were screened for IR-GNB by using MacConkey agar with 2 μl/ml imipenem. Species were identified by 16S rRNA gene sequence analysis, and antimicrobial susceptibility was determined by the broth microdilution method. In total, 82 IR-GNB bacterial isolates were obtained from 79 (26.3%) out of 300 healthy persons. Multilocus sequence typing analysis showed very high diversity among IR P. aeruginosa, S. maltophilia, and E. cloacae isolates, and pulsed-field gel electrophoresis revealed five main pulsotypes of IR P. mirabilis. As for the presence of metallo-β-lactamases (MBLs), only one IMP-25-producing S. marcescens isolate was identified. Although only one carbapenemase-producing isolate was identified, the high colonization rates with IR-GNB isolates in this study is notable because carriers may be a reservoir for the dissemination of resistant pathogens within the community as well as in health care institutions.

  20. Antibacterial activity of crude extract of Punica granatum pericarp on pathogenic Gram-negative bacilli.

    Directory of Open Access Journals (Sweden)

    Voravuthikunchai, S.

    2005-08-01

    Full Text Available The objective of this study was to investigate the effect of crude extracts of Punica granatum Linn. pericarp with 3 different solvents against pathogenic Gram-negative bacilli. Ethanolic extracts showed the antibacterial activity against all strains tested including enterohaemorrhagic Escherichia coli 4 strains (E. coli O157: H7, E. coli O26: H11, E. coli O111: NM, E. coli O22, Pseudomonas aeruginosa, Shigella boydii and Salmonella london. Inhibition zones ranged from 10.02 to 19.15 mm. Minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC ranged from 0.09 to 3.13 mg/ml and 3.13 to 25 mg/ml, respectively. Aqueous extract had low antibacterial activity while crude chloroform extracts had no effect on the growth of these strains. Ethyl acetate and n-butanol fractions of P. granatum pericarp demonstrated high activity with the best MIC and MBC values of 0.02 to 0.78 mg/ml and 0.19 to 6.25 mg/ml, respectively. As ethanolic extract of P. granatum was very effective against these pathogenic bacteria, further investigation on this plant species may provide alternative, but bioactive, medicines for the treatment of Gram-negative bacterial infection.

  1. Colonization of long term care facility patients with MDR-Gram-negatives during an Acinetobacter baumannii outbreak

    Directory of Open Access Journals (Sweden)

    Ines Zollner-Schwetz

    2017-05-01

    Full Text Available Abstract Background We aimed to determine the prevalence of colonization by multidrug-resistant Gram-negative bacteria including ESBL-producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii at two wards caring long term for patients with disorder of consciousness at the Geriatric Health Centers Graz, Austria. During our study we detected two A. baumannii outbreaks. Methods In August 2015, we conducted a point-prevalence study. Inguinal and perianal swabs were taken from 38 patients and screened for multidrug-resistant Gram-negative rods using standard procedures. Six months after the initial investigation all patients were sampled again and use of antibiotics during the past 6 months and mortality was registered. Genetic relatedness of bacteria was evaluated by DiversiLab system. Results Fifty percent of patients were colonized by multidrug-resistant Gram-negative isolates. Five patients harboured ESBL-producing enterobacteriaceae. No carbapenem-resistant enterobacteriaceae were detected. 13/38 patients were colonized by A. baumannii isolates (resistant to ciprofloxacin but susceptible to carbapenems. There was a significant difference in the prevalence of colonization by A. baumannii between ward 2 and ward 1 (60% vs. 5.6%, p < 0.001. Two clusters of A. baumannii isolates were identified including one isolate detected on a chair in a patient’s room. Conclusions We detected a high prevalence of two multidrug-resistant A. baumannii strains in patients with disorder of consciousness at a LTCF in Graz, Austria. Our findings strongly suggest nosocomial cross-transmission between patients. An active surveillance strategy is warranted to avoid missing newly emerging pathogens.

  2. Colonization of long term care facility patients with MDR-Gram-negatives during an Acinetobacter baumannii outbreak.

    Science.gov (United States)

    Zollner-Schwetz, Ines; Zechner, Elisabeth; Ullrich, Elisabeth; Luxner, Josefa; Pux, Christian; Pichler, Gerald; Schippinger, Walter; Krause, Robert; Leitner, Eva

    2017-01-01

    We aimed to determine the prevalence of colonization by multidrug-resistant Gram-negative bacteria including ESBL-producing enterobacteriaceae, carbapenem-resistant enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii at two wards caring long term for patients with disorder of consciousness at the Geriatric Health Centers Graz, Austria. During our study we detected two A. baumannii outbreaks. In August 2015, we conducted a point-prevalence study. Inguinal and perianal swabs were taken from 38 patients and screened for multidrug-resistant Gram-negative rods using standard procedures. Six months after the initial investigation all patients were sampled again and use of antibiotics during the past 6 months and mortality was registered. Genetic relatedness of bacteria was evaluated by DiversiLab system. Fifty percent of patients were colonized by multidrug-resistant Gram-negative isolates. Five patients harboured ESBL-producing enterobacteriaceae. No carbapenem-resistant enterobacteriaceae were detected. 13/38 patients were colonized by A. baumannii isolates (resistant to ciprofloxacin but susceptible to carbapenems). There was a significant difference in the prevalence of colonization by A. baumannii between ward 2 and ward 1 (60% vs. 5.6%, p  < 0.001). Two clusters of A. baumannii isolates were identified including one isolate detected on a chair in a patient's room. We detected a high prevalence of two multidrug-resistant A. baumannii strains in patients with disorder of consciousness at a LTCF in Graz, Austria. Our findings strongly suggest nosocomial cross-transmission between patients. An active surveillance strategy is warranted to avoid missing newly emerging pathogens.

  3. Determination of the irradiation dose for the inhibition (D-10 radiation doses) of some gram negative and gram positive bacteria in peptone saline water

    International Nuclear Information System (INIS)

    Ayhan, H.; Tutluer, H.

    1994-01-01

    Determination of the irradiation dose for the inhibition of some pathogenic bacteria which cause food poisoning and spoilage were aimed. For this purpose, Salmonella typhi, Salmonella typhimurium,Salmonella enteridits,Klebsiella pneumonia, Pseudomonas fluorescence,Proteus vulgaris, Aeromonas hydrophila ,(gram-negative bacteria) and Bacillus cereus, Staphylococcus aureus strain 24,Staphylococcus aureus ATCC 6538 P,Staphylococcus epidermidis strain 115 and Clostridium perfringens A4TTK,(gram-positive bacteria) were used.Sensitivity of above mentioned bacteria to gamma rays (source Cs-137) was examined in saline with 0.1% peptone at different temperatures.Survivor plots (log.10 number of survivors versus dose) were determined by regression analysis of the data.Decimal reduction doses (D values in kGy) were calculated as the slope obtained from the regression analysis

  4. Marine Compounds with Therapeutic Potential in Gram-Negative Sepsis

    Directory of Open Access Journals (Sweden)

    Irina Yermak

    2013-06-01

    Full Text Available This paper concerns the potential use of compounds, including lipid A, chitosan, and carrageenan, from marine sources as agents for treating endotoxemic complications from Gram-negative infections, such as sepsis and endotoxic shock. Lipid A, which can be isolated from various species of marine bacteria, is a potential antagonist of bacterial endotoxins (lipopolysaccharide (LPSs. Chitosan is a widespread marine polysaccharide that is derived from chitin, the major component of crustacean shells. The potential of chitosan as an LPS-binding and endotoxin-neutralizing agent is also examined in this paper, including a discussion on the generation of hydrophobic chitosan derivatives to increase the binding affinity of chitosan to LPS. In addition, the ability of carrageenan, which is the polysaccharide of red alga, to decrease the toxicity of LPS is discussed. We also review data obtained using animal models that demonstrate the potency of carrageenan and chitosan as antiendotoxin agents.

  5. The warmer the weather, the more gram-negative bacteria - impact of temperature on clinical isolates in intensive care units.

    Science.gov (United States)

    Schwab, Frank; Gastmeier, Petra; Meyer, Elisabeth

    2014-01-01

    We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives) from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10-1.21) higher at temperatures ≥ 20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR=1.43; 95%CI 1.31-1.56) more frequently at high temperatures, A. baumannii 37% (IRR=1.37; 95%CI 1.11-1.69), S. maltophilia 32% (IRR=1.32; 95%CI 1.12-1.57), K. pneumoniae 26% (IRR=1.26; 95%CI 1.13-1.39), Citrobacter spp. 19% (IRR=1.19; 95%CI 0.99-1.44) and coagulase-negative staphylococci 13% (IRR=1.13; 95%CI 1.04-1.22). By contrast, S. pneumoniae 35% (IRR=0.65; 95%CI 0.50-0.84) less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR=1.03; 95%CI 1.02-1.04) increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR=1.08; 95%CI 1.05-1.12) followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies host susceptibility to different bacterial pathogens

  6. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Cristina Anamaria Semeniuc

    2017-04-01

    Full Text Available The aim of this study was to compare the antibacterial effects of several essential oils (EOs alone and in combination against different Gram-positive and Gram-negative bacteria associated with food products. Parsley, lovage, basil, and thyme EOs, as well as their mixtures (1:1, v/v, were tested against Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium. The inhibitory effects ranged from strong (thyme EO against E. coli to no inhibition (parsley EO against P. aeruginosa. Thyme EO exhibited strong (against E. coli, moderate (against S. typhimurium and B. cereus, or mild inhibitory effects (against P. aeruginosa and S. aureus, and basil EO showed mild (against E. coli and B. cereus or no inhibitory effects (against S. typhimurium, P. aeruginosa, and S. aureus. Parsley and lovage EOs revealed no inhibitory effects against all tested strains. Combinations of lovage/thyme and basil/thyme EOs displayed antagonistic effects against all bacteria, parsley/thyme EOs against B. cereus, S. aureus, P. aeruginosa, and E. coli, and lovage/basil EOs against B. cereus and E. coli. Combinations of parsley/lovage and parsley/basil EOs exhibited indifferent effects against all bacteria. The combination of lovage/basil EO showed indifferent effect against S. aureus, P. aeruginosa, and S. typhimurium, and the combination parsley/thyme EO against S. typhimurium. Thyme EO has the highest percentage yield and antibacterial potential from all tested formulations; its combination with parsley, lovage, and basil EOs determines a reduction of its antibacterial activity. Hence, it is recommended to be used alone as the antibacterial agent.

  7. Retrospective Analysis of Blood Stream Infections and Antibiotic Susceptibility Pattern of Gram Negative Bacteria in a Tertiary Care Cancer Hospital

    Directory of Open Access Journals (Sweden)

    Radha Rani D

    2017-12-01

    Full Text Available Background: Bacterial bloodstream infections are important causes of morbidity and mortality globally. The aim of the present study was to determine the bacterial profile of bloodstream infections and their antibiotic susceptibility pattern among the clinically diagnosed cases of sepsis in cancer patients. Methods: In the present study, etiological and antimicrobial susceptibility profile of blood cultures over a period of 1 year at a tertiary cancer care hospital was done. Blood culture positive isolates were identified using standard microbiological methods and by Fully automated BD Phoenix 100. The antibiotic susceptibility pattern of the organisms was performed by Kirby-Bauer disc diffusion method and MIC (Minimum inhibitory concentration was done by Fully automated BD Phoenix 100. Results: There were 1178 blood culture samples, of which 327 (27.7% were identified to be culture positive. Out of 327 positive cultures, 299 (91.4% showed bacterial growth, Gram negative were 161 (53.8% and Gram positive were 138 (46.1%. Candida species were isolated from 13 (3.97% of positive samples and 15 samples showed contamination. The most common Gram-negative isolate was. Escherichia coli (37.80% and Gram-positive isolate was coagulasenegative staphylococci (52.80%. Escherichia coli showed highest sensitivity to amikacin (83.60% and sensitivity to piperacillin+ tazobactum and cefaperazone+sulbactam was 54.09% and 52.45% respectively. High degree of resistance was found to cephalosporins and levofloxacin. Conclusion: The results indicate high level of antimicrobial resistance among Gram negative bacilli in septicemic patients. The results warrant continuous monitoring of antimicrobial pattern so as to build geographical epidemiological data.

  8. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  9. Enhancing pathogen identification in patients with meningitis and a negative Gram stain using the BioFire FilmArray(®) Meningitis/Encephalitis panel.

    Science.gov (United States)

    Wootton, Susan H; Aguilera, Elizabeth; Salazar, Lucrecia; Hemmert, Andrew C; Hasbun, Rodrigo

    2016-04-21

    Meningitis with a negative cerebrospinal (CSF) Gram stain represents a diagnostic and therapeutic challenge. The purpose of our study was to evaluate the performance of the BioFire FilmArray(®) Meningitis/Encephalitis (FA ME) panel in patients presenting with community-acquired meningitis with a negative Gram stain. CSF from 48 patients with community-acquired meningitis with a negative Gram stain admitted to four hospitals in Houston, TX underwent additional testing by the FA ME. FA ME results were compared to results obtained as part of routine evaluation. The panel detected pathogens not previously identified in 11 (22.9 %) of 48, but did not detect pathogens identified by standard technique (West Nile virus, Histoplasma) in 5 (15.2 %) patients. Rapid testing for the most common pathogens causing meningitis will aid in the diagnosis and treatment of patients with meningitis.

  10. Purification and characterization of tenecin 4, a new anti-Gram-negative bacterial peptide, from the beetle Tenebrio molitor.

    Science.gov (United States)

    Chae, Jun-Ho; Kurokawa, Kenji; So, Young-In; Hwang, Hyun Ok; Kim, Min-Su; Park, Ji-Won; Jo, Yong-Hun; Lee, Yong Seok; Lee, Bok Luel

    2012-03-01

    The biochemical characterization of novel antimicrobial peptides (AMPs) and the determination of ligand molecules that induce AMP production are essential for understanding the host innate immune response in insects. Here, we purified a new 14-kDa AMP, named tenecin 4, from the larval hemolymph of the beetle Tenebrio molitor. Tenecin 4 contains 14% glycine residues and has moderate similarities both to the C-terminal region of Drosophila attacin and to silk-moth gloverin proteins. Purified tenecin 4 showed bactericidal activity against Gram-negative Escherichia coli but not against Gram-positive Bacillus subtilis or the fungus Candida albicans. Tenecin 4 production was induced by Toll cascade-activating ligands, such as β-1,3-glucan, lysine-type peptidoglycan and active Spätzle, and by the probable Imd pathway-activating ligand monomeric meso-diaminopimelic acid-type peptidoglycan. Taken together, these data show that tenecin 4 is a defense protein against Gram-negative pathogens and is induced by multiple ligands in Tenebrio larvae. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Effect of extended infusion of meropenem and nebulized amikacin on Gram-negative multidrug-resistant ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Mona Ahmed Ammar

    2018-01-01

    Conclusions: Adding nebulized amikacin to systemic antibiotics in patients with VAP caused by Gram-negative MDRO may offer efficacy benefits, and the use of extended infusions of meropenem could improve the clinical outcomes in critically ill populations.

  12. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  13. Vitreous System Ag2O –ZnO–B2O3 Action Against Gram Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Razvan Stefan

    2010-05-01

    Full Text Available In this work the ability of the system xAg2O  (100-x [45ZnO55B2O3] oxide glasses to inhibit the growth of bacteria Eschierchia coli, Pseudomonas and Salmonella was investigated. Using the diffusimetric method there were measured the diameters of inhibition, in order to classify the sensitivity of gram negative bacteria to oxide compounds containing silver, for their use as filters. Vitreous samples were processed as powders with grain between 45 and 75 m and less than 45 m for a large of contact area with the microorgansms and to make possible the study of biological effect of grain addiction. Action of the investigated oxide system against the gram negative bacteria is strictly related to the presence of silver oxide in glass composition.

  14. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Science.gov (United States)

    Fröhling, Antje; Schlüter, Oliver

    2015-01-01

    Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID

  15. Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Antje eFröhling

    2015-09-01

    Full Text Available Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfil the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results.The aim of this study was to compare the inactivation effects of peracetic acid (PAA, ozonated water (O3 and cold atmospheric pressure plasma (CAPP on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s with 0.25 % PAA at 10 °C, and after treatment (10 s with 3.8 mg l-1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 min and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l-1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process

  16. Antibacterial properties of biosurfactants against selected Gram-positive and -negative bacteria.

    Science.gov (United States)

    Díaz De Rienzo, Mayri A; Stevenson, Paul; Marchant, Roger; Banat, Ibrahim M

    2016-01-01

    The antibacterial properties and ability to disrupt biofilms of biosurfactants (rhamnolipids, sophorolipids) and sodium dodecyl sulphate (SDS) in the presence and absence of selected organic acids were investigated. Pseudomonas aeruginosa PAO1 was inhibited by sophorolipids and SDS at concentrations >5% v/v, and the growth of Escherichia coli NCTC 10418 was also inhibited by sophorolipids and SDS at concentrations >5% and 0.1% v/v, respectively. Bacillus subtilis NCTC 10400 was inhibited by rhamnolipids, sophorolipids and SDS at concentrations >0.5% v/v of all three; the same effect was observed with Staphylococcus aureus ATCC 9144. The ability to attach to surfaces and biofilm formation of P. aeruginosa PAO1, E. coli NCTC 10418 and B. subtilis NCTC 10400 was inhibited by sophorolipids (1% v/v) in the presence of caprylic acid (0.8% v/v). In the case of S. aureus ATCC 9144, the best results were obtained using caprylic acid on its own. It was concluded that sophorolipids are promising compounds for the inhibition/disruption of biofilms formed by Gram-positive and Gram-negative microorganisms and this activity can be enhanced by the presence of booster compounds such as caprylic acid. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Abier Sofrata

    Full Text Available Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate.

  18. High Prevalence of Antimicrobial-resistant Gram-negative Colonization in Hospitalized Cambodian Infants.

    Science.gov (United States)

    Turner, Paul; Pol, Sreymom; Soeng, Sona; Sar, Poda; Neou, Leakhena; Chea, Phal; Day, Nicholas Pj; Cooper, Ben S; Turner, Claudia

    2016-08-01

    Antimicrobial-resistant Gram-negative infections are a significant cause of mortality in young infants. We aimed to determine characteristics of, and risk factors for, colonization and invasive infection caused by 3rd generation cephalosporin (3GC) or carbapenem-resistant organisms in outborn infants admitted to a neonatal unit (NU) in Cambodia. During the first year of operation, patients admitted to the Angkor Hospital for Children NU, Siem Reap, Cambodia, underwent rectal swabbing on admission and twice weekly until discharge. Swabs were taken also from 7 environmental sites. Swabs were cultured to identify 3GC or carbapenem-resistant Acinetobacter sp., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. The study included 333 infants with a median age at NU admission of 10 days (range, 0-43). Colonization by ≥1 3GC-resistant organism was detected in 85.9% (286/333). Admission swabs were collected in 289 infants: 61.9% were colonized by a 3GC-resistant organism at the time of admission, and a further 23.2% were colonized during hospitalization, at a median of 4 days [95% confidence interval: 3-5]. Probiotic treatment (hazard ratio: 0.58; 95% confidence interval: 0.35-0.98) was associated with delayed colonization. Colonization by a carbapenem-resistant organism occurred in 25 (7.5%) infants. Six infants had NU-associated K. pneumoniae bacteremia; phenotypically identical colonizing strains were found in 3 infants. Environmental colonization occurred early. Colonization by antimicrobial-resistant Gram-negative organisms occurred early in hospitalized Cambodian infants and was associated with subsequent invasive infection. Trials of potential interventions such as probiotics are needed.

  19. Multidrug-resistant Gram-negative bacteria: a product of globalization.

    Science.gov (United States)

    Hawkey, P M

    2015-04-01

    Global trade and mobility of people has increased rapidly over the last 20 years. This has had profound consequences for the evolution and the movement of antibiotic resistance genes. There is increasing exposure of populations all around the world to resistant bacteria arising in the emerging economies. Arguably the most important development of the last two decades in the field of antibiotic resistance is the emergence and spread of extended-spectrum β-lactamases (ESBLs) of the CTX-M group. A consequence of the very high rates of ESBL production among Enterobacteriaceae in Asian countries is that there is a substantial use of carbapenem antibiotics, resulting in the emergence of plasmid-mediated resistance to carbapenems. This article reviews the emergence and spread of multidrug-resistant Gram-negative bacteria, focuses on three particular carbapenemases--imipenem carbapenemases, Klebsiella pneumoniae carbapenemase, and New Delhi metallo-β-lactamase--and highlights the importance of control of antibiotic use. Copyright © 2015. Published by Elsevier Ltd.

  20. A randomized clinical trial on the effectiveness of a symbiotic product to decolonize patients harboring multidrug-resistant Gram-negative bacilli

    Directory of Open Access Journals (Sweden)

    Mariana Correa Coelho Salomão

    Full Text Available Abstract INTRODUCTION: We aimed to evaluate the effectiveness of a symbiotic product to decolonize the intestinal tract of patients harboring multidrug-resistant (MDR Gram-negative bacilli and to prevent nosocomial infections. METHODS: This was a randomized, double blind, placebo-controlled clinical trial, conducted in a tertiary-care university hospital. All adult hospitalized patients with a positive clinical culture and a positive rectal swab for any MDR Gram-negative bacilli were potentially eligible. Exclusion criteria were pregnancy, immunosuppression, and bowel obstruction/perforation. The intervention consisted of administering a symbiotic product (Lactobacillus bulgaricus, Lactobacillus rhamnosus, and fructo-oligosaccharides twice a day for seven days via the oral/enteral route. RESULTS: Between August 1, 2012 and December 22, 2013, 116 of 275 eligible patients were allocated to treatment (n=57 and placebo (n=59. Overall, 101 patients received at least four doses of the study products and were included in the modified intention-to-treat analysis. The primary study outcome, a negative rectal swab for MDR Gram-negative bacilli after treatment, was identified in 16.7% (8/48 and 20.7% (11/53 of patients in the experimental and placebo group, respectively (p=0.60. The secondary outcome, the combined incidence of nosocomial respiratory and urinary tract infections, was 37.5% (18/48 in the experimental group versus 22.6% (12/53 in the control group (adjusted odds ratio: 1.95, 95% confidence interval: 0.69-5.50, p=0.21. Length of stay after the beginning of the intervention, incidence of adverse events, and in-hospital mortality rates were similar in both study groups. CONCLUSIONS: Under the present study conditions, symbiotic administration was not effective for decolonizing hospitalized patients harboring MDR Gram-negative bacilli.

  1. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch-German Border Region-Impact of National Guidelines

    NARCIS (Netherlands)

    Köck, Robin; Siemer, Philipp; Esser, Jutta; Kampmeier, Stefanie; Berends, Matthijs S; Glasner, Corinna; Arends, Jan P; Becker, Karsten; Friedrich, Alexander W

    2018-01-01

    Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB) is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the

  2. Effect of Light-Activated Hypocrellin B on the Growth and Membrane Permeability of Gram-Negative Escherichia coli Cells

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    2014-01-01

    Full Text Available Aim. To investigate the effect of light-activated hypocrellin B on the growth and membrane permeability of Gram-negative bacteria. Methods. Escherichia coli (E. coli as a model bacterium of Gram-negative bacteria was incubated with various concentrations of hypocrellin B for 60 min and was subsequently irradiated by blue light with wavelength of 470 nm at the dose of 12 J/cm2. Colony forming units were counted and the growth inhibition rate of E. coli cells was calculated after light-activated hypocrellin B. Membrane permeability was measured using flow cytometry and confocal laser scanning microscopy (CLSM with propidium iodide (PI staining. Bacterial morphology was observed using transmission electron microscopy (TEM. Reactive oxygen species in bacterial cells were measured using flow cytometry with DCFH-DA staining. Results. Significant growth inhibition rate of E. coli cells was observed after photodynamic action of hypocrellin B. Remarkable damage to the ultrastructure of E. coli was also observed by TEM. Flow cytometry and CLSM observation showed that light-activated hypocrellin B markedly increased membrane permeability of E. coli. Flow cytometry showed the intracellular ROS increase in E. coli treated by photodynamic action of hypocrellin B. Conclusion. Light-activated hypocrellin B caused intracellular ROS increase and structural damages and inhibited the growth of Gram-negative E. coli cells.

  3. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    Science.gov (United States)

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  4. Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Krausova, V I; Boulygina, E S; Tourova, T P

    1998-10-01

    A new genus, Methylopila, and one new species are described for a group of seven strains of facultatively methylotrophic bacteria with the serine pathway of C1 assimilation. These bacteria are aerobic, Gram-negative, non-spore--forming, motile, colourless rods that multiply by binary fission. Their DNA base content ranges from 66 to 70 mol % G + C. Their cellular fatty acid profile consists primarily of C18:1 omega 7 cis-vaccenic and C19:0 cyclopropane acids. The major hydroxy acid is 3-OH C14:0. The main ubiquinone is Q-10. The dominant cellular phospholipids are phosphatidylethanolamine and phosphatidylcholine. The new isolates have a low level of DNA-DNA homology (5-10%) with the type strains of the serine pathway methylobacteria belonging to the genera Methylobacterium, Aminobacter, Hyphomicrobium and Methylorhabdus. Another approach, involving 16S rRNA gene sequence analysis of strain IM1T, has shown that the new isolates represent a separate branch within the alpha-2 subclass of the Proteobacteria. The type species of the new genus is Methylopila capsulata sp. nov., with the type strain IM1T (= VKM B-1606T).

  5. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    DEFF Research Database (Denmark)

    Wolff Sönksen, Ute; Christensen, Jens Jørgen; Nielsen, Lisbeth

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic...... characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification...

  6. A new technique for Gram staining paraffin-embedded tissue.

    Science.gov (United States)

    Engbaek, K; Johansen, K S; Jensen, M E

    1979-01-01

    Five techniques for Gram staining bacteria in paraffin sections were compared on serial sections of pulmonary tissues from eight bacteriological necropsies. Brown and Hopp's method was the most satisfactory for distinguishing Gram-positive and Gram-negative bacteria. However, this method cannot be recommended as the preparations were frequently overstained, and the Gram-negative bacteria were stained indistinctly. A modification of Brown and Hopps' method was developed which stains larger numbers of Gram-negative bacteria and differentiates well between different cell types and connective tissue, and there is no risk of overstaining. PMID:86548

  7. The warmer the weather, the more gram-negative bacteria - impact of temperature on clinical isolates in intensive care units.

    Directory of Open Access Journals (Sweden)

    Frank Schwab

    Full Text Available BACKGROUND: We investigated the relationship between average monthly temperature and the most common clinical pathogens causing infections in intensive care patients. METHODS: A prospective unit-based study in 73 German intensive care units located in 41 different hospitals and 31 different cities with total 188,949 pathogen isolates (102,377 Gram-positives and 86,572 Gram-negatives from 2001 to 2012. We estimated the relationship between the number of clinical pathogens per month and the average temperature in the month of isolation and in the month prior to isolation while adjusting for confounders and long-term trends using time series analysis. Adjusted incidence rate ratios for temperature parameters were estimated based on generalized estimating equation models which account for clustering effects. RESULTS: The incidence density of Gram-negative pathogens was 15% (IRR 1.15, 95%CI 1.10-1.21 higher at temperatures ≥ 20°C than at temperatures below 5°C. E. cloacae occurred 43% (IRR=1.43; 95%CI 1.31-1.56 more frequently at high temperatures, A. baumannii 37% (IRR=1.37; 95%CI 1.11-1.69, S. maltophilia 32% (IRR=1.32; 95%CI 1.12-1.57, K. pneumoniae 26% (IRR=1.26; 95%CI 1.13-1.39, Citrobacter spp. 19% (IRR=1.19; 95%CI 0.99-1.44 and coagulase-negative staphylococci 13% (IRR=1.13; 95%CI 1.04-1.22. By contrast, S. pneumoniae 35% (IRR=0.65; 95%CI 0.50-0.84 less frequently isolated at high temperatures. For each 5°C increase, we observed a 3% (IRR=1.03; 95%CI 1.02-1.04 increase of Gram-negative pathogens. This increase was highest for A. baumannii with 8% (IRR=1.08; 95%CI 1.05-1.12 followed by K. pneumoniae, Citrobacter spp. and E. cloacae with 7%. CONCLUSION: Clinical pathogens vary by incidence density with temperature. Significant higher incidence densities of Gram-negative pathogens were observed during summer whereas S. pneumoniae peaked in winter. There is increasing evidence that different seasonality due to physiologic changes underlies

  8. MALDI-TOF identification of Gram-negative bacteria directly from blood culture bottles containing charcoal: Sepsityper® kits versus centrifugation-filtration method.

    Science.gov (United States)

    Riederer, Kathleen; Cruz, Kristian; Shemes, Stephen; Szpunar, Susan; Fishbain, Joel T

    2015-06-01

    Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry has dramatically altered the way microbiology laboratories identify clinical isolates. Direct blood culture (BC) detection may be hampered, however, by the presence of charcoal in BC bottles currently in clinical use. This study evaluates an in-house process for extraction and MALDI-TOF identification of Gram-negative bacteria directly from BC bottles containing charcoal. Three hundred BC aliquots were extracted by a centrifugation-filtration method developed in our research laboratory with the first 96 samples processed in parallel using Sepsityper® kits. Controls were colonies from solid media with standard phenotypic and MALDI-TOF identification. The identification of Gram-negative bacteria was successful more often via the in-house method compared to Sepsityper® kits (94.7% versus 78.1%, P≤0.0001). Our in-house centrifugation-filtration method was further validated for isolation and identification of Gram-negative bacteria (95%; n=300) directly from BC bottles containing charcoal. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Associations of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans

    International Nuclear Information System (INIS)

    Ozaki, Takuo; Ohnuki, Toshihiko; Kimura, Takaumi; Francis, Arokiasamy J.

    2005-01-01

    We studied the association of Eu(III) with Gram-negative bacteria, Alcaligenes faecalis, Shewanella putrefaciens, and Paracoccus denitrificans by a batch method and time-resolved laser-induced fluorescence spectroscopy (TRLFS). The kinetics study showed that the Eu(III) adsorption on the bacteria rapidly proceeded. The Eu(III) adsorption on A. faecalis and P. denitrificans at pHs 3, 4, and 5, and that on S.putrefaciens at pHs 4 and 5 reached a maximum within 5 minutes after contact. For P. denitrificans, the percent adsorption of Eu(III) decreased after the maximum percent adsorption was attained, which suggests the existence of exudates with an affinity with Eu(III). TRLFS showed that the coordination of Eu(III) on these bacteria is multidentate through an inner-spherical process. The ligand field of Eu(III) on P. denitrificans was as strong as the ones observed for halophilic microorganisms, while that of A. faecalis and S. putrefaciens was the typical one observed for non-halophilic microorganisms. The coordination environment of Eu(III) on the bacteria differed from each other, though they are categorized as Gram-negative bacteria with the similar cell wall components. (author)

  10. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Sachith D. Gunasinghe

    2017-05-01

    Full Text Available Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.

  11. Monomicrobial necrotizing fasciitis in a single center: the emergence of Gram-negative bacteria as a common pathogen

    Directory of Open Access Journals (Sweden)

    D. Yahav

    2014-11-01

    Conclusions: In our center, 42% of monomicrobial necrotizing fasciitis cases were found to be caused by Gram-negative organisms, mostly E. coli. These infections usually appeared in immunocompromised or postoperative patients, often presented with normal CPK levels, and were associated with high mortality rates.

  12. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study

    Directory of Open Access Journals (Sweden)

    Helmia Farida

    2015-09-01

    Conclusions: Viruses and Gram-negative bacilli are dominant causes of CAP in this region, more so than S. pneumoniae. Most of the bacteria have wild type susceptibility to antimicrobial agents. Patients with severe disease and those with unknown etiology have a higher mortality risk.

  13. Antimicrobial Activity of Ephedra pachyclada Methanol Extract on Some Enteric Gram Negative Bacteria Which Causes Nosocomial Infections by Agar Dilution Method

    Directory of Open Access Journals (Sweden)

    Amin Sadeghi Dosari

    2016-10-01

    Full Text Available Background Past history indicates that plants were served as an important source of medicine. Otherwise, in developing countries people use medicinal plants against infectious disease because they cannot afford expensive drugs. Due to increasing rate of drug-resistant diseases, there is an urgent need to detect novel antimicrobial compounds from medicinal plants. Objectives The aim of the present study was to determine Antimicrobial activity of Ephedra pachyclada methanol extract on some enteric Gram-negative bacteria which causes nosocomial infections by agar dilution method. Methods In this cross-sectional study, in order to examine the antimicrobial effects of Ephedra pachyclada extract on intestinal Gram-negative bacteria, we exposed them to 0/128, 0/25, 0/5, 1, 2, 4 and 8 mg/mL of the extract. Ephedra pachyclada was collected from Jiroft Heights and methanolic extract was prepared with maceration method, during which, 50 gr powder of Ephedra pachyclada was dissolved in 300 mL of 80% methanol. Results In this study, the antibacterial effects of Ephedra pachyclada extract on Gram-negative bacteria such as Pseudomonas aeruginosa, Escherichia coli (PTCC-O157, Escherichia coli (ATCC-25922, Klebsiella pnemoniae, Serratia marcescens was investigated, defining the minimum inhibitory concentration (MIC by agar dilution method. It has been demonstrated that methanolic extract of Ephedra pachyclada affect intestinal Gram-negative bacteria. Conclusions The result showed that, Ephedra pachyclada extract has effective antimicrobial ingredients which are cheap and readily available. It can be used for medicinal purposes in the production of antimicrobial drug.

  14. Screening of the novel colicinogenic gram-negative rods against pathogenic Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    H Mushtaq

    2015-01-01

    Full Text Available Purpose: Escherichia coli (E. coli O157:H7 is gram-negative enteric pathogen producing different types of Shiga toxin. This bacterium is the most corporate cause of haemorrhagic colitis in human. Administration of antibiotics (particularly sulfa drugs against this pathogen is a debatable topic as this may increase the risk of uremic syndrome; especially in children and aged people. Around the world, microbiologists are in search of alternative therapeutic methods specially probiotics against this pathogen. In the present study, we have focused on the investigation of alternate bio-therapeutics (probiotics for the treatment of patients infected with E. coli O157:H7. This study is based on the identification of colicin-producing gram-negative bacteria (particularly enterobacteriaceae which can competently exclude E. coli O157:H7 from the gut of the infected individual. Materials and Methods: Hundred samples from human, animal faeces and septic tank water were analysed for nonpathogenic gram-negative rods (GNRs. Results: Out of these samples, 175 isolates of GNRs were checked for their activity against E. coli O157:H7. Only 47 isolates inhibited the growth of E. coli O157:H7, among which majority were identified as E. coli. These E. coli strains were found to be the efficient producers of colicin. Some of the closely related species i. e., Citrobacter sp, Pantoea sp. and Kluyvera sp. also showed considerable colicinogenic activity. Moreover, colicinogenic species were found to be nonhaemolytic, tolerant to acidic environment (pH 3 and sensitive to commonly used antibiotics. Conclusion: Nonhaemolytic, acid tolerant and sensitive to antibiotics suggests the possible use of these circulating endothelial cells (CEC as inexpensive and inoffensive therapeutic agent (probiotics in E. coli O157:H7 infections.

  15. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens

    OpenAIRE

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-01

    ABSTRACT We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026’s activity against Gram-negative foodborne pathogens.

  16. Identification of gram-negative bacteria from critical control points of raw and pasteurized cow milk consumed at Gondar town and its suburbs, Ethiopia.

    Science.gov (United States)

    Garedew, Legesse; Berhanu, Ayalew; Mengesha, Desalegne; Tsegay, Getachew

    2012-11-06

    Milk is highly prone to contamination and can serve as an efficient vehicle for human transmission of foodborne pathogens, especially gram-negative bacteria, as these are widely distributed in the environment. This cross-sectional study of gram-negative staining bacterial contamination of milk meant for human consumption was carried out from October 2010 to May 2011 in Gondar town, Ethiopia. Milk samples were collected from critical control points, from production to consumption, that were hypothesized to be a source of potential contamination. Milk sampling points included smallholder's milk producers, dairy co-operatives, a milk processing plant, and supermarkets. The hygienic procedures applied during milking, milk collection, transportation, pasteurization, and postpasteurization storage conditions at these specified critical control points were evaluated. Standard bacteriological cultivation and biochemical assays were used to isolate and identify bacterial pathogens in the milk samples. The results of the current study showed that conditions for contamination of raw milk at different critical points were due to less hygienic practices in pre-milking udder preparation, sub-optimal hygiene of milk handlers, and poor sanitation practices associated with milking and storage equipments. Among all critical control points considered, transportation containers at milk collection centers and at processing plants were found to be the most heavily contaminated with gram-negative staining bacterial species. Overall, 54 different bacterial species were indentified, and Escherichia coli (29.6%), Pseudomonas aeruginosa (18.5%), and Klebsiella pneumoniae (16.7%), were the most commonly identified gram-negative staining bacterial pathogens. Of particular interest was that no gram-negative staining bacteria were isolated from pasteurized milk samples with varying shelf life. This study showed the presence of diverse pathogenic gram-negative staining bacterial species in raw

  17. Identification of gram-negative bacteria from critical control points of raw and pasteurized cow milk consumed at Gondar town and its suburbs, Ethiopia

    Directory of Open Access Journals (Sweden)

    Garedew Legesse

    2012-11-01

    Full Text Available Abstract Background Milk is highly prone to contamination and can serve as an efficient vehicle for human transmission of foodborne pathogens, especially gram-negative bacteria, as these are widely distributed in the environment. Methods This cross-sectional study of gram-negative staining bacterial contamination of milk meant for human consumption was carried out from October 2010 to May 2011 in Gondar town, Ethiopia. Milk samples were collected from critical control points, from production to consumption, that were hypothesized to be a source of potential contamination. Milk sampling points included smallholder’s milk producers, dairy co-operatives, a milk processing plant, and supermarkets. The hygienic procedures applied during milking, milk collection, transportation, pasteurization, and postpasteurization storage conditions at these specified critical control points were evaluated. Standard bacteriological cultivation and biochemical assays were used to isolate and identify bacterial pathogens in the milk samples. Results The results of the current study showed that conditions for contamination of raw milk at different critical points were due to less hygienic practices in pre-milking udder preparation, sub-optimal hygiene of milk handlers, and poor sanitation practices associated with milking and storage equipments. Among all critical control points considered, transportation containers at milk collection centers and at processing plants were found to be the most heavily contaminated with gram-negative staining bacterial species. Overall, 54 different bacterial species were indentified, and Escherichia coli (29.6%, Pseudomonas aeruginosa (18.5%, and Klebsiella pneumoniae (16.7%, were the most commonly identified gram-negative staining bacterial pathogens. Of particular interest was that no gram-negative staining bacteria were isolated from pasteurized milk samples with varying shelf life. Conclusion This study showed the presence of

  18. Combined physico-chemical treatments based on enterocin AS-48 for inactivation of Gram-negative bacteria in soybean sprouts.

    Science.gov (United States)

    Cobo Molinos, Antonio; Abriouel, Hikmate; López, Rosario Lucas; Valdivia, Eva; Omar, Nabil Ben; Gálvez, Antonio

    2008-08-01

    Enterocin AS-48 was tested for decontamination of soybean sprouts against Gram-negative bacteria. Although treatment with bacteriocin alone had no effect on Salmonella enterica, a synergistic antimicrobial effect was detected at pH 9.0 and in combination with moderate heat treatment. Greatest inactivation was achieved for sprouts heated for 5 min at 65 degrees C in an alkaline (pH 9.0) enterocin AS-48 solution of 25 microg/ml. Bactericidal activity against S. enterica increased greatly when enterocin AS-48 was used in washing solutions in combination with several chemical compounds: EDTA, lactic acid, peracetic acid, polyphosphoric acid, sodium hypochlorite, hexadecylpyridinium chloride, propyl-p-hydroxybenzoate, and hydrocinnamic acid. The combined treatment of enterocin AS-48 and polyphosphoric acid was tested against several other Gram-negative bacteria inoculated on sprouts. The bacteria tested showed great differences in sensitivity to polyphosphoric acid, but synergism with enterocin AS-48 was confirmed in all cases. Combinations of enterocin AS-48 (25 microg/ml) and polyphosphoric acid in a concentration range of 0.1 to 2.0% significantly reduced or inhibited growth of the populations of S. enterica, Escherichia coli O157:H7, Shigella spp., Enterobacter aerogenes, Yersinia enterocolitica, Aeromonas hydrophila and Pseudomonas fluorescens in sprout samples stored at 6 degrees C and 15 degrees C. The combined treatment could therefore be applied to reduce the risks of Gram-negative pathogenic as well as spoilage bacteria on sprouts.

  19. Facultative symbiont infections affect aphid reproduction.

    Directory of Open Access Journals (Sweden)

    Jean-Christophe Simon

    Full Text Available Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  20. Facultative symbiont infections affect aphid reproduction.

    Science.gov (United States)

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  1. Complete Genome Sequence of Bacillus velezensis CN026 Exhibiting Antagonistic Activity against Gram-Negative Foodborne Pathogens.

    Science.gov (United States)

    Nannan, Catherine; Gillis, Annika; Caulier, Simon; Mahillon, Jacques

    2018-01-25

    We report here the complete genome sequence of Bacillus velezensis strain CN026, a member of the B. subtilis group, which is known for its many industrial applications. The genome contains 3,995,812 bp and displays six gene clusters potentially involved in strain CN026's activity against Gram-negative foodborne pathogens. Copyright © 2018 Nannan et al.

  2. Long-term survival and function after suspected gram-negative sepsis.

    Science.gov (United States)

    Perl, T M; Dvorak, L; Hwang, T; Wenzel, R P

    1995-07-26

    To determine the long-term (> 3 months) survival of septic patients, to develop mathematical models that predict patients likely to survive long-term, and to measure the health and functional status of surviving patients. A large tertiary care university hospital and an associated Veterans Affairs Medical Center. From December 1986 to December 1990, a total of 103 patients with suspected gram-negative sepsis entered a double-blind, placebo-controlled efficacy trial of monoclonal antiendotoxin antibody. Of these, we followed up 100 patients for 7667 patient-months. Beginning in May 1992, we reviewed hospital records and contacted all known survivors. We measured the health status of all surviving patients. The determinants of long-term survival (up to 6 years) were identified through two Cox proportional hazard regression models: one that included patient characteristics identified at the time of sepsis (bedside model) and another that included bedside, infection-related, and treatment characteristics (overall model). Of the 60 patients in the cohort who died at a median interval of 30.5 days after sepsis, 32 died within the first month of the septic episode, seven died within 3 months, and four more died within 6 months. In the bedside multivariate model constructed to predict long-term survival, large hazard ratios (HRs) were associated with severity of underlying illness as classified by McCabe and Jackson criteria (for rapidly fatal disease, HR = 30.4, P respiratory distress syndrome (HR = 2.3; P = .02) predicted patients most likely to die. The Acute Physiology and Chronic Health Evaluation II score was not a significant predictor of outcome when either model included the simpler McCabe and Jackson classification of underlying disease severity. We compared the health status scores with norms for the general population and found that patients with resolved sepsis reported more physical dysfunction (P bedridden), suggesting that the patients' physical function

  3. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria.

    Science.gov (United States)

    Kang, Jun-Won; Kim, Sang-Soon; Kang, Dong-Hyun

    2018-07-01

    The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Methylobacterium gossipiicola sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the cotton phyllosphere.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj; Senthilkumar, Murugaiyan; Lee, Jung-Sook; Lee, Keun-Chul

    2012-01-01

    A pink, aerobic, facultatively methylotrophic, motile, Gram-negative rod, designated Gh-105(T), was isolated from the phyllosphere of cotton from Coimbatore (Tamilnadu, India). 16S rRNA gene sequence analysis showed clearly that the isolate belonged to the Methylobacterium cluster. Strain Gh-105(T) was most closely related to Methylobacterium adhaesivum AR27(T) (99% 16S rRNA gene sequence similarity) and Methylobacterium iners 5317S-33(T) (97.5%). The isolate grew with C(1) compounds such as methanol and dichloromethane, but not with formaldehyde, formate, methylamine, trimethylamine or methane, as sole carbon sources and carried mxaF, which encodes methanol dehydrogenase and supports methylotrophic metabolism. The major fatty acid was C(18:1)ω7c and the G+C content of the genomic DNA was 64.2 mol%. Physiological and biochemical data and DNA-DNA relatedness with M. adhaesivum KACC 12195(T) and M. iners KACC 11765(T) revealed clear phenotypic and genotypic differences. For this reason, we propose that strain Gh-105(T) (=CCM 7572(T) =NRRL B-51692(T)) represents the type strain of a novel species, with the name Methylobacterium gossipiicola sp. nov.

  5. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens.

    Science.gov (United States)

    Card, Roderick; Zhang, Jiancheng; Das, Priya; Cook, Charlotte; Woodford, Neil; Anjum, Muna F

    2013-01-01

    A microarray capable of detecting genes for resistance to 75 clinically relevant antibiotics encompassing 19 different antimicrobial classes was tested on 132 Gram-negative bacteria. Microarray-positive results correlated >91% with antimicrobial resistance phenotypes, assessed using British Society for Antimicrobial Chemotherapy clinical breakpoints; the overall test specificity was >83%. Microarray-positive results without a corresponding resistance phenotype matched 94% with PCR results, indicating accurate detection of genes present in the respective bacteria by microarray when expression was low or absent and, hence, undetectable by susceptibility testing. The low sensitivity and negative predictive values of the microarray results for identifying resistance to some antimicrobial resistance classes are likely due to the limited number of resistance genes present on the current microarray for those antimicrobial agents or to mutation-based resistance mechanisms. With regular updates, this microarray can be used for clinical diagnostics to help accurate therapeutic options to be taken following infection with multiple-antibiotic-resistant Gram-negative bacteria and prevent treatment failure.

  6. Antibiotic-induced endotoxin release in patients with gram-negative urosepsis: a double-blind study comparing imipenem and ceftazidime

    NARCIS (Netherlands)

    Prins, J. M.; van Agtmael, M. A.; Kuijper, E. J.; van Deventer, S. J.; Speelman, P.

    1995-01-01

    The clinical significance of differences between antibiotics in endotoxin-liberating potential is unknown. Thirty patients with gram-negative urosepsis were randomized between imipenem and ceftazidime, which have, respectively, a low and a high endotoxin-liberating potential in vitro. In patients

  7. Expression levels of the receptor activator of NF-κB ligand and osteoprotegerin and the number of gram-negative bacteria in symptomatic and asymptomatic periapical lesions.

    Science.gov (United States)

    Carneiro, E; Parolin, A B; Wichnieski, C; Rosa, E A R; Silva Neto, U X; Westphalen, V P D; Fariniuk, L F; Johann, A C B R

    2017-01-01

    The study aimed to verify the potential correlation between the detected amount of gram-negative bacteria and the radiographic sizes of the lesions in patients with symptomatic and asymptomatic apical periodontitis. Furthermore, to evaluate whether the expression of receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) and the RANKL/OPG ratio are differentially regulated in both groups. Twenty patients with periapical lesions were divided into two groups: symptomatic (SYM) n=10 and asymptomatic (ASYM) n=10. After periapical surgery, the lesions were collected and processed for histological examination, and immunohistochemistry. The percentage of RANKL- and OPG-immunopositive areas relative to the total area of the microscopic field was calculated. For gram staining, the number of gram-negative cells per microscopic field was assessed. The radiographs of each patient were processed and measured. The Student's t-test and the Pearson correlation coefficient were performed. The SYM group showed a significantly higher number of gram-negative cells (p=0.007) when compared to the ASYM group. A higher number of gram-negative bacteria occurred more frequently in larger periapical lesions and the SYM group (p=0.03). The expression for RANKL and OPG and the RANKL/OPG ratio were not significantly different between the groups. There was a significant positive correlation between the number of bacteria and OPG levels in the SYM group (p=0.01). The number of bacteria seems to influence the symptoms and the radiographic size of a periapical lesion. Gram-negative bacteria may play an important role in OPG activity in the SYM group. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Prospects and challenges of developing new agents for tough Gram-negatives.

    Science.gov (United States)

    Meyer, Annette L

    2005-10-01

    Historically, the medical profession has been successful in treating most bacterial infections in humans with synthetic second- and third-generation antibiotics. Recently, the prospects for continued success have dimmed with the increase in multidrug-resistant stains of bacteria. Infections caused by the Gram-negative bacteria Pseudomonas aeruginosa and Acinetobacter spp. in particular have increased in frequency and severity, and become progressively more difficult to treat. Contributors to disease severity include chronic infections due to mutator strains, persister cells and biofilms. The worst-case scenario of infections susceptible only to toxic polymixins is now a reality. The need to address the treatment of multidrug-resistant pathogens with innovative combination approaches and/or novel antibacterial agents is occurring in the context of reduced investment in antimicrobial drug discovery by the pharmaceutical industry.

  9. Metabolic and process engineering for biodesulfurization in Gram-negative bacteria.

    Science.gov (United States)

    Martínez, I; El-Said Mohamed, M; Santos, V E; García, J L; García-Ochoa, F; Díaz, E

    2017-11-20

    Microbial desulfurization or biodesulfurization (BDS) is an attractive low-cost and environmentally friendly complementary technology to the hydrotreating chemical process based on the potential of certain bacteria to specifically remove sulfur from S-heterocyclic compounds of crude fuels that are recalcitrant to the chemical treatments. The 4S or Dsz sulfur specific pathway for dibenzothiophene (DBT) and alkyl-substituted DBTs, widely used as model S-heterocyclic compounds, has been extensively studied at the physiological, biochemical and genetic levels mainly in Gram-positive bacteria. Nevertheless, several Gram-negative bacteria have been also used in BDS because they are endowed with some properties, e.g., broad metabolic versatility and easy genetic and genomic manipulation, that make them suitable chassis for systems metabolic engineering strategies. A high number of recombinant bacteria, many of which are Pseudomonas strains, have been constructed to overcome the major bottlenecks of the desulfurization process, i.e., expression of the dsz operon, activity of the Dsz enzymes, retro-inhibition of the Dsz pathway, availability of reducing power, uptake-secretion of substrate and intermediates, tolerance to organic solvents and metals, and other host-specific limitations. However, to attain a BDS process with industrial applicability, it is necessary to apply all the knowledge and advances achieved at the genetic and metabolic levels to the process engineering level, i.e., kinetic modelling, scale-up of biphasic systems, enhancing mass transfer rates, biocatalyst separation, etc. The production of high-added value products derived from the organosulfur material present in oil can be regarded also as an economically viable process that has barely begun to be explored. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. [Isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity].

    Science.gov (United States)

    Lu, Wenxin; Wu, Fanzi; Zhou, Xinxuan; Wu, Lan; Li, Mingyun; Ren, Biao; Guo, Qiang; Huang, Ruijie; Li, Jiyao; Xiao, Liying; Li, Yan

    2015-12-01

    To establish a systematic method for isolation and identification of aerobic and facultative anaerobic bacteria in the oral cavity. Samples of the saliva, dental plaque and periapical granulation tissue were collected from 20 subjects with healthy oral condition and from 8 patients with different oral diseases. The bacteria in the samples were identified by morphological identification, VITEK automatic microorganism identification and 16s rRNA gene sequencing. VITEK automatic microorganism identification and 16s rRNA gene sequencing showed an agreement rate of 22.39% in identifying the bacteria in the samples. We identified altogether 63 bacterial genus (175 species), among which Streptococcus, Actinomyces and Staphylococcus were the most common bacterial genus, and Streptococcus anginosus, Actinomyces oris, Streptococcus mutans and Streptococcus mitis were the most common species. Streptococcus anginosus was commonly found in patients with chronic periapical periodontitis. Streptococcus intermedius and Staphylococcus aureus were common in patients with radiation caries, and in patients with rampant caries, Streptococcus mutans was found at considerably higher rate than other species. Aerobic and facultative anaerobic bacteria are commonly found in the oral cavity, and most of them are gram-positive. 16s rRNA gene sequencing is more accurate than VITEK automatic microorganism identification in identifying the bacteria.

  11. A New Family of Capsule Polymerases Generates Teichoic Acid-Like Capsule Polymers in Gram-Negative Pathogens.

    Science.gov (United States)

    Litschko, Christa; Oldrini, Davide; Budde, Insa; Berger, Monika; Meens, Jochen; Gerardy-Schahn, Rita; Berti, Francesco; Schubert, Mario; Fiebig, Timm

    2018-05-29

    Group 2 capsule polymers represent crucial virulence factors of Gram-negative pathogenic bacteria. They are synthesized by enzymes called capsule polymerases. In this report, we describe a new family of polymerases that combine glycosyltransferase and hexose- and polyol-phosphate transferase activity to generate complex poly(oligosaccharide phosphate) and poly(glycosylpolyol phosphate) polymers, the latter of which display similarity to wall teichoic acid (WTA), a cell wall component of Gram-positive bacteria. Using modeling and multiple-sequence alignment, we showed homology between the predicted polymerase domains and WTA type I biosynthesis enzymes, creating a link between Gram-negative and Gram-positive cell wall biosynthesis processes. The polymerases of the new family are highly abundant and found in a variety of capsule-expressing pathogens such as Neisseria meningitidis , Actinobacillus pleuropneumoniae , Haemophilus influenzae , Bibersteinia trehalosi , and Escherichia coli with both human and animal hosts. Five representative candidates were purified, their activities were confirmed using nuclear magnetic resonance (NMR) spectroscopy, and their predicted folds were validated by site-directed mutagenesis. IMPORTANCE Bacterial capsules play an important role in the interaction between a pathogen and the immune system of its host. During the last decade, capsule polymerases have become attractive tools for the production of capsule polymers applied as antigens in glycoconjugate vaccine formulations. Conventional production of glycoconjugate vaccines requires the cultivation of the pathogen and thus the highest biosafety standards, leading to tremendous costs. With regard to animal husbandry, where vaccines could avoid the extensive use of antibiotics, conventional production is not sufficiently cost-effective. In contrast, enzymatic synthesis of capsule polymers is pathogen-free and fast, offers high stereo- and regioselectivity, and works with high efficacy

  12. [Advenella kashmirensis subsp. methylica PK1, a facultative methylotroph from carex rhizosphere].

    Science.gov (United States)

    Poroshina, M N; Doronina, N V; Kaparullina, E N; Trotsenko, Iu A

    2015-01-01

    A strain (PK1) of facultative methylobacteria growing on methanol as a carbon and energy source was isolated from carex rhizosphere (Pamukkale National Park, Turkey). The cells were nonmotile gram-negative rods propagating by binary fission. The organism was a strict anaerobe, oxidase- and catalase-positive. Optimal growth occurred at 29°C, pH 8.0-8.5, and 0.5% NaCl; no growth occurred at 2% NaCl. The organism used the ribulose bisphosphate pathway of C1 assimilation. Predominant fatty acids were 11-octodecenoic (18:1ω7) and cis-hexadecenoic (16:1ω7c). Phosphatidylethanolamine and diphosphatidylglycerol were the dominant phospholipids. Q8 was the main ubiquinone. DNA G+C content was 55.4 mol % (mp). Sequencing of the 16S rRNA gene revealed that strain PK1 belonged to the genus Advenella with 98.8 and 99.2% similarity to the type strains A. incenata CCUG 45225T and A. kashmirensis WT001T, respectively. DNA-DNA homology of strain PK1 and A. kashmirensis WT001T was 70%. While MALDI analysis confirmed their close clusterization, RAPD analysis revealed the differences between strain PKI and other Advenella strains. Based on its geno- and phenotypic properties, the isolate PK1 was classified as A. kashmirensis subsp. methylica PK1 (VKM-B 2850 = DSM 27514), the first known methylotroph of the genus Advenella.

  13. [Research progress and discovery process of facultative methanotrophs--a review].

    Science.gov (United States)

    Zhao, Tiantao; Xing, Zhilin; Zhang, Lijie

    2013-08-04

    Facultative methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to use methane and some other compounds containing C-C bond as their sole source of carbon and energy. Recently, which belong to the facultative methanotrophs in the genera Methylocella, Methylocapsa and Methylocystis, which belong to the Alphaproteobacteria, have been reported that can grow on larger organic acids or ethanol for some species, as well as methane. In this paper, the research history of facultative methanotrophs was summarized systematically, some other facultative methane-oxidizing microorganisms were introduced, the metabolic mechanisms of utilizing multi-carbon compounds by facultative methanotrophs were analyzed, and the current problems and the future engineering applications were discussed.

  14. Development of a miniaturised microarray-based assay for the rapid identification of antimicrobial resistance genes in Gram-negative bacteria

    DEFF Research Database (Denmark)

    Batchelor, Miranda; Hopkins, Katie L; Liebana, Ernesto

    2008-01-01

    We describe the development of a miniaturised microarray for the detection of antimicrobial resistance genes in Gram-negative bacteria. Included on the array are genes encoding resistance to aminoglycosides, trimethoprim, sulphonamides, tetracyclines and beta-lactams, including extended-spectrum ...

  15. Pharmacodynamic profiling of doripenem, imipenem and meropenem against prevalent Gram-negative organisms in the Asia-Pacific region.

    Science.gov (United States)

    Kiratisin, Pattarachai; Keel, Rebecca A; Nicolau, David P

    2013-01-01

    Carbapenems are increasingly being utilised owing to the escalating prevalence of antimicrobial-resistant Gram-negative bacteria from community and hospital settings. In this study, pharmacodynamic profiles of doripenem, imipenem and meropenem were evaluated against Gram-negative bacteria isolated from hospitalised patients. MICs for carbapenems were determined for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii obtained from the COMPACT II programme conducted in the Asia-Pacific region. Monte Carlo simulations were undertaken to assess the pharmacodynamic profile of carbapenems against each of the pathogens. All carbapenem regimens achieved optimal exposures [cumulative fraction of response (CFR) ≥90%] against E. coli and K. pneumoniae. Against P. aeruginosa, doripenem achieved 81.3-95.3% CFR, imipenem achieved 55.2-77.9% CFR and meropenem achieved 71.9-91.3% CFR; only doripenem regimens of 4-h infusion of 1000 mg every 8h (q8h) and 1-h and 4-h infusion of 2000 mg q8h and a meropenem regimen of 3-h infusion of 2000 mg q8h obtained optimal exposures; all carbapenem regimens showed slight (1-7%) improvement in CFRs in favour of isolates collected from ICU sources. Against A. baumannii, CFRs were much lower (25.9-46.7% CFR) and no carbapenem regimens achieved optimal exposure in or outside the ICU. Owing to the high potency of carbapenems against these Enterobacteriaceae populations, standard regimens are likely to perform well in the Asia-Pacific region. However, larger doses combined with prolonged infusions will be required to increase the CFR for these carbapenems against resistant non-fermenting Gram-negatives such as P. aeruginosa and A. baumannii that are prevalent in these countries. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. Trends of Bloodstream Infections in a University Greek Hospital during a Three-Year Period: Incidence of Multidrug-Resistant Bacteria and Seasonality in Gram-negative Predominance.

    Science.gov (United States)

    Kolonitsiou, Fevronia; Papadimitriou-Olivgeris, Matthaios; Spiliopoulou, Anastasia; Stamouli, Vasiliki; Papakostas, Vasileios; Apostolopoulou, Eleni; Panagiotopoulos, Christos; Marangos, Markos; Anastassiou, Evangelos D; Christofidou, Myrto; Spiliopoulou, Iris

    2017-07-06

    The aim of the study was to assess the epidemiology, the incidence of multidrug-resistant bacteria and bloodstream infections' (BSIs) seasonality in a university hospital. This retrospective study was carried out in the University General Hospital of Patras, Greece, during 2011-13 y. Blood cultures from patients with clinical presentation suggestive of bloodstream infection were performed by the BacT/ALERT System. Isolates were identified by Vitek 2 Advanced Expert System. Antibiotic susceptibility testing was performed by the disk diffusion method and E-test. Resistance genes (mecA in staphylococci; vanA/vanB/vanC in enterococci; bla KPC /bla VIM /bla NDM in Klebsiella spp.) were detected by PCR. In total, 4607 (9.7%) blood cultures were positive from 47451 sets sent to Department of Microbiology, representing 1732 BSIs. Gram-negative bacteria (52.3%) were the most commonly isolated, followed by Gram-positive (39.5%), fungi (6.6%) and anaerobes bacteria (1.8%). The highest contamination rate was observed among Gram-positive bacteria (42.3%). Among 330 CNS and 150 Staphylococcus aureus, 281 (85.2%) and 60 (40.0%) were mecA-positive, respectively. From 113 enterococci, eight were vanA, two vanB and two vanC-positives. Of the total 207 carbapenem-resistant Klebsiella pneumoniae (73.4%), 202 carried bla KPC , four bla KPC and bla VIM and one bla VIM . A significant increase in monthly BSIs' incidence was shown (R2: 0.449), which may be attributed to a rise of Gram-positive BSIs (R2: 0.337). Gram-positive BSIs were less frequent in spring (P period. The increasing incidence of BSIs can be attributed to an increase of Gram-positive BSI incidence, even though Gram-negative bacteria remained the predominant ones. Seasonality may play a role in the predominance of Gram-negative's BSI.

  17. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch-German Border Region-Impact of National Guidelines.

    Science.gov (United States)

    Köck, Robin; Siemer, Philipp; Esser, Jutta; Kampmeier, Stefanie; Berends, Matthijs S; Glasner, Corinna; Arends, Jan P; Becker, Karsten; Friedrich, Alexander W

    2018-01-26

    Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB) is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the Dutch-German border region, where patients are transferred between healthcare facilities located in the two different countries, because clinicians and infection control personnel must understand antibiograms indicating MDRGNB from both sides of the border and using both national guidelines. This retrospective study aimed to compare antibiograms of Gram-negative bacteria and classify them using the Dutch and German national standards for MDRGNB definition. A total of 31,787 antibiograms from six Dutch and four German hospitals were classified. Overall, 73.7% were no MDRGNB according to both guidelines. According to the Dutch and German guideline, 7772/31,787 (24.5%) and 4586/31,787 (12.9%) were MDRGNB, respectively ( p Dutch-German border, as it cannot be assumed that MDRGNB requiring special hygiene precautions are marked in the transferred antibiograms in accordance with both national guidelines.

  18. A Randomized Trial of the Amikacin Fosfomycin Inhalation System for the Adjunctive Therapy of Gram-Negative Ventilator-Associated Pneumonia: IASIS Trial.

    Science.gov (United States)

    Kollef, Marin H; Ricard, Jean-Damien; Roux, Damien; Francois, Bruno; Ischaki, Eleni; Rozgonyi, Zsolt; Boulain, Thierry; Ivanyi, Zsolt; János, Gál; Garot, Denis; Koura, Firas; Zakynthinos, Epaminondas; Dimopoulos, George; Torres, Antonio; Danker, Wayne; Montgomery, A Bruce

    2017-06-01

    Clinical failures in ventilator-associated pneumonia (VAP) caused by gram-negative bacteria are common and associated with substantial morbidity, mortality, and resource utilization. We assessed the safety and efficacy of the amikacin fosfomycin inhalation system (AFIS) for the treatment of gram-negative bacterial VAP in a randomized double-blind, placebo-controlled, parallel group, phase 2 study between May 2013 and March 2016. We compared standard of care in each arm plus 300 mg amikacin/120 mg fosfomycin or placebo (saline), delivered by aerosol twice daily for 10 days (or to extubation if < 10 days) via the investigational eFlow Inline System (PARI GmbH). The primary efficacy end point was change from baseline in the Clinical Pulmonary Infection Score (CPIS) during the randomized course of AFIS/placebo, using the subset of patients with microbiologically proven baseline infections with gram-negative bacteria. There were 143 patients randomized: 71 to the AFIS group, and 72 to the placebo group. Comparison of CPIS change from baseline between treatment groups was not different (P = .70). The secondary hierarchical end point of no mortality and clinical cure at day 14 or earlier was also not significant (P = .68) nor was the hierarchical end point of no mortality and ventilator-free days (P = .06). The number of deaths in the AFIS group was 17 (24%) and 12 (17%) in the placebo group (P = .32). The AFIS group had significantly fewer positive tracheal cultures on days 3 and 7 than placebo. In this trial of adjunctive aerosol therapy compared with standard of care IV antibiotics in patients with gram-negative VAP, the AFIS was ineffective in improving clinical outcomes despite reducing bacterial burden. ClinicalTrials.gov; No.: NCT01969799; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  19. Trends of 9,416 multidrug-resistant Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Viviane Decicera Colombo Oliveira

    2015-06-01

    Full Text Available Summary Objective: a resistance of hospital-acquired bacteria to multiple antibiotics is a major concern worldwide. The objective of this study was to investigate multidrugresistant (MDR bacteria, clinical specimens, origin of specimen and trends, and correlate these with bacterial sensitivity and consumption of antimicrobials. Methods: 9,416 bacteria of nosocomial origin were evaluated in a tertiary hospital, from 1999 to 2008. MDR was defined for Gram-negative bacteria (GNB as resistance to two or more classes/groups of antibiotics. Results: GNB MDR increased by 3.7 times over the study period (p<0.001. Acinetobacter baumannii was the most prevalent (36.2%. Over the study period, there were significant 4.8-fold and 14.6-fold increases for A. baumannii and K. pneumoniae (p<0.001, respectively. Sixty-seven percent of isolates of MDR GNB were isolated in intensive care units. The resistance of A. baumannii to carbapenems increased from 7.4 to 57.5% during the study period and concomitant with an increased consumption. Conclusion: that decade showed prevalence of GNB and a gradual increase in MDR GNB. There was an increase in carbapenem resistance of 50.1% during the study.

  20. Induction of gram-negative bacterial growth by neurochemical containing banana (Musa x paradisiaca) extracts.

    Science.gov (United States)

    Lyte, M

    1997-09-15

    Bananas contain large quantities of neurochemicals. Extracts from the peel and pulp of bananas in increasing stages of ripening were prepared and evaluated for their ability to modulate the growth of non-pathogenic and pathogenic bacteria. Extracts from the peel, and to a much lesser degree the pulp, increased the growth of Gram-negative bacterial strains Escherichia coli O157:H7, Shigella flexneri, Enterobacter cloacae and Salmonella typhimurium, as well as two non-pathogenic E. coli strains, in direct relation to the content of norepinephrine and dopamine, but not serotonin. The growth of Gram-positive bacteria was not altered by any of the extracts. Supplementation of vehicle and pulp cultures with norepinephrine or dopamine yielded growth equivalent to peel cultures. Total organic analysis of extracts further demonstrated that the differential effects of peel and pulp on bacterial growth was not nutritionally based, but due to norepinephrine and dopamine. These results suggest that neurochemicals contained within foodstuffs may influence the growth of pathogenic and indigenous bacteria through direct neurochemical-bacterial interactions.

  1. Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms.

    Science.gov (United States)

    Randall, Christopher P; Gupta, Arya; Jackson, Nicole; Busse, David; O'Neill, Alex J

    2015-04-01

    To gain a more detailed understanding of endogenous (mutational) and exogenous (horizontally acquired) resistance to silver in Gram-negative pathogens, with an emphasis on clarifying the genetic bases for resistance. A suite of microbiological and molecular genetic techniques was employed to select and characterize endogenous and exogenous silver resistance in several Gram-negative species. In Escherichia coli, endogenous resistance arose after 6 days of exposure to silver, a consequence of two point mutations that were both necessary and sufficient for the phenotype. These mutations, in ompR and cusS, respectively conferred loss of the OmpC/F porins and derepression of the CusCFBA efflux transporter, both phenotypic changes previously linked to reduced intracellular accumulation of silver. Exogenous resistance involved derepression of the SilCFBA efflux transporter as a consequence of mutation in silS, but was additionally contingent on expression of the periplasmic silver-sequestration protein SilE. Silver resistance could be selected at high frequency (>10(-9)) from Enterobacteriaceae lacking OmpC/F porins or harbouring the sil operon and both endogenous and exogenous resistance were associated with modest fitness costs in vitro. Both endogenous and exogenous silver resistance are dependent on the derepressed expression of closely related efflux transporters and are therefore mechanistically similar phenotypes. The ease with which silver resistance can become selected in some bacterial pathogens in vitro suggests that there would be benefit in improved surveillance for silver-resistant isolates in the clinic, along with greater control over use of silver-containing products, in order to best preserve the clinical utility of silver. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  2. [Uncommon non-fermenting Gram-negative rods as pathogens of lower respiratory tract infection].

    Science.gov (United States)

    Juhász, Emese; Iván, Miklós; Pongrácz, Júlia; Kristóf, Katalin

    2018-01-01

    Glucose non-fermenting Gram-negative bacteria are ubiquitous environmental organisms. Most of them are identified as opportunistic, nosocomial pathogens in patients. Uncommon species are identified accurately, mainly due to the introduction of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology practice. Most of these uncommon non-fermenting rods are isolated from lower respiratory tract samples. Their significance in lower respiratory tract infections, such as rules of their testing are not clarified yet. The aim of this study was to review the clinical microbiological features of these bacteria, especially their roles in lower respiratory tract infections and antibiotic treatment options. Lower respiratory tract samples of 3589 patients collected in a four-year period (2013-2016) were analyzed retrospectively at Semmelweis University (Budapest, Hungary). Identification of bacteria was performed by MALDI-TOF MS, the antibiotic susceptibility was tested by disk diffusion method. Stenotrophomonas maltophilia was revealed to be the second, whereas Acinetobacter baumannii the third most common non-fermenting rod in lower respiratory tract samples, behind the most common Pseudomonas aeruginosa. The total number of uncommon non-fermenting Gram-negative isolates was 742. Twenty-three percent of isolates were Achromobacter xylosoxidans. Beside Chryseobacterium, Rhizobium, Delftia, Elizabethkingia, Ralstonia and Ochrobactrum species, and few other uncommon species were identified among our isolates. The accurate identification of this species is obligatory, while most of them show intrinsic resistance to aminoglycosides. Resistance to ceftazidime, cefepime, piperacillin-tazobactam and carbapenems was frequently observed also. Ciprofloxacin, levofloxacin and trimethoprim-sulfamethoxazole were found to be the most effective antibiotic agents. Orv Hetil. 2018; 159(1): 23-30.

  3. Comparison of beta-lactam regimens for the treatment of gram-negative pulmonary infections in the intensive care unit based on pharmacokinetics/pharmacodynamics.

    Science.gov (United States)

    Burgess, David S; Frei, Christopher R

    2005-11-01

    This study utilized pharmacokinetics/pharmacodynamics to compare beta-lactam regimens for the empirical and definitive treatment of gram-negative pulmonary infections in the ICU. Susceptibility data were extracted from the 2002 Intensive Care Unit Surveillance System (ISS) and pharmacokinetic parameters were obtained from published human studies. Monte Carlo simulation was used to model the free percent time above the MIC (free %T > MIC) for 18 beta-lactam regimens against all gram-negative isolates, Enterobacteriaceae, Pseudomonas aeruginosa and Acinetobacter baumannii. The cumulative fraction of response (CFR) was determined for bacteriostatic and bactericidal targets (free %T > MIC): penicillins (> or = 30/50%), cephalosporins/monobactams (> or = 40/70%) and carbapenems (> or = 20/40%). The 2002 ISS database contained MICs for 2408 gram-negative isolates including 1430 Enterobacteriaceae, 799 P. aeruginosa, and 179 A. baumannii. Imipenem had the highest percentage susceptible for all gram-negatives, Enterobacteriaceae and A. baumannii, while piperacillin/tazobactam had the highest percentage susceptible for P. aeruginosa. For empirical therapy, imipenem 0.5 g every 6 h, cefepime 2 g every 8 h and ceftazidime 2 g every 8 h demonstrated the highest CFR. For definitive therapy, imipenem 0.5 g every 6 h, ertapenem 1 g daily and cefepime 2 g every 8 h, cefepime 1 g every 8 h and cefepime 1 g every 12 h had the highest bactericidal CFR against Enterobacteriaceae; ceftazidime 2 g every 8 h, cefepime 2 g every 8 h, piperacillin/tazobactam 3.375 g every 4 h, ceftazidime 1 g every 8 h and aztreonam 1 g every 8 h against P. aeruginosa; and imipenem 0.5 g every 6 h, ticarcillin/clavulanate 3.1 g every 4 h, ceftazidime 2 g every 8 h, cefepime 2 g every 8 h and ticarcillin/clavulanate 3.1 g every 6 h against A. baumannii. Based on pharmacokinetics/pharmacodynamics, imipenem 0.5 g every 6 h, cefepime 2 g every 8 h and ceftazidime 2 g every 8 h should be the preferred beta

  4. Distribution of Gram Negative Bacteria and Evaluation of Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Serap Pamukcuoglu

    2014-03-01

    Full Text Available Aim: In this study, we aimed to examine the distributon of Gram negative bacteria isolated from urine cultures of out-patients in Afyonkarahisar State Hospital and evaluate the antimicrobial resistance rates of these pathogens. Material and Method: Urine samples of out-patients which were sent to microbiology laboratory between 2012-2013 were retrospectively evaluated. The isolates were identified using conventional methods and/or automated Vitec 2.0 system. Antibiogram sensitivities were determined by Kirby-Bauer disc diffusion method or automated system and interpreted on the basis of Clinical and Laboratory Standards Institute (CSI criteria. Double disc sinergy test (DDST or Vitec 2.0 system was used to detect extended spectrum beta-lactamase (ESBL.When conventional methods could%u2019t be clarified according to their colony morphologies, gram staining patterns, biochemical test; automated system has been used. Results: A total of 671 isolates acquired from urine samples were studied. 427 Escherichia coli (63.6 %, 165 Klebsiella spp. (24.6 %, 22 Pseudomonas spp. (3.3 %, nine Acinetobacter spp. (1.3 %, 41 Proteus spp. (6.1 % and seven Serratia (1.0 % strains were identified among isolates. 97 E.coli (22.8 % and 41 Klebsiella (24.8 % isolates were ESBL positive. Most common bacteria were E.coli, 31.1 % of which were resistant to trimethoprim-sulfamethoxazole, 16 % to ciprofloxacin and 3.6 % to nitrofurantoin. Among Enterobacteriaceae, no resistance aganist carbapenems were detected. Moreover, aminoglicoside sensitivity rate was significantly high in this group. Discussion: Microorganisms that have progressively increasing antimicrobial resistance should be considered in the treatment of urinary tract infections. It is also important to use the most appropriate antibiotics to avoid unnecessary usage of these drugs in order to decrease drug resistance rates and ESBL production which may effect the success of the treatment.

  5. Astrobiological significance of chemolithoautotrophic acidophiles

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2004-02-01

    For more than a century (since Winogradsky discovered lithautotrophic bacteria) there has been a dilemma in microbiology about life that first inhabited the Earth. Which types of life forms first appeared in the primordial oceans during the earliest geological period on Earth as the primary ancestors of modern biological diversity? How did a metabolism of ancestors evolve: from lithoautotrophic to lithoheterotrophic and organoheterotrophic or from organoheterotrophic to organautotrophic and lithomixotrophic types? At the present time, it is known that chemolithoheterotrophic and chemolithoautotrophic metabolizing bacteria are wide spread in different ecosystems. On Earth the acidic ecosystems are associated with geysers, volcanic fumaroles, hot springs, deep sea hydrothermal vents, caves, acid mine drainage and other technogenic ecosystems. Bioleaching played a significant roel on a global geological scale during the Earth's formation. This important feature of bacteria has been successfully applied in industry. The lithoautotrophs include Bacteria and Archaea belonging to diverse genera containing thermophilic and mesophilic species. In this paper we discuss the lithotrophic microbial acidophiles and present some data with a description of new acidophilic iron- and sulfur-oxidizing bacterium isolated from the Chena Hot Springs in Alaska. We also consider the possible relevance of microbial acidophiles to Venus, Io, and acidic inclusions in glaciers and icy moons.

  6. Macrophage migration inhibitory factor deficiency is associated with impaired killing of gram-negative bacteria by macrophages and increased susceptibility to Klebsiella pneumoniae sepsis.

    Science.gov (United States)

    Roger, Thierry; Delaloye, Julie; Chanson, Anne-Laure; Giddey, Marlyse; Le Roy, Didier; Calandra, Thierry

    2013-01-15

    The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.

  7. [Identification of anaerobic gram-negative bacilli isolated from various clinical specimens and determination of antibiotic resistance profiles with E-test methods].

    Science.gov (United States)

    Demir, Cengiz; Keşli, Recep

    2018-01-01

    The aim of this study was to identify gram-negative anaerobic bacilli isolated from various clinical specimens that were obtained from patients with suspected anaerobic infections and to determine the antibiotic resistance profiles by using the antibiotic concentration gradient method. The study was performed in Afyon Kocatepe University Ahmet Necdet Sezer Research and Practice Hospital, Medical Microbiology Laboratory between 1 November 2014 and 30 October 2015. Two hundred and seventyeight clinical specimens accepted for anaerobic culture were enrolled in the study. All the samples were cultivated anaerobically by using Schaedler agar with 5% defibrinated sheep blood and Schaedler broth. The isolated anaerobic gram-negative bacilli were identified by using both the conventional methods and automated identification system (VITEK 2, bioMerieux, France). Antibiotic susceptibility tests were performed with antibiotic concentration gradient method (E-test, bioMerieux, France); against penicillin G, clindamycin, cefoxitin, metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem for each isolate. Of the 28 isolated anaerobic gram-negative bacilli; 14 were identified as Bacteroides fragilis group, 9 were Prevotella spp., and 5 were Fusobacterium spp. The highest resistance rate was found against penicillin (78.5%) and resistance rates against clindamycin and cefoxitin were found as 17.8% and 21.4%, respectively. No resistance was found against metronidazole, moxifloxacin, imipenem, meropenem, ertapenem and doripenem. As a result, isolation and identification of anaerobic bacteria are difficult, time-consuming and more expensive when compared with the cost of aerobic culture. The rate of anaerobic bacteria isolation may be increased by obtaining the appropriate clinical specimen and appropriate transportation of these specimens. We believe that the data obtained from the study in our center may offer benefits for the follow up and treatment of infections

  8. Antimicrobial susceptibility trends among gram-positive and -negative clinical isolates collected between 2005 and 2012 in Mexico: results from the Tigecycline Evaluation and Surveillance Trial.

    Science.gov (United States)

    Morfin-Otero, Rayo; Noriega, Eduardo Rodriguez; Dowzicky, Michael J

    2015-12-15

    The Tigecycline Evaluation and Surveillance Trial (T.E.S.T) is a global antimicrobial surveillance study of both gram-positive and gram-negative organisms. This report presents data on antimicrobial susceptibility among organisms collected in Mexico between 2005 and 2012 as part of T.E.S.T., and compares rates between 2005-2007 and 2008-2012. Each center in Mexico submitted at least 200 isolates per collection year; including 65 gram-positive isolates and 135 gram-negative isolates. Minimum inhibitory concentrations (MICs) were determined using Clinical Laboratory Standards Institute (CLSI) broth microdilution methodology and antimicrobial susceptibility was established using the 2013 CLSI-approved breakpoints. For tigecycline US Food and Drug Administration (FDA) breakpoints were applied. Isolates of E. coli and K. pneumoniae with a MIC for ceftriaxone of >1 mg/L were screened for ESBL production using the phenotypic confirmatory disk test according to CLSI guidelines. The rates of some key resistant phenotypes changed during this study: vancomycin resistance among Enterococcus faecium decreased from 28.6 % in 2005-2007 to 19.1 % in 2008-2012, while β-lactamase production among Haemophilus influenzae decreased from 37.6 to 18.9 %. Conversely, methicillin-resistant Staphylococcus aureus increased from 38.1 to 47.9 %, meropenem-resistant Acinetobacter spp. increased from 17.7 to 33.0 % and multidrug-resistant Acinetobacter spp. increased from 25.6 to 49.7 %. The prevalence of other resistant pathogens was stable over the study period, including extended-spectrum β-lactamase-positive Escherichia coli (39.0 %) and Klebsiella pneumoniae (25.0 %). The activity of tigecycline was maintained across the study years with MIC90s of ≤2 mg/L against Enterococcus spp., S. aureus, Streptococcus agalactiae, Streptococcus pneumoniae, Enterobacter spp., E. coli, K. pneumoniae, Klebsiella oxytoca, Serratia marcescens, H. influenzae, and Acinetobacter spp. All gram

  9. Comparing the harmful effects of nontuberculous mycobacteria and Gram negative bacteria on lung function in patients with cystic fibrosis

    DEFF Research Database (Denmark)

    Qvist, Tavs; Taylor-Robinson, David; Waldmann, Elisabeth

    2015-01-01

    BACKGROUND: To better understand the relative effects of infection with nontuberculous mycobacteria and Gram negative bacteria on lung function decline in cystic fibrosis, we assessed the impact of each infection in a Danish setting. METHODS: Longitudinal registry study of 432 patients with cystic...

  10. In vitro antimicrobial activity of five essential oils on multi-drug resistant Gram-negative clinical isolates

    OpenAIRE

    Hercules Sakkas; Panagiota Gousia; Vangelis Economou; Vassilios Sakkas; Stefanos Petsios; Chrissanthy Papadopoulou

    2016-01-01

    Aim/Background: The emergence of drug-resistant pathogens has drawn attention on medicinal plants for potential antimicrobial properties. The objective of the present study was the investigation of the antimicrobial activity of five plant essential oils on multidrug resistant Gram-negative bacteria. Materials and Methods: Basil, chamomile blue, origanum, thyme, and tea tree oil were tested against clinical isolates of Acinetobacter baumannii (n = 6), Escherichia coli (n = 4), Klebsiella pneum...

  11. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013-2015.

    Science.gov (United States)

    Karlowsky, James A; Hoban, Daryl J; Hackel, Meredith A; Lob, Sibylle H; Sahm, Daniel F

    Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART) global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI) and 970 isolates from urinary tract infections (UTI) were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (%) for K. pneumoniae (92.2, 92.3), Enterobacter spp. (97.5, 92.1), and P. aeruginosa (85.3, 75.2) isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6) and imipenem (79.2, 75.9) showed substantially higher rates of susceptibility (%) than other β-lactams, including piperacillin-tazobactam (35.9, 37.4) against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed. Copyright © 2017 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  12. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Directory of Open Access Journals (Sweden)

    Matthew L Faron

    Full Text Available The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA System (Bruker Daltonics Inc, Billerica, MA for the identification of aerobic gram-negative bacteria as part of a 510(k submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263 to genus and 98.2% (2,222/2,263 to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  13. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinical Aerobic Gram-Negative Bacterial Isolates.

    Science.gov (United States)

    Faron, Matthew L; Buchan, Blake W; Hyke, Josh; Madisen, Neil; Lillie, Jennifer L; Granato, Paul A; Wilson, Deborah A; Procop, Gary W; Novak-Weekley, Susan; Marlowe, Elizabeth; Cumpio, Joven; Griego-Fullbright, Christen; Kindig, Sandra; Timm, Karen; Young, Stephen; Ledeboer, Nathan A

    2015-01-01

    The prompt and accurate identification of bacterial pathogens is fundamental to patient health and outcome. Recent advances in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) have revolutionized bacterial identification in the clinical laboratory, but uniform incorporation of this technology in the U.S. market has been delayed by a lack of FDA-cleared systems. In this study, we conducted a multicenter evaluation of the MALDI Biotyper CA (MBT-CA) System (Bruker Daltonics Inc, Billerica, MA) for the identification of aerobic gram-negative bacteria as part of a 510(k) submission to the FDA. A total of 2,263 aerobic gram negative bacterial isolates were tested representing 23 genera and 61 species. Isolates were collected from various clinical sources and results obtained from the MBT-CA System were compared to DNA sequencing and/or biochemical testing. Isolates that failed to report as a "high confidence species ID" [log(score) ≥2.00] were re-tested using an extraction method. The MBT-CA System identified 96.8% and 3.1% of isolates with either a "high confidence" or a "low confidence" [log(score) value between 1.70 and <2.00] species ID, respectively. Two isolates did not produce acceptable confidence scores after extraction. The MBT-CA System correctly identified 99.8% (2,258/2,263) to genus and 98.2% (2,222/2,263) to species level. These data demonstrate that the MBT-CA System provides accurate results for the identification of aerobic gram-negative bacteria.

  14. Simultaneous fluorescent gram staining and activity assessment of activated sludge bacteria.

    Science.gov (United States)

    Forster, Scott; Snape, Jason R; Lappin-Scott, Hilary M; Porter, Jonathan

    2002-10-01

    Wastewater treatment is one of the most important commercial biotechnological processes, and yet the component bacterial populations and their associated metabolic activities are poorly understood. The novel fluorescent dye hexidium iodide allows assessment of Gram status by differential absorption through bacterial cell walls. Differentiation between gram-positive and gram-negative wastewater bacteria was achieved after flow cytometric analysis. This study shows that the relative proportions of gram-positive and gram-negative bacterial cells identified by traditional microscopy and hexidium iodide staining were not significantly different. Dual staining of cells for Gram status and activity proved effective in analyzing mixtures of cultured bacteria and wastewater populations. Levels of highly active organisms at two wastewater treatment plants, both gram positive and gram negative, ranged from 1.5% in activated sludge flocs to 16% in the activated sludge fluid. Gram-positive organisms comprised Gram status and activity within activated sludge samples over a 4-day period showed significant differences over time. This method provides a rapid, quantitative measure of Gram status linked with in situ activity within wastewater systems.

  15. Resistance among Gram-negative ESKAPE pathogens isolated from hospitalized patients with intra-abdominal and urinary tract infections in Latin American countries: SMART 2013–2015

    Directory of Open Access Journals (Sweden)

    James A. Karlowsky

    2017-05-01

    Full Text Available Gram-negative ESKAPE pathogens (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species are important etiologic agents of nosocomial infection that are frequently resistant to broad-spectrum antimicrobial agents. Gram-negative ESKAPE pathogens were collected from hospitalized patients in 11 Latin American countries from 2013 to 2015 as part of the Study for Monitoring Antimicrobial Resistance Trends (SMART global surveillance program. In total, 2113 isolates from intra-abdominal infections (IAI and 970 isolates from urinary tract infections (UTI were tested against antimicrobial agents using standardized CLSI broth microdilution methodology. Of the agents tested, amikacin demonstrated the highest rates of susceptibility (% for K. pneumoniae (92.2, 92.3, Enterobacter spp. (97.5, 92.1, and P. aeruginosa (85.3, 75.2 isolates from both IAI and UTI, respectively. Ertapenem (68.5, 62.6 and imipenem (79.2, 75.9 showed substantially higher rates of susceptibility (% than other β-lactams, including piperacillin-tazobactam (35.9, 37.4 against ESBL-positive isolates of K. pneumoniae from IAI and UTI, respectively. Rates of susceptibility to all agents tested against A. baumannii were ≤30.9%. Gram-negative ESKAPE pathogens isolated from Latin America demonstrated compromised in vitro susceptibility to commonly prescribed broad-spectrum, parenteral antimicrobial agents. Continued surveillance is warranted. New antimicrobial agents with potent activity against Gram-negative ESKAPE pathogens are urgently needed.

  16. Common TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    DEFF Research Database (Denmark)

    Jessen, Kirstine Marie; Lindboe, Sarah Bjerre; Petersen, Anncatrine Luisa

    2007-01-01

    consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-alpha, (TNF-alpha), interleukin-1 beta (IL-1 beta), plasminogen activator-1 (PAI-1), urokinase plasminogen activator (uPA), CD14...... hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. CONCLUSION: We did not find any association between TNF-alpha, IL-1 beta, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors...... appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis....

  17. Phenotypic and Genotypic Detection of Metallo-beta-lactamases among Imipenem-Resistant Gram Negative Isolates

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh

    2016-08-01

    Full Text Available Background:   Imipenem-resistant gram negative bacteria, resulting from metallo-beta-lactamase (MBLs-producing strains have been reported to be among the important causes of nosocomial infections and of serious therapeutic problem worldwide. Because of their broad range, potent carbapenemase activity and resistance to inhibitors, these enzymes can confer resistance to almost all beta-lactams. The prevalence of metallo-beta-lactamase among imipenem-resistant Acinetobacter spp., Pseudomonas spp. and Enerobacteriaceae isolates is determined.Methods:   In this descriptive study 864 clinical isolates of Acinetobacter spp., Pseudomonas spp. and Enterobacteriaceae, were initially tested for imipenem susceptibility. The metallo-beta-lactamase production was detected using combined disk diffusion, double disk synergy test, and Hodge test. Then all imipenem resistant isolates were tested by PCR for imp, vim and ndm genes. Results:   Among 864 isolates, 62 (7.17 % were imipenem-resistant. Positive phonetypic test for metallo-beta-lactamase was 40 (64.5%, of which 24 (17.1% and 16 (9.2% isolates were Acinetobacter spp. and Pseudomonas spp., respectively. By PCR method 30 (48.4% of imipenem resistant Acinetobacter, and Pseudomonas isolates were positive for MBL-producing genes. None of the Enterobacteriaceae isolates were positive for metallo-beta-lactamase activity. Conclusion:   The results of this study are indicative of the growing number of nosocomial infections associated with multidrug-resistant gram negative bacteria in this region leading to difficulties in antibiotic therapy. Thereby, using of phenotypic methods can be helpful for management of this problem.

  18. Methylocapsa aurea sp. nov., a facultative methanotroph possessing a particulate methane monooxygenase, and emended description of the genus Methylocapsa.

    Science.gov (United States)

    Dunfield, Peter F; Belova, Svetlana E; Vorob'ev, Alexey V; Cornish, Sabrina L; Dedysh, Svetlana N

    2010-11-01

    An aerobic, methanotrophic bacterium, designated KYG(T), was isolated from a forest soil in Germany. Cells of strain KYG(T) were Gram-negative, non-motile, slightly curved rods that multiplied by binary fission and produced yellow colonies. The cells contained intracellular granules of poly-β-hydroxybutyrate at each cell pole, a particulate methane monooxygenase (pMMO) and stacks of intracytoplasmic membranes (ICMs) packed in parallel along one side of the cell envelope. Strain KYG(T) grew at pH 5.2-7.2 and 2-33 °C and could fix atmospheric nitrogen under reduced oxygen tension. The major cellular fatty acid was C(18 : 1)ω7c (81.5 %) and the DNA G+C content was 61.4 mol%. Strain KYG(T) belonged to the family Beijerinckiaceae of the class Alphaproteobacteria and was most closely related to the obligate methanotroph Methylocapsa acidiphila B2(T) (98.1 % 16S rRNA gene sequence similarity and 84.7 % pmoA sequence similarity). Unlike Methylocapsa acidiphila B2(T), which grows only on methane and methanol, strain KYG(T) was able to grow facultatively on acetate. Facultative acetate utilization is a characteristic of the methanotrophs of the genus Methylocella, but the genus Methylocella does not produce pMMO or ICMs. Strain KYG(T) differed from Methylocapsa acidiphila B2(T) on the basis of substrate utilization pattern, pigmentation, pH range, cell ultrastructure and efficiency of dinitrogen fixation. Therefore, we propose a novel species, Methylocapsa aurea sp. nov., to accommodate this bacterium. The type strain is KYG(T) (=DSM 22158(T) =VKM B-2544(T)).

  19. White shrimp (Litopenaeus vannamei) recombinant lysozyme has antibacterial activity against Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae.

    Science.gov (United States)

    de-la-Re-Vega, Enrique; García-Galaz, Alfonso; Díaz-Cinco, Martha E; Sotelo-Mundo, Rogerio R

    2006-03-01

    C-type lysozyme has been described as an antibacterial component of the shrimp innate defence system. We determined quantitatively the antibacterial activity of white shrimp (Litopenaeus vannamei) recombinant lysozyme against three Gram negative bacteria: Vibrio alginolyticus, Vibrio parahemolyticus and Vibrio cholerae, using a turbidimetric assay with live bacteria and differential bacterial viable count after interaction with the protein. In conclusion, the antibacterial activity of recombinant shrimp lysozyme against Vibrio sp. is at least equal to the values against the Gram positive M. luteus and more active against the shrimp pathogens V. alginolyticus and V. parahemolyticus.

  20. Selective bowel decontamination results in gram-positive translocation.

    Science.gov (United States)

    Jackson, R J; Smith, S D; Rowe, M I

    1990-05-01

    Colonization by enteric gram-negative bacteria with subsequent translocation is believed to be a major mechanism for infection in the critically ill patient. Selective bowel decontamination (SBD) has been used to control gram-negative infections by eliminating these potentially pathogenic bacteria while preserving anaerobic and other less pathogenic organisms. Infection with gram-positive organisms and anaerobes in two multivisceral transplant patients during SBD led us to investigate the effect of SBD on gut colonization and translocation. Twenty-four rats received enteral polymixin E, tobramycin, amphotericin B, and parenteral cefotaxime for 7 days (PTA + CEF); 23 received parenteral cefotaxime alone (CEF), 19 received the enteral antibiotics alone (PTA), 21 controls received no antibiotics. Cecal homogenates, mesenteric lymph node (MLN), liver, and spleen were cultured. Only 8% of the PTA + CEF group had gram-negative bacteria in cecal culture vs 52% CEF, 84% PTA, and 100% in controls. Log Enterococcal colony counts were higher in the PTA + CEF group (8.0 + 0.9) vs controls (5.4 + 0.4) P less than 0.01. Translocation of Enterococcus to the MLN was significantly increased in the PTA + CEF group (67%) vs controls (0%) P less than 0.01. SBD effectively eliminates gram-negative organisms from the gut in the rat model. Overgrowth and translocation of Enterococcus suggests that infection with gram-positive organisms may be a limitation of SBD.

  1. The Changing Role of the Clinical Microbiology Laboratory in Defining Resistance in Gram-negatives.

    Science.gov (United States)

    Endimiani, Andrea; Jacobs, Michael R

    2016-06-01

    The evolution of resistance in Gram-negatives has challenged the clinical microbiology laboratory to implement new methods for their detection. Multidrug-resistant strains present major challenges to conventional and new detection methods. More rapid pathogen identification and antimicrobial susceptibility testing have been developed for use directly on specimens, including fluorescence in situ hybridization tests, automated polymerase chain reaction systems, microarrays, mass spectroscopy, next-generation sequencing, and microfluidics. Review of these methods shows the advances that have been made in rapid detection of resistance in cultures, but limited progress in direct detection from specimens. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Epidemiology and molecular characterization of multidrug-resistant Gram-negative bacteria in Southeast Asia

    Directory of Open Access Journals (Sweden)

    Nuntra Suwantarat

    2016-05-01

    Full Text Available Abstract Background Multidrug-resistant Gram-negative bacteria (MDRGN, including extended-spectrum β-lactamases (ESBLs and multidrug-resistant glucose-nonfermenting Gram-negative bacilli (nonfermenters, have emerged and spread throughout Southeast Asia. Methods We reviewed and summarized current critical knowledge on the epidemiology and molecular characterization of MDRGN in Southeast Asia by PubMed searches for publications prior to 10 March 2016 with the term related to “MDRGN definition” combined with specific Southeast Asian country names (Thailand, Singapore, Malaysia, Vietnam, Indonesia, Philippines, Laos, Cambodia, Myanmar, Brunei. Results There were a total of 175 publications from the following countries: Thailand (77, Singapore (35, Malaysia (32, Vietnam (23, Indonesia (6, Philippines (1, Laos (1, and Brunei (1. We did not find any publications on MDRGN from Myanmar and Cambodia. We did not include publications related to Shigella spp., Salmonella spp., and Vibrio spp. and non-human related studies in our review. English language articles and abstracts were included for analysis. After the abstracts were reviewed, data on MDRGN in Southeast Asia from 54 publications were further reviewed and included in this study. Conclusions MDRGNs are a major contributor of antimicrobial-resistant bacteria in Southeast Asia. The high prevalence of ESBLs has been a major problem since 2005 and is possibly related to the development of carbapenem resistant organisms in this region due to the overuse of carbapenem therapy. Carbapenem–resistant Acinetobacter baumannii is the most common pathogen associated with nosocomial infections in this region followed by carbapenem-resistant Pseudomonas aeruginosa. Although Southeast Asia is not an endemic area for carbapenem-resistant Enterobacteriaceae (CRE, recently, the rate of CRE detection has been increasing. Limited infection control measures, lack of antimicrobial control, such as the presence of

  3. New transposon tools tailored for metabolic engineering of Gram-negative microbial cell factories

    Directory of Open Access Journals (Sweden)

    Esteban eMartínez-García

    2014-10-01

    Full Text Available Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena, but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5 vectors, termed pBAMDs, for the delivery of gene(s into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic resistance markers (kanamycin, streptomycin, and gentamicin. After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate (PHB synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5 vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the

  4. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I., E-mail: pablo.nikel@cnb.csic.es [Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid (Spain)

    2014-10-28

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  5. Intrathecal or intraventricular therapy for post-neurosurgical Gram-negative meningitis: matched cohort study.

    Science.gov (United States)

    Shofty, B; Neuberger, A; Naffaa, M E; Binawi, T; Babitch, T; Rappaport, Z H; Zaaroor, M; Sviri, G; Paul, M

    2016-01-01

    Gram-negative post-operative meningitis due to carbapenem-resistant bacteria (CR-GNPOM) is a dire complication of neurosurgical procedures. We performed a nested propensity-matched historical cohort study aimed at examining the possible benefit of intrathecal or intraventricular (IT/IV) antibiotic treatment for CR-GNPOM. We included consecutive adults with GNPOM in two centres between 2005 and 2014. Patients receiving combined systemic and IT/IV treatment were matched to patients receiving systemic treatment only. Matching was done based on the propensity of the patients to receive IT/IV treatment. We compared patient groups with 30-day mortality defined as the primary outcome. The cohort included 95 patients with GNPOM. Of them, 37 received IT/IV therapy in addition to systemic treatment (22 with colistin and 15 with amikacin), mostly as initial therapy, through indwelling cerebrospinal fluid drains. Variables associated with IT/IV therapy in the propensity score included no previous neurosurgery, time from admission to meningitis, presence of a urinary catheter and GNPOM caused by carbapenem-resistant Gram-negative bacteria. Following propensity matching, 23 patients given IT/IV therapy and 27 controls were analysed. Mortality was significantly lower with IT/IV therapy: 2/23 (8.7%) versus 9/27 (33.3%), propensity-adjusted OR 0.19, 95% CI 0.04-0.99. Death or neurological deterioration at 30 days, 14-day and in-hospital mortality were lower with IT/IV therapy (OR <0.4 for all) without statistically significant differences. Among patients discharged alive, those receiving IT/IV therapy did not experience more neurological deterioration. Serious adverse events with IT/IV therapy were not documented. Our results support the early use of IT antibiotic treatment for CR-GNPOM when a delivery method is available. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  6. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories

    International Nuclear Information System (INIS)

    Martínez-García, Esteban; Aparicio, Tomás; Lorenzo, Víctor de; Nikel, Pablo I.

    2014-01-01

    Re-programming microorganisms to modify their existing functions and/or to bestow bacteria with entirely new-to-Nature tasks have largely relied so far on specialized molecular biology tools. Such endeavors are not only relevant in the burgeoning metabolic engineering arena but also instrumental to explore the functioning of complex regulatory networks from a fundamental point of view. À la carte modification of bacterial genomes thus calls for novel tools to make genetic manipulations easier. We propose the use of a series of new broad-host-range mini-Tn5-vectors, termed pBAMDs, for the delivery of gene(s) into the chromosome of Gram-negative bacteria and for generating saturated mutagenesis libraries in gene function studies. These delivery vectors endow the user with the possibility of easy cloning and subsequent insertion of functional cargoes with three different antibiotic-resistance markers (kanamycin, streptomycin, and gentamicin). After validating the pBAMD vectors in the environmental bacterium Pseudomonas putida KT2440, their use was also illustrated by inserting the entire poly(3-hydroxybutyrate) (PHB) synthesis pathway from Cupriavidus necator in the chromosome of a phosphotransacetylase mutant of Escherichia coli. PHB is a completely biodegradable polyester with a number of industrial applications that make it attractive as a potential replacement of oil-based plastics. The non-selective nature of chromosomal insertions of the biosynthetic genes was evidenced by a large landscape of PHB synthesis levels in independent clones. One clone was selected and further characterized as a microbial cell factory for PHB accumulation, and it achieved polymer accumulation levels comparable to those of a plasmid-bearing recombinant. Taken together, our results demonstrate that the new mini-Tn5-vectors can be used to confer interesting phenotypes in Gram-negative bacteria that would be very difficult to engineer through direct manipulation of the structural genes.

  7. Isolation and purification of membrane-bound cytochrome c from ...

    African Journals Online (AJOL)

    Administrator

    2007-05-02

    ferrochrome and redox spectra showed the presence of heme-c. Key words: Cytochrome c, respiratory chain and Proteus mirabilis. INTRODUCTION. Proteus mirabilis is facultative anaerobic, rod-shaped, gram negative bacterium.

  8. The resveratrol tetramer (--hopeaphenol inhibits type III secretion in the gram-negative pathogens Yersinia pseudotuberculosis and Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Caroline E Zetterström

    Full Text Available Society faces huge challenges, as a large number of bacteria have developed resistance towards many or all of the antibiotics currently available. Novel strategies that can help solve this problem are urgently needed. One such strategy is to target bacterial virulence, the ability to cause disease e.g., by inhibition of type III secretion systems (T3SSs utilized by many clinically relevant gram-negative pathogens. Many of the antibiotics used today originate from natural sources. In contrast, most virulence-blocking compounds towards the T3SS identified so far are small organic molecules. A recent high-throughput screening of a prefractionated natural product library identified the resveratrol tetramer (--hopeaphenol as an inhibitor of the T3SS in Yersinia pseudotuberculosis. In this study we have investigated the virulence blocking properties of (--hopeaphenol in three different gram-negative bacteria. (--Hopeaphenol was found to have micromolar activity towards the T3SSs in Yersinia pseudotuberculosis and Pseudomonas aeruginosa in cell-based infection models. In addition (--hopeaphenol reduced cell entry and subsequent intracellular growth of Chlamydia trachomatis.

  9. Oral Gram-negative anaerobic bacilli as a reservoir of β-lactam resistance genes facilitating infections with multiresistant bacteria.

    Science.gov (United States)

    Dupin, Clarisse; Tamanai-Shacoori, Zohreh; Ehrmann, Elodie; Dupont, Anais; Barloy-Hubler, Frédérique; Bousarghin, Latifa; Bonnaure-Mallet, Martine; Jolivet-Gougeon, Anne

    2015-02-01

    Many β-lactamases have been described in various Gram-negative bacilli (Capnocytophaga, Prevotella, Fusobacterium, etc.) of the oral cavity, belonging to class A of the Ambler classification (CepA, CblA, CfxA, CSP-1 and TEM), class B (CfiA) or class D in Fusobacterium nucleatum (FUS-1). The minimum inhibitory concentrations of β-lactams are variable and this variation is often related to the presence of plasmids or other mobile genetic elements (MGEs) that modulate the expression of resistance genes. DNA persistence and bacterial promiscuity in oral biofilms also contribute to genetic transformation and conjugation in this particular microcosm. Overexpression of efflux pumps is facilitated because the encoding genes are located on MGEs, in some multidrug-resistant clinical isolates, similar to conjugative transposons harbouring genes encoding β-lactamases. All these facts lead us to consider the oral cavity as an important reservoir of β-lactam resistance genes and a privileged place for genetic exchange, especially in commensal strictly anaerobic Gram-negative bacilli. Copyright © 2014 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  10. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Demetrio L Valle

    Full Text Available Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC and the minimum bactericidal concentrations (MBC of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant Enterococcus (VRE, extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn. Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant

  11. Antimicrobial Activities of Methanol, Ethanol and Supercritical CO2 Extracts of Philippine Piper betle L. on Clinical Isolates of Gram Positive and Gram Negative Bacteria with Transferable Multiple Drug Resistance.

    Science.gov (United States)

    Valle, Demetrio L; Cabrera, Esperanza C; Puzon, Juliana Janet M; Rivera, Windell L

    2016-01-01

    Piper betle L. has traditionally been used in alternative medicine in different countries for various therapeutic purposes, including as an anti-infective agent. However, studies reported in the literature are mainly on its activities on drug susceptible bacterial strains. This study determined the antimicrobial activities of its ethanol, methanol, and supercritical CO2 extracts on clinical isolates of multiple drug resistant bacteria which have been identified by the Infectious Disease Society of America as among the currently more challenging strains in clinical management. Assay methods included the standard disc diffusion method and the broth microdilution method for the determination of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentrations (MBC) of the extracts for the test microorganisms. This study revealed the bactericidal activities of all the P. betle leaf crude extracts on methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), extended spectrum β-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and metallo-β-lactamase-producing Pseudomonas aeruginosa and Acinetobacter baumannii, with minimum bactericidal concentrations that ranged from 19μg/ml to 1250 μg/ml. The extracts proved to be more potent against the Gram positive MRSA and VRE than for the Gram negative test bacteria. VRE isolates were more susceptible to all the extracts than the MRSA isolates. Generally, the ethanol extracts proved to be more potent than the methanol extracts and supercritical CO2 extracts as shown by their lower MICs for both the Gram positive and Gram negative MDRs. MTT cytotoxicity assay showed that the highest concentration (100 μg/ml) of P. betle ethanol extract tested was not toxic to normal human dermal fibroblasts (HDFn). Data from the study firmly established P. betle as an alternative source of anti-infectives against multiple drug resistant bacteria.

  12. Motuporamine Derivatives as Antimicrobial Agents and Antibiotic Enhancers against Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Borselli, Diane; Blanchet, Marine; Bolla, Jean-Michel; Muth, Aaron; Skruber, Kristen; Phanstiel, Otto; Brunel, Jean Michel

    2017-02-01

    Dihydromotuporamine C and its derivatives were evaluated for their in vitro antimicrobial activities and antibiotic enhancement properties against Gram-negative bacteria and clinical isolates. The mechanism of action of one of these derivatives, MOTU-N44, was investigated against Enterobacter aerogenes by using fluorescent dyes to evaluate outer-membrane depolarization and permeabilization. Its efficiency correlated with inhibition of dye transport, thus suggesting that these molecules inhibit drug transporters by de-energization of the efflux pump rather than by direct interaction of the molecule with the pump. This suggests that depowering the efflux pump provides another strategy to address antibiotic resistance. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  13. Antimicrobial effects of zero-valent iron nanoparticles on gram-positive Bacillus strains and gram-negative Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    2017-11-01

    Full Text Available Abstract Background Zero-valent iron nanoparticles (ZVI NPs have been used extensively for the remediation of contaminated soil and groundwater. Owing to their large active surface area, they serve as strong and effective reductants. However, the ecotoxicity and bioavailability of ZVI NPs in diverse ecological media have not been evaluated in detail and most studies have focused on non-nano ZVI or Fe0. In addition, the antimicrobial properties of ZVI NPs have rarely been investigated, and the underlying mechanism of their toxicity remains unknown. Results In the present study, we demonstrate that ZVI NPs exhibited significant toxicity at 1000 ppm against two distinct gram-positive bacterial strains (Bacillus subtilis 3610 and Bacillus thuringiensis 407 but not against two gram-negative strains (Escherichia coli K12 and ATCC11634. Specifically, ZVI NPs caused at least a 4-log and 1-log reductions in cell numbers, respectively, in the two Bacillus strains, whereas no change was detected in the two E. coli strains. X-ray photoelectron spectroscopy, X-ray absorption near-edge, and extended X-ray absorption fine structure spectra confirmed that Bacillus cells exposed to ZVI NPs contained mostly Fe2O3 with some detectable FeS. This finding indicated that Fe0 nanoparticles penetrated the bacterial cells, where they were subsequently oxidized to Fe2O3 and FeS. RedoxSensor analysis and propidium iodide (PI staining showed decreased reductase activity and increased PI in both Bacillus strains treated with a high (1000 ppm concentration of ZVI NPs. Conclusion Taken together, these data show that the toxicity of ZVI NPs was derived from their oxidative properties, which may increase the levels of reactive oxygen species and lead to cell death.

  14. [Continuous surveillance of antimicrobial resistance among nosocomial gram-negative bacilli from intensive care units in China].

    Science.gov (United States)

    Chen, Min-Jun; Wang, Hui

    2003-03-10

    To investigate the change of antimicrobial resistance among nosocomial gram-negative bacilli, especially those of Enterobacteriaceae isolated from intensive care units from 1994 to 2001 in China. E test was made to determine the minimal inhibitory concentrations (MIC) of 10 279 isolates of gram-negative bacilli (including 5 829 strains of bacilli of Enterobacteriaceae) from 32 hospitals in China from 1994 to 2001. The most common pathogens were Pseudomonas aeruginosa; Escherichia coli, Klebsiella spp, Acinetobacter spp. Enterobacter spp, and Stenotrophomonas maltophilia. The most common pathogens in respiratory tract specimens were Pseudomonas aeruginosa (25%), Klebsiella pneumoniae (18%), and Acinetobacter baumanni (11%). The most common pathogens in blood and urine specimens were Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The antibiotic remaining the most active against all of the gram-negative bacilli for 7 years was imipenem (with a susceptibility rate of 87%), followed by cefoperazone/sulbactam (however, with a susceptibility rate decreasing from 86% to 75%), amikacin (75%), ceftazidime (73%), cefepime (72%), and piperacillin/tazobactam (71%). The susceptibility rate of Escherichia coli Klebsiella pneumoniae to imipenem remained 98% with a MIC(90) of 0.5 micro g/ml during the 7 years, much higher than those to amikacin (84%), ceftazidime (83%), cefoperazone/sulbactam (83%), piperacillin/tazobactam (80%), and cefepime (80%). The susceptibility rate of these two species to cefoperazone/sulbactam decreased from 90% in 1996 to 74% in 2001. While the susceptibility to cefotaxime and ceftriaxone decreased from 82% to 57%. The susceptibility rate of Escherichia coli to ciprofloxacin decreased from 54% to 25% and that of Klebsiella pneumoniae to ciprofloxacin decreased from 90% to 75%. The prevalence of extended spectrum beta-lactamases in these two species increased from 11% in 1994 to 34% in 2001. The most active antibiotics against

  15. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis

    DEFF Research Database (Denmark)

    Wolff Sönksen, Ute; Christensen, Jens Jørgen; Nielsen, Lisbeth

    2010-01-01

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic...... characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification...... results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial...

  16. Temperature shock, injury and transient sensitivity to nisin in Gram negatives.

    Science.gov (United States)

    Boziaris, I S; Adams, M R

    2001-10-01

    The effect of thermal stresses on survival, injury and nisin sensitivity was investigated in Salmonella Enteritidis PT4, PT7 and Pseudomonas aeruginosa. Heating at 55 degrees C, rapid chilling to 0.5 degrees C or freezing at -20 degrees C produced transient sensitivity to nisin. Cells were only sensitive if nisin was present during stress. Resistance recovered rapidly afterwards, though some cells displayed residual injury. Injury was assessed by SDS sensitivity, hydrophobicity changes, lipopolysaccharide release and NPN uptake. LPS release and hydrophobicity were not always associated with transient nisin sensitivity. Uptake of NPN correlated better but persisted longer after treatment. Thermal shocks produce transient injury to the outer membrane, allowing nisin access. After treatment, the permeability barrier is rapidly restored by a process apparently involving reorganization rather than biosynthetic repair. Inclusion of nisin during food treatments that impose sub-lethal stress on Gram negatives could increase process lethality, enhancing microbiological safety and stability.

  17. Add-On Therapy with Ertapenem in Infections with Multidrug Resistant Gram-Negative Bacteria: Pediatric Experience

    Directory of Open Access Journals (Sweden)

    Sevgen Tanır Basaranoglu

    2017-01-01

    Full Text Available Optimal therapy for infections with carbapenem resistant GNB is not well established due to the weakness of data. Patients presenting with bloodstream infections caused by multidrug resistant Klebsiella pneumoniae were treated with a combination treatment. Optimal therapy for infections with carbapenem resistant Gram-negative bacteria is a serious problem in pediatric patients. We presented three cases who were successfully treated with addition of ertapenem to the combination treatment for bacteremia with multidrug resistant Klebsiella pneumoniae. Dual carbapenem treatment approach is a new approach for these infections and requires more data in children.

  18. Evaluation of Inhibitory and Lethal Effects of Aqueous, Ethanolic and Hydroalcoholic Extracts of Aerial Parts of Salvia chorassanica against Some Gram-negative and Gram-positive Bacteria in Vitro

    Directory of Open Access Journals (Sweden)

    Azam Mehraban

    2016-05-01

    Full Text Available Abstract Background and Objectives: Development of bacterial resistance to antibiotics has led to an increased tendency to development of new more effective and non-toxic antimicrobial compounds. In this study, the inhibitory and lethal effects of aqueous, ethanolic, and hydroalcoholic extracts of aerial parts of Salvia chorassanica were evaluated against Listeria monocytogenes, Bacillus cereus, Salmonella typhi, and Escherichia coli O:157. Methods: In this study, Kirby–Bauer disk diffusion method was used to evaluate antimicrobial activity. In this method, bacteria were cultivated as grass culture in Mueller Hinton Agar (MHA media. To determine the minimum inhibitory concentration and minimum bactericidal concentration, micro-dilution method with ELISA and addition of phenyl tetrazolium chloride reagent, were used. Data were analyzed using one-way ANOVA and Duncan’s test at the significance level of p<0.05. Results: The highest diameter of inhibition in agar diffusion method was related to hydroalcoholic extract of aerial parts of Salvia chorassanica against Gram-positive bacteria Bacillus cereus. The amount of calculated MIC of hydro-alcoholic extract for Gram-positive bacteria was 30mg/ml. This amount was the lowest among other measured MIC. Conclusion: Based on the results of this study, Gram-negative bacteria showed more resistance to different extracts of aerial parts of Salvia chorassanica as compared to Gram-positive bacteria, so that Salmonella typhi was found to be the most resistant bacterium among the tested bacteria.

  19. Gram staining apparatus for space station applications

    Science.gov (United States)

    Molina, T. C.; Brown, H. D.; Irbe, R. M.; Pierson, D. L.

    1990-01-01

    A self-contained, portable Gram staining apparatus (GSA) has been developed for use in the microgravity environment on board the Space Station Freedom. Accuracy and reproducibility of this apparatus compared with the conventional Gram staining method were evaluated by using gram-negative and gram-positive controls and different species of bacteria grown in pure cultures. A subsequent study was designed to assess the performance of the GSA with actual specimens. A set of 60 human and environmental specimens was evaluated with the GSA and the conventional Gram staining procedure. Data obtained from these studies indicated that the GSA will provide the Gram staining capability needed for the microgravity environment of space.

  20. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov.--novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2000-06-01

    Eight strains of Gram-negative, aerobic, asporogenous, neutrophilic, mesophilic, facultatively methylotrophic bacteria are taxonomically described. These icl- serine pathway methylobacteria utilize dichloromethane, methanol and methylamine as well as a variety of polycarbon compounds as the carbon and energy source. The major cellular fatty acids of the non-pigmented strains DM1, DM3, and DM5 to DM9 are C18:1, C16:0, C18:0, Ccy19:0 and that of the pink-pigmented strain DM4 is C18:1. The main quinone of all the strains is Q-10. The non-pigmented strains have similar phenotypic properties and a high level of DNA-DNA relatedness (81-98%) as determined by hybridization. All strains belong to the alpha-subgroup of the alpha-Proteobacteria. 16S rDNA sequence analysis led to the classification of these dichloromethane-utilizers in the genus Methylopila as a new species - Methylopila helvetica sp.nov. with the type strain DM9 (=VKM B-2189). The pink-pigmented strain DM4 belongs to the genus Methylobacterium but differs from the known members of this genus by some phenotypic properties, DNA-DNA relatedness (14-57%) and 16S rDNA sequence. Strain DM4 is named Methylobacterium dichloromethanicum sp. nov. (VKM B-2191 = DSMZ 6343).

  1. Antiseptic and antibiotic resistance in Gram-negative bacteria causing urinary tract infection.

    Science.gov (United States)

    Stickler, D J; Thomas, B

    1980-01-01

    A collection of 802 isolates of Gram-negative bacteria causing urinary tract infections was made from general practice, antenatal clinics, and local hospitals. The organisms were tested for their sensitivity to chlorhexidine, cetrimide, glutaraldehyde, phenyl mercuric nitrate, a phenolic formulation, and a proprietary antiseptic containing a mixture of picloxydine, octyl phenoxy polyethoxyethanol, and benzalkonium chloride. Escherichia coli, the major species isolated, proved to be uniformly sensitive to these agents. Approximately 10% of the total number of isolates, however, exhibited a degree of resistance to the cationic agents. These resistant organisms were members of the genera Proteus, Providencia, and Pseudomonas; they were also generally resistant to five, six, or seven antibiotics. It is proposed therefore that an antiseptic policy which involves the intensive use of cationic antiseptics might lead to the selection of a flora of notoriously drug-resistant species. PMID:6769972

  2. Plasmid-Mediated Antibiotic Resistance and Virulence in Gram-negatives: the Klebsiella pneumoniae Paradigm.

    Science.gov (United States)

    Ramirez, Maria S; Traglia, German M; Lin, David L; Tran, Tung; Tolmasky, Marcelo E

    Plasmids harbor genes coding for specific functions including virulence factors and antibiotic resistance that permit bacteria to survive the hostile environment found in the host and resist treatment. Together with other genetic elements such as integrons and transposons, and using a variety of mechanisms, plasmids participate in the dissemination of these traits resulting in the virtual elimination of barriers among different kinds of bacteria. In this article we review the current information about physiology and role in virulence and antibiotic resistance of plasmids from the gram-negative opportunistic pathogen Klebsiella pneumoniae . This bacterium has acquired multidrug resistance and is the causative agent of serious communityand hospital-acquired infections. It is also included in the recently defined ESKAPE group of bacteria that cause most of US hospital infections.

  3. Burdock (Arctium lappa Leaf Extracts Increase the In Vitro Antimicrobial Efficacy of Common Antibiotics on Gram-positive and Gram-negative Bacteria

    Directory of Open Access Journals (Sweden)

    Pirvu Lucia

    2017-04-01

    Full Text Available This work aimed to study the potential effects of four Arctii folium extracts, 5 mg gallic [GAE] acid equivalents per 1 mL sample, on six antibiotics (Ampicillin/AM, Tetracycline/TE, Ciprofloxacin/CIP, Sulfamethoxazole-Trimethoprim/SXT, Chloramphenicol/C and Gentamicin/CN tested on four Gram-positive (Staphylococcus aureus ATCC 6538, Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 29212, and Staphylococcus epidermidis ATCC 12228 and five Gram-negative (Proteus mirabilis ATCC 29245, Escherichia coli ATCC 35218, E. coli ATCC 11229, E. coli ATCC 8739, and Bacillus cereus ATCC 11778 bacteria. Arctii folium extracts were the whole ethanol extract/W and subsequent ethyl acetate/EA, aqueous/AQ, and chloroform/CHL fractions. Chemical qualitative analysis (HPTLC method emphasized five main polyphenol compounds in Arctii folium polar extracts: chlorogenic acid (Rf≈0.52/0.55 and its isomer, 1,5-di-O-caffeoylquinic acid (Rf≈0.90/0.92, plus cynarin (Rf≈0.77, hyperoside (Rf≈0.68/0.64 and isoquercitrin (Rf≈0.69/0.71. Microbiological screening indicated Arctii folium polar extracts (AQ and W efficacy on S. epidermidis ATCC 12228; the MIC values were in the range of common antibiotics, being 32 and 128 μg GAE per mL sample respectively. The unpredictable effects (stimulatory or inhibitory of Arctii folium extracts in combination with typical antibiotics as well as a potential use of the whole ethanol extract/W for restoring the antimicrobial potency of susceptible antibiotics have also been evidenced.

  4. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria.

    Science.gov (United States)

    Seitz, Patrick; Blokesch, Melanie

    2013-05-01

    Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  5. Detection of AmpC β lactamases in gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Gunjan Gupta

    2014-01-01

    Full Text Available Amp C β-lactamases are clinically important cephalosporinases encoded on the chromosomes of many Enterobacteriaceae and a few other organisms, where they mediate resistance to cephalothin, cefazolin, cefoxitin, most penicillins, and β-lactamase inhibitor/β-lactam combinations. The increase in antibiotic resistance among Gram-negative bacteria is a notable example of how bacteria can procure, maintain and express new genetic information that can confer resistance to one or several antibiotics. Detection of organisms producing these enzymes can be difficult, because their presence does not always produce a resistant phenotype on conventional disc diffusion or automated susceptibility testing methods. These enzymes are often associated with potentially fatal laboratory reports of false susceptibility to β-lactams phenotypically. With the world-wide increase in the occurrence, types and rate of dissemination of these enzymes, their early detection is critical. AmpC β-lactamases show tremendous variation in geographic distribution. Thus, their accurate detection and characterization are important from epidemiological, clinical, laboratory, and infection control point of view. This document describes the methods for detection for AmpC β-lactamases, which can be adopted by routine diagnostic laboratories.

  6. A possible alternative to the error prone modified Hodge test to correctly identify the carbapenemase producing Gram-negative bacteria.

    Science.gov (United States)

    Jeremiah, S S; Balaji, V; Anandan, S; Sahni, R D

    2014-01-01

    The modified Hodge test (MHT) is widely used as a screening test for the detection of carbapenemases in Gram-negative bacteria. This test has several pitfalls in terms of validity and interpretation. Also the test has a very low sensitivity in detecting the New Delhi metallo-β-lactamase (NDM). Considering the degree of dissemination of the NDM and the growing pandemic of carbapenem resistance, a more accurate alternative test is needed at the earliest. The study intends to compare the performance of the MHT with the commercially available Neo-Sensitabs - Carbapenemases/Metallo-β-Lactamase (MBL) Confirmative Identification pack to find out whether the latter could be an efficient alternative to the former. A total of 105 isolates of Klebsiella pneumoniae resistant to imipenem and meropenem, collected prospectively over a period of 2 years were included in the study. The study isolates were tested with the MHT, the Neo-Sensitabs - Carbapenemases/MBL Confirmative Identification pack and polymerase chain reaction (PCR) for detecting the blaNDM-1 gene. Among the 105 isolates, the MHT identified 100 isolates as carbapenemase producers. In the five isolates negative for the MHT, four were found to produce MBLs by the Neo-Sensitabs. The Neo-Sensitabs did not have any false negatives when compared against the PCR. The MHT can give false negative results, which lead to failure in detecting the carbapenemase producers. Also considering the other pitfalls of the MHT, the Neo-Sensitabs--Carbapenemases/MBL Confirmative Identification pack could be a more efficient alternative for detection of carbapenemase production in Gram-negative bacteria.

  7. Alternate gram staining technique using a fluorescent lectin.

    Science.gov (United States)

    Sizemore, R K; Caldwell, J J; Kendrick, A S

    1990-01-01

    Fluorescence-labeled wheat germ agglutinin binds specifically to N-acetylglucosamine in the outer peptidoglycan layer of gram-positive bacteria. The peptidoglycan layer of gram-negative bacteria is covered by a membrane and is not labeled by the lectin. By exploiting this phenomenon, an alternative Gram staining technique has been developed. Images PMID:1697149

  8. Antibiofilm effect of Nocardiopsis sp. GRG 1 (KT235640) compound against biofilm forming Gram negative bacteria on UTIs.

    Science.gov (United States)

    Rajivgandhi, Govindan; Vijayan, Ramachandran; Maruthupandy, Muthuchamy; Vaseeharan, Baskaralingam; Manoharan, Natesan

    2018-05-01

    Urinary tract infections (UTIs) are diverse public health complication and caused by range of pathogens, however mostly Gram negative bacteria cause significant life threatening risks to different populations. The prevalence rate and antimicrobial resistance among the Gram negative uropathogens alarmed significantly heighten the economic burden of these infections. In this study, we investigated the antibiofilm efficiency of Pyrrolo [1,2-a] pyrazine-1,4-dione,hexahydro-3-(2-methylpropyl) extracted from endophytic actinomycetes Nocardiopsis sp. GRG 1 (KT235640) against P. mirabilis and E. coli. The extracted compound was characterized through TLC, HPLC, GC-MS, LC-MS and confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM). The compound, Pyrrolo [1,2-a] pyrazine-1, 4-dione, hexahydro-3-(2-methylpropyl) inhibits both bacterial biofilm formation as well as reduces the viability of preformed biofilms. Furthermore, CLSM image shows cell shrinkage, disorganized cell membrane and loss of viability. The SEM result also confirms the cell wall degradation in treated cells of the bacteria. Hence, the Pyrrolo [1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) is active against P. mirabilis and E. coli. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Competitive binding of polyethyleneimine-coated gold nanoparticles to enzymes and bacteria: a key mechanism for low-level colorimetric detection of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Thiramanas, Raweewan; Laocharoensuk, Rawiwan

    2016-01-01

    The article describes a simple and rapid method for colorimetric detection of bacteria. It is based on competitive binding of positively charged polyethyleneimine-coated gold nanoparticles (PEI-AuNPs) to negatively charged enzymes and bacteria. The PEI-AuNPs are electrostatically attracted by both the bacterial surface and the enzyme β-galactosidase (β-Gal). Binding to the latter results in the inhibition of enzyme activity. However, in the presence of a large number of bacteria, the PEI-AuNPs preferentially bind to bacteria. Hence, the enzyme will not be inhibited and its activity can be colorimetrically determined via hydrolysis of the chromogenic substrate chlorophenol red β-D-galactopyranoside (CPRG). The detection limit of this assay is as low as 10 cfu·mL −1 , and the linear range extends from 10 6 to 10 8 cfu·mL −1 . The assay is applicable to both Gram-negative (such as enterotoxigenic Escherichia coli; ETEC) and Gram-positive (Staphylococcus aureus; S. aureus) bacteria. Results are obtained within 10 min using an optical reader, and within 2–3 h by bare-eye detection. The method was applied to the identification of ETEC contamination at a level of 10 cfu·mL −1 in spiked drinking water. Given its low detection limit and rapidity (sample preconcentration is not required), this method holds great promise for on-site detection of total bacterial contamination. (author)

  11. Studies on tridecaptin B(1), a lipopeptide with activity against multidrug resistant Gram-negative bacteria.

    Science.gov (United States)

    Cochrane, Stephen A; Lohans, Christopher T; van Belkum, Marco J; Bels, Manon A; Vederas, John C

    2015-06-07

    Previously other groups had reported that Paenibacillus polymyxa NRRL B-30507 produces SRCAM 37, a type IIA bacteriocin with antimicrobial activity against Campylobacter jejuni. Genome sequencing and isolation of antimicrobial compounds from this P. polymyxa strain show that the antimicrobial activity is due to polymyxins and tridecaptin B1. The complete structural assignment, synthesis, and antimicrobial profile of tridecaptin B1 is reported, as well as the putative gene cluster responsible for its biosynthesis. This peptide displays strong activity against multidrug resistant Gram-negative bacteria, a finding that is timely to the current problem of antibiotic resistance.

  12. Characterization of the Extended-Spectrum beta-Lactamase Producers among Non-Fermenting Gram-Negative Bacteria Isolated from Burnt Patients

    Directory of Open Access Journals (Sweden)

    Mojdeh Hakemi Vala

    2013-09-01

    Full Text Available Please cite this article as: Hakemi Vala M, Hallajzadeh M, Fallah F, Hashemi A, Goudarzi H. Characterization of the extended-spectrum beta-lactamase producers among non-fermenting gram-negative bacteria isolated from burnt patients. Arch Hyg Sci 2013;2(1:1-6. Background & Aims of the Study: Extended-spectrum beta-Lactamases (ESBLs represent a major group of beta-lactamases which are responsible for resistance to oxyimino-cephalosporins and aztreonam and currently being identified in large numbers throughout the world. The objective of this study was to characterize ESBL producers among non-fermenter gram-negative bacteria isolated from burnt patients. Materials & Methods: During April to July 2012, 75 non-fermenter gram-negative bacilli were isolated from 240 bacterial cultures collected from wounds of burnt patients admitted to the Burn Unit at Shahid Motahari Hospital (Tehran, Iran. Bacterial isolation and identification was done using standard methods. Antimicrobial susceptibility testing was performed by disk diffusion method for all strains against selected antibiotics and minimum inhibitory concentration was determined by microdilution test. The ability to produce ESBL was detected through double disk synergy test among candidate strains. Results: Of 75 non-fermenter isolates, 47 Pseudomonas aeruginosa and 28 Acinetobacter baumannii were identified. The resistance of P. aeruginosa isolates to tested antibiotics in antibiogram test were 100% to cefpodoxime, 82.98% to ceftriaxone, 78.73% to imipenem, 75% to meropenem, 72.72% to gentamicin, 69.23% to ciprofloxacin and aztreonam, 67.57% to cefepime, 65.95% to ceftazidime, and 61.53% to piperacillin. The results for Acinetobacter baumannii were 100% to ceftazidime, cefepime, ciprofloxacin, imipenem, meropenem, cefpodoxime, and cefotaxim, 96.85% to gentamicin, 89.65% to ceftriaxone, 65.51% to aztreonam, and 40% to piperacillin. Double disk synergy test showed that 21 (28% of non

  13. [i]Legionella spp[/i]., amoebae and not-fermenting Gram negative bacteria in an Italian university hospital water system

    Directory of Open Access Journals (Sweden)

    Pasqualina Laganà

    2014-09-01

    Full Text Available [b]Introduction. [/b]In hospital and other health care facilities, contamination of water systems by potentially infectious microorganisms, such as bacteria, viruses and protozoa, is a source of nosocomial infections, which may originate fromcolonization of water pipes, cooling towers, spa pools, taps, showers and water supplies. [b]Objective. [/b]The study focuses on the occurrence of [i]Legionella spp.[/i], free-living amoebae and non-fermenting Gram-negative microorganisms in a University hospital water system located in the town of Messina (Sicily, Italy, which had never been examined previously. Materials and Methods. From January 2008 – March 2009, hot tap water samples were collected from 10 wards.[i] Legionella spp[/i]. recovered on selective culture medium were identified by microagglutination latex test; free-living amoebae were cultured using [i]Escherichia coli [/i]as a food source. Non-fermenting Gram negative microorganisms were identified by API 20 NE strips. [b]Results.[/b] [i]Legionella spp.[/i] were found in 33.33% of the samples. [i]L. pneumophila[/i] serogroup 1 was recovered from the Laboratory Diagnostic and Anaesthesia-Neurology Wards, with a peak of 3.5 × 10[sup]4[/sup] cfu/L in May 2008. [i]L. pneumophila[/i] serogroups 2–14 were found in the Othorhinolaryngology, Pathologic Anatomy, Paediatrics and Surgery Wards, and peaked (4 × 10[sup]4[/sup] cfu/L in April 2008. Pseudomonadaceae and Hyphomycetes were also detected. Legionella spp. were recovered from samples positive for non-pathogenic amoebae [i]Hartmannella spp[/i]. [b]Conclusion.[/b] This first study of a Messina hospital water system suggested potential health risks related to the detection of [i]Hartmannella spp[/i]., as reservoirs for[i] Legionella spp.[/i], and Pseudomonas aeruginosa, a Gram negative non-fermenting bacterium frequently causing nosocomial pneumonia. The urgent need for monitoring programmes and prevention measures to ensure hospital water

  14. Proteome and membrane fatty acid analyses on Oligotropha carboxidovorans OM5 grown under chemolithoautotrophic and heterotrophic conditions.

    Directory of Open Access Journals (Sweden)

    Debarati Paul

    Full Text Available Oligotropha carboxidovorans OM5 T. (DSM 1227, ATCC 49405 is a chemolithoautotrophic bacterium able to utilize CO and H(2 to derive energy for fixation of CO(2. Thus, it is capable of growth using syngas, which is a mixture of varying amounts of CO and H(2 generated by organic waste gasification. O. carboxidovorans is capable also of heterotrophic growth in standard bacteriologic media. Here we characterize how the O. carboxidovorans proteome adapts to different lifestyles of chemolithoautotrophy and heterotrophy. Fatty acid methyl ester (FAME analysis of O. carboxidovorans grown with acetate or with syngas showed that the bacterium changes membrane fatty acid composition. Quantitative shotgun proteomic analysis of O. carboxidovorans grown in the presence of acetate and syngas showed production of proteins encoded on the megaplasmid for assimilating CO and H(2 as well as proteins encoded on the chromosome that might have contributed to fatty acid and acetate metabolism. We found that adaptation to chemolithoautotrophic growth involved adaptations in cell envelope, oxidative homeostasis, and metabolic pathways such as glyoxylate shunt and amino acid/cofactor biosynthetic enzymes.

  15. Quorum sensing signal molecules (acylated homoserine lactones) in Gram-negative fish pathogenic bacteria

    DEFF Research Database (Denmark)

    Bruhn, Jesper Bartholin; Dalsgaard, Inger; Nielsen, K.F.

    2005-01-01

    The aim of the present study was to investigate the production of quorum sensing signals (specifically acylated homoserine lactones, AHLs) among a selection of strains of Gram-negative fish bacterial pathogens. These signals are involved in the regulation of virulence factors in some human...... salmonicida and Vibrio splendidus were also positive. Aeromonas species produced N-butanoyl homoserine lactone (BHL) and N-hexanoyl homoserine lactone (HHL) and 1 additional product, whereas N-3-oxo-hexanoyl homoserine lactone (OHHL) and HHL were detected in Vibrio salmonicida. N-3-oxo-octanoyl homoserine...... lactone (OOHL) and N-3-octanoyl homoserine lactone (OHL) were detected in Y. ruckeii. AHLs were not detected from strains of Photobacterium damselae, Flavobacterium psychrophilum or Moritella viscosa. AHLs were extracted from fish infected with Y. ruckeri but not from fish infected with A. salmonicida...

  16. Sorption of lead onto two gram-negative marine bacteria in seawater

    Science.gov (United States)

    Harvey, Ronald W.; Leckie, James O.

    1985-01-01

    Laboratory adsorption experiments performed at environmentally significant lead (Pb) and cell concentrations indicate that the marine bacteria examined have significant binding capacities for Pb. However, the behavior governing Pb sorption onto gram-negative bacteria in seawater may be quite complex. The sorption kinetics appear to involve two distinct phases, i.e., a rapid removal of Pb from solution within the first few minutes, followed by a slow but nearly constant removal over many hours. Also, the average binding coefficient, calculated for Pb sorption onto bacteria and a measure of binding intensity, increases with decreasing sorption density (amounts of bacteria-associated Pb per unit bacterial surface) at low cell concentrations (105 cells ml−1), but decreases with decreasing sorption density at higher cell concentrations (107 cells ml−1). The latter effect is apparently due to the production of significant amounts of extra-cellular organics at high cell concentrations that compete directly with bacterial surfaces for available lead. Lead toxicity and active uptake by marine bacteria did not appear significant at the Pb concentrations used.

  17. Extended-spectrum ß-lactamases in gram negative bacteria

    Directory of Open Access Journals (Sweden)

    Deepti Rawat

    2010-01-01

    Full Text Available Extended-spectrum ß-lactamases (ESBLs are a group of plasmid-mediated, diverse, complex and rapidly evolving enzymes that are posing a major therapeutic challenge today in the treatment of hospitalized and community-based patients. Infections due to ESBL producers range from uncomplicated urinary tract infections to life-threatening sepsis. Derived from the older TEM is derived from Temoniera, a patient from whom the strain was first isolated in Greece. ß-lactamases, these enzymes share the ability to hydrolyze third-generation cephalosporins and aztreonam and yet are inhibited by clavulanic acid. In addition, ESBL-producing organisms exhibit co-resistance to many other classes of antibiotics, resulting in limitation of therapeutic option. Because of inoculum effect and substrate specificity, their detection is also a major challenge. At present, however, organizations such as the Clinical and Laboratory Standards Institute (formerly the National Committee for Clinical Laboratory Standards provide guidelines for the detection of ESBLs in Klebsiella pneumoniae, K. oxytoca, Escherichia coli and Proteus mirabilis. In common to all ESBL-detection methods is the general principle that the activity of extended-spectrum cephalosporins against ESBL-producing organisms will be enhanced by the presence of clavulanic acid. Carbapenems are the treatment of choice for serious infections due to ESBL-producing organisms, yet carbapenem-resistant isolates have recently been reported. ESBLs represent an impressive example of the ability of gram-negative bacteria to develop new antibiotic-resistance mechanisms in the face of the introduction of new antimicrobial agents. Thus there is need for efficient infection-control practices for containment of outbreaks; and intervention strategies, e.g., antibiotic rotation to reduce further selection and spread of these increasingly resistant pathogens.

  18. Aphid facultative symbionts reduce survival of the predatory lady beetle Hippodamia convergens

    Science.gov (United States)

    2014-01-01

    Background Non-essential facultative endosymbionts can provide their hosts with protection from parasites, pathogens, and predators. For example, two facultative bacterial symbionts of the pea aphid (Acyrthosiphon pisum), Serratia symbiotica and Hamiltonella defensa, protect their hosts from parasitism by two species of parasitoid wasp. Previous studies have not explored whether facultative symbionts also play a defensive role against predation in this system. We tested whether feeding on aphids harboring different facultative symbionts affected the fitness of an aphid predator, the lady beetle Hippodamia convergens. Results While these aphid faculative symbionts did not deter lady beetle feeding, they did decrease survival of lady beetle larvae. Lady beetle larvae fed a diet of aphids with facultative symbionts had significantly reduced survival from egg hatching to pupation and therefore had reduced survival to adult emergence. Additionally, lady beetle adults fed aphids with facultative symbionts were significantly heavier than those fed facultative symbiont-free aphids, though development time was not significantly different. Conclusions Aphids reproduce clonally and are often found in large groups. Thus, aphid symbionts, by reducing the fitness of the aphid predator H. convergens, may indirectly defend their hosts’ clonal descendants against predation. These findings highlight the often far-reaching effects that symbionts can have in ecological systems. PMID:24555501

  19. A possible alternative to the error prone modified Hodge test to correctly identify the carbapenemase producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    S S Jeremiah

    2014-01-01

    Full Text Available Context: The modified Hodge test (MHT is widely used as a screening test for the detection of carbapenemases in Gram-negative bacteria. This test has several pitfalls in terms of validity and interpretation. Also the test has a very low sensitivity in detecting the New Delhi metallo-β-lactamase (NDM. Considering the degree of dissemination of the NDM and the growing pandemic of carbapenem resistance, a more accurate alternative test is needed at the earliest. Aims: The study intends to compare the performance of the MHT with the commercially available Neo-Sensitabs - Carbapenemases/Metallo-β-Lactamase (MBL Confirmative Identification pack to find out whether the latter could be an efficient alternative to the former. Settings and Design: A total of 105 isolates of Klebsiella pneumoniae resistant to imipenem and meropenem, collected prospectively over a period of 2 years were included in the study. Subjects and Methods: The study isolates were tested with the MHT, the Neo-Sensitabs - Carbapenemases/MBL Confirmative Identification pack and polymerase chain reaction (PCR for detecting the blaNDM-1 gene. Results: Among the 105 isolates, the MHT identified 100 isolates as carbapenemase producers. In the five isolates negative for the MHT, four were found to produce MBLs by the Neo-Sensitabs. The Neo-Sensitabs did not have any false negatives when compared against the PCR. Conclusions: The MHT can give false negative results, which lead to failure in detecting the carbapenemase producers. Also considering the other pitfalls of the MHT, the Neo-Sensitabs - Carbapenemases/MBL Confirmative Identification pack could be a more efficient alternative for detection of carbapenemase production in Gram-negative bacteria.

  20. Facultative methanotrophy: false leads, true results, and suggestions for future research.

    Science.gov (United States)

    Semrau, Jeremy D; DiSpirito, Alan A; Vuilleumier, Stéphane

    2011-10-01

    Methanotrophs are a group of phylogenetically diverse microorganisms characterized by their ability to utilize methane as their sole source of carbon and energy. Early studies suggested that growth on methane could be stimulated with the addition of some small organic acids, but initial efforts to find facultative methanotrophs, i.e., methanotrophs able to utilize compounds with carbon-carbon bonds as sole growth substrates were inconclusive. Recently, however, facultative methanotrophs in the genera Methylocella, Methylocapsa, and Methylocystis have been reported that can grow on acetate, as well as on larger organic acids or ethanol for some species. All identified facultative methanotrophs group within the Alphaproteobacteria and utilize the serine cycle for carbon assimilation from formaldehyde. It is possible that facultative methanotrophs are able to convert acetate into intermediates of the serine cycle (e.g. malate and glyoxylate), because a variety of acetate assimilation pathways convert acetate into these compounds (e.g. the glyoxylate shunt of the tricarboxylic acid cycle, the ethylmalonyl-CoA pathway, the citramalate cycle, and the methylaspartate cycle). In this review, we summarize the history of facultative methanotrophy, describe scenarios for the basis of facultative methanotrophy, and pose several topics for future research in this area. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park.

    Science.gov (United States)

    Mokracka, Joanna; Koczura, Ryszard; Kaznowski, Adam

    2012-06-01

    The aim of this study was to determine the presence of integron-bearing Gram-negative bacteria in the gut of a wild boar (Sus scrofa L.) shot in the buffer zone of a national park. Five Gram-negative strains of Escherichia coli, Serratia odorifera, Hafnia alvei and Pseudomonas sp. were isolated. Four of these strains had class 2 integrase (intI2), and one harbored class 1 integrase (intI1). The integron-positive strains were multiresistant, i.e., resistant to at least three unrelated antibiotics. All of the integrons were transferred to E. coli J-53 (Rif(R)) in a conjugation assay. The results showed that a number of multiresistant, integron-containing bacterial strains of different genera may inhabit a single individual of a wild animal, allowing the possibility of transfer of antimicrobial resistance genes.

  2. Should gram stains have a role in diagnosing hip arthroplasty infections?

    Science.gov (United States)

    Johnson, Aaron J; Zywiel, Michael G; Stroh, D Alex; Marker, David R; Mont, Michael A

    2010-09-01

    The utility of Gram stains in diagnosing periprosthetic infections following total hip arthroplasty has recently been questioned. Several studies report low sensitivity of the test, and its poor ability to either confirm or rule out infection in patients undergoing revision total hip arthroplasty. Despite this, many institutions including that of the senior author continue to perform Gram stains during revision total hip arthroplasty. We assessed the sensitivity, specificity, accuracy, and positive and negative predictive values of Gram stains from surgical-site samplings taken from procedures on patients with both infected and aseptic revision total hip arthroplasties. A review was performed on patients who underwent revision total hip arthroplasty between 2000 and 2007. Eighty-two Gram stains were performed on patients who had infected total hip arthroplasties and underwent revision procedures. Additionally, of the 410 revision total hip arthroplasties performed on patients who were confirmed infection-free, 120 Gram stains were performed. Patients were diagnosed as infected using multiple criteria at the time of surgery. Sensitivity, specificity, positive and negative predictive values, and accuracy were calculated from these Gram stain results. The Gram stain demonstrated a sensitivity and specificity of 9.8% and 100%, respectively. In this series, the Gram stain had a negative predictive value of 62%, a positive predictive value of 100%, and an accuracy of 63%. Gram stains obtained from surgical-site samples had poor sensitivity and poor negative predictive value. Based on these findings, as well as those of other authors, we believe that Gram stains should no longer be considered for diagnosing infections in revision total hip arthroplasty. Level III, diagnostic study. See Guidelines for Authors for a complete description of levels of evidence.

  3. Synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria

    Science.gov (United States)

    Talei, Gholam-Reza; Mohammadi, Mohsen; Bahmani, Mahmoud; Kopaei, Mahmoud Rafieian

    2017-01-01

    Background: Infectious diseases have always been an important health issue in human communities. In the recent years, much research has been conducted on antimicrobial effects of nature-based compounds because of increased prevalence of antibiotic resistance. The present study was conducted to investigate synergistic effect of Carum copticum and Mentha piperita essential oils with ciprofloxacin, vancomycin, and gentamicin on Gram-negative and Gram-positive bacteria. Materials and Methods: In this experimental study, the synergistic effects of C. copticum and M. piperita essential oils with antibiotics on Staphylococcus aureus (ATCC 25923), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739), Pseudomonas aeruginosa (ATCC 9027), Staphylococcus epidermidis (ATCC 14990), and Listeria monocytogenes (ATCC 7644) were studied according to broth microdilution and the MIC and fractional inhibitory concentration (FIC) of these two essential oils determined. Results: C. copticum essential oil at 30 μg/ml could inhibit S. aureus, and in combination with vancomycin, decreased MIC from 0.5 to 0.12 μg/ml. Moreover, the FIC was derived 0.24 μg/ml which represents a potent synergistic effect with vancomycin against S. aureus growth. C. copticum essential oil alone or combined with other antibiotics is effective in treating bacterial infections. Conclusions: In addition, C. copticum essential oil can strengthen the activities of certain antibiotics, which makes it possible to use this essential oil, especially in drug resistance or to lower dosage or toxicity of the drugs. PMID:28929050

  4. Defining Multidrug Resistance of Gram-Negative Bacteria in the Dutch–German Border Region—Impact of National Guidelines

    Directory of Open Access Journals (Sweden)

    Robin Köck

    2018-01-01

    Full Text Available Preventing the spread of multidrug-resistant Gram-negative bacteria (MDRGNB is a public health priority. However, the definition of MDRGNB applied for planning infection prevention measures such as barrier precautions differs depending on national guidelines. This is particularly relevant in the Dutch–German border region, where patients are transferred between healthcare facilities located in the two different countries, because clinicians and infection control personnel must understand antibiograms indicating MDRGNB from both sides of the border and using both national guidelines. This retrospective study aimed to compare antibiograms of Gram-negative bacteria and classify them using the Dutch and German national standards for MDRGNB definition. A total of 31,787 antibiograms from six Dutch and four German hospitals were classified. Overall, 73.7% were no MDRGNB according to both guidelines. According to the Dutch and German guideline, 7772/31,787 (24.5% and 4586/31,787 (12.9% were MDRGNB, respectively (p < 0.0001. Major divergent classifications were observed for extended-spectrum β-lactamase (ESBL -producing Enterobacteriaceae, non-carbapenemase-producing carbapenem-resistant Enterobacteriaceae, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. The observed differences show that medical staff must carefully check previous diagnostic findings when patients are transferred across the Dutch–German border, as it cannot be assumed that MDRGNB requiring special hygiene precautions are marked in the transferred antibiograms in accordance with both national guidelines.

  5. Genetic manipulation of the obligate chemolithoautotrophic bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H.R.; Legler, T.C.; Kane, S.R.

    2011-07-15

    Chemolithoautotrophic bacteria can be of industrial and environmental importance, but they present a challenge for systems biology studies, as their central metabolism deviates from that of model organisms and there is a much less extensive experimental basis for their gene annotation than for typical organoheterotrophs. For microbes with sequenced genomes but unconventional metabolism, the ability to create knockout mutations can be a powerful tool for functional genomics and thereby render an organism more amenable to systems biology approaches. In this chapter, we describe a genetic system for Thiobacillus denitrificans, with which insertion mutations can be introduced by homologous recombination and complemented in trans. Insertion mutations are generated by in vitro transposition, the mutated genes are amplified by the PCR, and the amplicons are introduced into T. denitrificans by electroporation. Use of a complementation vector, pTL2, based on the IncP plasmid pRR10 is also addressed.

  6. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria.

    Science.gov (United States)

    Akova, M; Daikos, G L; Tzouvelekis, L; Carmeli, Y

    2012-05-01

    The wide dissemination of carbapenemase-producing Gram-negatives (CPGNs), including enterobacterial species and non-fermenters, has caused a public health crisis of global dimensions. These organisms cause serious infections in hospitalized patients, and are associated with increased mortality. Cross-transmission is common, and outbreaks may occur in healthcare facilities where the infection control practices are inadequate. CPGNs exhibit extensive drug-resistant phenotypes, complicate therapy, and limit treatment options. Systematic data on therapy are limited. However, regimens combining two or more active agents seem to be more efficacious than monotherapy in carbapenemase-producing Klebsiella pneumoniae infections. Strict infection control measures, including active surveillance for timely detection of colonized patients, separation of carriers from non-carriers, and contact precautions, are of utmost importance, and may be the only effective way of preventing the introduction and transmission of these bacteria in healthcare settings. © 2012 The Authors. Clinical Microbiology and Infection © 2012 European Society of Clinical Microbiology and Infectious Diseases.

  7. Fermentative Degradation of Polyethylene Glycol by a Strictly Anaerobic, Gram-Negative, Nonsporeforming Bacterium, Pelobacter venetianus sp. nov

    OpenAIRE

    1983-01-01

    The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All strains degraded dimers, oligomers, and polymers of PEG up to a molecular weight of 20,000 completely...

  8. Comparison of flomoxef with latamoxef in the treatment of sepsis and/or Gram-negative bacteremia in adult patients.

    Science.gov (United States)

    Chen, Y C; Hung, C C; Lin, S F; Chang, S C; Hsieh, W C

    1996-05-01

    The safety and efficacy of flomoxef and latamoxef were compared in the treatment of hospitalized patients with sepsis and/or Gram-negative bacteremia in a prospective, open-labelled clinical trial. Patients were randomized to receive 1 to 2 g intravenous doses of either flomoxef every 6 to 12 h, or latamoxef every 8 to 12 h. Data from 21 patients given flomoxef and 23 patients given latamoxef were included in the evaluation of efficacy. Flomoxef produced clinical cure and satisfactory microbiological responses in 85.7% and 100% of patients, respectively. These results were similar to those obtained with latamoxef (87% and 100%, respectively). In addition, no significant difference was found in mean age, sex, severity of infection, distribution of pathogens and focus of infection between the two groups. However, the flomoxef group included more patients with ultimately fatal diseases. Six patients given flomoxef and two patients given latamoxef developed superinfections caused by yeast, enterococci and Pseudomonas aeruginosa in the urinary tract. Mild and reversible adverse reactions probably related to flomoxef and latamoxef were noted in 14.3% and 13% of patients, respectively. The results of this study demonstrated that flomoxef is a safe and effective antimicrobial agent in the treatment of patients with sepsis and/or Gram-negative bacteremia.

  9. Novel pharmacotherapy for the treatment of hospital-acquired and ventilator-associated pneumonia caused by resistant gram-negative bacteria.

    Science.gov (United States)

    Kidd, James M; Kuti, Joseph L; Nicolau, David P

    2018-03-01

    Hospital-acquired and ventilator-associated bacterial pneumonia (HABP/VABP) are among the most prevalent infections in hospitalized patients, particularly those in the intensive care unit. Importantly, the frequency of multidrug resistant (MDR) Gram-negative (GN) bacteria as the bacteriologic cause of HABP/VABP is increasing. These include MDR Pseudomonas aeruginosa, Acinetobacter baumannii, and carbapenem resistant Enterobacteriaceae (CRE). Few antibiotics are currently available when such MDR Gram-negatives are encountered and older agents such as polymyxin B, colistin (polymyxin E), and tigecycline have typically performed poorly in HABP/VABP. Areas covered: In this review, the authors summarize novel antibiotics which have reached phase 3 clinical trials including patients with HABP/VABP. For each agent, the spectrum of activity, pertinent pharmacological characteristics, clinical trial data, and potential utility in the treatment of MDR-GN HABP/VABP is discussed. Expert opinion: Novel antibiotics currently available, and those soon to be, will expand opportunities to treat HABP/VABP caused by MDR-GN organisms and minimize the use of more toxic, less effective drugs. However, with sparse clinical data available, defining the appropriate role for each of the new agents is challenging. In order to maximize the utility of these antibiotics, combination therapy and the role of therapeutic drug monitoring should be investigated.

  10. Oral associated bacterial infection in horses: studies on the normal anaerobic flora from the pharyngeal tonsillar surface and its association with lower respiratory tract and paraoral infections.

    Science.gov (United States)

    Bailey, G D; Love, D N

    1991-02-15

    Two hundred and seventy bacterial isolates were obtained from the pharyngeal tonsillar surface of 12 normal horses and 98 obligatory anaerobic bacteria were characterised. Of these, 57 isolates belonging to 7 genera (Peptostreptococcus (1); Eubacterium (9); Clostridium (6); Veillonella (6); Megasphera (1); Bacteroides (28); Fusobacterium (6)) were identified, and 16 of these were identified to species level (P. anaerobius (1); E. fossor (9); C. villosum (1); B. fragilis (1); B. tectum (2); B. heparinolyticus (2)). Three hundred and twenty isolates were obtained from 23 samples from horses with lower respiratory tract (LRT) or paraoral (PO) bacterial infections. Of the 143 bacteria selected for detailed characterisation, obligate anaerobes accounted for 100 isolates, facultative anaerobes for 42 isolates and obligate aerobes for one isolate. Phenotypic characterisation separated 99 of the isolates into 14 genera. Among the obligately anaerobic species, Gram-positive cocci including P. anaerobius comprised 25% of isolates, E. fossor 11% and other Gram-positive rods (excluding Clostridium sp.) 18% of isolates. The Gram-negative rods comprised B. fragilis 5%, B. heparinolyticus 5%, asaccharolytic pigmented Bacteroides 3% and other Bacteroides 13%, while a so-far unnamed species of Fusobacterium (7%), and Gram-negative corroding rods (3%) were isolated. Among the facultatively anaerobic isolates, S. equi subsp. zooepidemicus accounted for 31% of isolates, followed by Pasteurella spp. 19%, Escherichia coli 17%, Actinomyces spp. 9%, Streptococcus spp. 9%. Incidental facultative isolates were Enterococcus spp. 2%, Enterobacter cloaceae 2%, Actinobacillus spp. 2% and Gram-negative corroding rods 5%. On the basis of the similarities (as determined by DNA hybridization data and/or phenotypic characteristics) of some of the bacterial species (e.g. E. fossor and B. heparinolyticus) isolated from both the normal pharyngeal tonsillar surfaces and LRT and PO diseases of horses, it

  11. Evaluation of pyrrolidonyl arylamidase for the identification of nonfermenting Gram-negative rods.

    Science.gov (United States)

    Bombicino, Karina A; Almuzara, Marisa N; Famiglietti, Angela M R; Vay, Carlos

    2007-01-01

    To evaluate the activity of pyrrolidonyl arylamidase (PYR) for the differentiation and identification of nonfermenting gram negative rods (NFGNR), 293 isolates were tested. A 24 h culture of each test organism was prepared. From this a 108-109 cfu/mL suspension was added to 0.25 mL of sterile physiologic solution. A PYR disk was then added and the test was incubated for 30 minutes at 35-37 degrees C, at environmental atmosphere. Reading was done by adding 1 drop of cinnamaldehyde reagent. Strains of Acinetobacter baumannii, Acinetobacter haemolyticus, Alcaligenes faecalis, Bergeyella zoohelcum, Bordetella bronchiseptica, Bordetella hinzii, Brevundimonas diminuta, Brevundimonas vesicularis, Brucella ovis, Brucella spp., Brucella suis, Burkholderia cepacia complex, Moraxella catarrhalis, Moraxella lacunata, Moraxella nonliquefaciens, Moraxella osloensis, Oligella ureolytica, Pseudomonas alcaligenes, Pseudomonas mendocina, Pseudomonas pseudoalcaligenes, Pseudomonas putida, Pseudomonas stutzeri, Pseudomonas Vb3, Psychrobacter phenylpyruvicus, and Stenotrophomonas maltophilia were PYR negative. On the other hand Achromobacter piechaudii, Achromobacter denitrificans, Achromobacter xylosoxidans, Burkholderia gladioli, Chryseobacterium gleum-indologenes, Comamonas testosroni, Cupriavidus pauculus, Delftia acidovorans, Elizabethkingia meningoseptica, Myroides spp., Ochrobactrum anthropi, Pseudomonas oryzihabitans, Ralstonia pickettii, Rhizobium radiobacter, Shewanella spp., Sphingobacterium multivorum, Sphingobacterium spiritivorum, and Weeksella virosa were PYR positive. Finally, Acinetobacter lwoffii, Pseudomonas aeruginosa, Pseudomonas fluorescens, Roseomonas spp., and Sphingomonas paucimobilis-parapaucimobilis were PYR variable. PYR testing should be considered as a useful tool to facilitate the identification of NFGNR.

  12. Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture.

    Science.gov (United States)

    Turner, Robert D; Hurd, Alexander F; Cadby, Ashley; Hobbs, Jamie K; Foster, Simon J

    2013-01-01

    Cellular integrity and morphology of most bacteria is maintained by cell wall peptidoglycan, the target of antibiotics essential in modern healthcare. It consists of glycan strands, cross-linked by peptides, whose arrangement determines cell shape, prevents lysis due to turgor pressure and yet remains dynamic to allow insertion of new material, and hence growth. The cellular architecture and insertion pattern of peptidoglycan have remained elusive. Here we determine the peptidoglycan architecture and dynamics during growth in rod-shaped Gram-negative bacteria. Peptidoglycan is made up of circumferentially oriented bands of material interspersed with a more porous network. Super-resolution fluorescence microscopy reveals an unexpected discontinuous, patchy synthesis pattern. We present a consolidated model of growth via architecture-regulated insertion, where we propose only the more porous regions of the peptidoglycan network that are permissive for synthesis.

  13. Evaluation of Efficacy of the Current Disinfectants on Gram-negative Bacteria Isolated from Hospital in Yazd in 2014

    OpenAIRE

    Tahereh Jasemizad; Mehdi Mokhtari; Hengameh Zandi; Taher Shahriari; Fatemeh Sahlabadi; Akram Montazeri; Arefeh Dehghani Tafti

    2016-01-01

    as Pseudomonas, Acinetobacter, and Staphylococcus that appropriate disinfection can reduce these pathogens. The aim of this study was to evaluate the effect of different disinfectants on Gram-negative bacteria isolated from the surface of accidents and burn hospital in Yazd. Materials and Methods: In this study, 240 samples were randomly collected from different parts of accidents and burn hospital before and after disinfection. The samples were cultured on blood agar and Eusio...

  14. Facultative and obligate methanotrophs how to identify and differentiate them.

    Science.gov (United States)

    Dedysh, Svetlana N; Dunfield, Peter F

    2011-01-01

    Aerobic methanotrophs are metabolically unique bacteria that are able to utilize methane and some other C1-compounds as sole sources of carbon and energy. A defining characteristic of these organisms is the use of methane monooxygenase (MMO) enzymes to catalyze the oxidation of methane to methanol. For a long time, all methanotrophs were considered to be obligately methylotrophic, that is, unable to grow on compounds containing C-C bonds. This notion has recently been revised. Some members of the genera Methylocella, Methylocystis, and Methylocapsa are now known to be facultative methanotrophs, that is, capable of growing on methane as well as on some multicarbon substrates. The diagnosis of facultative methanotrophy in new isolates requires a great degree of caution since methanotrophic cultures are frequently contaminated by heterotrophic bacteria that survive on metabolic by-products of methanotrophs. The presence of only a few satellite cells in a culture may lead to false conclusions regarding substrate utilization, and several early reports of facultative methanotrophy are likely attributable to impure cultures. Another recurring mistake is the misidentification of nonmethanotrophic facultative methylotrophs as facultative methanotrophs. This chapter was prepared as an aid to avoid both kinds of confusion when examining methanotrophic isolates. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Epidemiology of meningitis with a negative CSF Gram stain: under-utilization of available diagnostic tests.

    Science.gov (United States)

    Nesher, L; Hadi, C M; Salazar, L; Wootton, S H; Garey, K W; Lasco, T; Luce, A M; Hasbun, R

    2016-01-01

    Meningitis with a negative cerebrospinal fluid Gram stain (CSF-GS) poses a diagnostic challenge as more than 50% of patients remain without an aetiology. The introduction of polymerase chain reaction (PCR) and arboviral serologies have increased diagnostic capabilities, yet large scale epidemiological studies evaluating their use in clinical practice are lacking. We conducted a prospective observational study in New Orleans between November 1999 and September 2008 (early era) when PCR was not widely available, and in Houston between November 2008 and June 2013 (modern era), when PCR was commonly used. Patients presenting with meningitis and negative CSF-GS were followed for 4 weeks. All investigations, PCR used, and results were recorded as they became available. In 323 patients enrolled, PCR provided the highest diagnostic yield (24·2%) but was ordered for 128 (39·6%) patients; followed by serology for arboviruses (15%) that was ordered for 100 (31%) of all patients. The yield of blood cultures was (10·3%) and that of CSF cultures was 4%; the yield for all other tests was meningitis and a negative CSF-GS, but both tests are being under-utilized.

  16. [Usefulness of sputum Gram staining in community-acquired pneumonia].

    Science.gov (United States)

    Sato, Tadashi; Aoshima, Masahiro; Ohmagari, Norio; Tada, Hiroshi; Chohnabayashi, Naohiko

    2002-07-01

    To evaluate the usefulness of sputum gram staining in community-acquired pneumonia (CAP), we reviewed 144 cases requiring hospitalization in the last 4 years. The sensitivity was 75.5%, specificity 68.2%, positive predictive value 74.1%, negative predictive value 69.8%, positive likelihood ratio 2.37, negative likelihood ratio 0.36 and accuracy 72.2% in 97 cases. Both sputum gram staining and culture were performed. Concerning bacterial pneumonia (65 cases), we compared the Gram staining group (n = 33), which received initial antibiotic treatment, based on sputum gram staining with the Empiric group (n = 32) that received antibiotics empirically. The success rates of the initial antibiotic treatment were 87.9% vs. 78.1% (P = 0.473); mean hospitalization periods were 9.67 vs. 11.75 days (P = 0.053); and periods of intravenous therapy were 6.73 vs. 7.91 days (P = 0.044), respectively. As for initial treatment, penicillins were used in the Gram staining group more frequently (P gram staining is useful for the shortening of the treatment period and the appropriate selection of initial antibiotics in bacterial pneumonia. We believe, therefore, that sputum gram staining is indispensable as a diagnostic tool CAP.

  17. Association between preterm labor and genitourinary tract infections caused by Trichomonas vaginalis, Mycoplasma hominis, Gram-negative bacilli, and coryneforms

    Directory of Open Access Journals (Sweden)

    Alaa El-Dien M.S. Hosny

    2017-09-01

    Conclusion: Our study demonstrated that the main risk factors for PTL were vaginal infection with T. vaginalis, M. hominis, coryneforms, and Gram-negative bacilli, and their determinants (vaginal pH>5, positive whiff test, heavy vaginal bleeding. Both young age (< 20 years and poor obstetric history were also the risk factors. Therefore, screening for genitourinary tract infections is strongly recommended to be included in prenatal care.

  18. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis.

    Science.gov (United States)

    O'Horo, John C; Thompson, Deb; Safdar, Nasia

    2012-08-01

    In a meta-analysis examining respiratory specimen Gram stain for diagnosis of ventilator-associated pneumonia, absence of bacteria on Gram stain had a high negative predictive value, but a positive Gram stain correlated poorly with organisms recovered in culture. Rapid and accurate diagnosis of ventilator-associated pneumonia (VAP) is a major challenge and no generally accepted gold standard exists for VAP diagnosis. We conducted a meta-analysis to examine the role of respiratory specimen Gram stain to diagnose VAP, and the correlation with final culture results. In 21 studies, pooled sensitivity of Gram stain for VAP was 0.79 (95% confidence interval [CI], .77-0.81; P Gram stain for a VAP prevalence of 20%-30% was 91%, suggesting that VAP is unlikely with a negative Gram stain but the positive predictive value of Gram stain was only 40%. Pooled kappa was 0.42 for gram-positive organisms and 0.34 for gram-negative organisms, suggesting fair concordance between organisms on Gram stain and recovery by culture. Therefore, a positive Gram stain should not be used to narrow anti-infective therapy until culture results become available.

  19. Description of Endozoicomonas ascidiicola sp. nov., isolated from Scandinavian ascidians

    DEFF Research Database (Denmark)

    Schreiber, Lars; Kjeldsen, Kasper Urup; Obst, Matthias

    2016-01-01

    Two gram-negative, facultative anaerobic, chemoorganoheterotrophic, motile and rod-shaped bacteria, strains AVMART05T and KASP37, were isolated from ascidians (Tunicata, Ascidiaceae) of the genus Ascidiella collected at Gullmarsfjord, Sweden. The strains are the first cultured representatives...

  20. Wenzhouxiangella sediminis sp. nov. isolated from coastal sediment

    Science.gov (United States)

    A novel Gram-stain-negative, non-spore-forming, no flagellum, facultatively anaerobic, oxidase-negative, catalase- positive, rod-shaped strain, designated XDB06**T, was isolated from coastal sediment of Xiaoshi Island, Weihai, China. Optimal growth occurred at 37 °C, pH 7.5 and with 4.0% (w/v) NaCl....

  1. Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent.

    Science.gov (United States)

    Fortunato, Caroline S; Huber, Julie A

    2016-08-01

    The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched (13)C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.

  2. In vitro activity of potential old and new drugs against multidrug-resistant gram-negatives.

    Science.gov (United States)

    Rizek, Camila; Ferraz, Juliana Rosa; van der Heijden, Inneke Marie; Giudice, Mauro; Mostachio, Anna Karina; Paez, Jorge; Carrilho, Claudia; Levin, Anna Sara; Costa, Silvia F

    2015-02-01

    The aim of this study was to evaluate the in vitro susceptibility of MDR gram-negatives bacteria to old drugs such as polymyxin B, minocycline and fosfomycin and new drugs such as tigecycline. One hundred and fifty-three isolates from 4 Brazilian hospitals were evaluated. Forty-seven Acinetobacter baumannii resistant to carbapenens harboring adeB, blaOxA23, blaOxA51, blaOxA143 and blaIMP genes, 48 Stenotrophomonas maltophilia including isolates resistant to levofloxacin and/or trimethoprim-sulfamethoxazole harboring sul-1, sul-2 and qnrMR and 8 Serratia marcescens and 50 Klebsiella pneumoniae resistant to carbapenens harboring blaKPC-2 were tested to determine their minimum inhibitory concentrations (MICs) by microdilution to the following drugs: minocycline, ampicillin-sulbactam, tigecycline, and polymyxin B and by agar dilution to fosfomycin according with breakpoint criteria of CLSI and EUCAST (fosfomycin). In addition, EUCAST fosfomycin breakpoint for Pseudomonas spp. was applied for Acinetobacter spp and S. maltophilia, the FDA criteria for tigecycline was used for Acinetobacter spp and S. maltophilia and the Pseudomonas spp polymyxin B CLSI criterion was used for S. maltophilia. Tigecycline showed the best in vitro activity against the MDR gram-negative evaluated, followed by polymyxin B and fosfomycin. Polymyxin B resistance among K. pneumoniae was detected in 6 isolates, using the breakpoint of MIC > 8 ug/mL. Two of these isolates were resistant to tigecycline. Minocycline was tested only against S. maltophilia and A. baumannii and showed excellent activity against both. Fosfomycin seems to not be an option to treat infections due to the A. baumannii and S. maltophilia isolates according with EUCAST breakpoint, on the other hand, showed excellent activity against S. marcescens and K. pneumoniae. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  3. Lactic Acid Bacteria Inducing a Weak Interleukin-12 and Tumor Necrosis Alpha Response in Human Dendritic Cells Inhibit Strongly Stimulating Lactic Acid Bacteria but Act Synergistically with Gram-Negative Bacteria

    DEFF Research Database (Denmark)

    Zeuthen, Louise Hjerrild; Christensen, Hanne Risager; Frøkiær, Hanne

    2006-01-01

    The development and maintenance of immune homeostasis indispensably depend on signals from the gut flora. Lactic acid bacteria (LAB), which are gram-positive (G+) organisms, are plausible significant players and have received much attention. Gram-negative (G-) commensals, such as members...

  4. 46 CFR 308.545 - Facultative cargo policy, Form MA-316.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Facultative cargo policy, Form MA-316. 308.545 Section 308.545 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK... policy, Form MA-316. The standard form of War Risk Facultative Cargo Policy, Form MA-316, may be obtained...

  5. Efficacy of a commercial probiotic relative to oxytetracycline as Gram-negative bacterial control agents in a rotifer (Brachionus plicatilis) batch culture

    Science.gov (United States)

    Two trials were conducted to evaluate two gram-negative bacterial control strategies in batch cultures of the rotifer Brachionus plicatilis. In the first trial, rotifers at an initial density of 47/mL were cultured for 5 d and dosed with a 10-mg/L solution of either oxytetracycline or a commercial p...

  6. Molecular epidemiology of carbapenem resistant gram-negative bacilli from infected pediatric population in tertiary - care hospitals in Medellín, Colombia: an increasing problem.

    Science.gov (United States)

    Vanegas, Johanna M; Parra, O Lorena; Jiménez, J Natalia

    2016-09-01

    Gram-negative bacilli are a cause of serious infections in the pediatric population. Carbapenem are the treatment of choice for infections caused by multidrug-resistant Gram-negative bacilli, but the emergence of carbapenem resistance has substantially reduced access to effective antimicrobial regimens. Children are a population vulnerable to bacterial infections and the emergence of resistance can worsen prognosis. The aim of this study is to describe the clinical and molecular characteristics of infections caused by carbapenem-resistant Gram-negative bacilli in pediatric patients from five tertiary-care hospitals in Medellín, Colombia. A cross-sectional study was conducted in five tertiary-care hospitals from June 2012 to June 2014. All pediatric patients infected by carbapenem-resistant Gram-negative bacilli were included. Clinical information for each patient was obtained from medical records. Molecular analyses included PCR for detection of bla VIM, bla IMP bla NDM, bla OXA-48 and bla KPC genes and PFGE and MLST for molecular typing. A total of 59 patients were enrolled, most of them less than 1 year old (40.7 % n = 24), with a previous history of antibiotic use (94.9 %; n = 56) and healthcare-associated infections - predominately urinary tract infections (31.0 %; n = 18). Klebsiella pneumoniae was the most frequent bacteria (47.4 %), followed by Enterobacter cloacae (40.7 %) and Pseudomonas aeruginosa (11.9 %). For K. pneumoniae, KPC was the predominant resistance mechanism (85.7 %; n = 24) and ST14 was the most common clone (39.3 % n = 11), which included strains closely related by PFGE. In contrast, E. cloacae and P. aeruginosa were prevailing non-carbapenemase-producing isolates (only KPC and VIM were detected in 1 and 3 isolates, respectively) and high genetic diversity according to PFGE and MLST was found in the majority of the cases. In recent years, increasing carbapenem-resistant bacilli in children has become in a matter

  7. The new species Enterobacter oryziphilus sp nov and Enterobacter oryzendophyticus sp nov are key inhabitants of the endosphere of rice

    NARCIS (Netherlands)

    Hardoim, Pablo Rodrigo; Nazir, Rashid; Sessitsch, Angela; Elhottova, Dana; Korenblum, Elisa; van Overbeek, Leonard Simon; van Elsas, Jan Dirk

    2013-01-01

    Background: Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study. Results: The strains

  8. The new species Enterobacter oryzaphilus sp. nov. and Enterobacter oryzaendophyticus sp. nov. are key inhabitants of the endosphere of rice.

    NARCIS (Netherlands)

    Hardoim, P.R.; Nazir, R.; Sessitsch, A.; Elhottova, D.; Korenblum, E.; Overbeek, van L.S.; Elsas, J.D.

    2013-01-01

    BACKGROUND: Six independent Gram-negative, facultatively anaerobic, non-spore-forming, nitrogen-fixing rod-shaped isolates were obtained from the root endosphere of rice grown at the International Rice Research Institute (IRRI) and investigated in a polyphasic taxonomic study.
    RESULTS: The

  9. Escherichia coli and other Enterobacteriaceae: Food poisoning and health effects

    Science.gov (United States)

    The family Enterobactericeae consists of rod-shaped, Gram-negative, facultatively anaerobic, non-spore forming bacteria and also includes the food-borne pathogens, Cronobacter spp., Escherichia coli, Salmonella enterica, Shigella spp., and Yersinia spp. Illness caused by these pathogens is acquired...

  10. Activity of levofloxacin alone and in combination with a DnaK inhibitor against gram-negative rods, including levofloxacin-resistant strains.

    Science.gov (United States)

    Credito, Kim; Lin, Gengrong; Koeth, Laura; Sturgess, Michael A; Appelbaum, Peter C

    2009-02-01

    Synergy time-kill testing of levofloxacin alone and in combination with CHP-105, a representative DnaK inhibitor, against 50 gram-negative rods demonstrated that 34 of the 50 strains tested showed significant synergy between levofloxacin and CHP-105 after 12 h and 24 h. Fourteen of these 34 organisms were quinolone resistant (levofloxacin MICs of > or =4 microg/ml).

  11. Activity of Levofloxacin Alone and in Combination with a DnaK Inhibitor against Gram-Negative Rods, Including Levofloxacin-Resistant Strains▿

    Science.gov (United States)

    Credito, Kim; Lin, Gengrong; Koeth, Laura; Sturgess, Michael A.; Appelbaum, Peter C.

    2009-01-01

    Synergy time-kill testing of levofloxacin alone and in combination with CHP-105, a representative DnaK inhibitor, against 50 gram-negative rods demonstrated that 34 of the 50 strains tested showed significant synergy between levofloxacin and CHP-105 after 12 h and 24 h. Fourteen of these 34 organisms were quinolone resistant (levofloxacin MICs of ≥4 μg/ml). PMID:19015359

  12. Altered glucose kinetics in diabetic rats during Gram-negative infection

    International Nuclear Information System (INIS)

    Lang, C.H.; Dobrescu, C.; Bagby, G.J.; Spitzer, J.J.

    1987-01-01

    The present study examined the purported exacerbating effect of sepsis on glucose metabolism in diabetes. Diabetes was induced in rats by an intravenous injection of 70 or 45 mg/kg streptozotocin. The higher dose produced severe diabetes, whereas the lower dose of streptozotocin produced a miler, latent diabetes. After a chronic diabetic state had developed for 4 wk, rats had catheters implanted and sepsis induced by intraperitoneal injections of live Escherichia coli. After 24 h of sepsis the blood glucose concentration was unchanged in nondiabetics and latent diabetics, but glucose decreased from 15 to 8 mM in the septic severe diabetic group. This decrease in blood glucose was not accompanied by alterations in the plasma insulin concentration. Glucose turnover, assessed by the constant intravenous infusion of [6- 3 H]- and [U- 14 C]glucose, was elevated in the severe diabetic group, compared with either latent diabetics or nondiabetics. Sepsis increased the rate of glucose disappearance in nondiabetic rats but had no effect in either group of diabetic animals. Sepsis also failed to alter the insulinogenic index, used to estimate the insulin secretory capacity, in diabetic rats. Thus the present study suggests that the imposition of nonlethal Gram-negative sepsis on severe diabetic animals does not further impair glucose homeostasis and that the milder latent diabetes was not converted to a more severe diabetic state by the septic challenge

  13. A prospective study of the diagnostic utility of sputum Gram stain in pneumonia.

    Science.gov (United States)

    Anevlavis, Stavros; Petroglou, Niki; Tzavaras, Athanasios; Maltezos, Efstratios; Pneumatikos, Ioannis; Froudarakis, Marios; Anevlavis, Eleftherios; Bouros, Demosthenes

    2009-08-01

    Sputum Gram stain and culture have been said to be unreliable indicators of the microbiological diagnosis of bacterial pneumonia. The etiological diagnosis of pneumonia is surrounded by great degree of uncertainty. This uncertainty should be and can be calculated and incorporated in the diagnosis and treatment. To determine the diagnostic accuracy and diagnostic value of sputum Gram stain in etiological diagnosis and initial selection of antimicrobial therapy of bacterial community acquired pneumonia (CAP). DESIGN-METHOD: Prospective study of 1390 patients with CAP admitted January 2002-June 2008, to our institutions. Of the 1390 patients, 178 (12.8%) fulfilled the criteria for inclusion into this study (good-quality sputa and presence of the same microorganism in blood and sputum cultures which was used as gold standard for assessing the diagnostic accuracy and diagnostic value of sputum Gram stain). The sensitivity of sputum Gram stain was 0.82 for Pneumococcal pneumonia, 0.76 for Staphylococcal pneumonia, 0.79 for Haemophilus influenzae pneumonia and 0.78 for Gram-negative bacilli pneumonia. The specificity of sputum Gram stain was 0.93 for Pneumococcal pneumonia, 0.96 for Staphylococcal pneumonia, 0.96 for H. influenzae pneumonia and 0.95 for Gram-negative bacilli pneumonia. The positive likelihood ratio (LR+) was 11.58 for Pneumococcal pneumonia, 19.38 for Staphylococcal pneumonia, 16.84 for H. influenzae pneumonia, 14.26 for Gram-negative bacilli pneumonia. The negative likelihood ratio (LR-) was 0.20 for Pneumococcal pneumonia, 0.25 for Staphylococcal pneumonia, 0.22 for H. influenzae pneumonia, and 0.23 for Gram-negative bacilli pneumonia. Sputum Gram stain is a dependable diagnostic test for the early etiological diagnosis of bacterial CAP that helps in choosing orthological and appropriate initial antimicrobial therapy.

  14. Bacteremia and resistant gram-negative pathogens among under-fives in Tanzania.

    Science.gov (United States)

    Christopher, Alexandra; Mshana, Stephen E; Kidenya, Benson R; Hokororo, Aldofineh; Morona, Domenica

    2013-05-08

    Antibiotic resistance is one of the most serious public health concerns worldwide and is increasing at an alarming rate, making daily treatment decisions more challenging. This study is aimed at identifying local bacterial isolates and their antimicrobial susceptibility patterns to avoid irrational antibiotic use, especially in settings where unguided management occurs and febrile illnesses are predominant. A hospital-based prospective cross-sectional study was conducted from September 2011 to February 2012. Febrile children were serially recruited and demographic and clinical data were collected using a standardized data collection tool. A blood culture was performed and identification of the isolates was undertaken using in-house biochemical tests. Susceptibility to common antibiotics was investigated using the disc diffusion methods. Of the 1081 children admitted during the study period, 317 (29.3%) met the inclusion criteria and were recruited, of whom 195 (61.5%) and 122 (38.5%) were male and female respectively. The median age was 18 months with an interquartile range of 9 to 36 months. Of the 317 children, 251 (79.2%) were below or equal to 36 months of age. The prevalence of bacteremia was 6.6%. A higher prevalence of bacteraemia was observed in children below 36 months than in those ≥ 36 months (7.5% vs. 3.0%, p = 0.001). Predictors of bacteraemia were an axillary temperature of >38.5 °C (OR =7, 95% CI = 2.2 - 14.8, p-value = 0.0001), a positive malaria slide (OR =5, 95% CI = 3.0 - 21.2, p-value = 0.0001) and a high neutrophils' count (OR =21 95% CI = 5.6 - 84, p-value = 0.0001). Escherichia coli and Klebsiella pneumoniae accounted for 7 (33.3%) and 6 (28.6%) of all the isolates respectively. Others gram-negatives bacteria were Citrobacter spp 2 (9.5%), Enterobacter spp 1 (4.25%), Pseudomonas spp 2 (9.5%), Proteus spp 1 (4.25%) and Salmonella spp 1 (4.25%). These isolates were highly resistant to ampicillin (95%), co

  15. Methylophaga natronica sp. nov., a new alkaliphilic and moderately halophilic, restricted-facultatively methylotrophic bacterium from soda lake of the Southern Transbaikal region.

    Science.gov (United States)

    Doronina, Nina; Darmaeva, Tsyregma; Trotsenko, Yuri

    2003-09-01

    A new, moderately haloalkaliphilic and restricted-facultatively methylotrophic bacterium (strain Bur2T) with the ribulose monophosphate pathway of carbon assimilation is described. The isolate, which utilizes methanol, methylamine and fructose, is an aerobic, Gram-negative, asporogenous, motile short rod multiplying by binary fission. It is auxotrophic for vitamin B12, and requires NaHCO3 or NaCl for growth in alkaline medium. Cellular fatty acids profile consists primarily of straight-chain saturated C16:0, unsaturated C16:1 and C18:1 acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. Diphosphatidylglycerol is also present. Optimal growth conditions are 25-29 degrees C, pH 8.5-9.0 and 2-3% (w/v) NaCl. Cells accumulate ectoine and glutamate as the main osmoprotectants. The G + C content of the DNA is 45.0 mol%. Based on 16S rDNA sequence analysis and DNA-DNA relatedness (25-35%) with type strains of marine and soda lake methylobacteria belonging to the genus Methylophaga, the novel isolate was classified as a new species of this genus and named Methylophaga natronica (VKM B-2288T).

  16. Comparison of E-test with other conventional susceptibility testing methods for ciprofloxacin and gentamicin against gram negative enteric bacilli.

    Science.gov (United States)

    Ogbolu, D O; Terry-Alli, O A; Daini, O A; Olabiyi, F A; Igharo, E A

    2012-06-01

    Increasing antibiotic resistance in Gram negative bacteria has led to the need for a faster and reliable method for determining antimicrobial susceptibility testing. In a resource poor setting like ours, it's also important to look for methods that will be clinically and economically beneficial to the patient. This study was aimed at evaluating the Epsilometer test (E-test) and conventional methods for determining antimicrobial susceptibility of isolates of Gram-negative enteric bacteria to ciprofloxacin and gentamicin. Disc diffusion, E-test, broth dilution and agar dilution methods were performed on 54 bacterial isolates. Using the E-test, 88.9% of bacterial isolates were resistant to ciprofloxacin, 92.6% were resistant using broth microdilution, 96.3% were resistant using agar dilution and 72.2% were resistant using disc diffusion. Minimum inhibitory concentration (MIC50) of isolates for gentamicin showed significant difference for all the techniques (p 0.05). Both E-test and broth dilution methods showed high levels of agreement (p > 0.05), there were low levels of agreement between E-test and agar dilution method (p < 0.05), especially at MIC50. The E-test can therefore be considered a reliable method to determine antimicrobial susceptibility testing and it gives results which are at least as accurate as those obtained by the broth dilution method.

  17. Development of Quorum-Based Anti-Virulence Therapeutics Targeting Gram-Negative Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Wen Shan Yew

    2013-08-01

    Full Text Available Quorum sensing is a cell density-dependent signaling phenomenon used by bacteria for coordination of population-wide phenotypes, such as expression of virulence genes, antibiotic resistance and biofilm formation. Lately, disruption of bacterial communication has emerged as an anti-virulence strategy with enormous therapeutic potential given the increasing incidences of drug resistance in pathogenic bacteria. The quorum quenching therapeutic approach promises a lower risk of resistance development, since interference with virulence generally does not affect the growth and fitness of the bacteria and, hence, does not exert an associated selection pressure for drug-resistant strains. With better understanding of bacterial communication networks and mechanisms, many quorum quenching methods have been developed against various clinically significant bacterial pathogens. In particular, Gram-negative bacteria are an important group of pathogens, because, collectively, they are responsible for the majority of hospital-acquired infections. Here, we discuss the current understanding of existing quorum sensing mechanisms and present important inhibitory strategies that have been developed against this group of pathogenic bacteria.

  18. Clinical study of carbapenem sensitive and resistant Gram-negative bacteremia in neutropenic and nonneutropenic patients: The first series from India.

    Science.gov (United States)

    Ghafur, A K; Vidyalakshmi, P R; Kannaian, P; Balasubramaniam, R

    2014-01-01

    Carbapenem resistance is a growing global concern. There is a lack of published clinical studies on the topic from Indian subcontinent. Aim of this study was to analyze clinical profile of patients with carbapenem sensitive and resistant bacteremia among neutropenic and nonneutropenic patients. Retrospective analysis of 141 patients who had carbapenem resistant or sensitive Gram-negative bacteremia, identified over a period of 1-year was done by medical records review, in Apollo Specialty Hospital, a 300-bedded tertiary care Oncology, neurosurgical and orthopedic center in South India. Of the total 141 patients with Gram-negative bacteremia, 44 had carbapenem resistant ones. Of these 44 patients, 17 were neutropenics (resistant neutropenic group) and 27 nonneutropenic patients (resistant nonneutropenic group). Of the 97 patients with carbapenem sensitive bacteremia, 43 were neutropenic (sensitive neutropenic group) and 54 nonneutropenics (sensitive nonneutropenic group). The 28 days mortality was significantly higher in carbapenem resistant bacteremic group compared to the sensitive one (P = 0.008). This is the first study from India comparing clinical features of patients with carbapenem sensitive and resistant blood stream infections. Patients with carbapenem resistant bacteremia had higher mortality compared to patients with sensitive bacteremia.

  19. Microbiological Synthesis of 2H-Labeled Phenylalanine, Alanine, Valine, and Leucine/Isoleucine with Different Degrees of Deuterium Enrichment by the Gram-Positive Facultative Methylotrophic Bacterium Вrevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg V. Mosin, PhD¹

    2013-06-01

    Full Text Available The microbiological synthesis of [2H]amino acids was performed by the conversion of low molecular weight substrates ([U-2H]MeOH and 2H2O using the Gram-positive aerobic facultative methylotrophic bacterium Brevibacterium methylicum, an L-phenylalanine producer, realizing the NAD+ dependent methanol dehydrogenase (EC 1.6.99.3 variant of the ribulose-5-monophosphate (RuMP cycle of carbon assimilation. In this process, the adapted cells of the methylotroph with enhanced growth characteristics were used on a minimal salt medium M9, supplemented with 2% (v/v [U-2H]MeOH and an increasing gradient of 2Н2O concentration from 0; 24.5, 49.0; 73.5 up to 98% (v/v 2Н2O. Alanine, valine, and leucine/isoleucine were produced and accumulated exogeneously in quantities of 5–6 mol, in addition to the main product of biosynthesis. This method enables the production of [2Н]amino acids with different degrees of deuterium enrichment, depending on the 2Н2O concentration in the growth medium, from 17 at.% 2Н (on the growth medium with 24.5 % (v/v 2Н2О up to 75 at.% 2Н (on the growth medium with 98 % (v/v 2Н2О. This has been confirmed with the data from the electron impact (EI mass spectrometry analysis of the methyl ethers of N-dimethylamino(naphthalene-5-sulfochloride [2H]amino acids under these experimental conditions.

  20. Overexpression of the endothelial protein C receptor is detrimental during pneumonia-derived gram-negative sepsis (Melioidosis.

    Directory of Open Access Journals (Sweden)

    Liesbeth M Kager

    Full Text Available The endothelial protein C receptor (EPCR enhances anticoagulation by accelerating activation of protein C to activated protein C (APC and mediates anti-inflammatory effects by facilitating APC-mediated signaling via protease activated receptor-1. We studied the role of EPCR in the host response during pneumonia-derived sepsis instigated by Burkholderia (B. pseudomallei, the causative agent of melioidosis, a common form of community-acquired Gram-negative (pneumosepsis in South-East Asia.Soluble EPCR was measured in plasma of patients with septic culture-proven melioidosis and healthy controls. Experimental melioidosis was induced by intranasal inoculation of B. pseudomallei in wild-type (WT mice and mice with either EPCR-overexpression (Tie2-EPCR or EPCR-deficiency (EPCR(-/-. Mice were sacrificed after 24, 48 or 72 hours. Organs and plasma were harvested to measure colony forming units, cellular influxes, cytokine levels and coagulation parameters. Plasma EPCR-levels were higher in melioidosis patients than in healthy controls and associated with an increased mortality. Tie2-EPCR mice demonstrated enhanced bacterial growth and dissemination to distant organs during experimental melioidosis, accompanied by increased lung damage, neutrophil influx and cytokine production, and attenuated coagulation activation. EPCR(-/- mice had an unremarkable response to B. pseudomallei infection as compared to WT mice, except for a difference in coagulation activation in plasma.Increased EPCR-levels correlate with accelerated mortality in patients with melioidosis. In mice, transgenic overexpression of EPCR aggravates outcome during Gram-negative pneumonia-derived sepsis caused by B. pseudomallei, while endogenous EPCR does not impact on the host response. These results add to a better understanding of the regulation of coagulation during severe (pneumosepsis.

  1. Design, Synthesis and Evaluation of Branched RRWQWR-Based Peptides as Antibacterial Agents Against Clinically Relevant Gram-Positive and Gram-Negative Pathogens

    Directory of Open Access Journals (Sweden)

    Sandra C. Vega

    2018-03-01

    Full Text Available Multidrug resistance of pathogenic bacteria has become a public health crisis that requires the urgent design of new antibacterial drugs such as antimicrobial peptides (AMPs. Seeking to obtain new, lactoferricin B (LfcinB-based synthetic peptides as viable early-stage candidates for future development as AMPs against clinically relevant bacteria, we designed, synthesized and screened three new cationic peptides derived from bovine LfcinB. These peptides contain at least one RRWQWR motif and differ by the copy number (monomeric, dimeric or tetrameric and structure (linear or branched of this motif. They comprise a linear palindromic peptide (RWQWRWQWR, a dimeric peptide (RRWQWR2KAhx and a tetrameric peptide (RRWQWR4K2Ahx2C2. They were screened for antibacterial activity against Enterococcus faecalis (ATCC 29212 and ATCC 51575 strains, Pseudomonas aeruginosa (ATCC 10145 and ATCC 27853 strains and clinical isolates of two Gram-positive bacteria (Enterococcus faecium and Staphylococcus aureus and two Gram-negative bacteria (Klebsiella pneumoniae and Pseudomonas aeruginosa. All three peptides exhibited greater activity than did the reference peptide, LfcinB (17–31, which contains a single linear RRWQWR motif. Against the ATCC reference strains, the three new peptides exhibited minimum inhibitory concentration (MIC50 values of 3.1–198.0 μM and minimum bactericidal concentration (MBC values of 25–200 μM, and against the clinical isolates, MIC50 values of 1.6–75.0 μM and MBC values of 12.5–100 μM. However, the tetrameric peptide was also found to be strongly hemolytic (49.1% at 100 μM. Scanning Electron Microscopy (SEM demonstrated that in the dimeric and tetrameric peptides, the RRWQWR motif is exposed to the pathogen surface. Our results may inform the design of new, RRWQWR-based AMPs.

  2. Methylobacterium marchantiae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the thallus of a liverwort.

    Science.gov (United States)

    Schauer, S; Kämpfer, P; Wellner, S; Spröer, C; Kutschera, U

    2011-04-01

    A pink-pigmented, facultatively methylotrophic bacterium, designated strain JT1(T), was isolated from a thallus of the liverwort Marchantia polymorpha L. and was analysed by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis placed the strain in a clade with Methylobacterium adhaesivum AR27(T), Methylobacterium fujisawaense DSM 5686(T), Methylobacterium radiotolerans JCM 2831(T) and Methylobacterium jeotgali S2R03-9(T), with which it showed sequence similarities of 97.8, 97.7, 97.2 and 97.4 %, respectively. However, levels of DNA-DNA relatedness between strain JT1(T) and these and the type strains of other closely related species were lower than 70 %. Cells of JT1(T) stained Gram-negative and were motile, rod-shaped and characterized by numerous fimbriae-like appendages on the outer surface of their wall (density up to 200 µm(-2)). Major fatty acids were C(18 : 1)ω7c and C(16 : 0). Based on the morphological, physiological and biochemical data presented, strain JT1(T) is considered to represent a novel species of the genus Methylobacterium, for which the name Methylobacterium marchantiae sp. nov. is proposed. The type strain is JT1(T) ( = DSM 21328(T)  = CCUG 56108(T)).

  3. Albibacter methylovorans gen. nov., sp. nov., a novel aerobic, facultatively autotrophic and methylotrophic bacterium that utilizes dichloromethane.

    Science.gov (United States)

    Doronina, N V; Trotsenko, Y A; Tourova, T P; Kuznetsov, B B; Leisinger, T

    2001-05-01

    A novel genus, Albibacter, with one species, Albibacter methylovorans sp. nov., is proposed for a facultatively chemolithotrophic and methylotrophic bacterium (strain DM10T) with the ribulose bisphosphate (RuBP) pathway of C1 assimilation. The bacterium is a Gram-negative, aerobic, asporogenous, nonmotile, colourless rod that multiplies by binary fission. The organism utilizes dichloromethane, methanol, methylamine, formate and CO2/H2, as well as a variety of polycarbon compounds, as carbon and energy sources. It is neutrophilic and mesophilic. The major cellular fatty acids are straight-chain unsaturated C18:1, saturated C16:0 and cyclopropane C19:0 acids. The main ubiquinone is Q-10. The dominant phospholipids are phosphatidyl ethanolamine, phosphatidyl glycerol, phosphatidyl choline and cardiolipin. The DNA G+C content is 66.7 mol%. Strain DM10T has a very low degree of DNA-DNA hybridization (4-7%) with the type species of the genera Paracoccus, Xanthobacter, Blastobacter, Angulomicrobium, Ancylobacter and Ralstonia of RuBP pathway methylobacteria. Another approach, involving comparative 16S rDNA analysis, has shown that the novel isolate represents a separate branch within the alpha-2 subgroup of the Proteobacteria. The type species of the new genus is Albibacter methylovorans sp. nov.; the type strain is DM10T (= VKM B-2236T = DSM 13819T).

  4. EFFECT OF SILICATE ON GRAM STAINING AND VIABILITY OF PNEUMOCOCCI AND OTHER BACTERIA

    Science.gov (United States)

    MacLeod, Colin M.; Roe, Amy S.

    1956-01-01

    Application of silicate solutions to living or heat-killed pneumococci and to certain "viridans" streptococci causes their conversion from a Gram-positive to a Gram-negative state. The original staining properties can be restored by suspending the silicate-treated bacteria in alkaline solutions of various salts but not by simple washing in water. Living pneumococci and the strains of streptococci whose staining properties are similarly affected are killed when suspended in silicate solutions. In other Gram-positive species silicate causes conversion to Gram negativity but restoration to positivity occurs upon washing in water. In a third group of Gram-positive organisms silicate has no effect on the Gram reaction. The viability of organisms in these two groups is unaffected by silicate under the conditions employed. No effect on staining or viability of Gram-negative bacteria has been observed. The effects of silicate on staining and viability are inhibited by nutrient broth or whole serum but not by purified serum albumin. Lecithin, choline, and other substituted ammonium compounds also inhibit the effects of silicate on pneumococci. PMID:13306854

  5. Detection of extra-cellular enzymes of anaerobic gram-negative bacteria from clinically diseased and healthy sites

    Directory of Open Access Journals (Sweden)

    Nagmoti J

    2008-01-01

    Full Text Available Anaerobic gram-negative bacteria (AGNB produce enzymes that play a significant role in the development of disease. We tested 50 AGNB isolates, 25 each from clinically diseased and healthy human sites for in vitro production of caseinase, collagenase, etc. Majority of the isolates were Bacteroides fragilis and Porphyromonas gingivalis, which more commonly produced collagenase and haemolysin. Comparatively larger number of clinical AGNB produced collagenase (P = 0.004. No such difference was observed with other enzymes. Hence, collagenase is probably one of the key virulence markers of pathogenic AGNB, and the inhibitors targeting collagenases might help in the therapy of anaerobic infections.

  6. Prevalence of antibiotic-resistant Gram-negative bacteria associated with the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Liu, Dandan; Wilson, Cailin; Hearlson, Jodie; Singleton, Jennifer; Thomas, R Brent; Crupper, Scott S

    2013-09-01

    Free-ranging Red-eared Sliders (Trachemys scripta elegans) were captured from farm ponds located in the Flint Hills of Kansas and a zoo pond in Emporia, Kansas, USA, to evaluate their enteric bacterial flora and associated antibiotic resistance. Bacteria obtained from cloacal swabs were composed of six different Gram-negative genera. Although antibiotic resistance was present in turtles captured from both locations, 40 and 49% of bacteria demonstrated multiple antibiotic resistance to four of the antibiotics tested from the zoo captured and Flint Hills ponds turtles, respectively. These data illustrate environmental antibiotic resistance is widespread in the bacterial flora obtained from Red-eared Sliders in east central Kansas.

  7. Gram-negative bacilli are a major cause of secondary pneumonia in patients with pulmonary tuberculosis: evidence from a cross-sectional study in a tertiary hospital in Nigeria.

    Science.gov (United States)

    Iliyasu, Garba; Mohammad, Aminu B; Yakasai, Ahmad M; Dayyab, Farouq M; Oduh, Joan; Habib, Abdulrazaq G

    2018-05-19

    This study was aimed at describing the profile of bacterial aetiology of secondary pneumonia in pulmonary tuberculosis (PTB) patients. A 22-month analysis of patients with PTB and secondary bacterial pneumonia was conducted. Data on isolates recovered and the antimicrobial susceptibility profile were recorded. Of the 141 patients, there were 79 (56%) males and the mean age was 35.98±15.93. Gram-negative bacilli were isolated with equal frequency as Streptococcus pneumoniae (63 [44.7%]). Most of the isolates tested were sensitive to levofloxacin, ceftriaxone or chloramphenicol. Gram-negative bacilli are a major cause of pneumonia in patients with PTB on treatment.

  8. Monodisperse and LPS-free Aggregatibacter actinomycetemcomitans leukotoxin: Interactions with human β2 integrins and erythrocytes

    DEFF Research Database (Denmark)

    Reinholdt, Jesper; Poulsen, Knud; Brinkmann, Christel Rothe

    2013-01-01

    Aggregatibacter actinomycetemcomitans is a gram-negative, facultatively anaerobic cocco-bacillus and a frequent member of the human oral flora. It produces a leukotoxin, LtxA, belonging to the repeats-in-toxin (RTX) family of bacterial cytotoxins. LtxA efficiently kills neutrophils and mononuclear...

  9. Gram-typing of mastitis bacteria in milk samples using flow cytometry

    DEFF Research Database (Denmark)

    Langerhuus, Sine Nygaard; Ingvartsen, Klaus Lønne; Bennedsgaard, Torben Werner

    2013-01-01

    Fast identification of pathogenic bacteria in milk samples from cows with clinical mastitis is central to proper treatment. In Denmark, time to bacterial diagnosis is typically 24 to 48 h when using traditional culturing methods. The PCR technique provides a faster and highly sensitive identifica......Fast identification of pathogenic bacteria in milk samples from cows with clinical mastitis is central to proper treatment. In Denmark, time to bacterial diagnosis is typically 24 to 48 h when using traditional culturing methods. The PCR technique provides a faster and highly sensitive...... cytometry-based method, which can detect and distinguish gram-negative and gram-positive bacteria in mastitis milk samples. The differentiation was based on bacterial fluorescence intensities upon labeling with biotin-conjugated wheat germ agglutinin and acridine orange. Initially 19 in-house bacterial...... characteristic curves for the 19 bacterial cultures. The method was then tested on 53 selected mastitis cases obtained from the department biobank (milk samples from 6 gram-negative and 47 gram-positive mastitis cases). Gram-negative bacteria in milk samples were detected with a sensitivity of 1...

  10. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Directory of Open Access Journals (Sweden)

    Praveen Papareddy

    Full Text Available Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2. This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  11. The TFPI-2 derived peptide EDC34 improves outcome of gram-negative sepsis.

    Science.gov (United States)

    Papareddy, Praveen; Kalle, Martina; Sørensen, Ole E; Malmsten, Martin; Mörgelin, Matthias; Schmidtchen, Artur

    2013-01-01

    Sepsis is characterized by a dysregulated host-pathogen response, leading to high cytokine levels, excessive coagulation and failure to eradicate invasive bacteria. Novel therapeutic strategies that address crucial pathogenetic steps during infection are urgently needed. Here, we describe novel bioactive roles and therapeutic anti-infective potential of the peptide EDC34, derived from the C-terminus of tissue factor pathway inhibitor-2 (TFPI-2). This peptide exerted direct bactericidal effects and boosted activation of the classical complement pathway including formation of antimicrobial C3a, but inhibited bacteria-induced activation of the contact system. Correspondingly, in mouse models of severe Escherichia coli and Pseudomonas aeruginosa infection, treatment with EDC34 reduced bacterial levels and lung damage. In combination with the antibiotic ceftazidime, the peptide significantly prolonged survival and reduced mortality in mice. The peptide's boosting effect on bacterial clearance paired with its inhibiting effect on excessive coagulation makes it a promising therapeutic candidate for invasive Gram-negative infections.

  12. [Biodiversity and enzymes of culturable facultative-alkaliphilic actinobacteria in saline-alkaline soil in Fukang, Xinjiang].

    Science.gov (United States)

    Zhang, Yongguang; Liu, Qing; Wang, Hongfei; Zhang, Daofeng; Chen, Jiyue; Zhang, Yuanming; Li, Wenjun

    2014-02-04

    In order to analyze the biodiversity of cultivable facultative-alkaliphilic actinobacteria and the enzymes they produced. Total 10 soil samples were collected from saline-alkaline environments of Fukang, Xinjiang province. Facultative-alkaliphilic actinobacteria strains were isolated and identified by 16S rRNA gene sequence analysis. Enzymes including amylase, proteinase, xylanase, and cellulase were detected. Total 116 facultative-alkaliphilic actinobacterial strains and 4 alkali-tolerant actinobacterial strains were isolated from the samples, and those strains were distributed within 22 genera in 13 families and 8 orders of actinobacteria based on their 16S rRNA gene sequence analysis. The ratio of non-predominant Streptomyces and Nocardiopsis strains were 53.3%. The positive rates of amylase, proteinase, xylanase and cellulase were 35.8, 37.6, 28.3 and 17.5%, respectively. Diverse facultative-alkaliphilic actinobacteria were discovered from saline-alkaline environments of Fukang. Facultative-alkaliphilic actinobacteria are a potential source for enzymes. The study would facilitate the knowledge of the diversity of facultative-alkaliphilic actinobacteria, and provide the technical basis for exploration of facultative-alkaliphilic actinobacteria resources.

  13. Antimicrobial compounds targeting Gram-negative bacteria in food: Their mode of action and combinational effects

    DEFF Research Database (Denmark)

    Hyldgaard, Morten

    2015-01-01

    compromising food shelf-life or safety. Natural antimicrobial compounds have therefore gained increased interest as a label-friendly alternative that can be added directly to food products. Although natural antimicrobials constitute an interesting source of compounds, it is often not understood how...... they interact with bacterial cells to exert their mechanism of inhibition or killing. Furthermore, natural antimicrobials are often not potent enough as single compounds, and may cause unwanted sensory side-effects, which limit the quantities that can be applied to food. These problems might be circumvented...... by combining antimicrobials to decrease the concentrations needed without compromising their antimicrobial activity. The work described in this dissertation presents two projects concerning the mechanism of action of selected natural antimicrobial compounds primarily against Gram-negative bacteria, and two...

  14. Defining a role for Hfq in Gram-positive bacteria

    DEFF Research Database (Denmark)

    Nielsen, Jesper Sejrup; Lei, Lisbeth Kristensen; Ebersbach, Tine

    2010-01-01

    Small trans-encoded RNAs (sRNAs) modulate the translation and decay of mRNAs in bacteria. In Gram-negative species, antisense regulation by trans-encoded sRNAs relies on the Sm-like protein Hfq. In contrast to this, Hfq is dispensable for sRNA-mediated riboregulation in the Gram-positive species......-dependent and -independent mechanisms, thus adding another layer of complexity to sRNA-mediated riboregulation in Gram-positive species....

  15. Vectorization efforts to increase Gram-negative intracellular drug concentration: a case study on HldE-K inhibitors.

    Science.gov (United States)

    Atamanyuk, Dmytro; Faivre, Fabien; Oxoby, Mayalen; Ledoussal, Benoit; Drocourt, Elodie; Moreau, François; Gerusz, Vincent

    2013-03-14

    In this paper, we present different strategies to vectorize HldE kinase inhibitors with the goal to improve their gram-negative intracellular concentration. Syntheses and biological effects of siderophoric, aminoglycosidic, amphoteric, and polycationic vectors are discussed. While siderophoric and amphoteric vectorization efforts proved to be disappointing in this series, aminoglycosidic and polycationic vectors were able for the first time to achieve synergistic effects of our inhibitors with erythromycin. Although these effects proved to be nonspecific, this study provides information about the required stereoelectronic arrangement of the polycationic amines and their basicity requirements to fulfill outer membrane destabilization resulting in better erythromycin synergies.

  16. The reaction mechanism for dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica

    Science.gov (United States)

    Yao, Yuan; Li, Ze-Sheng

    2012-01-01

    The fundamental reaction mechanism for the dehydration process catalyzed by type I dehydroquinate dehydratase from Gram-negative Salmonella enterica has been studied by density functional theory calculations. The results indicate that the dehydration process undergoes a two-step cis-elimination mechanism, which is different from the previously proposed one. The catalytic roles of both the highly conserved residue His143 and the Schiff base formed between the substrate and Lys170 have also been elucidated. The structural and mechanistic insight presented here may direct the design of type I dehydroquinate dehydratase enzyme inhibitors as non-toxic antimicrobials, anti-fungals, and herbicides.

  17. Novel insights in preventing Gram-negative bacterial infection in cirrhotic patients: review on the effects of GM-CSF in maintaining homeostasis of the immune system.

    Science.gov (United States)

    Xu, Dong; Zhao, Manzhi; Song, Yuhu; Song, Jianxin; Huang, Yuancheng; Wang, Junshuai

    2015-01-01

    Cirrhotic patients with dysfunctional and/or low numbers of leukocytes are often infected with bacteria, especially Gram-negative bacteria, which is characterized by producing lipopolysaccharide (LPS). Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that influences the production, maturation, function, and survival of various immune cells. In this paper, we reviewed not only Toll-like receptors 4 (TLR4) signaling pathway and its immunological effect, but also the specific stimulating function and autocrine performance of GM-CSF on hematopoietic cells, as well as the recent discovery of innate response activator-B cells in protection against microbial sepsis and the direct LPS-TLR4 signaling on hematopoiesis. Thus we concluded that GM-CSF might play important roles in preventing Gram-negative bacterial infections in cirrhotic patients through maintaining immune system functions and homeostasis.

  18. Utility of gram staining for evaluation of the quality of cystic fibrosis sputum samples.

    Science.gov (United States)

    Nair, Bindu; Stapp, Jenny; Stapp, Lynn; Bugni, Linda; Van Dalfsen, Jill; Burns, Jane L

    2002-08-01

    The microscopic examination of Gram-stained sputum specimens is very helpful in the evaluation of patients with community-acquired pneumonia and has also been recommended for use in cystic fibrosis (CF) patients. This study was undertaken to evaluate that recommendation. One hundred one sputum samples from CF patients were cultured for gram-negative bacilli and examined by Gram staining for both sputum adequacy (using the quality [Q] score) and bacterial morphology. Subjective evaluation of adequacy was also performed and categorized. Based on Q score evaluation, 41% of the samples would have been rejected despite a subjective appearance of purulence. Only three of these rejected samples were culture negative for gram-negative CF pathogens. Correlation between culture results and quantitative Gram stain examination was also poor. These data suggest that subjective evaluation combined with comprehensive bacteriology is superior to Gram staining in identifying pathogens in CF sputum.

  19. Pentaclethra macroloba tannins fractions active against methicillin-resistant staphylococcal and Gram-negative strains showing selective toxicity

    Directory of Open Access Journals (Sweden)

    Ivana Correa Ramos Leal

    2011-12-01

    Full Text Available The ethanol extract of the vegetal species Pentaclethra macroloba (Willd. Kuntze, Fabaceae, was fractioned and the antibacterial activity was determined. The active ethyl acetate (ea fraction showed activity against Gram-positive (Staphylococcus spp. and Enterococcus spp. and Gram-negative (Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella pneumoniae multiresistant bacteria. Gallic acid derivatives were identified as the main compounds in inactive subfractions from the ea fraction, while the active one afforded ellagic acid as the major constituent when submitted to acid hydrolysis reaction, which suggests the presence of hydrolysable tannins. The minimum bactericidal concentration analysis showed a bactericide mechanism of action for the tannin subfraction found. The antibacterial mechanism of action of the active tannin subfraction against S. aureus reference strains (ATCC 29213 e 33591 was proposed adopting an in vitro assay of protein synthesis inhibition. For this, bacterial cells were labeled with [35S] methionine in the presence of the subfraction. The protein synthesis inhibition was observed at 256 µg/mL of this subfraction. At this concentration it did not present cytotoxicity in eukaryotic cells by the neutral red technique, suggesting selective toxicity. The present study is the first in vitro investigation of the antibacterial properties of tannin fractions obtained from a polar extract of P. macroloba.

  20. Pentaclethra macroloba tannins fractions active against methicillin-resistant staphylococcal and Gram-negative strains showing selective toxicity

    Directory of Open Access Journals (Sweden)

    Ivana Correa Ramos Leal

    2011-08-01

    Full Text Available The ethanol extract of the vegetal species Pentaclethra macroloba (Willd. Kuntze, Fabaceae, was fractioned and the antibacterial activity was determined. The active ethyl acetate (ea fraction showed activity against Gram-positive (Staphylococcus spp. and Enterococcus spp. and Gram-negative (Pseudomonas aeruginosa, Acinetobacter spp. and Klebsiella pneumoniae multiresistant bacteria. Gallic acid derivatives were identified as the main compounds in inactive subfractions from the ea fraction, while the active one afforded ellagic acid as the major constituent when submitted to acid hydrolysis reaction, which suggests the presence of hydrolysable tannins. The minimum bactericidal concentration analysis showed a bactericide mechanism of action for the tannin subfraction found. The antibacterial mechanism of action of the active tannin subfraction against S. aureus reference strains (ATCC 29213 e 33591 was proposed adopting an in vitro assay of protein synthesis inhibition. For this, bacterial cells were labeled with [35S] methionine in the presence of the subfraction. The protein synthesis inhibition was observed at 256 µg/mL of this subfraction. At this concentration it did not present cytotoxicity in eukaryotic cells by the neutral red technique, suggesting selective toxicity. The present study is the first in vitro investigation of the antibacterial properties of tannin fractions obtained from a polar extract of P. macroloba.

  1. Gram-negative prosthetic joint infection: outcome of a debridement, antibiotics and implant retention approach. A large multicentre study.

    Science.gov (United States)

    Rodríguez-Pardo, D; Pigrau, C; Lora-Tamayo, J; Soriano, A; del Toro, M D; Cobo, J; Palomino, J; Euba, G; Riera, M; Sánchez-Somolinos, M; Benito, N; Fernández-Sampedro, M; Sorli, L; Guio, L; Iribarren, J A; Baraia-Etxaburu, J M; Ramos, A; Bahamonde, A; Flores-Sánchez, X; Corona, P S; Ariza, J

    2014-11-01

    We aim to evaluate the epidemiology and outcome of gram-negative prosthetic joint infection (GN-PJI) treated with debridement, antibiotics and implant retention (DAIR), identify factors predictive of failure, and determine the impact of ciprofloxacin use on prognosis. We performed a retrospective, multicentre, observational study of GN-PJI diagnosed from 2003 through to 2010 in 16 Spanish hospitals. We define failure as persistence or reappearance of the inflammatory joint signs during follow-up, leading to unplanned surgery or repeat debridement>30 days from the index surgery related death, or suppressive antimicrobial therapy. Parameters predicting failure were analysed with a Cox regression model. A total of 242 patients (33% men; median age 76 years, interquartile range (IQR) 68-81) with 242 episodes of GN-PJI were studied. The implants included 150 (62%) hip, 85 (35%) knee, five (2%) shoulder and two (1%) elbow prostheses. There were 189 (78%) acute infections. Causative microorganisms were Enterobacteriaceae in 78%, Pseudomonas spp. in 20%, and other gram-negative bacilli in 2%. Overall, 19% of isolates were ciprofloxacin resistant. DAIR was used in 174 (72%) cases, with an overall success rate of 68%, which increased to 79% after a median of 25 months' follow-up in ciprofloxacin-susceptible GN-PJIs treated with ciprofloxacin. Ciprofloxacin treatment exhibited an independent protective effect (adjusted hazard ratio (aHR) 0.23; 95% CI, 0.13-0.40; pInfection © 2014 European Society of Clinical Microbiology and Infectious Diseases.

  2. Evaluation of the limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    Science.gov (United States)

    Scotter, Susan L.; Wood, Roger; McWeeny, David J.

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjuction with a Gram negative bacteria (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15°C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment and during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeasts and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds.

  3. Evaluation of the Limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    International Nuclear Information System (INIS)

    Scotter, S.L.; Wood, R.; McWeeny, D.J.

    1990-01-01

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjunction with a Gram negative bacterial (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15 0 C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment amd during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeast and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds. (author)

  4. Evaluation of the Limulus amoebocyte lysate test in conjunction with a gram negative bacterial plate count for detecting irradiation of chicken

    Energy Technology Data Exchange (ETDEWEB)

    Scotter, S L; Wood, R; McWeeny, D J [Ministry of Agriculture, Fisheries and Food, Norwich (UK). Food Science Lab.

    1990-01-01

    A study to evaluate the potential of the Limulus amoebocyte lysate (LAL) test in conjunction with a Gram negative bacterial (GNB) plate count for detecting the irradiation of chicken is described. Preliminary studies demonstrated that chickens irradiated at an absorbed dose of 2.5 kGy could be differentiated from unirradiated birds by measuring levels of endotoxin and of numbers of GNB on chicken skin. Irradiated birds were found to have endotoxin levels similar to those found in unirradiated birds but significantly lower numbers of GNB. In a limited study the test was found to be applicable to birds from different processors. The effect of temperature abuse on the microbiological profile, and thus the efficacy of the test, was also investigated. After temperature abuse, the irradiated birds were identifiable at worst up to 3 days after irradiation treatment at the 2.5 kGy level and at best some 13 days after irradiation. Temperature abuse at 15{sup 0}C resulted in rapid recovery of surviving micro-organisms which made differentiation of irradiated and unirradiated birds using this test unreliable. The microbiological quality of the bird prior to irradiation treatment also affected the test as large numbers of GNB present on the bird prior to irradiation treatment resulted in larger numbers of survivors. In addition, monitoring the developing flora after irradiation treatment amd during subsequent chilled storage also aided differentiation of irradiated and unirradiated birds. Large numbers of yeast and Gram positive cocci were isolated from irradiated carcasses whereas Gram negative oxidative rods were the predominant spoilage flora on unirradiated birds. (author).

  5. Colwellia agarivorans sp. nov., an agar-digesting marine bacterium isolated from coastal seawater

    Science.gov (United States)

    A novel Gram-stain-negative, facultatively anaerobic, yellowish and agar-digesting marine bacterium, designated strain QM50**T, was isolated from coastal seawater in an aquaculture site near Qingdao, China. Phylogenetic analysis based on 16S rDNA sequences revealed that the novel isolate represented...

  6. Effects of vulture exclusion on carrion consumption by facultative scavengers.

    Science.gov (United States)

    Hill, Jacob E; DeVault, Travis L; Beasley, James C; Rhodes, Olin E; Belant, Jerrold L

    2018-03-01

    Vultures provide an essential ecosystem service through removal of carrion, but globally, many populations are collapsing and several species are threatened with extinction. Widespread declines in vulture populations could increase the availability of carrion to other organisms, but the ways facultative scavengers might respond to this increase have not been thoroughly explored. We aimed to determine whether facultative scavengers increase carrion consumption in the absence of vulture competition and whether they are capable of functionally replacing vultures in the removal of carrion biomass from the landscape. We experimentally excluded 65 rabbit carcasses from vultures during daylight hours and placed an additional 65 carcasses that were accessible to vultures in forested habitat in South Carolina, USA during summer (June-August). We used motion-activated cameras to compare carrion use by facultative scavenging species between the experimental and control carcasses. Scavenging by facultative scavengers did not increase in the absence of competition with vultures. We found no difference in scavenger presence between control carcasses and those from which vultures were excluded. Eighty percent of carcasses from which vultures were excluded were not scavenged by vertebrates, compared to 5% of carcasses that were accessible to vultures. At the end of the 7-day trials, there was a 10.1-fold increase in the number of experimental carcasses that were not fully scavenged compared to controls. Facultative scavengers did not functionally replace vultures during summer in our study. This finding may have been influenced by the time of the year in which the study took place, the duration of the trials, and the spacing of carcass sites. Our results suggest that under the warm and humid conditions of our study, facultative scavengers would not compensate for loss of vultures. Carcasses would persist longer in the environment and consumption of carrion would likely shift from

  7. Expansion of highly stable bla OXA-10 β-lactamase family within diverse host range among nosocomial isolates of Gram-negative bacilli within a tertiary referral hospital of Northeast India.

    Science.gov (United States)

    Maurya, Anand Prakash; Dhar, Debadatta; Basumatary, Mridul Kumar; Paul, Deepjyoti; Ingti, Birson; Choudhury, Debarati; Talukdar, Anupam Das; Chakravarty, Atanu; Mishra, Shweta; Bhattacharjee, Amitabha

    2017-04-04

    The current study reports dissemination of highly stable bla OXA-10 family of beta lactamases among diverse group of nosocomial isolates of Gram-negative bacilli within a tertiary referral hospital of the northern part of India. In the current study, a total number of 590 Gram negative isolates were selected for a period of 1 year (i.e. 1st November 2011-31st October 2012). Members of Enterobacteriaceae and non fermenting Gram negative rods were obtained from Silchar Medical College and Hospital, Silchar, India. Screening and molecular characterization of β-lactamase genes was done. Integrase gene PCR was performed for detection and characterization of integrons and cassette PCR was performed for study of the variable regions of integron gene cassettes carrying bla OXA-10 . Gene transferability, stability and replicon typing was also carried out. Isolates were typed by ERIC as well as REP PCR. Twenty-four isolates of Gram-negative bacilli that were harboring bla OXA-10 family (OXA-14, and OXA16) with fact that resistance was to the extended cephalosporins. The resistance determinant was located within class I integron in five diverse genetic contexts and horizontally transferable in Enterobacteriaceae, was carried through IncY type plasmid. MIC values were above break point for all the tested cephalosporins. Furthermore, co-carriage of bla CMY-2 was also observed. Multiple genetic environment of bla OXA-10 in this geographical region must be investigated to prevent dissemination of these gene cassettes within bacterial population within hospital settings.

  8. Bactérias gram negativas resistentes a antimicrobianos em alimentos Gram-negative bacteria resistant to antibiotics in foods

    Directory of Open Access Journals (Sweden)

    José Cavalcante de Albuquerque Ribeiro Dias

    1985-12-01

    Full Text Available A partir de 154 espécimens de alimentos, representados por hortaliças (alface, leite e merenda escolar, obteve-se o isolamento e identificação de 400 amostras de bacilos Gram negativos. Esta amostragem se distribuiu em 339 enterobactérias (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia e Proteus e 61 de gêneros afins (Acinetobacter, Flavobacterium, Aeromonas e Pseudomonas. Submetendo-se as culturas aos antimicrobianos: sulfadiazina (Su, estreptomicina (Sm, tetraciclina (Tc, cloranfenicol (Cm, canamicina (Km, ampicilina (Ap, ácido nalidíxico (Nal e gentamicina (Gm, observou-se apenas seis estirpes sensíveis a todas as drogas e sensibilidade absoluta à Gm. A predominância dos modelos Su (27,6% e Su-Ap (39,6% incidiu nas enterobactérias, enquanto que, 18,0% para Ap e 9,8% para Su-Ap foram detectados nos gêneros afins. Para caracterização da resistência foram realizados testes de conjugação e a totalidade das culturas não revelou transferência para o gene que confere resistência ao ácido nalidíxico. Relevantes são as taxas de amostras R+ observadas nos bacilos entéricos, oscilando em torno de 90% (leite e merenda escolar e alface, em torno de 70%From 154 food samples, including vegetables (lettuce, milk and meals served at school it was possible to isolate and identify 400 Gram negative bacilli distributed among 339 enteric bacteria (Escherichia, Shigella, Citrobacter, Klebsiella, Enterobacter, Serratia and Proteus and other 61 non enteric bacilli (Acinetobacter, Flavobacterium, Aeromonas and Pseudomonas. Submitting this cultures to the drugs sulfadiazine (Su, streptomycin (Sm, tetracycline (Tc, chloramphenicol (Cm, kanamycin (Km, ampicillin (Ap, nalidixic acid (Nal and gentamycin (Gm it was observed only six stocks susceptible to all drugs and total sensibility to Gm. Among enteric bacteria the profiles Su (27,6% and Su-Ap (39,6% predominated, while for the non enteric bacilli percentages of 18.0 for

  9. A New Class of Quorum Quenching Molecules from Staphylococcus Species Affects Communication and Growth of Gram-Negative Bacteria

    Science.gov (United States)

    Chu, Ya-Yun; Nega, Mulugeta; Wölfle, Martina; Plener, Laure; Grond, Stephanie; Jung, Kirsten; Götz, Friedrich

    2013-01-01

    The knowledge that many pathogens rely on cell-to-cell communication mechanisms known as quorum sensing, opens a new disease control strategy: quorum quenching. Here we report on one of the rare examples where Gram-positive bacteria, the ‘Staphylococcus intermedius group’ of zoonotic pathogens, excrete two compounds in millimolar concentrations that suppress the quorum sensing signaling and inhibit the growth of a broad spectrum of Gram-negative beta- and gamma-proteobacteria. These compounds were isolated from Staphylococcus delphini. They represent a new class of quorum quenchers with the chemical formula N-[2-(1H-indol-3-yl)ethyl]-urea and N-(2-phenethyl)-urea, which we named yayurea A and B, respectively. In vitro studies with the N-acyl homoserine lactone (AHL) responding receptor LuxN of V. harveyi indicated that both compounds caused opposite effects on phosphorylation to those caused by AHL. This explains the quorum quenching activity. Staphylococcal strains producing yayurea A and B clearly benefit from an increased competitiveness in a mixed community. PMID:24098134

  10. Unrelated facultative endosymbionts protect aphids against a fungal pathogen.

    Science.gov (United States)

    Łukasik, Piotr; van Asch, Margriet; Guo, Huifang; Ferrari, Julia; Godfray, H Charles J

    2013-02-01

    The importance of microbial facultative endosymbionts to insects is increasingly being recognized, but our understanding of how the fitness effects of infection are distributed across symbiont taxa is limited. In the pea aphid, some of the seven known species of facultative symbionts influence their host's resistance to natural enemies, including parasitoid wasps and a pathogenic fungus. Here we show that protection against this entomopathogen, Pandora neoaphidis, can be conferred by strains of four distantly related symbionts (in the genera Regiella, Rickettsia, Rickettsiella and Spiroplasma). They reduce mortality and also decrease fungal sporulation on dead aphids which may help protect nearby genetically identical insects. Pea aphids thus obtain protection from natural enemies through association with a wider range of microbial associates than has previously been thought. Providing resistance against natural enemies appears to be a particularly common way for facultative endosymbionts to increase in frequency within host populations. © 2012 Blackwell Publishing Ltd/CNRS.

  11. [Antimicrobial susceptibility patterns of Gram-negative bacteria isolated in urinary tract infections in Venezuela: Results of the SMART study 2009-2012].

    Science.gov (United States)

    Guevara, Napoleón; Guzmán, Manuel; Merentes, Altagracia; Rizzi, Adele; Papaptzikos, Juana; Rivero, Narlesky; Oranges, Carmela; Vlllarroel, Héctor; Limas, Yoxsivell

    2015-12-01

    Antimicrobial resistance of pathogens causing urinary tract infection (UTI) is a growing problem, which complicates their effective treatment. Surveillance is needed to guide appropriate empiric therapy. to describe the susceptibility patterns of Gram-negative bacteria isolated of patients with UTI to twelve antibiotics as part of the Study for Monitoring Antimicrobial Resistance Trends in Venezuela. Between 2009-2012 a total of 472 Gram-negative bacteria were isolated from hospitalized patients with UTI. The isolates were sent to Central Laboratory (Central Laboratory of International Health Management Associates) to confirm their identification, and to make susceptibility testing as recommended by the Clinical and Laboratory Standards Institute. Enterobacteriacea comprised 96.6% of the total, where Escherichia coli (76.9%) and Klebsiella pneumoniae (10.6%) were the most frequent. Extended-spectrum β-lactamases (ESBL) was detected in 21.6% of isolates. Top antimicrobial activity were ertapenem, imipenem, and amikacin (> 90.0%), slightly lower for amikacin (85.1%) in ESBL-producing strains. Resistance rates to fluoroquinolones and ampicillin/sulbactam were high (40 y 64%, respectively). These data suggest a necessary revision of the therapeutic regimens for the empirical treatment of UTI in Venezuela.

  12. Insights into the extremotolerance of Acinetobacter radioresistens 50v1, a gram-negative bacterium isolated from the Mars Odyssey spacecraft.

    Science.gov (United States)

    McCoy, K B; Derecho, I; Wong, T; Tran, H M; Huynh, T D; La Duc, M T; Venkateswaran, K; Mogul, R

    2012-09-01

    The microbiology of the spacecraft assembly process is of paramount importance to planetary exploration, as the biological contamination that can result from remote-enabled spacecraft carries the potential to impact both life-detection experiments and extraterrestrial evolution. Accordingly, insights into the mechanisms and range of extremotolerance of Acinetobacter radioresistens 50v1, a Gram-negative bacterium isolated from the surface of the preflight Mars Odyssey orbiter, were gained by using a combination of microbiological, enzymatic, and proteomic methods. In summary, A. radioresistens 50v1 displayed a remarkable range of survival against hydrogen peroxide and the sequential exposures of desiccation, vapor and plasma phase hydrogen peroxide, and ultraviolet irradiation. The survival is among the highest reported for non-spore-forming and Gram-negative bacteria and is based upon contributions from the enzyme-based degradation of H(2)O(2) (catalase and alkyl hydroperoxide reductase), energy management (ATP synthase and alcohol dehydrogenase), and modulation of the membrane composition. Together, the biochemical and survival features of A. radioresistens 50v1 support a potential persistence on Mars (given an unintended or planned surface landing of the Mars Odyssey orbiter), which in turn may compromise the scientific integrity of future life-detection missions.

  13. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity

    Directory of Open Access Journals (Sweden)

    Motohiro eMatsuura

    2013-05-01

    Full Text Available Bacterial lipopolysaccharide (LPS, a cell wall component characteristic of Gram-negative bacteria, is a representative pathogen-associated molecular pattern that allows mammalian cells to recognize bacterial invasion and trigger innate immune responses. The polysaccharide moiety of LPS primary plays protective roles for bacteria such as prevention from complement attacks or camouflage with common host carbohydrate residues. The lipid moiety, termed lipid A, is recognized by the Toll-like receptor 4 (TLR4/MD-2 complex, which transduces signals for activation of host innate immunity. The basic structure of lipid A is a glucosamine disaccharide substituted by phosphate groups and acyl groups. Lipid A with 6 acyl groups (hexa-acylated form has been indicated to be a strong stimulator of the TLR4/MD-2 complex. This type of lipid A is conserved among a wide variety of Gram-negative bacteria, and those bacteria are easily recognized by host cells for activation of defensive innate immune responses. Modifications of the lipid A structure to less-acylated forms have been observed in some bacterial species, and those forms are poor stimulators of the TLR4/MD-2 complex. Such modifications are thought to facilitate bacterial evasion of host innate immunity, thereby enhancing pathogenicity. This hypothesis is supported by studies of Yersinia pestis LPS, which contains hexa-acylated lipid A when the bacterium grows at 27ºC (the temperature of the vector flea, and shifts to contain less-acylated forms when grown at the human body temperature of 37ºC. This alteration of lipid A forms following transmission of Y. pestis from fleas to humans contributes predominantly to the virulence of this bacterium over other virulence factors. A similar role for less-acylated lipid A forms has been indicated in some other bacterial species, such as Francisella tularensis, Helicobacter pylori, and Porphyromonas gingivalis, and further studies to explore this concept are

  14. Techniques for controlling variability in gram staining of obligate anaerobes.

    Science.gov (United States)

    Johnson, M J; Thatcher, E; Cox, M E

    1995-01-01

    Identification of anaerobes recovered from clinical samples is complicated by the fact that certain gram-positive anaerobes routinely stain gram negative; Peptostreptococcus asaccharolyticus, Eubacterium plautii, Clostridium ramosum, Clostridium symbiosum, and Clostridium clostridiiforme are among the nonconformists with regard to conventional Gram-staining procedures. Accurate Gram staining of American Type Culture Collection strains of these anaerobic bacteria is possible by implementing fixing and staining techniques within a gloveless anaerobic chamber. Under anaerobic conditions, gram-positive staining occurred in all test organisms with "quick" fixing techniques with both absolute methanol and formalin. The results support the hypothesis that, when anaerobic bacteria are exposed to oxygen, a breakdown of the physical integrity of the cell wall occurs, introducing Gram stain variability in gram-positive anaerobes. PMID:7538512

  15. Multicenter validation of the VITEK MS v2.0 MALDI-TOF mass spectrometry system for the identification of fastidious gram-negative bacteria.

    Science.gov (United States)

    Branda, John A; Rychert, Jenna; Burnham, Carey-Ann D; Bythrow, Maureen; Garner, Omai B; Ginocchio, Christine C; Jennemann, Rebecca; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Sercia, Linda F; Westblade, Lars F; Ferraro, Mary Jane

    2014-02-01

    The VITEK MS v2.0 MALDI-TOF mass spectrometry system's performance in identifying fastidious gram-negative bacteria was evaluated in a multicenter study. Compared with the reference method (DNA sequencing), the VITEK MS system provided an accurate, species-level identification for 96% of 226 isolates; an additional 1% were accurately identified to the genus level. © 2013.

  16. Growth and adhesion to HT-29 cells inhibition of Gram-negatives by Bifidobacterium longum BB536 e Lactobacillus rhamnosus HN001 alone and in combination.

    Science.gov (United States)

    Inturri, R; Stivala, A; Furneri, P M; Blandino, G

    2016-12-01

    The aim of this study was to test the inhibitory effect of supernatants of broth cultures of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001, both individually and in combination, against Gram-negative strains (uropathogens, enteropathogens and a reference strain). Moreover, in vitro protection of B. longum BB536 and L. rhamnosus HN001, both individually and in combination, against pathogen adhesion to HT-29 cell line, was investigated. The inhibitory activity was performed by the agar diffusion test and in vitro antagonistic activity against pathogen adhesion to human epithelial intestinal HT-29 cells was performed using standardized culture techniques. The study showed that B. longum BB536 and L. rhamnosus HN001, individually and in combination have inhibitory activity against the majority of the Gram negative strains tested. Furthermore, the results showed that both probiotic strains have a good capacity to inhibit pathogenic adhesion to HT-29 cells. Moreover, the ability of B. longum BB536 and L. rhamnosus HN001 to inhibit pathogenic adhesion increased when they were used in combination. The combination of B. longum BB536 and L. rhamnosus HN001 showed inhibitory activity against Gram-negatives and an improved ability to reduce their adhesion properties and to compete with them. The simultaneous presence of the two-probiotic strains could promote competitive mechanisms able to reduce the adhesion properties of pathogen strains and have an important ecological role within the highly competitive environment of the human gut.

  17. Adaptive Mechanisms Underlying Microbial Resistance to Disinfectants

    Science.gov (United States)

    2016-02-01

    11775]). E.coli is a gram-negative, facultative anaerobic, and rod-shaped bacteria commonly found in warm-blooded animals . 2.1.2 Disinfectants...Nisbet, D.J. Disinfectant and Antibiotic Susceptibility Profiles of Escherichia coli O157:H7 Strains from Cattle Carcasses , Feces, and Hides and

  18. A flow-cytometric gram-staining technique for milk-associated bacteria.

    Science.gov (United States)

    Holm, Claus; Jespersen, Lene

    2003-05-01

    A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50 degrees C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at -18 degrees C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5 degrees C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.

  19. Methylobacterium pseudosasae sp. nov., a pink-pigmented, facultatively methylotrophic bacterium isolated from the bamboo phyllosphere.

    Science.gov (United States)

    Madhaiyan, Munusamy; Poonguzhali, Selvaraj

    2014-02-01

    A pink-pigmented, Gram negative, aerobic, facultatively methylotrophic bacterium, strain BL44(T), was isolated from bamboo leaves and identified as a member of the genus Methylobacterium. Phylogenetic analysis based on 16S rRNA gene sequences showed similarity values of 98.7-97.0 % with closely related type strains and showed highest similarity to Methylobacterium zatmanii DSM 5688(T) (98.7 %) and Methylobacterium thiocyanatum DSM 11490(T) (98.7 %). Methylotrophic metabolism in this strain was confirmed by PCR amplification and sequencing of the mxaF gene coding for the α-subunit of methanol dehydrogenase. Strain BL44(T) produced three known quorum sensing signal molecules with similar retention time to C8, C10 and C12-HSLs when characterized by GC-MS. The fatty acid profiles contained major amounts of C18:1 ω7c, iso-3OH C17:0 and summed feature 3 (C16:1 ω7c and/or iso-C15:0 2-OH), which supported the grouping of the isolate in the genus Methylobacterium. The DNA G+C content was 66.9 mol%. DNA relatedness of the strain BL44(T) to its most closely related strains ranged from 12-43.3 %. On the basis of the phenotypic, phylogenetic and DNA-DNA hybridization data, strain BL44(T) is assigned to a novel species of the genus Methylobacterium for which the name Methylobacterium pseudosasae sp. nov. is proposed (type strain BL44(T) = NBRC 105205(T) = ICMP 17622(T)).

  20. Changes in Gram Negative Microorganisms' Resistance Pattern During 4 Years Period in a Referral Teaching Hospital; a Surveillance Study

    Directory of Open Access Journals (Sweden)

    Hossein Khalili

    2012-09-01

    Full Text Available Background and purpose Surveillance studies evaluating antimicrobial susceptibilities are of great value in preventing the spread of resistant pathogens by elucidating the trend of resistance in commonly used antibiotics and as a consequence providing information for prescribing the most appropriate agent. This study is a longitudinal antimicrobial resistance surveillance study designed to evaluate the trend in antimicrobial resistance to gram negative microorganisms from 2007 to 2010. Method:During a four-year period (2007-2010 isolates derived from all patients admitted to infectious diseases ward of Imam Khomeini Hospital, the major referral center for infectious disease in Iran with the highest admission rates, were evaluated. Based on disk diffusion method and zone of inhibition size, the microorganism was regarded as to be sensitive, resistant or has intermediate susceptibility to the antimicrobial agents. Results:The widest spread Gram-negative microorganism in all of isolates taken together in our study was E.coli (30% followed by Stenotrophomonas maltophilia in 28.6% and Enterobacter spp. in 11.9%, respectively. The susceptibility to amikacin, imipenem, piperacillin/tazobactam, and nitrofurantoin was equal or above 50% for all microorganisms over four years. However, the susceptibility to ampicillin, ampicillin/sulbactam, cefotaxim, and ceftriaxone was less than 50% in derived isolates during the study period.Conclusion:In conclusion, the finding of the present study revealed that resistance rate to common antimicrobial agents in Iran is growing and isolates were susceptible mostly to broadspectrum antibiotics including imipenem and piperacillin/tazobactam

  1. Loss of outer membrane integrity in Gram-negative bacteria by silver ...

    Indian Academy of Sciences (India)

    plausible mechanism of bacterial cell disintegration ... New generation antimicrobial and smart drugs are the needs of the present era in fighting microbial ... charides (LPSs) in nature where the lipid portion acts ... sive release of LPS molecules and membrane proteins [10]. ... efficacy of antimicrobial action on Gram bacteria.

  2. Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of gram-positive and gram-negative bacteria

    International Nuclear Information System (INIS)

    Barnes, Robert J.; Molina, Rodrigo; Xu Jianbin; Dobson, Peter J.; Thompson, Ian P.

    2013-01-01

    Titanium dioxide (TiO 2 ) and zinc oxide (ZnO) nanoparticles are important photocatalysts and as such have been extensively studied for the removal of organic compounds from contaminated air and water and for microbial disinfection. Despite much research on the effect of TiO 2 and ZnO nanoparticles on different bacterial species, uncertainties remain about which bacteria are more sensitive to these compounds. Very few studies have directly compared the toxicity of ZnO to TiO 2 under both light and dark conditions. In addition, authors investigating the photocatalytic inactivation of TiO 2 and ZnO nanoparticles on bacteria have failed to investigate the reactive oxygen species (ROS) generation of the nanoparticles, making it difficult to correlate killing action with the generation of ROS. In this study, three types of metal nanoparticle (ZnO 2 ) have been characterised and ROS production assessed through the degradation of methylene blue (MB). The photocatalytic killing potential of three nanoparticle concentrations (0.01, 0.1 and 1 g/L) was then assessed on four representative bacteria: two gram-positive (S. aureus and B. subtilis) and two gram-negative (E. coli and P. aeruginosa). Results showed that out of the three nanoparticles tested, the TiO 2 nanoparticles generated more ROS than the ZnO nanoparticles, corresponding to a greater photocatalytic inactivation of three of the four species of bacteria examined. The MB decomposition results correlated well with the bacterial inactivation results with higher TiO 2 nanoparticle concentrations leading to greater ROS production and increased loss of cell viability. Although producing less ROS than the TiO 2 nanoparticles under ultraviolet light, the ZnO nanoparticles were toxic to two of the bacterial species even under dark conditions. In this study, no correlation between cell wall type and bacterial inactivation was observed for any of the nanoparticles tested although both gram-positive bacteria were sensitive to

  3. Rapid and cost-effective identification and antimicrobial susceptibility testing in patients with Gram-negative bacteremia directly from blood-culture fluid.

    Science.gov (United States)

    Sakarikou, Christina; Altieri, Anna; Bossa, Maria Cristina; Minelli, Silvia; Dolfa, Camilla; Piperno, Micol; Favalli, Cartesio

    2018-03-01

    Rapid pathogen identification (ID) and antimicrobial susceptibility testing (AST) in bacteremia cases or sepsis could improve patient prognosis. Thus, it is important to provide timely reports, which make it possible for clinicians to set up appropriate antibiotic therapy during the early stages of bloodstream infection (BSI). This study evaluates an in-house microbiological protocol for early ID as well as AST on Gram negative bacteria directly from positive monomicrobial and polymicrobial blood cultures (BCs). A total of 102 non-duplicated positive BCs from patients with Gram-negative bacteremia were tested. Both IDs and ASTs were performed from bacterial pellets extracted directly from BCs using our protocol, which was applied through the combined use of a MALDI-TOF MS and Vitek2 automated system. The results of our study showed a 100% agreement in bacterial ID and 98.25% categorical agreement in AST when compared to those obtained by routine conventional methods. We recorded only a 0.76% minor error (mE), 0.76% major error (ME) and a 0.20% very major error (VME). Moreover, the turnaround time (TAT) regarding the final AST report was significantly shortened (ΔTAT = 8-20 h, p patient management, by early and appropriate antimicrobial treatment and could potentially optimize antimicrobial stewardship programs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The Influence of Efflux Pump Inhibitors on the Activity of Non-Antibiotic NSAIDS against Gram-Negative Rods.

    Directory of Open Access Journals (Sweden)

    Agnieszka E Laudy

    Full Text Available Most patients with bacterial infections suffer from fever and various pains that require complex treatments with antibiotics, antipyretics, and analgaesics. The most common drugs used to relieve these symptoms are non-steroidal anti-inflammatory drugs (NSAIDs, which are not typically considered antibiotics. Here, we investigate the effects of NSAIDs on bacterial susceptibility to antibiotics and the modulation of bacterial efflux pumps.The activity of 12 NSAID active substances, paracetamol (acetaminophen, and eight relevant medicinal products was analyzed with or without pump inhibitors against 89 strains of Gram-negative rods by determining the MICs. Furthermore, the effects of NSAIDs on the susceptibility of clinical strains to antimicrobial agents with or without PAβN (Phe-Arg-β-naphtylamide were measured.The MICs of diclofenac, mefenamic acid, ibuprofen, and naproxen, in the presence of PAβN, were significantly (≥4-fold reduced, decreasing to 25-1600 mg/L, against the majority of the studied strains. In the case of acetylsalicylic acid only for 5 and 7 out of 12 strains of P. mirabilis and E. coli, respectively, a 4-fold increase in susceptibility in the presence of PAβN was observed. The presence of Aspirin resulted in a 4-fold increase in the MIC of ofloxacin against only two strains of E. coli among 48 tested clinical strains, which included species such as E. coli, K. pneumoniae, P. aeruginosa, and S. maltophilia. Besides, the medicinal products containing the following NSAIDs, diclofenac, mefenamic acid, ibuprofen, and naproxen, did not cause the decrease of clinical strains' susceptibility to antibiotics.The effects of PAβN on the susceptibility of bacteria to NSAIDs indicate that some NSAIDs are substrates for efflux pumps in Gram-negative rods. Morever, Aspirin probably induced efflux-mediated resistance to fluoroquinolones in a few E. coli strains.

  5. Small-Molecule Inhibitors of Gram-Negative Lipoprotein Trafficking Discovered by Phenotypic Screening

    Science.gov (United States)

    Fleming, Paul R.; MacCormack, Kathleen; McLaughlin, Robert E.; Whiteaker, James D.; Narita, Shin-ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A.

    2015-01-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. PMID:25583975

  6. Small-molecule inhibitors of gram-negative lipoprotein trafficking discovered by phenotypic screening.

    Science.gov (United States)

    McLeod, Sarah M; Fleming, Paul R; MacCormack, Kathleen; McLaughlin, Robert E; Whiteaker, James D; Narita, Shin-Ichiro; Mori, Makiko; Tokuda, Hajime; Miller, Alita A

    2015-03-01

    In Gram-negative bacteria, lipoproteins are transported to the outer membrane by the Lol system. In this process, lipoproteins are released from the inner membrane by the ABC transporter LolCDE and passed to LolA, a diffusible periplasmic molecular chaperone. Lipoproteins are then transferred to the outer membrane receptor protein, LolB, for insertion in the outer membrane. Here we describe the discovery and characterization of novel pyridineimidazole compounds that inhibit this process. Escherichia coli mutants resistant to the pyridineimidazoles show no cross-resistance to other classes of antibiotics and map to either the LolC or LolE protein of the LolCDE transporter complex. The pyridineimidazoles were shown to inhibit the LolA-dependent release of the lipoprotein Lpp from E. coli spheroplasts. These results combined with bacterial cytological profiling are consistent with LolCDE-mediated disruption of lipoprotein targeting to the outer membrane as the mode of action of these pyridineimidazoles. The pyridineimidazoles are the first reported inhibitors of the LolCDE complex, a target which has never been exploited for therapeutic intervention. These compounds open the door to further interrogation of the outer membrane lipoprotein transport pathway as a target for antimicrobial therapy. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. RNA degradation in Archaea and Gram-negative bacteria different from Escherichia coli.

    Science.gov (United States)

    Evguenieva-Hackenberg, Elena; Klug, Gabriele

    2009-01-01

    Exoribonucleolytic and endoribonucleolytic activities are important for controlled degradation of RNA and contribute to the regulation of gene expression at the posttranscriptional level by influencing the half-lives of specific messenger RNAs. The RNA half-lives are determined by the characteristics of the RNA substrates and by the availability and the properties of the involved proteins-ribonucleases and assisting polypeptides. Much is known about RNA degradation in Eukarya and Bacteria, but there is limited information about RNA-degrading enzymes and RNA destabilizing or stabilizing elements in the domain of the Archaea. The recent progress in the understanding of the structure and function of the archaeal exosome, a protein complex with RNA-degrading and RNA-tailing capabilities, has given some first insights into the mechanisms of RNA degradation in the third domain of life and into the evolution of RNA-degrading enzymes. Moreover, other archaeal RNases with degrading potential have been described and a new mechanism for protection of the 5'-end of RNA in Archaea was discovered. Here, we summarize the current knowledge on RNA degradation in the Archaea. Additionally, RNA degradation mechanisms in Rhodobacter capsulatus and Pseudomonas syringae are compared to those in the major model organism for Gram-negatives, Escherichia coli, which dominates our view on RNA degradation in Bacteria.

  8. Gram-positive rods prevailing in teeth with apical periodontitis undergoing root canal treatment.

    Science.gov (United States)

    Chávez de Paz, L E; Molander, A; Dahlén, G

    2004-09-01

    To identify Gram-positive rods from root canals of teeth with apical periodontitis and to examine their associations with other species. Consecutive root canal samples (RCSs) from 139 teeth undergoing root canal treatment were analyzed prospectively for cultivable microbes. Gram-positive rods in the first RCS submitted after chemo-mechanical preparation were categorised to genus level by selective media and gas-liquid chromatography (GLC), and identified to species level by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Associations between organisms were measured by odds ratios (OR). In the first samples submitted a total of 158 Gram-positive rods, 115 Gram-positive cocci, 26 Gram-negative rods and 9 Gram-negative cocci, were identified. At genus levels Gram-positive rods were classified into: Lactobacillus spp. (38%), Olsenella spp. (18%), Propionibacterium spp. (13%), Actinomyces spp. (12%), Bifidobacterium spp. (13%) and Eubacterium spp. (6%). The most frequent species were Olsenella uli, Lactobacillus paracasei and Propionibacterium propionicum. In subsequent samples taken during treatment, Gram-positive rods were also identified, although the number of strains was considerably reduced. Positive associations were observed between members of the genus lactobacilli and Gram-positive cocci (OR>2). Olsenella uli and Lactobacillus spp. predominated over other Gram-positive rods. A possible association exists between Lactobacillus spp. and Gram-positive cocci in root canals of teeth with apical periodontitis receiving treatment.

  9. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Science.gov (United States)

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30) from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum) except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41) were as strongly represented as non-fermenting bacteria (n = 37). Among Enterobacteriaceae, E. cloacae (n = 21), and Klebsiella pneumoniae (n = 13) were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL) producers (n = 11). No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order to encourage

  10. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    Directory of Open Access Journals (Sweden)

    Ferielle Mesbah Zekar

    2017-08-01

    Full Text Available The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterranean coast of Algeria. Ninety soil samples and 45 irrigation water samples were also sampled in farms in order to assess them as potential inoculum sources. All samples were investigated at the same time on ceftazidime-containing selective media for 3GC-resistant Gram-negative bacteria detection and on Hektoen media, for Salmonella spp. presence. The bacteria isolated (n = 30 from fruits and vegetables, soil and irrigation water collected in the farms were almost all non-fermenting bacterial species (Stenotrophomonas, Acinetobacter, Pseudomonas, Ochrobactrum except one strain of Enterobacter cloacae and two strains of Citrobacter murliniae, isolated on one cucumber and two tomato samples in the same farm. Greater diversity in bacterial species and antimicrobial resistance profiles was observed at markets: Enterobacteriaceae (n = 41 were as strongly represented as non-fermenting bacteria (n = 37. Among Enterobacteriaceae, E. cloacae (n = 21, and Klebsiella pneumoniae (n = 13 were the most common isolates. Most of the K. pneumoniae isolates were extended-spectrum beta-lactamase (ESBL producers (n = 11. No Salmonella spp. was recovered in any sample. This study showed that fruits and vegetables including those which may be eaten up raw constitute a reservoir of 3GC-resistant Gram-negative bacteria and multi-drug resistant-bacteria in general that can be transferred to humans through food. The general public should be informed of this hazard for health in order

  11. The accuracy of Gram stain of respiratory specimens in excluding Staphylococcus aureus in ventilator-associated pneumonia.

    Science.gov (United States)

    Gottesman, Tamar; Yossepowitch, Orit; Lerner, Evgenia; Schwartz-Harari, Orna; Soroksky, Arie; Yekutieli, Daniel; Dan, Michael

    2014-10-01

    To evaluate the Gram stain of deep tracheal aspirate as a tool to direct empiric antibiotic therapy, and more specifically as a tool to exclude the need for empiric antibiotic coverage against Staphylococcus aureus in ventilator-associated pneumonia (VAP). A prospective, single-center, observational, cohort study. All wards at a community hospital. Adult patients requiring mechanical ventilation, identified as having VAP in a 54-month prospective surveillance database. Sampling of lower airway secretions by deep endotracheal aspiration was taken from each patient who developed VAP. Samples were sent immediately for Gram stain and qualitative bacterial cultures. Demographic and relevant clinical data were collected; Gram stain, culture, and antibiotic susceptibility results were documented; and outcome was followed prospectively. The analysis included 114 consecutive patients with 115 episodes of VAP from June 2007 to January 2012. Sensitivity of Gram stain compared with culture was 90.47% for gram-positive cocci, 69.6% for gram-negative rods, and 50% for sterile cultures. Specificity was 82.5%, 77.8%, and 79%, respectively. Negative predictive value was high for gram-positive cocci (97%) and sterile cultures (96%) but low for gram-negative rods (20%). Acinetobacter baumanii (45%) and Pseudomonas aeruginosa (38 %) were the prevailing isolates. S aureus was found in 18.3% of the patients. Most isolates were multiresistant. Absence of gram-positive bacteria on Gram stain had a high negative predictive value. These data can be used to narrow the initial empiric antibiotic regimen and to avoid unnecessary exposure of patients to vancomycin and other antistaphyloccocal agents. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Detoxification of hexavalent chromium by an indigenous facultative ...

    African Journals Online (AJOL)

    s

    2013-03-06

    Mar 6, 2013 ... Full Length Research Paper ... to reduce the hazardous compounds concentration in effluents ... potent facultative anaerobic bacteria from tannery effluent ...... Biological degradation and bioremediation of toxic chemicals,.

  13. The Carbapenem Inactivation Method (CIM), a Simple and Low-Cost Alternative for the Carba NP Test to Assess Phenotypic Carbapenemase Activity in Gram-Negative Rods

    NARCIS (Netherlands)

    Zwaluw, K. van der; Haan, A. de; Pluister, G.N.; Bootsma, H.J.; Neeling, A.J. de; Schouls, L.M.

    2015-01-01

    A new phenotypic test, called the Carbapenem Inactivation Method (CIM), was developed to detect carbapenemase activity in Gram-negative rods within eight hours. This method showed high concordance with results obtained by PCR to detect genes coding for the carbapenemases KPC, NDM, OXA-48, VIM, IMP

  14. Rapid identification of carbapenemase genes in gram-negative bacteria with an oligonucleotide microarray-based assay.

    Directory of Open Access Journals (Sweden)

    Sascha D Braun

    Full Text Available Rapid molecular identification of carbapenemase genes in Gram-negative bacteria is crucial for infection control and prevention, surveillance and for epidemiological purposes. Furthermore, it may have a significant impact upon determining the appropriate initial treatment and greatly benefit for critically ill patients. A novel oligonucleotide microarray-based assay was developed to simultaneously detect genes encoding clinically important carbapenemases as well as selected extended (ESBL and narrow spectrum (NSBL beta-lactamases directly from clonal culture material within few hours. Additionally, a panel of species specific markers was included to identify Escherichia coli, Pseudomonas aeruginosa, Citrobacter freundii/braakii, Klebsiella pneumoniae and Acinetobacter baumannii. The assay was tested using a panel of 117 isolates collected from urinary, blood and stool samples. For these isolates, phenotypic identifications and susceptibility tests were available. An independent detection of carbapenemase, ESBL and NSBL genes was carried out by various external reference laboratories using PCR methods. In direct comparison, the microarray correctly identified 98.2% of the covered carbapenemase genes. This included blaVIM (13 out of 13, blaGIM (2/2, blaKPC (27/27, blaNDM (5/5, blaIMP-2/4/7/8/13/14/15/16/31 (10/10, blaOXA-23 (12/13, blaOXA-40-group (7/7, blaOXA-48-group (32/33, blaOXA-51 (1/1 and blaOXA-58 (1/1. Furthermore, the test correctly identified additional beta-lactamases [blaOXA-1 (16/16, blaOXA-2 (4/4, blaOXA-9 (33/33, OXA-10 (3/3, blaOXA-51 (25/25, blaOXA-58 (2/2, CTX-M1/M15 (17/17 and blaVIM (1/1]. In direct comparison to phenotypical identification obtained by VITEK or MALDI-TOF systems, 114 of 117 (97.4% isolates, including Acinetobacter baumannii (28/28, Enterobacter spec. (5/5, Escherichia coli (4/4, Klebsiella pneumoniae (62/63, Klebsiella oxytoca (0/2, Pseudomonas aeruginosa (12/12, Citrobacter freundii (1/1 and Citrobacter

  15. Molecular Structure of Endotoxins from Gram-negative Marine Bacteria: An Update

    Directory of Open Access Journals (Sweden)

    Antonio Molinaro

    2007-09-01

    Full Text Available Marine bacteria are microrganisms that have adapted, through millions of years, to survival in environments often characterized by one or more extreme physical or chemical parameters, namely pressure, temperature and salinity. The main interest in the research on marine bacteria is due to their ability to produce several biologically active molecules, such as antibiotics, toxins and antitoxins, antitumor and antimicrobial agents. Nonetheless, lipopolysaccharides (LPSs, or their portions, from Gram-negative marine bacteria, have often shown low virulence, and represent potential candidates in the development of drugs to prevent septic shock. Besides, the molecular architecture of such molecules is related to the possibility of thriving in marine habitats, shielding the cell from the disrupting action of natural stress factors. Over the last few years, the depiction of a variety of structures of lipids A, core oligosaccharides and O-specific polysaccharides from LPSs of marine microrganisms has been given. In particular, here we will examine the most recently encountered structures for bacteria belonging to the genera Shewanella, Pseudoalteromonas and Alteromonas, of the γ-Proteobacteria phylum, and to the genera Flavobacterium, Cellulophaga, Arenibacter and Chryseobacterium, of the Cytophaga- Flavobacterium-Bacteroides phylum. Particular attention will be paid to the chemical features expressed by these structures (characteristic monosaccharides, non-glycidic appendages, phosphate groups, to the typifying traits of LPSs from marine bacteria and to the possible correlation existing between such features and the adaptation, over years, of bacteria to marine environments.

  16. Use of magnetic beads for Gram staining of bacteria in aqueous suspension.

    Science.gov (United States)

    Yazdankhah, S P; Sørum, H; Larsen, H J; Gogstad, G

    2001-12-01

    A Gram staining technique was developed using monodisperse magnetic beads in concentrating bacteria in suspension for downstream application. The technique does not require heat fixation of organisms, electrical power, or a microscope. Gram-negative and Gram-positive bacteria were identified macroscopically based on the colour of the suspension. The bacteria concentrated on magnetic beads may also be identified microscopically.

  17. Detection of irradiated chicken and fish meats by the determination of Gram negative bacterial count and bacterial endotoxins

    International Nuclear Information System (INIS)

    Badr, H.M.

    2010-01-01

    The aim of this investigation was to study the possibility of detecting irradiated chicken and fish meats by the determination of Gram negative bacteria combined with the determination of endotoxin concentrations. Samples of chicken breast with skin, skinless chicken breast and eviscerated Bolti fish (Tilabia nilotica) were irradiated at room temperature at doses of 0, 1.5 and 3 kGy followed by storage at refrigeration temperature (4 ± 1 degree C) for 12 days or frozen storage at -18 degree C for 60 days. Furthermore, other samples of chicken and Bolti fish were irradiated in the frozen sate at doses of 0, 3, and 7 kGy followed by frozen storage at - 18 degree C for 60 days. Then the enumeration of Gram negative bacteria in conjunction with the determination of endotoxin concentrations were carried out for both irradiated and non-irradiated samples post treatments and during storage in addition to the discovery of Pseudomonas spp. The obtained results showed that chicken and fish samples irradiated at dose of 1.5 kGy could be identified during refrigerated storage for 6 and 9 days, respectively, while all samples irradiated at dose of 3 kGy were identifiable during 12 days of refrigerated storage. Moreover, all irradiated and frozen stored samples were identifiable during their frozen storage (- 18 degree C). The absence of Pseudomonads in all irradiated samples may aid in the differentiation of irradiated and non-irradiated samples especially during refrigerated storage. This method can be applied as a general screening method to predict the possible treatment of chicken and fish meats by ionizing radiation

  18. A molecular gram stain using broad range PCR and pyrosequencing technology: a potentially useful tool for diagnosing orthopaedic infections.

    Science.gov (United States)

    Kobayashi, Naomi; Bauer, Thomas W; Togawa, Daisuke; Lieberman, Isador H; Sakai, Hiroshige; Fujishiro, Takaaki; Tuohy, Marion J; Procop, Gary W

    2005-06-01

    The bacteria associated with orthopaedic infections are usually common gram-positive and gram-negative bacteria. This fundamental grouping of bacteria is a necessary first step in the selection of appropriate antibiotics. Since polymerase chain reaction (PCR) is more rapid and may be more sensitive than culture, we developed a postamplification pyrosequencing method to subcategorize bacteria based on a few nucleotide polymorphisms in the 16S rRNA gene. We validated this method using well-characterized strains of bacteria and applied it to specimens from spinal surgery cases with suspected infections. Lysates of 114 bacteria including 75 species were created following standard cultivation to obtain DNA. The DNA was amplified by a broad-range real-time PCR. The amplicons were evaluated by pyrosequencing and were classified as gram-positive, gram-negative, or acid-fast bacilli based on the first three to five nucleotides sequenced. In addition, clinical cases of suspected infection were obtained from spinal surgery. The results of the "molecular Gram stain" were compared with the results of traditional Gram stain and culture. The lysates of 107 (93.9%) of the bacteria extracts tested were appropriately categorized as gram-positive and gram-negative or as acid-fast bacilli on the basis of this assay. The sensitivity and specificity of this assay were 100% and 97.4% for gram-positive and 88.3% and 100% for gram-negative isolates. All of the five clinical samples were appropriately categorized as containing gram-positive or gram-negative bacteria with this assay. This study demonstrates that high sensitivity and specificity of a molecular gram stain may be achieved using broad-range real-time PCR and pyrosequencing.

  19. Gram staining in the diagnosis of acute septic arthritis.

    Science.gov (United States)

    Faraj, A A; Omonbude, O D; Godwin, P

    2002-10-01

    This study aimed at determining the sensitivity and specificity of Gram staining of synovial fluid as a diagnostic tool in acute septic arthritis. A retrospective study was made of 22 patients who had arthroscopic lavage following a provisional diagnosis of acute septic arthritis of the knee joint. Gram stains and cultures of the knee aspirates were compared with the clinical and laboratory parameters, to evaluate their usefulness in diagnosing acute arthritis. All patients who had septic arthritis had pain, swelling and limitation of movement. CRP was elevated in 90% of patients. The incidence of elevated white blood cell count was higher in the group of patients with a positive Gram stain study (60%) as compared to patients with a negative Gram stain study (33%). Gram staining sensitivity was 45%. Its specificity was however 100%. Gram staining is an unreliable tool in early decision making in patients requiring urgent surgical drainage and washout.

  20. Incidence of carbapenem resistant nonfermenting gram negative bacilli from patients with respiratory infections in the intensive care units

    Directory of Open Access Journals (Sweden)

    Gladstone P

    2005-01-01

    Full Text Available Resistance to carbapenems is commonly seen in nonfermenting gram negative bacilli (NFGNB. We document herein the prevalence of carbapenem resistance in NFGNB isolated from patients with respiratory tract infections in the intensive care units (ICUs. A total of 460 NFGNB were isolated from 606 endotracheal aspirate specimens during January through December 2003, of which 56 (12.2% were found to be resistant to imipenem and meropenem. Of these, 24 (42.8% were Pseudomonas aeruginosa , 8 (14.2% were Acinetobacter spp. and 24 (42.8% were other NFGNB. Stringent protocols such as antibiotic policies and resistance surveillance programs are mandatory to curb these bacteria in ICU settings.

  1. Common TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms are not associated with disease severity or outcome from Gram negative sepsis

    Directory of Open Access Journals (Sweden)

    Eugen-Olsen Jesper

    2007-09-01

    Full Text Available Abstract Background Several studies have investigated single nucleotide polymorphisms (SNPs in candidate genes associated with sepsis and septic shock with conflicting results. Only few studies have combined the analysis of multiple SNPs in the same population. Methods Clinical data and DNA from consecutive adult patients with culture proven Gram negative bacteremia admitted to a Danish hospital between 2000 and 2002. Analysis for commonly described SNPs of tumor necrosis-α, (TNF-α, interleukin-1β (IL-1β, plasminogen activator-1 (PAI-1, urokinase plasminogen activator (uPA, CD14 and toll-like receptor 4 (TLR4 was done. Results Of 319 adults, 74% had sepsis, 19% had severe sepsis and 7% were in septic shock. No correlation between severity or outcome of sepsis was observed for the analyzed SNPs of TNF-α, IL-1β, PAI-1, uPA, CD14 or TLR-4. In multivariate Cox proportional hazard regression analysis, increasing age, polymicrobial infection and haemoglobin levels were associated with in-hospital mortality. Conclusion We did not find any association between TNF-α, IL-1β, PAI-1, uPA, CD14 and TLR4 polymorphisms and outcome of Gram negative sepsis. Other host factors appear to be more important than the genotypes studied here in determining the severity and outcome of Gram negative sepsis.

  2. Isolation of obligate and facultative anaerobic bacteria from feline subcutaneous abscesses.

    Science.gov (United States)

    Hoshuyama, S; Kanoe, M; Amimoto, A

    1996-03-01

    A total of 113 specimens collected from purulent skin lesions of household cats was examined bacteriologically. Ninety seven isolates obtained from 74 specimens (65.5%). Of these, 11 specimens (9.7%) contained obligate anaerobes only, 18 specimens (15.9%) yielded both obligate and facultative anaerobes. In the obligate anaerobes detected, genus Fusobacterium was the most frequently observed and F. nucleatum was most common species. Pasteurella multocida was the facultative anaerobe which was most frequently detected.

  3. ANTIBACTERIAL ACTIVITY AND COMPOSITION OF ESSENTIAL OILS EXTRACTED FROM SOME PLANTS BELONGING TO FAMILY LAMIACEAE AGAINST SOME MULTIDRUG RESISTANT GRAM NEGATIVE BACTERIA

    OpenAIRE

    Fatma A. Ahmed, Nadia Hafez Salah El-Din Ouda, Sherif Moussa Husseiny and Abeer Adel

    2018-01-01

    The aim of this study was to evaluate the antibacterial activity of eight essential oils against some multi-drug resistant Gram negative bacteria (three different isolates of each Acinetobacter baumannii and Klebsiella pneumoniae). The hydrodistilled essential oils of the fresh aerial part of some medicinal plants belonging to family Lamiaceae namely: Origanum majorana L. , Origanum majorana L. , Origanum syriacum L., Thymus capitatus L., Thymus vulgaris L., Salvia fruticosa Mill., Mentha vir...

  4. [Antimicrobial resistance in gram negative bacteria isolated from intensive care units of Colombian hospitals, WHONET 2003, 2004 and 2005].

    Science.gov (United States)

    Miranda, María Consuelo; Pérez, Federico; Zuluaga, Tania; Olivera, María del Rosario; Correa, Adriana; Reyes, Sandra Lorena; Villegas, Maria Virginia

    2006-09-01

    Surveillance systems play a key role in the detection and control of bacterial resistance. It is necessary to constantly collect information from all institutions because the mechanisms of bacterial resistance can operate in different ways between countries, cities and even in hospitals in the same area. Therefore local information is important in order to learn about bacterial behaviour and design appropriate interventions for each institution. Between January 2003 and December 2004, the Centro Internacional de Entrenamiento e Investigaciones Médicas (CIDEIM) developed a surveillance project in 10 tertiary hospitals in 6 cities of Colombia. Describe the trends of antibiotic resistance among the isolates of Escherichia coli, Klebsiella pneumoniae, Pseudomona aeruginosa, Acinetobacter baumannii and Enterobacter cloacae, five of the most prevalent nosocomial Gram negative pathogens. The susceptibility tests were performed by automated methods in 9 hospitals and by Kirby Bauer in 1 hospital. Antibiotics with known activity against Gram negatives, according to the Clinical Laboratory Standards Institute guidelines, were selected. The laboratories performed internal and external quality controls. During the study period, the information was downloaded monthly from the databases of each microbiology laboratory and sent to CIDEIM where it was centralized in a database using the system WHONET 5.3. The high resistance rates reported especially for A. baumannii, evidenced the presence of multidrug resistant bacteria in both ICUs and wards at every studied institution. The creation of a national surveillance network to improve our capabilities to detect, follow up, and control the antibiotic resistance in Colombia is urgently needed.

  5. Changes in gram negative microorganisms’ resistance pattern during 4 years period in a referral teaching hospital; a surveillance study

    Directory of Open Access Journals (Sweden)

    Khalili Hossein

    2012-09-01

    Full Text Available Abstract Background and purpose Surveillance studies evaluating antimicrobial susceptibilities are of great value in preventing the spread of resistant pathogens by elucidating the trend of resistance in commonly used antibiotics and as a consequence providing information for prescribing the most appropriate agent. This study is a longitudinal antimicrobial resistance surveillance study designed to evaluate the trend in antimicrobial resistance to gram negative microorganisms from 2007 to 2010. Method During a four-year period (2007–2010 isolates derived from all patients admitted to infectious diseases ward of Imam Khomeini Hospital, the major referral center for infectious disease in Iran with the highest admission rates, were evaluated. Based on disk diffusion method and zone of inhibition size, the microorganism was regarded as to be sensitive, resistant or has intermediate susceptibility to the antimicrobial agents. Results The widest spread Gram-negative microorganism in all of isolates taken together in our study was E.coli (30% followed by Stenotrophomonas maltophilia in 28.6% and Enterobacter spp. in 11.9%, respectively. The susceptibility to amikacin, imipenem, piperacillin/tazobactam, and nitrofurantoin was equal or above 50% for all microorganisms over four years. However, the susceptibility to ampicillin, ampicillin/sulbactam, cefotaxim, and ceftriaxone was less than 50% in derived isolates during the study period. Conclusion In conclusion, the finding of the present study revealed that resistance rate to common antimicrobial agents in Iran is growing and isolates were susceptible mostly to broad-spectrum antibiotics including imipenem and piperacillin/tazobactam.

  6. Antimicrobial susceptibility of gram-negative pathogens isolated from patients with complicated intra-abdominal infections in South African hospitals (SMART Study 2004-2009): impact of the new carbapenem breakpoints.

    Science.gov (United States)

    Brink, Adrian J; Botha, Roelof F; Poswa, Xoliswa; Senekal, Marthinus; Badal, Robert E; Grolman, David C; Richards, Guy A; Feldman, Charles; Boffard, Kenneth D; Veller, Martin; Joubert, Ivan; Pretorius, Jan

    2012-02-01

    The Study for Monitoring Antimicrobial Resistance Trends (SMART) follows trends in resistance among aerobic and facultative anaerobic gram-negative bacilli (GNB) isolated from complicated intra-abdominal infections (cIAIs) in patients around the world. During 2004-2009, three centralized clinical microbiology laboratories serving 59 private hospitals in three large South African cities collected 1,218 GNB from complicated intra-abdominal infections (cIAIs) and tested them for susceptibility to 12 antibiotics according to the 2011 Clinical Laboratory Standards Institute (CLSI) guidelines. Enterobacteriaceae comprised 83.7% of the isolates. Escherichia coli was the species isolated most commonly (46.4%), and 7.6% of these were extended-spectrum β-lactamase (ESBL)-positive. The highest ESBL rate was documented for Klebsiella pneumoniae (41.2%). Overall, ertapenem was the antibiotic most active against susceptible species for which it has breakpoints (94.6%) followed by amikacin (91.9%), piperacillin-tazobactam (89.3%), and imipenem-cilastatin (87.1%), whereas rates of resistance to ceftriaxone, cefotaxime, ciprofloxacin, and levofloxacin were documented to be 29.7%, 28.7%, 22.5%, and 21.1%, respectively. Multi-drug resistance (MDR), defined as resistance to three or more antibiotic classes, was significantly more common in K. pneumoniae (27.9%) than in E. coli (4.9%; p<0.0001) or Proteus mirabilis (4.1%; p<0.05). Applying the new CLSI breakpoints for carbapenems, susceptibility to ertapenem was reduced significantly in ESBL-positive E. coli compared with ESBL-negative isolates (91% vs. 98%; p<0.05), but this did not apply to imipenem-cilastatin (95% vs. 99%; p=0.0928). A large disparity between imipenem-cilastatin and ertapenem susceptibility in P. mirabilis and Morganella morganii was documented (24% vs. 96% and 15% vs. 92%, respectively), as most isolates of these two species had imipenem-cilastatin minimum inhibitory concentrations in the 2-4 mcg/mL range, which

  7. Methylocella Species Are Facultatively Methanotrophic

    OpenAIRE

    Dedysh, Svetlana N.; Knief, Claudia; Dunfield, Peter F.

    2005-01-01

    All aerobic methanotrophic bacteria described to date are unable to grow on substrates containing carbon-carbon bonds. Here we demonstrate that members of the recently discovered genus Methylocella are an exception to this. These bacteria are able to use as their sole energy source the one-carbon compounds methane and methanol, as well as the multicarbon compounds acetate, pyruvate, succinate, malate, and ethanol. To conclusively verify facultative growth, acetate and methane were used as mod...

  8. Fastidious Gram-Negatives: Identification by the Vitek 2 Neisseria-Haemophilus Card and by Partial 16S rRNA Gene Sequencing Analysis.

    Science.gov (United States)

    Sönksen, Ute Wolff; Christensen, Jens Jørgen; Nielsen, Lisbeth; Hesselbjerg, Annemarie; Hansen, Dennis Schrøder; Bruun, Brita

    2010-12-31

    Taxonomy and identification of fastidious Gram negatives are evolving and challenging. We compared identifications achieved with the Vitek 2 Neisseria-Haemophilus (NH) card and partial 16S rRNA gene sequence (526 bp stretch) analysis with identifications obtained with extensive phenotypic characterization using 100 fastidious Gram negative bacteria. Seventy-five strains represented 21 of the 26 taxa included in the Vitek 2 NH database and 25 strains represented related species not included in the database. Of the 100 strains, 31 were the type strains of the species. Vitek 2 NH identification results: 48 of 75 database strains were correctly identified, 11 strains gave `low discrimination´, seven strains were unidentified, and nine strains were misidentified. Identification of 25 non-database strains resulted in 14 strains incorrectly identified as belonging to species in the database. Partial 16S rRNA gene sequence analysis results: For 76 strains phenotypic and sequencing identifications were identical, for 23 strains the sequencing identifications were either probable or possible, and for one strain only the genus was confirmed. Thus, the Vitek 2 NH system identifies most of the commonly occurring species included in the database. Some strains of rarely occurring species and strains of non-database species closely related to database species cause problems. Partial 16S rRNA gene sequence analysis performs well, but does not always suffice, additional phenotypical characterization being useful for final identification.

  9. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014–2016: Study for monitoring antimicrobial resistance trend report

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2018-01-01

    Full Text Available Background: The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. Materials and Methods: This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014–2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. Results: A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205 followed by 25% of Klebsiella pneumoniae (n = 676 and 11% of Pseudomonas aeruginosa (n = 308. Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL-positive isolates were ranged from 66%–77% in E. coli to 61%–72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Conclusion: Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that

  10. The effect of protein-coated contact lenses on the adhesion and viability of gram negative bacteria.

    Science.gov (United States)

    Williams, Timothy J; Schneider, Rene P; Willcox, Mark D P

    2003-10-01

    Gram negative bacterial adhesion to contact lenses can cause adverse responses. During contact lens wear, components of the tear film adsorb to the contact lens. This study aimed to investigate the effect of this conditioning film on the viability of bacteria. Bacteria adhered to contact lenses which were either unworn, worn for daily-, extended- or overnight-wear or coated with lactoferrin or lysozyme. Numbers of viable and total cells were estimated. The number of viable attached cells was found to be significantly lower than the total number of cells on worn (50% for strain Paer1 on daily-wear lenses) or lactoferrin-coated lenses (56% for strain Paer1). Lysozyme-coated lenses no statistically significant effect on adhesion. The conditioning film gained through wear may not inhibit bacterial adhesion, but may act adversely upon those bacteria that succeed in attaching.

  11. The distribution of carbapenem- and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India.

    Science.gov (United States)

    Manohar, Prasanth; Shanthini, Thamaraiselvan; Ayyanar, Ramankannan; Bozdogan, Bulent; Wilson, Aruni; Tamhankar, Ashok J; Nachimuthu, Ramesh; Lopes, Bruno S

    2017-07-01

    The occurrence of carbapenem- and colistin-resistance among Gram-negative bacteria is increasing worldwide. The aim of this study was to understand the distribution of carbapenem- and colistin-resistance in two areas in Tamil Nadu, India. The clinical isolates (n=89) used in this study were collected from two diagnostic centres in Tamil Nadu, India. The bacterial isolates were screened for meropenem- and colistin-resistance. Further, resistance genes blaNDM-1, blaOXA-48-like, blaIMP, blaVIM, blaKPC, mcr-1 and mcr-2 and integrons were studied. The synergistic effect of meropenem in combination with colistin was assessed. A total of 89 bacterial isolates were studied which included Escherichia coli (n=43), Klebsiella pneumoniae (n=18), Pseudomonas aeruginosa (n=10), Enterobacter cloacae (n=6), Acinetobacter baumannii (n=5), Klebsiella oxytoca (n=4), Proteus mirabilis (n=2) and Salmonella paratyphi (n=1). MIC testing showed that 58/89 (65 %) and 29/89 (32 %) isolates were resistant to meropenem and colistin, respectively, whereas 27/89 (30 %) isolates were resistant to both antibiotics. Escherichia coli, K. pneumoniae, K. oxytoca, Pseudomonas aeruginosa, and Enterobacter cloacae isolates were blaNDM-1-positive (n=20). Some strains of Escherichia coli, K. pneumoniae and K. oxytoca were blaOXA-181-positive (n=4). Class 1, 2 and 3 integrons were found in 24, 20 and 3 isolates, respectively. Nine NDM-1-positive Escherichia coli strains could transfer carbapenem resistance via plasmids to susceptible Escherichia coli AB1157. Meropenem and colistin showed synergy in 10/20 (50 %) isolates by 24 h time-kill studies. Our results highlight the distribution of carbapenem- and colistin-resistance in Gram-negative bacteria isolated from the Tamil Nadu region in South India.

  12. Lack of clinical utility of urine gram stain for suspected urinary tract infection in pediatric patients.

    Science.gov (United States)

    Cantey, Joseph B; Gaviria-Agudelo, Claudia; McElvania TeKippe, Erin; Doern, Christopher D

    2015-04-01

    Urinary tract infection (UTI) is one of the most common infections in children. Urine culture remains the gold standard for diagnosis, but the utility of urine Gram stain relative to urinalysis (UA) is unclear. We reviewed 312 pediatric patients with suspected UTI who had urine culture, UA, and urine Gram stain performed from a single urine specimen. UA was considered positive if ≥10 leukocytes per oil immersion field were seen or if either nitrates or leukocyte esterase testing was positive. Urine Gram stain was considered positive if any organisms were seen. Sensitivity, specificity, and positive and negative predictive values were calculated using urine culture as the gold standard. Thirty-seven (12%) patients had a culture-proven UTI. Compared to urine Gram stain, UA had equal sensitivity (97.3% versus 97.5%) and higher specificity (85% versus 74%). Empirical therapy was prescribed before the Gram stain result was known in 40 (49%) patients and after in 42 (51%) patients. The antibiotics chosen did not differ between the two groups (P=0.81), nor did they differ for patients with Gram-negative rods on urine Gram stain compared to those with Gram-positive cocci (P=0.67). From these data, we conclude that UA has excellent negative predictive value that is not enhanced by urine Gram stain and that antibiotic selection did not vary based on the urine Gram stain result. In conclusion, the clinical utility of urine Gram stain does not warrant the time or cost it requires. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Candidatus Renichlamydia lutjani, a Gram-negative bacterium in internal organs of blue striped snapper Lutjanus kasmira from Hawaii

    Science.gov (United States)

    Corsaro, Daniele; Work, Thierry M.

    2012-01-01

    The blue-striped snapper Lutjanus kasmira (Perciformes, Lutjanidae) are cosmopolitan in the Indo-Pacific but were introduced into Oahu, Hawaii, USA, in the 1950s and have since colonized most of the archipelago. Studies of microparasites in blue-striped snappers from Hawaii revealed chlamydia-like organisms (CLO) infecting the spleen and kidney, characterized by intracellular basophilic granular inclusions containing Gram-negative and Gimenez-positive bacteria similar in appearance to epitheliocysts when seen under light microscopy. We provide molecular evidence that CLO are a new member of Chlamydiae, i.e. Candidatus Renichlamydia lutjani, that represents the first reported case of chlamydial infection in organs other than the gill in fishes.

  14. Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system.

    Science.gov (United States)

    Rusch, Antje; Islam, Shaer; Savalia, Pratixa; Amend, Jan P

    2015-01-01

    Enrichment cultures inoculated with hydrothermally influenced nearshore sediment from Papua New Guinea led to the isolation of an arsenic-tolerant, acidophilic, facultatively aerobic bacterial strain designated PNG-April(T). Cells of this strain were Gram-stain-negative, rod-shaped, motile and did not form spores. Strain PNG-April(T) grew at temperatures between 4 °C and 40 °C (optimum 30-37 °C), at pH 3.5 to 8.3 (optimum pH 5-6) and in the presence of up to 2.7% NaCl (optimum 0-1.0%). Both arsenate and arsenite were tolerated up to concentrations of at least 0.5 mM. Metabolism in strain PNG-April(T) was strictly respiratory. Heterotrophic growth occurred with O2 or nitrate as electron acceptors, and aerobic lithoautotrophic growth was observed with thiosulfate or nitrite as electron donors. The novel isolate was capable of N2-fixation. The respiratory quinones were Q-8 and Q-7. Phylogenetically, strain PNG-April(T) belongs to the genus Burkholderia and shares the highest 16S rRNA gene sequence similarity with the type strains of Burkholderia fungorum (99.8%), Burkholderia phytofirmans (98.8%), Burkholderia caledonica (98.4%) and Burkholderia sediminicola (98.4%). Differences from these related species in several physiological characteristics (lipid composition, carbohydrate utilization, enzyme profiles) and DNA-DNA hybridization suggested the isolate represents a novel species of the genus Burkholderia, for which we propose the name Burkholderia insulsa sp. nov. The type strain is PNG-April(T) ( = DSM 28142(T) = LMG 28183(T)). © 2015 IUMS.

  15. Heterogeneity of Carbapenem Resistance Mechanisms Among Gram-Negative Pathogens in Lebanon: Results of the First Cross-Sectional Countrywide Study.

    Science.gov (United States)

    Hammoudi Halat, Dalal; Moubareck, Carole Ayoub; Sarkis, Dolla Karam

    2017-09-01

    Carbapenem-resistant Gram-negative pathogens have progressively disseminated to different countries worldwide, presenting a serious public health concern. The aims of this study were to determine the prevalence of carbapenem resistance in Gram-negative bacteria in Lebanon, to elucidate molecular mechanisms, and to identify genetic relatedness of incriminated strains. Carbapenem nonsusceptible Enterobacteriaceae, Acinetobacter baumannii, and Pseudomonas were collected from 11 Lebanese hospitals in 2012. Antimicrobial susceptibility was assessed with phenotypic tests, genes encoding carbapenemases were screened via PCR-sequencing, and genetic relatedness was examined by PGFE and ERIC-PCR. A total of 398 nonrepetitive carbapenem nonsusceptible isolates were studied, of which 44 were Enterobacteriaceae, 142 were A. baumannii, and 212 were Pseudomonas. Among Enterobacteriaceae, 70.4% carried bla OXA-48-like gene on IncL/M-type plasmids, while acquired AmpC cephalosporinases, extended-spectrum-β-lactamases, and efflux-pump were additional contributors to carbapenem resistance. Among A. baumannii, 90% produced OXA-23 and GES-11 and carried insertion sequence ISAba1 upstream and adjacent to bla OXA-23 and bla Acinetobacter -derived cephalosporinases . Among Pseudomonas, 16% harbored VIM-2, 4.2% IMP-2, and 1.4% IMP-1 metallo-β-lactamases. Fingerprint analysis indicated that the spread of OXA-48-like carbapenemases was mostly mediated by horizontal transfer, while OXA-23 and GES-11 diffusion in A. baumannii and VIM-2 diffusion in P. aeruginosa were primarily due to clonal dissemination. This study is the first nationwide investigation of carbapenem resistance in Lebanon, showing low level of resistance in Enterobacteriaceae, and higher levels in A. baumannii and Pseudomonas. With current changes in the region, continuous surveillance of carbapenem resistance is crucial.

  16. Antibiotic susceptibility of Gram-negatives isolated from bacteremia in children with cancer. Implications for empirical therapy of febrile neutropenia.

    Science.gov (United States)

    Castagnola, Elio; Caviglia, Ilaria; Pescetto, Luisa; Bagnasco, Francesca; Haupt, Riccardo; Bandettini, Roberto

    2015-01-01

    Monotherapy is recommended as the first choice for initial empirical therapy of febrile neutropenia, but local epidemiological and antibiotic susceptibility data are now considered pivotal to design a correct management strategy. To evaluate the proportion of Gram-negative rods isolated in bloodstream infections in children with cancer resistant to antibiotics recommended for this indication. The in vitro susceptibility to ceftazidime, piperacillin-tazobactam, meropenem and amikacin of Gram-negatives isolated in bacteremic episodes in children with cancer followed at the Istituto "Giannina Gaslini", Genoa, Italy in the period of 2001-2013 was retrospectively analyzed using the definitions recommended by EUCAST in 2014. Data were analyzed for any single drug and to the combination of amikacin with each β-lactam. The combination was considered effective in absence of concomitant resistance to both drugs, and not evaluated by means of in vitro analysis of antibiotic combinations (e.g., checkerboard). A total of 263 strains were evaluated: 27% were resistant to piperacillin-tazobactam, 23% to ceftazidime, 12% to meropenem and 13% to amikacin. Concomitant resistance to β-lactam and amikacin was detected in 6% of strains for piperacillin-tazobactam, 5% for ceftazidime and 5% for meropenem. During the study period there was a nonsignificant increase in the proportions of strains resistant to β-lactams indicated for monotherapy, and also increase in the resistance to combined therapies. in an era of increasing resistance to antibiotics guideline-recommended monotherapy could be not appropriate for initial empirical therapy of febrile neutropenia. Strict local survey on etiology and antibiotic susceptibility is mandatory for a correct management of this complication in cancer patients.

  17. Pharmacodynamic profiling of intravenous antibiotics against prevalent Gram-negative organisms across the globe: the PASSPORT Program-Asia-Pacific Region.

    Science.gov (United States)

    Roberts, Jason A; Kwa, Andrea; Montakantikul, Preecha; Gomersall, Charles; Kuti, Joseph L; Nicolau, David P

    2011-03-01

    Due to escalating antimicrobial resistance amongst Gram-negative organisms, the choice of effective empirical antimicrobial regimens has become challenging. Monte Carlo simulations were conducted for conventional and prolonged infusion regimens of doripenem, imipenem and meropenem using pharmacokinetic data from adult patients with conserved renal function. Minimum inhibitory concentration data against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii were incorporated from the COMPACT surveillance programme in the Asia-Pacific region of the world. The cumulative fraction of response (CFR) was determined for each regimen against each bacterial population. All simulated carbapenem regimens achieved an optimal CFR against E. coli and K. pneumoniae (94.5-100% CFR). Against P. aeruginosa, doripenem achieved 78.7-92.6% CFR, imipenem achieved 60.4-79.0% CFR and meropenem achieved 73.0-85.1% CFR. The only dosing regimen to achieve ≥ 90% CFR against P. aeruginosa was doripenem 1000 mg and 2000 mg every 8 h (4-h infusion). Carbapenem CFRs against A. baumannii were much lower (29.2-54.4% CFR). CFRs for non-fermenting isolates were ca. 10% lower for isolates collected in the Intensive Care Unit. Carbapenem resistance amongst Enterobacteriaceae remains low in the Asia-Pacific region and thus standard carbapenem dosing regimens had a high likelihood of achieving pharmacodynamic exposures. However, larger doses combined with prolonged infusion will be required to increase the CFR for these carbapenems against resistant non-fermenting Gram-negatives that are common in these countries. The safety and efficacy of these high dosing regimens will need to be confirmed in the clinical setting. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  18. Phenotypic methods for detection of various β-lactamases in Gram-negative clinical isolates: Need of the hour

    Directory of Open Access Journals (Sweden)

    Neena V Nagdeo

    2012-01-01

    Full Text Available Background: Many clinical laboratories have problems detecting various β-lactamases. Confusion exists about the importance of these resistance mechanisms, optimal test methods, and appropriate reporting conventions. It is more imperative to use various phenotypic methods for detection of various β-lactamases in routine microbiology laboratory on day-to-day basis to prevent antimicrobial resistance by evidence-based judicious use of antimicrobials. Aims: In view of the multidrug-resistant organisms being reported world over, we planned a cross-sectional prospective analytical study to determine resistance mechanism by various β-lactamases in Gram-negative clinical isolates using various phenotypic methods. Materials and Methods: All nonrepeat, nonenteric clinical isolates of Gram-negative bacilli, resistant to at least two third-generation cephalosporins, were first screened by Novel disc placement method, and isolates showing multiple mechanisms of resistance and reduced zone of inhibition for imipenem were further confirmed for AmpC and metallo β-lactamases. Statistical Analysis: All the data was managed and analyzed in Microsoft Excel. Results: Out of 807 isolates tested, as many as 795 (98.51% revealed the presence of extended-spectrum β-lactamases (ESBLs. Only 10 isolates of Escherichia coli and 2 of Klebsiella pneumoniae did not show production of ESBL. A total of 450 (55.76% isolates produced single enzyme,while 345 (42.75% strains revealed multiple enzyme production simultaneously. Only ESBL production was seen in 315 (39.03% strains, only AmpC in 75 (9.29% and only MBL in 60 (7.44% strains, while ESBL and AmpC together were seen in 219 (27.14% and AmpC plus MBL in 92 (11.40% strains. However, ESBL plus MBL were never observed together. All three enzymes were simultaneously detected in 34 (4.21% strains. Conclusion: This innovative method of disc placement makes it easy, affordable, and reliable method for routine use by basic

  19. Genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812T)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain [U.S. Department of Energy, Joint Genome Institute; Saunders, Elizabeth H [Los Alamos National Laboratory (LANL); Lapidus, Alla L. [U.S. Department of Energy, Joint Genome Institute; Nolan, Matt [U.S. Department of Energy, Joint Genome Institute; Lucas, Susan [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Cheng, Jan-Fang [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Tapia, Roxanne [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Liolios, Konstantinos [U.S. Department of Energy, Joint Genome Institute; Mavromatis, K [U.S. Department of Energy, Joint Genome Institute; Pagani, Ioanna [U.S. Department of Energy, Joint Genome Institute; Ivanova, N [U.S. Department of Energy, Joint Genome Institute; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pati, Amrita [U.S. Department of Energy, Joint Genome Institute; Chen, Amy [U.S. Department of Energy, Joint Genome Institute; Palaniappan, Krishna [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Hauser, Loren John [ORNL; Jeffries, Cynthia [Oak Ridge National Laboratory (ORNL); Chang, Yun-Juan [ORNL; Brambilla, Evelyne-Marie [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Rohde, Manfred [HZI - Helmholtz Centre for Infection Research, Braunschweig, Germany; Spring, Stefan [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Goker, Markus [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany; Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Woyke, Tanja [U.S. Department of Energy, Joint Genome Institute; Bristow, James [U.S. Department of Energy, Joint Genome Institute; Eisen, Jonathan [U.S. Department of Energy, Joint Genome Institute; Markowitz, Victor [U.S. Department of Energy, Joint Genome Institute; Hugenholtz, Philip [U.S. Department of Energy, Joint Genome Institute; Kyrpides, Nikos C [U.S. Department of Energy, Joint Genome Institute; Klenk, Hans-Peter [DSMZ - German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany

    2012-01-01

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the genomically so far poorly characterized family Thermodesulfobacteriaceae in the phylum Thermodesulfobacteria. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  20. From Farms to Markets: Gram-Negative Bacteria Resistant to Third-Generation Cephalosporins in Fruits and Vegetables in a Region of North Africa

    OpenAIRE

    Mesbah Zekar, Ferielle; Granier, Sophie A.; Marault, Muriel; Yaici, Lydia; Gassilloud, Benoit; Manceau, Charles; Touati, Abdelaziz; Millemann, Yves

    2017-01-01

    The role of food in human exposure to antimicrobial-resistant bacteria is a growing food safety issue. The contribution of fruits and vegetables eaten raw to this exposure is still unclear. The evaluation of contamination levels of fruits, vegetables and the agricultural environment by third-generation cephalosporin (3GC)-resistant Gram-negative bacteria was performed by analyzing 491 samples of fruits and vegetables collected from 5 markets and 7 farms in Bejaia area, north-eastern Mediterra...

  1. Resistance to oral antibiotics in 4569 Gram-negative rods isolated from urinary tract infection in children.

    Science.gov (United States)

    Calzi, Anna; Grignolo, Sara; Caviglia, Ilaria; Calevo, Maria Grazia; Losurdo, Giuseppe; Piaggio, Giorgio; Bandettini, Roberto; Castagnola, Elio

    2016-09-01

    To investigate antibiotic resistance among pathogens isolated from urines in a tertiary care children's hospital in Italy. Retrospective analysis of prospectively collected data on antibiotic susceptibility of Gram-negatives isolated from urines at the Istituto Giannina Gaslini, Genoa - Italy from 2007 to 2014. Antibiotic susceptibility was evaluated. By means of CLSI criteria from 2007 to 2010, while from 2011 EUCAST criteria were adopted. Data on susceptibility to amoxicillin-clavulanate, co-trimoxazole, cefuroxime, nitrofurantoin, fosfomycin and ciprofloxacin were evaluated for Escherichia coli, while for other Enterobacteriaceae data were collected for amoxicillin-clavulanate, co-trimoxazole and ciprofloxacin and for ciprofloxacin against Pseudomonas aeruginosa. Univariate and multivariable analyses were performed for risk factors associated with resistance. A total of 4596 Gram-negative strains were observed in 3364 patients. A significant increase in the proportion of resistant strains was observed for E.coli against amoxicillin-clavulanate, cefuroxime and ciprofloxacin and for others Enterobacteriaceae against co-trimoxazole and ciprofloxacin. Resistance to nitrofurantoin and fosfomycin was very infrequent in E.coli. Logistic regression analysis showed that repeated episode of urinary tract infections was a risk factor for E.coli resistance to amoxicillin-clavulanate, co-trimoxazole and cefuroxime, while admission in one of the Units usually managing children with urinary tract malformations was significantly associated to resistance to amoxicillin-clavulanate and cefuroxime. In conclusion the present study shows an increase in antibiotic resistance in pediatric bacteria isolated from urines in children, especially in presence of repeated episodes and/or urinary tract malformations. This resistance is worrisome for beta-lactams and cotrimoxazole, and start to increase also for fluoroquinolones while nitrofurantoin and fosfomycin still could represent useful

  2. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors.

    Science.gov (United States)

    Bereza-Malcolm, Lara; Aracic, Sanja; Kannan, Ruban; Mann, Gülay; Franks, Ashley E

    2017-08-15

    Widespread presence of cadmium in soil and water systems is a consequence of industrial and agricultural processes. Subsequent accumulation of cadmium in food and drinking water can result in accidental consumption of dangerous concentrations. As such, cadmium environmental contamination poses a significant threat to human health. Development of microbial biosensors, as a novel alternative method for in situ cadmium detection, may reduce human exposure by complementing traditional analytical methods. In this study, a multiplex cadmium biosensing construct was assembled by cloning a single-output cadmium biosensor element, cadRgfp, and a constitutively expressed mrfp1 onto a broad-host range vector. Incorporation of the duplex fluorescent output [green and red fluorescence proteins] allowed measurement of biosensor functionality and viability. The biosensor construct was tested in several Gram-negative bacteria including Pseudomonas, Shewanella and Enterobacter. The multiplex cadmium biosensors were responsive to cadmium concentrations ranging from 0.01 to 10µgml -1 , as well as several other heavy metals, including arsenic, mercury and lead at similar concentrations. The biosensors were also responsive within 20-40min following exposure to 3µgml -1 cadmium. This study highlights the importance of testing biosensor constructs, developed using synthetic biology principles, in different bacterial genera. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Seeing red; the development of pON.mCherry, a broad-host range constitutive expression plasmid for Gram-negative bacteria.

    Directory of Open Access Journals (Sweden)

    Michael J Gebhardt

    Full Text Available The development of plasmid-mediated gene expression control in bacteria revolutionized the field of bacteriology. Many of these expression control systems rely on the addition of small molecules, generally metabolites or non-metabolized analogs thereof, to the growth medium to induce expression of the genes of interest. The paradigmatic example of an expression control system is the lac system from Escherichia coli, which typically relies on the Ptac promoter and the Lac repressor, LacI. In many cases, however, constitutive gene expression is desired, and other experimental approaches require the coordinated control of multiple genes. While multiple systems have been developed for use in E. coli and its close relatives, the utility and/or functionality of these tools does not always translate to other species. For example, for the Gram-negative pathogen, Legionella pneumophila, a causative agent of Legionnaires' Disease, the aforementioned Ptac system represents the only well-established expression control system. In order to enhance the tools available to study bacterial gene expression in L. pneumophila, we developed a plasmid, pON.mCherry, which confers constitutive gene expression from a mutagenized LacI binding site. We demonstrate that pON.mCherry neither interferes with other plasmids harboring an intact LacI-Ptac expression system nor alters the growth of Legionella species during intracellular growth. Furthermore, the broad-host range plasmid backbone of pON.mCherry allows constitutive gene expression in a wide variety of Gram-negative bacterial species, making pON.mCherry a useful tool for the greater research community.

  4. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  5. Specific Clinical Profile and Risk Factors for Mortality in General Surgery Patients with Infections by Multi-Drug-Resistant Gram-Negative Bacteria.

    Science.gov (United States)

    Rubio-Perez, Ines; Martin-Perez, Elena; Domingo-García, Diego; Garcia-Olmo, Damian

    2017-07-01

    The incidence of gram-negative multi-drug-resistant (MDR) infections is increasing worldwide. This study sought to determine the incidence, clinical profiles, risk factors, and mortality of these infections in general surgery patients. All general surgery patients with a clinical infection by gram-negative MDR bacteria were studied prospectively for a period of five years (2007-2011). Clinical, surgical, and microbiologic parameters were recorded, with a focus on the identification of risk factors for MDR infection and mortality. Incidence of MDR infections increased (5.6% to 15.2%) during the study period; 106 patients were included, 69.8% presented nosocomial infections. Mean age was 65 ± 15 years, 61% male. Extended-spectrum β-lactamases (ESBL) Escherichia coli was the most frequent MDR bacteria. Surgical site infections and abscesses were the most common culture locations. The patients presented multiple pre-admission risk factors and invasive measures during hospitalization. Mortality was 15%, and related to older age (odds ratio [OR] 1.07), malnutrition (OR 13.5), chronic digestive conditions (OR 4.7), chronic obstructive pulmonary disease (OR 3.9), and surgical re-intervention (OR 9.2). Multi-drug resistant infections in the surgical population are increasing. The most common clinical profile is a 65-year-old male, with previous comorbidities, who has undergone a surgical intervention, intensive care unit (ICU) admission, and invasive procedures and who has acquired the MDR infection in the nosocomial setting.

  6. Fermentation of polysaccharides by Klebsiella and other facultative bacilli

    Energy Technology Data Exchange (ETDEWEB)

    Ochuba, G.U.; Von Riesen, V.L.

    1980-05-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebseilla oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carraggeenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and pectobacterium (38%). pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides. These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant.

  7. Fermentation of polysaccharides by Klebsielleae and other facultative bacilli.

    Science.gov (United States)

    Ochuba, G U; von Riesen, V L

    1980-01-01

    Fermentations of 10 polysaccharides by species of the family Enterobacteriaceae were examined. Algin, guar, karaya, xanthan, and xylan were not fermented by any of the strains tested. Most of the activity was found in the tribe Klebsielleae. Klebsiella oxytoca fermented amylopectin (97% of the strains studied), carrageenan (100%), inulin (68%), polypectate (100%), and tragacanth (100%). Klebsiella pneumoniae fermented amylopectin (91%), carrageenan (100%), and tragacanth (86%). Carrageenan was also fermented by Enterobacter aerogenes (100%), Enterobacter agglomerans (63%), Enterobacter cloacae (95%), and Pectobacterium (38%). Pectobacterium shared polypectate fermentation (100%) with K. oxytoca. With one exception, Serratia strains were negative on all polysaccharides. These results, along with other evidence, indicate that (i) the genus Klebsiella is biochemically the most versatile genus of the tribe, (ii) because of its distinct characteristics, K. oxytoca warrants species designation separate from K. pneumoniae, and (iii) some food additives generally considered indigestible can be metabolized by a few species of facultative bacilli, whereas others appear to be resistant. PMID:7396489

  8. Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander

    2010-04-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.

  9. [Comparison of the quick Gram stain method to the B&M modified and favor methods].

    Science.gov (United States)

    Osawa, Kayo; Kataoka, Nobumasa; Maruo, Toshio

    2011-01-01

    The Gram stain is an established method for bacterial identification, but the time needed to carry out this stain is 2-3 min. We attempted to shorten this time and stained a total of 70 clinical specimens isolated from using the Bartholomew & Mittwer (B&M) modified or Favor methods with a 3 s duration for washing and staining steps. Results were plotted and analyzed using a Hue Saturation Intensity (HSI) model. The range based on a plot of the two methods with the HSI model was presented as a reference interval. Our results indicated that 100% (35/35) of strains were Gram positive and 97.1% (34/35) were Gram negative for the quick B&M modified method. In the quick Favor method, 80.0% (28/35) were Gram positive and 68.6% (24/35) of strains were Gram negative. We propose that the quick B&M modified method is equivalent to the standard Gram staining method and is superior to the quick Favor method.

  10. Facultative crassulacean acid metabolism (CAM) plants: powerful tools for unravelling the functional elements of CAM photosynthesis.

    Science.gov (United States)

    Winter, Klaus; Holtum, Joseph A M

    2014-07-01

    Facultative crassulacean acid metabolism (CAM) describes the optional use of CAM photosynthesis, typically under conditions of drought stress, in plants that otherwise employ C3 or C4 photosynthesis. In its cleanest form, the upregulation of CAM is fully reversible upon removal of stress. Reversibility distinguishes facultative CAM from ontogenetically programmed unidirectional C3-to-CAM shifts inherent in constitutive CAM plants. Using mainly measurements of 24h CO2 exchange, defining features of facultative CAM are highlighted in five terrestrial species, Clusia pratensis, Calandrinia polyandra, Mesembryanthemum crystallinum, Portulaca oleracea and Talinum triangulare. For these, we provide detailed chronologies of the shifts between photosynthetic modes and comment on their usefulness as experimental systems. Photosynthetic flexibility is also reviewed in an aquatic CAM plant, Isoetes howellii. Through comparisons of C3 and CAM states in facultative CAM species, many fundamental biochemical principles of the CAM pathway have been uncovered. Facultative CAM species will be of even greater relevance now that new sequencing technologies facilitate the mapping of genomes and tracking of the expression patterns of multiple genes. These technologies and facultative CAM systems, when joined, are expected to contribute in a major way towards our goal of understanding the essence of CAM. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Complicated urinary tract infections: practical solutions for the treatment of multiresistant Gram-negative bacteria.

    Science.gov (United States)

    Pallett, Ann; Hand, Kieran

    2010-11-01

    Resistance in Gram-negative bacteria has been increasing, particularly over the last 6 years. This is mainly due to the spread of strains producing extended-spectrum β-lactamases (ESBLs) such as CTX-M enzymes or AmpC β-lactamases. Many of the isolates producing these enzymes are also resistant to trimethoprim, quinolones and aminoglycosides, often due to plasmid co-expression of other resistance mechanisms. CTX-M-producing Escherichia coli often occurs in the community and as E. coli is one of the commonest organisms causing urinary tract infections (UTIs) the choice of agents to treat these infections is diminishing. Novel combinations of antibiotics are being used in the community and broad-spectrum agents such as carbapenems are being used increasingly as empirical treatment for severe infections. Of particular concern therefore are reports in the UK of organisms that produce carbapenemases. As resistance is becoming more widespread, prudent use of antimicrobials is imperative and, as asymptomatic bacteriuria is typically benign in the elderly, antibiotics should not be prescribed without clinical signs of UTI. The use of antibiotics as suppressive therapy or long-term prophylaxis may no longer be defensible.

  12. Expanding the potential of NAI-107 for treating serious ESKAPE pathogens: synergistic combinations against Gram-negatives and bactericidal activity against non-dividing cells.

    Science.gov (United States)

    Brunati, Cristina; Thomsen, Thomas T; Gaspari, Eleonora; Maffioli, Sonia; Sosio, Margherita; Jabes, Daniela; Løbner-Olesen, Anders; Donadio, Stefano

    2018-02-01

    To characterize NAI-107 and related lantibiotics for their in vitro activity against Gram-negative pathogens, alone or in combination with polymyxin, and against non-dividing cells or biofilms of Staphylococcus aureus. NAI-107 was also evaluated for its propensity to select or induce self-resistance in Gram-positive bacteria. We used MIC determinations and chequerboard experiments to establish the antibacterial activity of the examined compounds against target microorganisms. Time-kill assays were used to evaluate killing of exponential and stationary-phase cells. The effects on biofilms (growth inhibition and biofilm eradication) were evaluated using biofilm-coated pegs. The frequency of spontaneous resistant mutants was evaluated by either direct plating or by continuous sub-culturing at 0.5 × MIC levels, followed by population analysis profiles. The results showed that NAI-107 and its brominated variant are highly active against Neisseria gonorrhoeae and some other fastidious Gram-negative pathogens. Furthermore, all compounds strongly synergized with polymyxin against Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, and showed bactericidal activity. Surprisingly, NAI-107 alone was bactericidal against non-dividing A. baumannii cells. Against S. aureus, NAI-107 and related lantibiotics showed strong bactericidal activity against dividing and non-dividing cells. Activity was also observed against S. aureus biofilms. As expected for a lipid II binder, no significant resistance to NAI-107 was observed by direct plating or serial passages. Overall, the results of the current work, along with previously published results on the efficacy of NAI-107 in experimental models of infection, indicate that this lantibiotic represents a promising option in addressing the serious threat of antibiotic resistance. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial

  13. A large family of antivirulence regulators modulates the effects of transcriptional activators in Gram-negative pathogenic bacteria.

    Directory of Open Access Journals (Sweden)

    Araceli E Santiago

    2014-05-01

    Full Text Available We have reported that transcription of a hypothetical small open reading frame (orf60 in enteroaggregative E. coli (EAEC strain 042 is impaired after mutation of aggR, which encodes a global virulence activator. We have also reported that the cryptic orf60 locus was linked to protection against EAEC diarrhea in two epidemiologic studies. Here, we report that the orf60 product acts as a negative regulator of aggR itself. The orf60 protein product lacks homology to known repressors, but displays 44-100% similarity to at least fifty previously undescribed small (<10 kDa hypothetical proteins found in many gram negative pathogen genomes. Expression of orf60 homologs from enterotoxigenic E. coli (ETEC repressed the expression of the AraC-transcriptional ETEC regulator CfaD/Rns and its regulon in ETEC strain H10407. Complementation in trans of EAEC 042orf60 by orf60 homologs from ETEC and the mouse pathogen Citrobacter rodentium resulted in dramatic suppression of aggR. A C. rodentium orf60 homolog mutant showed increased levels of activator RegA and increased colonization of the adult mouse. We propose the name Aar (AggR-activated regulator for the clinically and epidemiologically important orf60 product in EAEC, and postulate the existence of a large family of homologs among pathogenic Enterobacteriaceae and Pasteurellaceae. We propose the name ANR (AraC Negative Regulators for this family.

  14. Evaluation of the β-CARBA™ test, a colorimetric test for the rapid detection of carbapenemase activity in Gram-negative bacilli.

    Science.gov (United States)

    Bernabeu, Sandrine; Dortet, Laurent; Naas, Thierry

    2017-06-01

    There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here, we have evaluated a novel colorimetric test (the β-CARBA™ test; Bio-Rad) to detect carbapenemase-producing Gram-negative bacilli from cultured colonies. The performance of the β-CARBA™ test was compared with that of the Carba NP test (or the CarbAcineto NP test) and RAPIDEC ® CARBA NP (bioMérieux) using a collection of 290 isolates with characterized β-lactamase content. This collection included 199 carbapenemase producers (121 Enterobacteriaceae, 36 Pseudomonas and 42 Acinetobacter baumannii ) and 91 non-carbapenemase producers (55 Enterobacteriaceae, 20 Pseudomonas and 16 A. baumannii ). The β-CARBA™ test correctly detected 84.9% of the carbapenemase producers, including all KPC and IMP, 96.4% of VIM, 85.3% of NDM, 80.5% of OXA-48-like and 91.2% of A. baumannii -related OXA carbapenemases (OXA-23, OXA-40, OXA-58, OXA-143 and overexpressed OXA-51). All rare metallo-β-lactamases (SPM, AIM, GIM, DIM and SIM) were detected. Importantly, all non-KPC Ambler class A carbapenemases were not detected, including GES variants with carbapenemase activity ( n  = 6), IMI ( n  = 3), NMC-A ( n  = 1), SME ( n  = 2), FRI-1 ( n  = 1) and BIC-1 ( n  = 1). All non-carbapenemase producers gave a negative result except with OXA-163-, OXA-405- and one TEM-3-producing Citrobacter freundii . The overall sensitivity and specificity of the β-CARBA™ test were 84.9% and 95.6%, respectively. This test is easy to perform and to interpret by non-specialized staff members. Despite lack of specificity towards non-KPC Ambler class A and OXA-48-like carbapenemases, the β-CARBA™ test could complete the existing panel of tests available for the confirmation of carbapenemases in Gram-negatives. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For

  15. Update on the taxonomy and the clinical and laboratory characteristics of pigmented anaerobic gram-negative rods.

    Science.gov (United States)

    Jousimies-Somer, H R

    1995-06-01

    Pigmented anaerobic gram-negative rods are currently categorized as 17 species distributed in three genera: Prevotella, Porphyromonas, and Bacteroides. These organisms are often encountered in clinical specimens but are also found as part of the indigenous flora on various mucosal surfaces. Several studies are presently assessing the association of individual species with health and disease. For example, Porphyromonas gingivalis and Porphyromonas endodontalis are key putative pathogens in adult periodontitis and root canal infections, respectively. Porphyromonas asaccharolytica is prevalent in extraoral infections. The Porphyromonas species of animal origin have been isolated from infected bite wounds in humans. Isolates closely resembling Bacteroides levii have been recovered from various types of human infections. According to preliminary reports, Prevotella intermedia tends to be associated more often with periodontal disease than with a healthy oral cavity. In the laboratory, enzyme profiling facilitates the identification of these pigmented rods. Beta-Lactamase production is more common among prevotella species (30%-50%) than among Porphyromonas species (< 10%).

  16. Partial genome sequence of Thioalkalivibrio thiocyanodenitrificans ARhD 1T, a chemolithoautotrophic haloalkaliphilic sulfur-oxidizing bacterium capable of complete denitrification

    NARCIS (Netherlands)

    Berben, T.; Sorokin, D.Y.; Ivanova, N.; Pati, A.; Kyrpides, N.; Goodwin, L.A; Woyke, T.; Muyzer, G.

    2015-01-01

    Thioalkalivibrio thiocyanodenitrificans strain ARhD 1 T is a motile, Gram-negative bacterium isolated from soda lakes that belongs to the Gammaproteobacteria. It derives energy for growth and carbon fixation from the oxidation of sulfur compounds, most notably thiocyanate, and so is a

  17. Impact of round-the-clock CSF Gram stain on empirical therapy for suspected central nervous system infections.

    Science.gov (United States)

    Tissot, F; Prod'hom, G; Manuel, O; Greub, G

    2015-09-01

    The impact of round-the-clock cerebrospinal fluid (CSF) Gram stain on overnight empirical therapy for suspected central nervous system (CNS) infections was investigated. All consecutive overnight CSF Gram stains between 2006 and 2011 were included. The impact of a positive or a negative test on empirical therapy was evaluated and compared to other clinical and biological indications based on institutional guidelines. Bacterial CNS infection was documented in 51/241 suspected cases. Overnight CSF Gram stain was positive in 24/51. Upon validation, there were two false-positive and one false-negative results. The sensitivity and specificity were 41 and 99 %, respectively. All patients but one had other indications for empirical therapy than Gram stain alone. Upon obtaining the Gram result, empirical therapy was modified in 7/24, including the addition of an appropriate agent (1), addition of unnecessary agents (3) and simplification of unnecessary combination therapy (3/11). Among 74 cases with a negative CSF Gram stain and without formal indication for empirical therapy, antibiotics were withheld in only 29. Round-the-clock CSF Gram stain had a low impact on overnight empirical therapy for suspected CNS infections and was associated with several misinterpretation errors. Clinicians showed little confidence in CSF direct examination for simplifying or withholding therapy before definite microbiological results.

  18. Re-Factoring Glycolytic Genes for Targeted Engineering of Catabolism in Gram-Negative Bacteria.

    Science.gov (United States)

    Sánchez-Pascuala, Alberto; Nikel, Pablo I; de Lorenzo, Víctor

    2018-01-01

    The Embden-Meyerhof-Parnas (EMP) pathway is widely accepted to be the biochemical standard of glucose catabolism. The well-characterized glycolytic route of Escherichia coli, based on the EMP catabolism, is an example of an intricate pathway in terms of genomic organization of the genes involved and patterns of gene expression and regulation. This intrinsic genetic and metabolic complexity renders it difficult to engineer glycolytic activities and transfer them onto other microbial cell factories, thus limiting the biotechnological potential of bacterial hosts that lack the route. Taking into account the potential applications of such a portable tool for targeted pathway engineering, in the present protocol we describe how the genes encoding all the enzymes of the linear EMP route have been individually recruited from the genome of E. coli K-12, edited in silico to remove their endogenous regulatory signals, and synthesized de novo following a standard (i.e., GlucoBrick) that facilitates their grouping in the form of functional modules that can be combined at the user's will. This novel genetic tool allows for the à la carte implementation or boosting of EMP pathway activities into different Gram-negative bacteria. The potential of the GlucoBrick platform is further illustrated by engineering novel glycolytic activities in the most representative members of the Pseudomonas genus (Pseudomonas putida and Pseudomonas aeruginosa).

  19. Impact of gamma rays and certain natural products on the virulence of some metallo-β-lactamase producing gram-negative pathogenic bacteria

    International Nuclear Information System (INIS)

    Nada, H.M.A.M.

    2015-01-01

    The emergence of metallo-β-lactamase (MBL) producing gram-negative bacilli is an increasing therapeutic problem that doesn’t have treatment till now, because a) the organism carrying MBL-gene have a high tendency to capture other resistant genes and spread its MBL genes hydrolyze all the classes of β-lactam antibiotics with mobile genetic elements to others. b) MBLs are not inhibited by classical serine β-lactamase inhibitors such as; clavulanic acid, tazobactam, and sulbactam. c) They inhibited by chelating agents such as EDTA and other metal chelators which are difficult to use in clinical treatment because Zn play a crucial role in more than 300 enzymes in human body. The absence of novel agents for treatment and absence of clinical inhibitor to inhibit the activity of MBLs may lead to dead ends. This study was done to evaluate the presence of MBL in Egyptian local gram-negative bacilli isolates by using simple detection methods that could be applied in Egyptian microbiological laboratories. Where, the early detection of MBL-producers results in avoiding the spread of these multidrug-resistant isolates and may help maintain first- and second-line therapies. Also determine the type of MBL-blagenes harboured by the local isolates and their susceptibility pattern to different antibiotics with different mode of actions used in Egyptian hospitals. Finally, trying to inhibit the activity of MBL by low dose of gamma radiation used in treatment of immunocompromised patients or by a natural plant extracts that contain thiol group and flavonoids. Then applied on animal model.

  20. Quantitative Real-time PCR detection of putrescine-producing Gram-negative bacteria

    Directory of Open Access Journals (Sweden)

    Kristýna Maršálková

    2017-01-01

    Full Text Available Biogenic amines are indispensable components of living cells; nevertheless these compounds could be toxic for human health in higher concentrations. Putrescine is supposed to be the major biogenic amine associated with microbial food spoilage. Development of reliable, fast and culture-independent molecular methods to detect bacteria producing biogenic amines deserves the attention, especially of the food industry in purpose to protect health. The objective of this study was to verify the newly designed primer sets for detection of two inducible genes adiA and speF together in Salmonella enterica and Escherichia coli genome by Real-time PCR. These forenamed genes encode enzymes in the metabolic pathway which leads to production of putrescine in Gram-negative bacteria. Moreover, relative expression of these genes was studied in E. coli CCM 3954 strain using Real-time PCR. In this study, sets of new primers for the detection two inducible genes (speF and adiA in Salmonella enterica and E. coli by Real-time PCR were designed and tested. Amplification efficiency of a Real-time PCR was calculated from the slope of the standard curves (adiA, speF, gapA. An efficiency in a range from 95 to 105 % for all tested reactions was achieved. The gene expression (R of adiA and speF genes in E. coli was varied depending on culture conditions. The highest gene expression of adiA and speF was observed at 6, 24 and 36 h (RadiA ~ 3, 5, 9; RspeF ~11, 10, 9; respectively after initiation of growth of this bacteria in nutrient broth medium enchired with amino acids. The results show that these primers could be used for relative quantification analysis of E. coli.

  1. SURVEILLANCE of CARBAPENEM NON-SUSCEPTIBLE GRAM NEGATIVE STRAINS and CHARACTERIZATION of CARBAPENEMASES of CLASSES A, B and D in a LEBANESE HOSPITAL.

    Science.gov (United States)

    Hammoudi, Dalal; Moubareck, Carole Ayoub; Kanso, Abeer; Nordmann, Patrice; Sarkis, Dolla Karam

    2015-01-01

    The production of carbapenem-hydrolyzing enzymes has been recognized as one of the most currently relevant resistance mechanisms in gram negative bacterial isolates, and is being detected in various countries. In Lebanon, carbapenem resistance was studied among gram negative pathogens collected from a university hospital from January to June of years 2011 and 2012. All isolates were subjected to phenotypic tests including antibiotic susceptibility, cloxacillin effect, modified Hodge test, and Etest for metallo-β-lactamase detection. They were also subjected to genotyping by PCR sequencing to characterize β-lactamases. Between January and June 2011, 48 carbapenem non-susceptible strains were collected. Of these, one Klebsiella pneumoniae harbored OXA-48 and insertion sequence IS 1999; four Acinetobacter baumanni harbored simultaneously OXA-23 and GES-11, and three Pseudomonas harbored VIM-2 carbapenemase. Between January and June 2012, 100 carbapenem non-susceptible strains were collected. Of these, one K. pneumoniae harbored simultaneously OXA-48, IS 1999, and an acquired AmpC of the ACC group; four Serratia marcescens harbored OXA-48, while among eight A. baumannii, one strain co-harbored OXA-23 and GES-11, six harbored OXA-23 and one OXA-24. Fifteen P, aeruginosa and two Pseudomonas species harbored VIM-2; two P. aeruginosa strains produced IMP-1 and two others IMP-2. This epidemiological survey demonstrates the presence of carbapenemases of Ambler classes A, B, and D in a Lebanese hospital and indicates increase in the number and variety of such enzymes.

  2. Detection of Extended-Spectrum Β-Lactamases among Gram ...

    African Journals Online (AJOL)

    Biochemical tests confirmed the identity of the Gram-negative isolates to be members of the enterobactericeae, which included Klebsiella pneumoniae (60), Escherichia coli (98), Providencia Spp. (32), Morganella moganii (32), Shigella Spp. (14), Citrobacter freundii (14), Serratia marcescens (10), Salmonella paratyphi A ...

  3. Is the C-terminal insertional signal in Gram-negative bacterial outer membrane proteins species-specific or not?

    Directory of Open Access Journals (Sweden)

    Paramasivam Nagarajan

    2012-09-01

    Full Text Available Abstract Background In Gram-negative bacteria, the outer membrane is composed of an asymmetric lipid bilayer of phopspholipids and lipopolysaccharides, and the transmembrane proteins that reside in this membrane are almost exclusively β-barrel proteins. These proteins are inserted into the membrane by a highly conserved and essential machinery, the BAM complex. It recognizes its substrates, unfolded outer membrane proteins (OMPs, through a C-terminal motif that has been speculated to be species-specific, based on theoretical and experimental results from only two species, Escherichia coli and Neisseria meningitidis, where it was shown on the basis of individual sequences and motifs that OMPs from the one cannot easily be over expressed in the other, unless the C-terminal motif was adapted. In order to determine whether this species specificity is a general phenomenon, we undertook a large-scale bioinformatics study on all predicted OMPs from 437 fully sequenced proteobacterial strains. Results We were able to verify the incompatibility reported between Escherichia coli and Neisseria meningitidis, using clustering techniques based on the pairwise Hellinger distance between sequence spaces for the C-terminal motifs of individual organisms. We noticed that the amino acid position reported to be responsible for this incompatibility between Escherichia coli and Neisseria meningitidis does not play a major role for determining species specificity of OMP recognition by the BAM complex. Instead, we found that the signal is more diffuse, and that for most organism pairs, the difference between the signals is hard to detect. Notable exceptions are the Neisseriales, and Helicobacter spp. For both of these organism groups, we describe the specific sequence requirements that are at the basis of the observed difference. Conclusions Based on the finding that the differences between the recognition motifs of almost all organisms are small, we assume that

  4. Gram staining of protected pulmonary specimens in the early diagnosis of ventilator-associated pneumonia.

    Science.gov (United States)

    Mimoz, O; Karim, A; Mazoit, J X; Edouard, A; Leprince, S; Nordmann, P

    2000-11-01

    We evaluated prospectively the use of Gram staining of protected pulmonary specimens to allow the early diagnosis of ventilator-associated pneumonia (VAP), compared with the use of 60 bronchoscopic protected specimen brushes (PSB) and 126 blinded plugged telescopic catheters (PTC) obtained from 134 patients. Gram stains were from Cytospin slides; they were studied for the presence of microorganisms in 10 and 50 fields by two independent observers and classified according to their Gram stain morphology. Quantitative cultures were performed after serial dilution and plating on appropriate culture medium. A final diagnosis of VAP, based on a culture of > or = 10(3) c.f.u. ml-1, was established after 81 (44%) samplings. When 10 fields were analysed, a strong relationship was found between the presence of bacteria on Gram staining and the final diagnosis of VAP (for PSB and PTC respectively: sensitivity 74 and 81%, specificity 94 and 100%, positive predictive value 91 and 100%, negative predictive value 82 and 88%). The correlation was less when we compared the morphology of microorganisms observed on Gram staining with those of bacteria obtained from quantitative cultures (for PSB and PTC respectively: sensitivity 54 and 69%, specificity 86 and 89%, positive predictive value 72 and 78%, negative predictive value 74 and 84%). Increasing the number of fields read to 50 was associated with a slight decrease in specificity and positive predictive value of Gram staining, but with a small increase in its sensitivity and negative predictive value. The results obtained by the two observers were similar to each other for both numbers of fields analysed. Gram staining of protected pulmonary specimens performed on 10 fields predicted the presence of VAP and partially identified (using Gram stain morphology) the microorganisms growing at significant concentrations, and could help in the early choice of the treatment of VAP. Increasing the number of fields read or having the Gram

  5. Facultative parthenogenesis discovered in wild vertebrates

    OpenAIRE

    Booth, Warren; Smith, Charles F.; Eskridge, Pamela H.; Hoss, Shannon K.; Mendelson, Joseph R.; Schuett, Gordon W.

    2012-01-01

    Facultative parthenogenesis (FP)—asexual reproduction by bisexual species—has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seem...

  6. Measuring the Level of Agreement Between Cloacal Gram's Stains and Bacterial Cultures in Hispaniolan Amazon Parrots ( Amazona ventralis ).

    Science.gov (United States)

    Evans, Erika E; Mitchell, Mark A; Whittington, Julia K; Roy, Alma; Tully, Thomas N

    2014-12-01

    Cloacal or fecal Gram's stains and bacterial cultures are routinely performed during avian physical examinations to assess the microbial flora of the gastrointestinal tract. Although cloacal or fecal Gram's stains and bacterial cultures are considered routine diagnostic procedures, the level of agreement between the individual tests has not been determined. To investigate the level of agreement between results from Gram's stain and bacterial culture when used to assess cloacal or fecal samples from psittacine birds, samples were taken from 21 clinically healthy Hispaniolan Amazon parrots ( Amazona ventralis ) and tested by Gram's stain cytology and bacterial culture. Most bacteria (97.2%) identified by Gram's stain were gram positive. However, gram-negative organisms were identified in 7 of 21 (33.3%; 95% confidence interval: 13.3%-53.3%) birds. Escherichia coli was the only gram-negative organism identified on culture. Agreement between results of Gram's stain and culture was fair (weighted κ = 0.27). The results of this study suggest that Gram's stains and bacterial culture may need to be performed with a parallel testing strategy to limit the likelihood of misclassifying the microbial flora of psittacine patients.

  7. Investigational drugs for the treatment of infections caused by multidrug-resistant Gram-negative bacteria.

    Science.gov (United States)

    Avery, Lindsay M; Nicolau, David P

    2018-04-01

    Infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) are associated with significant mortality and costs. New drugs in development to combat these difficult-to-treat infections primarily target carbapenem-resistant Enterobacteriaceae, MDR Pseudomonas aeruginosa, and MDR Acinetobacter baumannii. Areas covered: The authors summarize in vitro and in vivo efficacy studies, as well as available clinical trial findings, for new agents in development for treatment of infection caused by MDR-GNB. Information regarding dosage regimens utilized in clinical trials and key pharmacokinetic and pharmacodynamic considerations are provided if available. A summary of recently approved agents, delafloxacin and meropenem/vaborbactam, is also included. Expert opinion: The development of multiple novel agents to fight MDR-GNB is promising to help save the lives of patients who acquire infection, and judicious use of these agents is imperative once they come to market to prevent the development of resistance. The other component paramount to this field of research is implementation of effective infection control policies and carbapenem-resistant Enterobacteriaceae (CRE) carrier screening protocols to mitigate the worldwide spread of MDR-GNB. Further investigation of anti-infective synergistic combinations will also be important, as well as support for economic research to reveal the true cost-benefit of utilization of the new agents discussed herein.

  8. In vitro susceptibility pattern of extended spectrum ?-lactamase producing gram negative bacilli against tetracyclines

    International Nuclear Information System (INIS)

    Gill, M.M.

    2015-01-01

    Extended Spectrum beta-lactamases (ESBLs) are emerging as common nosocomial pathogens and important cause of mortality and morbidity, if not treated properly. The need of the hour is to find effective treatment options for dealing with ESBL producing organisms. This study was aimed to evaluate in vitro susceptibility pattern of extended spectrum beta-lactamase producers against tetracyclines. Methods: This descriptive cross-sectional study was carried out in the department of Microbiology, Army Medical College, Rawalpindi, National University of Sciences and Technology over a period of 6 months. Seventy eight non-duplicate isolates were included in the study. ESBL detection was done using Jarlier et al method. In vitro susceptibility of tetracyclines like tetracycline, doxycycline, minocycline and tigecycline was then tested using Modified Kirby Bauer disc diffusion method. The zones of inhibition were measured after completion of incubation period and interpreted as per CLSI and FDA guidelines. Results: Approximately 56.4% of the isolates were Escherichia coli, 28.2% were Klebsiella pneumoniae, 10.26% were Enterobacter species, and 2.6% were each Klebsiella oxytoca and Acinetobacter species. ESBLs were found to be most sensitive to tigecycline, intermediate in susceptibility to minocycline while least sensitive to doxycycline and tetracycline. Conclusion: Among tetracyclines, tigecycline has best in vitro susceptibility against ESBL producing Gram negative rods. (author)

  9. Development of a Multiplexed Microsphere PCR for Culture-Free Detection and Gram-Typing of Bacteria in Human Blood Samples.

    Science.gov (United States)

    Liang, Fang; Browne, Daniel J; Gray, Megan J; Gartlan, Kate H; Smith, David D; Barnard, Ross T; Hill, Geoffrey R; Corrie, Simon R; Markey, Kate A

    2018-05-11

    Bloodstream infection is a significant clinical problem, particularly in vulnerable patient groups such as those undergoing chemotherapy and bone marrow transplantation. Clinical diagnostics for suspected bloodstream infection remain centered around blood culture (highly variable timing, in the order of hours to days to become positive), and empiric use of broad-spectrum antibiotics is therefore employed for patients presenting with febrile neutropenia. Gram-typing provides the first opportunity to target therapy (e.g., combinations containing vancomycin or teicoplanin for Gram-positives; piperacillin-tazobactam or a carbapenem for Gram-negatives); however, current approaches require blood culture. In this study, we describe a multiplexed microsphere-PCR assay with flow cytometry readout, which can distinguish Gram-positive from Gram-negative bacterial DNA in a 3.5 h time period. The combination of a simple assay design (amplicon-dependent release of Gram-type specific Cy3-labeled oligonucleotides) and the Luminex-based readout (for quantifying each specific Cy3-labeled sequence) opens opportunities for further multiplexing. We demonstrate the feasibility of detecting common Gram-positive and Gram-negative organisms after spiking whole bacteria into healthy human blood prior to DNA extraction. Further development of DNA extraction methods is required to reach detection limits comparable to blood culture.

  10. Multicenter Evaluation of a New Shortened Peptide Nucleic Acid Fluorescence In Situ Hybridization Procedure for Species Identification of Select Gram-Negative Bacilli from Blood Cultures▿

    Science.gov (United States)

    Morgan, Margie; Marlowe, Elizabeth; Della-Latta, Phyllis; Salimnia, Hossein; Novak-Weekley, Susan; Wu, Fann; Crystal, Benjamin S.

    2010-01-01

    A shortened protocol for two peptide nucleic acid fluorescence in situ hybridization (PNA FISH) assays for the detection of Gram-negative bacilli from positive blood cultures was evaluated in a multicenter trial. There was 100% concordance between the two protocols for each assay (368 of 368 and 370 of 370 results) and 99.7% (367 of 368 and 369 of 370 results) agreement with routine laboratory techniques. PMID:20357212

  11. In vivo metabolism of 2,2'-diaminopimelic acid from gram-positive and gram-negative bacterial cells by ruminal microorganisms and ruminants and its use as a marker of bacterial biomass

    International Nuclear Information System (INIS)

    Masson, H.A.; Denholm, A.M.; Ling, J.R.

    1991-01-01

    Cells of Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2'-diamino [G- 3 H] pimelic acid ([ 3 H]DAP) as models of gram-positive and gram-negative bacteria, respectively. Two experiments were conducted to study the in vivo metabolism of 2,2'-diaminopimelic acid (DAP) in sheep. In experiment 1, cells of [ 3 H]DAP-labeled B. megaterium GW1 were infused into the rumen of one sheep and the radiolabel was traced within microbial samples, digesta, and the whole animal. Bacterially bound [ 3 H]DAP was extensively metabolized, primarily (up to 70% after 8 h) via decarboxylation to [ 3 H]lysine by both ruminal protozoa and ruminal bacteria. Recovery of infused radiolabel in urine and feces was low (42% after 96 h) and perhaps indicative of further metabolism by the host animal. In experiment 2, [ 3 H]DAP-labeled B. megaterium GW1 was infused into the rumens of three sheep and [ 3 H]DAP-labeled E. coli W7-W5 was infused into the rumen of another sheep. The radioactivity contents of these mutant bacteria were insufficient to use as tracers, but the metabolism of DAP was monitored in the total, free, and peptidyl forms. Free DAP, as a proportion of total DPA in duodenal digesta, varied from 0 to 9.5%, whereas peptidyl DAP accounted for 8.3 to 99.2%

  12. Complete genome sequence of the thermophilic sulfate-reducing ocean bacterium Thermodesulfatator indicus type strain (CIR29812(T)).

    Science.gov (United States)

    Anderson, Iain; Saunders, Elizabeth; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Jeffries, Cynthia D; Chang, Yun-Juan; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter

    2012-05-25

    Thermodesulfatator indicus Moussard et al. 2004 is a member of the Thermodesulfobacteriaceae, a family in the phylum Thermodesulfobacteria that is currently poorly characterized at the genome level. Members of this phylum are of interest because they represent a distinct, deep-branching, Gram-negative lineage. T. indicus is an anaerobic, thermophilic, chemolithoautotrophic sulfate reducer isolated from a deep-sea hydrothermal vent. Here we describe the features of this organism, together with the complete genome sequence, and annotation. The 2,322,224 bp long chromosome with its 2,233 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

  13. Direct identification and susceptibility testing of positive blood cultures using high speed cold centrifugation and Vitek II system.

    Science.gov (United States)

    Bazzi, Ali M; Rabaan, Ali A; Fawarah, Mahmoud M; Al-Tawfiq, Jaffar A

    Compared to routine isolated colony-based methods, direct testing of bacterial pellets from positive blood cultures reduces turnaround time for reporting of antibiotic susceptibility. The aim of this study was to compare the accuracy, and precision, of a rapid method for direct identification and susceptibility testing of blood cultures with the routine method used in our laboratory, using Vitek 2. A total of 60 isolates were evaluated using the candidate and the routine method. The candidate method had 100% accuracy for the identification of Gram negative bacteria, Staphylococcus and Enterococcus, 50% for Streptococcus and 33.3% for Corynebacterium species. Susceptibility testing of Gram negative isolates yielded 98-100% essential agreement. For Staphylococcus and Enterococcus isolates, essential agreement was 100% for 17 antibiotics except for moxifloxacin. Direct testing of blood culture samples with Vitek 2 produced reliable identification and susceptibility results 18-24h sooner for aerobic/anaerobic facultative Gram-negative bacteria and Gram-positive Staphylococcus and Enterococcus strains. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.

  14. Antibiogram pattern of oral microflora in periodontic children of age group 6 to 12 years: a clinicomicrobiological study.

    Science.gov (United States)

    Fysal, N; Jose, Santhosh; Kulshrestha, Reena; Arora, Dimple; Hafiz, Ka Abdul; Vasudevan, Sanjay

    2013-07-01

    The study was carried out to see the diversity of oral microflora and its antibiotic sensitivity test in children of age group 6 to 12 years was carried. Total 50 patients of age group 6 to 12 years were analyzed for their oral microflora and then checked for the antibiotic susceptibility test. The samples that were collected were incubated at 37°C for 48 hours. Once dispersed samples were taken and Gram staining was done, also they were spread on to a number of freshly prepared agar plates and incubated to allow cells to form microbial colony. The result showed microflora common in all types, Gram-positive facultative anaerobic rods and cocci. In normal children Gram-positive facultative anaerobic and fermenting cocci were predominant where as in children with caries growth of microbiota that were Gram-negative and positive, capnophilic, motile and anaerobic rods and cocci belonging to members of genera S. mutans and A. actinomycetemcomitans was seen. By the present study it has been concluded that the number of bacteria determined by microscopic counts was twice as high in caries patients as in healthy sites, and also recommended that amoxicillin, ampicillin and amikacin are the most effective antibacterial drugs for the treatment of dental caries.

  15. Antibacterial activities of the methanol extracts of Albizia adianthifolia, Alchornea laxiflora, Laportea ovalifolia and three other Cameroonian plants against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Tchinda, Cedric F; Voukeng, Igor K; Beng, Veronique P; Kuete, Victor

    2017-05-01

    In the last 10 years, resistance in Gram-negative bacteria has been increasing. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of six Cameroonian medicinal plants Albizia adianthifolia , Alchornea laxiflora , Boerhavia diffusa , Combretum hispidum , Laportea ovalifolia and Scoparia dulcis against a panel of 15 multidrug resistant Gram-negative bacterial strains. The broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The preliminary phytochemical screening of the extracts was conducted according to the reference qualitative phytochemical methods. Results showed that all extracts contained compounds belonging to the classes of polyphenols and triterpenes, other classes of chemicals being selectively distributed. The best antibacterial activities were recorded with bark and root extracts of A. adianthifolia as well as with L. ovalifolia extract, with MIC values ranging from 64 to 1024 μg/mL on 93.3% of the fifteen tested bacteria. The lowest MIC value of 64 μg/mL was recorded with A. laxiflora bark extract against Enterobacter aerogenes EA289. Finally, the results of this study provide evidence of the antibacterial activity of the tested plants and suggest their possible use in the control of multidrug resistant phenotypes.

  16. RND-type Drug Efflux Pumps from Gram-negative bacteria: Molecular Mechanism and Inhibition

    Directory of Open Access Journals (Sweden)

    Henrietta eVenter

    2015-04-01

    Full Text Available Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design and subsequent experimental verification of potential efflux pump inhibitors. In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on efflux pump inhibitors will also be analysed and the reasons why no compounds have yet progressed into clinical use will be explored.

  17. Cystic neutrophilic granulomatous mastitis: an underappreciated pattern strongly associated with gram-positive bacilli.

    Science.gov (United States)

    Renshaw, Andrew A; Derhagopian, Robert P; Gould, Edwin W

    2011-09-01

    Although granulomatous lobular mastitis is associated with gram-positive bacilli such as Corynebacterium, this association is not well known. We report 3 cases of mastitis caused by gram-positive bacilli. All 3 abscesses were suppurative with distinct enlarged cystic spaces in which rare gram-positive bacilli were identified. Two cases were also granulomatous. Cultures in all 3 cases were negative. All 3 patients recovered after biopsy and tetracycline-based therapy. Infection in the breast by gram-positive bacilli is associated with a distinct histologic pattern, including cystic spaces in the setting of neutrophilic/granulomatous inflammation that can be recognized and should prompt careful search for the organism within enlarged vacuoles.

  18. Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Analysis of Gram-Positive, Catalase-Negative Cocci Not Belonging to the Streptococcus or Enterococcus Genus and Benefits of Database Extension

    DEFF Research Database (Denmark)

    Christensen, Jens Jørgen; Dargis, Rimtas; Hammer, Monja

    2012-01-01

    Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry with a Bruker Daltonics microflex LT system was applied to 90 well-characterized catalase-negative, Gram-positive cocci not belonging to the streptococci or enterococci. Biotyper version 2.0.43.1 software...

  19. Some Gram-negative Lipoproteins Keep Their Surface Topology When Transplanted from One Species to Another and Deliver Foreign Polypeptides to the Bacterial Surface*

    Science.gov (United States)

    Fantappiè, Laura; Irene, Carmela; De Santis, Micaela; Armini, Alessandro; Gagliardi, Assunta; Tomasi, Michele; Parri, Matteo; Cafardi, Valeria; Bonomi, Serena; Ganfini, Luisa; Zerbini, Francesca; Zanella, Ilaria; Carnemolla, Chiara; Bini, Luca; Grandi, Alberto; Grandi, Guido

    2017-01-01

    In Gram-negative bacteria, outer membrane-associated lipoproteins can either face the periplasm or protrude out of the bacterial surface. The mechanisms involved in lipoprotein transport through the outer membrane are not fully elucidated. Some lipoproteins reach the surface by using species-specific transport machinery. By contrast, a still poorly characterized group of lipoproteins appears to always cross the outer membrane, even when transplanted from one organism to another. To investigate such lipoproteins, we tested the expression and compartmentalization in E. coli of three surface-exposed lipoproteins, two from Neisseria meningitidis (Nm-fHbp and NHBA) and one from Aggregatibacter actinomycetemcomitans (Aa-fHbp). We found that all three lipoproteins were lipidated and compartmentalized in the E. coli outer membrane and in outer membrane vesicles. Furthermore, fluorescent antibody cell sorting analysis, proteolytic surface shaving, and confocal microscopy revealed that all three proteins were also exposed on the surface of the outer membrane. Removal or substitution of the first four amino acids following the lipidated cysteine residue and extensive deletions of the C-terminal regions in Nm-fHbp did not prevent the protein from reaching the surface of the outer membrane. Heterologous polypeptides, fused to the C termini of Nm-fHbp and NHBA, were efficiently transported to the E. coli cell surface and compartmentalized in outer membrane vesicles, demonstrating that these lipoproteins can be exploited in biotechnological applications requiring Gram-negative bacterial surface display of foreign polypeptides. PMID:28483926

  20. Detoxification of hexavalent chromium by an indigenous facultative ...

    African Journals Online (AJOL)

    A chromate resistant facultative anaerobic bacterial strain (FA-3) was isolated from the treated tannery effluent of Jajmau, Kanpur (India) and was identified as Bacillus cereus. FA-3 was tolerant to 1400 μg/ml of Cr (VI) and reduced a maximum of 72% Cr (VI) at 1000 μg/ml chromate concentration. The rate of growth of B.